DNA for Native American Genealogy – Hot Off the Press!

Drum roll please…my new book, DNA for Native American Genealogy, was just released today, published by Genealogical.com.

I’m so excited! I expected publication around the holidays. What a pleasant surprise.

This 190-page book has been a labor of love, almost a year in the making. There’s a lot.

  • Vendor Tools – The book incorporates information about how to make the best use of the autosomal DNA tools offered by all 4 of the major testing vendors; FamilyTreeDNA, MyHeritage, Ancestry, and 23andMe.
  • Chromosome Painting – I’ve detailed how to use DNAPainter to identify which ancestor(s) your Native heritage descends from by painting your population/ethnicity segments provided by FamilyTreeDNA and 23andMe.
  • Y and Mitochondrial DNA – I’ve described how and when to utilize the important Y and mitochondrial DNA tests, for you and other family members.
  • Maps – Everyone wants to know about ancient DNA. I’ve included ancient DNA information complete with maps of ancient DNA sites by major Native haplogroups, gathered from many academic papers, as well as mapped contemporary DNA locations.
  • Haplogroups – Locations in the Americas, by haplogroup, where individual haplogroups and subgroups are found. Some haplogroups are regional in nature. If you happen to have one of these haplogroups, that’s a BIG HINT about where your ancestor lived.
  • Tribes – Want to know, by tribe, which haplogroups have been identified? Got you covered there too.
  • Checklist – I’ve provided a checklist type of roadmap for you to follow, along with an extensive glossary.
  • Questions – I’ve answered lots of frequently asked questions. For example – what about joining a tribe? I’ve explained how tribes work in the US and Canada, complete with links for relevant forms and further information.

But wait, there’s more…

New Revelations!!!

There is scientific evidence suggesting that two haplogroups not previously identified as Native are actually found in very low frequencies in the Native population. Not only do I describe these haplogroups, but I provide their locations on a map.

I hope other people will test and come forward with similar results in these same haplogroups to further solidify this finding.

It’s important to understand the criteria required for including these haplogroups as (potentially) Native. In general, they:

  • Must be found multiple times outside of a family group
  • Must be unexplained by any other scenario
  • Must be well-documented both genetically as well as using traditional genealogical records
  • Must be otherwise absent in the surrounding populations

This part of the research for the book was absolutely fascinating to me.

Description

Here’s the book description at Genealogical.com:

DNA for Native American Genealogy is the first book to offer detailed information and advice specifically aimed at family historians interested in fleshing out their Native American family tree through DNA testing.

Figuring out how to incorporate DNA testing into your Native American genealogy research can be difficult and daunting. What types of DNA tests are available, and which vendors offer them? What other tools are available? How is Native American DNA determined or recognized in your DNA? What information about your Native American ancestors can DNA testing uncover? This book addresses those questions and much more.

Included are step-by-step instructions, with illustrations, on how to use DNA testing at the four major DNA testing companies to further your genealogy and confirm or identify your Native American ancestors. Among the many other topics covered are the following:

    • Tribes in the United States and First Nations in Canada
    • Ethnicity
    • Chromosome painting
    • Population Genetics and how ethnicity is assigned
    • Genetic groups and communities
    • Y DNA paternal direct line male testing for you and your family members
    • Mitochondrial DNA maternal direct line testing for you and your family members
    • Autosomal DNA matching and ethnicity comparisons
    • Creating a DNA pedigree chart
    • Native American haplogroups, by region and tribe
    • Ancient and contemporary Native American DNA

Special features include numerous charts and maps; a roadmap and checklist giving you clear instructions on how to proceed; and a glossary to help you decipher the technical language associated with DNA testing.

Purchase the Book and Participate

I’ve included answers to questions that I’ve received repeatedly for many years about Native American heritage and DNA. Why Native DNA might show in your DNA, why it might not – along with alternate ways to seek that information.

You can order DNA for Native American Genealogy, here.

For customers in Canada and outside the US, you can use the Amazon link, here, to reduce the high shipping/customs costs.

I hope you’ll use the information in the book to determine the appropriate tests for your situation and fully utilize the tools available to genealogists today to either confirm those family rumors, put them to rest – or maybe discover a previously unknown Native ancestor.

Please feel free to share this article with anyone who might be interested.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Genetic Affairs – New AutoKinship Tool Predicts Relationships and Builds Genetic Trees

Genetic Affairs recently introduced a new tool – AutoKinship. Evert-Jan (EJ) Blom, the developer was kind enough to step through these results with me to assure that I’m explaining things correctly. Thanks EJ!

AutoKinship automatically predicts family trees and pathways that you may be related to your matches based on how they match you and each other. Not only is this important for genealogists trying to piece our family tree together, it’s indispensable for anyone searching for unknown ancestors, beginning with parents and walking right on up the tree for the closest several generations.

Right now, the automated AutoKinship tool is limited to 23andMe profiles, but will also work as a standalone tool where users can fill in the shared DNA information for their matches. MyHeritage, 23andMe, and GEDMatch provide centiMorgan information about how your matches also match each other. Here’s a tutorial for the standalone tool.

Unfortunately, Ancestry does not provide their customers with segment information, but fortunately, you can upload a copy of your Ancestry DNA file to MyHeritage, FamilyTreeDNA or GEDmatch, for free. You’ll find step-by-step instructions, here.

Automated AutoKinship Tool

After signing into to your Genetic Affairs account, assuming you have already set up your 23andMe profile at Genetic Affairs, click on “Run AutoKinship for 23andMe.”

I manage multiple profiles at 23andMe, so I need to click on “Profiles.”

Select the correct profile if you manage multiple kits at 23andMe.

You’ll see your various options that can be run for your 23andMe kit.

Select AutoKinship

If you select AutoKinship, you automatically receive an AutoCluster because AutoKinship is built on the AutoCluster functionality.

Make your selections. I recommend leaving these settings at the default, at least initially.

The default of 250 cM excludes your closest matches. You don’t want your closest matches because they will be members of too many clustered groups.

In my initial run, I made the mistake of changing the 50 cM lower threshold to 20 cM because I wanted more matches to be included. Unfortunately, the effect this had on my results was that my largest two clusters did not produce trees.

Hint: EJ states that the software tool works from the smallest cluster to the largest when producing trees. If you notice that your largest cluster, which is usually the first one displayed in the upper left hand corner (orange here), does not have associated trees, or some people are missing, that’s your clue that the AutoKinship ran out of server time to process and you need to raise either the minimum match threshold, in this case, 50 cM, or the minimum amount of DNA shared between your matches to each other, in this case, 10 cM.

You can also select between shared matches and triangulated groups. I selected shared matches, but I may well rerun this report with triangulated groups because that provides me with a great deal of even more useful information.

When you’re ready, click on the big green “you can’t miss it” Perform AutoCluster Analysis button.

Make a cup of coffee. Your report is processing. If your email doesn’t arrive, you can click on the little envelope in your Genetic Affairs profile and the report can be downloaded to your computer directly from that link.

Your Report Arrives!

You’ll receive a zip file in the email that you MUST SAVE TO YOUR COMPUTER to work correctly. You’ll see these files, but you can’t use them yet.

First, you MUST EXTRACT THE FILES from the zip file. My zip file displays the names of the file inside of the zipped file, but they are not extracted.

You must right click, as shown above, and then click on “Extract All” on a PC. Not sure what MAC users need to do but I think it autoextracts. If you click on some of the files in this article and they don’t load correctly, or say they aren’t present, that likely means:

  • You either forgot to save the file in the email to your computer
  • Or you failed to do the extract

The bottom two files are your normal AutoCluster visual html file and the same information in an excel file.

Click on the AutoCluster html file to activate.

Personally, I love watching the matches all fly into place in their clusters. This html file is going to be our home base, the file we’ll be operating from for all of the functions.

I have a total of 23 interrelated autoclusters. The question is, how are we all related to each other. You can read my article about AutoClusters and how they work here.

People who are members of more than one cluster are shown with those little grey squares signifying that they match people in two clusters, not just one cluster.

For example, one cluster might be my grandparents, but the second cluster might be my maternal great-great-grandfather. Membership in both clusters tells me that my matching DNA with those people in the second cluster probably descends from my great-great-grandfather. Some of the DNA matches in the first cluster assuredly also descend from that man, but some of them may descend from other related ancestors, like my maternal grandmother. It’s our job as genealogists to discern the connections, but the entire purpose of AutoKinship is to make that process much easier.

We are going to focus on the first few clusters to see what kinds of information Genetic Affairs can produce about these clusters. Notice that the first person in row 1 is related to the orange cluster, the green cluster, the purple and the brown clusters. That’s important information about that person, and also about the interrelationship of those clusters themselves and the ancestors they represent.

Remember, to be included in a grandparent cluster, that person’s DNA segment(s) must have descended from other ancestors, represented in other clusters. So you can expect one person to be found potentially in multiple clusters that serve to trace those common ancestors (and associated segments) back in time.

AutoKinship

The AutoKinship portion of this tool creates hypothetical trees based on relationships of you to each person in the cluster, and to the other cluster members to each other.

If you’re thinking triangulation, you’re right. I selected matches, not triangulated groups which is also an option. Some people do triangulate, but some people may match each other on different segments. Right now, it’s a jumble of hints, but we’ll sort some of this out.

If you scroll down in your html file, below your cluster, and below the explanation (which you should read,) you’ll see the AutoKinship verbiage.

I want to do a quick shout-out to Brit Nicholson, the statistician that works with EJ on probabilities of relationships for this tool and describes his methodology, here.

AutoKinship Table

You’ll see the AutoKinship Table that includes a link for each cluster that could be assembled into a potential tree.

Click on the cluster you wish to view.

In my case, clusters 1 through 5 are closely related to each other based on the common members in each cluster. I selected cluster 1.

Your most probable tree for that cluster will be displayed.

I’m fortunate that I recognized three of my third cousins. AutoKinship constructed a probable genetic pedigree, but I’ve overlayed what I know to be the correct pedigree.

With the exception of one person, this AutoKinship tree is accurate to the best of my knowledge. A slot for Elizabeth, the mother of William George Estes and the daughter of Joel is missing. I probably know why. I match two of my cousins with a higher than expected amount of DNA which means that I’m shown “closer” in genetic distance that I normally would be for that relationship level.

In one case, Charles and I share multiple ancestors. In the other case, I don’t know why I match Everett on so much more DNA than his brother Carl or our other cousin, Vianna. Regardless, I do.

In one other instance, there’s a half-relationship that throws a wrench into the tree. I know that, but it’s very difficult to factor half-relationships into tree building without prior knowledge.

If you continue to scroll down, you’ll see multiple options for trees for this cluster.

DNA Matrix

Below that, you’ll see a wonderful downloadable DNA matrix of how everyone in the cluster shares DNA with everyone else in the cluster.

At this point, exit from cluster one and return to your original cluster file that shows your cluster matrix.

Beneath the AutoKinship table, you’ll see AutoCluster Cluster Information.

AutoCluster Cluster Information

Click on any one of those people. I’m selecting Everett because I know how we are related.

Voila, a new cluster configuration forms.

I can see all of the people I match in common with Everett in each cluster. This tells me two things:

  • Which clusters are related to this line. In particular, the orange cluster, green, red, purple, brown, magenta and dark grey clusters. If you mouse over each cell in the cluster, more information is provided.
  • The little helix in each cell tells you that those two people triangulate with each other and the tester. How cool is that?!!

Note that you can display this cluster in 4 different ways.

Return again to your main autocluster page and scroll down once again.

This just might be my favorite part.

Chromosome Segments

You can import chromosome segment information into DNAPainter – instructions here.

What you’ll see next is the clusters painted on your chromosomes. I love this!!!

Of course, Genetic Affairs can’t tell you which side is maternal and which is paternal. You’ll need to do that yourself after you import into DNAPainter.

Just beneath this painting, you’ll see a chart titled Chromosome segment statistics per AutoCluster cluster.

I’m only showing the first couple as an example.

Click on one of links. I’m selecting cluster 1.

Cluster 1 has painted portions of each chromosome, but I’m only displaying chromosomes 1-7 here.

Following the painting is a visual display of each overlap region by cluster, by overlapping segment on each chromosome.

You can clearly see where these segments overlap with each other!

Surname Enrichment

If you select the surname enrichment option, you’ll receive two additional features in your report.

Please note that I ran this option separately at a different time, so the cluster members and clusters themselves do not necessarily correlate with the examples above.

The Enriched Surname section of your report shows surnames in common found between the matches in each specific cluster.

Keep in mind, this does NOT just mean surnames in common with YOUR surname list, assuming you’ve entered your surnames at 23andMe. (If you haven’t please do so now.) 23andMe does not support user trees, so your entered surnames are all that can be utilized when comparing information from your matches.

These are surnames that are found more than once among your matches. I’ve framed the ones in red that I recognize as being found in my tree, and I’ve framed the ones in black that I recognize as being “married in.” In other words, some people may descend through children of my ancestors who married people with that black bracketed surname.

I can tell you immediately, based on these surnames, that the first cluster is the cluster formed around my great-great-grandparents, Joel Vannoy and his wife, Phebe Crumley.

Cluster 6 is less evident, but Anderson might be connected to the Vannoy family. I’ll need to view the common matches in that cluster at 23andMe and look for additional clues.

Cluster 9 is immediately evident too. Ferverda is Hiram Ferverda, my great-grandfather and Eva Miller is his wife.

Cluster 10 is probably the Miller line as well. Indiana is a location in this case, not a surname.

Click on “Detailed Surname Table” for more information, as shown below.

Each group of people that shares any surname is shown in a table together. In this case, these three people, who I happen to know are brothers, all share these surnames. The surnames they also share with me are shown with red boxes. The other surnames are shared only with each other and no one else in the cluster. I know they aren’t shared with me because I know my tree.

While your initial reaction may be that this isn’t terribly useful, it is actually a HUGE gift. Especially if you find a cluster you aren’t familiar with.

Mystery Cluster

A mystery cluster is an opportunity to break down a brick wall. This report tells you which people to view on your match list who share that surname. My first step is to use that list and see who I match in common with each person at 23andMe.

My relatives in common with my Cluster 10 matches include my close Ferverda cousins who descend from our common Miller ancestor, plus a few Miller cousins. This confirms that this cluster does indeed originate in the Miller line.

Not everyone in that cluster shares the surname Miller. That might be a good thing.

I have a long-standing brick wall with Magdalena (surname unknown) who was married to Philip Jacob Miller, my 5-times great-grandparents. My cousins through that couple, at my same generation, would be about 6th cousins.

These matches are matching me at the approximate 4th cousin level or more distantly, so it’s possible that at least some of these matches COULD be through Magdalena’s family. In that case, I certainly would not recognize the common surnames. Therefore, it’s imperative that I chase these leads. I can also adjust the matching threshold to obtain more matches, hopefully, in this cluster, and run the report again.

Are you in love with Autokinship and its associated features yet? I am!

Summary

Wow is all I can say. There’s enough in this one report to keep me busy for days, especially since 23andMe does not support a tree function in the traditional genealogical sense.

I have several matches that I have absolutely no idea how they are related to me. This helps a great deal and allows to me systematically approach tree-building or identifying ancestors.

You can see if 23andMe has predicted these relationships in the same way, but other than messaging your matches, or finding them at another vendor who does support a tree, there’s no way to know if either 23andMe’s autogenerated tree or the Genetic Affairs trees are accurate.

What Genetic Affairs provides that 23andMe does not is composite information in one place – as a group in a cluster. You don’t have to figure out who matches whom one by one and create your own matrix. (Yes, I used to do that.)

You can also import the Genetic Affairs information into DNAPainter to make further use of these segments. I’ve written about using DNAPainter, here.

Once you’ve identified how one person in any cluster connects, you’ve found your lever to unlock the identity of the ancestors whose DNA is represented in that particular cluster – and an important clue/link to associated clusters as well.

If you don’t recognize these cousins at 23andMe, look for common surnames on your DNA Relatives match list, or see if a known close relative on your maternal or paternal side matches these people found in a cluster. Click on each match at 23andMe to see if they have provided notes, surnames, locations or even a link to a tree at another vendor.

Don’t forget, you can also select the “Based on Triangulated Groups” option instead of the “Based on Shared Matches” option initially.

Run A Report

If you have tested at 23andMe, give the Genetic Affairs AutoKinship report a try.

Is it accurate for you? Have you gained insight? Identified how people are related to you? Are there any surprises?

Do you have a mystery cluster? I hope so, because an answer just might be hiding there.

If you’d like to read more about Genetic Affairs tools, click here for my free repository of Genetic Affairs articles.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here. You’re always welcome to forward articles or links to friends.

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

Books

Genealogy Research

Free Webinar: 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA

I recorded 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA for Legacy Family Tree Webinars.

Webinars are free for the first week. After that, you’ll need a subscription.

If you subscribe to Legacy Family Tree, here, you’ll also receive the downloadable 24-page syllabus and you can watch any of the 1500+ webinars available at Legacy Family Tree Webinars anytime.

In 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA, I covered the following features and how to use them for your genealogy:

  • Ethnicity – why it works and why it sometimes doesn’t
  • Ethnicity – how it works
  • Your Chromosomes – Mom and Dad
  • Ethnicity at AncestryDNA, 23andMe, FamilyTreeDNA and MyHeritage DNA
  • Genetic Communities at AncestryDNA
  • Genetic Groups at MyHeritage DNA
  • Painted ethnicity segments at 23andMe and FamilyTreeDNA
  • Painting ethnicity segments at DNAPainter – and why you want to
  • Shared ethnicity segments with your matches at AncestryDNA, 23andMe, FamilyTreeDNA and MyHeritage DNA
  • Downloading matches and segment files
  • Techniques to pinpoint Native Ancestors in your tree
  • Y DNA, Native ancestors and haplogroups
  • Mitochondrial DNA, Native ancestors and haplogroups
  • Creating a plan to find your Native ancestor
  • Strategies for finding test candidates
  • Your Ancestor DNA Pedigree Chart
  • Success!!!

If you haven’t yet tested at or uploaded your DNA to both FamilyTreeDNA and MyHeritage, you can find upload/download instructions, here, so that you can take advantage of the unique tools at all vendors.

Hope you enjoy the webinar and find those elusive ancestors!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

Books

Genealogy Research

DNA Beginnings: How Many DNA Matches Do I Have?

People often want to know how many DNA matches they have.

Sounds simple, right?

At some vendors, the answer to this question is easy to find, and at others, not so much.

How do you locate this information at each of the four major vendors?

What else do you need to know?

I’ve written handy step-by-step instructions for each company!

Matches at FamilyTreeDNA

Sign on at FamilyTreeDNA and under autosomal results, click on Family Finder Matches.

At the top of the next page, you’ll see your total number of matches along with matches that FamilyTreeDNA has been able to assign maternally or paternally based on creating/uploading a tree and linking known matches to that tree in their proper place.

Your parents do NOT need to have tested for the maternal/paternal bucketing functionality, but you DO need to identify some relatives and link their tests to their place in your tree. It’s that easy. Instructions for linking can be found in the “Linking Matches on Your Tree” section of this article (click here), along with information about how that helps you, or here.

Obviously, if your parents have tested, that’s the best scenario. For people who don’t have that option, FamilyTreeDNA is the ONLY vendor that offers this type of feature if your parents have NOT tested.

At FamilyTreeDNA, I have 7313 total matches of which 3169 are paternal, 1402 are maternal and 6 are related to both parents.

Hint – your siblings, their children, your children, grandchildren, etc. will be related to you on both your paternal and maternal sides.

If you don’t have an autosomal DNA test at FamilyTreeDNA, you can upload one from Ancestry, 23andMe, or MyHeritage for free. Click here for instructions.

Matches at MyHeritage

At MyHeritage, sign on and click on DNA, then DNA Matches.

At the top of your matches page, you’ll see your total number of matches.

At MyHeritage, I have 14,082 matches.

Matches are not broken down maternally and paternally automatically, but I can filter my matches in a wide variety of ways, including shared matches with either parent if they have tested, or other relatives.

If you don’t have an autosomal DNA test at MyHeritage, you can transfer one from Ancestry, 23andMe, or FamilyTreeDNA for free. Click here to begin your upload to MyHeritage.

Click here for instructions about how to download a copy of your DNA file from other vendors.

Matches at Ancestry

At Ancestry, sign on and click on DNA, then DNA Matches.

On your matches page, at the top, you’ll see a number of function widgets. Look for “Shared DNA.”

Click the down arrow to expand the Shared DNA box and you’ll see the total number of matches, along with the breakdown between 4th cousins or closer and distant matches.

Sometimes the number of matches doesn’t show up which means Ancestry’s servers are too busy to calculate the number of matches. Refresh your screen or try again in a few minutes. This happens often to me and always makes me question my sanity:)

I have 53,435 matches at Ancestry, of which 4,102 are estimated to be 4th cousins or closer and 49,333 are more distant.

For close matches only, if your parents have tested at Ancestry, when possible, Ancestry tells you on each match if that person is associated with your father’s side or your mother’s side.

You can’t upload DNA files from other vendors to Ancestry, but you can download a copy of your DNA file from Ancestry and upload to either FamilyTreeDNA or MyHeritage. Click here for instructions.

You can also download a copy of your tree from Ancestry and upload it to either of those vendors, along with your DNA file for best results.

Matches at 23andMe

23andMe functions differently from the other vendors. They set a hard limit on the number of matches you receive.

That maximum number differs based on the test version you took and if you pay for a membership subscription that provides enhanced medical information along with advanced filters and the ability to have a maximum of 5000 matches.

In order to purchase the membership subscription, you need to take their most current V5 test. If you tested with an earlier product, you will need to repurchase, retest or upgrade your current test which means you’ll need to spit in the vial again.

Please note the words, “up to 5000 relatives,” in the 23andMe verbiage. They also say that’s “over 3 times what you get” with their test without a subscription.

23andMe handles things differently from any other vendor in the industry. They made changes recently which created quite a stir because they removed some capabilities from existing customers and made those functions part of their subscription model. You can read about that here and here.

The match limit on the current 23andMe V5 test, WITHOUT the subscription, is 1500. If you tested previously on earlier kits, V2-V4, 23andMe has reinstated your prior maximum match limit which was 2000.

So, here’s the maximum match summary for 23andMe:

  • Earlier kits (V2-V4) – 2000 maximum matches
  • Current V5 kit with no subscription – 1500 maximum matches
  • Current V5 kit with subscription – 5000 maximum matches

Except, that’s NOT the number of matches you’ll actually see.

23andMe handles matching differently too.

23andMe matches you with their other customers up to your maximum, whatever that is, then subtracts the people who have not opted-in to genealogy matching. Remember, 23andMe focuses on health, not genealogy, so not all of their customers want matching.

Therefore, you’ll NEVER see your total number of allowed matches, which is why 23andMe cleverly says you “get access to up to 5000 relatives.”

Let’s look at my V4 test at 23andMe. Sign on and click on Ancestry, then DNA Relatives. (Please note, Ancestry is not Ancestry the company, but at 23andMe means genealogy results as opposed to medical/health results.)

At the top of your DNA Relatives page, you’ll see your total number of matches, before any sorting filters are applied.

23andMe does not automatically assign matches maternally or paternally, but if your parents have tested AND opt-in to matching, then you can filter by people who also match either parent.

I have 1796 matches at 23andMe, which means that 204 or 11% of my matches have not opted-in to matching.

You can’t upload DNA files from other vendors to 23andMe, but you can download a copy of your DNA file from 23andMe and upload to either FamilyTreeDNA or MyHeritage where you will assuredly receive more matches. Click here for instructions.

Summary

Each vendor has its own unique set of features and operates differently. It’s not so much the number of matches you have, but if you have the RIGHT match to break through a particular brick wall or provide you with a previously unknown photo of a cherished family member.

I encourage everyone to fish in all 4 of these ponds by testing or uploading your DNA. Uploading and matching are both free. Advanced tools require a small one-time unlock fee, but it’s significantly less than testing again. You can find step-by-step instructions to walk you through the process, here.

Have fun!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Announcing DNA Beginnings – A New Series

Welcome to DNA Beginnings. This exciting, upcoming series will be focused on the new DNA tester who may also be a novice genealogist and is unsure of quite what to do.

People ask, “Where do I even start?”

If this is you, welcome!

Which Vendors Will Be Covered?

This series will consist of one article for each of the four main DNA vendors:

Topics

Each article will cover two primary topics:

  • Matches
  • In-common-with or shared matches between you and other people

Along with:

  • Why each match type is important.
  • What matches and shared matches can tell you
  • How to make use of that information

More Information

For those who are ready – at the end of each article, I’ll include links with instructions for using more advanced tools at each vendor.

Get Ready!

While you’re waiting, you can upload your DNA data file from some vendors to other vendors, for free! That way you’ll have matches to work with, in multiple places. You’ll match different people at each vendor who are related to you in different ways. You never know where the match you need will be found – so fish in multiple ponds.

If you’ve tested at any vendor, you can download your raw DNA file. Downloading your raw DNA data file doesn’t affect your DNA file or matches at the vendor where you tested. The file you’re downloading is just a copy of the raw DNA file.

Just don’t delete the DNA test at the original vendor. That’s an entirely separate function, so don’t worry.

Uploading your raw DNA file to another vendor, for free, saves the cost of retesting, even if you do have to pay a small fee to utilize that vendor’s advanced tools.

Which Vendors Accept Upload Files?

Which vendors accept raw DNA data file uploads from other vendors? The chart below shows the vendors where you’ve tested on the left side, and the vendors you want to transfer to across the top.

To read this, people who have tested at FamilyTreeDNA (from the left column) can upload their raw DNA file to MyHeritage, but not to 23andMe or Ancestry. Note the asterisks. For example, people who tested at MyHeritage can upload their DNA file to FamilyTreeDNA, but only if they tested after May 7, 2019.

From to >>>>> FamilyTreeDNA MyHeritage 23andMe* Ancestry*
FamilyTreeDNA N/A Yes No No
MyHeritage Yes** N/A No No
23andMe*** V3, V4, V5 V3, V4, V5 N/A No
Ancestry V1, V2 V1, V2 No N/A

* Neither 23andMe nor Ancestry accept any DNA file uploads from any vendors. To receive matches at these two vendors, you must test there.

** FamilyTreeDNA accepts MyHeritage DNA tests taken after May 7, 2019.

*** Vendors do not accept the early 23andMe V2 file type used before December 2010.

None of these vendors accept files from LivingDNA who uses an incompatible DNA testing chip, although LivingDNA accepts upload files from other vendors.

Step-By-Step Instructions for Transferring Your Raw DNA Files

I wrote articles about how to download your raw DNA file from each vendor and how to upload your DNA file to vendors who accept DNA uploads in lieu of testing at their site.

You’ll save money by transferring your DNA file instead of testing at each vendor.

Transfer your file now and get ready to have fun with our DNA Beginnings articles!

Share and Subscribe – It’s Free

Feel free to share these articles with your friends and organizations. Anyone can subscribe to DNAexplained (this blog) for free and receive weekly articles in their inbox by entering their email and clicking on the little grey “Follow” button on the upper right-hand side of the blog on a computer or tablet screen. Hint – if you received this article in your email – you’re already subscribed so you don’t need to do anything. If you’re not subscribed already, just filling the info and click on “Follow.”

Every genealogist and genetic genealogist starts someplace and DNA Beginnings is a wonderful opportunity. The first article in the series will be arriving later this week!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

Books

Genealogy Research

Nine Years and Future Plans – Happy Blogiversary

Happy Blogiversary!

Yes, blogiversary is actually a real word for a blog’s birthday.

It’s DNAeXplained’s 9th birthday and I nearly forgot.

How could I???

What do you get a blog for its birthday anyway?

History and Changes

I remember the 4th of July holiday back in 2012 – although that seems like about two lifetimes ago now.

I was trying to learn how to use WordPress, my chosen blogging platform, and to become familiar enough with how everything worked so I wouldn’t embarrass myself.

On July 11, 2012, I published my first very short blog article, just saying hello and inviting people to subscribe and come along for the ride. And what a ride it has been as we begin our 10th year together.

I was explaining DNA topics so often that I figured if I wrote the answer once as an article with pictures and graphics, I could save myself (and lots of other people) a great deal of effort. I could just link my blog article and not have to retype everything.

Seemed like a great idea…right?

That worked then and still does, well…except for a couple of considerations:

  • Increasingly, people don’t seem to be interested in learning, just in receiving “an answer.” In other words, they often don’t bother to actually read articles. Or, in one woman’s words, “You didn’t answer my question. You just gave me something to read.” Sigh.

I’m mortified when I read some of the answers provided to people on social media – especially realizing that the person asking the question has no idea how to discern between an accurate answer and something else.

Doubt that? Try an experiment. Select any topic where you are an expert. Go to a social media group about that topic. Review the questions and resulting answers. Bash head on table.

  • Things change over time. We’ve learned a WHOLE LOT since 2012 in the genetic genealogy space. Every vendor platform has changed multiple times. New products have been introduced which obsolete older products and their articles. Some vendors and tools have disappeared and new ones have emerged. DNA has become a household word.

The Unexpected

Blogging has resulted in a few things I didn’t anticipate:

  • Sometimes, bloggers becoming targets. This is especially painful when it comes from within the community. Mostly, I refuse to give any of that oxygen. Their hatefulness is really not about me. Still, it was shocking and painful at first.
  • I receive between 500 and 1000 emails every single day. Yes, EVERY SINGLE DAY. That’s in addition to blog comments and social media communications. It’s overwhelming, even after deleting obvious spam. This also means that I don’t catch up, am chronically behind, and never really get a break. (This is a big reason why bloggers burn out.)

Communications

Communications fall into several categories:

  • Some emails/communications are people reaching out about my (our) ancestors. Obviously, those emails are always welcome and often make my day. 😊
  • Some people are saying thank you or offering suggestions that I sometimes utilize as future article topics. I appreciate those too.
  • Some people comment or participate in a discussion. Those just require a quick approval and I’m always glad to see people engaging.
  • Some people inquire about consulting services. At this point, I don’t accept private clients and no longer write Y and mitochondrial DNA reports for people. That could change in the future, but right now, I simply refer people to others who I know are qualified based on the topic of the request.
  • Many emails are from someone who wants something. For example – “I’d like to write a guest post for your blog.” Translated – “I’d like to use the platform you’ve developed over the past 9 years, and your followers, to benefit myself.” The answer is a resounding “NO”! Truthfully, I no longer respond to these. The delete key suffices. But I still have to read them.

Unchanged!

Some things have NOT changed:

  • I still love to explain and educate about the marriage of DNA and genealogy.
  • I still love to chase my ancestors.
  • No ad policy – you won’t see embedded ads in my articles. When bloggers allow ads, the ads provide revenue, but the blogger also risks a substandard product being displayed to their subscribers and visitors. There are sometimes relevant, curated, affiliate links within my articles for products that I use, but they never appear as an ad. I am not criticizing bloggers who do adopt the ad model – simply explaining to you why I don’t. And yes, I know I’m foregoing revenue with this decision, but I feel it’s the right thing to do.

Improvements

Almost every aspect of genetic genealogy has improved over the past 9 years:

  • Autosomal test matches have increased and are often of a higher quality as a result of millions of people having tested at the four major vendors: FamilyTreeDNA, MyHeritage, 23andMe, and Ancestry. We probably had an industry-wide total of about 2 million testers in 2012, and now I’d wager we have more than 40 million. More and better matches for everyone!
  • Y DNA testing (for men only) has improved by leaps and bounds, with a combination of SNP testing with the Big Y-700 test and STR testing being able to refine relationships at a very granular level. This paternal line test plus matching is only available at FamilyTreeDNA.
  • Mitochondrial DNA test numbers lag behind other tests, but the Million Mito Project will encourage more testers and refine mitochondrial match results in a meaningful way as well. We simply need more testers, just like we did with autosomal back in 2012. The mitochondrial DNA full sequence test is available at FamilyTreeDNA.
  • Every major DNA vendor has added state-of-the-art, innovative tools over the years.
  • Every major DNA vendor has been sold/acquired and we’ve all managed to survive, despite teeth-gnashing and predictions of doom.
  • FamilyTreeDNA and MyHeritage both accept transfers/uploads from other vendors, making swimming in all the genetic genealogy pools easier and more affordable for consumers. Click here for step-by-step download/upload instructions.
  • Public consciousness about DNA testing for genealogy, health, and traits has increased dramatically. We see TV and social media ads regularly today.
  • Techniques like triangulation, clustering, and various flavors of tree-matching have revolutionized what can be accomplished with genetic genealogy – both confirming and discovering ancestors. Newly discovered new cousins may be researching the same ancestral lines.
  • People seeking the identity of parents or other close relatives routinely solve those puzzles today, thanks to the millions of people who have tested. That was quite rare in 2012.
  • We are attracting a whole new savvy generation of testers who grew up with and understand technology.

The Future

What does the future hold for me and DNAeXplain? To be clear, DNAeXplain is the underlying business/website and DNAeXplained.com is the blog, but I often use them interchangeably since both URLs resolve to the same location today.

First and foremost, I don’t have any intention of stopping. I’m passionate about genetic genealogy, have been for 21 years now, and love to write articles and share with you. In fact, in the last few months, I’ve added the Y DNA Resources one-stop educational page as well as Mitochondrial DNA.

I’ve had the opportunity to get to know and meet so many blog followers. Some of you turned out to be cousins. Of course, we’re all related eventually, someplace back in time.

I look forward to in-person conferences again, but don’t worry – I’ll continue researching, writing, and covering topics in this amazing industry.

Cousin Bait

I never considered that I might find cousins through blogging but that’s worked marvelously – both when I publish the articles and later too.

On a personal level, my 52 Ancestors series has been extremely successful for a couple of reasons:

  • Each article forces me to verify and update my research.
  • The articles act as cousin bait. Not only are they findable using Google, or the blog search feature, I post the article links at WikiTree, MyHeritage, and Ancestry on the profile card for that ancestor. I need to do the same at FamilySearch as well.

Upcoming Book

I’m very excited to be able to share with you that I’m completing a manuscript.

I can’t discuss more about the book just yet, but I should have the draft to the editor shortly.

Chapters

The book of our life is written in chapters, just like the lives of our ancestors were.

I’m beginning a new chapter shortly – a move to someplace where it’s warmer.

I don’t know where just yet (I think a villa in Tuscany is probably out of the question), nor exactly when.

What I do know is that I’ve accumulated a HUGE amount of stuff over the decades that I’ve lived in this house. My mother passed away, so I have her things too.

Genealogy books are heavy and require lots of space.

So does paper, as in file cabinets and boxes of documents.

As most of you know, I’m a quilter – and fabric is heavy and requires space too.

Movers charge by some combination of distance, how much space your possessions require in their truck, hourly fees, weight and prep required.

Let’s just say that preparing to move is proving challenging!

Why am I telling you this?

Changes

Over the period of 9 years, I’ve written and published 1442 articles. That equates to one article about every 2.25 days.

That’s even hard for me to believe.

My goal has always been to publish:

  • One technical article during the week. Topics include things like DNA concepts, sales, new features, and various “how-to” articles.
  • One 52-Ancestors article each weekend.

I’ve exceeded that goal.

Needless to say, both of those types of articles take hours-to-days to research, compose and publish.

During these next few months as I’m migrating from one part of the country to another, and one chapter of my life to the next, I may miss my goal of publishing the 52-ancestors article each week. I’ve already compiled the easy ones given that the next one will be number 338.

Those articles require a significant amount of research and right now, I need to focus on reducing the file cabinets and bookshelves of stuff. And of course, like any genealogist, I have to sift through everything one paper at a time to be sure I’m not disposing of something I’ll regret – like, you know, my high school report card. 😊

It’s very difficult to not run down every rabbit hole! Hey, what is my friend in that picture beside me at the football game up to now? Oops, an obituary. What about my co-worker that I had a crush on? What do they look like? Who was sitting at the picnic table in that family reunion picture anyway? I don’t remember them. You get the drift.

The message for you here is “don’t worry.” Some of those emails and messages are from people who care about me and are checking in to be sure nothing is wrong when I miss publishing an article on my long-established schedule. I really appreciate their concern and have been incredibly fortunate to connect with so many wonderful people.

A year from now, we’ll be celebrating DNAeXplain’s 10-year birthday. I hope to be happily settled and writing prolifically again in a new office in a yet-to-be-selected distant location, experiencing an exciting new chapter of life. Maybe I’ll just take you along on that adventure through the power of storytelling! Don’t we wish our ancestors had done that?

It’s going to be a very, very interesting year!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Yes, Ancestry is Glitchy Right Now – Here’s What TO and NOT TO DO

Public Service Announcement – Ancestry has been a bit glitchy for a few days/weeks and remains so. All vendors have issues from time to time, and it seems to be Ancestry’s turn right now. I wasn’t affected at first, but these tree-based problems seem to randomly come and go. So even if you’re not affected right now, you may be soon.

Here are tips on dealing with the reported issues, and perhaps more important, what NOT to do. Trying to fix things may just cause more problems.

What’s going on?

What’s Up With Ancestry?

A few days ago I signed on to Ancestry to discover that all of my tree branches beyond the first page displayed were “gone.” At that point in time, if I clicked on the right arrow, either no ancestors appeared, just those blank boxes to add parents, or in one case, one ancestor appeared with no parents.

This was uniform for all of my tree branches.

Needless to say, it struck panic into my genealogist’s heart. The saving grace is that indeed, no one but me has edit access to my tree – so I know positively that no one but me could delete anything.

Furthermore, I know beyond any shadow of a doubt that I had not deleted or broken the links of all of those ancestral lines. I don’t do “sleepwalk-genealogy” and if I did, I’d be much more likely to add someone😊

To try to quell the panic a bit, I used the Tree Search feature in the upper right-hand corner of the Tree page and yes, those “missing” ancestors were still in my tree file. They just weren’t showing correctly.

Technology Background

I spent years in technology and I learned two things:

  • Don’t panic and jump to conclusions
  • Sometimes things fix themselves, at least from the user’s perspective

After a couple of easy noninvasive steps, I decided to LEAVE THINGS ALONE and see what happened.

1-2-3 Things to Do

Here’s the 1-2-3 of things to do, in order.

  1. Sign out and back in.
  2. Try a different browser. If you are using a mobile app, use the computer and vice versa.
  3. Go away and check again later or tomorrow.

What Worked?

In this case, number three worked. The next day, everything was back to normal again with no residual damage.

Thankfully.

Had that not been the case, I would have started searching on social media for common issues and I would have called Ancestry’s support – no matter how much I don’t like doing that.

But there’s one thing I would NOT have done.

DO NOT

DO NOT start to repair things. If you start trying to reconnect people, when the underlying problem is actually resolved by Ancestry, Heaven only knows what a mess you’ll have with people double connected.

Twins and Duplicates

Another issue reported is that people are being duplicated in trees, including the tree owner/home person who finds that they have a twin with the same information.

Again, DO NOT start deleting and correcting.

What You CAN Do

Verify that indeed, only people you trust have edit access to your tree.

Under the name of the appropriate tree at upper left, select Tree Settings.

For another person to be able to either contribute to or edit your tree, you must specifically invite them to do so. Guests can only view your tree.

While Ancestry says that all invitees are editors, that’s not the case, as shown below when I clicked to invite someone.

As you can see, the default is “Guest,” but always verify after someone accepts your invitation.

Patience

Patience is difficult, but if you’re experiencing tree problems at Ancestry, just do something else for a few hours or a couple days.

Here are four great genetic genealogy activities you can do elsewhere that are productive.

  1. Download a copy of your DNA file from Ancestry and upload to MyHeritage, FamilyTreeDNA, or GedMatch to find additional matches. Instructions can be found here.
  2. At FamilyTreeDNA, upload your file and get matches for free. Check Family Finder, Y or mitochondrial DNA matches, or order a Big Y test or upgrade. The Father’s Day sale just started and you can sign on or order, here.
  3. At MyHeritage, if you don’t have a DNA test, upload free and get matches here. Check your DNA matches using their new Genetic Groups filter. I provided instructions, here. While you’re viewing your DNA matches, be sure to check for SmartMatches, record matches and other hints. If you’re not a records subscriber, you can subscribe with a 14-day free trial here.
  4. At 23andMe, testers are limited to 2000 matches unless you purchase an annual subscription – then you’re limited to about 5000 matches. However, 23and Me does not roll matches off your list that you’ve connected to, invited to connect, made a note about or messaged. (At least they never have and mine remain.) Go to the last page of your DNA Relatives list, which are your smallest segment matches, and start working backward to be sure you’ve initiated some type of communication that will prevent them from rolling off your match list.

These tasks aren’t just busywork. You have no idea what kind of a gold nugget you may discover.

You’ll have accomplished several things, enlarged your horizons and maybe, just maybe, by the time you’re done your tree at Ancestry will have righted itself again.

What fun things did you discover?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Using Mitochondrial Haplogroups at 23andMe to Pick the Lock

I’ve been writing recently about using haplogroups for genealogy, and specifically, your mitochondrial DNA haplogroup. You can check out recent articles here and here.

While FamilyTreeDNA tests the entire mitochondria and provides you with the most detailed and granular haplogroup, plus matches to other testers, 23andMe provides mid-range level haplogroup information to all testers.

I’ve been asked how testers can:

  1. Locate that information on their account
  2. What it means
  3. How to use it for genealogy

Let’s take those questions one by one. It’s actually amazing what can be done – the information you can piece together, and how you can utilize one piece of information to leverage more.

Finding Your Haplogroup Information

At 23andMe, sign in, then click on Ancestry.

Then click on Ancestry Overview.

You’ll need to scroll down until you see the haplogroup section.

If you’re a female, you don’t have a paternal haplogroup. That’s misleading, at best and I wrote about that here. If you click to view your report, you’ll simply be encouraged to purchase a DNA test for your father.

Click on the maternal haplogroup panel to view the information about your mitochondrial haplogroup.

You’ll see basic information about the haplogroup level 23andMe provides. For me, that’s J1c2.

Next, you’ll view the migration path for haplogroup J out of Africa. Haplogroup J is the great-granddaughter haplogroup of L3, an African haplogroup. Mutations occurred in L3 that gave birth to haplogroup N. More mutations gave birth to R, which gave birth to J, and so forth.

You’ll notice that haplogroup J1c2 is fairly common among 23andMe customers. This means that in my list of 1793 matches in DNA Relatives, I could expect roughly 9 to carry this base haplogroup.

There’s more interesting information.

Yes, King Richard is my long-ago cousin, of sorts. Our common mitochondrial ancestor lived in Europe, but not long after haplogroup J1c migrated from the Middle East.

One of my favorite parts of the 23andMe information is a bit geeky, I must admit.

Scroll back to the top and select Scientific Details.

Scroll down, and you’ll be able to see the haplogroup tree formation of all your ancestral haplogroups since Mitochondrial Eve who is haplogroup L. You can see L3 who migrated out of Africa, and then N and R. You can also see their “sister clades,” in blue. In other words, L3 gave birth to L3a through M, which are all sisters to N. N gave birth to R, and so forth.

On the free Public Mitochondrial Tree, provided by FamilyTreeDNA, you can see the haplogroups displayed in a different configuration, along with the countries where the most distant known ancestors of FamilyTreeDNA testers who carry that haplogroup are found. Note that only people who have taken the full sequence test are shown on this tree. You can still check out your partial haplogroup from 23andMe, but it will be compared to people who don’t have a subgroup assigned today on this public tree.

If you were to take the full sequence test at FamilyTreeDNA, you might well have a more refined haplogroup, including a subgroup. Most people do, but not everyone.

Here’s the second half of the 23andMe haplogroup tree leading from haplogroup R to J1c2, my partial haplogroup at 23andMe.

Here’s the public tree showing the J1c2 haplogroup, and my most refined haplogroup, J1c2f from my full sequence test at FamilyTreeDNA.

If you’re interested in reading more in the scientific literature about your haplogroup, at the bottom of the 23andMe Scientific Details page, you’ll see a list of references. Guaranteed to cure insomnia.😊

You’re welcome!

Using Your Haplogroup at 23andMe for Genealogy

Enjoying this information is great, but how do you actually USE this information at 23andMe for genealogy? As you already know, 23andMe does not support trees, so many times genealogists need to message our matches to determine at least some portion of their genealogy. But not always. Let’s look at different options.

While a base haplogroup is certainly interesting and CAN be used for some things, it cannot be used, at 23andMe for matching directly because only a few haplogroup-defining locations are tested.

We can use basic haplogroup information in multiple ways for genealogy, even if your matches don’t reply to messages.

23andMe no longer allows testers to filter or sort their matches by haplogroup unless you test (or retest) on the V5 platform AND subscribe yearly for $29. You can read about what you receive with the subscription, here. You can purchase a V5 test, here.

To get around the haplogroup filtering restriction, you can download your matches, which includes your matches’ haplogroups, in one place. I provided instructions for how to download your matches, here.

While 23andMe doesn’t test to a level that facilitates matching on mitochondrial alone, even just a partial haplogroup can be useful for genealogy.

You can identify the haplogroup of specific ancestors.

You can identify people who might match on a specific line based on their haplogroup. and you can use that information as a key or lever to unlock additional information. You can also eliminate connections to your matches on your matrilineal line. 

Let’s start there.

Matrilineal Line Elimination

For every match, you can view their haplogroup by clicking on their name, then scrolling down to view haplogroup information.

As you can see, Stacy does not carry the same base haplogroup as me, so our connection is NOT on our direct matrilineal line. We can eliminate that possibility. Our match could still be on our mother’s side though, just not our mother’s mother’s mother’s direct line.

If Stacy’s haplogroup was J1c2, like mine, then our connection MIGHT be through the matrilineal line. In other words, we can’t rule it out, but it requires more information to confirm that link.

Identifying My Ancestor’s Haplogroups

I’ve made it a priority to identify the mitochondrial haplogroups of as many ancestors as possible. This becomes very useful, not only for what the haplogroup itself can tell me, but to identify other matches from that line too.

click to enlarge images

Here’s my pedigree chart of my 8 great-grandparents. The colored hearts indicate whose mitochondrial DNA each person inherited. Of course, the mothers of the men in the top row would be shown in the next generation.

As you can see, I have identified the mitochondrial DNA of 6 of my 8 great-grandparents. How did I do that?

  • Testing myself
  • Searching at FamilyTreeDNA for candidates to test or who have already tested
  • Searching at Ancestry for candidates to test, particularly using ThruLines which I wrote about, here.
  • Searching at MyHeritage for candidates to test, particularly using Theories of Family Relativity which I wrote about, here
  • Searching for people from a specific line at 23andMe, although that’s challenging because 23andMee does not support traditional trees
  • Searching for people who might be descended appropriately using the 23andMe estimated “genetic tree.” Of course, then I need to send a message and cross my fingers for a reply.
  • Searching for people at WikiTree by visiting the profile of my ancestors whose mitochondrial DNA I’m searching for in the hope of discovering either someone who has already taken the mitochondrial DNA test, or who descends appropriately and would be a candidate to test

In my pedigree chart, above, the mitochondrial DNA of John Ferverda and his mother, Eva Miller, T2b, is a partial haplogroup because I discovered the descendant through 23andMe.

I was fairly certain of that match’s identity, but I need two things:

  • Confirmation of their genealogical connection to Eva Miller Ferverda
  • Someone to take the full sequence test at FamilyTreeDNA that will provide additional information

I confirmed this haplogroup by identifying a second person descended from Eva through all females to the current generation who carries the same haplogroup

Now that I’ve confirmed one person at 23andMe who descends from Eva Miller Ferverda matrilineally, and I know their mitochondrial DNA haplogroup, I can use this information to help identify other matches – even if no one responds to my messages.

This is where downloading your spreadsheet becomes essential.

Download Your Matches

Next, we’re going to work with a combination of your downloaded matches on a spreadsheet along with your matches at 23andMe on the website.

I provided step-by-step instructions for downloading your matches, here.

On the spreadsheet, you’ll see your matches and various columns for information about each match, including (but not limited to):

  • Name
  • Segment information
  • Link to tester’s profile page (so you don’t need to search for them)
  • Maternal or paternal side, but only if your parents have tested
  • Maternal haplogroup (mitochondrial DNA for everyone)
  • Paternal haplogroup (Y DNA if you’re a male)
  • Family Surnames
  • Family Locations
  • Country locations of 4 grandparents
  • Notes (that you’ve entered)
  • Link to a family tree if tester has provided that information. I wrote about how to link your tree in this article. The tree-linking instructions are still valid although 23andMe no longer partners with FamilySearch. You can link an Ancestry or MyHeritage tree.

I want to look for other people who match me and who also have haplogroup T2b, meaning they might descend from Eva Miller Ferverda, her mother, Margaret Elizabeth Lentz, or her mother, Johanne Fredericka Ruhle in the US.

To be clear, the mitochondrial DNA reaches back further in time in Germany, but since 23andMe limits matches to either your highest 1500 or 2000 matches (it’s unclear which,) minus the people who don’t opt-in to Relative Sharing, I likely wouldn’t find anyone from the German lines in the 23andMe database as matches. If you subscribe to the V5+$29 per year version of the test, you are allowed “three times as many matches” before people roll off your match list.

On the download spreadsheet, sort on the maternal column.

I have several people who match me and are members of haplogroup T2b.

Upon closer evaluation, I discovered that at least one other person does descend from Eva Miller, which confirmed that Eva’s haplogroup is indeed T2b, plus probably an unknown subclade.

I also discovered two more people who I think are good candidates to be descended from Eva Miller using the following hints:

  • Same haplogroup, T2b
  • Shared matches with other known descendants of Eva Miller, Margaret Lentz or Frederica Ruhle.
  • Triangulation with some of those known descendants

Now, I can look at each one of those matches individually to see if they triangulate with anyone else I recognize.

Do be aware that just because these people have the mitochondrial haplogroup you are seeking doesn’t necessarily mean that you’re related through that line. However, as I worked through these matches WITH the same haplogroup, I did find several that are good candidates for a common ancestor on the matrilineal line based on matches we share in common.

Let’s hope they reply, or they have tested at a different vendor that supports trees and I can recognize their name in that database.

Assign a Side

At 23andMe, one of the first important steps is to attempt to assign a parental side to each match, if possible.

If I can assign a match to a “side” of my tree based on shared matches, then I can narrow the possible haplogroups that might be of interest. In this case, I can ignore any T2b matches assigned to my father’s side.

The way to assign matches to sides, assuming you don’t have parents to test, is to look for triangulation or a group of matches with known, hopefully somewhat close, relatives.

I wrote about Triangulation Action at 23andMe, here.

For example, my top 4 matches at 23andMe are 2 people from my father’s side, and 2 people from my mother’s side, first or second cousins, so I know how we are related.

Using these matches, our “Relatives in Common,” and triangulation, I can assign many of my matches to one side or the other. “Yes” in the DNA Overlap column means me, Stacy and that person triangulate on at least one segment.

Do be careful though, because it’s certainly possible to match someone, and triangulate on one segment, but match them from your other parent’s side on a different segment.

At the very bottom of every match page (just keep scrolling) is a Notes field. Enter something. I believe, unless this has changed, that if you have entered a note, the match will NOT roll off your list, even if you’ve reached your match limit. I include as much as I do know plus a date, even if it’s “don’t know which side.” At least I know I’ve evaluated the match.

However, equally as important, when you download your spreadsheet, you’ll be able to see your own notes, so it’s easy to refer to that spreadsheet when looking at other relatives in common on your screen.

I have two monitors which makes life immensely easier.

Working the Inverse

Above, we used the haplogroup to find other matches. You can work the inverse, of course, using matches to find haplogroups.

Now that you’ve downloaded your spreadsheet, you can search in ways you can’t easily at 23andMe.

On your spreadsheet, skim locations for hints and search for the surnames associated with the ancestral line you are seeking.

Don’t stop there. Many people at 23andMe either don’t enter any information, but some enter a generation or two. Sometimes 4 surnames, one for each grandparent. If you’ve brought your lines to current genealogically, search for the surnames of the people of the lines you seek. Eva’s grandchildren who would carry her mitochondrial haplogroup would include the surnames of Robison, Gordon, and several others. I found two by referencing my descendants chart in my computer genealogy program to quickly find surnames of people descended through all females.

The link to each match’s profile page is in the spreadsheet. Click on that link to see who you match in common, and who they and you triangulate with.

Because each of the people at 23andMe does have at least a partial mitochondrial DNA haplogroup, you may be able through surname searching, or perhaps even viewing matches in common, to reveal haplogroups of your ancestors.

If you’ve already identified someone from that ancestral line, and you’re seeking that ancestor’s mitochondrial DNA, highlight the people who triangulate with the known descendant on your spreadsheet. Generation by generation, search for the surnames of that ancestor’s female grandchildren. I found one line just one generation downstream which allowed me to identify the ancestor’s haplogroup. In other words, the birth surname of my ancestor was missing, and that of her husband, but the surname of one of her granddaughters was there.

That person did indeed match and triangulate with other known descendants.

Sorting by haplogroup, at that point, showed two additional people I was able to assign to Eva’s haplogroup line and confirm through what few tidbits of genealogy the testers did provide.

I started with not knowing Eva’s haplogroup, and now I not only know she is haplogroup T2b, I’ve identified and confirmed a total of 6 people in this lineage who also have haplogroup T2b – although several descend from her mother and grandmother. I’ve also confirmed several others through this process who don’t have haplogroup T2b, but who triangulated with me and those who do. How cool is this?

I’ll be checking at FamilyTreeDNA to see if any of Eva’s T2b descendants have tested or transferred there. If I’m lucky, they’ll have already taken the mitochondrial DNA test. If not, I’ll be offering a mitochondrial DNA full sequence testing scholarship to the first one of those matches to accept.

Is this process necessarily easy?

No, but the tools certainly exist to get it done.

Is it worth it?

Absolutely.

It’s one more way to put meat on the bones of those ancestors, one tiny piece of information at a time.

I’ll be reaching out to see if perhaps any of my newly identified cousins has genealogical information, or maybe photos or stories that I don’t.

Tips and Tools

For tips and tools to work with your mitochondrial DNA haplogroups, read the article Where Did My Mitochondrial DNA Haplogroup Come From?

Please visit the Mitochondrial DNA Resource page for more information.

You can also use Genetic Affairs AutoCluster tool to assist in forming groups of related people based on your shared matches at 23andMe and FamilyTreeDNA.

What Can You Find?

What can you find at 23andMe?

Your ancestor’s haplogroups, perhaps?

Or maybe you can use known ancestral haplogroups as the key to unlocking your common ancestor with other matches.

I found an adoptee while writing this article with common triangulated matches plus haplogroup T2b, and was able to provide information about our common ancestors, including names. Their joy was palpable.

Whoever thought something like a partial haplogroup could be the gateway to so much.

23andMe tests are on sale right now for Mother’s Day, here.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Where Did My Mitochondrial DNA Haplogroup Come From?

Mother’s Day is approaching, so I’m writing articles about mitochondrial DNA inspired by the most common questions in the Mitochondrial DNA for Genealogy Facebook group. I’ll be adding these articles to the Mitochondrial DNA Resource page, here.

FamilyTreeDNA has already started their Mother’s Day sale where both the mitochondrial DNA test and Family Finder are both on sale. Take a look.

I can’t believe how much the prices have dropped over the years – as the technology has improved. I took the full sequence mitochondrial DNA test when it was first offered and I think it was something like $800, as was the first autosomal test I ordered lo those many years ago.

Today, these tests are $139 and $59, respectively, and are critical tools for everyone’s genealogy.

Where Did My Mitochondrial DNA Haplogroup Come From?

This is one of the most common questions about mitochondrial DNA. Everyone wants to know something about their haplogroup.

The answer is multi-faceted and depends on the question you’re actually trying to answer.

There are really two flavors of this question:

  • Where did my ancestors come from in a genealogical timeframe?
  • Where did my ancestors come from before I can find them in genealogical records?

Clearly, the timeframes involved vary to some extent, because when records end varies for each ancestral line. Generally speaking, genealogy records don’t extend back beyond 500 years or so. Whenever your genealogy records end, that’s where your haplogroup and match information becomes critically important to your research.

Fortunately, we have tools to answer both types of questions which actually form a continuum.

Some answers rely on having taken a mitochondrial DNA test at FamilyTreeDNA and some don’t.

  • We’ll discuss finding haplogroup information for people who have taken a (preferably full sequence) mitochondrial DNA test at FamilyTreeDNA.
  • We’ll discuss how people who have obtained their haplogroups through autosomal testing at other vendors can find information.
  • We’ll talk about finding haplogroup information when other family members have tested who carry the mitochondrial DNA of ancestors that you do not.

Tools exist for each of these situations.

Genealogical Timeframe

If you’re trying to answer the question of where other people who carry your haplogroup are found in the world, that question can be further subdivided:

  • Where are the earliest known matrilineal ancestors of my mitochondrial DNA matches located?
  • Where are other mitochondrial DNA testers who carry my haplogroup, even if I don’t match them, found in the world?

Let’s start at FamilyTreeDNA and then move to public resources.

FamilyTreeDNA

Mitochondrial DNA Tests

FamilyTreeDNA provides a great deal of information for people who have taken a mitochondrial DNA test. We’ll step through each tab on a tester’s personal page that’s relevant to haplogroups.

To find the location of your matches’ most distant ancestors, you need to have taken the mitochondrial DNA test at FamilyTreeDNA in order to obtain results and matches. I know this might seem like an obvious statement, but you’d be surprised how many people don’t realize that there are separate tests for Y and mitochondrial DNA.

Your most detailed, and therefore most accurate and specific results will result from taking the Full Sequence test, called the mtFull test and sometimes abbreviated as FMS (full mitochondrial sequence.)

Taking a full sequence test means you’ve tested all three different regions of the mitochondria, HVR1, HVR2, and the Coding Region. Don’t worry about those details. Today, the Full Sequence test is the only test you can order, but people who tested earlier could order a partial test. Those people can easily upgrade today.

click on images to enlarge

You can see, in the upper right-hand corner of the mitochondrial section of my personal page, above, that I’ve taken both tests. The “Plus” test is the HVR1 and HVR2 portion of the test.

If you haven’t taken any mitochondrial DNA test, then the mitochondrial section doesn’t show on your personal page.

If your Plus and Full buttons are both greyed out, that means you took the HVR1 level test only, and you can click on either button to upgrade.

If your “Full” button is greyed out, that means you haven’t tested at that level and you can click on the Full button to upgrade.

Entering Ancestor Information is Important

Genealogy is a collaborative sport and entering information about our ancestors is important – both for our own genealogy and for other testers too.

Your matches may or may not enter their ancestor’s information in all three locations where it can be useful:

  • Earliest Known Ancestor (found under the dropdown beneath your name in the upper right-hand corner of your personal page, then “Account Settings,” then “Genealogy,” then “Earliest Known Ancestors”)
  • Matches Map (found on your Y or mtDNA personal page tab or “Update Location” on Earliest Known Ancestors tab)
  • Uploading or creating a tree (found under myTree at the very top of your personal page)

Please enter your information by following the notes above, or you can follow the step-by-step instructions, here. You’ll be glad you did.

Your Haplogroup

You’ll find your haplogroup name under the Badges section of your personal page as well as at the top of the mtDNA section.

click all images to enlarge

The mtDNA section at FamilyTreeDNA has five tabs that each provides different pieces of the puzzle of where your ancestors, and therefore your haplogroups, came from.

Checking all of these tabs in the mtDNA section of your results is critical to gather every piece of evidence provided by your matches and the scientists as well. Let’s take a look at each one and what they reveal about your haplogroup.

Let’s start with your matches.

Matches

On the matches page, you’ll only be matched with people who carry the same haplogroup – or at least the same base haplogroup.

The haplogroup level of your matches depends on the level of test they have taken. In other words, if your match has only taken the HVR1 level test, and they only have a base haplogroup of J, then you’ll only see them, and their haplogroup J, on your HVR1 match page. If they have tested at a higher level and you match them at the HVR1 level, you’ll see the most specific haplogroup possible as determined by the level they tested.

The (default) match page shows your matches at the highest-level test you have tested. In my case, that’s the “HVR1, HVR2, Coding Region” because I’ve taken the full sequence test which tests the entire mitochondria.

At the full sequence level match page, I’ll only see people who match me on the same extended haplogroup. In my case, that’s J1c2f.

Viewing your matches’ Earliest Known Ancestor shows where their ancestors were located, which provides clues as to where your common haplogroup was found in the world at that time. Based on those results, the geographic distribution, what you know about your own ancestors, and how far back in time, your matches’ information may be an important clue about your own ancestry.

Generally, the closer your matches, meaning the fewer mutations difference, the closer in time you share a common ancestor. I say “generally,” because mutations don’t happen on a time schedule and can happen in any generation.

The number of mutations is shown in the column “Genetic Distance.” Genetic Distance is the number of mutations difference between you and your match. So a 3 in the GD column means 3 mutations difference. A GD of 0 is an exact match. At the HVR1 and HVR2 levels, no genetic distance is provided because only exact matches are shown at those levels.

The little blue pedigree icons on the Matches page indicate people who have created or uploaded trees. You’ll definitely want to take a look at those. Sometimes you’ll discover that your matches have added more generations in their tree than is shown in the Earliest Known Ancestor field.

Is Taking the Full Sequence Test Important?

Why is taking the full sequence test important? Looking at my HVR1 matches, below, provides the perfect example.

This shows my first four HVR1-only matches. In other words, these people match me on a small subset of my mitochondrial DNA. About 1000 locations of the total 16,569 are tested in the HVR1 region. You can see that utilizing the HVR1 region, only, the people I match exactly in that region have different extended, or full haplogroups, assigned when taking the full sequence test.

Crystal and Katherine have both taken the full sequence test as indicated by FMS (full mitochondrial sequence,) and they are both haplogroup J1c2f, but Peter is haplogroup J1c2g – a different haplogroup.

Peter is shown as an exact match to me at the HVR1 level, but he has a different full haplogroup, so he won’t be shown as a match at the HVR1/HVR2/Coding Region (full sequence) level.

Crystal and Katherine will match me at the full sequence level if we have three or fewer mutations difference in total.

Susan has only tested to the HVR1 level, so she can only be assigned to haplogroup J from those 1000 locations. That tells us that (at least) one of mutations that defines haplogroup J resides in the HVR1 region.

At the HVR1 matching level, I’ll be matched with everyone I match exactly so long as they are in haplogroup J, the common denominator haplogroup of everyone at that level.

If Susan were to test at the full sequence level, she would obtain a full haplogroup and I might continue to match her at the full sequence level if she is haplogroup J1c2f and matches me with three or fewer mutations difference. At the full sequence level, I’ll only match people who match my haplogroup exactly and match at a genetic distance of 0, 1, 2 or 3.

Now, let’s look at the Ancestral Origins tab.

Ancestral Origins

The Ancestral Origins tab is organized by Country within match level. In the example above, I’ve shown exact matches or GD=0.

The match total on the Ancestral Origins tab shows the number of people whose ancestors were from various locations – as entered by the testers.

The most common places for my full sequence exact matches are in Norway and Sweden. That’s interesting because my ancestor was found in Germany in the 1600s.

There is also a comments column, to the right, not shown here, which may hold additional information of interest such as “Ashkenazi” or “Sicily” or “Canary Islands.”

The Country Total column is interesting too because it tells you how many people are in the database who have indicated that location as ancestral. The Match Percentage column is pretty much irrelevant unless your haplogroup is extremely rare.

Matches Map

The matches map falls into the “picture is worth 1000 words category.”

This is the map of the earliest known matrilineal ancestor locations of my full sequence matches.

My ancestor is the white pin in Germany. Red=exact match, orange=1 mutation difference, yellow=2 mutations difference. I have no GD=3 matches showing.

By clicking on any pin, you can see additional information about the ancestor of the tester.

You can also select an option on the map to view lower testing levels, such as my HVR1 matches shown below.

While some people are tempted to ignore the HVR1 or HVR2 Matches Maps, I don’t.

If the question you’re trying to answer is where your haplogroup came from, viewing the map of where people are located who may match you more distantly in time is useful. While we know for sure that some of these people have different full haplogroups, we also know that they are all members of haplogroup J plus some subclade. Therefore, these matches shared a common haplogroup J ancestor.

J subgroups are clearly European but some are found in Anatolia, the path out of Africa to Europe, although that could be a function of back-migration.

When looking at match maps, keep two things in mind:

  • The information is provided by testers. It’s possible for them to misunderstand what is meant by providing the information for their earliest known “direct maternal ancestor.” I can’t tell you how many male names I’ve seen here. Clearly, the tester misunderstood the purpose and what was being asked – because men don’t pass mitochondrial DNA to their offspring. Check the pins for surnames that seem to fit the pin location, and that pins have been accurately placed.
  • Testing bias. In other words, lots of people have tested in the US as compared to Europe, and probably more people in the UK than say, Turkey. Testing is still illegal in France.

Haplogroup Origins

While the Ancestral Origins tab is organized by the locations of your matches ancestors, the Haplogroup Origins tab is focused on your haplogroup by match level only.

In many cases, the numbers will match your Ancestral Origins exactly, but for other test levels, the numbers will be different.

For example, at the HVR1/HVR2 level, I can easily see at a glance the locations where my haplogroup is found, and the number of my matches in those various locations.

This page is reflective of where the haplogroup itself is found, according to your matches.

There may be other people with the same haplogroup that you don’t match and won’t be reflected on this page.  We’ll see them either in projects or on the Public Mitochondrial Tree in following sections.

Migration Map

The migration map tab shows the path between Mitochondrial Eve who lived in African about 145,000 years ago and your haplogroup today. For haplogroups J, Eve’s descendant left African and traveled through the Middle East and on into Southwest Asia before turning left and migrating throughout Europe.

Clearly, the vast majority of this migration occurred before genealogy, but not all, or you wouldn’t be here today.

Thousands of my ancestors brought my mitochondrial DNA from Africa through Anatolia, through Europe, to Scandinavia, and back to Germany – then on to the US where it continued being passed on for five more generations before reaching me.

Additional Features – Other Tools

On your personal page, scroll down below your Mitochondrial DNA results area and you’ll see Public Haplotrees under the Other Tools tab.

This tree is available to FamilyTreeDNA customers as well as the public.

Public Mitochondrial DNA Haplotree

The public mitochondrial haplotree provided by FamilyTreeDNA includes location information and is available to everyone, customer or not, for free. Please note that only full sequence results were used to construct this tree, so partial results, meaning haplogroups of people who tested at the HVR1/2 levels only, are not included because the haplogroup cannot be refined at that level.

If you’ve received a haplogroup from a different test at another vendor, you can use this public tool to obtain location information. FamilyTreeDNA has the single largest repository of mitochondrial tests in the world, having tested customers for 21 years, and they have made this tree with location information available for everyone.

If you are a customer, you can sign in and access this tree from your account, above.

If you access the haplotree in this manner, be sure to select the mtDNA tree, not the Y DNA tree which is the default.

Or you can simply access the mtDNA the same way as the public, below.

Go to the main FamilyTreeDNA page by clicking here.

On the main page, scroll to the very bottom – yes, just keep scrolling.

At the very bottom, in the footer, you’ll see “Community.” (Hint, if you don’t see Community at the very bottom of this page, you’re probably signed in to your account.)

Click on “mtDNA Haplotree.”

Next, you’ll see the beginning, or root, of the mitochondrial DNA tree, with the RSRS at the top of the page. The tree structure and haplogroups are defined at Phylotree Build 17, here. All of the main daughter haplogroups, such as “J,” are displayed beneath or you can select them across the top.

Enter the haplogroup name in the “Branch Name” field in the upper right. For me, that’s J1c2f.

I don’t match all of the J1c2f people in the database, because there more total country designations shown here (82) than I have full sequence matches with locations provided (50 from my Ancestral Origins page.)

If you click on the three dots at right, you’ll see a Country Report which provides details for this haplogroup and downstream haplogroups, if there are any. I wrote about that, in detail, here.

There are no “J1c2f plus a daughter” haplogroups defined today, so there is nothing listed downstream.

However, that’s not always the case. There may be a downstream clade that you’re not a member of, meaning you don’t carry that haplogroup-defining mutation.

Or, you may have tested someplace that provides you with a partial haplogroup, so you don’t know if you have a subclade or not. You can still glean useful information from partial haplogroups.

Partial Haplogroups From Autosomal Tests

There’s nothing “wrong” with partial haplogroups. It’s nice to know at least some history about your matrilineal ancestry. What you don’t receive, of course, aside from matching, is more recent, genealogical, information.

Both 23andMe and LivingDNA provide autosomal customers with partial mitochondrial haplogroups. Both of these vendors tend to be accurate as far as they go, as opposed to other vendors, who shall remain unnamed, that are often inaccurate.

Autosomal tests don’t specifically test the mitochondrial DNA directly like a full sequence mitochondrial DNA test does, but they do use “probes” that scan specific haplogroup defining locations. Of course, each of the autosomal chips has a finite number of locations and every location that is used for either mitochondrial or Y DNA haplogroups is a space the vendors can’t use for autosomal locations.

Therefore, customers receive partial haplogroups.

In my case, I’ve received J1c at LivingDNA and J1c2 at 23andMe.

Both vendors provide basic information about your haplogroup, along with migration maps. Wikipedia also provides basic haplogroup information. Google is your friend – “mitochondrial haplogroup J Wikipedia.”

DNA Projects

Most haplogroups have a DNA project at FamilyTreeDNA. Note that these projects are administered by volunteers, so your mileage will vary in terms of participant grouping, along with whether or not results or maps are displayed. You can just google for “mitochondrial haplogroup J DNA project at FamilyTreeDNA” and you’ll find the project or perhaps multiple projects to select from. Some haplogroups have a main “J” project and perhaps a subproject, like “J1c,” for example.

You can join the project, either from this page if you’ve tested at FamilyTreeDNA, or from your personal page via the “myProjects” tab at the top of your personal page.

If you’re looking for public haplogroup information, click on “DNA Results.”

If the Haplogroup J DNA testers have joined this project, authorized displaying their results in projects, and provided ancestor information, you will be able to see that on the “Results” page. Projects are often grouped by haplogroup subgroup. Please note that the default page display size is 25, so scroll to the bottom to see how many pages are in the project. Multiply that number times 25 (182 pages total X 25 = 4550) and change the page display size to that number (4550, in this case.)

One of the most useful tools for haplogroup discovery is the project map which offers the same subgroups as the project groupings.

You can select “All” on the dropdown to display the locations of the earliest known ancestors of everyone in this haplogroup project, or you can select a subclade. This map is displaying haplogroup J1c2 as an example of my partial haplogroup.

The Public Mitochondrial Tree and Partial Haplogroups

To find more comprehensive information for partial haplogroups, I can use the free mitochondrial tree at FamilyTreeDNA. While projects only reflect information for people who have joined those particular projects, the tree provides more comprehensive information.

Anyone with a partial haplogroup can still learn a great deal. Like with any haplogroup, you can view where tester’s ancestors lived in the world.

In this case, it doesn’t matter whether I’m looking at partial haplogroups J1c or J1c2, there are many subgroups that I could potentially belong to.

In fact, haplogroup J1c has subclades through J1c17, so there are pages and pages of haplogroup subclade candidates.

Does a Full Haplogroup Really Matter?

How much difference can there be? Is J1c or J1c2 good enough? Good questions.

It depends – on what you want to know.

  • For general interest, perhaps.
  • For genealogy, no.

Genealogists need the most granular results possible to obtain the most information possible. You don’t know what you don’t know. But how much might that be, aside from full sequence matches?

There’s a significant difference in the country details of haplogroup J1c, J1c2 and J1c2f. I created a chart of the top 10 locations, and how many people’s ancestors are found there for J1c, J1c2, and J1c2f.

Wow, that’s a big difference.

How accurately do J1c and J1c2 results reflect the locations in my full J1c2f haplogroup? I color-coded the results and removed the locations from J1c and J1c2 that are not reflected in J1c2f.

As it turns out, the 5 most frequent locations in J1c and the top 3 locations in J1c2 aren’t even in the top 10 of J1c2f. Obtaining a full haplogroup is important.

Current and Past Populations

It’s worth noting that where a current population is found is not always indicative of where an ancestral population was found.

Of course, with genealogy, we can look back a few generations by seeing where the ancestors of our close and distant matches were found.

My earliest known ancestor is found in a marriage record in 1647 in Wirbenz, Germany when she was 26 years old. However, the majority of my exact mitochondrial DNA matches are not found in Germany, or even in Europe, but in Scandinavia. I’m sure there’s a story there to be told, possibly related to the Thirty Years’ War which began in 1618 and devastated Germany. The early German records where she lived were destroyed.

Even in the abbreviated genealogical timeframe where records and surnames exist, as compared to the history of mankind and womankind, we can see examples of population migration and shift with weather, warfare, and opportunity.

We can’t peer further back in time, at least not without ancient DNA, except by a combination of general history, haplogroup inference, and noting where branching from our mother clade occurred.

We know that people move. Sometimes populations were small and the entire population moved to a new location.

Sometimes, the entire population didn’t move, the but descendants of the migrating group survived to take DNA tests, while the population remaining in the original location has no present-day descendants.

Sometimes descendants of both groups survived.

Of course, throughout history, mutations continued to occur in all lines, forming new genetic branches – haplogroups.

Thank goodness they did, because mutations, or lack thereof, are incredibly important clues to genealogy as well as being our breadcrumbs back into the mists of distant time. Those haplogroup-defining mutations are the umbilical cord that allows us to connect with those distant ancestors.

These tools, especially used together, are the best way to answer the question, “Where did my Mitochondrial DNA Haplogroup Come From?”

Where did your haplogroup come from?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

A Triangulation Checklist Born From the Question; “Why NOT Use Close Relatives for Triangulation?”

One of my readers asked why we don’t use close relatives for triangulation.

This is a great question because not using close relatives for triangulation seems counter-intuitive.

I used to ask my kids and eventually my students and customers if they wanted the quick short answer or the longer educational answer.

The short answer is “because close relatives are too close to reliably form the third leg of the triangle.” Since you share so much DNA with close relatives, someone matching you who is identical by chance can also match them for exactly the same reason.

If you trust me and you’re good with that answer, wonderful. But I hope you’ll keep reading because there’s so much to consider, not to mention a few gotchas. I’ll share my methodology, techniques, and workarounds.

We’ll also discuss absolutely wonderful ways to utilize close relatives in the genetic genealogical process – just not for triangulation.

At the end of this article, I’ve provided a working triangulation checklist for you to use when evaluating your matches.

Let’s go!

The Step-by-Step Educational Answer😊

Some people see “evidence” they believe conflicts with the concept that you should not use close relatives for triangulation. I understand that, because I’ve gone down that rathole too, so I’m providing the “educational answer” that explains exactly WHY you should not use close relatives for triangulation – and what you should do.

Of course, we need to answer the question, “Who actually are close relatives?”

I’ll explain the best ways to best utilize close relatives in genetic genealogy, and why some matches are deceptive.

You’ll need to understand the underpinnings of DNA inheritance and also of how the different vendors handle DNA matching behind the scenes.

The purpose of autosomal DNA triangulation is to confirm that a segment is passed down from a particular ancestor to you and a specific set of your matches.

Triangulation, of course, implies 3, so at least three people must all match each other on a reasonably sized portion of the same DNA segment for triangulation to occur.

Matching just one person only provides you with one path to that common ancestor. It’s possible that you match that person due to a different ancestor that you aren’t aware of, or due to chance recombination of DNA.

It’s possible that your or your match inherited part of that DNA from your maternal side and part from your paternal side, meaning that you are matching that other person’s DNA by chance.

I wrote about identical by descent (IBD), which is an accurate genealogically meaningful match, and identical by chance (IBC) which is a false match, in the article Concepts – Identical by…Descent, State, Population and Chance.

I really want you to understand why close relatives really shouldn’t be used for triangulation, and HOW close relative matches should be used, so we’re going to discuss all of the factors that affect and influence this topic – both the obvious and little-understood.

  • Legitimate Matches
  • Inheritance and Triangulation
  • Parental Cross-Matching
  • Parental Phasing
  • Automatic Phasing at FamilyTreeDNA
  • Parental Phasing Caveats
  • Pedigree Collapse
  • Endogamy
  • How Many Identical-by-Chance Matches Will I Have?
  • DNA Doesn’t Skip Generations (Seriously, It Doesn’t)
  • Your Parents Have DNA That You Don’t (And How to Use It)
  • No DNA Match Doesn’t Mean You’re Not Related
  • Imputation
  • Ancestry Issues and Workarounds
  • Testing Close Relatives is VERY Useful – Just Not for Triangulation
  • Triangulated Matches
  • Building Triangulation Evidence – Ingredients and a Recipe
  • Aunts/Uncles
  • Siblings
  • How False Positives Work and How to Avoid Them
  • Distant Cousins Are Best for Triangulation & Here’s Why
  • Where Are We? A Triangulation Checklist for You!
  • The Bottom Line

Don’t worry, these sections are logical and concise. I considered making this into multiple articles, but I really want it in one place for you. I’ve created lots of graphics with examples to help out.

Let’s start by dispelling a myth.

DNA Doesn’t Skip Generations!

Recently, someone emailed to let me know that they had “stopped listening to me” in a presentation when I said that if a match did not also match one of your parents, it was a false match. That person informed me that they had worked on their tree for three years at Ancestry and they have “proof” of DNA skipping generations.

Nope, sorry. That really doesn’t happen, but there are circumstances when a person who doesn’t understand either how DNA works, or how the vendor they are using presents DNA results could misunderstand or misinterpret the results.

You can watch my presentation, RootsTech session, DNA Triangulation: What, Why and How, for free here. I’m thrilled that this session is now being used in courses at two different universities.

DNA really doesn’t skip generations. You CANNOT inherit DNA that your parents didn’t have.

Full stop.

Your children cannot inherit DNA from you that you don’t carry. If you don’t have that DNA, your children and their descendants can’t have it either, at least not from you. They of course do inherit DNA from their other parent.

I think historically, the “skipping generations” commentary was connected to traits. For example, Susie has dimples (or whatever) and so did her maternal grandmother, but her mother did not, so Susie’s dimples were said to have “skipped a generation.” Of course, we don’t know anything about Susie’s other grandparents, if Susie’s parents share ancestors, recessive/dominant genes or even how many genetic locations are involved with the inheritance of “dimples,” but I digress.

DNA skipping generations is a fallacy.

You cannot legitimately match someone that your parent does not, at least not through that parent’s side of the tree.

But here’s the caveat. You can’t match someone one of your parents doesn’t with the rare exception of:

  • Relatively recent pedigree collapse that occurs when you have the same ancestors on both sides of your tree, meaning your parents are related, AND
  • The process of recombination just happened to split and recombine a segment of DNA in segments too small for your match to match your parents individually, but large enough when recombined to match you.

We’ll talk about that more in a minute.

However, the person working with Ancestry trees can’t make this determination because Ancestry doesn’t provide segment information. Ancestry also handles DNA differently than other vendors, which we’ll also discuss shortly.

We’ll review all of this, but let’s start at the beginning and explain how to determine if our matches are legitimate, or not.

Legitimate Matches

Legitimate matches occur when the DNA of your ancestor is passed from that ancestor to their descendants, and eventually to you and a match in an unbroken pathway.

Unbroken means that every ancestor between you and that ancestor carried and then passed on the segment of the ancestor’s DNA that you carry today. The same is true for your match who carries the same segment of DNA from your common ancestor.

False positive matches occur when the DNA of a male and female combine randomly to look like a legitimate match to someone else.

Thankfully, there are ways to tell the difference.

Inheritance and Triangulation

Remember, you inherit two copies of each of your chromosomes 1-22, one copy from your mother and one from your father. You inherit half of the DNA that each parent carries, but it’s mixed together in you so the labs can’t readily tell which nucleotide, A, C, T, or G you received from which parent. I’m showing your maternal and paternal DNA in the graphic below, stacked neatly together in a column – but in reality, it could be AC in one position and CA in the next.

For matching all that matters is the nucleotide that matches your match is present in one of those two locations. In this case, A for your mother’s side and C for your father’s side. If you’re interested, you can read more about that in the article, Hit a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters.

You can see in this example that you inherited all As from your Mom and all Cs from your Dad.

  • A legitimate maternal match would match you on all As on this particular example segment.
  • A legitimate paternal match would match you on all Cs on this particular segment.
  • A false positive match will match you on some random combination of As and Cs that make it look like they match you legitimately, but they don’t.
  • A false positive match will NOT match either your mother or your father.

To be very clear, technically a false positive match DOES match your DNA – but they don’t match your DNA because you share a common ancestor with your match. They match you because random recombination on their side causes you to match each other by chance.

In other words, if part of your DNA came from your Mom’s side and part from your Dad’s but it randomly fell in the correct positional order, you’d still match someone whose DNA was from only their mother or father’s side. That’s exactly the situation shown above and below.

Looking at our example again, it’s evident that your identical by chance (IBC) match’s A locations (1, 3, 5, 7 & 9) will match your Mom. C locations (2, 4, 6 8, & 10) will match your Dad, but the nonmatching segments interleaved in-between that match alternating parents will prevent your match from matching either of your parents. In other words, out of 10 contiguous locations in our example, your IBC match has 5 As alternated with 5 Cs, so they won’t match either of your parents who have 10 As or 10 Cs in a row.

This recombination effect can work in either direction. Either or both matching people’s DNA could be randomly mixed causing them to match each other, but not their parents.

Regardless of whose DNA is zigzagging back and forth between maternal and paternal, the match is not genealogical and does not confirm a common ancestor.

This is exactly why triangulation works and is crucial.

If you legitimately match a third person, shown below, on your maternal side, they will match you, your first legitimate maternal match, and your Mom because they carry all As. But they WON’T match the person who is matching you because they are identical by chance, shown in grey below.

The only person your identical by chance match matches in this group is you because they match you because of the chance recombination of parental DNA.

That third person WILL also match all other legitimate maternal matches on this segment.

In the graphic above, we see that while the grey identical by chance person matches you because of the random combination of As from your mother and Cs from your father, your legitimate maternal matches won’t match your identical by chance match.

This is the first step in identifying false matches.

Parental Cross-Matching

Removing the identical by chance match, and adding in the parents of your legitimate maternal match, we see that your maternal match, above, matches you because you both have all As inherited from one parent, not from a combination of both parents.

We know that because we can see the DNA of both parents of both matches in this example.

The ideal situation occurs when two people match and they have both had their parents tested. We need to see if each person matches the other person’s parents.

We can see that you do NOT match your match’s father and your match does NOT match your father.

You do match your match’s mother and your match does match your mother. I refer to this as Parental Cross-matching.

Your legitimate maternal matches will also match each other and your mother if she is available for testing.

All the people in yellow match each other, while the two parents in gray do not match any of your matches. An entire group of legitimate maternal matches on this segment, no matter how many, will all match each other.

If another person matches you and the other yellow people, you’ll still need to see if you match their parents, because if not, that means they are matching you on all As because their two parents DNA combined just happened, by chance, to contribute an A in all of those positions.

In this last example, your new match, in green, matches you, your legitimate match and both of your mothers, BUT, none of the four yellow people match either of the new match’s parents. You can see that the new green match inherited their As from the DNA of their mother and father both, randomly zigzagging back and forth.

The four yellow matches phase parentally as we just proved with cross matching to parents. The new match at first glance appears to be a legitimate match because they match all of the yellow people – but they aren’t because the yellow people don’t match the green person’s parents.

To tell the difference between legitimate matches and identical by chance matches, you need two things, in order.

  • Parental matching known as parental phasing along with parental cross-matching, if possible, AND
  • Legitimate identical by descent (IBD) triangulated matches

If you have the ability to perform parental matching, called phasing, that’s the easiest first step in eliminating identical by chance matches. However, few match pairs will have parents for everyone. You can use triangulation without parental phasing if parents aren’t available.

Let’s talk about both, including when and how close relatives can and cannot be used.

Parental Phasing

The technique of confirming your match to be legitimate by your match also matching one of your parents is called parental phasing.

If we have the parents of both people in a match pair available for matching, we can easily tell if the match does NOT match either parent. That’s Parental Cross Matching. If either match does NOT match one of the other person’s parents, the match is identical by chance, also known as a false positive.

See how easy that was!

If you, for example, is the only person in your match pair to have parents available, then you can parentally phase the match on your side if your match matches your parents. However, because your match’s parents are unavailable, your match to them cannon tbe verified as legitimate on their side. So you are not phased to their parents.

If you only have one of your parents available for matching, and your match does not match that parent, you CANNOT presume that because your match does NOT match that parent, the match is a legitimate match for the other, missing, parent.

There are four possible match conditions:

  • Maternal match
  • Paternal match
  • Matches neither parent which means the match is identical by chance meaning a false positive
  • Matches both parents in the case of pedigree collapse or endogamy

If two matching people do match one parent of both matches (parental cross-matching), then the match is legitimate. In other words, if we match, I need to match one of your parents and you need to match one of mine.

It’s important to compare your matches’ DNA to generationally older direct family members such as parents or grandparents, if that’s possible. If your grandparents are available, it’s possible to phase your matches back another generation.

Automatic Phasing at FamilyTreeDNA

FamilyTreeDNA automatically phases your matches to your parents if you test that parent, create or upload a GEDCOM file, and link your test and theirs to your tree in the proper places.

FamilyTreeDNA‘s Family Matching assigns or “buckets” your matches maternally and paternally. Matches are assigned as maternal or paternal matches if one or both parents have tested.

Additionally, FamilyTreeDNA uses triangulated matches from other linked relatives within your tree even if your parents have not tested. If you don’t have your parents, the more people you identify and link to your tree in the proper place, the more people will be assigned to maternal and paternal buckets. FamilyTreeDNA is the only vendor that does this. I wrote about this process in the article, Triangulation in Action at Family Tree DNA.

Parental Phasing Caveats

There are very rare instances where parental phasing may be technically accurate, but not genealogically relevant. By this, I mean that a parent may actually match one of your matches due to endogamy or a population level match, even if it’s considered a false positive because it’s not relevant in a genealogical timeframe.

Conversely, a parent may not match when the segment is actually legitimate, but it’s quite rare and only when pedigree collapse has occurred in a very specific set of circumstances where both parents share a common ancestor.

Let’s take a look at that.

Pedigree Collapse

It’s not terribly uncommon in the not-too-distant past to find first cousins marrying each other, especially in rather closely-knit religious communities. I encounter this in Brethren, Mennonite and Amish families often where the community was small and out-marrying was frowned upon and highly discouraged. These families and sometimes entire church congregations migrated cross-country together for generations.

When pedigree collapse is present, meaning the mother and father share a common ancestor not far in the past, it is possible to inherit half of one segment from Mom and the other half from Dad where those halves originated with the same ancestral couple.

For example, let’s say the matching segment between you and your match is 12 cM in length, shown below. You inherited the blue segment from your Dad and the neighboring peach segment from Mom – shown just below the segment numbers. You received 6 cM from both parents.

Another person’s DNA does match you, shown in the bottom row, but they are not shown on the DNA match list of either of your parents. That’s because the DNA segments of the parents just happened to recombine in 6 cM pieces, respectively, which is below the 7 cM matching threshold of the vendor in this example.

If the person matched you at 12 cM where you inherited 8 cM from one parent and 4 from the other, that person would show on one parent’s match list, but not the other. They would not be on the parent’s match list who contributed only 4 cM simply because the DNA divided and recombined in that manner. They would match you on a longer segment than they match your parent at 8 cM which you might notice as “odd.”

Let’s look at another example.

click to enlarge image

If the matching segment is 20 cM, the person will match you and both of your parents on different pieces of the same segment, given that both segments are above 7 cM. In this case, your match who matches you at 20 cM will match each of your parents at 10 cM.

You would be able to tell that the end location of Dad’s segment is the same as the start location of Mom’s segment.

This is NOT common and is NOT the “go to” answer when you think someone “should” match your parent and does not. It may be worth considering in known pedigree collapse situations.

You can see why someone observing this phenomenon could “presume” that DNA skipped a generation because the person matches you on segments where they don’t match your parent. But DNA didn’t skip anything at all. This circumstance was caused by a combination of pedigree collapse, random division of DNA, then random recombination in the same location where that same DNA segment was divided earlier. Clearly, this sequence of events is not something that happens often.

If you’ve uploaded your DNA to GEDmatch, you can select the “Are your parents related?” function which scans your DNA file for runs of homozygosity (ROH) where your DNA is exactly the same in both parental locations for a significant distance. This suggests that because you inherited the exact same sequence from both parents, that your parents share an ancestor.

If your parents didn’t inherit the same segment of DNA from both parents, or the segment is too short, then they won’t show as “being related,” even if they do share a common ancestor.

Now, let’s look at the opposite situation. Parental phasing and ROH sometimes do occur when common ancestors are far back in time and the match is not genealogically relevant.

Endogamy

I often see non-genealogical matching occur when dealing with endogamy. Endogamy occurs when an entire population has been isolated genetically for a long time. In this circumstance, a substantial part of the population shares common DNA segments because there were few original population founders. Much of the present-day population carries that same DNA. Many people within that population would match on that segment. Think about the Jewish community and indigenous Americans.

Consider our original example, but this time where much of the endogamous population carries all As in these positions because one of the original founders carried that nucleotide sequence. Many people would match lots of other people regardless of whether they are a close relative or share a distant ancestor.

People with endogamous lines do share relatives, but that matching DNA segment originated in ancestors much further back in time. When dealing with endogamy, I use parental phasing as a first step, if possible, then focus on larger matches, generally 20 cM or greater. Smaller matches either aren’t relevant or you often can’t tell if/how they are.

At FamilyTreeDNA, people with endogamy will find many people bucketed on the “Both” tab meaning they triangulate with people linked on both sides of the tester’s tree.

An example of a Jewish person’s bucketed matches based on triangulation with relatives linked in their tree is shown above.

Your siblings, their children, and your children will be related on both your mother’s and father’s sides, but other people typically won’t be unless you have experienced either pedigree collapse where you are related both maternally and paternally through the same ancestors or you descend from an endogamous population.

How Many Identical-by-Chance Matches Will I Have?

If you have both parents available to test, and you’re not dealing with either pedigree collapse or endogamy, you’ll likely find that about 15-20% of your matches don’t match your parents on the same segment and are identical by chance.

With endogamy, you’ll have MANY more matches on your endogamous lines and you’ll have some irrelevant matches, often referred to as “false positive” matches even though they technically aren’t, even using parental phasing.

Your Parents Have DNA That You Don’t

Sometimes people are confused when reviewing their matches and their parent’s match to the same person, especially when they match someone and their parent matches them on a different or an additional segment.

If you match someone on a specific segment and your parents do not, that’s a false positive FOR THAT SEGMENT. Every segment has its own individual history and should be evaluated individually. You can match someone on two segments, one from each parent. Or three segments, one from each parent and one that’s identical by chance. Don’t assume.

Often, your match will match both you and your parent on the same segment – which is a legitimate parentally phased match.

But what if your match matches your parent on a different segment where they don’t match you? That’s a false positive match for you.

Keep in mind that it is possible for one of your matches to match your parent on a separate or an additional segment that IS legitimate. You simply didn’t inherit that particular segment from your parent.

That’s NOT the same situation as someone matching you that does NOT match one of your parents on the same segment – which is an identical by chance or false match.

Your parent having a match that does not match you is the reverse situation.

I have several situations where I match someone on one segment, and they match my parent on the same segment. Additionally, that person matches my parent on another segment that I did NOT inherit from that parent. That’s perfectly normal.

Remember, you only inherit half of your parent’s DNA, so you literally did NOT inherit the other half of their DNA. Your mother, for example, should have twice as many matches as you on her side because roughly half of her matches won’t match you.

That’s exactly why testing your parents and close family members is so critical. Their matches are as valid and relevant to your genealogy as your own. The same is true for other relatives, such as aunts and uncles with whom you share ALL of the same ancestors.

You need to work with your family member’s matches that you don’t share.

No DNA Match Doesn’t Mean You’re Not Related

Some people think that not matching someone on a DNA test is equivalent to saying they aren’t related. Not sharing DNA doesn’t mean you’re not related.

People are often disappointed when they don’t match someone they think they should and interpret that to mean that the testing company is telling them they “aren’t related.” They are upset and take issue with this characterization. But that’s not what it means.

Let’s analyze this a bit further.

First, not sharing DNA with a second cousin once removed (2C1R) or more distant does NOT mean you’re NOT related to that person. It simply means you don’t share any measurable DNA ABOVE THE VENDOR THRESHOLD.

All known second cousins match, but about 10% of third cousins don’t match, and so forth on up the line with each generation further back in time having fewer cousins that match each other.

If you have tested close relatives, check to see if that cousin matches your relatives.

Second, it’s possible to match through the “other” or unexpected parent. I certainly didn’t think this would be the case in my family, because my father is from Appalachia and my mother’s family is primarily from the Netherlands, Germany, Canada, and New England. But I was wrong.

All it took was one German son that settled in Appalachia, and voila, a match through my mother that I surely thought should have been through my father’s side. I have my mother’s DNA and sure enough, my match that I thought should be on my father’s side matches Mom on the same segment where they match me, along with several triangulated matches. Further research confirmed why.

I’ve also encountered situations where I legitimately match someone on both my mother’s and father’s side, on different segments.

Third, imputation can be important for people who don’t match and think they should. Imputation can also cause matching segment length to be overreported.

Ok, so what’s imputation and why do I care?

Imputation

Every DNA vendor today has to use some type of imputation.

Let me explain, in general, what imputation is and why vendors use it.

Over the years, DNA processing vendors who sell DNA chips to testing companies have changed their DNA chips pretty substantially. While genealogical autosomal tests test about 700,000 DNA locations, plus or minus, those locations have changed over time. Today, some of these chips only have 100,000 or so chip locations in common with chips either currently or previously utilized by other vendors.

The vendors who do NOT accept uploads, such as 23andMe or Ancestry, have to develop methods to make their newest customers on their DNA processing vendor’s latest chip compatible with their first customer who was tested on their oldest chip – and all iterations in-between.

Vendors who do accept transfers/uploads from other vendors have to equalize any number of vendors’ chips when their customers upload those files.

Imputation is the scientific way to achieve this cross-platform functionality and has been widely used in the industry since 2017.

Imputation, in essence, fills in the blanks between tested locations with the “most likely” DNA found in the human population based on what’s surrounding the blank location.

Think of the word C_T. There are a limited number of letters and words that are candidates for C_T. If you use the word in a sentence, your odds of accuracy increase dramatically. Think of a genetic string of nucleotides as a sentence.

Imputation can be incorrect and can cause both false positive and false negative matches.

For the most part, imputation does not affect close family matches as much as more distant matches. In other words, imputation is NOT going to cause close family members not to match.

Imputation may cause more distant family members not to match, or to have a false positive match when imputation is incorrect.

Imputation is actually MUCH less problematic than I initially expected.

The most likely effect of imputation is to cause a match to be just above or below the vendor threshold.

How can we minimize the effects of imputation?

  • Generally, the best result will be achieved if both people test at the same vendor where their DNA is processed on the same chip and less imputation is required.
  • Upload the results of both people to both MyHeritage and FamilyTreeDNA. If your match results are generally consistent at those vendors, imputation is not a factor.
  • GEDmatch does not use imputation but attempts to overcome files with low overlapping regions by allowing larger mismatch areas. I find their matches to be less accurate than at the various vendors.

Additionally, Ancestry has a few complicating factors.

Ancestry Issues

AncestryDNA is different in three ways.

  • Ancestry doesn’t provide segment information so it’s impossible to triangulate or identify the segment or chromosome where people match. There is no chromosome browser or triangulation tool.
  • Ancestry down-weights and removes some segments in areas where they feel that people are “too matchy.” You can read Ancestry’s white papers here and here.

These “personal pileup regions,” as they are known, can be important genealogically. In my case, these are my mother’s Acadian ancestors. Yes, this is an endogamous population and also suffers from pedigree collapse, but since this is only one of my mother’s great-grandparents, this match information is useful and should not be removed.

  • Ancestry doesn’t show matches in common if the shared segments are less than 20cM. Therefore, you may not see someone on a shared match list with a relative when they actually are a shared match.

If two people both match a third person on less than a 20 cM segment at Ancestry, the third person won’t appear on the other person’s shared match list. So, if I match John Doe on 19 cM of DNA, and I looked at the shared matches with my Dad, John Doe does NOT appear on the shared match list of me and my Dad – even though he is a match to both of us at 19 cM.

The only way to determine if John Doe is a shared match is to check my Dad’s and my match list individually, which means Dad and I will need to individually search for John Doe.

Caveat here – Ancestry’s search sometimes does not work correctly.

Might someone who doesn’t understand that the shared match list doesn’t show everyone who shares DNA with both people presume that the ancestral DNA of that ancestor “skipped a generation” because John Doe matches me with a known ancestor, and not Dad on our shared match list? I mean, wouldn’t you think that a shared match would be shown on a tab labeled “Shared Matches,” especially since there is no disclaimer?

Yes, people can be forgiven for believing that somehow DNA “skipped” a generation in this circumstance, especially if they are relatively inexperienced and they don’t understand Ancestry’s anomalies or know that they need to or how to search for matches individually.

Even if John Doe does match me and Dad both, we still need to confirm that it’s on the same segment AND it’s a legitimate match, not IBC. You can’t perform either of these functions at Ancestry, but you can elsewhere.

Ancestry WorkArounds

To obtain this functionality, people can upload their DNA files for free to both FamilyTreeDNA and MyHeritage, companies that do provide full shared DNA reporting (in common with) lists of ALL matches and do provide segment information with chromosome browsers. Furthermore, both provide triangulation in different ways.

Matching is free, but an inexpensive unlock is required at both vendors to access advanced tools such as Family Matching (bucketing) and triangulation at Family Tree DNA and phasing/triangulation at MyHeritage.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

MyHeritage actually brackets triangulated segments for customers on their chromosome browser, including parents, so you get triangulation and parental phasing at the same time if you and your parent have both tested or uploaded your DNA file to MyHeritage. You can upload, for free, here.

In this example, my mother is matching to me in red on the entire length of chromosome 18, of course, and three other maternal cousins triangulate with me and mother inside the bracketed portion of chromosome 18. Please note that if any one of the people included in the chromosome browser comparison do not triangulate, no bracket is drawn around any others who do triangulate. It’s all or nothing. I remove people one by one to see if people triangulate – or build one by one with my mother included.

I wrote about Triangulation in Action at MyHeritage, here.

People can also upload to GEDmatch, a third-party site. While GEDmatch is less reliable for matching, you can adjust your search thresholds which you cannot do at other vendors. I don’t recommend routinely working below 7 cM. I occasionally use GEDmatch to see if a pedigree collapse segment has recombined below another vendor’s segment matching threshold.

Do NOT check the box to prevent hard breaks when selecting the One-to-One comparison. Checking that box allows GEDmatch to combine smaller matching segments into mega-segments for matching.

I wrote about Triangulation in Action at GEDmatch, here.

Transferring/Uploading Your DNA 

If you want to transfer your DNA to one of these vendors, you must download the DNA file from one vendor and upload it to another. That process does NOT remove your DNA file from the vendor where you tested, unless you select that option entirely separately.

I wrote full step-by-step transfer/upload instructions for each vendor, here.

Testing Close Relatives Is VERY Useful – Just Not for Triangulation

Of course, your best bet if you don’t have your parents available to test is to test as many of your grandparents, great-aunts/uncles, aunts, and uncles as possible. Test your siblings as well, because they will have inherited some of the same and some different segments of DNA from your parents – which means they carry different pieces of your ancestors’ DNA.

Just because close relatives don’t make good triangulation candidates doesn’t mean they aren’t valuable. Close relatives are golden because when they DO share a match with you, you know where to start looking for a common ancestor, even if your relative matches that person on a different segment than you do.

Close relatives are also important because they will share pieces of your common ancestor’s DNA that you don’t. Their matches can unlock the answers to your genealogy questions.

Ok, back to triangulation.

Triangulated Matches

A triangulated match is, of course, when three people all descended from a common ancestor and match each other on the same segment of DNA.

That means all three people’s DNA matches each other on that same segment, confirming that the match is not by chance, and that segment did descend from a common ancestor or ancestral couple.

But, is this always true? You’re going to hate this answer…

“It depends.”

You knew that was coming, didn’t you! 😊

It depends on the circumstances and relationships of the three people involved.

  • One of those three people can match the other two by chance, not by descent, especially if two of those people are close relatives to each other.
  • Identical by chance means that one of you didn’t inherit that DNA from one single parent. That zigzag phenomenon.
  • Furthermore, triangulated DNA is only valid as far back as the closest common ancestor of any two of the three people.

Let’s explore some examples.

Building Triangulation Evidence – Ingredients and a Recipe

The strongest case of triangulation is when:

  • You and at least two additional cousins match on the same segment AND
  • Descend through different children of the common ancestral couple

Let’s look at a valid triangulated match.

In this first example, the magenta segment of DNA is at least partially shared by four of the six cousins and triangulates to their common great-grandfather. Let’s say that these cousins then match with two other people descended from different children of their great-great-great-grandparents on this same segment. Then the entire triangulation group will have confirmed that segment’s origin and push the descent of that segment back another two generations.

These people all coalesce into one line with their common great-grandparents.

I’m only showing 3 generations in this triangulated match, but the concept is the same no matter how many generations you reach back in time. Although, over time, segments inherited from any specific ancestor become smaller and smaller until they are no longer passed to the next generation.

In this pedigree chart, we’re only tracking the magenta DNA which is passed generation to generation in descendants.

Eventually, of course, those segments become smaller and indistinguishable as they either aren’t passed on at all or drop below vendor matching thresholds.

This chart shows the average amount of DNA you would carry from each generational ancestor. You inherit half of each parent’s DNA, but back further than that, you don’t receive exactly half of any ancestor’s DNA in any generation. Larger segments are generally cut in two and passed on partially, but smaller segments are often either passed on whole or not at all.

On average, you’ll carry 7 cM of your eight-times-great-grandparents. In reality, you may carry more or you may not carry any – and you are unlikely to carry the same segment as any random other descendants but we know it happens and you’ll find them if enough (or the right) descendants test.

Putting this another way, if you divide all of your approximate 7000 cM of DNA into 7 cM segments of equal length – you’ll have 1000 7 cM segments. So will every other descendant of your eight-times-great-grandparent. You can see how small the chances are of you both inheriting that same exact 7 cM segment through ten inheritance/transmission events, each. Yet it does happen.

I have several triangulated matches with descendants of Charles Dodson and his wife, Anne through multiple of their 9 (or so) children, ten generations back in my tree. Those triangulated matches range from 7-38 cM. It’s possible that those three largest matches at 38 cM could be related through multiple ancestors because we all have holes in our trees – including Anne’s surname.

Click to enlarge image

It helps immensely that Charles Dodson had several children who were quite prolific as well.

Of course, the further back in time, the more “proof” is necessary to eliminate other unknown common ancestors. This is exactly why matching through different children is important for triangulation and ancestor confirmation.

The method we use to confirm the common ancestor is that all of the descendants who match the tester on the same segment all also match each other. This greatly reduces the chances that these people are matching by chance. The more people in the triangulation group, the stronger the evidence. Of course, parental phasing or cross-matching, where available is an added confirmation bonus.

In our magenta inheritance example, we saw that three of the males and one of the females from three different descendants of the great-grandparents all carry at least a portion of that magenta segment of great-grandpa’s DNA.

Now, let’s take a look at a different scenario.

Why can’t siblings or close relatives be used as two of the three people needed for triangulation?

Aunts and Uncles

We know that the best way to determine if a match is valid is by parental phasing – your match also matching to one of your parents.

If both parents aren’t available, looking for close family matches in common with your match is the next hint that genealogists seek.

Let’s say that you and your match both match your aunt or uncle in common or their children.

You and your aunts or uncles matching DNA only pushes your common ancestor back to your grandparents.

At that point, your match is in essence matching to a segment that belongs to your grandparents. Your matches’ DNA, or your grandparents’ DNA could have randomly recombined and you and your aunt/cousins could be matching that third person by chance.

Ok, then, what about siblings?

Siblings

The most recent common ancestor (MRCA) of you and someone who also matches your sibling is your parents. Therefore, you and your sibling actually only count as one “person” in this scenario. In essence, it’s the DNA of your parent(s) that is matching that third person, so it’s not true triangulation. It’s the same situation as above with aunts/uncles, except the common ancestor is closer than your grandparents.

The DNA of your parents could have recombined in both siblings to look like a match to your match’s family. Or vice versa. Remember Parental Cross-Matching.

If you and a sibling inherited EXACTLY the same segment of your Mom’s and Dad’s DNA, and you match someone by chance – that person will match your sibling by chance as well.

In this example, you can see that both siblings 1 and 2 inherited the exact same segments of DNA at the same locations from both of their parents.

Of course, they also inherited segments at different locations that we’re not looking at that won’t match exactly between siblings, unless they are identical twins. But in this case, the inherited segments of both siblings will match someone whose DNA randomly combined with green or magenta dots in these positions to match a cross-section of both parents.

How False Positives Work and How to Avoid Them

We saw in our first example, displayed again above, what a valid triangulated match looks like. Now let’s expand this view and take a look more specifically at how false positive matches occur.

On the left-hand (blue) side of this graphic, we see four siblings that descend through their father from Great-grandpa who contributed that large magenta segment of DNA. That segment becomes reduced in descendants in subsequent generations.

In downstream generations, we can see gold, white and green segments being added to the DNA inherited by the four children from their ancestor’s spouses. Dad’s DNA is shown on the left side of each child, and Mom’s on the right.

  • Blue Children 1 and 2 inherited the same segments of DNA from Mom and Dad. Magenta from Dad and green from Mom.
  • Blue Child 3 inherited two magenta segments from Dad in positions 1 and 2 and one gold segment from Dad in position 3. They inherited all white segments from Mom.
  • Blue Child 4 inherited all gold segments from Dad and all white segments from Mom.

The family on the blue left-hand side is NOT related to the pink family shown at right. That’s important to remember.

I’ve intentionally constructed this graphic so that you can see several identical by chance (IBC) matches.

Child 5, the first pink sibling carries a white segment in position 1 from Dad and gold segments in positions 2 and 3 from Dad. From Mom, they inherited a green segment in position 1, magenta in position 2 and green in position 3.

IBC Match 1 – Looking at the blue siblings, we see that based on the DNA inherited from Pink Child 5’s parents, Pink Child 5 matches Blue Child 4 with white, gold and gold in positions 1-3, even though they weren’t inherited from the same parent in Blue Child 4. I circled this match in blue.

IBC Match 2 – Pink Child 5 also matches Blue Children 1 and 2 (red circles) because Pink Child 5 has green, magenta, and green in positions 1-3 and so do Blue Children 1 and 2. However, Blue Children 1 and 2 inherited the green and magenta segments from Mom and Dad respectively, not just from one parent.

Pink Child 5 matches Blue Children 1, 2 and 4, but not because they match by descent, but because their DNA zigzags back and forth between the blue children’s DNA contributed by both parents.

Therefore, while Pink Child 5 matches three of the Blue Children, they do not match either parent of the Blue Children.

IBC Match 3 – Pink Child 6 matches Blue Child 3 with white, magenta and gold in positions 1-3 based on the same colors of dots in those same positions found in Blue Child 3 – but inherited both paternally and maternally.

You can see that if we had the four parents available to test, that none of the Pink Children would match either the Blue Children’s mother or father and none of the Blue Children would match either of the Pink Children’s mother or father.

This is why we can’t use either siblings or close family relatives for triangulation.

Distant Cousins Are Best for Triangulation & Here’s Why

When triangulating with 3 people, the most recent common ancestor (MRCA) intersection of the closest two people is the place at which triangulation turns into only two lines being compared and ceases being triangulation. Triangle means 3.

If siblings are 2 of the 3 matching people, then their parents are essentially being compared to the third person.

If you, your aunt/uncle, and a third person match, your grandparents are the place in your tree where three lines converge into two.

The same holds true if you’re matching against a sibling pair on your match’s side, or a match and their aunt/uncle, etc.

The further back in your tree you can push that MRCA intersection, the more your triangulated match provides confirming evidence of a common ancestor and that the match is valid and not caused by random recombination.

That’s exactly what the descendants of Charles Dodson have been able to do through triangulation with multiple descendants from several of his children.

It’s also worth mentioning at this point that the reason autosomal DNA testing uses hundreds/thousands of base pairs in a comparison window and not 3 or 6 dots like in my example is that the probability of longer segments of DNA simply randomly matching by chance is reduced with length and SNP density which is the number of SNP locations tested within that cM range.

Hence a 7 cM/500 SNP minimum is the combined rule of thumb. At that level, roughly half of your matches will be valid and half will be identical by chance unless you’re dealing with endogamy. Then, raise your threshold accordingly.

Ok, So Where are We? A Triangulation Checklist for You!

I know this has been a relatively long educational article, but it’s important to really understand that testing close relatives is VERY important, but also why we can’t effectively use them for triangulation.

Here’s a handy-dandy summary matching/triangulation checklist for you to use as you work through your matches.

  • You inherit half of each of your parents’ DNA. There is no other place for you to obtain or inherit your DNA. There is no DNA fairy sprinkling you with DNA from another source:)
  • DNA does NOT skip generations, although in occasional rare circumstances, it may appear that this happened. In this situation, it’s incumbent upon you, the genealogist, to PROVE that an exception has occurred if you really believe it has. Those circumstances might be pedigree collapse or perhaps imputation. You’ll need to compare matches at vendors who provide a chromosome browser, triangulation, and full shared match list information. Never assume that you are the exception without hard and fast proof. We all know about assume, right?
  • Your siblings inherit half of your parents’ DNA too, but not the same exact half of your parent’s DNA that you other siblings did (unless they are identical twins.) You may inherit the exact same DNA from either or both of your parents on certain segments.
  • Your matches may match your parents on different or an additional segment that you did not inherit.
  • Every segment has an individual history. Evaluate every matching segment separately. One matching segment with someone could be maternal, one paternal, and one identical by chance.
  • You can confirm matches as valid if your match matches one of your parents, and you match one of your match’s parents. Parental Phasing is when your match matches your parent. Parental Cross-Matching is when you both match one of each other’s parents. To be complete, both people who match each other need to match one of the parents of the other person. This rule still holds even if you have a known common ancestor. I can’t even begin to tell you how many times I’ve been fooled.
  • 15-20% (or more with endogamy) of your matches will be identical by chance because either your DNA or your match’s DNA aligns in such a way that while they match you, they don’t match either of your parents.
  • Your siblings, aunts, and uncles will often inherit the same DNA as you – which means that identical by chance matches will also match them. That’s why we don’t use close family members for triangulation. We do utilize close family members to generate common match hints. (Remember the 20 cM shared match caveat at Ancestry)
  • While your siblings, aunts, and uncles are too close to use for triangulation, they are wonderful to identify ancestral matches. Some of their matches will match you as well, and some will not because your close family members inherited segments of your ancestor’s DNA that you did not. Everyone should test their oldest family members.
  • Triangulate your close family member’s matches separately from your own to shed more light on your ancestors.
  • Endogamy may interfere with parental phasing, meaning you may match because you and/or your match may have inherited some of the same DNA segment(s) from both sides of your tree and/or more DNA than might otherwise be expected.
  • Pedigree collapse needs to be considered when using parental phasing, especially when the same ancestor appears on both sides of your family tree. You may share more DNA with a match than expected.
  • Conversely, with pedigree collapse, your match may not match your parents, or vice versa, if a segment happens to have recombined in you in a way that drops the matching segments of your parents beneath the vendor’s match threshold.
  • While you will match all of your second cousins, you will only match approximately 90% of your third cousins and proportionally fewer as your relationship reaches further back in time.
  • Not being a DNA match with someone does NOT mean you’re NOT related to them, unless of course, you’re a second cousin (2C) or closer. It simply means you don’t carry any common ancestral segments above vendor thresholds.
  • At 2C or closer, if you’re not a DNA match, other alternative situations need to be considered – including the transfer/upload of the wrong person’s DNA file.
  • Imputation, a scientific process required of vendors may interfere with matching, especially in more distant relatives who have tested on different platforms.
  • Imputation artifacts will be less obvious when people are more closely related, meaning closer relatives can be expected to match on more and larger segments and imputation errors make less difference.
  • Imputation will not cause close relatives, meaning 2C or closer, to not match each other.
  • In addition to not supporting segment matching information, Ancestry down-weights some segments, removes some matching DNA, and does not show shared matches below 20cM, causing some people to misinterpret their lack of common matches in various ways.
  • To resolve questions about matching issues at Ancestry, testers can transfer/upload their DNA files to MyHeritage, FamilyTreeDNA, and GEDmatch and look for consistent matches on the same segment. Start and end locations may vary to some extent between vendors, but the segment size should be basically in the same location and roughly the same size.
  • GEDmatch does not use imputation but allows larger non-matching segments to combine as a single segment which sometimes causes extremely “generous” matches. GEDmatch matching is less reliable than FamilyTreeDNA or MyHeritage, but you can adjust the matching thresholds.
  • The best situation for matching is for both people to test at the same vendor who supports and provides segment data and a chromosome browser such as 23andMe, FamilyTreeDNA, or MyHeritage.
  • Siblings cannot be used for triangulation because the most recent common ancestor (MRCA) between you and your siblings is your parents. Therefore, the “three” people in the triangulation group is reduced to two lines immediately.
  • Uncles and aunts should not be used for triangulation because the most recent common ancestors between you and your aunts and uncles are your grandparents.
  • Conversely, you should not consider triangulating with siblings and close family members of your matches as proof of an ancestral relationship.
  • A triangulation group of 3 people is only confirmation as far back as when two of those people’s lines converge and reach a common ancestor.
  • Identical by chance (IBC) matching occurs when DNA from the maternal and paternal sides are mixed positionally in the child to resemble a maternal/paternal side match with someone else.
  • Identical by chance DNA admixture (when compared to a match) could have occurred in your parents or grandparent’s generation, or earlier, so the further back in time that people in a triangulation group reach, the more reliable the triangulation group is likely to be.
  • The larger the segments and/or the triangulation group, the stronger the evidence for a specific confirmed common ancestor.
  • Early families with a very large number of descendants may have many matching and triangulated members, even 9 or 10 generations later.
  • While exactly 50% of each ancestor’s DNA is not passed in each generation, on average, you will carry 7 cM of your ancestors 10 generations back in your tree. However, you may carry more, or none.
  • The percentage of matching descendants decreases with each generation beyond great-grandparents.
  • The ideal situation for triangulation is a significant number of people, greater than three, who match on the same reasonably sized segment (7 cM/500 SNP or larger) and descend from the same ancestor (or ancestral couple) through different children whose spouses in descendant generations are not also related.
  • This means that tree completion is an important factor in match/triangulation reliability.
  • Triangulating through different children of the ancestral couple makes it significantly less likely that a different unknown common ancestor is contributing that segment of DNA – like an unknown wife in a descendant generation.

Whew!!!

The Bottom Line

Here’s the bottom line.

  1. Don’t use close relatives to triangulate.
  2. Use parents for Parental Phasing.
  3. Use Parental Cross-Matching when possible.
  4. Use close relatives to look for shared common matches that may lead to triangulation possibilities.
  5. Triangulate your close relatives’ DNA in addition to your own for bonus genealogical information. They will match people that you don’t.
  6. For the most reliable triangulation results, use the most distant relatives possible, descended through different children of the common ancestral couple.
  7. Keep this checklist of best practices, cautions, and caveats handy and check the list as necessary when evaluating the strength of any match or triangulation group. It serves as a good reminder for what to check if something seems “off” or unusual.

Feel free to share and pass this article (and checklist) on to your genealogy buddies and matches as you explain triangulation and collaborate on your genealogy.

Have fun!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research