How Many Men Discover or Confirm Their Surname with Y DNA Testing?

About 15 years ago, Bennett Greenspan, founder of FamilyTreeDNA, at one of the early conferences said that about 30% of men who take a Y DNA test find a strong surname match. That number has increased now to nearly 100%, or “almost everyone.”

Exceptions

Of course, there are exceptions that fall into a number of categories:

  • Jewish families from regions where surnames weren’t adopted until in the 1800s.
  • Jewish families whose direct paternal line suffered dramatic losses during the Holocaust.
  • Dutch families who did not adopt surnames until Napoleon’s edict in 1811.
  • Cultures who have or recently had patronymic surnames that change every generation.
  • Men whose DNA is either extremely rare (and no relatives have tested) or are from under-sampled regions of the world.
  • Males whose paternal line may be recent immigrants and people in the homeland don’t participate in genealogy or don’t DNA test.
  • Males whose ancestors were enslaved. In the US, families adopted surnames after the Civil War ended slavery in the 1860s, so Y DNA testing plus autosomal is critically important to reunite these families. Please note that the Y DNA haplogroup, even an estimate provided with STR testing, will indicate whether the direct paternal lineage is European, African, Native American/Asian – all of which are found in the descendants of men who were enslaved. The Big Y-700 provides significantly more information along with placement on the haplotree.

I started writing Y DNA reports for clients in 2004 (although I no longer accept private clients) and at that time, often saw men with no matches. Today, a man with no matches is extremely unusual, and most have strong surname matches. As more men test, everyone will have more matches, of course, and the more we can learn about our ancestors.

What do matches reveal?

Matches Reveal

In essence, matches to other men with common surnames do one of two things:

  1. Confirm the surname lineage, at least to the common ancestor.
  2. Identify the surname where the tester is likely to find his ancestral roots.
  3. Provide perspective further back in time answering the question, “Where did I come from?”

Of course, this second point is crucial for males searching for the identity of their paternal lines.

While time has moved on, the number of testers in the database has dramatically increased, and almost everyone has relevant matches now – I still see the 30% metric oft-repeated. Let’s put this to the test and see what we find.

Setting Up the Experiment

I selected 20 men who have taken the Big Y test whose kits I manage or who were randomly selected from projects that I manage and who have given permission for their results to be published on public project pages.

I recorded results for the tester’s own or very similar surnames. Slightly different but recognizable spellings are counted as the same name.

I included matches at 12 markers, 111 markers, and the Big Y results. Men who purchase or upgrade to the Big Y-700 test will have all 111 STR panel markers included. Obviously, individual testers should check their results at every level.

Big Y testers actually receive 700+ STR markers, but can only easily filter for matches at 111 (or below), so that’s the number I used. Plus, males can purchase  37 and 111 panels without taking the Big Y test, so this comparative information will be valid for all Y DNA testers.

Click to enlarge image.

Additionally, I used the Advanced Matches feature to check for people who match someone on BOTH the Y DNA and their Family Finder autosomal test. Of course, this doesn’t guarantee that the reason they match on both tests is because of their common surname line – but it’s a hint and may be very useful, especially with closer Family Finder matches.

I intentionally included some men with recent European heritage who are unlikely to have matches simply because their families have been in colonial America since the 1600s or 1700s and their ancestor had a dozen sons who each had a dozen sons.

Why Did I Include 12 Marker Results?

You may wonder why I included 12 marker matches since that test is no longer sold individually and is the least granular. Truthfully, it’s too often deemed useless and overlooked.

Hear me out on this one😊

Many of the men who originally took the 12 and 25 marker tests, before the higher panels (37, 67, 111, and Big Y) were available are deceased now. Twenty years is a generation, and FamilyTreeDNA began testing the Y chromosome in the year 2000.

While these low marker tests alone are not conclusive, with additional information, such as trees, common ancestors, and other testers who match, they form pieces of evidence that can be invaluable. Some have also taken an autosomal test which can be especially important, given that they are another generation or two (or three) further back in time than the people testing today.

You won’t see these men as matches at 37, 67 or 111 markers, because they are deceased and can’t upgrade, but they may provide the nugget of information you need by matching at 12 or 25 markers. You’ll need to evaluate that match in light of other information. I’ll review that in the next two sections.

20 Men

If you’re a man or can find a male to test for each of your genealogy lines, the Y DNA is the fastest, most reliable way to identify an ancestral surname – not just in your father’s generation, but moving back in time.

Of the 20 men selected, all men had matches to their surname. However, one Smith man, #18, had a unique situation that might be very genealogically relevant.

I’ll discuss each match briefly with some commentary below the chart.

Surname Match Name 12 Marker 111 Marker Big Y Advanced – 12 + FF Both
1 Howery Howery 9 of 20 2 of 2 0 (none tested) 1
2 Graves Graves 8 of 51 2 of 8 1 Graves + others 1 – different surname
3 Perkins Perkins/McDonald 16 of 1762 1 of 63, many McDonalds 0 Perkins (no testers) but several McD names 8 – 2 McDonald
4 Napier Napier 19 of 19,217 2 of 13 2 Napier + others 1 + many others
5 Rice Rice 45 of 58 14 of 19 7 of 10 1
6 Rader Rader  13 of 18,576 7 of 7 7 3
7 Estes Estes 69 of 502 21 of 24 9 of 10 2 + 4 different surname
8 Campbell Campbell 178 of 369 61 of 103 7 of 10 4 of 5
9 Lentz Lentz 1 of 1 0 of 1 1 different name, no other Lentz Big Y testers 0
10 Bonnevie Bonnevie 1 of 1 (tested to 37) 0 0 no test
11 Vannoy Vannoy 7 of 49 2 of 4 0 of 1 0
12 Lore/Lord Lore/Lord 3 of 7 1 of 3 1 of 1 0
13 Clarkson/Claxton Clarkson/Claxton 19 of 540 1 of 1 0 of 9 (No Big Y testers) 0 of 3
14 Muncey Muncy/Muncey 9 of 155 7 of 16 1 of 4 1
15 Miller Miller 5 of 6 2 at 67, no 111 testers 0 – no Miller match testers 1 of 2
16 Speak(s) Speak(s) 9 of 9 21 of 51 4 of 17 0
17 Smith Smith/Jennings 2 of 16, 9 Jennings 0 of 2 (Jennings) 1 Jennings of 3 1 Jennings
18 Bolton Bolton 8 of 1750 2 of 2 0 of 28 0 of 12
19 Crumley Crumley 10 of 79 7 of 93 3 of 127 0 of 2
20 Harrell Harrell 81 of 17,638 3 of 7 2 of 2 0 of 119

Messages Revealed in the Results

Let’s briefly review the information we’ve discovered and extrapolate from each of these 20 matches. Analysis is the key to success.

  1. The Howery surname is rather unusual. This man had only two 111 marker matches and both were to men of the same surname. Half of his 12 marker matches are the same surname. None of his matches had taken the Big Y test, so he has no same-surname or other surname matches there. He did match one of his Y DNA matches on the Family Finder test though. This is high-quality confirmation that Howery is indeed the biological ancestral surname and our tester can set about finding and confirming his common ancestors with his matches.
  2. The Graves male had several 12-marker matches, but many 12-marker matches have not tested at the 111 marker level. He matches one Graves male on the Big Y plus some men with other surnames. The Big Y reaches back further in time, so these matches may reflect common ancestors before the advent of surnames.
  3. Our Perkins male has very interesting matches. He does have both 12 and 111 Perkins matches, but he also had a LOT of McDonald matches. More McDonald matches than Perkins matches. This suggests that indeed, his ancestors were Perkins, at least back to the earliest known ancestor (EKA), but before that, he may well be a member of the McDonald Y DNA clan. There were no Perkins Big Y testers, but if I were him, I’d ask my Perkins matches to upgrade.
  4. I can tell by looking at the huge number of 12 marker matches for our Napier man that he is haplogroup R, the most common in Europe, with an EXTREMELY common 12 marker haplotype. Note how dramatically the number of 111 marker matches drops – from 19,000+ to 13 – a perfect example of why we suggest men upgrade to at least 111 markers to refine their matches. Both of his 111 marker Napier matches have upgraded to the Big Y, and he matches them there as well. He does match one Napier on both the 12 marker test and Family Finder Advanced Matching – but he also matches MANY other men. This is because of the extremely high number of 12 marker matches. In his case, I would only use Y DNA marker panels higher than 12 markers in the Advanced Matching.
  5. Lots of Rice testers from this line confirm a common ancestor. I wonder if there is a Rice male from someplace overseas who has tested. If so, this might be that “jump the pond” event that genealogists who have European ancestors who are found in colonial America seek.
  6. Our Rader tester also has many 12 marker matches, but his only matches at 111 and on the Big Y are his Rader kinsmen. No doubt about that surname whatsoever.
  7. My Estes line has several 12 marker matches, but that gets slimmed right down at 111 markers. Using the Big Y test, we further divided those branches of Estes men. I literally could not have sorted out who was descended from whom without the Big Y test results. Way too many Johns, Williams, and Elishas in burned counties in Virginia.
  8. Our Campbell tester is unquestionably confirmed to be descended from the Clan Campbell line from Inverary, Scotland. However, the challenge in this family is which Campbell male they descend from in Virginia. The Big Y-700 test has narrowed the possibilities significantly, and the tester is currently in the process of attempting to convince his three closest Y STR 111 matches to take the Big Y test. Yes, he has offered to pay as well. Hey, in genealogy, you do what you need to do. Y DNA is likely the only way this puzzle from the 1700s will ever be unraveled.
  9. The Lentz line is German with rare DNA, but they do have a confirming match to another Lentz male.
  10. Bonnievie spelled various ways is French and has one 12 marker match who only tested to 37 markers. He has no matches above that. Not only is his Y DNA quite rare, DNA testing is illegal in France which makes additional testers few and far between. Unfortunately, his one match has not taken a Family Finder test either.
  11. Several men from the Vannoy line have tested and a Big Y test match to another man confirmed that the ancestral line is Dutch – not French as was speculated for decades. The STR tests have revealed Vannoy lines, by similar spellings, from lines we didn’t know existed.
  12. Lore or Lord is a rare Acadian family surname. Our tester does have matches to other Lore/Lord men, which confirms the line to the ancestor who arrived in Acadia in the early 1600s, but future testers will be needed before we can confirm his origins to either France or as one of the English soldiers who served at the fort.
  13. The Clarkson/Claxton testers confirm two lines, one spelled each way, from Tennessee and North Carolina line to a common ancestor in either Virginia or North Carolina in the 1770s. However, the family is still working to further assemble that puzzle. Finding a Clarkson/Claxton match on STR markers or the Big Y who descends from a male not from the two known lines would help immensely. Our hope is that a Clarkson/Claxton from an earlier line or from the British Isles will test and provide that push over the brick wall. Any Clarkson/Clarkson men out there who haven’t taken the Y DNA test yet?
  14. The Muncy/Munsey line is confirmed to a common ancestor born in England in and died on Long Island in 1674. Based on both STR and SNP results from the Big Y, we can narrow the lineages of Muncy men who test and aren’t familiar with their Muncy genealogy. Of course, the Muncy line eventually migrated through Virginia and seemingly named every man in every generation either John, Samuel or Francis – but DNA testing helps immensely to sort this out.
  15. While Miller is a very common occupation surname, DNA testing has put to rest many incorrect myths about this particular Swiss Miller line. Men with the same surname in the same location, even in the same church, does not equate to the same genetic family line. Any male with a common surname absolutely needs to do Y DNA testing and at the highest level. There’s nothing worse than spending countless hours barking up the wrong tree – especially when Y DNA testing will save you.
  16. Our Speaks man matched another Speak male who knew where his ancestors were from in Lancashire. Testing additional men living in Lancashire at the 111 marker and Big Y levels allowed the Speak line to be divided into specific lineages beginning in the 1500s, piecing together the earlier ancestors into a descendant tree. Recently, an “orphan” line in the US has been connected to his ancestors, thanks to both STR values AND Big Y testing.
  17. Smith is quite interesting because we discover that something doesn’t add up. Our Smith man matches two Smith men who have the same ancestor born in 1810 but that son, John, does not match the descendants of his brothers. There seems to be an undocumented adoption of some sort at that point in time. John Smith’s Y DNA is not the same as his brothers whose descendants match each other. Given that our Smith tester, and his two matches, do not match the other descendants of the ancestor they are supposed to descend from, we can pinpoint the generation in which the adoption event occurred. However, we have a further clue, because these Smith men match the Jennings line closely- including one advanced match where the Smith man also matches autosomally in addition to the Y DNA. This is clearly a case of “you don’t know what you don’t know” and would never have known without Y DNA testing.
  18. Our Bolton tester matches several other Bolton men who descend from a common immigrant ancestor. If the Bolton matches upgrade to the Big Y-700 test, they might be able to determine separate genetic lines branching through the various sons of the immigrant ancestor. Evaluating the surnames that the tester matches at the Big Y level may assist with evaluating deeper ancestry in England and determining where the Bolton ancestors originated before the 1600s in London.
  19. Crumley is a difficult family to research, in part because several people with the same surname are found in close proximity, but Y DNA testing has shown that these men are not related. Big Y testing has disproved that the Crumley progenitor originated in Germany, although a different Crumley family did. The Big Y matches include many Mc… surnames along with Ferguson and Gillespie. The Big Y Block Tree shows the closest matches with ancestors born in Scotland, Ireland, and Northern Ireland – which is very likely where the Crumley progenitor originated too.
  20. Harrell is another difficult surname, spelled numerous ways with several Harrell/Herrell/Harrold/Herrald families moving westward in the 1600s and 1700s from the thirteen original colonies. This Harrell line has not been able to connect to a single progenitor in the colonies, yet, but Y DNA testing and the block tree confirm that this Harrell line originated in the British Isles, very likely England.

What Did These 20 Men Learn?

Every single one of these men benefitted from Y DNA testing, although exactly how depends to some extent on their testing goal. Other men also benefitted by matching.

One man, our Smith, #17, needs to look at the Jennings family prior to 1810. Is there a Jennings man living in close proximity, or do court records exist that might be illuminating?

If one of these 20 men had been an adoptee or otherwise searching for an unknown paternal line, they would have been able to identify a surname connection and perhaps a progenitor ancestor. I encourage everyone to either order a Family Finder autosomal test or transfer a DNA file (for free) from another vendor if they have taken an autosomal test elsewhere. Step-by-step transfer instructions are found here. Be sure that the Y DNA and autosomal tests are on the same kit/account at FamilyTreeDNA so that you can use the advanced matching tool.

With the Big Y-700 test, these men can discern or confirm lines descending from their direct paternal ancestors – sometimes within a generation or two of the tester. This test is so sensitive and granular and has such deep coverage (millions of bases) now that often we find small mutations between fathers and sons or brothers.

While STR markers, 12-111 are genealogically important, they do tend to mutate rapidly and sometimes back-mutate. SNPs, tested in the Big Y-700 test, don’t do that, and the power of STRs and SNPs together have the potential to break down brick walls and correct trees. In fact, it happens every single day.

Resources

If you’d like to watch a video about Y DNA, Y DNA-related genetic terms, and the benefits of Big Y-700 testing, you can watch a great educational video by Janine Cloud here. Be sure to note the part where she talks about why people who have previously taken the Big Y-500 might want to upgrade to the Big Y-700.

Also, check out my Y DNA Resource page, here.

What Don’t You Know?

Y DNA tests, including the Big Y-700 which includes all STR panels, and the autosomal Family Finder test are on sale at FamilyTreeDNA right now for Father’s Day.

There’s no better time to find missing pieces and discover information that you can’t find any other way.

Click here to order Y DNA tests, the Family Finder, or upgrade an existing test.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Yes, Ancestry is Glitchy Right Now – Here’s What TO and NOT TO DO

Public Service Announcement – Ancestry has been a bit glitchy for a few days/weeks and remains so. All vendors have issues from time to time, and it seems to be Ancestry’s turn right now. I wasn’t affected at first, but these tree-based problems seem to randomly come and go. So even if you’re not affected right now, you may be soon.

Here are tips on dealing with the reported issues, and perhaps more important, what NOT to do. Trying to fix things may just cause more problems.

What’s going on?

What’s Up With Ancestry?

A few days ago I signed on to Ancestry to discover that all of my tree branches beyond the first page displayed were “gone.” At that point in time, if I clicked on the right arrow, either no ancestors appeared, just those blank boxes to add parents, or in one case, one ancestor appeared with no parents.

This was uniform for all of my tree branches.

Needless to say, it struck panic into my genealogist’s heart. The saving grace is that indeed, no one but me has edit access to my tree – so I know positively that no one but me could delete anything.

Furthermore, I know beyond any shadow of a doubt that I had not deleted or broken the links of all of those ancestral lines. I don’t do “sleepwalk-genealogy” and if I did, I’d be much more likely to add someone😊

To try to quell the panic a bit, I used the Tree Search feature in the upper right-hand corner of the Tree page and yes, those “missing” ancestors were still in my tree file. They just weren’t showing correctly.

Technology Background

I spent years in technology and I learned two things:

  • Don’t panic and jump to conclusions
  • Sometimes things fix themselves, at least from the user’s perspective

After a couple of easy noninvasive steps, I decided to LEAVE THINGS ALONE and see what happened.

1-2-3 Things to Do

Here’s the 1-2-3 of things to do, in order.

  1. Sign out and back in.
  2. Try a different browser. If you are using a mobile app, use the computer and vice versa.
  3. Go away and check again later or tomorrow.

What Worked?

In this case, number three worked. The next day, everything was back to normal again with no residual damage.

Thankfully.

Had that not been the case, I would have started searching on social media for common issues and I would have called Ancestry’s support – no matter how much I don’t like doing that.

But there’s one thing I would NOT have done.

DO NOT

DO NOT start to repair things. If you start trying to reconnect people, when the underlying problem is actually resolved by Ancestry, Heaven only knows what a mess you’ll have with people double connected.

Twins and Duplicates

Another issue reported is that people are being duplicated in trees, including the tree owner/home person who finds that they have a twin with the same information.

Again, DO NOT start deleting and correcting.

What You CAN Do

Verify that indeed, only people you trust have edit access to your tree.

Under the name of the appropriate tree at upper left, select Tree Settings.

For another person to be able to either contribute to or edit your tree, you must specifically invite them to do so. Guests can only view your tree.

While Ancestry says that all invitees are editors, that’s not the case, as shown below when I clicked to invite someone.

As you can see, the default is “Guest,” but always verify after someone accepts your invitation.

Patience

Patience is difficult, but if you’re experiencing tree problems at Ancestry, just do something else for a few hours or a couple days.

Here are four great genetic genealogy activities you can do elsewhere that are productive.

  1. Download a copy of your DNA file from Ancestry and upload to MyHeritage, FamilyTreeDNA, or GedMatch to find additional matches. Instructions can be found here.
  2. At FamilyTreeDNA, upload your file and get matches for free. Check Family Finder, Y or mitochondrial DNA matches, or order a Big Y test or upgrade. The Father’s Day sale just started and you can sign on or order, here.
  3. At MyHeritage, if you don’t have a DNA test, upload free and get matches here. Check your DNA matches using their new Genetic Groups filter. I provided instructions, here. While you’re viewing your DNA matches, be sure to check for SmartMatches, record matches and other hints. If you’re not a records subscriber, you can subscribe with a 14-day free trial here.
  4. At 23andMe, testers are limited to 2000 matches unless you purchase an annual subscription – then you’re limited to about 5000 matches. However, 23and Me does not roll matches off your list that you’ve connected to, invited to connect, made a note about or messaged. (At least they never have and mine remain.) Go to the last page of your DNA Relatives list, which are your smallest segment matches, and start working backward to be sure you’ve initiated some type of communication that will prevent them from rolling off your match list.

These tasks aren’t just busywork. You have no idea what kind of a gold nugget you may discover.

You’ll have accomplished several things, enlarged your horizons and maybe, just maybe, by the time you’re done your tree at Ancestry will have righted itself again.

What fun things did you discover?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

What is a Heteroplasmy and Why Do I Care?

Most people have never heard of a heteroplasmy – but you might have one.

You Might Have a Heteroplasmy If…

…You have no exact matches at the full sequence mitochondrial DNA level.

A heteroplasmy is one of the first things I think of when someone tells me they have no exact full sequence matches but several that are a genetic distance of 1, meaning one mutation difference.

That phenomenon usually means the tester has a rare mutation that no one else has, at least no one who has tested their mitochondrial DNA (yet) – and that mutation just might be a heteroplasmy.

Heteroplasmies are generally (but not always) quite recent mutations. Actually, heteroplasmies are mutations caught in the act of mutating – kind of like an insect in genetic amber – frozen in time in your generation.

By Anders L. Damgaard – http://www.amber-inclusions.dk – Baltic-amber-beetle CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16792582

Let’s say you might have a heteroplasmy. Or maybe you want to see if you do. Even if YOU don’t have a heteroplasmy, other people’s heteroplasmies can and will affect matching.

Here’s everything you ever wanted to know about heteroplasmies but didn’t know to ask😊

Heteroplasmies are Fascinating

A heteroplasmy is actually quite interesting because it’s a genetic mutation in progress.

This means you have two versions of a DNA sequence showing in your mitochondrial DNA at a specific location.

Said another way, at a specific genetic location, you show both of two separate nucleotides. Amounts detected of a second nucleotide greater than 20% are considered a heteroplasmy. Amounts below 20% are ignored. Generally, within a few generations, the mutation will resolve in one direction or the other – although some heteroplasmies persist for several generations and can sometimes define family branches.

If you’d like to read more about mitochondrial DNA, I wrote a series of step-by-step articles and combined them into one resource page, here.

Show Me!

You can easily check to see if you have a heteroplasmy by signing on to your FamilyTreeDNA account. Hopefully, you’ve taken the full sequence test.

Today, new testers, thankfully, can only purchase full sequence tests, so HVR1 results don’t present quite the same challenges when combined with heteroplasmies as they used to. We’ll talk about that in a minute.

If you have only taken the HVR1 or HVR1+HVR2 “Plus” test, as opposed to the Full Sequence, you can upgrade by signing on here and clicking on the “Full” button on the Maternal Ancestry section of your personal page.

These buttons will be pink if you’ve taken that test already, and grey if you need to upgrade. If you have an account at FamilyTreeDNA, you can add a mitochondrial DNA test to that same account by clicking on “Add Ons and Upgrades” at the top of your personal page. You can order a test if you’re a new customer, here.

How Do I Know if I Have a Heteroplasmy?

Your mitochondrial DNA has a total of 16,569 locations that you can think of as addresses. If your DNA at those locations is normal, meaning no mutations, they won’t be listed in your results.

Mutations are shown in your mitochondrial DNA results by a different letter at the end of the location.

For example, here are my mutations for my HVR1 region. Each of these locations in the HVR1 region has a mutation.

For locations that are shown in your results, meaning those where you have a mutation, you’ll see, in order:

  • A letter, either T, A, C or G
  • The location number
  • A different letter, typically another one of T, A, C or G, but sometimes a small d

For the first mutation, C16069T, the location address is 16069, the normal value is C, the mutation that occurred is T.

Heteroplasmies are shown in your mitochondrial DNA results by letters other than T, A, C, G or d at the end of the location.

I don’t have any heteroplasmies, so I’m switching to the results of a cousin who has a heteroplasmic mutation at location T16362Y to use as an example. The trailing Y means they have a heteroplasmy at location 16362.

But first, what do those letters mean?

The Letters

The letters stand for the nucleotide bases that comprise DNA, as follows:

  • T – Thymine
  • A – Adenine
  • C – Cytosine
  • G – Guanine
  • d – a deletion has occurred. There is no nucleotide at this location.

For location T16362Y, the first letter, T, is the “normal” value found at this location. If a mutation has occurred, the second letter is the mutated value. Normally, this is one of the other nucleotides, A, C or G.

Any other letter after the location has a specific meaning; in this case, Y means that both a C and a T were found, per the chart below.

Note – if you have a small letter t, a, c or g, it’s not a heteroplasmy, and I wrote about small letters and what they mean in the article, Mitochondrial DNA Part 2: What Do Those Numbers Mean?

Check Your Results

On your FamilyTreeDNA personal page in the mtDNA section, click on the Mutations tab.

If you’ve taken the full sequence test, you’ll see Extra Mutations. You’re looking for any mutation that ends in any letter other than T, A, C, G or d.

If you haven’t taken the full sequence test, you don’t have “Extra” mutations listed, but you can still view your mutations for the HVR1 and HVR2 regions.

Look for any value that has any letter other than T, A, C, G or lower case d at the end of the location.

The Y tells us that this location is a heteroplasmy.

Heteroplasmy Matching

Ok, let’s look at a heteroplasmy mutation at location 16326. A heteroplasmy can occur at any mitochondrial location. I’ve selected this location because it occurs in the HVR1 region of the mitochondrial DNA, so even people who haven’t tested at the full sequence level will see results for this location. Plus, the location at which the heteroplasmy occurs affects matching in different ways.

Using the example of T16362Y, the Y tells us that both nucleotides C and T were found. This location should match against anyone carrying the following values in the same location:

  • Y (letter indicating a C/T heteroplasmy)
  • T (standard or normal value)
  • C (mutated value)

However, currently at Family Tree DNA, the heteroplasmy only counts as a match to anyone with a Y, the specific heteroplasmy indicator, and the “normal” value of T, but not the mutated value of C.

This table shows how heteroplasmies are counted at FamilyTreeDNA. For heteroplasmy T16362Y, based on the value your potential match has at this location, you either will or will not be considered a match at that location.

Scenario Other Person’s Value Your Result – T16362Y
1 T16362Y – heteroplasmy indicator Match to you at this location
2 T16362T – normal value, not a mutation Match to you at this location
3 T16362C – mutated value Not counted as match to you at this location
  • If your match has a value of Y, the heteroplasmic C/T value, they are counted as a match to you, so no problem.
  • If your match has a value of T, the normal value, this location won’t be shown on their mutation list at all. They WILL be counted as a match to you so there’s no issue.
  • If your match has a value of C, the mutated value, in my opinion they should also be counted as a match to you, but they aren’t today. The logic, I believe, was that the most likely value is the standard or normal value and that the mutated value is much less likely to be accurate. Regardless, I’ve requested this change and am hoping for a matching adjustment in a future release for heteroplasmies.

Heteroplasmies do affect matching at the different levels.

Viewing Your Matches

Mitochondrial DNA, for testing purposes, is broken into three regions, HVR1 (hyper-variable region 1), HVR2 and the Coding Region.

At FamilyTreeDNA, you can view your matches at each level. The matches are cumulative, meaning that the HVR2 level includes the HVR1 level information, and the Coding Region level includes the HVR1 and HVR2 regions. That highest level which includes all three regions shows information from your entire your entire full mitochondrial DNA sequence.

Heteroplasmy Effects on Matching

If you otherwise match someone exactly, but one of you has a heteroplasmy and the other person carries the mutated value, you will be counted as a mismatch of 1 at the full sequence level.

A mismatch has different effects when it occurs in the HVR1, HVR2 or Coding Regions, respectively.

GD is an abbreviation for Genetic Distance which is how mutations are counted. A GD of 1 means the two people have one mutation difference between them.

In the following chart, the effects of you having a nonmatch, heteroplasmic or otherwise, in each of the regions is shown at each level. The region in which the mismatch occurs is shown in the first column, at left, and the effect the mismatch has on matching in each region is shown in columns 2-4.

The red sections are not counted as matches.

Mismatch Occurs in this Region HVR1 Level Match to Someone Else HVR2 Level Match to Someone Else Coding Region Level Match to Someone Else
HVR1 region nonmatch GD of 1 means no match GD of 1 means no match GD of 1 is a match
HVR2 region nonmatch Does not affect HVR1 – so you are a match GD of 1 means no match GD of 1 is a match
Coding Region nonmatch Does not affect HVR1 – so you are a match Does not affect HVR2 – so you are a match GD of 1 is a match

For purposes of this discussion, we’re assuming our two people being compared in the chart above match exactly on every other location so matching is not otherwise affected.

  • If your heteroplasmic nonmatch occurs in the HVR1 region – in other words, scenario 3 – you’ll fall into the HVR1 nonmatch row. That means you won’t be shown as a match at the HVR1 or HVR1+HVR2 levels, but you WILL be shown as a full sequence match.
  • If your heteroplasmic nonmatch is in the HVR2 region of addresses, it won’t affect your HVR1 matches, but it will affect your HVR2 and Coding Region matches. This means you will be shown as HVR1 match, not an HVR2 match, but will be a full sequence match.
  • If your heteroplasmic nonmatch is in the Coding Region, it won’t affect your HVR1 or HVR2 matches, but it will affect your Coding Region matches. However, it won’t preclude matches and you’ll be shown as a match in all three regions.

To be very clear, I have no issue with these match thresholds. It’s important to understand how this works, and therefore why heteroplasmic (and other) mismatches in specific regions affect our matches in the way they do.

Why Aren’t Mismatches of 1 Counted as Matches in the HVR1 or HVR2 Regions?

The match threshold at FamilyTreeDNA for the HVR1 and the HVR1+HVR2 regions, both small regions of about 1000 locations each, is that only an exact match is considered a match. Therefore, a heteroplasmic nonmatch in this region can really be confusing and sometimes misleading, especially if either or BOTH people have NOT tested at the full sequence level.

These are the match thresholds in effect today.

HVR1 GD or # of Mutations Allowed for a Match HVR2 GD or # of Mutations Allowed for a Match Coding Region GD or # of Mutations Allowed for a Match
0 – no mutations allowed 0 – no mutations allowed 3 mutations allowed

If both people match on either the heteroplasmy identified (Y in our case) or one person has the normal value – all is fine. But if one person has a heteroplasmy and the other has the mutated value – then a mismatch occurs. This is really only problematic when:

  • The heteroplasmy mismatch is in the HVR1 region and both people have only tested at that level, causing the two people to not match at all.
  • The heteroplasmy mismatch occurs in combination with other mutations that, cumulatively, push the two people over the GD 3 full sequence matching threshold.

The second scenario happens rarely, but I have seen situations where people don’t match their mothers, aunts, siblings, or other close relatives because of multiple heteroplasmic mutations occurring in different people.

And yes, this is hen’s teeth rare – but it does occasionally happen.

So, what’s the bottom line about heteroplasmies?

Heteroplasmy Bottom Line

  1. You can suspect a heteroplasmy if you have full sequence matches, but no exact matches.
  2. If you have a heteroplasmy in the HVR1 region, understand that you may not have many or any matches in the HVR1 and HVR2 regions. The remedy is to test at the full sequence level and check matches there.
  3. If you have a heteroplasmy and don’t match someone you expect to match – reach out to them and ask about their value at that specific location. If that location isn’t listed for them in their results, then they have no mutation there and your heteroplasmy is NOT the cause of you not matching with them.
  4. If you don’t match someone you expect to match, reach out to them and ask if THEY have any heteroplasmies. The easiest way to ask is, “Do you have any mutations listed that end with anything other than T, A, C, G or d?” Feel free to link to this article so that they’ll know where to look, and why you’re asking.

Do you have any heteroplasmies?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Want Ancestor-Specific Ethnicity? Test Mitochondrial DNA

Recently, someone’s mitochondrial DNA test revealed that their ancestor was from Africa, but that person had no African heritage showing in their autosomal results or revealed in their genealogy.

They wondered how this was possible and which test was “wrong.” The answer is that neither test is wrong.

Mitochondrial DNA is important EXACTLY for this reason. It does not divide with inheritance, while autosomal DNA does and eventually disappears entirely.

Mitochondrial DNA is inherited from our direct matrilineal line – our mother – her mother – on up the tree directly through all mothers.

If you need a refresher, the article, 4 Kinds of DNA for Genetic Genealogy shows how different types of DNA are inherited from our ancestors.

Mitochondrial DNA and Ethnicity

Let’s look specifically at mitochondrial DNA ethnicity as compared to autosomal ethnicity.

In the chart above, an African ancestor (or ancestor of any ethnicity) who was the only ancestor of that ethnicity in your heritage is shown at the top – your five times great-grandmother. Using a 25-year generation, their autosomal DNA would have been admixed with partners of a different ethnicity 7 times between them and you.

Of course, that means the autosomal DNA of that ancestor would have been divided in (roughly) half 7 times.

Percent of Inherited Autosomal DNA

In the Percent of Inherited Autosomal DNA column, we look at it from your perspective. In other words, of the 100% of your ethnicity, stepping back each generation we can see how much of that particular ancestor you would carry. You carry 50% of your mother, 25% of your grandmother, and so forth.

You inherited approximately 0.78% of your GGGGG-Grandmother’s autosomal DNA, less than 1%.

If she was 100% African, then that 0.78% would be the only African autosomal DNA of hers that you carry, on average. You could carry a little less or a little more. We know that you don’t actually inherit exactly half of each of your ancestors’ DNA from your parents, nor they from their parents, so we can only use averages in that calculation.

Ancestral Percent Autosomal Ethnicity

In the Ancestral Percent Autosomal Ethnicity column, we look at it from the ancestor’s perspective.

Of your GGGGG-Grandmother’s 100% African ethnicity, how much would each subsequent generation be expected to inherit of that ethnicity, on average?

You would inherit 0.78% of that ancestor’s DNA. Given that GGGGG-Grandma was 100% African in this example, you would carry 0.78% African ethnicity.

Percent Mitochondrial DNA Inherited

Now, look at the Percent of Mitochondrial DNA Inherited column. Your African GGGGG-Grandmother’s mitochondrial DNA was 100% African in her generation, 7 generations ago, and still is 100% African in you, today.

That’s the beauty of mitochondrial DNA. It’s a forever record – never divided and never washes away.

How else would you EVER figure out her African roots today without records? Even if you did inherit a small amount of autosomal African DNA, and the vendor reported less than 1%, how would you determine which ancestor that African DNA came from, or when?

Not to mention trying to figure out if less than 1% or any small amount of reported ethnicity is a legitimate finding or “noise.”

What about if you, like my friend, carried no African autosomal DNA from that ancestor? There would be nothing to report in your autosomal ethnicity results – but your mitochondrial DNA would still tell the story of your African ancestor. Even after that trace is long gone in autosomal DNA.

Mitochondrial DNA is MUCH more reliable for each specific line in determining the “ethnicity” or biogeographical ancestry of each ancestor. I wrote about how to use your mitochondrial DNA haplogroup, here.

Discovering Your Forever Record

Everyone can test for their own mitochondrial DNA, and you can test other family members for their matrilineal lines as well. For example, your father or his siblings carry the mitochondrial DNA of his mother. You get the idea.

I record the mitochondrial haplogroup of each of my lines in my genealogy records and on their WikiTree profile card so others can share – now and in the future.

Genealogy research of female ancestors is less difficult with at least “one” record that reaches back where surnames and autosomal DNA don’t and can’t.

What will your mitochondrial “forever history” reveal?

Mitochondrial DNA tests are on sale this week for Mother’s Day – click here to upgrade or purchase.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

A Triangulation Checklist Born From the Question; “Why NOT Use Close Relatives for Triangulation?”

One of my readers asked why we don’t use close relatives for triangulation.

This is a great question because not using close relatives for triangulation seems counter-intuitive.

I used to ask my kids and eventually my students and customers if they wanted the quick short answer or the longer educational answer.

The short answer is “because close relatives are too close to reliably form the third leg of the triangle.” Since you share so much DNA with close relatives, someone matching you who is identical by chance can also match them for exactly the same reason.

If you trust me and you’re good with that answer, wonderful. But I hope you’ll keep reading because there’s so much to consider, not to mention a few gotchas. I’ll share my methodology, techniques, and workarounds.

We’ll also discuss absolutely wonderful ways to utilize close relatives in the genetic genealogical process – just not for triangulation.

At the end of this article, I’ve provided a working triangulation checklist for you to use when evaluating your matches.

Let’s go!

The Step-by-Step Educational Answer😊

Some people see “evidence” they believe conflicts with the concept that you should not use close relatives for triangulation. I understand that, because I’ve gone down that rathole too, so I’m providing the “educational answer” that explains exactly WHY you should not use close relatives for triangulation – and what you should do.

Of course, we need to answer the question, “Who actually are close relatives?”

I’ll explain the best ways to best utilize close relatives in genetic genealogy, and why some matches are deceptive.

You’ll need to understand the underpinnings of DNA inheritance and also of how the different vendors handle DNA matching behind the scenes.

The purpose of autosomal DNA triangulation is to confirm that a segment is passed down from a particular ancestor to you and a specific set of your matches.

Triangulation, of course, implies 3, so at least three people must all match each other on a reasonably sized portion of the same DNA segment for triangulation to occur.

Matching just one person only provides you with one path to that common ancestor. It’s possible that you match that person due to a different ancestor that you aren’t aware of, or due to chance recombination of DNA.

It’s possible that your or your match inherited part of that DNA from your maternal side and part from your paternal side, meaning that you are matching that other person’s DNA by chance.

I wrote about identical by descent (IBD), which is an accurate genealogically meaningful match, and identical by chance (IBC) which is a false match, in the article Concepts – Identical by…Descent, State, Population and Chance.

I really want you to understand why close relatives really shouldn’t be used for triangulation, and HOW close relative matches should be used, so we’re going to discuss all of the factors that affect and influence this topic – both the obvious and little-understood.

  • Legitimate Matches
  • Inheritance and Triangulation
  • Parental Cross-Matching
  • Parental Phasing
  • Automatic Phasing at FamilyTreeDNA
  • Parental Phasing Caveats
  • Pedigree Collapse
  • Endogamy
  • How Many Identical-by-Chance Matches Will I Have?
  • DNA Doesn’t Skip Generations (Seriously, It Doesn’t)
  • Your Parents Have DNA That You Don’t (And How to Use It)
  • No DNA Match Doesn’t Mean You’re Not Related
  • Imputation
  • Ancestry Issues and Workarounds
  • Testing Close Relatives is VERY Useful – Just Not for Triangulation
  • Triangulated Matches
  • Building Triangulation Evidence – Ingredients and a Recipe
  • Aunts/Uncles
  • Siblings
  • How False Positives Work and How to Avoid Them
  • Distant Cousins Are Best for Triangulation & Here’s Why
  • Where Are We? A Triangulation Checklist for You!
  • The Bottom Line

Don’t worry, these sections are logical and concise. I considered making this into multiple articles, but I really want it in one place for you. I’ve created lots of graphics with examples to help out.

Let’s start by dispelling a myth.

DNA Doesn’t Skip Generations!

Recently, someone emailed to let me know that they had “stopped listening to me” in a presentation when I said that if a match did not also match one of your parents, it was a false match. That person informed me that they had worked on their tree for three years at Ancestry and they have “proof” of DNA skipping generations.

Nope, sorry. That really doesn’t happen, but there are circumstances when a person who doesn’t understand either how DNA works, or how the vendor they are using presents DNA results could misunderstand or misinterpret the results.

You can watch my presentation, RootsTech session, DNA Triangulation: What, Why and How, for free here. I’m thrilled that this session is now being used in courses at two different universities.

DNA really doesn’t skip generations. You CANNOT inherit DNA that your parents didn’t have.

Full stop.

Your children cannot inherit DNA from you that you don’t carry. If you don’t have that DNA, your children and their descendants can’t have it either, at least not from you. They of course do inherit DNA from their other parent.

I think historically, the “skipping generations” commentary was connected to traits. For example, Susie has dimples (or whatever) and so did her maternal grandmother, but her mother did not, so Susie’s dimples were said to have “skipped a generation.” Of course, we don’t know anything about Susie’s other grandparents, if Susie’s parents share ancestors, recessive/dominant genes or even how many genetic locations are involved with the inheritance of “dimples,” but I digress.

DNA skipping generations is a fallacy.

You cannot legitimately match someone that your parent does not, at least not through that parent’s side of the tree.

But here’s the caveat. You can’t match someone one of your parents doesn’t with the rare exception of:

  • Relatively recent pedigree collapse that occurs when you have the same ancestors on both sides of your tree, meaning your parents are related, AND
  • The process of recombination just happened to split and recombine a segment of DNA in segments too small for your match to match your parents individually, but large enough when recombined to match you.

We’ll talk about that more in a minute.

However, the person working with Ancestry trees can’t make this determination because Ancestry doesn’t provide segment information. Ancestry also handles DNA differently than other vendors, which we’ll also discuss shortly.

We’ll review all of this, but let’s start at the beginning and explain how to determine if our matches are legitimate, or not.

Legitimate Matches

Legitimate matches occur when the DNA of your ancestor is passed from that ancestor to their descendants, and eventually to you and a match in an unbroken pathway.

Unbroken means that every ancestor between you and that ancestor carried and then passed on the segment of the ancestor’s DNA that you carry today. The same is true for your match who carries the same segment of DNA from your common ancestor.

False positive matches occur when the DNA of a male and female combine randomly to look like a legitimate match to someone else.

Thankfully, there are ways to tell the difference.

Inheritance and Triangulation

Remember, you inherit two copies of each of your chromosomes 1-22, one copy from your mother and one from your father. You inherit half of the DNA that each parent carries, but it’s mixed together in you so the labs can’t readily tell which nucleotide, A, C, T, or G you received from which parent. I’m showing your maternal and paternal DNA in the graphic below, stacked neatly together in a column – but in reality, it could be AC in one position and CA in the next.

For matching all that matters is the nucleotide that matches your match is present in one of those two locations. In this case, A for your mother’s side and C for your father’s side. If you’re interested, you can read more about that in the article, Hit a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters.

You can see in this example that you inherited all As from your Mom and all Cs from your Dad.

  • A legitimate maternal match would match you on all As on this particular example segment.
  • A legitimate paternal match would match you on all Cs on this particular segment.
  • A false positive match will match you on some random combination of As and Cs that make it look like they match you legitimately, but they don’t.
  • A false positive match will NOT match either your mother or your father.

To be very clear, technically a false positive match DOES match your DNA – but they don’t match your DNA because you share a common ancestor with your match. They match you because random recombination on their side causes you to match each other by chance.

In other words, if part of your DNA came from your Mom’s side and part from your Dad’s but it randomly fell in the correct positional order, you’d still match someone whose DNA was from only their mother or father’s side. That’s exactly the situation shown above and below.

Looking at our example again, it’s evident that your identical by chance (IBC) match’s A locations (1, 3, 5, 7 & 9) will match your Mom. C locations (2, 4, 6 8, & 10) will match your Dad, but the nonmatching segments interleaved in-between that match alternating parents will prevent your match from matching either of your parents. In other words, out of 10 contiguous locations in our example, your IBC match has 5 As alternated with 5 Cs, so they won’t match either of your parents who have 10 As or 10 Cs in a row.

This recombination effect can work in either direction. Either or both matching people’s DNA could be randomly mixed causing them to match each other, but not their parents.

Regardless of whose DNA is zigzagging back and forth between maternal and paternal, the match is not genealogical and does not confirm a common ancestor.

This is exactly why triangulation works and is crucial.

If you legitimately match a third person, shown below, on your maternal side, they will match you, your first legitimate maternal match, and your Mom because they carry all As. But they WON’T match the person who is matching you because they are identical by chance, shown in grey below.

The only person your identical by chance match matches in this group is you because they match you because of the chance recombination of parental DNA.

That third person WILL also match all other legitimate maternal matches on this segment.

In the graphic above, we see that while the grey identical by chance person matches you because of the random combination of As from your mother and Cs from your father, your legitimate maternal matches won’t match your identical by chance match.

This is the first step in identifying false matches.

Parental Cross-Matching

Removing the identical by chance match, and adding in the parents of your legitimate maternal match, we see that your maternal match, above, matches you because you both have all As inherited from one parent, not from a combination of both parents.

We know that because we can see the DNA of both parents of both matches in this example.

The ideal situation occurs when two people match and they have both had their parents tested. We need to see if each person matches the other person’s parents.

We can see that you do NOT match your match’s father and your match does NOT match your father.

You do match your match’s mother and your match does match your mother. I refer to this as Parental Cross-matching.

Your legitimate maternal matches will also match each other and your mother if she is available for testing.

All the people in yellow match each other, while the two parents in gray do not match any of your matches. An entire group of legitimate maternal matches on this segment, no matter how many, will all match each other.

If another person matches you and the other yellow people, you’ll still need to see if you match their parents, because if not, that means they are matching you on all As because their two parents DNA combined just happened, by chance, to contribute an A in all of those positions.

In this last example, your new match, in green, matches you, your legitimate match and both of your mothers, BUT, none of the four yellow people match either of the new match’s parents. You can see that the new green match inherited their As from the DNA of their mother and father both, randomly zigzagging back and forth.

The four yellow matches phase parentally as we just proved with cross matching to parents. The new match at first glance appears to be a legitimate match because they match all of the yellow people – but they aren’t because the yellow people don’t match the green person’s parents.

To tell the difference between legitimate matches and identical by chance matches, you need two things, in order.

  • Parental matching known as parental phasing along with parental cross-matching, if possible, AND
  • Legitimate identical by descent (IBD) triangulated matches

If you have the ability to perform parental matching, called phasing, that’s the easiest first step in eliminating identical by chance matches. However, few match pairs will have parents for everyone. You can use triangulation without parental phasing if parents aren’t available.

Let’s talk about both, including when and how close relatives can and cannot be used.

Parental Phasing

The technique of confirming your match to be legitimate by your match also matching one of your parents is called parental phasing.

If we have the parents of both people in a match pair available for matching, we can easily tell if the match does NOT match either parent. That’s Parental Cross Matching. If either match does NOT match one of the other person’s parents, the match is identical by chance, also known as a false positive.

See how easy that was!

If you, for example, is the only person in your match pair to have parents available, then you can parentally phase the match on your side if your match matches your parents. However, because your match’s parents are unavailable, your match to them cannon tbe verified as legitimate on their side. So you are not phased to their parents.

If you only have one of your parents available for matching, and your match does not match that parent, you CANNOT presume that because your match does NOT match that parent, the match is a legitimate match for the other, missing, parent.

There are four possible match conditions:

  • Maternal match
  • Paternal match
  • Matches neither parent which means the match is identical by chance meaning a false positive
  • Matches both parents in the case of pedigree collapse or endogamy

If two matching people do match one parent of both matches (parental cross-matching), then the match is legitimate. In other words, if we match, I need to match one of your parents and you need to match one of mine.

It’s important to compare your matches’ DNA to generationally older direct family members such as parents or grandparents, if that’s possible. If your grandparents are available, it’s possible to phase your matches back another generation.

Automatic Phasing at FamilyTreeDNA

FamilyTreeDNA automatically phases your matches to your parents if you test that parent, create or upload a GEDCOM file, and link your test and theirs to your tree in the proper places.

FamilyTreeDNA‘s Family Matching assigns or “buckets” your matches maternally and paternally. Matches are assigned as maternal or paternal matches if one or both parents have tested.

Additionally, FamilyTreeDNA uses triangulated matches from other linked relatives within your tree even if your parents have not tested. If you don’t have your parents, the more people you identify and link to your tree in the proper place, the more people will be assigned to maternal and paternal buckets. FamilyTreeDNA is the only vendor that does this. I wrote about this process in the article, Triangulation in Action at Family Tree DNA.

Parental Phasing Caveats

There are very rare instances where parental phasing may be technically accurate, but not genealogically relevant. By this, I mean that a parent may actually match one of your matches due to endogamy or a population level match, even if it’s considered a false positive because it’s not relevant in a genealogical timeframe.

Conversely, a parent may not match when the segment is actually legitimate, but it’s quite rare and only when pedigree collapse has occurred in a very specific set of circumstances where both parents share a common ancestor.

Let’s take a look at that.

Pedigree Collapse

It’s not terribly uncommon in the not-too-distant past to find first cousins marrying each other, especially in rather closely-knit religious communities. I encounter this in Brethren, Mennonite and Amish families often where the community was small and out-marrying was frowned upon and highly discouraged. These families and sometimes entire church congregations migrated cross-country together for generations.

When pedigree collapse is present, meaning the mother and father share a common ancestor not far in the past, it is possible to inherit half of one segment from Mom and the other half from Dad where those halves originated with the same ancestral couple.

For example, let’s say the matching segment between you and your match is 12 cM in length, shown below. You inherited the blue segment from your Dad and the neighboring peach segment from Mom – shown just below the segment numbers. You received 6 cM from both parents.

Another person’s DNA does match you, shown in the bottom row, but they are not shown on the DNA match list of either of your parents. That’s because the DNA segments of the parents just happened to recombine in 6 cM pieces, respectively, which is below the 7 cM matching threshold of the vendor in this example.

If the person matched you at 12 cM where you inherited 8 cM from one parent and 4 from the other, that person would show on one parent’s match list, but not the other. They would not be on the parent’s match list who contributed only 4 cM simply because the DNA divided and recombined in that manner. They would match you on a longer segment than they match your parent at 8 cM which you might notice as “odd.”

Let’s look at another example.

click to enlarge image

If the matching segment is 20 cM, the person will match you and both of your parents on different pieces of the same segment, given that both segments are above 7 cM. In this case, your match who matches you at 20 cM will match each of your parents at 10 cM.

You would be able to tell that the end location of Dad’s segment is the same as the start location of Mom’s segment.

This is NOT common and is NOT the “go to” answer when you think someone “should” match your parent and does not. It may be worth considering in known pedigree collapse situations.

You can see why someone observing this phenomenon could “presume” that DNA skipped a generation because the person matches you on segments where they don’t match your parent. But DNA didn’t skip anything at all. This circumstance was caused by a combination of pedigree collapse, random division of DNA, then random recombination in the same location where that same DNA segment was divided earlier. Clearly, this sequence of events is not something that happens often.

If you’ve uploaded your DNA to GEDmatch, you can select the “Are your parents related?” function which scans your DNA file for runs of homozygosity (ROH) where your DNA is exactly the same in both parental locations for a significant distance. This suggests that because you inherited the exact same sequence from both parents, that your parents share an ancestor.

If your parents didn’t inherit the same segment of DNA from both parents, or the segment is too short, then they won’t show as “being related,” even if they do share a common ancestor.

Now, let’s look at the opposite situation. Parental phasing and ROH sometimes do occur when common ancestors are far back in time and the match is not genealogically relevant.

Endogamy

I often see non-genealogical matching occur when dealing with endogamy. Endogamy occurs when an entire population has been isolated genetically for a long time. In this circumstance, a substantial part of the population shares common DNA segments because there were few original population founders. Much of the present-day population carries that same DNA. Many people within that population would match on that segment. Think about the Jewish community and indigenous Americans.

Consider our original example, but this time where much of the endogamous population carries all As in these positions because one of the original founders carried that nucleotide sequence. Many people would match lots of other people regardless of whether they are a close relative or share a distant ancestor.

People with endogamous lines do share relatives, but that matching DNA segment originated in ancestors much further back in time. When dealing with endogamy, I use parental phasing as a first step, if possible, then focus on larger matches, generally 20 cM or greater. Smaller matches either aren’t relevant or you often can’t tell if/how they are.

At FamilyTreeDNA, people with endogamy will find many people bucketed on the “Both” tab meaning they triangulate with people linked on both sides of the tester’s tree.

An example of a Jewish person’s bucketed matches based on triangulation with relatives linked in their tree is shown above.

Your siblings, their children, and your children will be related on both your mother’s and father’s sides, but other people typically won’t be unless you have experienced either pedigree collapse where you are related both maternally and paternally through the same ancestors or you descend from an endogamous population.

How Many Identical-by-Chance Matches Will I Have?

If you have both parents available to test, and you’re not dealing with either pedigree collapse or endogamy, you’ll likely find that about 15-20% of your matches don’t match your parents on the same segment and are identical by chance.

With endogamy, you’ll have MANY more matches on your endogamous lines and you’ll have some irrelevant matches, often referred to as “false positive” matches even though they technically aren’t, even using parental phasing.

Your Parents Have DNA That You Don’t

Sometimes people are confused when reviewing their matches and their parent’s match to the same person, especially when they match someone and their parent matches them on a different or an additional segment.

If you match someone on a specific segment and your parents do not, that’s a false positive FOR THAT SEGMENT. Every segment has its own individual history and should be evaluated individually. You can match someone on two segments, one from each parent. Or three segments, one from each parent and one that’s identical by chance. Don’t assume.

Often, your match will match both you and your parent on the same segment – which is a legitimate parentally phased match.

But what if your match matches your parent on a different segment where they don’t match you? That’s a false positive match for you.

Keep in mind that it is possible for one of your matches to match your parent on a separate or an additional segment that IS legitimate. You simply didn’t inherit that particular segment from your parent.

That’s NOT the same situation as someone matching you that does NOT match one of your parents on the same segment – which is an identical by chance or false match.

Your parent having a match that does not match you is the reverse situation.

I have several situations where I match someone on one segment, and they match my parent on the same segment. Additionally, that person matches my parent on another segment that I did NOT inherit from that parent. That’s perfectly normal.

Remember, you only inherit half of your parent’s DNA, so you literally did NOT inherit the other half of their DNA. Your mother, for example, should have twice as many matches as you on her side because roughly half of her matches won’t match you.

That’s exactly why testing your parents and close family members is so critical. Their matches are as valid and relevant to your genealogy as your own. The same is true for other relatives, such as aunts and uncles with whom you share ALL of the same ancestors.

You need to work with your family member’s matches that you don’t share.

No DNA Match Doesn’t Mean You’re Not Related

Some people think that not matching someone on a DNA test is equivalent to saying they aren’t related. Not sharing DNA doesn’t mean you’re not related.

People are often disappointed when they don’t match someone they think they should and interpret that to mean that the testing company is telling them they “aren’t related.” They are upset and take issue with this characterization. But that’s not what it means.

Let’s analyze this a bit further.

First, not sharing DNA with a second cousin once removed (2C1R) or more distant does NOT mean you’re NOT related to that person. It simply means you don’t share any measurable DNA ABOVE THE VENDOR THRESHOLD.

All known second cousins match, but about 10% of third cousins don’t match, and so forth on up the line with each generation further back in time having fewer cousins that match each other.

If you have tested close relatives, check to see if that cousin matches your relatives.

Second, it’s possible to match through the “other” or unexpected parent. I certainly didn’t think this would be the case in my family, because my father is from Appalachia and my mother’s family is primarily from the Netherlands, Germany, Canada, and New England. But I was wrong.

All it took was one German son that settled in Appalachia, and voila, a match through my mother that I surely thought should have been through my father’s side. I have my mother’s DNA and sure enough, my match that I thought should be on my father’s side matches Mom on the same segment where they match me, along with several triangulated matches. Further research confirmed why.

I’ve also encountered situations where I legitimately match someone on both my mother’s and father’s side, on different segments.

Third, imputation can be important for people who don’t match and think they should. Imputation can also cause matching segment length to be overreported.

Ok, so what’s imputation and why do I care?

Imputation

Every DNA vendor today has to use some type of imputation.

Let me explain, in general, what imputation is and why vendors use it.

Over the years, DNA processing vendors who sell DNA chips to testing companies have changed their DNA chips pretty substantially. While genealogical autosomal tests test about 700,000 DNA locations, plus or minus, those locations have changed over time. Today, some of these chips only have 100,000 or so chip locations in common with chips either currently or previously utilized by other vendors.

The vendors who do NOT accept uploads, such as 23andMe or Ancestry, have to develop methods to make their newest customers on their DNA processing vendor’s latest chip compatible with their first customer who was tested on their oldest chip – and all iterations in-between.

Vendors who do accept transfers/uploads from other vendors have to equalize any number of vendors’ chips when their customers upload those files.

Imputation is the scientific way to achieve this cross-platform functionality and has been widely used in the industry since 2017.

Imputation, in essence, fills in the blanks between tested locations with the “most likely” DNA found in the human population based on what’s surrounding the blank location.

Think of the word C_T. There are a limited number of letters and words that are candidates for C_T. If you use the word in a sentence, your odds of accuracy increase dramatically. Think of a genetic string of nucleotides as a sentence.

Imputation can be incorrect and can cause both false positive and false negative matches.

For the most part, imputation does not affect close family matches as much as more distant matches. In other words, imputation is NOT going to cause close family members not to match.

Imputation may cause more distant family members not to match, or to have a false positive match when imputation is incorrect.

Imputation is actually MUCH less problematic than I initially expected.

The most likely effect of imputation is to cause a match to be just above or below the vendor threshold.

How can we minimize the effects of imputation?

  • Generally, the best result will be achieved if both people test at the same vendor where their DNA is processed on the same chip and less imputation is required.
  • Upload the results of both people to both MyHeritage and FamilyTreeDNA. If your match results are generally consistent at those vendors, imputation is not a factor.
  • GEDmatch does not use imputation but attempts to overcome files with low overlapping regions by allowing larger mismatch areas. I find their matches to be less accurate than at the various vendors.

Additionally, Ancestry has a few complicating factors.

Ancestry Issues

AncestryDNA is different in three ways.

  • Ancestry doesn’t provide segment information so it’s impossible to triangulate or identify the segment or chromosome where people match. There is no chromosome browser or triangulation tool.
  • Ancestry down-weights and removes some segments in areas where they feel that people are “too matchy.” You can read Ancestry’s white papers here and here.

These “personal pileup regions,” as they are known, can be important genealogically. In my case, these are my mother’s Acadian ancestors. Yes, this is an endogamous population and also suffers from pedigree collapse, but since this is only one of my mother’s great-grandparents, this match information is useful and should not be removed.

  • Ancestry doesn’t show matches in common if the shared segments are less than 20cM. Therefore, you may not see someone on a shared match list with a relative when they actually are a shared match.

If two people both match a third person on less than a 20 cM segment at Ancestry, the third person won’t appear on the other person’s shared match list. So, if I match John Doe on 19 cM of DNA, and I looked at the shared matches with my Dad, John Doe does NOT appear on the shared match list of me and my Dad – even though he is a match to both of us at 19 cM.

The only way to determine if John Doe is a shared match is to check my Dad’s and my match list individually, which means Dad and I will need to individually search for John Doe.

Caveat here – Ancestry’s search sometimes does not work correctly.

Might someone who doesn’t understand that the shared match list doesn’t show everyone who shares DNA with both people presume that the ancestral DNA of that ancestor “skipped a generation” because John Doe matches me with a known ancestor, and not Dad on our shared match list? I mean, wouldn’t you think that a shared match would be shown on a tab labeled “Shared Matches,” especially since there is no disclaimer?

Yes, people can be forgiven for believing that somehow DNA “skipped” a generation in this circumstance, especially if they are relatively inexperienced and they don’t understand Ancestry’s anomalies or know that they need to or how to search for matches individually.

Even if John Doe does match me and Dad both, we still need to confirm that it’s on the same segment AND it’s a legitimate match, not IBC. You can’t perform either of these functions at Ancestry, but you can elsewhere.

Ancestry WorkArounds

To obtain this functionality, people can upload their DNA files for free to both FamilyTreeDNA and MyHeritage, companies that do provide full shared DNA reporting (in common with) lists of ALL matches and do provide segment information with chromosome browsers. Furthermore, both provide triangulation in different ways.

Matching is free, but an inexpensive unlock is required at both vendors to access advanced tools such as Family Matching (bucketing) and triangulation at Family Tree DNA and phasing/triangulation at MyHeritage.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

MyHeritage actually brackets triangulated segments for customers on their chromosome browser, including parents, so you get triangulation and parental phasing at the same time if you and your parent have both tested or uploaded your DNA file to MyHeritage. You can upload, for free, here.

In this example, my mother is matching to me in red on the entire length of chromosome 18, of course, and three other maternal cousins triangulate with me and mother inside the bracketed portion of chromosome 18. Please note that if any one of the people included in the chromosome browser comparison do not triangulate, no bracket is drawn around any others who do triangulate. It’s all or nothing. I remove people one by one to see if people triangulate – or build one by one with my mother included.

I wrote about Triangulation in Action at MyHeritage, here.

People can also upload to GEDmatch, a third-party site. While GEDmatch is less reliable for matching, you can adjust your search thresholds which you cannot do at other vendors. I don’t recommend routinely working below 7 cM. I occasionally use GEDmatch to see if a pedigree collapse segment has recombined below another vendor’s segment matching threshold.

Do NOT check the box to prevent hard breaks when selecting the One-to-One comparison. Checking that box allows GEDmatch to combine smaller matching segments into mega-segments for matching.

I wrote about Triangulation in Action at GEDmatch, here.

Transferring/Uploading Your DNA 

If you want to transfer your DNA to one of these vendors, you must download the DNA file from one vendor and upload it to another. That process does NOT remove your DNA file from the vendor where you tested, unless you select that option entirely separately.

I wrote full step-by-step transfer/upload instructions for each vendor, here.

Testing Close Relatives Is VERY Useful – Just Not for Triangulation

Of course, your best bet if you don’t have your parents available to test is to test as many of your grandparents, great-aunts/uncles, aunts, and uncles as possible. Test your siblings as well, because they will have inherited some of the same and some different segments of DNA from your parents – which means they carry different pieces of your ancestors’ DNA.

Just because close relatives don’t make good triangulation candidates doesn’t mean they aren’t valuable. Close relatives are golden because when they DO share a match with you, you know where to start looking for a common ancestor, even if your relative matches that person on a different segment than you do.

Close relatives are also important because they will share pieces of your common ancestor’s DNA that you don’t. Their matches can unlock the answers to your genealogy questions.

Ok, back to triangulation.

Triangulated Matches

A triangulated match is, of course, when three people all descended from a common ancestor and match each other on the same segment of DNA.

That means all three people’s DNA matches each other on that same segment, confirming that the match is not by chance, and that segment did descend from a common ancestor or ancestral couple.

But, is this always true? You’re going to hate this answer…

“It depends.”

You knew that was coming, didn’t you! 😊

It depends on the circumstances and relationships of the three people involved.

  • One of those three people can match the other two by chance, not by descent, especially if two of those people are close relatives to each other.
  • Identical by chance means that one of you didn’t inherit that DNA from one single parent. That zigzag phenomenon.
  • Furthermore, triangulated DNA is only valid as far back as the closest common ancestor of any two of the three people.

Let’s explore some examples.

Building Triangulation Evidence – Ingredients and a Recipe

The strongest case of triangulation is when:

  • You and at least two additional cousins match on the same segment AND
  • Descend through different children of the common ancestral couple

Let’s look at a valid triangulated match.

In this first example, the magenta segment of DNA is at least partially shared by four of the six cousins and triangulates to their common great-grandfather. Let’s say that these cousins then match with two other people descended from different children of their great-great-great-grandparents on this same segment. Then the entire triangulation group will have confirmed that segment’s origin and push the descent of that segment back another two generations.

These people all coalesce into one line with their common great-grandparents.

I’m only showing 3 generations in this triangulated match, but the concept is the same no matter how many generations you reach back in time. Although, over time, segments inherited from any specific ancestor become smaller and smaller until they are no longer passed to the next generation.

In this pedigree chart, we’re only tracking the magenta DNA which is passed generation to generation in descendants.

Eventually, of course, those segments become smaller and indistinguishable as they either aren’t passed on at all or drop below vendor matching thresholds.

This chart shows the average amount of DNA you would carry from each generational ancestor. You inherit half of each parent’s DNA, but back further than that, you don’t receive exactly half of any ancestor’s DNA in any generation. Larger segments are generally cut in two and passed on partially, but smaller segments are often either passed on whole or not at all.

On average, you’ll carry 7 cM of your eight-times-great-grandparents. In reality, you may carry more or you may not carry any – and you are unlikely to carry the same segment as any random other descendants but we know it happens and you’ll find them if enough (or the right) descendants test.

Putting this another way, if you divide all of your approximate 7000 cM of DNA into 7 cM segments of equal length – you’ll have 1000 7 cM segments. So will every other descendant of your eight-times-great-grandparent. You can see how small the chances are of you both inheriting that same exact 7 cM segment through ten inheritance/transmission events, each. Yet it does happen.

I have several triangulated matches with descendants of Charles Dodson and his wife, Anne through multiple of their 9 (or so) children, ten generations back in my tree. Those triangulated matches range from 7-38 cM. It’s possible that those three largest matches at 38 cM could be related through multiple ancestors because we all have holes in our trees – including Anne’s surname.

Click to enlarge image

It helps immensely that Charles Dodson had several children who were quite prolific as well.

Of course, the further back in time, the more “proof” is necessary to eliminate other unknown common ancestors. This is exactly why matching through different children is important for triangulation and ancestor confirmation.

The method we use to confirm the common ancestor is that all of the descendants who match the tester on the same segment all also match each other. This greatly reduces the chances that these people are matching by chance. The more people in the triangulation group, the stronger the evidence. Of course, parental phasing or cross-matching, where available is an added confirmation bonus.

In our magenta inheritance example, we saw that three of the males and one of the females from three different descendants of the great-grandparents all carry at least a portion of that magenta segment of great-grandpa’s DNA.

Now, let’s take a look at a different scenario.

Why can’t siblings or close relatives be used as two of the three people needed for triangulation?

Aunts and Uncles

We know that the best way to determine if a match is valid is by parental phasing – your match also matching to one of your parents.

If both parents aren’t available, looking for close family matches in common with your match is the next hint that genealogists seek.

Let’s say that you and your match both match your aunt or uncle in common or their children.

You and your aunts or uncles matching DNA only pushes your common ancestor back to your grandparents.

At that point, your match is in essence matching to a segment that belongs to your grandparents. Your matches’ DNA, or your grandparents’ DNA could have randomly recombined and you and your aunt/cousins could be matching that third person by chance.

Ok, then, what about siblings?

Siblings

The most recent common ancestor (MRCA) of you and someone who also matches your sibling is your parents. Therefore, you and your sibling actually only count as one “person” in this scenario. In essence, it’s the DNA of your parent(s) that is matching that third person, so it’s not true triangulation. It’s the same situation as above with aunts/uncles, except the common ancestor is closer than your grandparents.

The DNA of your parents could have recombined in both siblings to look like a match to your match’s family. Or vice versa. Remember Parental Cross-Matching.

If you and a sibling inherited EXACTLY the same segment of your Mom’s and Dad’s DNA, and you match someone by chance – that person will match your sibling by chance as well.

In this example, you can see that both siblings 1 and 2 inherited the exact same segments of DNA at the same locations from both of their parents.

Of course, they also inherited segments at different locations that we’re not looking at that won’t match exactly between siblings, unless they are identical twins. But in this case, the inherited segments of both siblings will match someone whose DNA randomly combined with green or magenta dots in these positions to match a cross-section of both parents.

How False Positives Work and How to Avoid Them

We saw in our first example, displayed again above, what a valid triangulated match looks like. Now let’s expand this view and take a look more specifically at how false positive matches occur.

On the left-hand (blue) side of this graphic, we see four siblings that descend through their father from Great-grandpa who contributed that large magenta segment of DNA. That segment becomes reduced in descendants in subsequent generations.

In downstream generations, we can see gold, white and green segments being added to the DNA inherited by the four children from their ancestor’s spouses. Dad’s DNA is shown on the left side of each child, and Mom’s on the right.

  • Blue Children 1 and 2 inherited the same segments of DNA from Mom and Dad. Magenta from Dad and green from Mom.
  • Blue Child 3 inherited two magenta segments from Dad in positions 1 and 2 and one gold segment from Dad in position 3. They inherited all white segments from Mom.
  • Blue Child 4 inherited all gold segments from Dad and all white segments from Mom.

The family on the blue left-hand side is NOT related to the pink family shown at right. That’s important to remember.

I’ve intentionally constructed this graphic so that you can see several identical by chance (IBC) matches.

Child 5, the first pink sibling carries a white segment in position 1 from Dad and gold segments in positions 2 and 3 from Dad. From Mom, they inherited a green segment in position 1, magenta in position 2 and green in position 3.

IBC Match 1 – Looking at the blue siblings, we see that based on the DNA inherited from Pink Child 5’s parents, Pink Child 5 matches Blue Child 4 with white, gold and gold in positions 1-3, even though they weren’t inherited from the same parent in Blue Child 4. I circled this match in blue.

IBC Match 2 – Pink Child 5 also matches Blue Children 1 and 2 (red circles) because Pink Child 5 has green, magenta, and green in positions 1-3 and so do Blue Children 1 and 2. However, Blue Children 1 and 2 inherited the green and magenta segments from Mom and Dad respectively, not just from one parent.

Pink Child 5 matches Blue Children 1, 2 and 4, but not because they match by descent, but because their DNA zigzags back and forth between the blue children’s DNA contributed by both parents.

Therefore, while Pink Child 5 matches three of the Blue Children, they do not match either parent of the Blue Children.

IBC Match 3 – Pink Child 6 matches Blue Child 3 with white, magenta and gold in positions 1-3 based on the same colors of dots in those same positions found in Blue Child 3 – but inherited both paternally and maternally.

You can see that if we had the four parents available to test, that none of the Pink Children would match either the Blue Children’s mother or father and none of the Blue Children would match either of the Pink Children’s mother or father.

This is why we can’t use either siblings or close family relatives for triangulation.

Distant Cousins Are Best for Triangulation & Here’s Why

When triangulating with 3 people, the most recent common ancestor (MRCA) intersection of the closest two people is the place at which triangulation turns into only two lines being compared and ceases being triangulation. Triangle means 3.

If siblings are 2 of the 3 matching people, then their parents are essentially being compared to the third person.

If you, your aunt/uncle, and a third person match, your grandparents are the place in your tree where three lines converge into two.

The same holds true if you’re matching against a sibling pair on your match’s side, or a match and their aunt/uncle, etc.

The further back in your tree you can push that MRCA intersection, the more your triangulated match provides confirming evidence of a common ancestor and that the match is valid and not caused by random recombination.

That’s exactly what the descendants of Charles Dodson have been able to do through triangulation with multiple descendants from several of his children.

It’s also worth mentioning at this point that the reason autosomal DNA testing uses hundreds/thousands of base pairs in a comparison window and not 3 or 6 dots like in my example is that the probability of longer segments of DNA simply randomly matching by chance is reduced with length and SNP density which is the number of SNP locations tested within that cM range.

Hence a 7 cM/500 SNP minimum is the combined rule of thumb. At that level, roughly half of your matches will be valid and half will be identical by chance unless you’re dealing with endogamy. Then, raise your threshold accordingly.

Ok, So Where are We? A Triangulation Checklist for You!

I know this has been a relatively long educational article, but it’s important to really understand that testing close relatives is VERY important, but also why we can’t effectively use them for triangulation.

Here’s a handy-dandy summary matching/triangulation checklist for you to use as you work through your matches.

  • You inherit half of each of your parents’ DNA. There is no other place for you to obtain or inherit your DNA. There is no DNA fairy sprinkling you with DNA from another source:)
  • DNA does NOT skip generations, although in occasional rare circumstances, it may appear that this happened. In this situation, it’s incumbent upon you, the genealogist, to PROVE that an exception has occurred if you really believe it has. Those circumstances might be pedigree collapse or perhaps imputation. You’ll need to compare matches at vendors who provide a chromosome browser, triangulation, and full shared match list information. Never assume that you are the exception without hard and fast proof. We all know about assume, right?
  • Your siblings inherit half of your parents’ DNA too, but not the same exact half of your parent’s DNA that you other siblings did (unless they are identical twins.) You may inherit the exact same DNA from either or both of your parents on certain segments.
  • Your matches may match your parents on different or an additional segment that you did not inherit.
  • Every segment has an individual history. Evaluate every matching segment separately. One matching segment with someone could be maternal, one paternal, and one identical by chance.
  • You can confirm matches as valid if your match matches one of your parents, and you match one of your match’s parents. Parental Phasing is when your match matches your parent. Parental Cross-Matching is when you both match one of each other’s parents. To be complete, both people who match each other need to match one of the parents of the other person. This rule still holds even if you have a known common ancestor. I can’t even begin to tell you how many times I’ve been fooled.
  • 15-20% (or more with endogamy) of your matches will be identical by chance because either your DNA or your match’s DNA aligns in such a way that while they match you, they don’t match either of your parents.
  • Your siblings, aunts, and uncles will often inherit the same DNA as you – which means that identical by chance matches will also match them. That’s why we don’t use close family members for triangulation. We do utilize close family members to generate common match hints. (Remember the 20 cM shared match caveat at Ancestry)
  • While your siblings, aunts, and uncles are too close to use for triangulation, they are wonderful to identify ancestral matches. Some of their matches will match you as well, and some will not because your close family members inherited segments of your ancestor’s DNA that you did not. Everyone should test their oldest family members.
  • Triangulate your close family member’s matches separately from your own to shed more light on your ancestors.
  • Endogamy may interfere with parental phasing, meaning you may match because you and/or your match may have inherited some of the same DNA segment(s) from both sides of your tree and/or more DNA than might otherwise be expected.
  • Pedigree collapse needs to be considered when using parental phasing, especially when the same ancestor appears on both sides of your family tree. You may share more DNA with a match than expected.
  • Conversely, with pedigree collapse, your match may not match your parents, or vice versa, if a segment happens to have recombined in you in a way that drops the matching segments of your parents beneath the vendor’s match threshold.
  • While you will match all of your second cousins, you will only match approximately 90% of your third cousins and proportionally fewer as your relationship reaches further back in time.
  • Not being a DNA match with someone does NOT mean you’re NOT related to them, unless of course, you’re a second cousin (2C) or closer. It simply means you don’t carry any common ancestral segments above vendor thresholds.
  • At 2C or closer, if you’re not a DNA match, other alternative situations need to be considered – including the transfer/upload of the wrong person’s DNA file.
  • Imputation, a scientific process required of vendors may interfere with matching, especially in more distant relatives who have tested on different platforms.
  • Imputation artifacts will be less obvious when people are more closely related, meaning closer relatives can be expected to match on more and larger segments and imputation errors make less difference.
  • Imputation will not cause close relatives, meaning 2C or closer, to not match each other.
  • In addition to not supporting segment matching information, Ancestry down-weights some segments, removes some matching DNA, and does not show shared matches below 20cM, causing some people to misinterpret their lack of common matches in various ways.
  • To resolve questions about matching issues at Ancestry, testers can transfer/upload their DNA files to MyHeritage, FamilyTreeDNA, and GEDmatch and look for consistent matches on the same segment. Start and end locations may vary to some extent between vendors, but the segment size should be basically in the same location and roughly the same size.
  • GEDmatch does not use imputation but allows larger non-matching segments to combine as a single segment which sometimes causes extremely “generous” matches. GEDmatch matching is less reliable than FamilyTreeDNA or MyHeritage, but you can adjust the matching thresholds.
  • The best situation for matching is for both people to test at the same vendor who supports and provides segment data and a chromosome browser such as 23andMe, FamilyTreeDNA, or MyHeritage.
  • Siblings cannot be used for triangulation because the most recent common ancestor (MRCA) between you and your siblings is your parents. Therefore, the “three” people in the triangulation group is reduced to two lines immediately.
  • Uncles and aunts should not be used for triangulation because the most recent common ancestors between you and your aunts and uncles are your grandparents.
  • Conversely, you should not consider triangulating with siblings and close family members of your matches as proof of an ancestral relationship.
  • A triangulation group of 3 people is only confirmation as far back as when two of those people’s lines converge and reach a common ancestor.
  • Identical by chance (IBC) matching occurs when DNA from the maternal and paternal sides are mixed positionally in the child to resemble a maternal/paternal side match with someone else.
  • Identical by chance DNA admixture (when compared to a match) could have occurred in your parents or grandparent’s generation, or earlier, so the further back in time that people in a triangulation group reach, the more reliable the triangulation group is likely to be.
  • The larger the segments and/or the triangulation group, the stronger the evidence for a specific confirmed common ancestor.
  • Early families with a very large number of descendants may have many matching and triangulated members, even 9 or 10 generations later.
  • While exactly 50% of each ancestor’s DNA is not passed in each generation, on average, you will carry 7 cM of your ancestors 10 generations back in your tree. However, you may carry more, or none.
  • The percentage of matching descendants decreases with each generation beyond great-grandparents.
  • The ideal situation for triangulation is a significant number of people, greater than three, who match on the same reasonably sized segment (7 cM/500 SNP or larger) and descend from the same ancestor (or ancestral couple) through different children whose spouses in descendant generations are not also related.
  • This means that tree completion is an important factor in match/triangulation reliability.
  • Triangulating through different children of the ancestral couple makes it significantly less likely that a different unknown common ancestor is contributing that segment of DNA – like an unknown wife in a descendant generation.

Whew!!!

The Bottom Line

Here’s the bottom line.

  1. Don’t use close relatives to triangulate.
  2. Use parents for Parental Phasing.
  3. Use Parental Cross-Matching when possible.
  4. Use close relatives to look for shared common matches that may lead to triangulation possibilities.
  5. Triangulate your close relatives’ DNA in addition to your own for bonus genealogical information. They will match people that you don’t.
  6. For the most reliable triangulation results, use the most distant relatives possible, descended through different children of the common ancestral couple.
  7. Keep this checklist of best practices, cautions, and caveats handy and check the list as necessary when evaluating the strength of any match or triangulation group. It serves as a good reminder for what to check if something seems “off” or unusual.

Feel free to share and pass this article (and checklist) on to your genealogy buddies and matches as you explain triangulation and collaborate on your genealogy.

Have fun!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

23andMe Changes: Triangulation Doesn’t Work the Same Way

23andMe made a significant change about the time I was recording my RootsTech presentation about triangulation which provided examples at each vendor. Unfortunately, there was no notification to customers, so most people still aren’t aware.

In the fall and winter of 2020, 23andMe made several changes that resulted in losses to the genealogy community.

At first glance, it looks like this particular change is cosmetic – simply a column heading title change – but there are modifications behind the scenes that negate triangulation at 23andMe. At least in the way triangulation previously worked with the functionality genealogists have long understood to be triangulation at 23andMe.

This article explains the changes, what they mean, and how to work around the issues.

Update

Please note that as of March 12, 2021, some of the changes seem to have reverted, but it’s unclear if all changes have reverted to the original status. It’s virtually impossible to confirm because testers cannot search for “Relatives in Common” by surname. Therefore, proceed by confirming that people who are marked as “Yes” for “DNA Overlap” do in fact triangulate on each overlapping segment using the techniques I’ve described below.

Triangulation

If you need a refresher about what triangulation means, how it works, and why it’s important, I’ve compiled triangulation resources into one article, Triangulation Resources in One Place.

Let’s look at what happened at 23andMe.

Before the Changes

Before the changes, it was possible to quickly determine if you triangulated with two other people on at least one segment by looking at the “Shared DNA” column. Now, it isn’t.

This change has HUGE ramifications.

Unfortunately, it’s easy to simply not notice the change or interpret the column heading change from “Shared DNA” to “DNA Overlap,” as unimportant, but that’s not at all the case.

A “Yes” in this column NO LONGER MEANS triangulation.

This change makes the 23andMe slides of my RootsTech session, DNA Triangulation: What, Why, and How, obsolete.

I’m rewriting that section, step by step, in this article.

Previous Information

Click any slide to enlarge

On slide 24 of my presentation, available here, I talked about clicking on a match, then scrolling down to the “Find Relatives in Common” link. If you click on that link, you see a list of who you and that match both match in common.

In this case, Everett Harold (not his surname) and I both match with my V4 kit, DH and Stacy.

That page, back then, had a column titled ‘Shared DNA.”

At that time, a “Yes” in “Shared DNA” meant that the three people triangulate on at least one segment. That’s not what it means now, and the column header has changed too.

What I said in the presentation was this:

“Looking under the Shared DNA column, the people with a Yes triangulate, and the people with a No, do not.

This means that Everett Harold, me, and DH triangulate. It also means that Everett Harold, Stacy, and I do NOT triangulate.”

Please ignore this and the next slide, #25, too, because the 23andMe page has changed – along with the meaning.

Just put what I said and what you think you know about how triangulation works at 23andMe out of your mind. If you haven’t yet watched my Triangulation session at RootsTech, please just simply skip those two slides (24 and 25) so you don’t confuse yourself with old and now irrelevant information.

We’re starting over here with triangulation at 23andMe.

Current 23andMe Information

Here’s the same 23andMe “Relatives in Common” page, today:

Click to enlarge

You can see that while Stacy was marked “No,” on the previous “Shared DNA” page, the column is now titled “DNA Overlap” and she is now marked “Yes.”

The new infographic says this:

Here’s what this change means:

  • Previously, if someone was marked as “Yes,” it meant that in fact all three people did share a common segment of DNA AND matched each other on at least one segment. That meant they triangulated on at least one segment.
  • Currently, this field only means that they share an overlapping piece of DNA with the tester. It DOES NOT mean that they all 3 match each other on that segment.
  • They may or may not triangulate.

You might be wondering how that’s different. It’s very different and quite important.

Overlap Versus Triangulation

Here’s an example of two people who both match me on chromosome 15 and are marked “Yes” in DNA Overlap. Based on this graphic alone, or that “yes,” you can’t determine if this overlapping segment means triangulation, where the orange and purple person also match each other, or not.

  • BOTH of these people match ME on chromosome 15.
  • If they also match each other on a reasonable portion of chromosome 15 where they both match me, then we all triangulate. A reasonable amount of matching DNA at 23andMe is 6 cM, their match threshold.
  • If those two people do not also match each other on a reasonably sized segment (6 cM) of chromosome 15, then we do not triangulate. This would indicate that one match is from my mother’s side, and one from my father’s side, or that perhaps one is identical by chance. In other words, we do not share a common ancestor on this segment which is the purpose of identifying triangulated segments.

Based on other comparisons which I’ll show you how to perform in a minute – the purple and orange people don’t match each other on this segment. Therefore, this segment is not triangulated between me and the purple and orange people.

Previously, for this match, the “Shared DNA” column was marked “No,” and now the “DNA Overlap” column is marked “Yes.”

The three of us don’t triangulate, and “DNA Overlap” now only means that the three people share some DNA on the same portion of a chromosome with me, NOT that they match each other, which would mean that we triangulate.

It’s a hugely important distinction.

Before, “Yes” meant triangulation and now “Yes” just means an overlap, but NOT necessarily triangulation. You have to figure that out for yourself.

Overlap at 23andMe

An overlap simply means that two people match you on the same portion of DNA.

Someone from your Mom’s side and someone else from your Dad’s side will both match you on a segment of DNA in the same location on a chromosome, shown above.  However, they won’t match each other because one is from your Mom’s side and one is from your Dad’s side. Your Mom’s DNA is different from your Dad’s.

To prove that you all three share a common ancestor, you all three need to match each other on the SAME reasonably sized overlapping chromosome segment.

However, things are even more confusing now at 23and Me.

An Additional Complication

23andMe now indicates that Everett and Stacy have a DNA overlap with me, but the chromosome browser shows NO overlap on any chromosome when I compare both Everett and Stacy to me on my chromosome browser.

How is no overlap even possible when Stacy is listed on the Shared Relatives list with me and Everett, AND 23andMe shows a yes for DNA Overlap?

I eventually found the answer, which makes match analysis much more cumbersome for genealogists. What used to be one step now takes several, not to mention the “yes” answer is now unreliable.

Essentially, all that “Yes” in the DNA Overlap field means is a hint for you to dig further.

Determining 23andMe Triangulation

It appears that the only way to tell if your two matches match each other on the same chromosome as you is to “Select different relatives or friends to compare” at the top of the chromosome browser page.

You’ll see your name plus the two people you were comparing against your DNA in the chromosome browser.

You’ve already seen how they match you on the chromosome browser. What you now need to view is how they match each other.

You can remove yourself, and replace your name with one of your two matches, as shown below.

This will show Everett’s chromosome with Stacy compared to him.

Everett and Stacy do match each other on two smallish segments, but not in the same locations as shown on their match with me.

This is Everett’s match with Stacy (purple).

I match Everett on chromosome 18, but not Stacy.

I match Stacy on chromosome 7, but not Everett.

There is no overlap shown.

Ok, I’m adding myself to Everett’s matches, just to double-check.

Next, we’re looking at Everett’s chromosomes in grey. Stacy is purple and I’m orange.

Overlap Issue

I’ve found the confusing overlap issue, but it only makes the situation worse.

Everett matches both me and Stacy on adjacent and very slightly overlapping portions of chromosome 18. However, the amount of DNA where I match Stacy on chromosome 18 is too small to be considered a match when compared to Stacy directly, meaning it’s less than 6 cM – the smallest 23andMe segment to show as a match. This tiny sliver of overlap only shows when comparing from Everett’s perspective where we can see his match to me and Stacy both on the same chromosome.

A secondary change is that now it appears that 23andMe is showing any small piece of overlapping DNA with a “Yes.” Any segment of DNA smaller than 6 cM, their match threshold, should not be listed as overlapping if we all three don’t match each other on at least 6 cM of DNA.

You can work around the changes 23andMe made, but it has made a one or two-step easy process into a more complicated, cumbersome multi-step procedure involving comparing multiple people to each other separately.

Summary

Previous Now
Column Title Shared DNA DNA Overlap
Triangulation Status Triangulation if “Yes” in the “Shared DNA” column Not an indication of triangulation, even if “Yes” in the “DNA Overlap” column
Triangulation Indicator “Yes” in the “Shared DNA” column None, triangulation not flagged

In summary, for triangulation now at 23andMe:

  • The DNA Overlap status of “yes” DOES NOT indicate triangulation.
  • The DNA Overlap status of “yes” indicates overlap on the same chromosome, not triangulation, meaning all three people do not necessarily match each other.
  • DNA Overlap status of “yes” MAY mean the three people triangulate, but further comparisons are needed.
  • DNA Overlap status of “yes” may refer to overlap smaller than 6 shared cM which is not reflected in individual one-to-one matches.
  • The DNA Overlap status of “yes” may therefore not be technically accurate in terms of genealogical matching and triangulation.
  • A DNA Overlap status of “no” means you do not overlap which means you cannot triangulate.
  • To determine triangulation, meaning if you and two other people all match each other if you share an overlapping segment of DNA on the same chromosome, compare each pair of people one-to-one in the chromosome browser.
  • If you do not find overlapping DNA when comparing three people one-to-one, try the same comparison to the other two people from the perspective of one of the other people in the group, as I did with Everett. This may reveal a small overlapping segment, as illustrated in this article on chromosome 18 when I showed me and Stacy on Everett’s chromosomes.

It’s worth noting here that every segment is different. Triangulation on any individual segment should not be extrapolated to mean triangulation on every common segment, even between the same three people, is valid for all overlapping segments. Evaluate each overlap separately.

This fundamental change makes triangulation at 23andMe much more difficult for the genealogist. Fortunately, there is a work-around.

Please feel free to share this article with anyone who may have tested at 23andMe and is using their tools for genealogical purposes.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

RootsTech Connect 2021: Comprehensive DNA Session List

I wondered exactly how many DNA sessions were at RootsTech this year and which ones are the most popular.

Unfortunately, we couldn’t easily view a list of all the sessions, so I made my own. I wanted to be sure to include every session, including Tips and Tricks and vendor sessions that might only be available in their booths. I sifted through every menu and group and just kept finding more and more buried DNA treasures in different places.

I’m sharing this treasure chest with you below. And by the way, this took an entire day, because I’ve listed the YouTube direct link AND how many views each session had amassed today.

Two things first.

Sales Extended

The Family Tree DNA RootsTech Sales prices including upgrades are still available – here.

  • The FamilyTreeDNA autosomal Family Finder testis now only $49. Click here to purchase using coupon code RTCTFF.
  • FamilyTreeDNAis offering the advanced tool unlock for only $9 after a free transfer through March 7th. Click here to sign on, upload your DNA file if you’ve tested elsewhere, and then unlock using code RTCAU10.

MyHeritage has extended their RootsTech deals too.

  • MyHeritage has waived the unlock fee of $29 if you transfer your DNA kit from another vendor between now and March 7th. You can upload, free, here. You’ll get all of the advanced tools for free.
  • The MyHeritage DNA kit is on sale for $79, here.

Neither Ancestry nor 23andMe had show sales, but you can purchase at their regular prices.

All serious genealogists will want to test at or transfer to all 4 major vendors and test their Y DNA and mitochondrial DNA at FamilyTreeDNA.

RootsTech Sessions

As you know, RootsTech was shooting for TED talk format this year. Roughly 20-minute sessions. When everything was said and done, there were five categories of sessions:

  • Curated sessions are approximately 20-minute style presentations curated by RootsTech meaning that speakers had to submit. People whose sessions were accepted were encouraged to break longer sessions into a series of two or three 20-minute sessions.
  • Vendor booth videos could be loaded to their virtual boots without being curated by RootsTech, but curated videos by their employees could also be loaded in the vendor booths.
  • DNA Learning Center sessions were by invitation and provided by volunteers. They last generally between 10-20 minutes.
  • Tips and Tricks are also produced by volunteers and last from 1 to 15 minutes. They can be sponsored by a company and in some cases, smaller vendors and service providers utilized these to draw attention to their products and services.
  • 1-hour sessions tend to be advanced and not topics could be easily broken apart into a series.

Look at this amazing list of 129 DNA or DNA-related sessions that you can watch for free for the next year. Be sure to bookmark this article so you can refer back easily.

Please note that I started compiling this list for myself and I’ve shortened some of the session names. Then I realized that if I needed this, so do you.

Top 10 Most-Viewed Sessions

I didn’t know whether I should list these sessions by speaker name, or by the most views, so I’m doing a bit of both.

Drum roll please…

The top 10 most viewed sessions as of today are:

Speaker/Vendor Session Title Type Link Views
Libby Copeland How Home DNA Testing Has Redefined Family History Curated Session https://youtu.be/LsOEuvEcI4A 13,554
Nicole Dyer Organize Your DNA Matches in a Diagram Tips and Tricks https://youtu.be/UugdM8ATTVo 6175
Roberta Estes DNA Triangulation: What, Why, and How 1 hour https://youtu.be/nIb1zpNQspY 6106
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 1 Curated Session https://youtu.be/bB7VJeCR6Bs 5866
Amy Williams Ancestor Reconstruction: Why, How, Tools Curated Session https://youtu.be/0D6lAIyY_Nk 5637
Drew Smith Before You Test Basics Part 1 Curated Session https://youtu.be/wKhMRLpefDI 5079
Nicole Dyer How to Interpret a DNA Cluster Chart Tips and Tricks https://youtu.be/FI4DaWGX8bQ 4982
Nicole Dyer How to Evaluate a ThruLines Hypothesis Tips and Tricks https://youtu.be/ao2K6wBip7w 4823
Kimberly Brown Why Don’t I Match my Match’s Matches DNA Learning Center https://youtu.be/A8k31nRzKpc 4593
Rhett Dabling, Diahan Southard Understanding DNA Ethnicity Results Curated Session https://youtu.be/oEt7iQBPfyM 4287

Libby Copeland must be absolutely thrilled. I noticed that her session was featured over the weekend in a highly prominent location on the RootsTech website.

Sessions by Speaker

The list below includes the English language sessions by speaker. I apologize for not being able to discern which non-English sessions are about DNA.

Don’t let a smaller number of views discourage you. I’ve watched a few of these already and they are great. I suspect that sessions by more widely-known speakers or ones whose sessions were listed in the prime-real estate areas have more views, but what you need might be waiting just for you in another session. You don’t have to pick and choose and they are all here for you in one place.

Speaker/Vendor Session Title Type Link Views
Alison Wilde SCREEN Method: A DNA Match Note System that Really Helps DNA Learning Center https://youtu.be/WaNnh_v1rwE 791
Amber Brown Genealogist-on-Demand: The Help You Need on a Budget You Can Afford Curated Session https://youtu.be/9KjlD6GxiYs 256
Ammon Knaupp Pattern of Genetic Inheritance DNA Learning Center https://youtu.be/Opr7-uUad3o 824
Amy Williams Ancestor Reconstruction: Why, How, Tools Curated Session https://youtu.be/0D6lAIyY_Nk 5637
Amy Williams Reconstructing Parent DNA and Analyzing Relatives at HAPI-DNA, Part 1 Curated Session https://youtu.be/MZ9L6uPkKbo 1021
Amy Williams Reconstructing Parent DNA and Analyzing Relatives at HAPI-DNA, Part 2 Curated Session https://youtu.be/jZBVVvJmnaU 536
Ancestry DNA Matches Curated Session https://youtu.be/uk8EKXLQYzs 743
Ancestry ThruLines Curated Session https://youtu.be/RAwimOgNgUE 1240
Ancestry Ancestry DNA Communities: Bringing New Discoveries to Your Family History Research Curated Session https://youtu.be/depeGW7QUzU 422
Andre Kearns Helping African Americans Trace Slaveholding Ancestors Using DNA Curated Session https://youtu.be/mlnSU5UM-nQ 2211
Barb Groth I Found You: Methods for Finding Hidden Family Members Curated Session https://youtu.be/J93hxOe_KC8 1285
Beth Taylor DNA and Genealogy Basics DNA Learning Center https://youtu.be/-LKgkIqFhL4 967
Beth Taylor What Do I Do With Cousin Matches? DNA Learning Center https://youtu.be/LyGT9B6Mh00 1349
Beth Taylor Using DNA to Find Unknown Relatives DNA Learning Center https://youtu.be/WGJ8IfuTETY 2166
David Ouimette I Am Adopted – How Do I Use DNA to Find My Parents? Curated Session https://youtu.be/-jpKgKMLg_M 365
Debbie Kennett Secrets and Surprises: Uncovering Family History Mysteries through DNA Curated Session https://youtu.be/nDnrIWKmIuA 2899
Debbie Kennett Genetic Genealogy Meets CSI Curated Session https://youtu.be/sc-Y-RtpEAw 589
Diahan Southard What is a Centimorgan Tips and Tricks https://youtu.be/uQcfhPU5QhI 2923
Diahan Southard Using the Shared cM Project DNA Learning Center https://youtu.be/b66zfgnzL0U 3172
Diahan Southard Understanding Ethnicity Results DNA Learning Center https://youtu.be/8nCMrf-yJq0 1587
Diahan Southard Problems with Shared Centimorgans DNA Learning Center https://youtu.be/k7j-1yWwGcY 2494
Diahan Southard 4 Next Steps for Your DNA Curated Session https://youtu.be/poRyCaTXvNg 3378
Diahan Southard Your DNA Questions Answered Curated Session https://youtu.be/uUlZh_VYt7k 3454
Diahan Southard You Can Do the DNA – We Can Help Tips and Tricks https://youtu.be/V5VwNzcVGNM 763
Diahan Southard What is a DNA Match? Tips and Tricks https://youtu.be/Yt_GeffWhC0 314
Diahan Southard Diahan’s Tips for DNA Matches Tips and Tricks https://youtu.be/WokgGVRjwvk 3348
Diahan Southard Diahan’s Tips for Y DNA Tips and Tricks https://youtu.be/QyH69tk-Yiw 620
Diahan Southard Diahan’s Tips about mtDNA testing Tips and Tricks https://youtu.be/6d-FNY1gcmw 2142
Diahan Southard Diahan’s Tips about Ethnicity Results Tips and Tricks https://youtu.be/nZFj3zCucXA 1597
Diahan Southard Diahan’s Tips about Which DNA Test to Take Tips and Tricks https://youtu.be/t–4R8H8q0U 2043
Diahan Southard Diahan’s Tips about When Your Matches Don’s Respond Tips and Tricks https://youtu.be/LgHtM3nS60o 3009
Diahan Southard Three Next Steps: Using Known Matches Tips and Tricks https://youtu.be/z1SVq8ME42A 118
Diahan Southard Three Next Steps: MRCA/DNA and the Paper Trail Tips and Tricks https://youtu.be/JB0cVyk-Y4Q 80
Diahan Southard Three Next Steps: Start With Known Matches Tips and Tricks https://youtu.be/BSNhaQCNtAo 68
Diahan Southard Three Next Steps: Additional Tools Tips and Tricks https://youtu.be/PqNPBLQSBGY 140
Diahan Southard Three Next Steps: Ancestry ThruLines Tips and Tricks https://youtu.be/KWayyAO8p_c 335
Diahan Southard Three Next Steps: MyHeritage Theory of Relativity Tips and Tricks https://youtu.be/Et2TVholbAE 80
Diahan Southard Three Next Steps: Who to Test Tips and Tricks https://youtu.be/GyWOO1XDh6M 111
Diahan Southard Three Next Steps: Genetics vs Genealogy Tips and Tricks https://youtu.be/Vf0DC5eW_vA 294
Diahan Southard Three Next Steps: Centimorgan Definition Tips and Tricks https://youtu.be/nQF935V08AQ 201
Diahan Southard Three Next Steps: Shared Matches Tips and Tricks https://youtu.be/AYcR_pB6xgA 233
Diahan Southard Three Next Steps: Case Study – Finding an MRCA Tips and Tricks https://youtu.be/YnlA9goeF7w 256
Diahan Southard Three Next Steps: Why Use DNA Tips and Tricks https://youtu.be/v-o4nhPn8ww 266
Diahan Southard Three Next Steps: Finding Known Matches Tips and Tricks https://youtu.be/n3N9CnAPr18 688
Diana Elder Using DNA Ethnicity Estimates in Your Research Tips and Tricks https://youtu.be/aJgUK3TJqtA 1659
Diane Elder Using DNA in a Client Research Project to Solve a Family Mystery 1 hour https://youtu.be/ysGYV6SXxR8 1261
Donna Rutherford DNA and the Settlers of Taranaki, New Zealand Curated Session https://youtu.be/HQxFwie4774 214
Drew Smith Before You Test Basics Part 1 Curated Session https://youtu.be/wKhMRLpefDI 5079
Drew Smith Before You Test Basics Part 2 Curated Session https://youtu.be/Dopx04UHDpo 2769
Drew Smith Before You Test Basics Part 3 Curated Session https://youtu.be/XRd2IdtA-Ng 2360
Elena Fowler Whakawhanaungatanga Using DNA – It’s Complicated (Māori heritage) Curated Session https://youtu.be/6XTPMzVnUd8 470
Elena Fowler Whakawhanaungatanga Using DNA – FamilyTreeDNA (Māori heritage) Curated Session https://youtu.be/fM85tt5ad3A 269
Elena Fowler Whakawhanaungatanga Using DNA – Ancestry (Māori heritage) Curated Session https://youtu.be/-byO6FOfaH0 191
Esmee Mortimer-Taylor Living DNA: Anathea Ring – Her Story Tips and Tricks https://youtu.be/MTE4UFKyLRs 189
Esmee Mortimer-Taylor Living DNA: Coretta Scott King Academy – DNA Results Reveal Tips and Tricks https://youtu.be/CK1EYcuhqmc 82
Fonte Felipe Ethnic Filters and DNA Matches: The Way Forward to Finding Your Lineage Curated Session https://youtu.be/mt2Rv2lpj7o 553
FTDNA – Janine Cloud Big Y: What is it? Why Do I Need It? Curated Session https://youtu.be/jiDcjWk4cVI 2013
FTDNA – Sherman McRae Using DNA to Find Ancestors Lost in Slavery Curated Session https://youtu.be/i3VKwpmttBI 738
Jerome Spears Elusive Distant African Cousins: Using DNA, They Can Be Found Curated Session https://youtu.be/fAr-Z78f_SM 335
Karen Stanbary Ruling Out Instead of Ruling In: DNA and the GPS in Action 1 hour https://youtu.be/-WLhIHlSyLE 548
Katherine Borges DNA and Lineage Societies Tips and Tricks https://youtu.be/TBYGyLHHAOI 451
Kimberly Brown Why Don’t I Match my Match’s Matches DNA Learning Center https://youtu.be/A8k31nRzKpc 4593
Kitty Munson Cooper Basics of Unknown Parentage Research Using DNA Part 1 Curated Session https://youtu.be/2f3c7fJ74Ig 2931
Kitty Munson Cooper Basics of Unknown Parentage Research Using DNA Part 2 Curated Session https://youtu.be/G7h-LJPCywA 1222
Lauren Vasylyev Finding Cousins through DNA Curated Session https://youtu.be/UN7WocQzq78 1979
Lauren Vasylyev, Camille Andrus Finding Ancestors Through DNA Curated Session https://youtu.be/4rbYrRICzrQ 3919
Leah Larkin Untangling Endogamy Part 1 Curated Session https://youtu.be/0jtVghokdbg 2291
Leah Larkin Untangling Endogamy Part 2 Curated Session https://youtu.be/-rXLIZ0Ol-A 1441
Liba Casson-Budell Shining a Light on Jewish Genealogy Curated Session https://youtu.be/pHyVz94024Y 162
Libby Copeland How Home DNA Testing Has Redefined Family History Curated Session https://youtu.be/LsOEuvEcI4A 13,554
Linda Farrell Jumpstart your South African research Curated Session https://youtu.be/So7y9_PBRKc 339
Living DNA How to do a Living DNA Swab Tips and Tricks https://youtu.be/QkbxhqCw7Mo 50
Lynn Broderick Ethical Considerations Using DNA Results Curated Session https://youtu.be/WMcRiDxPy2k 249
Mags Gaulden Importance and Benefits of Y DNA Testing DNA Learning Center https://youtu.be/MVIiv0H7imI 1032
Maurice Gleeson Using Y -DNA to Research Your Surname Curated Session https://youtu.be/Ir4NeFH_aJs 1140
Melanie McComb Georgetown Memory Project: Preserving the Stories of the GU272 Curated Session https://youtu.be/Fv0gHzTHwPk 320
Michael Kennedy What Can You Do with Your DNA Test? DNA Learning Center https://youtu.be/rKOjvkqYBAM 616
Michelle Leonard Understanding X-Chromosome DNA Matching Curated Session https://youtu.be/n784kt-Xnqg 775
MyHeritage How to Analyze DNA Matches on MH Curated Session https://youtu.be/gHRvyQYrNds 1192
MyHeritage DNA – an Overview Curated Session https://youtu.be/AIRGjEOg_xo 389
MyHeritage Advanced DNA Tools Curated Session https://youtu.be/xfZUAjI5G_I 762
MyHeritage How to Get Started with Your DNA Matches Tips and Tricks https://youtu.be/rU_dq1vt6z4 1901
MyHeritage How to Filter and Sort Your DNA Matches Tips and Tricks https://youtu.be/aJ7dRwMTt90 1008
Nicole Dyer How to Interpret a DNA Cluster Chart Tips and Tricks https://youtu.be/FI4DaWGX8bQ 4982
Nicole Dyer How to Evaluate a ThruLines Hypothesis Tips and Tricks https://youtu.be/ao2K6wBip7w 4823
Nicole Dyer Organize Your DNA Matches in a Diagram Tips and Tricks https://youtu.be/UugdM8ATTVo 6175
Nicole Dyer Research in the Southern States Curated Session https://youtu.be/Pouw_yPrVSg 871
Olivia Fordiani Understanding Basic Genetic Genealogy DNA Learning Center https://youtu.be/-kbGOFiwH2s 810
Pamela Bailey Information Wanted: Reuniting an American Family Separated by Slavery Tips and Tricks https://youtu.be/DPCJ4K8_PZw 105
Patricia Coleman Getting Started with DNA Painter DNA Learning Center https://youtu.be/Yh_Bzj6Atck 1775
Patricia Coleman Adding MyHeritage Data to DNA Painter DNA Learning Center https://youtu.be/rP9yoCGjkLc 458
Patricia Coleman Adding 23andMe Data to DNA Painter DNA Learning Center https://youtu.be/pJBAwe6s0z0 365
Penny Walters Mixing DNA with Paper Trail DNA Learning Center https://youtu.be/PP4SjdKuiLQ 2693
Penny Walters Collaborating with DNA Matches When You’re Adopted DNA Learning Center https://youtu.be/9ioeCS22HlQ 1222
Penny Walters Differences in Ethnicity Between My 6 Children DNA Learning Center https://youtu.be/RsrXLcXRNfs 400
Penny Walters Differences in DNA Results Between My 6 Children DNA Learning Center https://youtu.be/drnzW3FXScI 815
Penny Walters Ethical Dilemmas in DNA Testing DNA Learning Center https://youtu.be/PRPoc0nB4Cs 437
Penny Walters Adoption – Background Context Curated Session https://youtu.be/qC1_Ln8WCNg 1054
Penny Walters Adoption – Utilizing DNA Testing to Construct a Bio Family Tree Curated Session https://youtu.be/zwJ5QofaGTE 941
Penny Walters Adoption – Ethical Dilemmas and Varied Consequences of Looking for Bio Family Curated Session https://youtu.be/ZLcHHTSfCIE 576
Penny Walters I Want My Mummy: Ancient and Modern Egypt Curated Session https://youtu.be/_HRO50RtzFk 311
Rebecca Whitman Koford BCG: Brief Step-by-Step Tour of the BCG Website Tips and Tricks https://youtu.be/YpV9bKG6sXk 317
Renate Yarborough Sanders DNA Understanding the Basics DNA Learning Center https://youtu.be/bX_flUQkBEA 2713
Renate Yarborough Sanders To Test or Not to Test DNA Learning Center https://youtu.be/58-qzvN4InU 1048
Rhett Dabling Finding Ancestral Homelands Through DNA Curated Session https://youtu.be/k9zixg4uL1I 505
Rhett Dabling, Diahan Southard Understanding DNA Ethnicity Results Curated Session https://youtu.be/oEt7iQBPfyM 4287
Richard Price Finding Biological Family Tips and Tricks https://youtu.be/L9C-SGVRZLM 101
Robert Kehrer Will They Share My DNA (Consent, policies, etc.) DNA Learning Center https://youtu.be/SUo-jpTaR1M 480
Robert Kehrer What is a Centimorgan? DNA Learning Center https://youtu.be/dopniLw8Fho 1194
Roberta Estes DNA Triangulation: What, Why and How 1 hour https://youtu.be/nIb1zpNQspY 6106
Roberta Estes Mother’s Ancestors DNA Learning Center https://youtu.be/uUh6WrVjUdQ 3074
Robin Olsen Wirthlin How Can DNA Help Me Find My Ancestors? Curated Session https://youtu.be/ZINiyKsw0io 1331
Robin Olsen Wirthlin DNA Tools Bell Curve Tips and Tricks https://youtu.be/SYorGgzY8VQ 1207
Robin Olsen Wirthlin DNA Process Trees Guide You in Using DNA in Family History Research Tips and Tricks https://youtu.be/vMOQA3dAm4k 1708
Shannon Combs-Bennett DNA Basics Made Easy DNA Learning Center https://youtu.be/4JcLJ66b0l4 1560
Shannon Combs-Bennett DNA Brick Walls DNA Learning Center https://youtu.be/vtFkT_PSHV0 450
Shannon Combs-Bennett Basics of Genetic Genealogy Part 1 Curated Session https://youtu.be/xEMbirtlBZo 2263
Shannon Combs-Bennett Basics of Genetic Genealogy Part 2 Curated Session https://youtu.be/zWMPja1haHg 1424
Steven Micheleti, Joanna Mountain Genetic Consequences of the Transatlantic Slave Trade Part 1 Curated Session https://youtu.be/xP90WuJpD9Q 2284
Steven Micheleti, Joanna Mountain Genetic Consequences of the Transatlantic Slave Trade Part 2 Curated Session https://youtu.be/McMNDs5sDaY 742
Thom Reed How Can Connecting with Ancestors Complete Us? Curated Session https://youtu.be/gCxr6W-tkoY 392
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 1 Curated Session https://youtu.be/bB7VJeCR6Bs 5866
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 2 Curated Session https://youtu.be/scOtMyFULGI 3008
Ugo Perego Strengths and Limitations of Genetic Testing for Family History DNA Learning Center https://youtu.be/XkBK1y-LVaE 480
Ugo Perego A Personal Genetic Journey DNA Learning Center https://youtu.be/Lv9CSU50xCc 844
Ugo Perego Discovering Native American Ancestry through DNA Curated Session https://youtu.be/L1cs748ctx0 884
Ugo Perego Mitochondrial DNA: Our Maternally-Inherited Family History Curated Session https://youtu.be/Z5bPTUzewKU 599
Vivs Laliberte Introduction to Y DNA DNA Learning Center https://youtu.be/rURyECV5j6U 752
Yetunde Moronke Abiola 6% Nigerian: Tracing my Missing Nigerian Ancestor Curated Session https://youtu.be/YNQt60xKgyg 494

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Customize Your RootsTech Conference: 96 DNA Sessions to Choose From!

Some of the RootsTech Connect 2021 speakers. Courtesy of FamilySearch and the speakers, of course.

We should have been in Salt Lake City this past week, but alas, we’ll all be getting together virtually instead during February 25-27.

As much as I regret not being able to see people, in person, (boy, do I ever miss that), there are GOOD things about RootsTech this year.

This year’s RootsTech Connect is virtual, so we DO get to attend. We haven’t lost out entirely. The conference is entirely free, and every session was recorded by the presenters. As you watch these sessions, say a thank you to the presenters, because trust me, the recording experience (which took days) was an adventure most of us don’t exactly want to repeat.

RootsTech Connect 2021 has been a learning experience for everyone and I want to say a huge, HUGE, thank you to FamilySearch and the team who has been working diligently trying to figure out the inner machinations of something this gargantuan! To use one of their analogies, on a call someone said that it’s like they are designing the airplane as they are flying. I’d say that’s a pretty apt description.

Virtual means that you can register and watch at your own convenience. As badly as I do want to see everyone in 2022 in Salt Lake, I really hope RootsTech records the sessions there and offers them afterward. The combination of free and online on-demand has dramatically extended the RootsTech reach which means more genealogists and more DNA testers – both of which are a good thing.

Not everyone can go to Salt Lake City and the sheer number of people who have registered bears testimony to the popularity of an inclusive event. Normally, there are about 40K people that attend RootsTech in person. There are already more than a quarter-million people registered this year and we still have several days to go. Of course, everyone can afford RootsTech this year, because it’s entirely free and no travel is required.

If you haven’t yet registered, you can do so here.

Who’s Attending?

After you register, you can see how many of your relatives, at least according to your FamilySearch tree, are also attending Rootstech 2021.

During, but not before the conference begins, you’ll be able to see who those cousins are and communicate back and forth.

This is the link to see how many of your relatives have registered.

On this same page, if you scroll towards the bottom, you can see how many people with a particular surname are registered.

During the conference, you’ll be able to message back and forth with friends and relatives. Maybe they’ve DNA tested, and if not, maybe they would like to! If the past is any indication, FamilySearch shows you how you are related to each relative. It functions similarly to their fun “Famous Relative” app. (Insert appropriate grain-of-salt, verify everything warning here.)

You know you want to type in your “difficult” surnames to see if maybe, just maybe, someone with that surname is attending😊.

24×7

This year’s conference is unique because it will run 24×7. Of course, staff, attendees, and exhibitors can’t stay up for 3 days straight and be anything resembling coherent – but it’s always daytime someplace in the world. I can’t help but see the image in my mind of RootsTech rotating around the world.

Sessions

The session format has changed this year. Most sessions are 20 minutes, not an hour. Think genealogy TED talks from your favorite presenters. There are a few advanced sessions that are an hour in length.

For example, my session, DNA Triangulation: What, Why, and How was just too in-depth for 20 minutes or even two 20-minute sessions, so it’s the traditional hour-long session.

We’ll cover a lot in that time, beginning with a definition of triangulation, why you want to use triangulation, how triangulation works, and an overview of how to use triangulation at each vendor. I hope you’ll plan on attending.

A Plethora of Riches

There are more than 800 RootsTech sessions in total, in a multitude of languages, including some also presented in American Sign Language.

You can take a look at the sessions in English and ASL, here. The list of sessions in other languages will be available soon.

Furthermore, there will be an open chat session for each class where you can ask questions. Each presentation will have a chat room monitor answering questions, and the presenter will drop in from time to time during the three conference days.

Celebrate

I printed all 18 pages and I’m customizing a conference for myself. The good news is that we’re not constrained to three days because we can watch sessions later.

I have to tell you, when I’m at RootsTech, I do use the mobile conference app to schedule the sessions I want to see, but the show is draining and I meet so many people I want to talk to. That means I often don’t get to see several speaker sessions that I planned to attend.

This year, everyone will have the option to see every single session!

I’m planning to make “the conference” a bit festive for myself. I’m going to set my laptop up in my quilt studio, not in my office, so I can be “off work.”

Yes, I’ll be quilting and conferencing at the same time. And if I can’t do both simultaneously, then at least I’ll be enjoying the conference “on pandemic vacation” in another part of my house, away from my office. I think I’ll eat naughty food and chocolate to celebrate too😊.

Now if I could just find some of those lovely hot roasted almonds and kettle corn that we can smell wafting throughout the convention center…but I digress.

No Set “Schedule”

There is no conference “schedule,” per se. Registrants will sign in to the conference and be able to participate in a multitude of activities. You’ll be able to watch keynotes on the main state, listen to speaker sessions, visit the expo hall or the DNA Basics Learning Center, and more.

Many vendors will be sponsoring free sessions too in their booths, along with providing the opportunity for attendees to ask questions.

Keynote Speakers

Keynote speakers always appear on the Main Stage, the largest auditorium space in Salt Lake City.

This year, you’ll join the “Main Stage” area in the virtual conference to watch the keynote speakers. These sessions will be recorded and repeat too.

Click to enlarge

Notice the time conversion chart.

Hint – I have a World Clock on my phone, which I use to figure out what time it is in other locations. Furthermore, you can schedule an appointment in your calendar if you want to be “present” for a particular session or event and set an alert to remind you a few minutes in advance.

You can read about the keynote speakers, here.

The Expo Hall

The Expo Hall, or the show floor, is one of my favorite parts of RootsTech. I love to see what’s new along with vendor-specific presentations in their booths. Vendors will be hosting presentations this year too, although you’ll need to check out the Expo Hall and the show floor for yourself to see who is hosting sessions, when, and which ones you might like to attend. Pay close attention, because vendor sessions may NOT be available later.

Of course, vendors will be anxious to answer your questions and glad to sell you some of their wares. These companies need our support right now.

RootsTech DNA Basics Learning Center

After the Expo Hall opens, you’ll have access to the DNA Basics Learning Center that will offer additional DNA sessions focused on beginners. This is IN ADDITION to the regular conference sessions.

These 20-minute back-to-basics sessions have been contributed by volunteers to provide a foundation of genetic genealogy education. The schedule is being finalized, but I can tell you that there are more than 35 sessions.

You’ll find educators you’re familiar with, and probably some new people too.

You might have already guessed that I’ve recorded a session for the Learning Center: Revealing Your Mother’s Ancestors and Where They Came From.

Like with the other sessions, there will be an online chat forum for these sessions too.

There will be a schedule, but the classes will all be available afterward in the “on-demand” library. How cool is that!

There’s More…

There’s more too. Volunteers in the genealogy community have recorded what I would call bite-sized tidbits of genealogy goodness. I’m not sure exactly what they are officially called, but I know they’re mini-classes that will be available during the conference. Think genealogy Brownie Bites.

Between the regular sessions, the DNA Learning Center, the genealogy mini-classes, and vendor presentations, one of the FamilySearch folks said they are processing 1800+ recorded presentations. I can’t even begin to imagine what they are dealing with! But from an attendee’s perspective, this is a smorgasbord so long you can’t see the end.

Customizing Your Personal Conference Plan

I counted 59 DNA sessions on the regular Session list, plus 37 or so in the DNA Basics Learning Center. Not included in that total are sessions on the non-English list yet to be released, vendor presentations, and mini-sessions.

You could watch just DNA sessions for days and days.

It’s ironic that a few years ago, we couldn’t get even one DNA session on the agenda of most conferences – and now, I don’t even recognize all the speakers presenting about DNA topics. DNA has become a mainstream, fundamental, inextricable tool for genealogy. I suspect genetic genealogy will have a supporting role, maybe making a cameo appearance in other sessions too.

I hope that everyone enjoys the conference and fine-tunes techniques for using DNA to increase genealogy effectiveness. Confirm your ancestors, meet new cousins and break down those brick walls.

Print the Session list and the Learning Center list when it’s released, and create a customized conference for yourself. My personal conference will assuredly be longer than three days.

I think after the actual RootsTech conference, I’ll probably select one or two sessions each day and schedule them on my calendar. RootsTech 2021 might just last all year.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Free Webinar: Revealing Your Mother’s Ancestors & Where They Came From

I want to personally invite everyone to “save the date” for the free presentation I’ve created for the RootsTech DNA Basics Learning Center.

Those of you who have attended RootsTech in person in Salt Lake City over the past couple of years may have noticed the DNA Center sponsored by FamilySearch that provides non-vendor-specific DNA education for everyone.

You probably remember their DNA beans explaining the concept of random autosomal inheritance.

That tidy little package is “you.” The genealogical goal, of course, is to work backwards and figure out who, in your tree, those jellybean colors represent.

This year we won’t be gathering together in Salt Lake City, so it will be a bring-your-own-jellybeans event. However, the DNA Learning Center will be available virtually – which is actually a great benefit.

I know, I want to see everyone too – but in this case, the sessions are recorded and will be available for everyone worldwide so we can educate far more people than on the show floor.

Revealing Your Mother’s Ancestors & Where They Came From

In addition to my regular session, which I’ll write about as soon as the schedule is finalized, I volunteered to create a basic presentation for the DNA Learning Center. DNA is critically important to genealogy and I want everyone to enjoy that benefit.

As everyone knows, maternal ancestors are often challenging for a variety of reasons. Because surnames change with marriage, at least in most western cultures, females’ birth surnames are more prone to be missing. Fortunately, DNA has provided genealogists with two different tools to help overcome those challenges.

Mitochondrial DNA is focused only on your direct matrilineal (your mother’s mother’s mother’s) line, and autosomal DNA can be inherited from any ancestor. However, there are tools and techniques that allow us to hone autosomal results and use them selectively.

I’ll be covering inheritance and how to utilize both autosomal and mitochondrial DNA, including haplogroups, for your genealogy. Both separately, and together.

We’ll discuss how a cousin and I collaborated, using both types of DNA in addition to traditional genealogical records to break through one of those “no surname” brick walls six generations in the past. That breakthrough then revealed several MORE generations, like dominoes falling in quick succession.

Those pesky ancestors had moved from Long Island to New Jersey to Virginia leaving no backward trail. Cleary, not your normal migration pattern. This mystery absolutely could NOT have been solved without mitochondrial DNA pointing the way.

When and Where?

The where is easy – on your computer or device, of course.

Currently, this free session is scheduled to air twice, so mark your calendar:

  • February 25 – 3 PM EST – captioned in English
  • February 27 – 1 PM EST – captioned in Spanish

FamilySearch is providing volunteers to answer questions entered into the online chat during all of the DNA Learning Center sessions, including mine. I plan to “be there” to answer questions too, as will several other volunteers. Some volunteers will speak Spanish on the 27th. Unfortunately, I don’t speak Spanish, so I’ll be restricted to answering questions in English.

When the entire 3-day DNA Learning Center schedule is finalized, I’ll post and give a huge shout-out to the other volunteer speakers too.

While we wait for Rootstech to arrive, you still have time to order mitochondrial or autosomal DNA tests, below.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Into the Silence

I really want to encourage each and every one of you to work and speak “into the silence.”

What do I mean by that?

When we document something, write something or make something – we do so alone. Just like I’m doing right this minute. I’m writing “into the silence” because I’m writing on faith that people will read and, fingers-crossed, enjoy and utilize my articles.

Often, we write or create with the hope that some particular person, or persons, will appreciate our endeavors. Maybe we created a loving holiday or birthday gift for someone special.

Or, perhaps, our goal is less specific and more intangible.

Think, for example, of a journal.

Each person who writes in a journal generally isn’t journaling for someone else. If so, the “someone else” is a matter of faith – that they *will* exist someday in the future. Journaling is private and the eventual consumer, if they ever exist, is a byproduct of the journaling process, an accident.

In essence, the diarist is writing into the silence because the future is uncertain. Those future readers may not exist. That journal may not survive.

I ask you to ponder how grateful you would be, today, for your great-grandmother’s journal detailing everyday life in her house and garden. Her trips to the market, how and when she did laundry, did it rain or snow, are the tomatoes ripe, who misbehaved at church, along with her thoughts on what was happening in her life and neighborhood.

Or your great-grandfather’s journal about his time separated from his family while in the military serving his country. Did he serve in the Civil War or in WWI, living in a tent-hospital during the 1918 Spanish Flu pandemic? What was that experience like on a personal level?

Maybe letters from your ancestor as they made their way to a new country, seasick the entire time, but filled with hope.

What I’d give for any of those!

Today, maybe you’ve created a book about one of your ancestral lines. Or, maybe you took weeks to sort out, assemble, scan, and organize the photos of your grandparents to share with your siblings.

And perhaps no one even bothered to acknowledge your gift or say thank you. Did they even look at them? Do they care, at all?

That would leave anyone somewhat dejected with hurt feelings.

But if you think about it, what you’re really doing is writing, creating, into the silence.

Not their silence today. No, not that.

But the larger silence of time and space that exists between you and future generations. Without your endeavors, they have no opportunity to glimpse today, or your shared past.

This silence – this silence is what connects you. The umbilical cord that links them to their ancestors through you.

That document, or collage, or scrapbook, or quilt – whatever you created out of love will, hopefully, be passed along. A form of prayer on wings – winging its way to the future with a mission of its own.

The person who will most cherish that gift across time, who will love you for it even though they will never meet you, hasn’t yet been born.

So, I encourage you to continue to honor your ancestors, to tell their stories, to document their lives – and your own.

Yes, someone will care.

Speak into the silence by testing your DNA and making sure it’s available for future genealogists. By researching and documenting your ancestral lines. By ensuring that your work is photographed if it’s a quilt or scrapbook. By placing stories and other writing into repositories where they will be available for those listening future generations even if the current generations seem to be stone-cold deaf.

In my case, my 52 Ancestors stories fall into that category. I’ve written one each week for 320 weeks now, more than six years as hard as that is to believe, and I’m no place near finished. I search for the Y and mitochondrial DNA of each ancestor and document discoveries.

I’m planning to compile the articles, by family line, into books. I will probably use a self-publishing platform such as LuLu.com to assure that their stories are available indefinitely. I’ve linked each ancestor’s story to the proper ancestor on my tree at Ancestry and MyHeritage and I’m in the process at WikiTree as well.

I’ll be donating the books, when created, to various local and regional libraries and genealogy/historical societies, along with both the Allen County Public Library and Family History Library in Salt Lake City.

Remember that activities, pictures, stories, and memories that seem mundane to you today will be someone else’s goldmine happy-dance one day.

It’s not so much the silence we’re speaking into, but acting to honor the past and present for future generations – on faith that someone “out there” will care. We are being that ancestor who we wish would have left something, anything, telling us about their lives and family. How they felt, what they did, what was transpiring around them.

Especially in difficult and trying times, keep on doing what you’re doing and answering that call.

Be encouraged, take heart, and know that your efforts today will cause your name to be spoken with gratitude long after you’ve left this realm.