Search Techniques for Y and Mitochondrial DNA Test Candidates

I utilize DNA matches in various ways, some of which are a little unusual. In many cases, I mine autosomal DNA matches to search for people whose Y and mitochondrial DNA can provide descendants, including me and them, with additional insights into our common ancestors.

Y and mitochondrial DNA connects testers to their ancestors in ways that autosomal cannot. It’s a different type of DNA, not combined with the DNA of the other parent, so it’s not diluted and halved in each generation like autosomal DNA. Y and mitochondrial lines each descend from only one ancestral line, rich in historical information, with the ability to reach far back in time along with the ability to connect testers recently.

You First

The very first thing you can do to further your own research is to test yourself in three ways:

  • Autosomal DNA – Test at all 4 primary testing vendors, meaning FamilyTreeDNA, MyHeritage, Ancestry and 23andMe. The reason for testing at (or transferring to) multiple vendors is because they each have a unique focus and tools. Perhaps more importantly, they each have different people in their databases. Each testing company has benefits. FamilyTreeDNA has people who tested as long as 20 years ago and are no longer available for testing. MyHeritage has many European testers and you’ll find matches there that you won’t find elsewhere if your ancestors came from Europe. Ancestry has the largest database, but fewer advanced tools.
  • Full Sequence Mitochondrial DNA Available at FamilyTreeDNA, this test allows focus solely on your matrilineal line, meaning your mother’s mother’s mother’s line directly without confusion introduced by DNA from other lines.
  • Y DNA – For males only, also available at FamilyTreeDNA, provides focus on the direct patrilineal, or surname, line.

Obviously, if you haven’t upgraded your own Y and mitochondrial DNA tests to the highest level possible, the first thing you can do is to test or upgrade to the highest level where you receive the most refined amount of information.

(There’s a sale at FamilyTreeDNA right now, lasting until August 31, 2020, so it’s a great time to upgrade or order Y and mitochondrial. Check it out here.)

Different Kinds of DNA Serve Different Genealogical Purposes

Let’s look, briefly at how the various types of DNA tests benefit genealogy. Autosomal tests that you and family members can take will help you find other family members to test for specific Y and mitochondrial DNA lines.

Remember that you can test family members in addition to yourself, so if you’re a female, you may want to recruit your father or an uncle or brother to represent your patrilineal line DNA. If you’d like to read a brief article about the different types of DNA and their benefits, 4 Kinds of DNA for Genetic Genealogy is a good resource.

Y and Mito Pedigree.png

In this image, you can see that if you’re a male you can test for both your Y (blue-square) and mitochondrial DNA (red-circle) ancestral lines. If you’re a female, you can test only your mitochondrial DNA because females don’t have a Y chromosome. Both males and females, of course, can test (green) autosomal DNA which reveals a different type of connection to all of your ancestral lines, but with autosomal, you have to figure out which people match you on which lines.

Y and mitochondrial DNA provides you with a different type of information about laser-focused specific lines that you can’t obtain through autosomal testing, and reaches back in time far beyond the curtain when surnames were adopted.

personal pedigree

You personally can only test for the red-circle mitochondrial DNA line, and perhaps the blue-square Y DNA line if you’re a male. Unless you find family members to test for the Y and mitochondrial DNA of your ancestors, you’re leaving valuable information unresearched. That means all those colored boxes and squares that aren’t blue or red.

I’ve solved MANY brick walls using both Y and mitochondrial DNA, often in conjunction with autosomal.

Let’s take a look at each type of DNA testing a little more in-depth, so that you understand how each one works and why they are important to genealogy.

The Specifics

Y DNA – Y DNA descends through the direct male paternal line and is inherited by men only. You match against other Y DNA testers, hopefully finding surname links.

The Big Y test and upgrade at FamilyTreeDNA provides testers with all 111 traditional STR markers, plus another 589+ STRs available only in the Big Y test, plus a scan of the balance of the rest of the Y chromosome that is useful for genealogy. SNP results are increasingly being used for genealogy, in addition to STRs.

SNPs group men into genetic lineages and STRs help with defining and refining the closest generations when matching to each other. Often, the benefits of these two tests overlap, which is why I recommend that males test to the Big Y-700 level which provides 700+ STR markers plus all SNPs with mutations that define ancestral lineages.

Y DNA haplogroups, derived from SNPs, reveal the geographic part of the world where the lineage originated, such as Europe, the Americas, Asia and Africa, as well as a migration path across the continents based on where SNPs are and were historically found. Ancient DNA samples are being added to the database.

If you or a family member took an earlier Y DNA test, you can upgrade to the Big Y-700 today which provides you with matching for both the STR markers and separately, SNP markers, along with other genealogical tools.

You can order or upgrade your Y DNA here. Don’t forget family members accounts you may control. They may agree to have their kit upgraded too.

To upgrade, sign in to your account, and click on your desired upgrade level under Y DNA testing.

ymt y upgrade.png

Then click on upgrades.

ymt upgrade.png

I wrote about Y DNA in these recent articles:

I have more Y DNA articles planned for the future.

You can search for additional articles by going to the main page of this blog and enter “Y DNA” into the search box for additional articles already published.

Many features such as the matches maps, haplogroup origins and ancestral origins pages are the same for Y DNA results as mitochondrial DNA results. You can view mitochondrial articles here.

Mitochondrial DNA (mtDNA) – Mitochondrail DNA descends through the direct matrilineal line to both sexes of children. Everyone has mitochondrial DNA and it is inherited matrilineally by you from your mother, from her mother, from her mother, etc.

The FMS or full mitochondrial sequence DNA test tests the entire mitochondria that provides information about your direct matrilineal line. Family Tree DNA provides matching, which can sometimes lead to genealogical breakthroughs such as when I identified Lydia Brown, the mother of my Phoebe Crumley and then a couple years later, her mother, Phoebe Cole – via mitochondrial DNA. Those discoveries led us to her mother, Mary Mercy Kent, via genealogy records. All we needed was to punch our way through that initial brick wall – and mitochondrial DNA was our battering ram.

Additionally, you’ll receive a full haplogroup designation which allows you to look back in time before the advent of surnames and identifies the location where your ancestral line came from. For those seeking confirmation of Native American heritage, Y and mitochondrial DNA provides unquestionable proof and doesn’t wash out in time as autosomal DNA does.

Mitochondrial DNA includes haplogroups, matching and other genealogical tools.

You can order or upgrade you or a family member’s mitochondrial DNA here.

To upgrade, sign in to your account, and click on the desired upgrade level.

ymt mt upgrade

Then click on Upgrade if you’re upgrading or Add On if you’re ordering a new product for yourself.

ymt add ons upgrades.png

I wrote several mitochondrial DNA articles and compiled them into a summary article for your convenience.

Autosomal DNA – With autosomal DNA testing, you test once and there’s not an upgrade unless the vendor changes DNA testing platforms, which is rare. Each of the four vendors compares your DNA with all other people who’ve taken that test, or transferred from other companies. They match you with descendants from all of your ancestral lines. While the Y and mtDNA tests look back deeply in time as well as recently on one specific line, the autosomal tests are broad but not deep, spanning all ancestral lines, but limited to approximately 10 generations.

Each autosomal vendor has unique benefits and focus as well as shortcomings. I’ve listed the major points for each vendor relative to searching for Y and mitochondrial
DNA testing candidates. It’s important to understand the advantages of each vendor because it will help you understand the testers you are most likely to find in each database and may help focus your search.

FamilyTreeDNA’s Family Finder

  • Because FamilyTreeDNA archives customer’s DNA for 25 years, many people who tested Y or mitochondrial DNA 20 years ago and are now deceased upgraded to autosomal tests when they became available, or have been upgraded by family members since. These early testers often reach back another generation or so into the past to people born a century ago.
  • Advanced autosomal matching integrates with Y and mitochondrial DNA along with surname and other projects
  • Phased Family Matching provides the ability to link family members that match you to your tree which allows Family Tree DNA to group matches as paternal or maternal by utilizing matching segments to the same side of your family
  • Genetic Affairs, a third-party tool available for testers, builds common trees by reading the trees of your matches and comparing their trees with your own to identify common ancestors.
  • Genetic Affairs builds trees and pedigrees of your matches by searching for common ancestors in your MATCHES trees, even if you have no tree or don’t share those ancestors in your tree. This functionality includes Y and mitochondrial DNA if you have tested. This facilitates discovery of common ancestors of the people who you match, which may well lead you to ancestral discoveries as well.
  • Genetic Affairs offers clustering of your shared matches.
  • DNA file transfers are accepted from other vendors, free, with a $19 one time fee to unlock advanced tools.
  • Family Tree DNA has tested people worldwide, with a few location exceptions, since inception in the year 2000.
  • No direct triangulation, but Phased Family Matching provides maternal and paternal side triangulation when matches can be grouped into maternal and paternal sides.
  • Matches and segment match information are available for download.
  • The great thing about the advanced matching tool at Family Tree DNA is that it facilitates searching for people who match you on different kinds of tests, so it helps determine the potential closeness or distance of Y and mitochondrial relationships.

MyHeritage

Ancestry

  • Ancestry has the largest database, but did not begin testing until 2012 and did not test widely outside of the US/UK for some time. They now sell tests in 34 countries. Their testers are primarily focused in the US, Canada, England, Scotland, Ireland, and diaspora, with some overlap into Europe.
  • Ancestry offers ThruLines, a tool that connects testers whose DNA matches with common ancestors in their trees.
  • Ancestry does not provide a chromosome browser, a tool provided by the other three primary testing companies, nor do they provide triangulation or matching segment location information necessary to confirm that you match on the same segment with other people.
  • Ancestry has issued cease and desist orders to third party tools that perform functions such as clustering, autotrees, autopedigrees or downloading of matches. Ancestry does not provide these types of features for their users.
  • Ancestry does not accept transfers, so if you want to be in Ancestry’s database, you must test with Ancestry.
  • No Y or mitochondrial DNA testing available.
  • Match list is not available for download.

23andMe

  • The primary focus of 23andMe has always been health testing, so many people who test at 23andMe are not interested in genealogy.
  • 23andMe tests are sold in about 50 countries, but not worldwide.
  • 23andMe provides a chromosome browser, triangulation, segment information and a beta genetically constructed tree for close matches.
  • 23andMe does NOT support a genealogical tree either uploaded or created on their site, making tree comparisons impossible.
  • Genetic Affairs AutoCluster works at 23andMe, but AutoTree and AutoPedigree do not because 23andMe does not support trees.
  • 23andMe does make match files available for downloading.
  • No Y or mitochondrial DNA full testing or matching, but basic haplogroups are provided.
  • 23andMe caps matches at 2000, less any matches that have opted out of matching. My matches currently number 1770.
  • 23andMe does not accept transfers from other vendors, so if you want to be in their database, you must test with 23andMe.

Reaching Out to Find Testers

Unfortunately, we only carry the mitochondrial DNA of our mother and only men carry the Y DNA of their father. That means if we want to obtain that DNA information about our other family lines, we have to find people who descend appropriately from the ancestor in question and test that person.

I’ll share with you how I search for people who descend from each ancestor. After finding that person, I explain the situation, why the different kinds of tests are important, and offer a testing scholarship for the Y or mtDNA test at Family Tree DNA if they have not already taken that test. If they’ve tested their autosomal DNA elsewhere. I also explain that they can transfer their autosomal DNA file for free too and will receive new matches.

Here’s an article with links to upload/download instructions for each testing company. Feel free to share.

Each DNA testing company has different features, but you can use all of the companies to find people descended in the appropriate way from each ancestor. It’s easier if you know how to utilize each vendor’s tools to optimize your chances of success. I’m going to step you through the search process with hints and tips for each vendor.

Finding Y DNA and Mitochondrial DNA Candidates at FamilyTreeDNA

Because FamilyTreeDNA tests for both Y and mitochondrial DNA and has for 20 years, you stand a better chance of finding a candidate there who may have already tested, so that’s where I always begin.

Y DNA

Let’s say, for example, that I need to find a male descendant of my Ferverda line in order to ask them to test for Y DNA. The person can be descended from either a close relative, if I know of one, or a more distant relative that I don’t know, but need to find through searching other ways.

Search for Surnames and Projects at Family Tree DNA

First, search the FamilyTreeDNA website for your goal surname among existing testers, and then the appropriate surname project to see if your line has already tested.

ymt ferverda

On the main page, here, scroll down to until you see the prompt, above, and enter the surname. Be sure to consider alternate spellings too.

ymt ferverda search.png

In this case, I see that there is a Ferverda surname project with 18 people, and scrolling on down, that 4 people with this specific surname have tested.

ymt results.png

However, searching for an alternate spelling, the way it’s spelled in the Netherlands, I find that another 10 people have tested.

ymt ferwerda

Of course, some may be females, but they probably know males by that surname.

First, I’m going to check the Ferverda DNA project to see if a Ferverda male from my line has tested, and if so, to what level.

Click on the project link in the search results to see the DNA Project.

ymt admin.png

Note two things. First, the administrator’s name, as you may need this later. If you click on their name, their email address is displayed.

Second, click on DNA Results and select Y DNA if you’re presented with a choice. If the project has a public facing page, and most do, you’ll see something like the following information.

ymt project

Hey look, it’s my lucky day, given that both of these men descend from my ancestor. I happen to know that they have both taken the Big Y test, because I’m the project administrator, but you won’t know that. One way to get an idea is if they have less than the full 111 markers showing, they probably haven’t taken the Big Y, because a 111 upgrade is included in the Big Y test today.

You have three options at this point to contact one of these men:

  • See if the people are on your own autosomal DNA match list, or the match lists of kits from that family that you manage. If so, you can view their email address and contact them. If you haven’t yet tested autosomally, meaning the Family Finder test, at Family Tree DNA, you can transfer autosomal tests from elsewhere, for free, which means you will be viewing matches within hours or a couple days. Otherwise, you can order a Family Finder test, of course.
  • If the person with the Ferverda or Ferwerda surname is not on your Family Finder match list, reach out to the project administrator with a note to the person you want to contact and ask the administrator to forward your email to the project member.
  • If the administrator doesn’t answer, contact Family Tree DNA support and make the same request.

Checking Family Finder, one of those people is on my match list and I’m pretty sure it’s the right person, because when I click on his profile, not only does the haplogroup match the DNA project, but so does the ancestor.

ymt ferverda profile.png

Searching Family Finder

If there isn’t a DNA project match you can identify as your direct line ancestor, you can search your Family Finder matches for the surname to find a male with that surname. If your match has a tree, see if your ancestor or ancestral line is showing, then note whether they have taken a Y DNA test. They may have taken a Y test, but have not joined a project or not entered any “earliest known ancestor.” You can see which tests they’ve taken by looking at the little tabs above their profile on their tree, or on their profile card.

ymt ferverda tree

click to enlarge

Regardless, you’re now in touch with a potential contact.

Don’t dismiss females with that surname, or people who show that surname in their ancestral surname list. Women with the surname you’re looking for may have husbands, fathers, brothers or uncles who descend from the line you are seeking.

ymt search field.png

Utilize Genetic Affairs

My ace in the hole at FamilyTreeDNA is the Genetic Affairs AutoTree and AutoPedigree function.

Genetic Affairs is a third-party tool that you can use to assist with analysis of your matches at FamilyTreeDNA.

ymt genetic affairs

click to enlarge

At Genetic Affairs, selecting AutoTree generates trees where common ancestors of you and your matches, or your matches to each other, are displayed.

Your goal is to identify people descended from a common ancestor either directly paternally through all males for Y DNA or through all females to the current generation, which can be males, for mitochondrial DNA.

This article provides step-by-step instructions for the Genetic Affairs AutoTree and AutoPedigree functions.

Mitochondrial DNA

Mitochondrial DNA lineages are a bit more challenging because the surname changes every generation and DNA projects are unlikely to help.

The AutoTree/AutoPedigree report through Genetic Affairs serves the same purpose for mitochondrial DNA – building trees that intersect with a common ancestor. I generally drop the “minimum size of the largest DNA segment shared with the match” to 7 cM for this report. My goal running this report for this purpose isn’t to analyze autosomal DNA, but to find testing candidates based on how my matches descend from a specific ancestor, so I want to include as many matches as possible.

Family Finder Can Refine Y and mtDNA Information

In some cases, a Family Finder test can refine a potential relationship between two people who match on either Y DNA or mitochondrial. Additionally, you may want to encourage, or gift, specific matches with an upgrade to see if they continue to match you at higher testing levels.

Let’s say that two men match closely on a Y DNA test, but you’d like to know how far back the common ancestor lived.

ymt y matches.png

In this instance, you can see that the second match has taken a BIg Y and a Family Finder test, but the exact match (genetic distance of 0) has not. If the first individual cannot provide much genealogy, having them take a Family Finder test would help at least rule out a relationship through second cousins and would give you at least some idea how far back in time your common ancestor may have lived. If you do match on Family Finder, you receive an estimate of your relationship and can check the match level possibilities using the DNAPainter Shared cM Tool. If they upgrade to the Big Y-700 test, you may be able to differentiate your line from theirs, or confirm when and where a split occurred – or that there is no split.

This same autosomal testing scenario works for mitochondrial DNA.

For people who have taken both tests, Family Finder plus either Y or mitochondrial DNA, the Advanced Matching menu allows you to select combinations of tests and projects to query.

ymt advanced

click to enlarge

Finding Y and Mitochondrial DNA Candidates at MyHeritage

MyHeritage provides a wonderful tool called Theories of Family Relativity (TOFR) which finds common ancestors between you and your DNA matches, even if the ancestor is not in both trees, so long as a path exists between the two testers’ trees using other trees or research documents, such as census records. Of course, you’ll need to verify accuracy.

ymt tofr.png

At MyHeritage, select DNA Matches, then “Has Theory of Family Relativity.”

ymt mh ferverda

click to enlarge

You can see that I have 65 matches with a Theory of Family Relativity. Additionally, I can then search by surname.

ymt mh ferverda tree.png

click to enlarge

If I am looking for a Ferverda Y DNA candidate, I’ve found one thanks to this TOFR.

If you don’t find a tree where your match descends from your ancestor in the desired way, you can also widen the search by de-selecting Theories of Family Relativity and instead selecting SmartMatchs or shared surname combined with the name of your ancestor. There are many search and filter combinations available.

Let’s look at a mitochondrial DNA example where I’m searching for a descendant of Elizabeth Speaks who married Samuel Clarkson/Claxton.

ymt smartmatches

click to enlarge

In this case, I have one SmartMatch, which means that someone by the name of Elizabeth Speaks is found in my matches tree. I need to look to see if it’s the RIGHT Elizabeth Speaks and if my match descends through all females to the current generation. If so, I’ve found my mitochondrial DNA candidate and I can leave them a message.

You can also view SmartMatches (without a DNA match) from your own tree.

I can go to that person in my tree, click on their profile, and see how many SmartMatches I have. Clicking on 13 SmartMatches allows me to view those matches and I can click through to the connected trees.

ymt mt speaks.png

I can also click on “research this person” to discover more.

If you’re still not successful, don’t give up quite yet, because you can search in the records for trees that shows the person whom you seek. A SmartMatch is only created if the system thinks it’s the same person in both trees. Computers are far from perfect.

ymt mh trees

click to enlarge

Narrow the search as much as possible to make it easier to find the right individual, and then view the trees for descent in the proper manner.

Another wonderful tool at MyHeritage is the Genetic Affairs AutoCluster tool, built-in for MyHeritage users.

ymt mh cluster.png

The above cluster shows that one person carries the surname of Elizabeth’s husband. Viewing the accompanying spreadsheet for the AutoCluster run reveals that indeed, I’ve already identified a couple of matches as descendants of the desired ancestral couple. The spreadsheet shows links to their trees, my notes and more.

ymt cluster ss

Clusters show you where to look. Without the cluster, I had only identified two people as descendants of this ancestral couple. I found several more candidates to evaluate and two mitochondrial candidates are found in this cluster.

Finding Y and Mitochondrial DNA Candidates at 23andMe

23andMe is a little more tricky because they don’t support either uploaded or created user trees which makes finding descendants of a particular ancestor quite challenging.

However, 23andMe attempts to create a tree of your closer relatives genetically. which you can find under “DNA Relatives,” under the Ancestry tab, then “Family Tree” at the top.

I’ve added the names of my ancestors when I can figure out who the match is. Please note that this “created tree” is seldom exactly accurate, but there are often enough hints that you’ll be able to piece together at least some of the rest.

Here’s part of my “created” tree at 23andMe. I’m at far right.

ymt23 tree.png

click to enlarge

If you’re a genealogist, your eyes are going to glaze over about now, because the “people” aren’t in the correct locations – with maternal and paternal sides of the tree swapped. Also, please note, the locations in which they place people are estimates AND 23andMe does NOT take into account or provide for half-relationships.

That said, you can still obtain candidates for Y and mitochondrial DNA testing.

In this case, I’m searching for a mitochondrial DNA candidate for Evaline Miller, my grandfather’s mother or a Y DNA candidate for the Ferverda line.

I can tell by the surname of the male match, Ferverda, that he probably descends through a son, making him a Y DNA candidate.

Both Cheryl and Laura are possible mitochondrial DNA candidates for Evaline Miller, based on this tree, depending of course on how they actually do descend.

I can contact all of my matches, but in the event that they don’t answer, I’m not entirely out of luck. If I can determine EXACTLY how the match descends, and they descend appropriately for mitochondrial DNA, I can view the match to see at least a partial haplogroup. Since 23andMe only uses relatively close matches when constructing your tree, I’m relatively likely to recognize the names of the testers and may have them in my genealogy program.

By clicking on the Ferverda male, I can see that his Y haplogroup is I-Z58. That’s not nearly as refined as the Y DNA information at Family Tree DNA, but it’s something if I have nothing else and he doesn’t answer my query that would include the offer of a Y DNA test at Family Tree DNA.

ymt 23 hap

You can search at 23andMe by surname, but unless your match has entered their ancestral surnames and you recognize surnames that fit together, without a tree, unless your match answers your query, it’s very difficult to determine how you connect.

ymt 23 search.png

You can also view “Relatives in Common,” hoping to recognize someone you know as a common match.

ymt relatives in common

Please note that 23andMe does allow testers to enter a link to a tree, but few do.

ymt tree link.png

It’s worth checking, and be sure to enter your own tree link location.

Finding Y and Mitochondrial DNA Candidates at Ancestry

Ancestry’s ThruLines provides an excellent tool to find both Y and mitochondrial DNA participants.

Ancestry organizes their ThruLines by ancestor.

ymt thrulines

click to enlarge

Select your desired Ancestor, someone whose DNA you seek. Clearly, Y DNA candidates are very easy because you simply choose any male ancestor in the correct line with the surname and look for a male match with the appropriate surname.

In this case, I’m selecting Martha Ruth Dodson, because I need her mitochondrial DNA.

ymt dodson.png

By clicking on her “card” I then see my matches assigned to her ThruLine.

Ymt ancestry thruline

Obviously, for mitochondrial DNA, I’m looking for someone descended through all females, so Martha’s daughter, Elizabeth Estes’s son Robert won’t work, but her daughter, Louisa Vannoy, at left is the perfect candidate. Thankfully, my cousin whom I match, at bottom left is descended through all females to the current generation, which can be male or female, so is a mitochondrial DNA candidate.

Finding Y and Mitochondrial DNA Candidates in Trees in General

I’ve utilized the combination of trees and DNA matches at FamilyTreeDNA through Genetic Affairs, Ancestry and MyHeritage, but you can also simply search for people who descend from the same ancestor based on their tree alone at the vendors who support trees as part of genealogical records. This includes both Ancestry and MyHeritage but also sites like Geneanet which is becoming increasingly popular, especially in Europe. (I have not worked extensively with Geneanet yet but plan to take it for a test drive soon.)

My reason for utilizing DNA matches+trees first is that the person has already been introduced to the concept that DNA can help with genealogy, and has obviously embraced DNA testing at least once. Not only that, with the assist of a Theory of Family Relativity, ThruLine or genetic Affairs automation tools, it’s much easier to find appropriate candidates.

Finding Y and Mitochondrial DNA Candidates at WikiTree

If you reach beyond DNA testing companies, WikiTree provides a valuable feature which allows people to specify that they descend from a particular ancestor, and if they have DNA tested, how they descend – including Y DNA, mitochondrial DNA and autosomal.

Here’s an example on the profile of John Y. Estes at WikiTree, one of my Estes ancestors.

ymt wiki.png

If someone descends appropriately for either Y or mitochondrial DNA line, and has taken that test, their information is listed.

In this case, there are two Y DNA testers and two autosomal, but no mitochondrial DNA which would have descended from John’s mother, of course.

You can click on the little green arrow icon to see how any DNA tested person descends from the ancestor whose profile you are accessing.

ymt wiki compare

Of course, the same surname for males is a good indication that the man in question is descended from that paternal line, but check to be sure, because some males took their mother’s surname for various reasons.

Here’s my line-of-descent from John Y. Estes. I can click on anyone else whose DNA information is listed as well to see how they descend from John. If they descend from John through all females, then they obviously descend from his wife though all females too which means they are a mitochondrial DNA candidate for her.

ymt wiki relationship.png

click to enlarge

Clicking on autosomal testers may reveal someone appropriately descended from the ancestor in question.

You can then click on any ancestor shown to view their profile, and any DNA tested descendants.

By clicking on name of the descendant whose DNA test you are interested in, you’ll be able to view their profile. Look for the Collaboration section where you can send them a private message that will be delivered by email from WikiTree.

ymt collaborate

Finding Y and Mitochondrial DNA Candidates at GedMatch

One final avenue to find Y and mitochondrial DNA candidates is through GedMatch, It’s probably the least useful option, though, because the major vendors all have some sort of tree function, except for 23andMe, and for some reason, many people have not uploaded GEDCOM files (trees) to GEDmatch.

Therefore, if you can find someone on GedMatch that tested elsewhere perhaps, such as LivingDNA who also provides a base haplogroup, or 23andMe, and they uploaded a GEDCOM file (tree) to GedMatch, you can utilize the GEDmatch “Find common ancestors” automated tree-matching functionality.

gedmatch mrca matches

click to enlarge

GEDmatch produces a list of your matches with common ancestors in their trees, allowing you to select the appropriate ancestor or lineage.

I wrote step-by-step instructions in the article, GEDmatch Introduces Automated Tree Matching.

Additionally, GEDmatch includes the Genetic Affairs AutoCluster tool in their Tier1 subscription offering,

ymt gedmatch.png

Gedmatch users who know their Y and mitochondrial haplogroup can enter that information in their profile and it will be reflected on the autosomal match list.

ymt gedmatch hap

Summary Chart

In summary, each testing vendor has a different focus and unique tools that can be used to search for Y and mitochondrial DNA candidates. Additionally, two other resources, WikiTree and GEDmatch, although not DNA testing vendors, can lead to discovering Y and mtDNA candidates as well.

I’ve created a quick-reference chart.

  Family Tree DNA MyHeritage Ancestry 23andMe Wikitree GEDmatch
Y DNA Test Yes No No No, partial haplogroup provided No test, listed by ancestor No, user entered
mtDNA Test Yes No No No, partial haplogroup provided No test, listed by ancestor No, user entered
DNA Projects Yes No No No Some Some
Strengths other than mentioned categories 20 year worldwide customer base, phased family matching European focus, SmartMatches, wide variety of filters Largest autosomal database Genetic tree beta DNA by ancestor May include users not found elsewhere who tested outside the major companies
Drawbacks No direct triangulation or tree matching No Genetic Affairs AutoTree or AutoPedigree Can’t download matches, no triangulation, clusters, AutoTree, or AutoPedigree No trees, 2000 match limit “One tree” may be incorrect Few trees, no AutoTree or AutoPedigree
Clustering Genetic Affairs Included in advanced tools No, prohibited Genetic Affairs N/A Included in Tier1
Genetic Affairs AutoTree & AutoPedigree Yes No No No, no tree support N/A No
Tree matching between users No, through Genetic Affairs Theories of Family Relativity ThruLines No Not directly MRCA common ancestors in Tier1

Now it’s your turn. Which Y and mitochondrial DNA lines can you find today?

Happy Hunting!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Download Your Ancestry Tree and Upload It Elsewhere for Added Benefit

Once you’ve created a tree at Ancestry, you can download or export that tree to upload it elsewhere, or for safekeeping at home.

Be aware that while the tree itself is downloaded, any documents you have attached through Ancestry are NOT downloaded along with the tree. To do that, you’ll need to sync your tree through RootsMagic or Family Tree Maker software on your home computer. That’s not the focus of this article.

This article provides step-by-step instructions on how to make a downloaded copy of your actual tree called a GEDCOM file. All vendors understand the GEDCOM file exchange format for family trees.

Uploading your tree elsewhere allows you to save time and enhances your experience at other vendors, such as Family Tree DNA, MyHeritage, and GEDmatch – all three of whom utilize your DNA test in addition to your tree in order to provide you with advanced tools and enhanced results.

These three vendors all use and provide segment information, in addition to trees, and matching is free if you transfer a DNA file. Transferring a DNA file and downloading a tree are two separate things.

To use DNA plus trees, there are two steps and I’ll cover both. First, let’s look at the benefits and the differences between those three vendors so you know what to expect.

Features Summary

Here’s a quick and very basic summary of the features and functions of each of the three companies that accept both GEDCOM and DNA file uploads and provide tree+DNA combination features.

  FamilyTreeDNA MyHeritage GEDmatch
Upload DNA File Yes Yes Yes
Free Matching Yes Yes Yes
Advanced Features $19 one-time unlock $29 one-time unlock $10 monthly subscription for Tier 1
Upload GEDCOM file* Yes Yes** Yes
Features Using GEDCOM File Phased Family Matching Theories of Family Relativity, Smart Matches, searches Comparison with matches’ trees
Genealogy Records Subscription Available No Yes No
DNA Testing in House Yes Yes No, upload only
Unique Features Assigning matches maternally and paternally, Y and mtDNA tests, archives your DNA Theories of Family Relativity, genealogical records, photo enhancement Ability to view your matches’ matches, advanced DNA tools

*There may be GEDCOM file size restrictions at some vendors.

**MyHeritage restricts free trees to 250 individuals, but you can add a records subscription to be able to work with a larger tree. You can read more, here. You can try a free subscription, here. I believe you can upload any size GEDCOM file without a subscription, but advanced functions such as record matches are restricted.

Unlike at the other vendors who focus exclusively on DNA, MyHeritage provides the resources to build and add branches to your tree, hence the restriction on how much is provided for free.

Both MyHeritage and FamilyTreeDNA also do their own DNA testing, so you don’t need to test at Ancestry. I wrote about testing and transfer strategies, here.

Regardless of where you test, you can download your tree from Ancestry and upload it to other sites.

I initially started out with only my direct ancestors in my tree, but you’ll want to include their children, minimally, in order to assist the vendors with tree comparisons, assuring that a person in two different trees is actually the same person, not just someone with the same or a similar name.

Downloading Your Ancestry Tree

After signing on to Ancestry, you’ll see the following at the upper left:

Download ancestry tree.png

Click on “Trees.”

Download Ancestry tree 2

You’ll see a list of all the trees you’ve created or that have been shared with you.

Click on the tree you want to download.

Download Ancestry tree settings.png

Next, you’ll see your tree displayed. Click on the down arrow to display options and click on “Tree Settings.”

Download Ancestry tree manage

You’ll see your tree settings, above. We’re focused ONLY on the area in the red box.

Downloading does NOT delete your tree. That is a different option.

Let’s look at a closeup of this section.

Do NOT Delete Your Tree

Delete means “throw away” permanently – you cannot retrieve the tree. Export means to make a copy, leaving the original intact on Ancestry.

Let’s look closer.

Download Ancestry export.png

People see the warning at the bottom, in the Delete tree section and they don’t realize that’s NOT referring to Export Tree.

See those little red arrows, above? They’re all pointing to minuscule tiny grey dividing lines between the Hint Preferences Section, the Manage Your Tree export function and the Delete your tree function.

The warning pertains to deleting your tree, not “Export tree.”

DO NOT DELETE YOUR TREE!!!

If you accidentally click on “Delete your tree,” you do get a confirmation step, shown below.

Download Ancestry delete

If you want to export or copy your tree for use elsewhere, do NOT press delete.

Download/Export Your Tree

To download your tree, click on the green Export tree button.

Download ancestry export 2.png

Export means to download a COPY of your tree, leaving the original on Ancestry.

Next, you’ll receive an “in process” message while your GEDCOM file is being created.

Download Ancestry generating

After you click on “Export tree,” you’ll receive this message.

Download Ancestry download.png

When finished, you’ll be able to click on “download tips” if you wish, then click on the green “Download your GEDCOM file.”

Save this file on your computer.

Uploading Your GEDCOM Elsewhere

Next, it’s time to upload your GEDCOM file to our three vendors. Please note that if you have previously uploaded a GEDCOM file to these vendors, you can replace that GEDCOM file, but that’s not always in your best interest.

We’ll look at GEDCOM replacement strategies and ramifications in each vendor’s section.

You’ll need to have an account set up with each vendor first.

Uploading to Family Tree DNA

At FamilyTreeDNA, the way to set up an account is to either order a DNA test, here, or transfer your autosomal DNA file from either 23andMe, Ancestry, or MyHeritage.

Transferring your DNA to FamilyTreeDNA

Transfer instructions for DNA from or to Family Tree DNA are found in the article, Family Tree DNA Step by Step Guide: How to Upload-Download DNA Files.

After you set up an account at Family Tree DNA, you can then upload your GEDCOM file.

Uploading Your GEDCOM File to FamilyTreeDNA

You can upload any GEDCOM file to FamilyTreeDNA.

Sign on to your account, then click on “myTREE” on the upper toolbar.

download ancestry ftdna

Click on “Tree Mgmt” at upper right.

Download ancestry ftdna gedcom.png

Next, you’ll see the “GEDCOM UPLOAD” beneath.

You can only upload one tree to Family Tree DNA. When you upload a new GEDCOM file, your current tree is deleted at the beginning of the process.

FamilyTreeDNA GEDCOM Replacement Strategy

You can replace a GEDCOM file with a newer, better one at FamilyTreeDNA, however, doing so means that any people you match who you’ve linked to their profiles in your original tree will need to be relinked.

Phased Family Matching where your matches are bucketed to maternal, paternal or both sides are created based on matches to people you’ve attached to their proper places in your tree.

If you have few or no matches attached to their profiles in your tree, then relinking won’t be a problem. If, like me, you’re taking full advantage of the ability to connect matches on your tree in order for your matches to be assigned maternally or paternally, then replacing your GEDCOM file would constitute a significant investment of time relinking.

The best plan for FamilyTreeDNA is to upload a robust tree initially with lines extended to current so that you can attach testers easily to their proper place in the tree.

If you didn’t do this initially, you’ll need to add the line to the tester from your common ancestor as you identify matches with common ancestors.

Uploading to MyHeritage

At MyHeritage, you can begin by ordering a DNA test, here, or transferring a DNA file from another vendor, here. You can also sign up to try a free genealogy subscription, here. From any of these three links, you’ll be prompted to set up an account.

Transferring Your DNA to MyHeritage

Instructions for transferring your DNA to MyHeritage can be found in the article, MyHeritage Step by Step Guide: How to Upload-Download DNA Files.

Uploading your GEDCOM File to MyHeritage

You can upload a GEDCOM file from any source to MyHeritage. After signing in to your account, you’ll see “Family tree” in the top task bar.

download ancestry myheritage

Click on Family tree and you’ll see “Import GEDCOM.”

Download Ancestry MyHeritage import.png

At MyHeritage you can have multiple GEDCOMs uploaded, but you’ll only be able to link your DNA test to your primary tree from which Theories of Family Relativity for you are generated.

MyHeritage GEDCOM Replacement Strategy

I have a full subscription to MyHeritage which allows an unlimited number in people of an unlimited number of trees. Smart Matches and other hints are generated for every person in every tree unless I disable that feature.

If I were to replace my primary GEDCOM file that is linked to my own DNA test, I would lose all of my Theories of Family Relativity which are only generated every few months. The next time Theories are run, I would receive new ones, but not before then.

Replacing an existing GEDCOM file at MyHeritage also means that you’ll lose links to any attached documents or photos that you’ve associated with that tree, additions of changed you’ve made, as well as Smart Matches to other people’s trees. You can, however, sync with MyHeritage’s own free desktop tree builder software.

Initially, a few years ago, I uploaded an ancestors-only tree to MyHeritage reaching back a few generations. Now I wish I had uploaded my entire GEDCOM file. I didn’t because I have unproven people and relationships in my computer file and I didn’t want to mislead anyone. However, Theories of Family Relativity uses descendants of your ancestors to connect across lines to other people. Having descendants of my ancestors in that tree wasn’t important at MyHeritage then, before that feature was introduced, but it is now.

Today, I’ve minimally added children and grandchildren of my ancestors, by hand. I use MyHeritage records and searches extensively, and I’d lose thousands of links if I replaced my primary GEDCOM file. Besides, when I review each person I add in the tree, it provides the opportunity of reviewing their information for accuracy and searching for new documents. I’ve discovered amazing things by using this one-at-a-time method for adding my ancestors’ children and descendants – including new information that led to a new ancestor just last week.

Uploading to GEDMatch

You’ll begin by setting up a free account at GEDmatch.

Download Ancestry gedmatch

GEDmatch isn’t a DNA testing site or a genealogy records site. It’s a DNA tools site that provides tools not found elsewhere. Sometimes matches found at Ancestry will download to GEDmatch but not elsewhere. Ancestry does not provide genealogically valuable segment information.

GEDmatch not only provides segment information and triangulation, as do FamilyTreeDNA and MyHeritage, but they also provide the ability for you to view the matches of your matches. This open-source approach is one of GEDmatch’s founding principles.

Uploading Your DNA to GEDmatch

After you sign in to GEDmatch, you’ll need to upload your DNA file from one of the vendors to GEDmatch. I strongly recommend using DNA files from the standard vendors, such as Ancestry, FamilyTreeDNA, MyHeritage or even LivingDNA. Other vendors use different chips or test different DNA locations and matching is sometimes less reliable.

download ancestry gedmatch upload DNA.png

After signing on to Gedmatch, you’ll see “Upload your DNA files.” Click on the link there for further prompts.

After uploading your DNA file, you’ll want to upload your GEDCOM file so that your matches can see if you have a common ancestor in your trees.

Upload Your GEDCOM file to GEDmatch

Scrolling down the sidebar below the “Upload Your DNA” section, past the various applications, you’ll see the Family Trees section.

download ancestry gedmatch gedcom

You’ll see the GEDCOM upload section, as well as various comparison tools. Click on “Upload GEDCOM (Fast)” to begin.

GEDmatch GEDCOM Replacement Strategy

You can replace your GEDCOM file at GEDmatch at will. Since all information at GEDmatch is generated real-time, meaning when the request is submitted, nothing is “saved” nor pre-generated, so you won’t lose anything by replacing a GEDCOM file, at least not as of this writing.

However, you’ll need to delete your current GEDCOM file first. You can do that by scrolling to the bottom of your User Profile area where your kit number is listed. (Mine is obscured, below.) You’ll see your GEDCOM file information.

download ancestry gedmatch resources.png

Click to manage resources, including deleting a GEDCOM file.

Currently, at GEDmatch, my direct line ancestral tree is sufficient.

Summary

Regardless of where you maintain your primary family tree, download or export it as a GEDCOM file and upload it elsewhere. You’re only cheating yourself (and your matches) if you don’t take advantage of all available tools.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Genographic Project Participants: Last Chance to Preserve Your Results & Advance Science – Deadline June 30th

If you’re one of the one million+ public participants in the National Geographic Society’s Genographic Project, launched in 2005, you probably already know that testing has ceased and the website will be discontinued as of June 30th. Your results will no longer be available as of that date.

I wrote about the closing here and you can read what the Genographic project has to say about closing the public participation part of the project, here.

However, this doesn’t have to be the end of the DNA story.

You have great options for yourself and to continue the science. Your results can still be useful, however…

You MUST act before June 30th.

Please note that if you control the DNA of a deceased person who did not test elsewhere, this is literally your last chance to obtain any DNA results for them. If you transfer their DNA, you can upgrade and purchase additional tests at Family Tree DNA. If you don’t transfer, the opportunity to retrieve their DNA will be gone forever.

Three Steps + a Bonus

  1. Preserve Your Results – Sign in to the Genographic site and take screenshots, print, or download any data you wish to keep.
  2. Contribute to Science – Authorize the Genographic Project to utilize your results for ongoing scientific research, including The Million Mito Project
  3. Transfer Your Results – If you tested before November 2016, you can transfer your results to FamilyTreeDNA and order upgrades if a sample remains

Here are step-by-step instructions for completing all three.

First – Preserve Your Results

Sign on to your account at The Genographic Project. You’ll notice an option to print your results.

Geno profile

Scroll down and take one last look. Did you miss anything?

Your profile page includes the ability to download your raw genetic data.

Geno profile option

Your Account page, below, will look slightly different depending on the version of the test you took, but the download option is present for all versions of the test.

Geno download

The download file simply shows raw data values at specific positions and won’t be terribly useful to you.

Geno nucleotides

Generally, it’s the analysis of what these mutations mean, or matching to others for genealogy, that people seek.

At the very bottom of your results page, you’ll see the option to Contribute to Science.

Geno contribute

Click on “How You Can Help.”

Second – Contribute to Scientific Research

The best way to assure the legacy of the Genographic Project is to opt-in for science research.

You can learn more about what happens when you authorize your results for scientific research, here.

Geno contribute box

Checking the little box authorizes anonymized scientific research on your sample now and in the future. This assures that your results won’t be destroyed on June 30th and will continue to be available to scientists.

The Genographic Project celebrated its 15th birthday in April 2020. Genographic Project data, including over 80,000 local and indigenous participants from over 100 countries, in addition to contributed public participation samples, has been included in approximately 85 research papers worldwide. Collaborative research is still underway. There’s still so much to learn.

Dr. Miguel Vilar, the lead scientist for the Genographic Project, is a partner in The Million Mito Project. The anonymized mitochondrial results of people who have opted-in for science will be available to that project, and others, through Dr. Vilar. Please support rewriting the tree of womankind by opting-in for scientific research.

Those words, “in the future” are the key to making sure this critical opportunity to continue the science doesn’t die.

If you don’t want to scroll down your page, you can access the scientific contribution authorization page directly from your profile.

Geno profile 2

To contribute to science, Click on the “My Contribution to Science” tab.”

Geno profile contribute

You’ll see the following screen. Then, check the box and click on the yellow “Contribute to Science” button. You’ll then be prompted with a few questions about your maternal and paternal heritage.

Geno check box

Contributing your results to science helps further scientific research into mankind, but transferring your results to FamilyTreeDNA preserves the usefulness of your DNA results for you and facilitates upgrading your DNA to obtain even more information.

Transferring also allows you to participate fully in The Million Mito Project which requires a full sequence mitochondrial DNA sample.

Third – Transfer Your Results to FamilyTreeDNA

If you tested before November 2016 when the Genographic Project switched to Helix for processing, you can transfer your results easily to Family Tree DNA.

If you don’t remember when you tested, sign in to your account. It’s easy to tell if transferring is an option.

Geno transfer option

If you are eligible to transfer, you’ll see this transfer option when you sign in.

Just click on the “Transfer Your Results” button. If you don’t want to sign in to Genographic to do the transfer, just click on this transfer link directly.

Geno transfer FTDNA

You will then see this no-hassle transfer option on the Family Tree DNA web page. Because FamilyTreeDNA did the laboratory processing for the Genographic Project from its inception in 2005 until November 2016, all you need to do is enter your Genographic kit number and the transfer takes place automatically.

Please note that if you DON’T transfer NOW, the Genographic Project is requesting the destruction of all non-transferred kits after June 30th, per their website.

Geno destroy

As you might imagine, preserving the DNA of a deceased person is critical if they didn’t test elsewhere and you have the authority to manage their DNA.

In order to support The Million Mito Project, Family Tree DNA is emailing a coupon to all people who transfer, offering a discount to upgrade to a full sequence mitochondrial DNA test.

After you transfer to Family Tree DNA, be sure to enter your earliest known ancestor and upload a tree. Here’s my “Four Quick Tips” article about getting the most out of mitochondrial DNA result, but it’s sage advice for Y DNA as well.

Bonus – Upgrade Transferred Kits

If you transfer your Genographic results to FamilyTreeDNA, you can then utilize the DNA sample provided for your Genographic DNA test for additional testing

Different versions of the Genographic Project testing provided various types of results for your DNA. In some versions, testers received 12 Y STR markers or partial mitochondrial DNA results, and in other versions, partial haplogroups. You can only transfer what the Genographic provided, of course, but once transferred, you can order products and upgrades at Family Tree DNA, assuming a sample remains.

This is important, especially if you control the kit for a loved one who has now passed away. This may be your only opportunity to obtain their Y, mitochondrial, and/or autosomal DNA results. For example, my mother passed away before autosomal DNA testing was possible, but I’ve since upgraded her test at Family Tree DNA and was able to do so because her DNA was archived.

Support Science

Please support The Million Mito Project and other academic research by:

  • Choosing to contribute to science through the Genographic project and
  • By transferring your results to Family Tree DNA so that you can learn more and upgrade

Both options are totally free, and both equally important.

Time is of the essence. You must act before June 30th.

Don’t let this be goodbye, simply au revior – the legacy of your DNA can live on in another place, another way, another day.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Concepts: Inheritance

Inheritance.

What is it?

How does it work?

I’m not talking about possessions – but about the DNA that you receive from your parents, and their parents.

The reason that genetic genealogy works is because of inheritance. You inherit DNA from your parents in a known and predictable fashion.

Fortunately, we have more than one kind of DNA to use for genealogy.

Types of DNA

Females have 3 types of DNA and males have 4. These different types of DNA are inherited in various ways and serve different genealogical purposes.

Males Females
Y DNA Yes No
Mitochondrial DNA Yes Yes
Autosomal DNA Yes Yes
X Chromosome Yes, their mother’s only Yes, from both parents

Different Inheritance Paths

Different types of DNA are inherited from different ancestors, down different ancestral paths.

Inheritance Paths

The inheritance path for Y DNA is father to son and is inherited by the brother, in this example, from his direct male ancestors shown by the blue arrow. The sister does not have a Y chromosome.

The inheritance path for the red mitochondrial DNA for both the brother and sister is from the direct matrilineal ancestors, only, shown by the red arrow.

Autosomal DNA is inherited from all ancestral lines on both the father’s and mother’s side of your tree, as illustrated by the broken green arrow.

The X chromosome has a slightly different inheritance path, depending on whether you are a male or female.

Let’s take a look at each type of inheritance, how it works, along with when and where it’s useful for genealogy.

Autosomal DNA

Autosomal DNA testing is the most common. It’s the DNA that you inherit from both of your parents through all ancestral lines back in time several generations. Autosomal DNA results in matches at the major testing companies such as FamilyTreeDNA, MyHeritage, Ancestry, and 23andMe where testers view trees or other hints, hoping to determine a common ancestor.

How does autosomal DNA work?

22 autosomes

Every person has two each of 22 chromosomes, shown above, meaning one copy is contributed by your mother and one copy by your father. Paired together, they form the two-sided shape we are familiar with.

For each pair of chromosomes, you receive one from your father, shown with a blue arrow under chromosome 1, and one from your mother, shown in red. In you, these are randomly combined, so you can’t readily tell which piece comes from which parent. Therein lies the challenge for genealogy.

This inheritance pattern is the same for all chromosomes, except for the 23rd pair of chromosomes, at bottom right, which determined the sex of the child.

The 23rd chromosome pair is inherited differently for males and females. One copy is the Y chromosome, shown in blue, and one copy is the X, shown in red. If you receive a Y chromosome from your father, you’re a male. If you receive an X from your father, you’re a female.

Autosomal Inheritance

First, let’s talk about how chromosomes 1-22 are inherited, omitting chromosome 23, beginning with grandparents.

Inheritance son daughter

Every person inherits precisely half of each of their parents’ autosomal DNA. For example, you will receive one copy of your mother’s chromosome 1. Your mother’s chromosome 1 is a combination of her mother’s and father’s chromosome 1. Therefore, you’ll receive ABOUT 25% of each of your grandparents’ chromosome 1.

Inheritance son daughter difference

In reality, you will probably receive a different amount of your grandparent’s DNA, not exactly 25%, because your mother or father will probably contribute slightly more (or less) of the DNA of one of their parents than the other to their offspring.

Which pieces of DNA you inherit from your parents is random, and we don’t know how the human body selects which portions are and are not inherited, other than we know that large pieces are inherited together.

Therefore, the son and daughter won’t inherit the exact same segments of the grandparents’ DNA. They will likely share some of the same segments, but not all the same segments.

Inheritance maternal autosomalYou’ll notice that each parent carries more of each color DNA than they pass on to their own children, so different children receive different pieces of their parents’ DNA, and varying percentages of their grandparents’ DNA.

I wrote about a 4 Generation Inheritance Study, here.

Perspective

Keep in mind that you will only inherit half of the DNA that each of your parents carries.

Looking at a chromosome browser, you match your parents on all of YOUR chromosomes.

Inheritance parental autosomal

For example, this is me compared to my father. I match my father on either his mother’s side, or his father’s side, on every single location on MY chromosomes. But I don’t match ALL of my father’s DNA, because I only received half of what he has.

From your parents’ perspective, you only have half of their DNA.

Let’s look at an illustration.

Inheritance mom dad

Here is an example of one of your father’s pairs of chromosomes 1-22. It doesn’t matter which chromosome, the concepts are the same.

He inherited the blue chromosome from his father and the pink chromosome from his mother.

Your father contributed half of his DNA to you, but that half is comprised of part of his father’s chromosome, and part of his mother’s chromosome, randomly selected in chunks referred to as segments.

Inheritance mom dad segments

Your father’s chromosomes are shown in the upper portion of the graphic, and your chromosome that you inherited from you father is shown below.

On your copy of your father’s chromosome, I’ve darkened the dark blue and dark pink segments that you inherited from him. You did not receive the light blue and light pink segments. Those segments of DNA are lost to your line, but one of your siblings might have inherited some of those pieces.

Inheritance mom dad both segments

Now, I’ve added the DNA that you inherited from your Mom into the mixture. You can see that you inherited the dark green from your Mom’s father and the dark peach from your Mom’s mother.

Inheritance grandparents dna

These colored segments reflect the DNA that you inherited from your 4 grandparents on this chromosome.

I often see questions from people wondering how they match someone from their mother’s side and someone else from their father’s side – on the same segment.

Understanding that you have a copy of the same chromosome from your mother and one from your father clearly shows how this happens.

Inheritance match 1 2

You carry a chromosome from each parent, so you will match different people on the same segment. One match is to the chromosome copy from Mom, and one match is to Dad’s DNA.

Inheritance 4 gen

Here is the full 4 generation inheritance showing Match 1 matching a segment from your Dad’s father and Match 2 matching a segment from your Mom’s father.

Your Parents Will Have More Matches Than You Do

From your parents’ perspective, you will only match (roughly) half of the DNA with other people that they will match. On your Dad’s side, on segment 1, you won’t match anyone pink because you didn’t inherit your paternal grandmother’s copy of segment 1, nor did you inherit your maternal grandmother’s segment 1 either. However, your parents will each have matches on those segments of DNA that you didn’t inherit from them.

From your perspective, one or the other of your parents will match ALL of the people you match – just like we see in Match 1 and Match 2.

Matching you plus either of your parents, on the same segment, is exactly how we determine whether a match is valid, meaning identical by descent, or invalid, meaning identical by chance. I wrote about that in the article, Concepts: Identical by…Descent, State, Population and Chance.

Inheritance on chromosomes 1-22 works in this fashion. So does the X chromosome, fundamentally, but the X chromosome has a unique inheritance pattern.

X Chromosome

The X chromosome is inherited differently for males as compared to females. This is because the 23rd pair of chromosomes determines a child’s sex.

If the child is a female, the child inherits an X from both parents. Inheritance works the same way as chromosomes 1-22, conceptually, but the inheritance path on her father’s side is different.

If the child is a male, the father contributes a Y chromosome, but no X, so the only X chromosome a male has is his mother’s X chromosome.

Males inherit X chromosomes differently than females, so a valid X match can only descend from certain ancestors on your tree.

inheritance x fan

This is my fan chart showing the X chromosome inheritance path, generated by using Charting Companion. My father’s paternal side of his chart is entirely blank – because he only received his X chromosome from his mother.

You’ll notice that the X chromosome can only descend from any male though his mother – the effect being a sort of checkerboard inheritance pattern. Only the pink and blue people potentially contributed all or portions of X chromosomes to me.

This can actually be very useful for genealogy, because several potential ancestors are immediately eliminated. I cannot have any X chromosome segment from the white boxes with no color.

The X Chromsome in Action

Here’s an X example of how inheritance works.

Inheritance X

The son inherits his entire X chromosome from his mother. She may give him all of her father’s or mother’s X, or parts of both. It’s not uncommon to find an entire X chromosome inherited. The son inherits no X from his father, because he inherits the Y chromosome instead.

Inheritance X daughter

The daughter inherits her father’s X chromosome, which is the identical X chromosome that her father inherited from his mother. The father doesn’t have any other X to contribute to his daughter, so like her father, she inherits no portion of an X chromosome from her paternal grandfather.

The daughter also received segments of her mother’s X that her mother inherited maternally and paternally. As with the son, the daughter can receive an entire X chromosome from either her maternal grandmother or maternal grandfather.

This next illustration ONLY pertains to chromosome 23, the X and Y chromosomes.

Inheritance x y

You can see in this combined graphic that the Y is only inherited by sons from one direct line, and the father’s X is only inherited by his daughter.

X chromosome results are included with autosomal results at both Family Tree DNA and 23andMe, but are not provided at MyHeritage. Ancestry, unfortunately, does not provide segment information of any kind, for the X or chromosomes 1-22. You can, however, transfer the DNA files to Family Tree DNA where you can view your X matches.

Note that X matches need to be larger than regular autosomal matches to be equally as useful due to lower SNP density. I use 10-15 cM as a minimum threshold for consideration, equivalent to about 7 cM for autosomal matches. In other words, roughly double the rule of thumb for segment size matching validity.

Autosomal Education

My blog is full of autosomal educational articles and is fully keyword searchable, but here are two introductory articles that include information from the four major vendors:

When to Purchase Autosomal DNA Tests

Literally, anytime you want to work on genealogy to connect with cousins, prove ancestors or break through brick walls.

  • Purchase tests for yourself and your siblings if both parents aren’t living
  • Purchase tests for both parents
  • Purchase tests for all grandparents
  • Purchase tests for siblings of your parents or your grandparents – they have DNA your parents (and you) didn’t inherit
  • Test all older generation family members
  • If the family member is deceased, test their offspring
  • Purchase tests for estimates of your ethnicity or ancestral origins

Y DNA

Y DNA is only inherited by males from males. The Y chromosome is what makes a male, male. Men inherit the Y chromosome intact from their father, with no contribution from the mother or any female, which is why men’s Y DNA matches that of their father and is not diluted in each generation.

Inheritance y mtdna

If there are no adoptions in the line, known or otherwise, the Y DNA will match men from the same Y DNA line with only small differences for many generations. Eventually, small changes known as mutations accrue. After many accumulated mutations taking several hundred years, men no longer match on special markers called Short Tandem Repeats (STR). STR markers generally match within the past 500-800 years, but further back in time, they accrue too many mutations to be considered a genealogical-era match.

Family Tree DNA sells this test in 67 and 111 marker panels, along with a product called the Big Y-700.

The Big Y-700 is the best-of-class of Y DNA tests and includes at least 700 STR markers along with SNPs which are also useful genealogically plus reach further back in time to create a more complete picture.

The Big Y-700 test scans the entire useful portion of the Y chromosome, about 15 million base pairs, as compared to 67 or 111 STR locations.

67 and 111 Marker Panel Customers Receive:

  • STR marker matches
  • Haplogroup estimate
  • Ancestral Origins
  • Matches Map showing locations of the earliest known ancestors of matches
  • Haplogroup Origins
  • Migration Maps
  • STR marker results
  • Haplotree and SNPs
  • SNP map

Y, mitochondrial and autosomal DNA customers all receive options for Advanced Matching.

Big Y-700 customers receive, in addition to the above:

  • All of the SNP markers in the known phylotree shown publicly, here
  • A refined, definitive haplogroup
  • Their place on the Block Tree, along with their matches
  • New or unknown private SNPs that might lead to a new haplogroup, or genetic clan, assignment
  • 700+ STR markers
  • Matching on both the STR markers and SNP markers, separately

Y DNA Education

I wrote several articles about understanding and using Y DNA:

When to Purchase Y DNA Tests

The Y DNA test is for males who wish to learn more about their paternal line and match against other men to determine or verify their genealogical lineage.

Women cannot test directly, but they can purchase the Y DNA test for men such as fathers, brothers, and uncles.

If you are purchasing for someone else, I recommend purchasing the Big Y-700 initially.

Why purchase the Big Y-700, when you can purchase a lower level test for less money? Because if you ever want to upgrade, and you likely will, you have to contact the tester and obtain their permission to upgrade their test. They may be ill, disinterested, or deceased, and you may not be able to upgrade their test at that time, so strike while the iron is hot.

The Big Y-700 provides testers, by far, the most Y DNA data to work (and fish) with.

Mitochondrial DNA

Inheritance mito

Mitochondrial DNA is passed from mothers to both sexes of their children, but only females pass it on.

In your tree, you and your siblings all inherit your mother’s mitochondrial DNA. She inherited it from her mother, and your grandmother from her mother, and so forth.

Mitochondrial DNA testers at FamilyTreeDNA receive:

  • A definitive haplogroup, thought of as a genetic clan
  • Matching
  • Matches Map showing locations of the earliest know ancestors of matches
  • Personalized mtDNA Journey video
  • Mutations
  • Haplogroup origins
  • Ancestral origins
  • Migration maps
  • Advanced matching

Of course, Y, mitochondrial and autosomal DNA testers can join various projects.

Mitochondrial DNA Education

I created a Mitochondrial DNA page with a comprehensive list of educational articles and resources.

When to Purchase Mitochondrial DNA Tests

Mitochondrial DNA can be valuable in terms of matching as well as breaking down brick walls for women ancestors with no surnames. You can also use targeted testing to prove, or disprove, relationship theories.

Furthermore, your mitochondrial DNA haplogroup, like Y DNA haplogroups, provides information about where your ancestors came from by identifying the part of the world where they have the most matches.

You’ll want to purchase the mtFull sequence test provided by Family Tree DNA. Earlier tests, such as the mtPlus, can be upgraded. The full sequence test tests all 16,569 locations on the mitochondria and provides testers with the highest level matching as well as their most refined haplogroup.

The full sequence test is only sold by Family Tree DNA and provides matching along with various tools. You’ll also be contributing to science by building the mitochondrial haplotree of womankind through the Million Mito Project.

Combined Resources for Genealogists

You may need to reach out to family members to obtain Y and mitochondrial DNA for your various genealogical lines.

For example, the daughter in the tree below, a genealogist, can personally take an autosomal test along with a mitochondrial test for her matrilineal line, but she cannot test for Y DNA, nor can she obtain her paternal grandmother’s mitochondrial DNA directly by testing herself.

Hearts represent mitochondrial DNA, and stars, Y DNA.

Inheritance combined

However, our genealogist’s brother, father or grandfather can test for her father’s (blue star) Y DNA.

Her father or any of his siblings can test for her paternal grandmother’s (hot pink heart) mitochondrial DNA, which provides information not available from any other tester in this tree, except for the paternal grandmother herself.

Our genealogist’s paternal grandfather, and his siblings, can test for his mother’s (yellow heart) mitochondrial DNA.

Our genealogist’s maternal grandfather can test for his (green star) Y DNA and (red heart) mitochondrial DNA.

And of course, it goes without saying that every single generation upstream of the daughter, our genealogist, should all take autosomal DNA tests.

So, with several candidates, who can and should test for what?

Person Y DNA Mitochondrial Autosomal
Daughter No Y – can’t test Yes, her pink mother’s Yes – Test
Son Yes – blue Y Yes, his pink mother’s Yes – Test
Father Yes – blue Y Yes – his magenta mother’s Yes – Test
Paternal Grandfather Yes – blue Y – Best to Test Yes, his yellow mother’s – Test Yes – Test
Mother No Y – can’t test Yes, her pink mother’s Yes – Test
Maternal Grandmother No Y – can’t test Yes, her pink mother’s – Best to Test Yes – Test
Maternal Grandfather Yes – green Y – Test Yes, his red mother’s – Test Yes – Test

The best person/people to test for each of the various lines and types of DNA is shown bolded above…assuming that all people are living. Of course, if they aren’t, then test anyone else in the tree who carries that particular DNA – and don’t forget to consider aunts and uncles, or their children, as candidates.

If one person takes the Y and/or mitochondrial DNA test to represent a specific line, you don’t need another person to take the same test for that line. The only possible exception would be to confirm a specific Y DNA result matches a lineage as expected.

Looking at our three-generation example, you’ll be able to obtain a total of two Y DNA lines, three mitochondrial DNA lines, and 8 autosomal results, helping you to understand and piece together your family line.

You might ask, given that the parents and grandparents have all autosomally tested in this example, if our genealogist really needs to test her brother, and the answer is probably not – at least not today.

However, in cases like this, I do test the sibling, simply because I can learn and it may encourage their interest or preserve their DNA for their children who might someday be interested. We also don’t know what kind of advances the future holds.

If the parents aren’t both available, then you’ll want to test as many of your (and their) siblings as possible to attempt to recover as much of the parents’ DNA, (and matches) as possible.

Your family members’ DNA is just as valuable to your research as your own.

Increase Your Odds

Don’t let any of your inherited DNA go unused.

You can increase your odds of having autosomal matches by making sure you are in all 4 major vendor databases.

Both FamilyTreeDNA and MyHeritage accept transfers from 23andMe and Ancestry, who don’t accept transfers. Transferring and matching is free, and their unlock fees, $19 at FamilyTreeDNA, and $29 at MyHeritage, respectively, to unlock their advanced tools are both less expensive than retesting.

You’ll find easy-to-follow step-by-step transfer instructions to and from the vendors in the article DNA File Upload-Download and Transfer Instructions to and from DNA Testing Companies.

Order

You can order any of the tests mentioned above by clicking on these links:

Autosomal:

Transfers

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Genetic Affairs: AutoPedigree Combines AutoTree with WATO to Identify Your Potential Tree Locations

July 2020 Update: Please note that Ancestry issues a cease-and-desist order against Genetic Affairs, and this tool no longer works at Ancestry. The great news is that it still works at the other vendors, and you can ask Ancestry matches to transfer, which is free.

If you’re an adoptee or searching for an unknown parent or ancestor, AutoPedigree is just what you’ve been waiting for.

By now, we’re all familiar with Genetic Affairs who launched in 2018 with their signature autocluster tool. AutoCluster groups your matches into clusters by who your matches match with each other, in addition to you.

browser autocluster

A year later, in December 2019, Genetic Affairs introduced AutoTree, automated tree reconstruction based on your matches trees at Ancestry and Family Finder at Family Tree DNA, even if you don’t have a tree.

Now, Genetic Affairs has introduced AutoPedigree, a combination of the AutoTree reconstruction technology combined with WATO, What Are the Odds, as seen here at DNAPainter. WATO is a statistical probability technique developed by the DNAGeek that allows users to review possible positions in a tree for where they best fit.

Here’s the progressive functionality of how the three Genetic Affairs tools, combined, function:

  • AutoCluster groups people based on if they match you and each other
  • AutoTree finds common ancestors for trees from each cluster
  • Next, AutoTree finds the trees of all matches combined, including from trees of your DNA matches not in clusters
  • AutoPedigree checks to see if a common ancestor tree meets the minimum requirement which is (at least) 3 matches of greater to or equal to 30-40 cM. If yes, an AutoPedigree with hypotheses is created based on the common ancestor of the matching people.
  • Combined AutoPedigrees then reviews all AutoTrees and AutoPedigrees that have common ancestors and combine them into larger trees.

Let’s look at examples, beginning with DNAPainter who first implemented a form of WATO.

DNA Painter

Let’s say you’re trying to figure out how you’re related to a group of people who descend from a specific ancestral couple. This is particularly useful for someone seeking unknown parents or other unknown relationships.

DNA tools are always from the perspective of the tester, the person whose kit is being utilized.

At DNAPainter, you manually create the pedigree chart beginning with a common couple and creating branches to all of their descendants that you match.

This example at DNAPainter shows the matches with their cM amounts in yellow boxes.

xAutoPedigree DNAPainter WATO2

The tester doesn’t know where they fit in this pedigree chart, so they add other known lines and create hypothesis placeholder possibilities in light blue.

In other words, if you’re searching for your mother and you were born in 1970, you know that your mother was likely born between 1925 (if she was 45 when she gave birth to you) and 1955 (if she was 15 when she gave birth to you.) Therefore, in the family you create, you’d search for parents who could have given birth to children during those years and create hypothetical children in those tree locations.

The WATO tool then utilizes the combination of expected cMs at that position to create scores for each hypothesis position based on how closely or distantly you match other members of that extended family.

The Shared cM Project, created and recently updated by Blaine Bettinger is used as the foundation for the expected centimorgan (cM) ranges of each relationship. DNAPainter has automated the possible relationships for any given matching cM amount, here.

In the graphic above, you can see that the best hypothesis is #2 with a score of 1, followed by #4 and #5 with scores of 3 each. Hypothesis 1 has a score of 63.8979 and hypothesis 3 has a score of 383.

You’ll need to scroll to the bottom to determine which of the various hypothesis are the more likely.

Autopedigree DNAPainter calculated probability

Using DNAPainter’s WATO implementation requires you to create the pedigree tree to test the hypothesis. The benefit of this is that you can construct the actual pedigree as known based on genealogical research. The down-side, of course, is that you have to do the research to current in each line to be able to create the pedigree accurately, and that’s a long and sometimes difficult manual process.

Genetic Affairs and WATO

Genetic Affairs takes a different approach to WATO. Genetic Affairs removes the need for hand entry by scanning your matches at Ancestry and Family Tree DNA, automatically creating pedigrees based on your matches’ trees. In addition, Genetic Affairs automatically creates multiple hypotheses. You may need to utilize both approaches, meaning Genetic Affairs and DNAPainter, depending on who has tested, tree completeness at the vendors, and other factors.

The great news is that you can import the Genetic Affairs reconstructed trees into DNAPainter’s WATO tool instead of creating the pedigrees from scratch. Of course, Genetic Affairs can only use the trees someone has entered. You, on the other hand, can create a more complete tree at DNAPainter.

Combining the two tools leverages the unique and best features of both.

Genetic Affairs AutoPedigree Options

Recently, Genetic Affairs released AutoPedigree, their new tool that utilizes the reconstructed AutoTrees+WATO to place the tester in the most likely region or locations in the reconstructed tree.

Let’s take a look at an example. I’m using my own kit to see what kind of results and hypotheses exist for where I fit in the tree reconstructed from my matches and their trees.

If you actually do have a tree, the AutoTree portion will simply be counted as an equal tree to everyone else’s trees, but AutoPedigree will ignore your tree, creating hypotheses as if it doesn’t exist. That’s great for adoptees who may have hypothetical trees in progress, because that tree is disregarded.

First, sign on to your account at Genetic Affairs and select the AutoPedigree option for either Ancestry or Family Tree DNA which reconstructs trees and generates hypotheses automatically. For AutoPedigree construction, you cannot combine the results from Ancestry and FamilyTreeDNA like you can when reconstructing trees alone. You’ll need to do an AutoPedigree run for each vendor. The good news is that while Ancestry has more testers and matches, FamilyTreeDNA has many testers stretching back 20 years or so in the past who passed away before testing became available at Ancestry. Often, their testers reach back a generation or two further. You can easily transfer Ancestry (and other) results to Family Tree DNA for free to obtain more matches – step-by-step instructions here.

At Genetic Affairs, you should also consider including half-relations, especially if you are dealing with an unknown parent situation. Selecting half-relationships generates very large trees, so you might want to do the first run without, then a second run with half relationships selected.

AutoPedigree options

Results

I ran the program and opened the resulting email with the zip file. Saving that file automatically unzips for me, displaying the following 5 files and folders.

Autopedigree cluster

Clicking on the AutoCluster HTML link reveals the now-familiar clusters, shown below.

Autopedigree clusters

I have a total of 26 clusters, only partially shown above. My first peach cluster and my 9th blue cluster are huge.

Autopedigree 26 clusters

That’s great news because it means that I have a lot to work with.

autopedigree folder

Next, you’ll want to click to open your AutoPedigree folder.

For each cluster, you’ll have a corresponding AutoPedigree file if an AutoPedigree can be generated from the trees of the people in that cluster.

My first cluster is simply too large to show successfully in blog format, so I’m selecting a smaller cluster, #21, shown below with the red arrow, with only 6 members. Why so small, you ask? In part, because I want to illustrate the fact that you really don’t need a lot of matches for the AutoPedigree tool to be useful.

Autopedigree multiple clusters

Note also that this entire group of clusters (blue through brown) has members in more than one cluster, indicated by the grey cells that mean someone is a member of at least 2 clusters. That tells me that I need to include the information from those clusters too in my analysis. Fortunately, Genetic Affairs realizes that and provides a combined AutoPedigree tool for that as well, which we will cover later in the article. Just note for now that the blue through brown clusters seem to be related to cluster 21.

Let’s look at cluster 21.

autopedigree cluster 21

In the AutoPedigree folder, you’ll see cluster files when there are trees available to create pedigrees for individual clusters. If you’re lucky, you’ll find 2 files for some clusters.

autopedigree ancestors

At the top of each cluster AutoPedigree file, Genetic Affairs shows you the home couple of the descendant group shown in the matches and their corresponding trees.

Autopedigree WATO chart

Image 1 – click to enlarge

I don’t expect you to be able to read everything in the above pedigree chart, just note the matches and arrows.

You can see three of my cousins who match, labeled with “Ancestry.” You also see branches that generate a viable hypothesis. When generating AutoPedigrees, Genetic Affairs truncates any branches that cannot result in a viable hypothesis for placing the tester in a viable location on the tree, so you may not see all matches.

Autopedigree hyp 1

Image 2 – click to enlarge

On the top branch, you’ll see hyp-1-child1 which is the first hypothesis, with the first child. Their child is hyp-2- child2, and their child is hyp-3-child3. The tester (me, in this case) cannot be the persons shown with red flags, called badges, based on how I match other people and other tree information such as birth and death dates.

Think of a stoplight, red=no, green are your best bets and the rest are yellow, meaning maybe. AutoPedigree makes no decisions, only shows you options, and calculated mathematically how probable each location is to be correct.

Remember, these “children,” meaning hypothesis 1-child 1 may or may not have actually existed. These relationships are hypothetical showing you that IF these people existed, where the tester could appear on the tree.

We know that I don’t fit on the branch above hypothesis 1, because I only match the descendant of Adam Lentz at 44.2 cM which is statistically too low for me to also inhabit that branch.

I’ve included half relationships, so we see hyp-7-child1-half too, which is a half-sibling.

The rankings for hypotheses 1, 2, and 7 all have red badges, meaning not possible, so they have a score of 0. Hypothesis 3 and 8 are possible, with a ranking of 16, respectively.

autopedigree my location

Image 3 – click to enlarge

Looking now at the next segment of the tree, you see that based on how I match my Deatsman and Hartman cousins, I can potentially fit in any portion of the tree with green badges (in the red boxes) or yellow badges.

You can also see where I actually fit in the tree. HOWEVER, that placement is from AutoTree, the tree reconstruction portion, based on the fact that I have a tree (or someone has a tree with me in it). My own tree is ignored for hypothesis generation for the AutoPedigree hypothesis generation portion.

Had my first cousins once removed through my grandfather John Ferverda’s brother, Roscoe, tested AND HAD A TREE, there would have been no question where I fit based on how I match them.

autopedigree cousins

As it turns out they did test, but provided no tree meaning that Genetic Affairs had no tree to work with.

Remember that I mentioned that my first cluster was huge. Many more matches mean that Genetic Affairs has more to work with. From that cluster, here’s an example of a hypothesis being accurate.

autopedigree correct

Image 4 – click to enlarge

You can see the hypothetical line beneath my own line, with hypothesis 104, 105, 106, 107, 108. The AutoTree portion of my tree is shown above, with my father and grandparents and my name in the green block. The AutoPedigree portion ignores my own tree, therefore generating the hypothesis that’s where I could fit with a rank of 2. And yes, that’s exactly where I fit in the tree.

In this case, there were some hypotheses ranked at 1, but they were incorrect, so be sure to evaluate all good (green) options, then yellow, in that order.

Genetic Affairs cannot work with 23andMe results for AutoPedigree because 23andMe doesn’t provide or support trees on their site. AutoClusters are integrated at MyHeritage, but not the AutoTree or AutoPedigree functions, and they cannot be run separately.

That leaves Family Tree DNA and Ancestry.

Combined AutoPedigree

After evaluating each of the AutoPedigrees generated for each cluster for which an AutoPedigree can be generated, click on the various cluster combined autopedigrees.

autopedigree combined

You can see that for cluster 1, I have 7 separate AutoPedigrees based on common ancestors that were different. I have 3 AutoPedigrees also for cluster 9, and 2 AutoPedigrees for 15, 21, and 24.

I have no AutoPedigrees for clusters 2, 3, 5, 6, 7, 8, 14, 17, 18, and 22.

Moving to the combined clusters, the numbers of which are NOT correlated to the clusters themselves, Genetic Affairs has searched trees and combined ancestors in various clusters together when common ancestors were found.

Autopedigree multiple clusters

Remember that I asked you to note that the above blue through brown clusters seem to have commonality between the clusters based on grey cell matches who are found in multiple groups? In fact, these people do share common ancestors, with a large combined AutoPedigree being generated from those multiple clusters.

I know you can’t read the tree in the image that follows. I’m only including it so you’ll see the scale of that portion of my tree that can be reconstructed from my matches with hypotheses of where I fit.

autopedigree huge

Image 5 – click to enlarge

These larger combined pedigrees are very useful to tie the clusters together and understand how you match numerous people who descend from the same larger ancestral group, further back in time.

Integration with DNAPainter

autopedigree wato file

Each AutoPedigree file and combined cluster AutoPedigree file in the AutoPedigree folder is provided in WATO format, allowing you to import them into DNAPainter’s WATO tool.

autopedigree dnapainter import

You can manually flesh out the trees based on actual genealogy in WATO at DNAPainter, manually add matches from GEDmatch, 23andMe or MyHeritage or matches from vendors where your matches trees may not exist but you know how your match connects to you.

Your AutoTree Ancestors

But wait, there’s more.

autopedigree ancestors folder

If you click on the Ancestors folder, you’ll see 5 options for tree generations 3-7.

autopedigree ancestor generations

My three-generation auto-generated reconstructed tree looks like this:

autopedigree my tree

Selecting the 5th generation level displays Jacob Lentz and Frederica Ruhle, the couple shown in the AutoCluster 21 and AutoPedigree examples earlier. The color-coding indicates the source of the ancestors in that position.

Autopedigree expanded tree

click to enlarge

You will also note that Genetic Affairs indicates how many matches I have that share this common ancestor along with which clusters to view for matches relevant to specific ancestors. How cool is this?!!

Remember that you can also import the genetic match information for each AutoTree cluster found at Family Tree DNA into DNAPainter to paint those matches on your chromosomes using DNAPainter’s Cluster Auto Painter.

If you run AutoCluster for matches at 23andMe, MyHeritage, or FamilyTreeDNA, all vendors who provide segment information, you can also import that cluster segment information into DNAPainter for chromosome painting.

However, from that list of vendors, you can only generate AutoTrees and AutoPedigrees at Family Tree DNA. Given this, it’s in your best interest for your matches to test at or upload their DNA (plus tree) to Family Tree DNA who supports trees AND provides segment information, both, and where you can run AutoTree and AutoPedigree.

Have you painted your clusters or generated AutoTrees? If you’re an adoptee or looking for an unknown parent or grandparent, the new AutoPedigree function is exactly what you need.

Documentation

Genetic Affairs provides complete instructions for AutoPedigree in this newsletter, along with a user manual here, and the Facebook Genetic Affairs User Group can be found here.

I wrote the introductory article, AutoClustering by Genetic Affairs, here, and Genetic Affairs Reconstructs Trees from Genetic Clusters – Even Without Your Tree or Common Ancestors, here. You can read about DNAPainter, here.

Transfer your DNA file, for free, from Ancestry to Family Tree DNA or MyHeritage, by following the easy instructions, here.

Have fun! Your ancestors are waiting.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

 

DNA Day 2020: 9 Great Ways to Celebrate an Amazing 20-Year Journey

DNA Day 2020.jpg

DNA Day 2020, celebrated officially on April 25th, is a “big deal” anniversary for genetic genealogy.

In the Beginning – Family Tree DNA 

It was 20 years ago that Family Tree DNA was born and began doing business – in collaboration with Dr. Michael Hammer whose lab ran the DNA samples at the University of Arizona.

Bennett Greenspan, a genealogist and entrepreneur teamed up with his business partner, Max Blankfeld, and launched Family Tree DNA, never no idea, of course, what their startup would one day become. That would have required a crystal ball.

Bennett just wanted to solve his own genealogy brick wall and knew that Y DNA had been used to prove, or disprove, a patrilineal genetic relationship between 2 men with the same or similar surnames.

Dr. Hammer, who was weary of calls from genealogists asking for exactly that, said to Bennett, “You know, someone should start a company doing DNA testing for genealogy.” What fateful words those turned out to be.

Family Tree DNA went from being a business run from a cellphone out of the spare bedroom to a multi-national company, now one of four subsidiary businesses under the Gene by Gene umbrella. Gene by Gene owns a 10-story building that includes a world-class genetics lab, the Genomics Research Center, in Houston, Texas.

FTDNA sign crop

Never doubt the ability of passion and persistence.

And never, ever, doubt a genealogist.

That First 12-Marker Test

In March 2000, Family Tree DNA began offering the then-revolutionary 12-marker Y DNA test, the genesis of what would progress to 25, then 37, 67, 111 and now the Big Y-700 test. The Big Y-700 offers more 700+ STR markers along with a research-grade SNP test providing testers with the very latest haplogroup information. This level of sophistication and testing wasn’t even dreamed-of 20 years ago. The human genome hadn’t even been fully sequenced, and wouldn’t be until April 2003. DNA Day is celebrated in April to commemorate that event.

That 12-marker Y DNA test was revolutionary, even though it was a but a baby-step by today’s standards. Consumer Y DNA testing had never been done before, and was the first step in a journey I could never have imagined. The butterfly effect in action.

I didn’t know I had embarked when I pushed off from that shore.😊

That journey of 10,000 miles and 20 years had to start someplace.

The Journey Begins

Twenty years ago, I heard a rumor about a company testing the Y chromosome of men for genealogy. Suspecting that it was a scam, I called Family Tree DNA and spoke with Bennett, expecting something quite different than what transpired.

I discovered a genealogist who understood my problem, explained how the technology had solved the same quandary for him, and how Y DNA testing worked for genealogy. Y DNA could help me solve my problem too, even though I didn’t have a Y chromosome. Bennett even offered to help me if I needed assistance.

An hour later, I had ordered five tests for Estes men who I knew would jump at this opportunity to prove they all descended from a common progenitor.

Along with Bennett, and other genealogists with similar quests, I now had permission to dream – and to push the limits.

I Had a Dream

I dreamed that one day I could prove even more.

Where did my Estes ancestors come from?

Did all of the Estes men in the US descend from one line? Were they from the Eastes line in Kent, England? We would discover that both of the Estes immigrant lines, indeed, did hail from the same ancestor in Deal, England.

Were those much-loved and oft-repeated rumors true?

Before arriving as fishermen on coastal England, did the Estes family actually descend from an illegitimate son of the wealthy House of Este, hailing from Padua, Italy?

The family had spent decades chasing rumors and speculating, even visiting Italy. Finally, science would answer those questions – or at least that potential existed. At long last, we had an amazing opportunity!

Bennett explained that surname projects existed in order to group men who shared a common surname, and hopefully a common ancestor too, together. I formed the Estes DNA Project and mailed those fateful DNA kits to 5 of my male Estes cousins who were genealogists and chomping at the bit to answer those questions.

I began educating myself, adding genetics to my genealogical arsenal.

In future years, I would push, or perhaps “encourage” Bennett to expand testing, harder and faster than he sometimes wanted to be pushed.

I had fallen in love with discovery.

Dr. Luigi Luca Cavalli-Sforza

While we were able to confirm that the Estes men descended from a common ancestor in England, we could not find anyone to test from the d’Este line out of Italy.

I knew that Dr. Luigi Luca Cavalli-Sforza, hailed as the father of population genetics, had done a significant amount of testing in Italy where he had begun his career, before retiring from Stanford in 1992. I had read his books – all of them.

Frustrated, I was hopeful that if I contacted Dr. Cavalli-Sforza, he might be able to compare the Estes DNA to Y DNA samples in his lab that he might have from earlier genetics studies.

If Bennett Greenspan could ask Dr. Michael Hammer at the University of Arizona, I could ask Dr. Luigi Cavalli-Sforza. Made perfect sense to me. The worst that could happen was that he might ignore me or say no. But he didn’t.

Dr. Cavalli-Sforza was very kind and engaged in discussion, explaining that no, he did not know of any males descended from the d’Este line, and no, he did not have a representative sample of Y DNA from that region of Italy. He indicated that I needed far more than he had.

We discussed what level of sampling would be required to create a survey of the Y DNA from the region to see if the Estes Y DNA was even of the type that might be found in Italy. If we were incredibly lucky, he opined, we might, just might, find a match.

In his early 80s at the time, Dr. Cavalli-Sforza was interested, engaging and sharp as a tack.

After several back-and-forth emails, we determined that I didn’t have the resources to recruit and fund the research which would have been significantly more expensive than consumer testing at Family Tree DNA. I had hoped for academic funding.

We both wondered aloud how long it would take, if ever, for there to be enough testing to reasonably compare the Estes Y DNA to other males from Italy in a meaningful way. Neither of us anticipated the DNA testing explosion that would follow.

I didn’t appreciate at the time how fortunate I was to be having these discussions with Dr. Cavalli-Sforza – an iconic giant in this field. We all stand upon his shoulders. Luigi was willing to speculate and be proven wrong, a great academic risk, because he understood that push-and-pull process was the only way to refine our knowledge and discover the truth. He will never know how much our conversations inspired and encouraged me to forge ahead into uncharted waters as well.

Dr. Cavalli-Sforza passed away in 2018 at the age of 96. He altered the trajectory of my life, and if you’re reading this, he changed yours too.

Estes Answers

The answers didn’t arrive all at once. In fact they dribbled in little by little – but they did arrive – which would never have happened if the necessary people hadn’t tested.

The Italy DNA Project didn’t exist twenty years ago. Looking at the results today, it’s evident that the majority of the results are haplogroups J and E, with a smattering of R.

My Estes cousins’ Y DNA doesn’t match anyone remotely connected with Italy, either utilizing STR markers for genealogical matches nor the Big Y-700 matches for deeper haplogroup matching.

That, combined with the fact that the wealthy illegitimate d’Este son in question “disappeared” into Europe, leaving a gap in time before our poor mariner Estes family emerged in the records in England made it extremely unlikely that there is any shred of truth in that rumor.

However, the d’Este male line does still exist in the European Royal House of Hanover, in the person of Ernst August, Prince of Hanover, Duke of Brunswick-Luneburg, husband of Princess Caroline of Monaco. Ernst is a direct descendant of Albert Azzo I d’Este, born about 970, so there’s actually hope that eventually, we will actually know what the real d’Este Y DNA looks like, assuming no biological break in the line. As of 2017, the Hanover line has not been tested.

While Ernst is in poor health today, he does have two sons to carry on the Y DNA genetic line.

9 Great Ways to Celebrate DNA Day

We have so very much to celebrate today. DNA testing for genealogy has become a juggernaut. Twenty years ago, we had to recruit people of the same surname to test or realize our wait might be forever – that’s not the case today.

Today, upwards of 30 million people have tested – and probably significantly more.

The Big Y test, born two decades ago of that 12 marker test, now scans millions of DNA locations and provides testing and matching in both the genealogical and historical timeframes, as does the mitochondrial full sequence test. In February, The Million Mito Project was launched, a science initiative to rewrite the tree of womankind.

We’ve made incredible, undreamed-of strides. We haven’t just “moved the ball,” we kicked it out of the ballpark and around the world.

Here are some fun and beneficial ways you can celebrate DNA Day!

  • If you’ve already tested, or you manage kits for others who have – check your results. You never know what might be waiting for you. Be sure to click on trees, look at locations and do the genealogy work yourself to extend trees back in time if necessary.
  • Upload your tree to DNA testing sites to help others connect to your genealogy. If we all upload trees, everyone has a better and more productive experience. If a match doesn’t have a tree, contact them, ask and explain why it’s beneficial.
  • Join relevant projects at Family Tree DNA (click myProjects on top of your dashboard page), such as surname projects, haplogroup projects, geographic projects (like Italy), and special interest projects (like American Indian.)
  • Purchase a mitochondrial DNA upgrade to the full sequence level for only $79 if you’re already tested at the HVR1 or HVR2 level. Not only does the full sequence test provide you with your full haplogroup and more refined matching, it helps advance science too through The Million Mito Project. Click here to sign in and upgrade by clicking on the shopping cart or the mtFull icon.

dna day 2020 mtdna.png

  • Test your mitochondrial DNA, your mother’s mother’s mother’s direct line for only $139 for the full sequence test. Should I tell you that this test cost $900 when I first ordered mine? $139 is an absolutely amazing price. I wrote step-by-step instructions for how to use your mitochondrial results, here. Click here to order your test.

dna day 70 off.png

Today, we have the opportunity to document history in ways never before possible.

Celebrate DNA Day by finding your ancestors!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Triangulation in Action at DNAPainter

Recently, I published the article, Hitting a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters. The “Home Run” article explains why you want to use a chromosome browser, what you’re seeing and what it means to you.

This article, and the rest in the “Triangulation in Action” series introduces triangulation at FamilyTreeDNA, MyHeritage, 23andMe, GedMatch and DNAPainter, explaining how to use triangulation to confirm descent from a common ancestor. You may want to read the introductory article first.

This first section, “What is Triangulation” is a generic tutorial. If you don’t need the tutorial, skip to the “Transfers” or “Triangulation at DNAPainter” section.

What is Triangulation?

Think of triangulation as a three-legged stool – a triangle. Triangulation requires three things:

  1. At least three (not closely related) people must match
  2. On the same reasonably sized segment of DNA and
  3. Descend from a common ancestor

Triangulation is the foundation of confirming descent from a common ancestor, and thereby assigning a specific segment to that ancestor. Without triangulation, you might just have a match to someone else by chance. You can confirm mathematical triangulation, numbers 1 and 2, above, without knowing the identity of the common ancestor.

Reasonably sized segments are generally considered to be 7cM or above on chromosomes 1-22 and 15cM or above for the X chromosome.

Boundaries

Triangulation means that all three, or more, people much match on a common segment. However, what you’re likely to see is that some people don’t match on the entire segment, meaning more or less than others as demonstrated in the following examples.

FTDNA Triangulation boundaries

You can see that I match 5 different cousins who I know descend from my father’s side on chromosome 15 above. “I” am the grey background against which everyone else is being compared.

I triangulate with these matches in different ways, forming multiple triangulation groups that I’ve discussed individually, below.

Triangulation Group 1

FTDNA triangulation 1

Group 1 – On the left group of matches, above, I triangulate with the blue, red and orange person on the amount of DNA that is common between all of them, shown in the black box. This is triangulation group 1.

Triangulation Group 2

FTDNA triangulation 2

Group 2 – However, if you look just at the blue and orange triangulated matches bracketed in green, I triangulate on slightly more. This group excludes the red person because their beginning point is not the same, or even close. This is triangulation group 2.

Triangulation Group 3 and 4

FTDNA triang 3

Group 3 – In the right group of matches, there are two large triangulation groups. Triangulation group 3 includes the common portions of blue, red, teal and orange matches.

Group 4 – Triangulation group 4 is the skinny group at right and includes the common portion of the blue, teal and dark blue matches.

Triangulation Groups 5 and 6

FTDNA triang 5

Group 5 – There are also two more triangulation groups. The larger green bracketed group includes only the blue and teal people because their end locations are to the right of the end locations of the red and orange matches. This is triangulation group 5.

Group 6 – The smaller green bracketed group includes only the blue and teal person because their start locations are before the dark blue person. This is triangulation group 6.

There’s actually one more triangulation group. Can you see it?

Triangulation Group 7

FTDNA triang 7

Group 7 – The tan group includes the red, teal and orange matches but only the areas where they all overlap. This excludes the top blue match because their start location is different. Triangulation group 7 only extends to the end of the red and orange matches, because those are the same locations, while the teal match extends further to the right. That extension is excluded, of course.

Slight Variations

Matches with only slight start and end differences are probably descended from the same ancestor, but we can’t say that for sure (at this point) so we only include actual mathematically matching segments in a triangulation group.

You can see that triangulation groups often overlap because group members share more or less DNA with each other. Normally we don’t bother to number the groups – we just look at the alignment. I numbered them for illustration purposes.

Shared or In-Common-With Matching

Triangulation is not the same thing as a 3-way shared “in-common-with” match. You may share DNA with those two people, but on entirely different segments from entirely different ancestors. If those other two people match each other, it can be on a segment where you don’t match either of them, and thanks to an ancestor that they share who isn’t in your line at all. Shared matches are a great hint, especially in addition to other information, but shared matches don’t necessarily mean triangulation although it’s a great place to start looking.

I have shared matches where I match one person on my maternal side, one on my paternal side, and they match each other through a completely different ancestor on an entirely different segment. However, we don’t triangulate because we don’t all match each other on the SAME segment of DNA. Yes, it can be confusing.

Just remember, each of your segments, and matches, has its own individual history.

Imputation Can Affect Matching

Over the years the chips on which our DNA is processed at the vendors have changed. Each new generation of chips tests a different number of markers, and sometimes different markers – with the overlaps between the entire suite of chips being less than optimal.

I can verify that most vendors use imputation to level the playing field, and even though two vendors have never verified that fact, I’m relatively certain that they all do. That’s the only way they could match to their own prior “only somewhat compatible” chip versions.

The net-net of this is that you may see some differences in matching segments at different vendors, even when you’re comparing the same people. Imputation generally “fills in the blanks,” but doesn’t create large swatches of non-existent DNA. I wrote about the concept of imputation here.

What I’d like for you to take away from this discussion is to be focused on the big picture – if and how people triangulate which is the function important to genealogy. Not if the start and end segments are exactly the same.

Triangulation Solutions

All vendors except Ancestry offer some type of triangulation.

If you and your Ancestry matches have uploaded to GedMatch, Family Tree DNA or MyHeritage, you can triangulate with them there. Otherwise, you can’t triangulate Ancestry results, so encourage your Ancestry matches to transfer.

I wrote more specifically about triangulation here and here.

Transfer your results in order to obtain the maximum number of matches possible. Every vendor has people in their data base that haven’t tested elsewhere.

Transfers

Have you tested family members, especially everyone in the older generations? You can transfer their kits from Ancestry or 23andMe if they’ve tested there to FamilyTreeDNA, MyHeritage and GedMatch.

Here’s how to transfer:

Now that we’ve reviewed triangulation at each vendor; FamilyTreeDNA, MyHeritage, 23andMe and GedMatch, let’s looking at utilizing triangulation at DNAPainter.

Triangulation at DNAPainter

Once you identify your ancestral segments with matches, or using triangulation, you can paint them on your maternal or paternal chromosomes utilizing DNAPainter.

The great aspect of DNAPainter is that you don’t have to triangulate in order to use DNAPainter. Just identifying matches as maternal or paternal allows you to visually see where on your maternal or paternal chromosomes your matches fall, in essence triangulating groups for you.

DNAPainter assigns colors to each ancestor and shows your match names, which I’ve disabled in this example for privacy. I’ve also optionally painted my ethnicity segments from 23andMe, which I discussed in this article.

Triangulation DNAPainter chr 22.png

Above, on chromosome 22, I’ve painted matches that I know descend from either my mother’s (pink) or father’s (blue) side. At DNAPainter, I DO have both a maternal and paternal chromosome, but they are only useful AFTER I figure out which side of my family a match comes from, or if I paint my Family Matching bucketed maternal and paternal matches in an upload file from Family Tree DNA. I wrote instructions for how to do that, here. The combination of Family Matching and DNAPainter is awesome!

Looking at the graphic above, I know that three separate people who match me descend from the bright pink ancestor on my maternal chromosome; Curtis Lore and his wife. I’ve assigned Curtis the bright pink color, and now every match that I paint assigned to Curtis and his wife is colored pink.

One person descends from Curtis’s parents, Anthony Lore and his wife Rachel Hill who I’ve assigned as green.

Until someone else matches me and descends either from Anthony Lore’s parents or Rachel Hill’s parents on this green segment, I won’t know which of those two ancestors, or both, provided (pieces of) that segment to me.

Anthony Lore and Rachel Hill are my great-great-grandparents and Curtis Lore is their son. Even if I only have 2 matches on this segment, one pink and one green, I would know that the green portion of my maternal chromosome 22 is attributed to Anthony and Rachel which means I inherited that green segment from my pink ancestor, Curtis Lore.

In order to determine the source of the two pink triangulated matches at far right, I’ll need to wait until someone from either Curtis’s line or his wife Nora Kirsch’s line match me on that same segment.

We build these groups of triangulated segments slowly, creating in essence a timeline on our chromosomes. It seems like it’s taking forever, but four generations distance with 2 separate triangulated segments really isn’t bad at all!

At DNAPainter, triangulation is as simple as painting your identified matches, either individually, one by one, or using the group import features. I would only recommend utilizing that feature at Family Tree DNA where their Family Matching software divides your matches into maternal and paternal, allowing DNAPainter to paint them on the correct chromosome. Otherwise, the segments are painted, but you can’t tell which side, maternal or paternal, they come from, so I don’t find painting all matches useful without some way to differentiate between maternal and paternal. After all, the point and power of a chromosome browser is to determine how each person is related, from which side, and from which ancestor.

In the article, DNAPainter Instructions and Resources, I compiled my various articles about the many ways to use DNAPainter, including an introduction.

Transfer

Be sure to test at or transfer to each vendor who provides segment information. Unfortunately, Ancestry does not, but you can transfer your ancestry results to Family Tree DNA, MyHeritage and GedMatch, each of which has unique features that the others don’t have. Transferring and matching is free at each vendor.

I wrote transfer instructions for each vendor, here.

Then, paint and triangulate all in one step at DNAPainter.

Have fun!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Free Webinar: 3 Case Studies and How I Solved Them

I recorded my latest webinar live yesterday for Legacy Family Tree Webinars, but Murphy interfered a bit in the last 5 minutes or so. The great news is that we re-recorded that portion and it’s fixed seamlessly for your (free until March 10th) viewing pleasure.

This webinar utilizes historical and genealogical records, autosomal, Y or mitochondrial DNA, sometimes in combination with each other, to solve various cases. I use the features available at the major vendors plus third-party tools as well – whatever is needed to address the situation at hand.

Which resources I use, when, depends on what I have to work with and where I seek to go – kind of like following clues on a treasure map – except this treasure trove I’m unearthing is my ancestors!

You’re not going to believe how much information, and how many generations were revealed in the mitochondrial DNA case. This was a GOLD MINE!

3 Case Studies and How I Solved Them is free until March 10th by clicking here. This is a wonderful opportunity if you didn’t get to watch live or had viewing issues. Just scroll down to the very first webinar in the library.

Legacy Tree 3 case studies.png

After March 10th, you’ll need a subscription which you can purchase, here by clicking on the subscribe link in the upper right hand corner of the Legacy Family Tree Webinar  page.

Legacy Tree subscribe.png

If you want to order any of the tests mentioned in the webinar, they are available at the following links:

Instructions for transferring from vendors to either FamilyTreeDNA or My Heritage are found here. I recommend transferring to or between both. In other words, make sure you are in all 4 of the major testing databases. You never know where that critically important match is going to be found.

Need an autosomal testing and transfer strategy to minimize costs and mazimize results? Click here.

Enjoy and Share the Love

You can always forward my articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

DNA Testing Sales Decline: Reason and Reasons

If you’re involved in genetic genealogy, you’ve probably noticed the recent announcements by both 23andMe and Ancestry relative to workforce layoffs as a result of declining sales.

Layoffs

In January, 23andMe announced that it was laying off 100 people which equated to 14% of its staff.

Following suit, Ancestry this week announced that they are laying off 100 people, 6% of their work force. They discuss their way forward, here.

One shift of this type can be a blip, but two tends to attract attention because it *could* indicate a trend. Accordingly, several articles have been written about possible reasons why this might be occurring. You can read what TechCrunch says here, Business Insider here, and The Verge, here.

Depending on who you talk to and that person’s perspective, the downturn is being attributed to:

  • Market Saturation
  • No Repeat Sales
  • Privacy Concerns
  • FAD Over

Ok, So What’s Happening?

Between Ancestry and 23andMe alone, more than 26 million DNA tests have been sold, without counting the original DNA testing company, FamilyTreeDNA along with MyHeritage who probably have another 4 or 5 million between them.

Let’s say that’s a total of 30 million people in DNA databases that offer matching. The total population of the US is estimated to be about 329 million, including children, which means that one person in 10 or 11 people in the US has now tested. Of course, DNA testing reaches worldwide, but it’s an interesting comparison indicating how widespread DNA testing has become overall.

This slowing of new sales shouldn’t really surprise anyone. In July 2019, Illumina, the chip maker who supplies equipment and supplies to the majority of the consumer DNA testing industry said that the market was softening after a drop in their 2019 second quarter revenue.

Also last year, Ancestry and MyHeritage both announced health products, a move which would potentially generate a repeat sale from someone who has already tested their DNA for genealogy purposes. I suspected at the time this might be either a pre-emptive strike, or in response to slowed sales.

In November 2019, Family Tree DNA announced an extensive high-end health test through Tovana which tests the entire Exome, the portion of our DNA useful for medical and health analysis.

In a sense, this health focus too is trendy, but moves away from genealogy into an untapped area.

23andMe who, according to their website, has obtained $791 million in venture capital or equity funding has always been focused on medical research. In July of 2018 GlaxoSmithKline infused $300 million into 23andMe in exchange for access to DNA results of their 5 million customers who have opted-in to medical research, according to Genengnews. If you divide the 300 million investment by 5 million opted-in customers, 23andMe received $60 per DNA kit.

That 5 million number is low though, based on other statements by 23andMe which suggests they have 10 million total customers, 80% of which opt-in for medical research. That would be a total of 8 million DNA results available to investors.

Divide $791 million by 8 million kits and 23andMe, over the years, has received roughly $99 for each customer who has opted in to research.

We know who Ancestry has partnered with for research, but not how much Ancestry has received.

There’s very big money, huge money, in collaborating with Big Pharma and others. Given the revenue potential, it’s amazing that the other two vendors, Family Tree DNA and MyHeritage, haven’t followed suit, but they haven’t.

Additionally, in January, 23andMe sold the rights to a new drug it developed in-house as a potential treatment for inflammatory diseases for a reported (but unconfirmed by 23andMe) $5 million.

It’s ironic that two companies who just announced layoffs are the two who have partnered to sell access to their opted-in customers’ DNA results.

My Thoughts

I’ve been asked several times about my thoughts on this shift within the industry. I have refrained from saying much, because I think there has been way too much “hair on fire” clickbait reporting that is fanning the flames of fear, not only in the customer base, but in general.

I am sharing my thoughts, and while they are not entirely positive, in that there is clearly room for improvement, I want to emphasize that I am very upbeat about this industry as a whole, and this article ends very positively with suggestions for exactly that – so please read through.

Regardless of why, fewer new people are testing which of course results in fewer sales, and fewer new matches for us.

My suspicion is that each of the 4 reasons given above is accurate to some extent, and the cumulative effect plus a couple of other factors is the reason we’re seeing the downturn.

Let’s take a look at each one.

Market Saturation

Indeed, we’ve come a very long way from the time when DNA was a verboten topic on the old RootsWeb mailing lists and boards.

Early DNA adopters back then were accused of “cheating,” and worse. Our posts were deleted immediately. How times have changed!

As the technology matured, 23andMe began offering autosomal testing accompanied by cousin matching.

Ancestry initially stepped into the market with Y and mitochondrial DNA testing, but ultimately destroyed that database which included Y and mitochondrial DNA results from Relative Genetics, a company they had previously acquired. People in those databases, as well as who had irreplaceable samples in Sorenson, which Ancestry also purchased and subsequently took offline permanently have never forgotten.

Those genealogists have probably since tested at Ancestry, but they may be more inclined to test the rest of their family at places like Family Tree DNA and MyHeritage who have chromosome browsers and tools that support more serious researchers.

I think a contributing factor is that fewer “serious genealogists” are coming up in the ranks. The perception that all you need to do is enter a couple of generations and click on a few leaves, and you’re “done” misleads people as to the complexity and work involved in genealogical research. Not to mention how many of those hints are inaccurate and require analysis.

Having said that, I view each one of these people who are encouraged for the first time by an ad, even if it is misleading in its simplicity, as a potential candidate. We were all baby genealogists once, and some of us stayed for reasons known only to us. Maybe we have the genealogy gene😊

But yes, I would agree that the majority, by far, of serious genealogists have already tested someplace. What they have not done universally is transferred from 23andMe and Ancestry to the other companies that can help them, such as MyHeritage, FamilyTreeDNA and GEDmatch. If they had, the customer numbers at those companies would be higher. We all need to fish in every pond.

Advertising and Ethnicity

The DNA ads over the last few years have focused almost exclusively on ethnicity – the least reliable aspect of genetic genealogy – but also the “easiest” to understand if a customer takes their ethnicity percentages at face value. And of course, every consumer that purchases a test as a result of one of these ads does exactly that – spits or swabs, mails and opens their results to see what they “are” – full of excited anticipation.

Many people have absolutely no idea there’s more, like cousin matching – and many probably wouldn’t care.

The buying public who purchases due to these ads are clearly not early adopters, and most likely are not genealogists. One can hope that at least a few of them get hooked as a result, or at least enter a minimal tree.

Unfortunately, of the two companies experiencing layoffs, only Ancestry supports trees. Genealogy revolves around trees, pure and simple.

23andMe has literally had years to do so and has refused to natively support trees. Their FamilySearch link is not the same as supporting trees and tree matching. Their attempt at creating a genetic tree is laudable and has potential, but it’s not something that can be translated into a genealogical benefit for most people. I’m guessing that there aren’t any genealogists working for 23andMe, or they aren’t “heard” amid the vervre surrounding medical research.

All told, I’m not surprised that the two companies who are experiencing the layoffs are the two companies whose ads we saw most often focused on ethnicity, especially Ancestry. Who can forget the infamous kilt/leiderhosen ad that Ancestry ran? I still cringe.

Many people who test for ethnicity never sign on again – especially if they are unhappy with the results.

Ancestry and 23andMe spent a lot on ad campaigns, ramped up for the resulting sales, but now the ads are less effective, so not being run as much or at all. Sales are down. Who’s to say which came first, the chicken (fewer ads) or the egg (lower sales.)

This leads us to the next topic, add on sales.

No Repeat Sales

DNA testing, unless you have something else to offer customers is being positioned as a “one and done” sale, meaning that it’s a single purchase with no potential for additional revenue. While that’s offered as a reason for the downturn, it’s not exactly true for DNA test sales.

Ancestry clearly encourages customers to subscribe to their records database by withholding access to some DNA features without a subscription. For Ancestry, DNA is the bait for a yearly repeat sale of a subscription. Genealogists subscribe, of course, but people who aren’t genealogists don’t see the benefit.

Ancestry does not allow transfers into their database, which would provide for additional revenue opportunity. I suspect the reason is twofold. First, they want the direct testing revenue, but perhaps more importantly, in order to sell their customer’s DNA who have agreed to participate in research, or partner with research firms, those customers need to have tested on Ancestry’s custom chip. This holds true for 23andMe as well.

Through the 23andMe financial information in the earlier section, it’s clear that while the consumer only pays a one time fee to test, multiple research companies will pay over and over for access to that compiled consumer information.

Ancestry and 23andMe have the product, your opted-in DNA test that you paid for, and they can sell it over and over again. Hopefully, this revenue stream helps to fund development of genetic genealogical tools.

MyHeritage also provides access to advanced DNA tools by selling a subscription to their records database after a free trial. MyHeritage has integrated their DNA testing with genealogical records to provide their advanced Theories of Family Relativity tool, a huge boon to genealogists.

While Family Tree DNA doesn’t have a genealogical records database like Ancestry and MyHeritage, they provide Y DNA and mitochondrial DNA testing, in addition to the autosomal Family Finder test. If more people tested Y DNA and mitochondrial DNA, more genealogical walls would fall due to the unique inheritance path and the fact that neither Y nor mitochondrial DNA is admixed with DNA from the other parent.

Generally, only genealogists know about and are going to order Y DNA and mtDNA tests, or sponsor others to take them to learn more about their ancestral lines. These tests don’t provide yearly revenue like an ongoing subscription, but at least the fact that Family Tree DNA offers three different tests does provide the potential for at least some additional sales.

Both MyHeritage and FamilyTreeDNA encourage uploads, and neither sell, lease or share your DNA for medical testing. You can find upload instructions, here.

In summary of this section, all of the DNA testing companies do have some sort of additional (potential) revenue stream from DNA testing, so it’s not exactly “one and done.”

Health Testing Products

As for health testing, 23andMe has always offered some level of health information for their customers. Health and research has always been their primary focus. Health and genealogy was originally bundled into one test. Today, DNA ancestry tests with the health option at 23andMe cost more than a genealogy-only test and are two separate products.

MyHeritage also offers a genealogy only DNA test and a genealogy plus health DNA test.

In 2019, both Ancestry and MyHeritage added health testing to their menu as upgrades for existing customers.

In November 2019, FamilyTreeDNA announced an alliance with Tovana for their customers to order a full exome grade medical test and accompanying report. I recently received mine and am still reviewing the results – they are extensive.

It’s clear that all four companies see at least some level of consumer interest in health and traits as a lucrative next step.

Medical Research and DNA Sales

Both Ancestry and 23andMe are pursuing and have invested in relationships with research institutions or Big Pharma. I have concerns with how this is handled. You may not.

I’m supportive of medical research, but I’m concerned that most people have no idea of the magnitude and scope of the contracts between Ancestry and 23andMe with Big Pharma and others, in part, because the details are not public. Customers may also not be aware of exactly what they are opting in to, what it means or where their DNA/DNA results are going.

As a consumer, I want to know where my DNA is, who is using it, and for what purpose. I don’t want my DNA to wind up being used for a nefarious purpose or something I don’t approve of. Think Uighurs in China by way of example. BGI Genetics, headquartered in China but with an Americas division and facilities in Silicon Valley has been a major research institute for years. I want to know what my DNA is being used for, and by whom. The fact that the companies won’t provide their customers with that information makes me makes me immediately wonder why not.

I would like to be able to opt-in for specific studies, not blindly for every use that is profitable to the company involved, all without my knowledge. No blank checks. For example, I opted out of 23andMe research when they patented the technology for designer babies.

Furthermore, I feel that if someone is going to profit from my DNA, it should be me since I paid for the sequencing. At minimum, a person whose DNA is used in these studies should receive some guarantee that they will be provided with any drug in which their DNA is used for development, in particular if their insurance doesn’t pay and they cannot afford the drug.

Drug prices have risen exponentially in the US recently, with many people no longer able to afford their medications. For example, the price of insulin has tripled over the last decade, causing people to ration or cut back on their insulin, if not go without altogether. It would be the greatest of ironies if the very people whose DNA was sold and used to create a drug had no access to it.

Of course, Ancestry and 23andMe are not required to inform consumers of which studies their DNA or DNA results are used for, so we don’t know. Always read all of the terms and conditions, and all links when authorizing anything.

Both companies indicate that your DNA results are anonymized before being shared, but we now know that’s not really possible anymore, because it’s relatively easy to re-identify someone. This is exactly how adoptees identify their biological parents through genetic matches. Dr. Yaniv Erlich reported in the journal Science November 2018 that more than 60% of Europeans could be reidentified through a genealogy database of only 1.28 million individuals.

I think greater transparency and a change in policy favoring the consumer would go a long way to instilling more confidence in the outside research relationships that both Ancestry and 23andMe pursue and maintain. It would probably increase their participation level as well if people could select the research initiatives to which they want to contribute their DNA.

Privacy Concerns

The news has been full of articles about genetic privacy, especially in the months since the Golden State Killer case was solved. That was only April 2018, but it seems like eons ago.

Unfortunately, much of what has been widely reported is inaccurate. For example, no company has ever thrown the data base open for the FBI or anyone to rummage through like a closet full of clothes. However, headlines and commentary like that attract outrage and hundreds of thousands of clicks. In the news and media industry, “it’s all about eyeballs.”

In one case, an article I interviewed for extensively in an educational capacity was written accurately, but the headline was awful. The journalist in question replied that the editors write the headlines, not the reporters.

One instance of this type of issue would be pretty insignificant, but the news in this vein hasn’t abated, always simmering just below the surface waiting for something to fan the flames. Outrage sells.

For the most part, those within the genealogy community at least attempt to sort out what is accurate reporting and what is not, but those people are the ones who have already tested.

People outside the genealogy community just know that they’ve now seen repeated headlines reporting that their genetic privacy either has been, could be or might be breached, and they are suspicious and leery. I would be too. They have no idea what that actually means, what is actually occurring, where, or that they are probably far more at risk on social media sites.

These people are not genealogists, and now they look at ads and think to themselves, “yes, I’d like to do that, but…”

And they never go any further.

People are frightened and simply disconnect from the topic – without testing.

If, as a consumer, you see several articles or posts saying that <fill in car model> is really bad, when you consider a purchase, even if you initially like that model, you’ll remember all of those negative messages. You may never realize that the source was the competition which would cause you to interpret those negative comments in a completely different light.

I think that some of the well-intentioned statements made by companies to reassure their existing and potential customers have actually done more harm than good by reinforcing that there’s a widespread issue. “You’re safe with us” can easily be interpreted as, “there’s something to be afraid of.”

Added to that is the sensitive topic of adoptee and unknown parent searches.

Reunion stories are wonderfully touching, and we all love them, but you seldom see the other side of the coin. Not every story has a happy ending, and many don’t. Not every parent wants to be found for a variety of reasons. If you’re the child and don’t want to find your parents, don’t test, but it doesn’t work the other way around. A parent can often be identified by their relatives’ DNA matches to their child.

While most news coverage reflects positive adoptee reunion outcomes, that’s not universal, and almost every family has a few lurking skeletons. People know that. Some people are fearful of what they might discover about themselves or family members and are correspondingly resistant to DNA testing. Realizing you might discover that your father isn’t your biological father if you DNA test gives people pause. It’s a devastating discovery and some folks decide they’d rather not take that chance, even though they believe it’s not possible.

The genealogical search techniques for identifying unknown parents or close relatives and the technique used by law enforcement to identify unknown people, either bodies or perpetrators is exactly the same. If you are in one of the databases, who you match can provide a very big hint to someone hunting for the identify of an unknown person.

People who are not genealogists, adoptees or parents seeking to find children placed for adoption may be becoming less comfortable with this idea in general.

Of course, the ability for law enforcement to upload kits to GedMatch/Verogen and Family Tree DNA, under specific controlled conditions, has itself been an explosive and divisive topic within and outside of the genealogy community since April 2018.

These law enforcement kits are either cold case remains of victims, known as “Does,” or body fluids from the scenes of violent crimes, such as rape, murder and potentially child abduction and aggravated assault. To date, since the Golden State Killer identification, numerous cases have produced a “solve.” ISOGG, a volunteer organization, maintains a page of known cases solved, here.

GEDmatch encourages people to opt-in for law-enforcement matching, meaning that their kit can be seen as a match to kits uploaded by law enforcement agencies or companies working on behalf of law enforcement agencies. If a customer doesn’t opt-in, their kit can’t be seen as a match to a law enforcement kit.

Family Tree DNA initially opted-out all EU kits from law enforcement matching, due to GDPR, and provides the option for their customers to opt-out of law-enforcement matching.

Neither MyHeritage, Ancestry nor 23andMe cooperate with law enforcment under any circumstances and have stated that they will actively resist all subpoenaes in court.

ISOGG provides a FAQ on Investigative Genetic Genealogy, here.

The two sides of the argument have rather publicly waged war on each other in an ongoing battle to convince people of the merits of their side of the equation, including working with news organizations.

Unfortunately, this topic is akin to arguing over politics. No one changes their mind, and everyone winds up mad.

Notice I’m not linking any articles here, not even my own. I do not want to fan these flames, but I would be remiss if I didn’t mention that the topic of law enforcement usage itself, the on-going public genetic genealogy community war and resulting media coverage together have very probably contributed to the lagging sales. I’d also be remiss if I didn’t mention that while a great division of opinion exists, and many people are opposed, there are also many people who are extremely supportive.

All of this, combined, intentionally or not, has introduced FUD, fear, uncertainty and doubt – a very old disinformation “sales technique.”

In a sense, for consumers, this has been like watching pigs mud-wrestle.

As my dad used to say, “Never mud-wrestle with a pig. The pig enjoys it, you get muddy and the spectators can’t tell the difference.” The spectators in this case vote with their lack of spending and no one is a winner.

DNA Testing Was A FAD

Another theory is that genealogy DNA testing was just a FAD whose time has come and gone. I think the FAD was ethnicity testing, and that chicken has come home to roost.

Both 23andMe and Ancestry clearly geared up for testers attracted by their very successful ads. I was just recently on a cruise, and multiple times I heard people at another table discussing their ethnicity results from some unnamed company. They introduced the topic by saying, “I did my DNA.”

The discussion was almost always the same. Someone said that they thought their ethnicity was pretty accurate, someone else said theirs was awful, and the discussion went from there. Not one time did anyone ever mention a company name, DNA matching or any other functionality. I’m not even sure they understood there are different DNA testing companies.

If I was a novice listening-in, based on that discussion, I would have learned to doubt the accuracy of “doing my DNA.”

If most of the people who purchased ethnicity tests understood in advance that ethnicity testing truly is “just an estimate,” they probably wouldn’t have purchased in the first place. If they understood the limitations and had properly set expectations, perhaps they would not have been as unhappy and disenchanted with their results. I realize that’s not very good marketing, but I think that chicken coming home to roost is a very big part of what we’re seeing now.

The media has played this up too, with stories about how the ethnicity of identical twins doesn’t match. If people bother to read more than the headline, and IF it’s a reasonably accurate article, they’ll come to understand why and how that might occur. If not, what they’ll take away is that DNA testing is wrong and unreliable. So don’t bother.

Furthermore, most people don’t understand that ethnicity testing and cousin matching are two entirely different aspects of a DNA test. The “accuracy” of ethnicity is not related to the accuracy of cousin matching, but once someone questions the credibility of DNA testing – their lack of confidence is universal.

I would agree, the FAD is over – meaning lots of people testing primarily for ethnicity. I think the marketing challenge going forward is to show people that DNA testing can be useful for other things – and to make that easy.

Ethnicity was the low hanging fruit and it’s been picked.

Slowed Growth – Not Dead in the Water

The rate of growth has slowed. This does not by any stretch of the imagination mean that genetic genealogy or DNA testing is dead in the water. DNA fishes for us 365x24x7.

For example, just today, I received a message from 23andMe that 75 new relatives have joined 23andMe. I also received match notifications from Family Tree DNA and MyHeritage.  Hey – calorie-free treats!!!

These new matches are nothing to sneeze at. I remember when I was thrilled over ONE new match.

I have well over 100,000 matches if you combine my matches at the four vendors.

Without advanced tools like triangulation, Phased Family Matching, Theories of Family Relativity, ThruLines, DNAPainter, DNAgedcom and Genetic Affairs, I’d have absolutely no prayer of grouping and processing this number of matches for genealogy.

Even if I received no new matches for the next year, I’d still not be finished analyzing the autosomal matches I already have.

This Too Shall Pass

At least I hope it will.

I think people will still test, but the market has corrected. This level of testing is probably the “new normal.”

Neither Ancestry or 23andMe are spending the big ad dollars – or at least not as big.

In order for DNA testing companies to entice customers into purchasing subscriptions or add-on products, tools need to be developed or enhanced that encourage customers to return to the site over and over. This could come in the form of additional results or functionality calculated on their behalf.

That “on their behalf” point is important. Vendors need to focus on making DNA fun, and productive, not work. New tools, especially in the last year or two, have taken a big step in that direction. Make the customer wonder every day what gift is waiting for him or her that wasn’t there yesterday. Make DNA useful and fun!

I would call this “DNA crack.” 😊

Cooking Up DNA Crack!

In order to assist the vendors, I’ve compiled one general suggestion plus what I would consider to be the “Big 3 Wish List” for each of their DNA products in term of features or improvements that would encourage customers to either use or return to their sites. (You’re welcome.)

I don’t want this to appear negative, so I’ve also included the things I like most about each vendor.

If you have something to add, please feel free to comment in a positive fashion.

Family Tree DNA

I Love: Y and Mitochondrial DNA, Phased Family Matching, and DNA projects

General Suggestion – Fix chronic site loading issues which discourage customers

  • Tree Matching – fix the current issues with trees and implement tree matching for DNA matches
  • Triangulation – including by match group and segment
  • Clustering – some form of genetic networks

MyHeritage

I Love: Theories of Family Relativity, triangulation, wide variety of filters, SmartMatches and Record Matches

General – Clarify confusing subscription options in comparative grid format

  • Triangulation by group and segment
  • View DNA matches by ancestor
  • Improved Ethnicity

Ancestry

I Love: Database size, ThruLines, record and DNA hints (green leaves)

General – Focus on the customers’ needs and repeated requests

  • Accept uploads
  • Chromosome Browser (yes, I know this is a dead horse, but that doesn’t change the need)
  • Triangulation (dead horse’s brother)

23andMe

I Love: Triangulation, Ethnicity quality, ethnicity segments identified, painted and available for download

General – Focus on genealogy tools if you’re going to sell a genealogy test

  • Implement individual customer trees – not Family Search
  • Remove 2000 match limit (which is functionally less after 23andMe hides the people not opted into matching)
  • DNA + Tree Matching

Summary

In summary, we, as consumers need to maintain our composure, assuring others that no one’s hair is on fire and the sky really is not falling. We need to calmly educate as opposed to frighten.

Just the facts.

Other approaches don’t serve us in the end. Frightening people away may “win” the argumentative battle of the day, but we all lose the war if people are no longer willing to test.

This is much like a lifeboat – we all succeed together, or we all lose.

Everybody row!

As genealogists, we need to:

  • Focus on verifying ancestors and solving genealogy challenges
  • Sharing those victories with others, including family members
  • Encourage our relatives to test, and transfer so that their testing investment provides as much benefit as possible
  • Offer to help relatives with the various options on each vendor’s platform
  • Share the joy

People share exciting good news with others, especially on Facebook and social media platforms, and feel personally invested when you share new results with them. Collaboration bonds people.

A positive attitude, balanced perspective and excitement about common ancestors goes a very, very long was in terms of encouraging others.

We have more matches now than ever before, along with more and better tools. Matches are still rolling in, every single day.

New announcements are expected at Rootstech in a couple short weeks.

There’s so much opportunity and work to do.

The sky is not falling. It rained a bit.

The seas may have been stormy, but as a genealogist, the sun is out and a rising tide lifts us all.

Rising tide

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

DNAPainter: Painting “Bucketed” Family Tree DNA Maternal and Paternal Family Finder Matches in One Fell Swoop

DNAPainter has done it again, providing genealogists with a wonderful tool that facilitates separating your matches into maternal and paternal categories so that they can be painted on the proper chromosome – in one fell swoop no less.

Of course, the entire purpose of painting your chromosomes is to identify segments that descend from specific ancestors in order to push those lines back further in time genealogically. Identifying segments, confirming and breaking down brick walls is the name of the game.

DNA Painter New Import Tool

The new DNAPainter tool relies on Family Tree DNA’s Phased Family Matching which assigns your matches to maternal and paternal buckets. On your match list, at the top, you’ll see the following which indicates how many matches you have in total and how many people are assigned to each bucket.

DNAPainter FF import.png

Note that these are individual matches, not total matching segments – that number would be higher.

In order for Family Tree DNA to create bucketed matches for you, you’ll need to:

  • Either create a tree or upload a GEDCOM file
  • Attach your DNA kit to “you” in your tree
  • Attach all 4th cousins and closer with whom you match to their proper location on your tree

Yes, it appears that Family Tree DNA is now using 4th cousins, not just third cousins and closer, which provides for additional bucketed matches.

How reliable is bucketing?

Quite. Occasionally one of two issues arise which becomes evident if you actually compare the matches’ segments to the parent with whom they are bucketed:

  • One or more of your matches’ segments do match you and your parent, but additionally, one or more segments match you, but not your parent
  • The X chromosome is particularly susceptible to this issue, especially with lower cM matches
  • Occasionally, a match that is large enough to be bucketed isn’t, likely because no known, linked cousin shares that segment

Getting Started

Get started by creating or uploading your tree at Family Tree DNA.

DNAPainter mytree.png

After uploading your GEDCOM file or creating your tree at Family Tree DNA, click on the “matches” icon at the top of the tree to link yourself and your relatives to their proper places on your tree. Your matches will show in the box below the helix icon.

DNAPainter FF matches.png

I created an example “twin” for myself to use for teaching purposes by uploading a file from Ancestry, so I’m going to attach that person to my tree as my “Evil Twin.” (Under normal circumstances, I do not recommend uploading duplicate files of anyone.)

DNAPainter FF matches link.png

Just drag and drop the person on your match list on top of their place on the tree.

DNAPainter Ff sister.png

Here I am as my sister, Example Adoptee.

I’ve wished for a very, very long time that there was a way to obtain a list of segment matches sorted by maternal and paternal bucket without having to perform spreadsheet gymnastics, and now there is, at DNAPainter.

DNAPainter does the heavy-lifting so you don’t have to.

What Does DNAPainter Do with Bucketed Matches?

When you are finished uploading two files at DNAPainter, you’ll have:

  • Maternal groups of triangulated matches
  • Paternal groups of triangulated matches
  • Matches that could not be assigned based on the bucketing. Some (but not all) of these matches will be identical by chance – typically roughly 15-20% of your match list. You can read about identical by chance, here.

I’ll walk you through the painting process step by step.

First, you need to be sure your relatives are connected to your tree at Family Tree DNA so that you have matches assigned to your maternal and paternal buckets. The more relatives you connect, per the instructions in the previous section, the more matching people will be able to be placed into maternal or paternal buckets.

Painting Bucketed Matches at DNAPainter

I wrote basic articles about how to use DNAPainter here. If you’re unfamiliar with how to use DNAPainter or it’s new to you, now would be a good time to read those articles. This next section assumes that you’re using DNAPainter. If not, go ahead, register, and set up a profile. One profile is free for everyone, but multiple profiles require a subscription.

First, make a duplicate of the profile that you’re working with. This DNAPainter upload tool is in beta.

DNAPainter duplicate profile.png

Since I’m teaching and experimenting, I am using a fresh, new profile for this experiment. If it works successfully, I’ll duplicate my working profile, just in case something goes wrong or doesn’t generate the results I expect, and repeat these steps there.

Second, at Family Tree DNA, Download a fresh copy of your complete matching segment file. This “Download Segments” link is found at the top right of the chromosome browser page.

DNAPainter ff download segments.png

Third, download your matches at the bottom left of the actual matches page. This file hold information about your matches, such as which ones are bucketed, but no segment information. That’s in the other file.

DNAPainter csv.png

Name both of these files something you can easily identify and that tells them apart. I called the first one “Segments” in front of the file name and the second one “Matches” in front of the file name.

Fourth, at DNAPainter, you’ll need to import your entire downloaded segment file that you just downloaded from Family Tree DNA. I exclude segments under 7cM because they are about 50% identical by chance.

DNAPainter import instructions

click to enlarge

Select the segment file you just named and click on import.

DNAPainter both.png

At this point, your chromosomes at DNAPainter will look like this, assuming you’re using a new profile with nothing else painted.

Let’s expand chromosome 1 and see what it looks like.

DNAPainter chr 1 both.png

Note that all segments are painted over both chromosomes, meaning both the maternal and paternal copies of chromosome 1, partially shown above, because at this point, DNAPainter can’t tell which people match on the maternal and which people match on the paternal sides. The second “matches” file from Family Tree DNA has not yet been imported into DNAPainter, which tells DNAPainter which matches are on the maternal and which are on the paternal chromosomes.

If you’re not workign with a new profile, then you’ll also see the segments you’ve already painted. DNAPainter attempts to NOT paint segments that appear to have previously been painted.

Fifth, at DNAPainter, click on the “Import mat/pat info from ftDNA” link on the left which will provide you with a page to import the matches file information. This is the file that has maternal and paternal sides specified for bucketed matches. DNAPainter needs both the segment file, which you already imported, and the matches file.

DNAPainter import bucket

click to enlarge

After the second import, the “matches” file, my matches are magically redistributed onto their appropriate chromosomes based on the maternal and paternal bucketing information.

I love this tool!

At this point, you will have three groups of matches, assuming you have people assigned to your maternal and paternal buckets.

  • A “Shared” group for people who are related to both of your parents, or who aren’t designated as a bucketed match to either parent
  • Maternal group (pink chromosome)
  • Paternal group (blue chromosome)

It’s Soup!!!

I’m so excited. Now my matches are divided into maternal and paternal chromosome groups.

DNAPainter import complete.png

Just so you know, I changed the colors of my legend at DNAPainter using “edit group,” because all three groups were shades of pink after the import and I wanted to be able to see the difference clearly.

DNAPainter legend.png

Your Painted Chromosomes

Let’s take a look at what we have.

DNAPainter both, mat, pat.png

There’s still pink showing, meaning undetermined, which gets painted over both the maternal and paternal chromosomes, but there’s also a lot of magenta (maternal) and blue (paternal) showing now too as a result of bucketing.

Let’s look at chromosome 1.

DNAPainter chr 1 all.png

This detail, which is actually a summary, shows that the bucketed maternal (magenta) and paternal (blue) matches have actually covered most of the chromosome. There are still a few areas without coverage, but not many.

For a genealogist, this is beautiful!!!

How many matches were painted?

DNAPainter paternal total.png

DNAPainter maternal total.png

Expanding chromosome 1, and scrolling to the maternal portion, I can now see that I have several painted maternal segments, and almost the entire chromosome is covered.

Here’s the exciting part!

DNAPainter ch1 1 mat expanded.png

I stared the relatives I know, on the painting, above and on the pedigree chart, below. The green group descends through Hiram Ferverda and Eva Miller, the yellow group through Antoine Lore and Rachel Hill. The blue group is Acadian, upstream of Antoine Lore.

DNAPainter maternal pedigree.png

Those ancestors are shown by star color on my pedigree chart.

I can now focus on the genealogies of the other unstarred people to see if their genealogy can push those segments back further in time to older ancestors.

On my Dad’s side, the first part of chromosome 1 is equally as exciting.

DNAPainter chr 1 pat expanded.png

The yellow star only pushed this triangulated group back only to my grandparents, but the green star is from a cousin descended from my great-grandparents. The red star matches are even more exciting, because my common ancestor with Lawson is my brick wall – Marcus Younger and his wife, Susanna, surname unknown, parents of Mary Younger.

DNAPainter paternal pedigree.png

I need to really focus hard on this cluster of 12 people because THEIR common ancestors in their trees may well provide the key I need to push back another generation – through the brick wall. That is, after all, the goal of genetic genealogy.

Woohoooo!

Manual Spreadsheet Compare

Because I decided to torture myself one mid-winter day, and night, I wanted to see how much difference there is between the bucketed matches that I just painted and actual matches that I’ve identified by downloading my parents’ segment match files and mine and comparing them manually against each other. I removed any matches in my file that were not matches to my parent, in addition to me, then painted the rest.

I’ll import the resulting manual spreadsheet into the same experimental DNAPainter profile so we can view matches that were NOT painted previously. DNAPainter does not paint matches previously painted, if it can tell the difference. Since both of these files are from downloads, without the name of the matches being in any way modified, DNAPainter should be able to recognize everyone and only paint new segment matches.

Please note here that the PERSON unquestionably belongs bucketed to the parental side in question, but not all SEGMENTS necessarily match you and your parent. Some will not, and those are the segments that I removed from my spreadsheet.

DNAPainter manual spreadsheet example.png

Here’s a made-up example where I’ve combined my matches and my mother’s matches in one spreadsheet in order to facilitate this comparison. I colored my Mom’s matches green so they are easy to see when comparing to my own, then sorting by the match name.

Person 1 matches me and Mom both, at 10 cM on chromosome 1. Person 1 is assigned to my maternal side due to the matches above 9 cM, the lowest threshold at Family Tree DNA for bucketing.

In this example, we can see that Person 1 matches me and Mom (colored green), both, on the segment on chromosome 1. That match, bracketed by red, is a valid, phased, match and should be painted.

However, Person 1 also matches me, but NOT Mom on chromosome 2. Because Person 1 is bucketed to mother, this segment on chromosome 2 will also be painted to my maternal chromosome 2 using the DNAPainter import. The only way to sort this out is to do the comparison manually.

The same holds true for the X match shown. The two segments shown in red should NOT be painted, but they will be unless you are willing to compare you and your parents’ matches manually, you will just have to evaluate segments individually when you see that you’re working in a cluster where matches have been assigned through the mass import tool.

If you choose to compare the spreadsheets manually to assure that you’re not painting segments like the red ones above, DNAPainter provides instructions for you to create your own mass upload template, which is what I did after removing any segment matches of people that were not “in common” between me and mother on the same chromosomal segment, like the red ones, above.

Please note that if you delete the erroneous segments and later reimport your bucketed matches, they will appear again. I’m more inclined to leave them, making a note.

I did not do a manual comparison of my father’s side of the tree after discovering just how little difference was found on my mother’s side, and how much effort was involved in the manual comparison.

Creating a Mass Upload Template and File

DNAPainter custom mass upload.png

The instructions for creating your own mass upload file are provided by DNAPainter – please follow them exactly.

In my case, after doing the manual spreadsheet compare with my mother, only a total of 18 new segments were imported that were not previously identified by bucketing.

Three of those segments were over 15cM, but the rest were smaller. I expected there would be more. Family Tree DNA is clearly doing a great job with maternal and paternal bucketing assignments, but they can’t do it without known relatives that have also tested and are linked to your tree. The very small discrepancy is likely due to matches with cousins that I have not been able to link on my tree.

The great news is that because DNAPainter recognizes already-painted segments, I can repeat this anytime and just paint the new segments, without worrying about duplicates.

  • The information above pertains to segments that should have been painted, but weren’t.
  • The information below pertains to segments that were painted, but should not have been.

I did not keep track of how many segments I deleted that would have erroneously been painted. There were certainly more than 18, but not an overwhelming number. Enough though to let me know to be careful and confirm the segment match individually before using any of the mass uploaded matches for hypothesis or conclusions.

Given that this experiment went well, I created a copy of my “real” profile in order to do the same import and see what discoveries are waiting!

Before and After

Before I did the imports into my “real” file (after making a copy, of course,) I had painted 82% of my DNA using 1700 segments. Of course, each one of those segments in my original profile is identified with an ancestor, even if they aren’t very far back in time.

Although I didn’t paint matches in common with my mother before this mass import, each of my matches in common with my mother are in common with one or the other of my maternal grandparents – and by using other known matches I can likely push the identity of those segments further back in time.

Status Percent Segments Painted
Before mass Phased Family Match bucketed import 82 1700
After mass Phased Family Match bucketed import 88 7123
After additional manual matches with my mother added 88 7141

While I did receive 18 additional matching segments by utilizing the manually intensive spreadsheet matching and removal process, I did not receive enough more matches to justify the hours and hours of work. I won’t be doing that anymore with Family Tree DNA files since they have so graciously provided bucketing and DNAPainter can leverage that functionality.

Those hours will be much better spent focusing on unraveling the ancestors whose stories are told in clusters of triangulated matches.

I Love The Import Tool, But It’s Not Perfect

Keep in mind that the X chromosome needs a match of approximately twice the size of a regular chromosome to be as reliable. In other words, a 14 cM threshold for the X chromosome is roughly equivalent to a 7 cM match for any other chromosome. Said another way, a 7 cM match on the X is about equal to a 3.5 cM match on any other chromosome.

X matches are not created equal.

The SNP density on the X chromosome is about half that of the other chromosomes, making it virtually impossible to use the same matching criteria. I don’t encourage using matches of less than 500 SNPs unless you know you’re in a triangulated group and WITH at least a few larger, proven matches on that segment of the X chromosome.

Having said that, X matches, due to their unique inheritance path can persist for many generations and be extremely useful. You can read about working with the X chromosome here and here.

I noticed when I was comparing segments in the manual spreadsheet that I had to remove many X matches with people who had identical matches on other chromosomes with me and my mother. In other words, just because they matched my mother and me exactly on one chromosome, that phasing did not, by default, extend to matching on other segments.

I checked my manually curated file and discovered that I had a total of seven X matches that should have been, and were, painted because they matched me and Mom both.

DNAPainter X spreadsheet example.png

However, there were many that didn’t match me and Mom both, matching only me, that were painted because that person was bucketed (assigned) to my maternal side because a different segment phased to mother correctly.

On the X chromosome, here’s what happened.

DNAPainter maternal X.png

You can see that a lot more than 7 bright red matches were painted – 26 more to be exact. That’s because if an individual is bucketed on your maternal or paternal side, it’s presumed that all of the matching segments come from the same ancestor and are legitimate, meaning identical by descent and not by chance. They aren’t. Every single segment has an inheritance path and story of its own – and just because one segment triangulates does NOT mean that other segments that match that person will triangulate as well.

The X chromosome is the worst case scenario of course, because these 7 cM segments are actually as reliable as roughly 3.5 cM segments on any other chromosome, which is to say that more than 50% of them will be incorrect. However, some will be accurate and those will match me and mother both. 21% of the X matches to people who phased and triangulated on other chromosomes were accurate – 79% were not. Thankfully, we have phasing, bucketing and tools like this to be able to tell the difference so we can utilize the 21% that are accurate. No one wants to throw the baby out with the bath water, nor do we want to chase after phantoms.

Keep in mind that Phased Family Matching, like any other tool, is just that, a tool and needs some level of critical analysis.

Every Segment Has Its Own Story

We know that every single DNA segment has an independent inheritance path and story of its own. (Yes, I’ve said that several time now because it’s critically important so that you don’t wind up barking up the wrong tree, literally, pardon the pun.)

In the graphic above of my painted X chromosome matches, only the six matches with green stars are on the hand-curated match list. One had already been painted previously. The balance of the bright red matches were a part of the mass import and need to be deleted. Additionally, one of the accurate matches did not upload for some reason, so I’ll add that one manually.

I suggest that you go ahead and paint your bucketed segments, but understand that you may have a red herring or two in your crop of painted segment matches.

As you begin to work with these clusters of matches, check your matching segments with your parents (or other family members who were used in bucketing) and make sure that all the segments that have been painted by bulk upload actually match on all of the same segments.

If you have a parent that tested, there is no need to see if you and your match match other relatives on that same side. If your match does not match you and your parent on some significant overlapping portion of that same segment, the match is invalid. DNA does not “skip generations.”

If you don’t have a parent that has tested, your known relatives are your salvation, and the key to bucketed matches.

The great news is that you can easily see that a bulk match was painted from the coloring of the batch import. As you discover the relevant genealogy and confirm that all segments actually match your parent (or another family member, if you don’t have parents to test,) move the matching person to the appropriately colored ancestral group.

I further recommend that you hand curate the X chromosome using a spreadsheet. The nature of the X makes depending on phased matching too risky, especially with a tool like DNAPainter that can’t differentiate between a legitimate and non-legitimate match. The X chromosome matches are extraordinarily valuable because they can be useful in ways that other chromosomes can’t be due to the X’s unique inheritance path.

What About You?

If you don’t have your DNA at Family Tree DNA and you have tested elsewhere, you can transfer your DNA file for free, allowing you to see your matches and use many of the Family Tree DNA tools. However, to access the chromosome browser, which you’ll need for DNA painting, you’ll need to purchase the unlock for $19, but that’s still a lot less than retesting.

Here are transfer instructions for transferring your DNA file from 23andMe, Ancestry or MyHeritage.

If you have not purchased a Family Finder test at Family Tree DNA and don’t have a DNA file to transfer, you can order a test here.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items