Free Webinar: Revealing Your Mother’s Ancestors & Where They Came From

I want to personally invite everyone to “save the date” for the free presentation I’ve created for the RootsTech DNA Basics Learning Center.

Those of you who have attended RootsTech in person in Salt Lake City over the past couple of years may have noticed the DNA Center sponsored by FamilySearch that provides non-vendor-specific DNA education for everyone.

You probably remember their DNA beans explaining the concept of random autosomal inheritance.

That tidy little package is “you.” The genealogical goal, of course, is to work backwards and figure out who, in your tree, those jellybean colors represent.

This year we won’t be gathering together in Salt Lake City, so it will be a bring-your-own-jellybeans event. However, the DNA Learning Center will be available virtually – which is actually a great benefit.

I know, I want to see everyone too – but in this case, the sessions are recorded and will be available for everyone worldwide so we can educate far more people than on the show floor.

Revealing Your Mother’s Ancestors & Where They Came From

In addition to my regular session, which I’ll write about as soon as the schedule is finalized, I volunteered to create a basic presentation for the DNA Learning Center. DNA is critically important to genealogy and I want everyone to enjoy that benefit.

As everyone knows, maternal ancestors are often challenging for a variety of reasons. Because surnames change with marriage, at least in most western cultures, females’ birth surnames are more prone to be missing. Fortunately, DNA has provided genealogists with two different tools to help overcome those challenges.

Mitochondrial DNA is focused only on your direct matrilineal (your mother’s mother’s mother’s) line, and autosomal DNA can be inherited from any ancestor. However, there are tools and techniques that allow us to hone autosomal results and use them selectively.

I’ll be covering inheritance and how to utilize both autosomal and mitochondrial DNA, including haplogroups, for your genealogy. Both separately, and together.

We’ll discuss how a cousin and I collaborated, using both types of DNA in addition to traditional genealogical records to break through one of those “no surname” brick walls six generations in the past. That breakthrough then revealed several MORE generations, like dominoes falling in quick succession.

Those pesky ancestors had moved from Long Island to New Jersey to Virginia leaving no backward trail. Cleary, not your normal migration pattern. This mystery absolutely could NOT have been solved without mitochondrial DNA pointing the way.

When and Where?

The where is easy – on your computer or device, of course.

Currently, this free session is scheduled to air twice, so mark your calendar:

  • February 25 – 3 PM EST – captioned in English
  • February 27 – 1 PM EST – captioned in Spanish

FamilySearch is providing volunteers to answer questions entered into the online chat during all of the DNA Learning Center sessions, including mine. I plan to “be there” to answer questions too, as will several other volunteers. Some volunteers will speak Spanish on the 27th. Unfortunately, I don’t speak Spanish, so I’ll be restricted to answering questions in English.

When the entire 3-day DNA Learning Center schedule is finalized, I’ll post and give a huge shout-out to the other volunteer speakers too.

While we wait for Rootstech to arrive, you still have time to order mitochondrial or autosomal DNA tests, below.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Genetic Genealogy at 20 Years: Where Have We Been, Where Are We Going and What’s Important?

Not only have we put 2020 in the rear-view mirror, thankfully, we’re at the 20-year, two-decade milestone. The point at which genetics was first added to the toolbox of genealogists.

It seems both like yesterday and forever ago. And yes, I’ve been here the whole time,  as a spectator, researcher, and active participant.

Let’s put this in perspective. On New Year’s Eve, right at midnight, in 2005, I was able to score kit number 50,000 at Family Tree DNA. I remember this because it seemed like such a bizarre thing to be doing at midnight on New Year’s Eve. But hey, we genealogists are what we are.

I knew that momentous kit number which seemed just HUGE at the time was on the threshold of being sold, because I had inadvertently purchased kit 49,997 a few minutes earlier.

Somehow kit 50,000 seemed like such a huge milestone, a landmark – so I quickly bought kits, 49,998, 49,999, and then…would I get it…YES…kit 50,000. Score!

That meant that in the 5 years FamilyTreeDNA had been in business, they had sold on an average of 10,000 kits per year, or 27 kits a day. Today, that’s a rounding error. Then it was momentous!

In reality, the sales were ramping up quickly, because very few kits were sold in 2000, and roughly 20,000 kits had been sold in 2005 alone. I know this because I purchased kit 28,429 during the holiday sale a year earlier.

Of course, I had no idea who I’d test with that momentous New Year’s Eve Y DNA kit, but I assuredly would find someone. A few months later, I embarked on a road trip to visit an elderly family member with that kit in tow. Thank goodness I did, and they agreed and swabbed on the spot, because they are gone today and with them, the story of the Y line and autosomal DNA of their branch.

In the past two decades, almost an entire generation has slipped away, and with them, an entire genealogical library held in their DNA.

Today, more than 40 million people have tested with the four major DNA testing companies, although we don’t know exactly how many.

Lots of people have had more time to focus on genealogy in 2020, so let’s take a look at what’s important? What’s going on and what matters beyond this month or year?

How has this industry changed in the last two decades, and where it is going?

Reflection

This seems like a good point to reflect a bit.

Professor Dan Bradley reflecting on early genetic research techniques in his lab at the Smurfit Institute of Genetics at Trinity College in Dublin. Photo by Roberta Estes

In the beginning – twenty years ago, there were two companies who stuck their toes in the consumer DNA testing water – Oxford Ancestors and Family Tree DNA. About the same time, Sorenson Genomics and GeneTree were also entering that space, although Sorenson was a nonprofit. Today, of those, only FamilyTreeDNA remains, having adapted with the changing times – adding more products, testing, and sophistication.

Bryan Sykes who founded Oxford Ancestors announced in 2018 that he was retiring to live abroad and subsequently passed away in 2020. The website still exists, but the company has announced that they have ceased sales and the database will remain open until Sept 30, 2021.

James Sorenson died in 2008 and the assets of Sorenson Molecular Genealogy Foundation, including the Sorenson database, were sold to Ancestry in 2012. Eventually, Ancestry removed the public database in 2015.

Ancestry dabbled in Y and mtDNA for a while, too, destroying that database in 2014.

Other companies, too many to remember or mention, have come and gone as well. Some of the various company names have been recycled or purchased, but aren’t the same companies today.

In the DNA space, it was keep up, change, die or be sold. Of course, there was the small matter of being able to sell enough DNA kits to make enough money to stay in business at all. DNA processing equipment and a lab are expensive. Not just the equipment, but also the expertise.

The Next Wave

As time moved forward, new players entered the landscape, comprising the “Big 4” testing companies that constitute the ponds where genealogists fish today.

23andMe was the first to introduce autosomal DNA testing and matching. Their goal and focus was always medical genetics, but they recognized the potential in genealogists before anyone else, and we flocked to purchase tests.

Ancestry settled on autosomal only and relies on the size of their database, a large body of genealogy subscribers, and a widespread “feel-good” marketing campaign to sell DNA kits as the gateway to “discover who you are.”

FamilyTreeDNA did and still does offer all 3 kinds of tests. Over the years, they have enhanced both the Y DNA and mitochondrial product offerings significantly and are still known as “the science company.” They are the only company to offer the full range of Y DNA tests, including their flagship Big Y-700, full sequence mitochondrial testing along with matching for both products. Their autosomal product is called Family Finder.

MyHeritage entered the DNA testing space a few years after the others as the dark horse that few expected to be successful – but they fooled everyone. They have acquired companies and partnered along the way which allowed them to add customers (Promethease) and tools (such as AutoCluster by Genetic Affairs), boosting their number of users. Of course, MyHeritage also offers users a records research subscription service that you can try for free.

In summary:

One of the wonderful things that happened was that some vendors began to accept compatible raw DNA autosomal data transfer files from other vendors. Today, FamilyTreeDNA, MyHeritage, and GEDmatch DO accept transfer files, while Ancestry and 23andMe do not.

The transfers and matching are free, but there are either minimal unlock or subscription plans for advanced features.

There are other testing companies, some with niche markets and others not so reputable. For this article, I’m focusing on the primary DNA testing companies that are useful for genealogy and mainstream companion third-party tools that complement and enhance those services.

The Single Biggest Change

As I look back, the single biggest change is that genetic genealogy evolved from the pariah of genealogy where DNA discussion was banned from the (now defunct) Rootsweb lists and summarily deleted for the first few years after introduction. I know, that’s hard to believe today.

Why, you ask?

Reasons varied from “just because” to “DNA is cheating” and then morphed into “because DNA might do terrible things like, maybe, suggest that a person really wasn’t related to an ancestor in a lineage society.”

Bottom line – fear and misunderstanding. Change is exceedingly difficult for humans, and DNA definitely moved the genealogy cheese.

From that awkward beginning, genetic genealogy organically became a “thing,” a specific application of genealogy. There was paper-trail traditional genealogy and then the genetic aspect. Today, for almost everyone, genealogy is “just another tool” in the genealogist’s toolbox, although it does require focused learning, just like any other tool.

DNA isn’t separate anymore, but is now an integral part of the genealogical whole. Having said that, DNA can’t solve all problems or answer all questions, but neither can traditional paper-trail genealogy. Together, each makes the other stronger and solves mysteries that neither can resolve alone.

Synergy.

I fully believe that we have still only scratched the surface of what’s possible.

Inheritance

As we talk about the various types of DNA testing and tools, here’s a quick graphic to remind you of how the different types of DNA are inherited.

  • Y DNA is inherited paternally for males only and informs us of the direct patrilineal (surname) line.
  • Mitochondrial DNA is inherited by everyone from their mothers and informs us of the mother’s matrilineal (mother’s mother’s mother’s) line.
  • Autosomal DNA can be inherited from potentially any ancestor in random but somewhat predictable amounts through both parents. The further back in time, the less identifiable DNA you’ll inherit from any specific ancestor. I wrote about that, here.

What’s Hot and What’s Not

Where should we be focused today and where is this industry going? What tools and articles popped up in 2020 to help further our genealogy addiction? I already published the most popular articles of 2020, here.

This industry started two decades ago with testing a few Y DNA and mitochondrial DNA markers, and we were utterly thrilled at the time. Both tests have advanced significantly and the prices have dropped like a stone. My first mitochondrial DNA test that tested only 400 locations cost more than $800 – back then.

Y DNA and mitochondrial DNA are still critically important to genetic genealogy. Both play unique roles and provide information that cannot be obtained through autosomal DNA testing. Today, relative to Y DNA and mitochondrial DNA, the biggest challenge, ironically, is educating newer genealogists about their potential who have never heard about anything other than autosomal, often ethnicity, testing.

We have to educate in order to overcome the cacophony of “don’t bother because you don’t get as many matches.”

That’s like saying “don’t use the right size wrench because the last one didn’t fit and it’s a bother to reach into the toolbox.” Not to mention that if everyone tested, there would be a lot more matches, but I digress.

If you don’t use the right tool, and all of the tools at your disposal, you’re not going to get the best result possible.

The genealogical proof standard, the gold standard for genealogy research, calls for “a reasonably exhaustive search,” and if you haven’t at least considered if or how Y
DNA
and mitochondrial DNA along with autosomal testing can or might help, then your search is not yet exhaustive.

I attempt to obtain the Y and mitochondrial DNA of every ancestral line. In the article, Search Techniques for Y and Mitochondrial DNA Test Candidates, I described several methodologies to find appropriate testing candidates.

Y DNA – 20 Years and Still Critically Important

Y DNA tracks the Y chromosome for males via the patrilineal (surname) line, providing matching and historical migration information.

We started 20 years ago testing 10 STR markers. Today, we begin at 37 markers, can upgrade to 67 or 111, but the preferred test is the Big Y which provides results for 700+ STR markers plus results from the entire gold standard region of the Y chromosome in order to provide the most refined results. This allows genealogists to use STR markers and SNP results together for various aspects of genealogy.

I created a Y DNA resource page, here, in order to provide a repository for Y DNA information and updates in one place. I would encourage anyone who can to order or upgrade to the Big Y-700 test which provides critical lineage information in addition to and beyond traditional STR testing. Additionally, the Big Y-700 test helps build the Y DNA haplotree which is growing by leaps and bounds.

More new SNPs are found and named EVERY SINGLE DAY today at FamilyTreeDNA than were named in the first several years combined. The 2006 SNP tree listed a grand total of 459 SNPs that defined the Y DNA tree at that time, according to the ISOGG Y DNA SNP tree. Goran Rundfeldt, head of R&D at FamilyTreeDNA posted this today:

2020 was an awful year in so many ways, but it was an unprecedented year for human paternal phylogenetic tree reconstruction. The FTDNA Haplotree or Great Tree of Mankind now includes:

37,534 branches with 12,696 added since 2019 – 51% growth!
defined by
349,097 SNPs with 131,820 added since 2019 – 61% growth!

In just one year, 207,536 SNPs were discovered and assigned FT SNP names. These SNPs will help define new branches and refine existing ones in the future.

The tree is constructed based on high coverage chromosome Y sequences from:
– More than 52,500 Big Y results
– Almost 4,000 NGS results from present-day anonymous men that participated in academic studies

Plus an additional 3,000 ancient DNA results from archaeological remains, of mixed quality and Y chromosome coverage at FamilyTreeDNA.

Wow, just wow.

These three new articles in 2020 will get you started on your Y DNA journey!

Mitochondrial DNA – Matrilineal Line of Humankind is Being Rewritten

The original Oxford Ancestor’s mitochondrial DNA test tested 400 locations. The original Family Tree DNA test tested around 1000 locations. Today, the full sequence mitochondrial DNA test is standard, testing the entire 16,569 locations of the mitochondria.

Mitochondrial DNA tracks your mother’s direct maternal, or matrilineal line. I’ve created a mitochondrial DNA resource page, here that includes easy step-by-step instructions for after you receive your results.

New articles in 2020 included the introduction of The Million Mito Project. 2021 should see the first results – including a paper currently in the works.

The Million Mito Project is rewriting the haplotree of womankind. The current haplotree has expanded substantially since the first handful of haplogroups thanks to thousands upon thousands of testers, but there is so much more information that can be extracted today.

Y and Mitochondrial Resources

If you don’t know of someone in your family to test for Y DNA or mitochondrial DNA for a specific ancestral line, you can always turn to the Y DNA projects at Family Tree DNA by searching here.

The search provides you with a list of projects available for a specific surname along with how many customers with that surname have tested. Looking at the individual Y DNA projects will show the earliest known ancestor of the surname line.

Another resource, WikiTree lists people who have tested for the Y DNA, mitochondrial DNA and autosomal DNA lines of specific ancestors.

Click on images to enlarge

On the left side, my maternal great-grandmother’s profile card, and on the right, my paternal great-great-grandfather. You can see that someone has tested for the mitochondrial DNA of Nora (OK, so it’s me) and the Y DNA of John Estes (definitely not me.)

MitoYDNA, a nonprofit volunteer organization created a comparison tool to replace Ysearch and Mitosearch when they bit the dust thanks to GDPR.

MitoYDNA accepts uploads from different sources and allows uploaders to not only match to each other, but to view the STR values for Y DNA and the mutation locations for the HVR1 and HVR2 regions of mitochondrial DNA. Mags Gaulden, one of the founders, explains in her article, What sets mitoYDNA apart from other DNA Databases?.

If you’ve tested at nonstandard companies, not realizing that they didn’t provide matching, or if you’ve tested at a company like Sorenson, Ancestry, and now Oxford Ancestors that is going out of business, uploading your results to mitoYDNA is a way to preserve your investment. PS – I still recommend testing at FamilyTreeDNA in order to receive detailed results and compare in their large database.

CentiMorgans – The Word of Two Decades

The world of autosomal DNA turns on the centimorgan (cM) measure. What is a centimorgan, exactly? I wrote about that unit of measure in the article Concepts – CentiMorgans, SNPs and Pickin’ Crab.

Fortunately, new tools and techniques make using cMs much easier. The Shared cM Project was updated this year, and the results incorporated into a wonderfully easy tool used to determine potential relationships at DNAPainter based on the number of shared centiMorgans.

Match quality and potential relationships are determined by the number of shared cMs, and the chromosome browser is the best tool to use for those comparisons.

Chromosome Browser – Genetics Tool to View Chromosome Matches

Chromosome browsers allow testers to view their matching cMs of DNA with other testers positioned on their own chromosomes.

My two cousins’ DNA where they match me on chromosomes 1-4, is shown above in blue and red at Family Tree DNA. It’s important to know where you match cousins, because if you match multiple cousins on the same segment, from the same side of your family (maternal or paternal), that’s suggestive of a common ancestor, with a few caveats.

Some people feel that a chromosome browser is an advanced tool, but I think it’s simply standard fare – kind of like driving a car. You need to learn how to drive initially, but after that, you don’t even think about it – you just get in and go. Here’s help learning how to drive that chromosome browser.

Triangulation – Science Plus Group DNA Matching Confirms Genealogy

The next logical step after learning to use a chromosome browser is triangulation. If fact, you’re seeing triangulation above, but don’t even realize it.

The purpose of genetic genealogy is to gather evidence to “prove” ancestral connections to either people or specific ancestors. In autosomal DNA, triangulation occurs when:

  • You match at least two other people (not close relatives)
  • On the same reasonably sized segment of DNA (generally 7 cM or greater)
  • And you can assign that segment to a common ancestor

The same two cousins are shown above, with triangulated segments bracketed at MyHeritage. I’ve identified the common ancestor with those cousins that those matching DNA segments descend from.

MyHeritage’s triangulation tool confirms by bracketing that these cousins also match each other on the same segment, which is the definition of triangulation.

I’ve written a lot about triangulation recently.

If you’d prefer a video, I recorded a “Top Tips” Facebook LIVE with MyHeritage.

Why is Ancestry missing from this list of triangulation articles? Ancestry does not offer a chromosome browser or segment information. Therefore, you can’t triangulate at Ancestry. You can, however, transfer your Ancestry DNA raw data file to either FamilyTreeDNA, MyHeritage, or GEDmatch, all three of which offer triangulation.

Step by step download/upload transfer instructions are found in this article:

Clustering Matches and Correlating Trees

Based on what we’ve seen over the past few years, we can no longer depend on the major vendors to provide all of the tools that genealogists want and need.

Of course, I would encourage you to stay with mainstream products being used by a significant number of community power users. As with anything, there is always someone out there that’s less than honorable.

2020 saw a lot of innovation and new tools introduced. Maybe that’s one good thing resulting from people being cooped up at home.

Third-party tools are making a huge difference in the world of genetic genealogy. My favorites are Genetic Affairs, their AutoCluster tool shown above, DNAPainter and DNAGedcom.

These articles should get you started with clustering.

If you like video resources, here’s a MyHeritage Facebook LIVE that I recorded about how to use AutoClusters:

I created a compiled resource article for your convenience, here:

I have not tried a newer tool, YourDNAFamily, that focuses only on 23andMe results although the creator has been a member of the genetic genealogy community for a long time.

Painting DNA Makes Chromosome Browsers and Triangulation Easy

DNAPainter takes the next step, providing a repository for all of your painted segments. In other words, DNAPainter is both a solution and a methodology for mass triangulation across all of your chromosomes.

Here’s a small group of people who match me on the same maternal segment of chromosome 1, including those two cousins in the chromosome browser and triangulation sections, above. We know that this segment descends from Philip Jacob Miller and his wife because we’ve been able to identify that couple as the most distant ancestor intersection in all of our trees.

It’s very helpful that DNAPainter has added the functionality of painting all of the maternal and paternal bucketed matches from Family Tree DNA.

All you need to do is to link your known matches to your tree in the proper place at FamilyTreeDNA, then they do the rest by using those DNA matches to indicate which of the rest of your matches are maternal and paternal. Instructions, here. You can then export the file and use it at DNAPainter to paint all of those matches on the correct maternal or paternal chromosomes.

Here’s an article providing all of the DNAPainter Instructions and Resources.

DNA Matches Plus Trees Enhance Genealogy

Of course, utilizing DNA matching plus finding common ancestors in trees is one of the primary purposes of genetic genealogy – right?

Vendors have linked the steps of matching DNA with matching ancestors in trees.

Genetic Affairs take this a step further. If you don’t have an ancestor in your tree, but your matches have common ancestors with each other, Genetic Affairs assembles those trees to provide you with those hints. Of course, that common ancestor might not be relevant to your genealogy, but it just might be too!

click to enlarge

This tree does not include me, but two of my matches descend from a common ancestor and that common ancestor between them might be a clue as to why I match both of them.

Ethnicity Continues to be Popular – But Is No Shortcut to Genealogy

Ethnicity is always popular. People want to “do their DNA” and find out where they come from. I understand. I really do. Who doesn’t just want an answer?

Of course, it’s not that simple, but that doesn’t mean it’s not disappointing to people who test for that purpose with high expectations. Hopefully, ethnicity will pique their curiosity and encourage engagement.

All four major vendors rolled out updated ethnicity results or related tools in 2020.

The future for ethnicity, I believe, will be held in integrated tools that allow us to use ethnicity results for genealogy, including being able to paint our ethnicity on our chromosomes as well as perform segment matching by ethnicity.

For example, if I carry an African segment on chromosome 1 from my father, and I match one person from my mother’s side and one from my father’s side on that same segment – one or the other of those people should also have that segment identified as African. That information would inform me as to which match is paternal and which is maternal

Not only that, this feature would help immensely tracking ancestors back in time and identifying their origins.

Will we ever get there? I don’t know. I’m not sure ethnicity is or can be accurate enough. We’ll see.

Transition to Digital and Online

Sometimes the future drags us kicking and screaming from the present.

With the imposed isolation of 2020, conferences quickly moved to an online presence. The genealogy community has all pulled together to make this work. The joke is that 2020’s most used phrase is “can you hear me?” I can vouch for that.

Of course while the year 2020 is over, the problem isn’t and is extending at least through the first half of 2021 and possibly longer. Conferences are planned months, up to a year, in advance and they can’t turn on a dime, so don’t even begin to expect in-person conferences until either late in 2021 or more likely, 2022 if all goes well this year.

I expect the future will eventually return to in-person conferences, but not entirely.

Finding ways to be more inclusive allows people who don’t want to or can’t travel or join in-person to participate.

I’ve recorded several sessions this year, mostly for 2021. Trust me, these could be a comedy, mostly of errors😊

I participated in four MyHeritage Facebook LIVE sessions in 2020 along with some other amazing speakers. This is what “live” events look like today!

Screenshot courtesy MyHeritage

A few days ago, I asked MyHeritage for a list of their LIVE sessions in 2020 and was shocked to learn that there were more than 90 in English, all free, and you can watch them anytime. Here’s the MyHeritage list.

By the way, every single one of the speakers is a volunteer, so say a big thank you to the speakers who make this possible, and to MyHeritage for the resources to make this free for everyone. If you’ve ever tried to coordinate anything like this, it’s anything but easy.

Additonally, I’ve created two Webinars this year for Legacy Family Tree Webinars.

Geoff Rasmussen put together the list of their top webinars for 2020, and I was pleased to see that I made the top 10! I’m sure there are MANY MORE you’d be interested in watching. Personally, I’m going to watch #6 yet today! Also, #9 and #22. You can always watch new webinars for free for a few days, and you can subscribe to watch all webinars, here.

The 2021 list of webinar speakers has been announced here, and while I’m not allowed to talk about something really fun that’s upcoming, let’s just say you definitely have something to look forward to in the springtime!

Also, don’t forget to register for RootsTech Connect which is entirely online and completely free, February 25-27, here.

Thank you to Penny Walters for creating this lovely graphic.

There are literally hundreds of speakers providing sessions in many languages for viewers around the world. I’ve heard the stats, but we can’t share them yet. Let me just say that you will be SHOCKED at the magnitude and reach of this conference. I’m talking dumbstruck!

During one of our zoom calls, one of the organizers says it feels like we’re constructing the plane as we’re flying, and I can confirm his observation – but we are getting it done – together! All hands on deck.

I’ll be presenting an advanced session about triangulation as well as a mini-session in the FamilySearch DNA Resource Center about finding your mother’s ancestors. I’ll share more information as it’s released and I can.

Companies and Owners Come & Go

You probably didn’t even notice some of these 2020 changes. Aside from the death of Bryan Sykes (RIP Bryan,) the big news and the even bigger unknown is the acquisition of Ancestry by Blackstone. Recently the CEO, Margo Georgiadis announced that she was stepping down. The Ancestry Board of Directors has announced an external search for a new CEO. All I can say is that very high on the priority list should be someone who IS a genealogist and who understands how DNA applies to genealogy.

Other changes included:

In the future, as genealogy and DNA testing becomes ever more popular and even more of a commodity, company sales and acquisitions will become more commonplace.

Some Companies Reduced Services and Cut Staff

I understand this too, but it’s painful. The layoffs occurred before Covid, so they didn’t result from Covid-related sales reductions. Let’s hope we see renewed investment after the Covid mess is over.

In a move that may or may not be related to an attempt to cut costs, Ancestry removed 6 and 7 cM matches from their users, freeing up processing resources, hardware, and storage requirements and thereby reducing costs.

I’m not going to beat this dead horse, because Ancestry is clearly not going to move on this issue, nor on that of the much-requested chromosome browser.

Later in the year, 23andMe also removed matches and other features, although, to their credit, they have restored at least part of this functionality and have provided ethnicity updates to V3 and V4 kits which wasn’t initially planned.

It’s also worth noting that early in 2020, 23andMe laid off 100 people as sales declined. Since that time, 23andMe has increasingly pushed consumers to pay to retest on their V5 chip.

About the same time, Ancestry also cut their workforce by about 6%, or about 100 people, also citing a slowdown in the consumer testing market. Ancestry also added a health product.

I’m not sure if we’ve reached market saturation or are simply seeing a leveling off. I wrote about that in DNA Testing Sales Decline: Reason and Reasons.

Of course, the pandemic economy where many people are either unemployed or insecure about their future isn’t helping.

The various companies need some product diversity to survive downturns. 23andMe is focused on medical research with partners who pay 23andMe for the DNA data of customers who opt-in, as does Ancestry.

Both Ancestry and MyHeritage provide subscription services for genealogy records.

FamilyTreeDNA is part of a larger company, GenebyGene whose genetics labs do processing for other companies and medical facilities.

A huge thank you to both MyHeritage and FamilyTreeDNA for NOT reducing services to customers in 2020.

Scientific Research Still Critical & Pushes Frontiers

Now that DNA testing has become a commodity, it’s easy to lose track of the fact that DNA testing is still a scientific endeavor that requires research to continue to move forward.

I’m still passionate about research after 20 years – maybe even more so now because there’s so much promise.

Research bleeds over into the consumer marketplace where products are improved and new features created allowing us to better track and understand our ancestors through their DNA that we and our family members inherit.

Here are a few of the research articles I published in 2020. You might notice a theme here – ancient DNA. What we can learn now due to new processing techniques is absolutely amazing. Labs can share files and information, providing the ability to “reprocess” the data, not the DNA itself, as more information and expertise becomes available.

Of course, in addition to this research, the Million Mito Project team is hard at work rewriting the tree of womankind.

If you’d like to participate, all you need to do is to either purchase a full sequence mitochondrial DNA kit at FamilyTreeDNA, or upgrade to the full sequence if you tested at a lower level previously.

Predictions

Predictions are risky business, but let me give it a shot.

Looking back a year, Covid wasn’t on the radar.

Looking back 5 years, neither Genetic Affairs nor DNAPainter were yet on the scene. DNAAdoption had just been formed in 2014 and DNAGedcom which was born out of DNAAdoption didn’t yet exist.

In other words, the most popular tools today didn’t exist yet.

GEDmatch, founded in 2010 by genealogists for genealogists was 5 years old, but was sold in December 2019 to Verogen.

We were begging Ancestry for a chromosome browser, and while we’ve pretty much given up beating them, because the horse is dead and they can sell DNA kits through ads focused elsewhere, that doesn’t mean genealogists still don’t need/want chromosome and segment based tools. Why, you’d think that Ancestry really doesn’t want us to break through those brick walls. That would be very bizarre, because every brick wall that falls reveals two more ancestors that need to be researched and spurs a frantic flurry of midnight searching. If you’re laughing right now, you know exactly what I mean!

Of course, if Ancestry provided a chromosome browser, it would cost development money for no additional revenue and their customer service reps would have to be able to support it. So from Ancestry’s perspective, there’s no good reason to provide us with that tool when they can sell kits without it. (Sigh.)

I’m not surprised by the management shift at Ancestry, and I wouldn’t be surprised to see several big players go public in the next decade, if not the next five years.

As companies increase in value, the number of private individuals who could afford to purchase the company decreases quickly, leaving private corporations as the only potential buyers, or becoming publicly held. Sometimes, that’s a good thing because investment dollars are infused into new product development.

What we desperately need, and I predict will happen one way or another is a marriage of individual tools and functions that exist separately today, with a dash of innovation. We need tools that will move beyond confirming existing ancestors – and will be able to identify ancestors through our DNA – out beyond each and every brick wall.

If a tester’s DNA matches to multiple people in a group descended from a particular previously unknown couple, and the timing and geography fits as well, that provides genealogical researchers with the hint they need to begin excavating the traditional records, looking for a connection.

In fact, this is exactly what happened with mitochondrial DNA – twice now. A match and a great deal of digging by one extremely persistent cousin resulting in identifying potential parents for a brick-wall ancestor. Autosomal DNA then confirmed that my DNA matched with 59 other individuals who descend from that couple through multiple children.

BUT, we couldn’t confirm those ancestors using autosomal DNA UNTIL WE HAD THE NAMES of the couple. DNA has the potential to reveal those names!

I wrote about that in Mitochondrial DNA Bulldozes Brick Wall and will be discussing it further in my RootsTech presentation.

The Challenge

We have most of the individual technology pieces today to get this done. Of course, the combined technological solution would require significant computing resources and processing power – just at the same time that vendors are desperately trying to pare costs to a minimum.

Some vendors simply aren’t interested, as I’ve already noted.

However, the winner, other than us genealogists, of course, will be the vendor who can either devise solutions or partner with others to create the right mix of tools that will combine matching, triangulation, and trees of your matches to each other, even if you don’t’ share a common ancestor.

We need to follow the DNA past the current end of the branch of our tree.

Each triangulated segment has an individual history that will lead not just to known ancestors, but to their unknown ancestors as well. We have reached critical mass in terms of how many people have tested – and more success would encourage more and more people to test.

There is a genetic path over every single brick wall in our genealogy.

Yes, I know that’s a bold statement. It’s not future Jetson’s flying-cars stuff. It’s doable – but it’s a matter of commitment, investment money, and finding a way to recoup that investment.

I don’t think it’s possible for the one-time purchase of a $39-$99 DNA test, especially when it’s not a loss-leader for something else like a records or data subscription (MyHeritage and Ancestry) or a medical research partnership (Ancestry and 23andMe.)

We’re performing these analysis processes manually and piecemeal today. It’s extremely inefficient and labor-intensive – which is why it often fails. People give up. And the process is painful, even when it does succeed.

This process has also been made increasingly difficult when some vendors block tools that help genealogists by downloading match and ancestral tree information. Before Ancestry closed access, I was creating theories based on common ancestors in my matches trees that weren’t in mine – then testing those theories both genetically (clusters, AutoTrees and ThruLines) and also by digging into traditional records to search for the genetic connection.

For example, I’m desperate to identify the parents of my James Lee Clarkson/Claxton, so I sorted my spreadsheet by surname and began evaluating everyone who had a Clarkson/Claxton in their tree in the 1700s in Virginia or North Carolina. But I can’t do that anymore now, either with a third-party tool or directly at Ancestry. Twenty million DNA kits sold for a minimum of $79 equals more than 1.5 billion dollars. Obviously, the issue here is not a lack of funds.

Including Y and mitochondrial DNA resources in our genetic toolbox not only confirms accuracy but also provides additional hints and clues.

Sometimes we start with Y DNA or mitochondrial DNA, and wind up using autosomal and sometimes the reverse. These are not competing products. It’s not either/or – it’s *and*.

Personally, I don’t expect the vendors to provide this game-changing complex functionality for free. I would be glad to pay for a subscription for top-of-the-line innovation and tools. In what other industry do consumers expect to pay for an item once and receive constant life-long innovations and upgrades? That doesn’t happen with software, phones nor with automobiles. I want vendors to be profitable so that they can invest in new tools that leverage the power of computing for genealogists to solve currently unsolvable problems.

Every single end-of-line ancestor in your tree represents a brick wall you need to overcome.

If you compare the cost of books, library visits, courthouse trips, and other research endeavors that often produce exactly nothing, these types of genetic tools would be both a godsend and an incredible value.

That’s it.

That’s the challenge, a gauntlet of sorts.

Who’s going to pick it up?

I can’t answer that question, but I can say that 23andMe can’t do this without supporting extensive trees, and Ancestry has shown absolutely no inclination to support segment data. You can’t achieve this goal without segment information or without trees.

Among the current players, that leaves two DNA testing companies and a few top-notch third parties as candidates – although – as the past has proven, the future is uncertain, fluid, and everchanging.

It will be interesting to see what I’m writing at the end of 2025, or maybe even at the end of 2021.

Stay tuned.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Most Popular Articles of 2020

We all know that 2020 was a year like no other, right? So, what were we reading this year as we spent more time at home?

According to my blog stats, these are the ten most popular articles of 2020.

2020 Rank Blog Article Name Publication Date/Comment
1 Concepts – Calculating Ethnicity Percentages Jan 11, 2017
2 Proving Native American Ancestry Using DNA December 18, 2012
3 Ancestry to Remove DNA Matches Soon – Preservation Strategies with Detailed Instructions Now obsolete article – July 16, 2020
4 Ancestral DNA Percentages – How Much of Them is in You? June 27, 2017
5 Full or Half Siblings? April 3, 2019
6 442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match? September 18, 2020
7 Migration Pedigree Chart March 25, 2016
8 DNA Inherited from Grandparents and Great-Grandparents January 14, 2020
9 Optimizing Your Tree at Ancestry for More Hints and DNA ThruLines February 22, 2020
10 Phylogenetic Tree of Novel Coronavirus (hCoV-19) Covid-19 March 12, 2020

Half of these articles were published this year, and half are older.

One article is now obsolete. The Ancestry purge has already happened, so there’s nothing to be done now.

Let’s take a look at the rest and what messages might be held in these popular selections.

Ethnicity

I’m not the least bit surprised by ethnicity being the most popular topic, nor that Concepts – Calculating Ethnicity Percentages is the most popular article. Not only is ethnicity a perennially favorite, but all four major vendors introduced something new this year.

By the way, my perennial caveat still applies – ethnicity is only an estimate😊

While Genetic Groups isn’t actually ethnicity, per se, it’s a layer on top of ethnicity that provides you with locations where your ancestors might have been from and migrated to, based on genetic clusters. Clusters are defined by the locations of ancestors of other people within that genetic cluster.

There’s actually good news at 23andMe. Since this article was published in October, 23andMe has indeed updated the V3 and V4 kits with new ethnicity updates. 23andMe had originally stated they weren’t going to do that, clearly in the hope that people would pay to retest by purchasing the V5 Health + Ancestry test. I’m so glad to see their reversal.

Viewing the older V2 kits, the “updated” date at the bottom of their Ancestry Composition page says they were updated on December 9th or 10th, but I don’t see a difference and they don’t have the “updated” icon like the V3 and V4 kits do.

23andMe made another reversal too and also restored the original matches. They had reduced the number of matches to 1500 for non-Health+Ancestry testers who don’t also subscribe. If you wanted between 1500 and 5000 matches, you had to retest and subscribe for $29 per year. (It’s worth noting that I have over 5000 matches at all of the other vendors.)

To date, 23andMe has restored previous matches and also restored some but not all of the search functionality that they had removed.

What isn’t clear is whether 23andMe will continue to add to this number of matches until the tester reaches the earlier limit of 2000, or whether they have simply restored the previous matches, but the match total will not increase unless you have a subscription.

Consumer feedback works – so thanks to everyone who provided feedback to 23andMe.

Native American Ancestry

The article, Proving Native American Ancestry Using DNA, written 8 years ago, only 5 months after launching this blog, has been in the top 10 every year since I’ve been counting.

I created a Native American reference and resource page too, which you can find here.

I’ll also be publishing some new articles after the first of the year which I promise you’ll find VERY INTERESTING. Something to look forward to.

Understanding Autosomal DNA

2020 has seen more people delving into genealogy + DNA testing which means they need to understand both the results and the concepts underlying their results.

Whooohooo – more people in the pool. Jump on in – the water’s fine!

The articles Ancestral DNA Percentages – How Much of Them is in You? and DNA Inherited from Grandparents and Great-Grandparents both explain how DNA is passed from your ancestors to you.

These are great basic articles if you’re looking to help someone new, and so is First Steps When Your DNA Results are Ready – Sticking Your Toe in the Genealogy Water.

I always look forward to the end of January because there will be lots of matches from holiday gifts being posted. Feel free to forward any of these articles to your new matches. It’s always fun helping new people because you just never know when they might be able to help you.

Surprises

With more and more people testing, more and more people are receiving “surprises” in their results. Need to figure out the difference between full and half-siblings? Then Full or Half Siblings? is the article for you.

Trying to discern other relationships? My favorite tool is the Shared cM Project tool at DNAPainter, here.

Vikings

Who doesn’t want to know if they are related to the ancient Vikings??? You can make that discovery in the article, 442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match?. Not only is this just plain fun, but I snuck in a little education too.

Of course, you’ll need to have your Y DNA or mitochondrial DNA results, which you can easily order, here. If you’re unsure and would like to read a short article about the different kinds of DNA and how they can help you, 4 Kinds of DNA for Genetic Genealogy is perfect.

Do you think your DNA isn’t Viking because your ancestors aren’t from Scandinavia? Guess again!

Those Vikings didn’t stay home, and they didn’t restrict their escapades to the British Isles either.

This drawing depicts Viking ships besieging Paris in the year 845. Vikings voyaged into Russia and as far as the Mediterranean.

Have a child studying at home? This might be an interesting topic!

Migration Pedigree Chart

Another just plain fun idea is the Migration Pedigree Chart.

I created this migration pedigree chart in a spreadsheet, but you can also create a pedigree chart in genealogy software with whatever “names” you want. This will also help you figure out the estimated percentages of ethnicity you might reasonably expect.

Another idea for helping kids learn at home and they might accidentally learn about figuring percentages in the process.

ThruLines

ThruLines is the Ancestry tool that assists DNA testers with trees connect the dots to common ancestors with their matches. There are ways to optimize your tree to improve your connections, both in terms of accuracy and the number of Thrulines that form.

Optimizing Your Tree at Ancestry for More Hints and DNA ThruLines provides step by step instructions, which reminds me – I need to write a similar article for MyHeritage’s Theories of Family Relativity. I keep meaning to…

Covid

You know, it wouldn’t be 2020 if I didn’t HAVE to mention that word.

I’m glad to know that people were and hopefully still are educating themselves about Covid. Phylogenetic Tree of Novel Coronavirus (hCoV-19) Covid-19 reflected early information about the novel virus and our first efforts to sequence the DNA. Of course, as expected, just like any other organism, mutations have occurred since then.

Goodness knows, we are all tired of Covid and the resulting safety protocols. Keep on keeping on. We need you on the other side.

Stay home, mask up when you must leave, stay away from other people outside your family that you live with, wash your hands, and get vaccinated as soon as you can.

And until we can all see each other in person again, hopefully, sooner than later, keep on doing genealogy.

Locked in the Library

Be careful what you ask for.

Remember that dream where you’re locked in a library? Remember saying you don’t have enough time for genealogy?

Well, now you are and now you do.

The library is your desk with your computer or maybe your laptop on a picnic table in the yard.

DNA results, matches, and research tools are the books and you’re officially locked in for at least a few more weeks. Free articles like these are your guide.

Hmmm, pandemic isolation doesn’t sound so bad now, does it??

We’ll just rename it “genealogy library lock-in.”

Happy New Year!

What can you discover?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Bryan Sykes Finally Meets Eve’s 7 Daughters

Professor Bryan Sykes who studied Otzi the Iceman in 1994 and would go on to author the first genetics book written for public consumption, The Seven Daughters of Eve, passed away on December 10 at age 73. You can read his obituary here.

In 1994, Dr. Bryan Sykes worked on the frozen mummy in the Otztal Alps on the Austrian/Swiss border who would become affectionately known as Otzi.

Sykes initially identified Otzi’s mitochondrial DNA as a member of base haplogroup K. Sykes then identified a living Irish lady with the same sequence. Now we know that while base haplogroup K isn’t terribly common, it’s also not rare and millions of people share haplogroup K, upstream of Otzi.

At that time, however, Sykes suggested Otzi might have been a wayward Irishman. Science has advanced substantially since then and we’ve learned an incredible amount.

Eventually, scientists would determine that Otzi was actually haplogroup K1o, where the “o” stands for Otzi, whose line appears to now be extinct. You can read more, here.

Sykes’ first book, The Seven Daughters of Eve, published in 2001 was followed by other books, none of which garnered the mass appeal of The Seven Daughters book which captured our imaginations. Sykes described 7 European haplogroups and wrote a fictional storyline about how each one exited Africa, what they experienced, and how they migrated to Europe.

This was ground-breaking work at the time.

Ironically, Sykes never named or described haplogroup L or subclades, the true mother lineages in Africa, nor haplogroups M or N, daughters of haplogroup L3 from which all other non-L haplogroups spring.

He initially described and named:

  • Ursula – haplogroup U
  • Xenia – haplogroup X
  • Helena – haplogroup H
  • Velda – haplogroup V
  • Tara – haplogroup T
  • Katrine – haplogroup K
  • Jasmine – haplogroup J

We were captivated by not only their stories, but the fact that they had names and our ancestors seemed to come alive. At that point in time, Sykes believed that these 7 haplogroups were the foundation from which all other haplogroups sprang.

click to enlarge

Phylotree Build 17 published in 2016 shows just how far science has progressed since that time. The Million Mito Project is working to update the tree today.

Although eventually, many of Bryan’s early theories were disproven, his work provided a foundation on which future discoveries were built and the field evolved. All scientists, especially early innovators have to be willing to be “wrong” and have their work improved upon. It’s part of the deal and doesn’t take away from Bryan’s legacy of innovation and inspiration.

My Introduction to Consumer Genetics

I studied genetics in college as part of a science curriculum, but never really connected the dots to either genealogy or ever thought of testing myself for fun. Consumer genetics had not yet been born, and even medical genetics was in its infancy.

Eve’s 7 daughters hadn’t yet been defined or named, and genetics was disconnected from me or anyone I knew, except for peas, cats’ and dogs’ coat and eye color, and humans that had a mutation that caused a significant issue.

In 2001, I lay in bed one night reading the ads in the back of Science News, a weekly news magazine, when I saw the ad for Sykes book that promised to reveal the paths of Eve’s daughters out of Africa. I ordered the book right away and stayed up all night reading when it arrived. It was that good!

I was hooked.

The Seven Daughters of Eve

The Seven Daughters of Eve merged science, my family, and storytelling. All three of which were my loves and manifested themselves in genealogy. Not only was I hooked, but I desperately wanted to know to which clan I belonged. This was genealogy on steroids!

So, apparently, did a lot of other people, because that narrative was something every single person reading the book could relate to.

At the back of each of the Seven Daughters books, readers could tear out a page and send a check for roughly $800 US with the promise of receiving an envelope a few weeks later with a genetic map identifying your clan – meaning which of Eve’s daughters was your “mother.”

I ripped that page out of the back and wrote a check – only to have my husband inform me that he, too, wanted to know his clan. I couldn’t then, and still can’t believe I spent that much money on a “frivolous” DNA test. Little did I know that was just the beginning😊.

Just before the launch of his book, Sykes founded Oxford Ancestors, one of the first companies to test the mitochondrial, and some years later the Y DNA of consumers who could then see who they matched. Oxford Ancestors still exists but has struggled over the years. (I do not recommend them today.)

About 3 months later, I received a single sheet of paper in an envelope, signed by Dr. Sykes at the University of Oxford, and I was THRILLED to learn that I was in Jasmine’s clan. I opened the book and read that section again – because now that was MY story. Of course, today I know it wasn’t exactly accurate but no one knew that then.

I called my Mom. It was her story too. She called my brother. It’s his story too. I told both of my children, who didn’t care one iota – but it’s their story too and hope springs eternal.

Today, I can purchase about 6 full-sequence mitochondrial DNA tests that test 16,569 locations for the cost of a test that at that time only revealed my base haplogroup, “J,” by testing 400 locations.

Still, I was overjoyed and connected to the past across the bridge of time in a place and time that genealogy could never reach. Or so I thought. Clearly, genetic testing has improved immensely and genetics doesn’t just reach across that bridge today, genetics and genealogy are completely intertwined.

Bryan’s book was my initial inspiration – he lured many of the early genealogists and science buffs into the genetics spiderweb where we have gratefully been living ever since. Genetics has done more to unveil my ancestors and their past than any other tool. Bryan turned that tap on with a tiny drip-drip, which, by comparison, today is a tsunami of millions of testers across several major testing companies taking autosomal tests in addition to mitochondrial and Y DNA.

While paper-trail evidence reaches back a few hundred years, assuming the records still exist, DNA in its various forms reaches back hundreds, then thousands, then tens of thousands of years – connecting us to the rest of humanity by following a breadcrumb trail of mutations back in time.

Sykes’ Later Years

In 2013 and 2014, Sykes analyzed residue from creatures purported to be the Yeti and Bigfoot in his Oxford lab. He attributed the samples to bears and other primates on BBC News. Other researchers disagreed with his analysis, and with each other, and the topic became controversial.

Bryan relished publicity and was never afraid of leading and sometimes bleeding-edge research. In order to succeed, one must be willing to take risks, and Dr. Sykes clearly did. It was his vivre la vie and contagious excitement that inspired others to begin their own journeys of discovery.

While many people don’t know of or about Bryan Sykes today, in the early days, few people didn’t feel strongly about Bryan’s work, one way or the other. Bryan was simply glad that people were talking about genetics. Lots of consumers became enamored and curious and the earliest seeds of the direct-to-consumer genetics industry were planted.

Now that Bryan has progressed to the other side, I’m sure that he is quizzing all of the daughters of Eve about how they are related to each other, where they lived, when they moved, to where, who they married, and is asking everyone to DNA test. Bryan, I have a few requests if you meet up with my ancestors…

Go with the flow Bryan, and thank you.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Phebe Crumley’s Mother Really IS Lydia Brown (c1781-c1830) – 52 Ancestors #318

This day took its sweet time arriving!

And yes, I’ve used DNA evidence along with every other shred of traditional evidence that I could dig up about either Lydia Brown or her husband, William Crumley. I’ve been trying to prove that the William Crumley who was the father of Phebe (Phoebe) Crumley either WAS or WAS NOT the William Crumley that married Elizabeth “Betsy” Johnson in October of 1817, just months before Phebe’s birth on March 24, 1818, as recorded on her gravestone.

Of course, we all know that gravestones can be wrong.

Mitochondrial DNA testing told me that the mitochondrial DNA of the daughter, Clarissa, born on October 10th, 1817 to William Crumley and his wife, just a few months before some William Crumley married Betsy Johnson, matched the mitochondrial DNA of Phebe.

For good measure, the mitochondrial DNA of the daughter, Belinda “Melinda” Crumley born on April 1, 1820, also matches both Clarissa and Phebe. But again, we know that birth dates have been known to be wrong by several years – not to mention that there’s a possibility that the two women, Lydia Brown and Elizabeth “Betsy” Johnson, could have been related. Nothing is ever simple, it seems.

A group of families including Crumley, Johnson, Cooper and Brown had traveled together for at least a couple of generations and we are unable to document these lines very well.

I even analyzed the handwriting of the various William Crumleys, and of course, there were several.

If you’d like to read the articles about this extremely difficult family to unravel, here’s a list along with a cheat sheet of who was whom. Yes, you need a dance card to keep track of this family.

Phebe’s father was William Crumley (the third) and either Lydia Brown or Elizabeth “Betsy” Johnson was her mother.

This William is the grandfather to Phebe and appears to be who married Elizabeth “Betsy” Johnson. He was the father of William Crumley (the third.)

William Crumley the third married Lydia Brown. The question has always been whether Lydia Brown died in 1817 after the birth of Clarissa, followed by William marrying Elizabeth “Betsy” Johnson who gave birth to Phebe a few months later.

So, was Lydia dead, or wasn’t she?

Mitochondrial DNA results of the three daughters of William Crumley all match each other. I wish those early records hadn’t been so sparse. Unfortunately, the Hancock County, TN records have twice burned.

I think I’ve solved it – finally – based on the signatures of William Crumley.

Jotham Brown is the father of Lydia Brown.

Of course, if Phebe’s mother was NOT Lydia Brown, then Lydia’s parents don’t matter in my tree.

Angst

I’ve spent years going through twister-like perturbations trying to identify which William Crumley married Betsy Johnson. Whichever woman gave birth to Phebe in 1818 was my ancestor. Obviously, which William Crumley married Betsey Johnson makes a huge difference in my tree. I mean, I think I have it nailed down, but with this family, I’m never sure. Given all that, I’m sure you’ll understand my angst when an e-mail arrived this week.

When I saw the topic was this family again, I didn’t know whether to be hopeful or cringe.

Marlene, an unpaid volunteer was attempting to help a lady prove that Jotham Brown, Lydia Brown’s father, was a patriot through the Frederick County, VA tax lists.

Marlene, who is very nice, explained:

This is relevant because the revenue from 1782 and 1783 taxes were partly used to fund supplies to support the Revolution, so [Jotham Brown] appearing on the tax list may be considered patriotic service.

Do you have a copy of or a link to this 1782 tax list, in which Jotham Brown appears?

Any assistance you are able and willing to provide is VERY much appreciated!

When I wrote Jotham Brown’s story, I was only looking to place him in Frederick County. It never occurred to me that Jotham might be determined to be a Patriot in the DAR sense because he was on a tax list.

I didn’t need the original tax list, so I utilized a transcribed version of the 1782 Virginia census, provided by another researcher. Marlene reports that Binns Genealogy doesn’t show him on their lists.

A cousin found the Frederick County personal property tax lists for 1782, here, and there is no Jotham Brown in either 1782 or 1783 on the actual tax list. I read page by page.

A couple of days later, I heard from Marlene again about Phebe’s brother, Aaron Crumley.

Aaron

I just read your 29 Jun 2019 blog about County Formation Petitions and found it very interesting. Your conclusions about which William Crumley married who and when made me wonder if you have looked at the marriage records of Aaron F. Crumley. Since the lady I’m trying to help descends from Aaron F. Crumley [and his 2nd wife] I’ve spent some time on this and note that when Aaron married for the 4th time, at age 63 [2 May 1886], the record in Miami County, Kansas indicated that his parents were William Crumley and [no first name listed] Brown. This leads me to the conclusion that Lydia Brown lived until at least 1823 when Aaron F. Crumley was born, so it must have been a different William Crumley who married Betsy Johnson.

Glory be. Marlene had just found what neither I, nor any of the other Crumley researchers had been able to find for decades. And, she very kindly shared. Thank you Marlene!

Truthfully, I didn’t know that Aaron had married a fourth time.

I showed Aaron’s birth occurring about 1821. The 1850 census Hancock County, TN shows him as age 29, so born in 1821. Other census records show him born in 1822, 1823, or 1824. Regardless of whether Aaron was born in 1821 or as late as 1824, all those years are after the births of all three daughters whose mitochondrial DNA matches each other, including Phebe who was born in 1818.

Aaron’s marriage record shows exactly what Marlene said.

Aaron’s age on May 2, 1886, was given, by him, as age 63, meaning he was born in 1823 or perhaps 1822 if he had not yet had his birthday for 1886. His Civil War draft registration from 1863 shows the same information.

Aaron married Mary Murry, age 32, which makes me wonder if he has previously unknown children from this fourth marriage. Mary’s FindAGrave entry, plus additional information indicates that yes, they did have children.

In 1913, Mary Crumley, widow of Aaron F, is living in Portland Oregon with Fred, Frank, and J. Harvey Crumley.

In 1909, in Spokane, we find Frank, Fred, and James K, a blacksmith all living at 2024 Augusta Avenue.

I do think Mary did have children, because the 1910 census shows Mary Crumley living in Spokane, Washington, age 54, widowed, married for 6 years, had 4 children, 2 living. She is living with sons Frank Crumley and Fred Crumley, ages 24 and 21, both born in Kansas.

Mary’s 1910 census entry, of course, tells us that Aaron Crumley died in 1892 at age 69.

While Aaron’s information is interesting, the real gold nugget here, for me, is that marriage entry for Aaron F. Crumley where he gives his mother’s maiden name as Brown.

Not Johnson.

Of course, this makes me wonder why her first name wasn’t recorded as Lydia. Other mothers in these records had first names. But then again, some mothers had no name.

Clearly, Aaron provided this information himself, because no one else would have been applying for his marriage license. He knew who his mother was – this is first-hand information. Thank goodness the clerk wrote SOMETHING down.

It’s a Wrap

We now have genetic evidence with three mitochondrial DNA tests, evidence based on the various William Crumleys’ locations and signatures, and finally, first-person evidence with Aaron providing the maiden name of his mother.

We now know that Lydia Brown lived at least past Aaron’s birth. Aaron appears to be the last child born, or at least the last one we know about.

From this information, we can estimate Lydia’s birth year.

If Aaron was born in 1822 and Lydia was age 41, that would put her birth about 1781.

We know Lydia married in 1806, so she would have been perhaps 21 at the time, putting her birth at about 1785.

I would say it’s safe to bracket her birth between 1781 and 1785, give or take another year or so in either direction.

We know for a fact, based on the 1850 census that says William had been married within the year, that William did marry in 1849 or 1850 before the census to a woman named Pya or Pequa.

The 1830 and 1840 census are inconclusive, although William is shown with a female the right age to be Lydia in 1830. In 1840, William, age 50-60 has no female his own age in the household, but is living with a female aged 60-70 which could be his step-mother, Betsy Johnson, after his father’s death.

The best evidence we have is that Lydia Brown lived beyond Aaron’s birth and probably beyond 1830, passing away sometime between 1830 and 1840 in Claiborne County, TN, likely living near what is now Turner Hollow Road, near Littleton Brooks and Eli Davis. We know from previous research that was where William lived.

One of William’s daughters married a Davis, one married a Walker from down Mulberry Gap Road, and Phebe married a Vannoy who lived nearby. Clarissa and William both went back to Greene County, TN, and married. The children seem to have scattered a bit, possibly after their mother’s death – so maybe Lydia’s death was closer to 1830 than 1840.

Crumley Cemetery

Today, there’s a Crumley cemetery on Burchett Hollow Road in Hancock County, the portion that was previously Claiborne, although Findagrave doesn’t show a mapped location.

Several years ago, my cousin provided a map of the Josiah Ramsey land division. Eli Davis lived near what today seems to be the Burchett Hollow land.

Overlaying that map with this map, today, and following Burchett Hollow to the end, I can see something that very much looks like a fenced cemetery with a few headstones.

The children of Aaron’s brother, John, and their descendants are buried in the Crumley Cemetery.

In the 1840 census, William and his son, John Crumley, are living side by side, between Eli Davis and Littleton Brooks.

I would wager that this land was indeed where the Crumley family lived – and where Lydia died when she was about 50 years old, then buried in a long-lost grave, probably marked with a fieldstone.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

DNA Tidbit #5: What’s Your Goal?

You probably see this all the time on social media:

“I just got my DNA results. Now what?”

No further information is given.

The answer is, “What is your goal?”

Why did they test and what are they hoping to learn?

DNA Tidbit Challenge: Define goals for answering genealogy questions, allowing you to focus your efforts.

Your DNA testing goal depends on a number of factors including:

  • What test you took, meaning Y DNA, mitochondrial or autosomal.
  • Where you tested and the tools they offer.
  • What you’re hoping to achieve. In other words, why did you test in the first place?

For a short article about the difference between Y, mitochondrial, and autosomal DNA, please click here.

For more seasoned genealogists, we may have taken all the tests and answered many questions already, but still, our research needs to be guided by goals.

I regularly check my matches. I still think I may have had a half-sibling that is yet to be located. After I confirm that no, I don’t have any new close matches, I then look at the rest, making notes where appropriate.

Recently, late one night, I thought to myself, “why am I doing this?” Endlessly scrolling through new matches and randomly seeing if I can figure out where they fit or which ancestor we share.

But why?

Originally, I had two broad goals.

  • I wanted to find Y line males in each line and other males from the same supposed line to confirm that indeed the ancestral line is what the paper trail had identified.
  • To confirm that I am indeed descended from the ancestral lines I think I am, meaning no NPEs. As a genealogist, the only thing I’d hate worse than discovering that I’ve been researching the wrong line for all these years is to keep doing so.

Given that I’ve confirmed my connection to ancestors on most lines back several generations now, what are my goals?

Broad and Deep

I’ve realized over the years that goals are both broad and deep.

Broad goals are as I described above, in essence, spanning the entire tree.

My broad goals have changed a bit over time. I’ve located and tested descendants of many Y lines, but I’m still working on a few. I’ve confirmed most of my lineage back several generations by matching the DNA from other children of the same ancestor and using tools like triangulation and DNAPainter to confirm the segment is actually from the ancestral couple I think it is.

I’ve added the goal of breaking down brick walls.

This means that I need to look deep instead of broad.

Deep means that I need to focus on and formulate a plan for each line.

Looking Deep

I’ve identified three specific deep goals and put together a plan with action steps to achieve those goals.

  • Deep Goal #1 – Collecting and Using Y and Mitochondrial DNA

I like to “collect” the Y DNA and mitochondrial DNA results/haplogroups of my ancestors for different reasons. First, I’ve discovered surprises in where their DNA originated. For both Y DNA and mitochondrial DNA, you can identify their continent of origin as well as confirm ancestors or break down brick walls for that one specific line through matches and other tools at Family Tree DNA.

Looking at my tree, my closest ancestor whose Y DNA or mtDNA I don’t have is my great-grandmother, Evaline Miller (1857-1939) who had 4 daughters who all had daughters. You wouldn’t think it would be this difficult to find someone who descends to current through all daughters.

How do I go about achieving this goal? What are some alternatives?

  • Track and ask family members, if possible.
  • Find descendants using MyHeritage, Ancestry and Geneanet (especially in Europe) trees. Bonus – they may also have photos or information that I don’t, especially since this isn’t a distant ancestor.

click to enlarge

Ancestry’s ThruLines shows your matches by ancestor, so long as the connection can be made through trees. Unfortunately, in this case, no one descends correctly for mitochondrial DNA, meaning through all females to the current generation which can be male. BUT, they might have an aunt or uncle who does, so it’s certainly worth making a contact attempt.

  • I can also use WikiTree to see if someone has already tested in her line. Unfortunately, no.

However, I don’t know the profile manager so maybe I should click and see how we might be related. You never know and the answer is no if you don’t ask😊

Deep Goal #2 – Confirming a Specific Ancestor

I want to confirm that a specific ancestor is my ancestor, or as close as I can get.

What do I mean by that?

In the first couple of close generations, using autosomal DNA, we can confirm ancestral lines and parentage. We can confirm our parents and our grandparents, but further back in that, we have to use a combination of our tree and other tools to confirm our paper genealogy.

For example, as we move further back in time, we can’t confirm that one particular son was the father as opposed to his brother. In closer generations, autosomal DNA might help, but not beyond the first couple of generations. Second cousins always match autosomally, but beyond that, not so much.

Using Y DNA, if we can find a suitable candidate, I can confirm that my Estes ancestor actually does descend through the Estes line indicated by my paper trail.

I need to find someone in my line either to test or who has already tested, of course.

click to enlarge

If they do test and share their match information with me, and others from that same line have tested, I can see their earliest known ancestors on their Y DNA match page.

If someone from that line has already tested and has joined a surname project, you can see their results on the public project page if they have authorized public project display.

click to enlarge

This is also one way of determining whether or not your line has already tested, especially if you have no Y DNA matches to the expected surname and ancestor. If others have tested from that ancestor, and you don’t match them, there’s a mystery to be unraveled.

To see if projects exist for your surnames, you can click here and scroll down to the search box, below.

Please note that if someone else in your family takes the Y DNA test, that doesn’t guarantee that you descend from that ancestor too unless that person is a reasonably close relative and you match them autosomally in the expected way.

Confirmation of a specific ancestor requires two things without Y DNA testing:

  • Sharing autosomal matches, and preferably triangulated segments, with others who descend from that ancestor (or ancestral couple) through another child.
  • Eliminating other common ancestors.

Of course, Ancestry’s ThruLines are useful for this purpose as are MyHeritage’s Theories of Family Relativity, but that only works if people have linked their DNA results to a tree.

My favorite tool for ancestor confirmation is DNAPainter where you can paint your segments from FamilyTreeDNA, 23andMe, MyHeritage and GEDmatch, either individually or in bulk. You can’t use Ancestry DNA information for this purpose, but you can transfer your Ancestry DNA file to those other vendors (except 23andMe) for free, and search for matches without retesting. (Step-by-step transfer instructions are found here.)

Here’s an example of a group of my matches from various companies painted on one of my chromosomes at DNAPainter. You can read all about how to use DNAPainter, here.

I identify every match that I can and paint those segments to that ancestor. Ancestors are identified by color that I’ve assigned.

In this case, I have identified several people who descend from ancestors through my paternal grandmother’s side going back four generations. We have a total of 12 descendants of the couple Henry Bolton and Nancy Mann (burgundy), even though initially I can only identify some people back to either my grandparents (mustard color) or my grandmother’s parents (grey) or her grandparents (blue). The fact that several people descend from Henry and Nancy, through multiple children, confirms this segment back to that couple. Of course, we don’t know which person of that couple until we find people matching from upstream ancestors.

What about that purple person? I don’t know how they match to me – meaning through which ancestor based on genealogy. However, I know for sure at least part of that matching segment, the burgundy portion, is through Henry Bolton and Nancy Mann, or their ancestors.

Deep Goal #3 – Breaking Down a Brick Wall

Of course, the nature of your brick wall may vary, but I’ll use the example of not being able to find the parents of an ancestral couple.

In the above example, I mentioned that each segment goes back to a couple. Clearly, in the next generation, that segment either comes from either the father or mother, or parts from both perhaps. In this case, that oldest burgundy segment originated with either Henry Bolton or Nancy Mann.

In other words, in the next generation upstream, that segment can be assigned to another couple.

Even if we don’t know who that couple is, it’s still their DNA and other people may have inherited that very same segment.

What we need to know is if the people who share that segment with us and each other also have people in their trees in common with each other that we don’t have in our trees.

Does that make sense? I’m looking for commonality between other testers in their trees that might allow me to connect back another generation.

That common couple in their trees may be the key to unlocking the next generation.

Caveat – please note that people they have in common that we don’t may also be wives of their ancestors downstream of our common ancestor. Just keep that in mind.

Let’s shift away from that Bolton example and look at another way to identify clusters of people and common ancestors.

In order to identify clusters of people who match me and each other, I utilize Genetic Affairs autocluster, or the AutoCluster features incorporated into MyHeritage or the Tier 1 “Clusters” option at GEDmatch.

Based on the ancestors of people in this red cluster that I CAN identify, I know it’s a Crumley cluster. The wife of my William Crumley (1767/8 – 1837/40) has never been identified. I looked at the trees of the people in this cluster that I don’t know and can’t identify a common ancestor, and I discovered at least two people have a Babb family in their tree.

Babb was a near neighbor to William Crumley’s family, but I’ve also noticed that Babb married into this line downstream another 3 generations in Iowa. These families migrated from Frederick County, VA to Greene County, TN and on, together – so I’ll need to be very careful. However, I can’t help but wonder if my William’s wife was a Babb.

I need to see if any of my other matches have Babb as a common name. Now, I can search for Babb at any of the testing vendors to see what, if anything, I can discover.

Genetic Affairs has a combined AutoCluster and AutoTree/AutoPedigree function that compares and combines the trees of cluster members for you, here.

Goals Summary

Now, it’s your turn.

  • What are your genealogy goals that DNA can assist with?
  • Are those goals broad or deep?
  • What kind of DNA test can answer or help answer those questions?
  • What tools and research techniques fit the quandary at hand?

I suggest that you look at each ancestor, and in particular each end-of-line ancestor thinking about where you can focus to obtain answers and reveal new ancestors.

Happy ancestor hunting!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Holiday DNA Sales Have Started Early

Wow – the sales started early this year! I understand that Black Friday has morphed into the month of November. I’m good with that!

I’m not really surprised because many people are spending more time at home and let’s face it, genealogy is a great at-home activity. I’m glad the sales are starting earlier and running longer because it encourages more people to become engaged.

Genealogy can even help you produce holiday gifts for others in a myriad of ways. Not just purchasing DNA kits for yourself and family members but creating stories or giving them a book you’ve created with photos of grandma and grandpa’s life, perchance.

Of course, DNA is a HUGE part of genealogy. Even if you’re not going to be able to see Uncle Joe this Thanksgiving, you can certainly have a fun Zoom session and document him swabbing or spitting for his DNA test! Make memories, one way or another

Let’s see what the vendors are offering. Then, be sure to read to the end for a surprise.

FamilyTreeDNA – Early Bird Holiday Sale

click to enlarge

FamilyTreeDNA has more products to offer than any of the other vendors with autosomal, Y DNA and mitochondrial DNA tests, each offering something unique.

Y DNA focuses only on your direct patrilineal (surname) line if you are a male. Mitochondrial DNA follows your matrilineal (mother’s mother’s mother’s) line for both sexes. The Family Finder autosomal test traces all ancestral lines. You can read a quick article about these different tests and how they work in this article:

The Family Finder test uses matches to known family members like parents, aunts, uncles and cousins to assign other matches who match both you and your family member to either maternal or paternal sides of your tree.

You can also use Genetic Affairs AutoCluster, AutoTree and AutoPedigree tools at FamilyTreeDNA to get even more mileage out of your DNA tests.

If you were an early tester with Y and mitochondrial DNA, you can upgrade now to a more robust test to receive more granular results.

click to enlarge

Have you noticed the ancient DNA articles I’ve been writing recently?

Your most refined haplogroup revealed only in the Big Y-700 or mitochondrial mtFull Sequence test allows you to compare your haplogroup with ancient samples most effectively. I promise you, there will be more articles upcoming! These are just pure joy, connecting back in time.

The FamilyTreeDNA sale ends November 24th. Please click here to order or upgrade.

MyHeritage

MyHeritageDNA includes lots of features that other vendors don’t have, such as integrated AutoClusters and Theories of Family Relativity (TOFR) which connects you and your matches through a network of common records and trees. TOFR is surprisingly accurate, either pointing the way to or identifying common ancestors.

I wrote about how to use these and other included tools to unravel your genealogy in this recent article, with a free companion webinar:

Additionally, MyHeritage has a strong focus in Europe that includes lots of European testers – perfect for people whose ancestors are emigrants from another country.

MyHeritageDNA is on sale now for $49, a $30 savings, plus free shipping if you purchase two or more kits. Please click here to order.

This sale ends November 25th.

Ancestry

Best known for their large database, AncestryDNA offers ThruLines which takes advantage of their database size to suggest common ancestors for you and your matches based on multiple trees. I wrote about ThruLines in this article:

The AncestryDNA test is on sale now for $59, a $40 savings, with free US shipping. Please click here to order.

Sale ends November 23rd.

23andMe

23andMe is best known in the genealogy community for the accuracy of their Ancestry Composition, known as ethnicity results, which they paint on your chromosomes.

23andMe also creates a “genetic tree” between you and your closest matches based on who does and who does not match each other, and how they match each other. I wrote about genetic trees and subsequently, how they solved one mystery in these two articles.

While the genetic tree technology isn’t perfected yet, it’s certainly the direction of the future and can provide insight into how you and others are related and where to look for them in your actual genealogy tree.

The 23andMe Ancestry only test is available for a 10% reduction in price at $88.95. Please click here to order.

Of course, 23andMe also offers a health product that includes the ancestry product.

The 23andMe Health + Ancestry test is available for $99, a saving of 50%. Please click here to order.

These sale prices end November 26th.

Surprise!!!

I have an early holiday gift for you too.

Beginning later this week, I’m publishing the first article in a new interactive series aptly named…drum roll…“DNA Tidbits.”

Indeed, there is fruit-of-the-vine to be harvested and that’s exactly what we are going to do – in small steps! Tidbits.

Just like everything else on this blog, it’s completely free of course and we are going to have lots of FUN!

Let me give you a hint – you’ll probably want to have test results at all of these companies because the Tidbits will be bouncing around a bit – so if you need to buy something, please click on the links below.

Thank you and I can’t wait to get started!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Ancient Ireland’s Y and Mitochondrial DNA – Do You Match???

Ancient Ireland – the land of Tara and Knowth and the passage tombs of New Grange. Land of legend, romance, and perchance of King Arthur, or at least some ancient king who became Arthur in legend.

The island of Ireland, today Ireland and Northern Ireland, was a destination location, it seems, the westernmost island in the British Isles, and therefore the western shore of Europe. Anyone who sailed further west had better have weeks of food, water, and a great deal of good luck.

But who settled Ireland, when, and where did they come from? How many times was Ireland settled, and did the new settlers simply mingle with those already in residence, or did they displace the original settlers? Oral history recorded in the most ancient texts speaks of waves of settlement and conquest.

According to two papers, discussed below, which analyze ancient DNA, there were two horizon events that changed life dramatically in Europe, the arrival of agriculture about 3750 BC, or about 5770 years ago, and the arrival of metallurgy about 2300 BC, or 4320 years ago.

The people who lived in Ireland originally are classified as the Mesolithic people, generally referred to as hunter-gatherers. The second wave was known as Neolithic or the people who arrived as farmers. The third wave heralded the arrival of the Bronze Age when humans began to work with metals.

Our answers about Irish settlers come from the skeletons of the people who lived in Ireland at one time and whose bones remain in various types of burials and tombs.

The first remains to be processed with high coverage whole genome sequencing were those of 3 males whose remains were found in a cist burial on volcanic Rathlin Island, located in the channel between Ireland and Scotland.

In 795, Rathlin had the dubious honor of being the first target of Viking raiding and pillaging.

Rathlin Island is but a spit of land, with a total population of about 150 people, 4 miles east to west and 2.5 miles north to south. Conflict on the island didn’t stop there, with the Campbell and McDonald clan, among others, having bloody clashes on this tiny piece of land, with losers being tossed from the cliffs.

The island is believed to have been settled during the Mesolithic period, according to O’Sullivan in Maritime Ireland, An Archaeology of Coastal Communities (2007). The original language of Rathlin was Gaelic. Having been a half-way point between Ireland and Scotland, it’s believed that Rathlin served as an important cog in the Dalriada diaspora with Dalriada people taking their language, through Rathlin, into Scotland from about 300 AD, or 1700 years ago.

The first Irish remains whose DNA was sequenced at the whole genome level are from those three men and a much earlier Neolithic woman.

  • Three men from a cist burial in Rathlin Island, Co. Antrim (2026-1534 BC) with associated food vessel pottery.
  • A Neolithic woman (3343-3030 BC) from Ballynahatty, County, Down, south of Belfast, found in an early megalithic passage-like grave

Megalithic tomb at the centre of the Giant’s Ring in Ballynahatty, Ireland, photo by robertpaulyoung – [1], CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=3221494

The female is clearly older than the three Rathlin males. According to Cassidy, et al, 2016, she clusters with 5 other Middle Neolithic individuals from Germany, Spain, and Scandinavia, while the males cluster with early Bronze Age genomes from central and northern Europe, reflecting a division between hunter-gatherer and early farmer individuals.

The males reflect genetic components of the Yamnaya, early Bronze Age herders from the Pontic Steppe, along with an equal level of Caucasus admixture.

The threshold between the Neolithic and Bronze Age fell at about 3750 BC in western Europe and Ireland, right between these two burials.

Even Earlier Burials

In 2020, Cassidy et al sequenced another 44 individuals from Irish passage grave burials ranging in age from 4793 to 2910 BC, or about 3000 to 7000 years ago. All of the men are members of haplogroup I, except two who are Y haplogroup H.

The Rathlin males, all haplogroup R1b, combined with evidence provided by later genetic analysis of passage grave remains point decisively towards a population replacement – with haplogroup R males replacing the previous inhabitants of both Europe and the British Isles.

In far western Ireland, haplogroup R and subgroups reach nearly 100% today.

I would encourage you to read the two papers, linked below, along with supplemental information. They are absolutely fascinating and include surprises involving both the history between Ireland and continental Europe, along with the relationships between the people buried at Newgrange.

Not only that, but the oral history regarding an elite sibling relationship involving the sun was passed down through millenia and seems to be corroborated by the genetics revealed today.

The most recent 2020 paper includes extensive archaeological context revolving around passage graves and megalithic tombs. When I visited New Grange in 2017, above, I was told that genetic analysis was underway on remains from several ancient burials.

I’m incredibly grateful that Dr. Dan Bradley’s ancient DNA lab at the Smurfit Institute of Genetics in Dublin, which I was also privileged to visit, was not only working on these historical treasures but that they were successful in obtaining high-quality results for Y DNA, autosomal and mitochondrial.

Dr. Dan Bradley in his ancient DNA lab in Dublin.

Take a look at these fascinating papers and then, see if you match any of the ancient samples.

Papers

Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome by Cassidy et al 2016

This paper included the Ballynahatty female and the three Rathlin Island males.

Significance

Modern Europe has been shaped by two episodes in prehistory, the advent of agriculture and later metallurgy. These innovations brought not only massive cultural change but also, in certain parts of the continent, a change in genetic structure. The manner in which these transitions affected the islands of Ireland and Britain on the northwestern edge of the continent remains the subject of debate. The first ancient whole genomes from Ireland, including two at high coverage, demonstrate that large-scale genetic shifts accompanied both transitions. We also observe a strong signal of continuity between modern-day Irish populations and the Bronze Age individuals, one of whom is a carrier for the C282Y hemochromatosis mutation, which has its highest frequencies in Ireland today.

Abstract

The Neolithic and Bronze Age transitions were profound cultural shifts catalyzed in parts of Europe by migrations, first of early farmers from the Near East and then Bronze Age herders from the Pontic Steppe. However, a decades-long, unresolved controversy is whether population change or cultural adoption occurred at the Atlantic edge, within the British Isles. We address this issue by using the first whole genome data from prehistoric Irish individuals. A Neolithic woman (3343–3020 cal BC) from a megalithic burial (10.3× coverage) possessed a genome of predominantly Near Eastern origin. She had some hunter–gatherer ancestry but belonged to a population of large effective size, suggesting a substantial influx of early farmers to the island. Three Bronze Age individuals from Rathlin Island (2026–1534 cal BC), including one high coverage (10.5×) genome, showed substantial Steppe genetic heritage indicating that the European population upheavals of the third millennium manifested all of the way from southern Siberia to the western ocean. This turnover invites the possibility of accompanying introduction of Indo-European, perhaps early Celtic, language. Irish Bronze Age haplotypic similarity is strongest within modern Irish, Scottish, and Welsh populations, and several important genetic variants that today show maximal or very high frequencies in Ireland appear at this horizon. These include those coding for lactase persistence, blue eye color, Y chromosome R1b haplotypes, and the hemochromatosis C282Y allele; to our knowledge, the first detection of a known Mendelian disease variant in prehistory. These findings together suggest the establishment of central attributes of the Irish genome 4,000 y ago.

A Dynastic elite in monumental Neolithic society by Cassidy et al, 2020

Poulnabrone Dolmen, County Clare, where disarticulated remains of 35 individuals have been excavated and two, approximately 5500-6000 years old, have resulting haplogroups.

This second article includes a great deal of archaeological and burial information which includes caves, reefs, cist burials, boulder chambers, peat bogs, dry-stone walls, portal tombs (think Stonehenge style structures), megalithic tombs such as the Giant’s Ring, court tombs, and passage tombs, including Newgrange.

Abstract

The nature and distribution of political power in Europe during the Neolithic era remains poorly understood1. During this period, many societies began to invest heavily in building monuments, which suggests an increase in social organization. The scale and sophistication of megalithic architecture along the Atlantic seaboard, culminating in the great passage tomb complexes, is particularly impressive2. Although co-operative ideology has often been emphasized as a driver of megalith construction1, the human expenditure required to erect the largest monuments has led some researchers to emphasize hierarchy3—of which the most extreme case is a small elite marshalling the labour of the masses. Here we present evidence that a social stratum of this type was established during the Neolithic period in Ireland. We sampled 44 whole genomes, among which we identify the adult son of a first-degree incestuous union from remains that were discovered within the most elaborate recess of the Newgrange passage tomb. Socially sanctioned matings of this nature are very rare, and are documented almost exclusively among politico-religious elites4—specifically within polygynous and patrilineal royal families that are headed by god-kings5,6. We identify relatives of this individual within two other major complexes of passage tombs 150 km to the west of Newgrange, as well as dietary differences and fine-scale haplotypic structure (which is unprecedented in resolution for a prehistoric population) between passage tomb samples and the larger dataset, which together imply hierarchy. This elite emerged against a backdrop of rapid maritime colonization that displaced a unique Mesolithic isolate population, although we also detected rare Irish hunter-gatherer introgression within the Neolithic population.

Y DNA Analysis at FamilyTreeDNA

Fortunately, the minimum coverage threshold for the Bradley lab was 30X, meaning 30 scanned reads. Of the 37 males sequenced, the lab was able to assign a Y DNA haplogroup to 36.

Family Tree DNA downloaded the BAM files and Michael Sager analyzed the Y DNA. The results split about 8 Y DNA lines, resulting in a total of 16 different haplogroup assignments. There are a couple more that may split with additional tests.

Cassidy et al report that the Y DNA results in several geographic locations, using the ISOGG tree (2018) for haplogroup assignment, although in some cases, I did find some inconsistencies in their haplogroup and SNP names. I would recommend reading the paper in full for the context, including the supplementary information, and not simply extracting the SNP information, because the context is robust as is their analysis.

If your family hails from the Emerald Isle, chances are very good that these people represent your ancestral lines, one way or another – even if you don’t match them exactly. The events they witnessed were experienced by your ancestors too. There appears to have been a vibrant, diverse community, or communities, based on the burials and history revealed.

Of course, we all want to know if our Y DNA or mitochondrial DNA haplogroups, or that of our family members matches any of these ancient samples.

Thank you to Michael Sager, phylogeneticist, and Goran Runfeldt, head of R&D at Family Tree DNA for making this information available. Without their generosity, we would never know that an ancient sample actually split branches of the tree, nor could we see if we match.

Do You Match?

I explained, in this article, here, step-by-step, how to determine if your Y DNA or mitochondrial DNA matches these ancient samples.

If you only have a predicted or base haplogroup, you can certainly see if your haplogroup is upstream of any of these ancient men. However, you’ll receive the best results if you have taken the detailed Big Y-700 test, or for the mitochondrial DNA lines, the full sequence test. You can upgrade or order those tests, here. (Sale started today.)

Sample: Rathlin1 / RM127 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 2026-1885 cal BC
Y-DNA: R-DF21
mtDNA: U5a1b1e

Sample: Rathlin2 / RSK1 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 2024-1741 cal BC
Y-DNA: R-DF21
mtDNA: U5b2a2

Sample: Rathlin3 / RSK2 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 1736-1534 cal BC
Y-DNA: R-L21
mtDNA: J2b1a

Sample: Ballynahatty / BA64 (Cassidy et al. 2016)
Sex: Female
Location: Ballynahatty, Down, Northern Ireland
Age: Middle to Late Neolithic 3343-3020 cal BC
mtDNA: HV0-T195C!

The above 4 samples were from the original 2016 paper, with the additional samples from 2020 added below

Sample: Ashleypark3 / ASH3 (Cassidy et al. 2020)
Sex: Male
Location: Ashleypark, Tipperary, Ireland
Age: Early-Middle Neolithic 3712-3539 cal BC
Y-DNA: I-FT344600
FTDNA Comment: Ashleypark3, Parknabinnia186, Parknabinnia2031, Parknabinnia672, Parknabinnia675, Parknabinnia768 and Poulnabrone06 split the I2-L1286 (S21204+/L1286-) branch. These samples, along with SBj (Gunther 2018), I1763 (Mathieson 2018), Ajv54 (Malmström 2019) and Ajv52, Ajv58 and Ajv70 (Skoglund 2012) form the branch I-FT344596. All Cassidy samples form an additional branch downstream, I-FT344600. There is further evidence that SBj, Ajv58 and Ajv52 might form an additional branch, sibling to I-FT344600
mtDNA: T2c1d1

Sample: Killuragh6 / KGH6 (Cassidy et al. 2020)
Sex: Male
Location: Killuragh, Limerick, Ireland
Age: Mesolithic 4793-4608 cal BC
Y-DNA: I-V4921
FTDNA Comment: Joins ancient samples Loschbour, Motala12, Motala3 (Lazaridis 2015) and Steigen (Gunther 2018) at I2-V4921
mtDNA: U5b2a

Loschbour Man is from present-day Luxembourg, Motala is from Sweden and Steigen is from Norway.

Sample: Parknabinnia186 / PB186 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3518-3355 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: X2b-T226C

Sample: Parknabinnia2031 / PB2031 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3632-3374 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: K1a2b

Sample: Parknabinnia672 / PB672 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3626-3196 cal BC; 3639-3384 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: T2c1d-T152C!

Sample: Parknabinnia675 / PB675 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3263-2910 cal BC; 3632-3372 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H1

Sample: Parknabinnia768 / PB768 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3642-3375 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H4a1a1

Sample: Poulnabrone06 / PN06 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3635-3376 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H

Sample: Sramore62 / SRA62 (Cassidy et al. 2020)
Sex: Male
Location: Sramore, Leitrim, Ireland
Age: Mesolithic 4226-3963 cal BC
Y-DNA: I-S2519
FTDNA Comment: Split the I2-S2519 branch. Pushes Cheddar man and SUC009 down to I-S2497. Other relevant pre-L38s include I2977 (I-Y63727) and R11, I5401, I4971, I4915 I4607 (I-S2599)
mtDNA: U5a2d

This branch is ancestral to Cheddar Man who dates from about 9000 years ago and was found in Cheddar Gorge, Somerset, England. S2497 has 141 subbranches.

Sample: Annagh1 / ANN1 (Cassidy et al. 2020)
Sex: Male
Location: Annagh, Limerick, Ireland
Age: Middle Neolithic 3638-3137 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: K1a-T195C!

Men from Germany and Ireland are also found on this branch which hosts 47 subbranches.

Sample: Annagh2 / ANN2 (Cassidy et al. 2020)
Sex: Male
Location: Annagh, Limerick, Ireland
Age: Middle Neolithic 3705-3379 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: H4a1a1

Along with men from Germany and Ireland, and 47 subbranches.

Sample: Ardcroney2 / ARD2 (Cassidy et al. 2020)
Sex: Male
Location: Ardcrony, Tipperary, Ireland
Age: Middle Neolithic 3624-3367 cal BC
Y-DNA: I-FT354500
FTDNA Comment: Ardcroney2 and Parknabinnia443 split the I2-Y13518 branch and form a branch together (I-FT354500). Additional ancient samples residing on I-Y13518 include I2637, I2979, I6759, and Kelco cave
mtDNA: J2b1a

Kelco Cave is in Yorkshire, England.

Sample: Ashleypark1 / ASH1 (Cassidy et al. 2020)
Sex: Male
Location: Ashleypark, Tipperary, Ireland
Age: Middle Neolithic 3641-3381 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: K2a9

Sample: Baunogenasraid72 / BG72 (Cassidy et al. 2020)
Sex: Male
Location: Baunogenasraid, Carlow, Ireland
Age: Middle Neolithic 3635-3377 cal BC
Y-DNA: H-FT362000
FTDNA Comment: Baunogenasraid72 and Jerpoint14 split the H-SK1180 branch and form branch together (H-FT362000). Several other additional ancient samples belong to this branch as well including FLR001, FLR002, FLR004, GRG022, GRG041 (Rivollat 2020), and BUCH2 (Brunel 2020)
mtDNA: K1a4a1

Y haplogroup H is hen’s-teeth rare.

Sample: Carrowkeel531 / CAK531 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2881-2625 cal BC
Y-DNA: I-FT380380
FTDNA Comment: Joins ancient sample prs013 (Sánchez-Quinto 2019)
mtDNA: H1

Sample: Carrowkeel532 / CAK532 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 3014-2891 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: J1c3

One current sample from Portugal.

Sample: Carrowkeel534 / CAK534 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Neolithic None
Y-DNA: I-M284
mtDNA: X2b4

This branch has several subclades as well as people from Ireland, Scotland, England, British Isles, Germany, France, Denmark, Northern Ireland and Norway.

Sample: Carrowkeel68 / CAK68 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2833-2469 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H

Sample: Cohaw448 / CH448 (Cassidy et al. 2020)
Sex: Male
Location: Cohaw, Cavan, Ireland
Age: Middle Neolithic 3652-3384 cal BC
Y-DNA: I-L1498
mtDNA: H1

This branch has 129 subbranches and men from England, Ireland, UK, France, Germany, Czech Republic, Norway, Northern Ireland and Scotland.

Sample: Glennamong1007 / GNM1007 (Cassidy et al. 2020)
Sex: Male
Location: Glennamong, Mayo, Ireland
Age: Middle Neolithic 3507-3106 cal BC
Y-DNA: I-Y3713
FTDNA Comment: Joins VK280
mtDNA: K1a-T195C!

Branch has 42 subbranches and men from Ireland, England, Scotland, France, and Germany. I wrote about VK280, a Viking skeleton from Denmark, here.

Sample: Glennamong1076 / GNM1076 (Cassidy et al. 2020)
Sex: Male
Location: Glennamong, Mayo, Ireland
Age: Middle Neolithic 3364-2940 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H1c

Sample: MillinBay6 / MB6 (Cassidy et al. 2020)
Sex: Male
Location: Millin Bay (Keentagh Td.), Down, Ireland
Age: Middle Neolithic 3495-3040 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: J1c3

Branch has 51 subbranches and men from Ireland and England.

Sample: Jerpoint14 / JP14 (Cassidy et al. 2020)
Sex: Male
Location: Jerpoint West, Kilkenny, Ireland
Age: Middle Neolithic 3694-3369 cal BC
Y-DNA: H-FT362000
FTDNA Comment: Baunogenasraid72 and Jerpoint14 split the H-SK1180 branch and form branch together (H-FT362000). Several other additional ancient samples belong to this branch as well including FLR001, FLR002, FLR004, GRG022, GRG041 (Rivollat 2020), and BUCH2 (Brunel 2020)
mtDNA: T2c1d1

Sample: Newgrange10 / NG10 (Cassidy et al. 2020)
Sex: Male
Location: Newgrange, Main Chamber, Meath, Ireland
Age: Middle Neolithic 3338-3028 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U5b1-T16189C!-T16192C!

Sample: Parknabinnia1327 / PB1327 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3631-3353 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: T2b3

Sample: Parknabinnia443 / PB443 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3636-3378 cal BC
Y-DNA: I-FT354500
FTDNA Comment: Ardcroney2 and Parknabinnia443 split the I2-Y13518 branch and form a branch together (I-FT354500). Additional ancient samples residing on I-Y13518 include I2637, I2979, I6759, and Kelco_cave
mtDNA: K1b1a1

Sample: Parknabinnia581 / PB581 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3631-3362 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: T2b

Sample: Poulnabrone02 / PN02 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3704-3522 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: U5b1c1

Sample: Poulnabrone03 / PN03 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3635-3376 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: K1a1

Sample: Poulnabrone04 / PN04 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3944-3665 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H1-T16189C!

Sample: Poulnabrone05 / PN05 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3941-3661 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: K1a-T195C!

Sample: Poulnabrone07 / PN07 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3629-3371 cal BC
Y-DNA: I-FT370113
FTDNA Comment: Forms a branch with Raschoille_1 (Brace 2019) and I3041 (Olalde 2018). Other relevant ancient samples are Carsington_Pasture_1, I3134, I7638 at I-BY166411, and Coldrum_1 and I2660 at I-BY168618. These 8 ancients all group with two modern men, 1 from Ireland and 1 of unknown origins.
mtDNA: U5b1c

Sample: Poulnabrone107 / PN107 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3926-3666 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U4a2f

Sample: Poulnabrone112 / PN112 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3696-3535 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U5b2b

Sample: Poulnabrone12 / PN12 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3621-3198 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H

Sample: Poulnabrone13 / PN13 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3704-3536 cal BC
Y-DNA: I-S2639
mtDNA: V

Branch has 172 subclades.

Sample: Carrowkeel530 / CAK530 (Cassidy et al. 2020)
Sex: Female
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2883-2634 cal BC
mtDNA: W5b

Sample: Carrowkeel533 / CAK533 (Cassidy et al. 2020)
Sex: Female
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 3085-2904 cal BC
mtDNA: H

Sample: NewgrangeZ1 / NGZ1 (Cassidy et al. 2020)
Sex: Female
Location: Site Z, Newgrange, Meath, Ireland
Age: Middle Neolithic 3320-2922 cal BC
mtDNA: X2b-T226C

Sample: Parknabinnia1794 / PB1794 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3647-3377 cal BC
mtDNA: J1c6

Sample: Parknabinnia357 / PB357 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Early-Middle Neolithic 3640-3381 cal BC; 3774-3642 cal BC
mtDNA: U8b1b

Sample: Parknabinnia754 / PB754 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3617-3138 cal BC
mtDNA: U5b2a3

Sample: Poulnabrone10_113 / PN113 (Cassidy et al. 2020)
Sex: Female
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3940-3703 cal BC
mtDNA: H4a1a1a

Sample: Poulnabrone16 / PN16 (Cassidy et al. 2020)
Sex: Female
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3633-3374 cal BC
mtDNA: K1b1a1

So, how about it? Do you match?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

  • com – lots of wonderful genealogy research books

Longobards Ancient DNA from Pannonia and Italy – What Does Their DNA Tell Us? Are You Related?

The Longobards, Lombards, also known as the Long-beards – who were they? Where did they come from? And when?

Perhaps more important – are you related to these ancient people?

In the paper, Understanding 6th-century barbarian social organizatoin and migration through paleogenomics, by Amorim et al, the authors tell us in the abstract:

Despite centuries of research, much about the barbarian migrations that took place between the fourth and sixth centuries in Europe remains hotly debated. To better understand this key era that marks the dawn of modern European societies, we obtained ancient genomic DNA from 63 samples from two cemeteries (from Hungary and Northern Italy) that have been previously associated with the Longobards, a barbarian people that ruled large parts of Italy for over 200 years after invading from Pannonia in 568 CE. Our dense cemetery-based sampling revealed that each cemetery was primarily organized around one large pedigree, suggesting that biological relationships played an important role in these early medieval societies. Moreover, we identified genetic structure in each cemetery involving at least two groups with different ancestry that were very distinct in terms of their funerary customs. Finally, our data are consistent with the proposed long-distance migration from Pannonia to Northern Italy.

Both the Germans and French have descriptions of this time of upheaval in their history. Völkerwanderung in German and Les invasions barbares in French refer to the various waves of invasions by Goths, Franks, Anglo-Saxons, Vandals, and Huns. All of these groups left a genetic imprint, a story told without admixture by their Y and mitochondrial DNA.

click to enlarge

The authors provide this map of Pannonia, the Longobards kingdom, and the two cemeteries with burial locations.

One of their findings is that the burials are organized around biological kinship. Perhaps they weren’t so terribly different from us today.

Much as genealogists do, the authors created a pedigree chart – the only difference being that their chart is genetically constructed and lacks names, other than sample ID.

One man is buried with a horse, and one of his relatives, a female, is not buried in a family unit but in a half-ring of female graves.

The data suggests that the cemetery in Pannonia, Szolad, shown in burgundy on the map, may have been a “single-generation” cemetery, in use for only a limited time as the migration continued westward. Collegno, in contrast, seems to have been used for multiple generations, with the burials radiating outward over time from the progenitor individual.

Because the entire cemetery was analyzed, it’s possible to identify those individuals with northern or northeastern European ancestry, east of the Rhine and north of the Danube, and to differentiate from southern European ancestry in the Lombard cemetery – in addition to reassembling their family pedigrees. The story is told, not just by one individual’s DNA, but how the group is related to each other, and their individual and group origins.

For anyone with roots in Germany, Hungary, or the eastern portion of Europe, you know that this region has been embroiled in upheaval and warfare seemingly as long as there have been people to fight over who lived in and controlled these lands.

Are You Related?

Goran Rundfeldt’s R&D group at Family Tree DNA reanalyzed the Y DNA samples from this paper and has been kind enough to provide a summary of the results. Michael Sager has utilized them to branch the Y DNA tree – in a dozen places.

Mitochondrial DNA haplogroups have been included where available from the authors, but have not been reanalyzed.

Note the comments added by FTDNA during analysis.

Many new branches were formed. I included step-by-step instructions, here, so you can see if your Y DNA results match either the new branch or any of these samples upstream.

If you’re a male and you haven’t yet tested your Y DNA or you would like to upgrade to the Big Y-700 to obtain your most detailed haplogroup, you can do either by clicking here. My husband’s family is from Hungary and I just upgraded his Y DNA test to the Big Y-700. I want to know where his ancestors came from.

And yes, this first sample really is rare haplogroup T. Each sample is linked to the Family Tree DNA public tree. We find haplogroups G and E as well as the more common R and I. Some ancient samples match contemporary testers from France (2), the UK, England, Morocco, Denmark (5), and Italy. Fascinating!

Sample: CL23
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: T-BY45363
mtDNA: H

Sample: CL30
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-P312
mtDNA: I1b

Sample: CL31
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: G-FGC693
FTDNA Comment: Authors warn of possible contamination. Y chromosome looks good – and there is support for splitting this branch. However, because of the contamination warning – we will not act on this split until more data is available.
mtDNA: H18

Sample: CL38
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: E-BY3880
mtDNA: X2

Sample: CL49
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-CTS6889

Sample: CL53
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-FGC24138
mtDNA: H11a

Sample: CL57
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-BY48364
mtDNA: H24a

Sample: CL63
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: I-FT104588
mtDNA: H

Sample: CL84
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-U198
mtDNA: H1t

Sample: CL92
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: H

Sample: CL93
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: J2b1a

Sample: CL94
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-DF99
mtDNA: K1c1

Sample: CL97
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-L23

Sample: CL110
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-L754

Sample: CL121
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-BY70163
FTDNA Comment: Shares 2 SNPs with a man from France. Forms a new branch down of R-BY70163 (Z2103). New branch = R-BY197053
mtDNA: T2b

Sample: CL145
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: T2b

Sample: CL146
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-A8472
mtDNA: T2b3

Sample: SZ1
Location: Szólád, Somogy County, Hungary
Study Information: The skeletal remains from an individual dating to the Bronze Age 10 m north of the cemetery.
Age: Bronze Age
Y-DNA: R-Y20746
mtDNA: J1b

Sample: SZ2
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-Z338
FTDNA Comment: Shares 5 SNPs with a man from the UK. Forms a new branch down of R-Z338 (U106). New branch = R-BY176786
mtDNA: T1a1

Sample: SZ3
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-BY3605
mtDNA: H18

Sample: SZ4
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-ZP200
FTDNA Comment: Splits R-ZP200 (U106). Derived (positive) for 2 SNPs and ancestral (negative) for 19 SNPs. New path = R-Y98441>R-ZP200
mtDNA: H1c9

Sample: SZ5
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-BY3194
FTDNA Comment: Splits R-BY3194 (DF27). Derived for 19 SNPs, ancestral for 9 SNPs. New path = R-BY3195>R-BY3194
mtDNA: J2b1

Sample: SZ6
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-P214

Sample: SZ7
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: T2e

Sample: SZ11
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-FGC13492
FTDNA Comment: Shares 1 SNP with a man from Italy. Forms a new branch down of R-FGC13492 (U106). New branch = R-BY138397
mtDNA: K2a3a

Sample: SZ12
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: W6

Sample: SZ13
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 422-541 cal CE
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: N1b1b1

Sample: SZ14
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-CTS616
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: I3

Sample: SZ15
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-YP986
mtDNA: H1c1

Sample: SZ16
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-U106
mtDNA: U4b1b

Sample: SZ18
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: E-BY6865
FTDNA Comment: Shares 1 SNP with a man from Morocco. Forms a new branch down of E-BY6865. New branch = E-FT198679
mtDNA: H13a1a2

Sample: SZ22
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-Y6876
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: N1b1b1

Sample: SZ23
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-S10271
mtDNA: H13a1a2

Sample: SZ24
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-ZS3
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: U4b

Sample: SZ27B
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 412-538 cal CE
Y-DNA: R-FGC4166
FTDNA Comment: Shares 1 SNP with a man from France. Forms a new branch down of R-FGC4166 (U152). New branch = R-FT190624
mtDNA: N1a1a1a1

Sample: SZ36
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: T-Y15712
mtDNA: U4c2a

Sample: SZ37
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 430-577 cal CE
Y-DNA: R-P312
mtDNA: H66a

Sample: SZ42
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-P312
mtDNA: K2a6

Sample: SZ43
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 435-604 cal CE
Y-DNA: I-BY138
mtDNA: H1e

Sample: SZ45
Location: Szólád, Somogy County, Hungary
Study Information: ADMIXTURE analysis showed SZ45 to possess a unique ancestry profile.
Age: Longobard 6th Century
Y-DNA: I-FGC21819
FTDNA Comment: Shares 2 SNPs with a man from England forms a new branch down of FGC21819. New branch = I-FGC21810
mtDNA: J1c

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Mitochondrial DNA Facebook Group Launches

Mitochondrial DNA has so much untapped potential!

Until now, there hasn’t been an online resource where one could go to find information about and specifically discuss mitochondrial DNA. Even more distressing, in many groups, when the topic of mitochondrial DNA arises, misinformation abounds, discouraging would-be testers.

New Group!

I’m very pleased to announce the new Facebook group, Mitochondrial DNA, here, founded by the National Geographic Society Genographic Project’s lead scientist, Dr. Miguel Vilar. As you know, the Genographic Project’s public participation phase has ended, but the scientific research for those who opted-in for science continues and Miguel is leading the way.

Miguel shares a lifelong passion for mitochondrial DNA, inherited by both males and females from their direct matrilineal line.

Different colored stars represent different Y DNA lines. Different colored hearts represent different mtDNA lines. The paternal and maternal grandfathers carry the mtDNA of their mothers, not shown here.

Mitochondrial DNA informs you about your mother’s mother’s mother’s line – the pink hearts above – both genealogically and historically. In other words, you can break down brick walls in your genealogy and understand the genesis of your matrilineal line before the advent of surnames. We can better answer the question, “where did I come from,” or more succinctly, where did our mother’s direct line come from.

In addition to Miguel, you’ll find other experts in the group, including members of the Million Mito Project, which I wrote about here.

  • Goran Rundfeldt heads the R&D team at FamilyTreeDNA.
  • Paul Maier is a population geneticist and member of the research team at FamilyTreeDNA. He specialized in toad and frog mtDNA in grad school and is now working on the new mitochondrial tree, for humans 😊, among other projects.
  • I’ve always been very interested in mitochondrial DNA, was a member of the Genographic Project design team and the first Genographic affiliate researcher. You can reference my Mitochondrial DNA resource page, here, which includes articles and step-by-step instructions for how to utilize mtDNA results.

Aside from the Million Mito research team, other Mitochondrial DNA group members with a special interest in mitochondrial DNA include:

As I scan down the list of members, I see several more highly qualified people.

Come On Over

Come on over and take a look for yourself to see what kinds of subjects are being discussed. Browse, ask a question, and contribute.

Send other people who have questions, are seeking advice, or are interested in what mitochondrial DNA can do for them.

Do you have a matrilineal brick wall you’d like to see fall? The first step is to test your mitochondrial DNA, preferably at the full sequence level to obtain as much information as possible. The more people who test, the better our chances of making meaningful connections.

Your mitochondrial DNA is a gift directly from your matrilineal ancestors. See what they have to say!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research