FamilyTreeDNA Provides Y DNA Haplogroups from Family Finder Autosomal Tests

Big News! FamilyTreeDNA is delivering holiday gifts early!

Y DNA haplogroups are beginning to be delivered as a free benefit to men who took the Family Finder test at FamilyTreeDNA. This is the first wave of a staggered rollout. Haplogroup results will be delivered to several thousand people at a time, in batches, beginning today.

This is no trivial gift and includes LOTS of information that can be used in various ways for your genealogy. Please feel free to share this article. The new Family Finder haplogroups are another reason to take a Family Finder test and to encourage other family members to do so as well.

How is this Even Possible?

Clearly, Y DNA is not autosomal DNA, so how is it possible to obtain a Y DNA or mitochondrial DNA haplogroup from an autosomal test? Great question!

Many autosomal DNA processing chips include a limited number of targeted Y and mitochondrial DNA SNP locations. Generally, those locations are haplogroup predictive, which is how haplogroup information can be obtained from an autosomal DNA test.

Compared to the actual Y DNA and mitochondrial DNA tests, only a small fraction of the information is available through autosomal tests. Only the full sequence mitochondrial DNA test or the Big Y-700 test will provide you with the full story, including your most refined haplogroup, additional information, and matching with other customers.

Having said that, haplogroups obtained from Family Finder provide important clues and genealogical information that will hopefully whet recipients’ appetites for learning even more.

Delivery Schedule

This first group of men to receive haplogroup results consists of testers who have purchased the Family Finder test since March 2019 when the most recent chip was put into production.

FamilyTreeDNA will be rolling haplogroups out in batches of a few thousand each day until everyone’s is complete, in the following order:

  • Family Finder tests purchased since March 2019 (their V3 chip)
  • Family Finder tests purchased between the fall of 2015 to March 2019 (their V2 chip)
  • Family Finder tests purchased from 2010 to the fall of 2015 (their V1 chip)
  • Autosomal uploads from other vendors for customers who have unlocked the advanced Family Finder features for $19

Uploaded DNA Files from Other Vendors

After the results are available for all males who have tested at FamilyTreeDNA, haplogroups will begin to be rolled out to customers who uploaded autosomal DNA files from other companies, meaning MyHeritage, Vitagene, 23andMe, and Ancestry.

To receive haplogroups for files uploaded from other vendors, the Family Finder advanced tool unlock must have been (or can be) purchased for $19. In addition to haplogroups, the unlock also provides access to the chromosome browser, myOrigins (ethnicity), Chromosome painting for myOrigins ethnicity, and ancient Origins.

Both MyHeritage and Vitagene tests are performed in the Gene by Gene lab. Those “uploads” are actually a secure business-to-business transaction, so the file integrity is assured.

Ancestry and 23andMe DNA files are downloaded from those companies, then uploaded to FamilyTreeDNA. Some people build “composite” files in the format of these companies, so FamilyTreeDNA has no way to assure that the original DNA upload file hasn’t been modified and it is a legitimate, unmodified, file from either 23andMe or Ancestry. Hence, in some situations, they are treated differently.

Both Ancestry and 23andMe utilize different chips than FamilyTreeDNA, covering different SNPs. Those results may vary slightly from results available from native FamilyTreeDNA tests, and will also vary from each other. In other words, there’s no consistency, and therefore haplogroup accuracy cannot be confirmed.

Haplogroups resulting from tests performed in the FamilyTreeDNA lab will be visible to matches and on the SNP pages within projects. They will also be used in both Discover and the haplotree statistics. This includes Family Finder plus MyHeritage and Vitagene DNA file uploads.

Tests performed elsewhere will receive haplogroups that will only be visible to the user, or a group administrator viewing a kit within a project. They will not be visible to matches, used in trees or for statistics.

At their recent conference, FamilyTreeDNA provided this slide during an update about what to expect from Family Finder haplogroups.

Today, only Y DNA haplogroups are being provided, but after the new mitochondrial tree is available, customer haplogroups are updated, and MitoDiscover (my name, not theirs) is released, FamilyTreeDNA is planning to provide mitochondrial DNA haplogroups for Family Finder customers as well. The current haplogroup estimate is late 2024 or even into 2025.

Unfortunately, some of Ancestry’s DNA files don’t include mitochondrial DNA SNPs, so some customers who’ve uploaded Ancestry files won’t receive mitochondrial haplogroups.

STR Haplogroups to be Updated

All FamilyTreeDNA customers who have taken Y DNA STR tests, meaning 12, 25, 37, 67, or 111 markers, receive predicted haplogroups. Often, the Family Finder extracted results can provide a more refined haplogroup.

When that is possible, STR test predicted haplogroup results will be updated to the more refined Family Finder haplogroup.

Furthermore, while STR results are quite reliably predicted, Family Finder results are SNP-confirmed.

Notification

When your Family Finder test has received a haplogroup or your STR-derived haplogroup has been updated, you’ll receive an email notification with a link to a short, less than 2-minute video explaining what you’re receiving.

You can also expect emails in the following days with links to additional short videos. If you’d like to watch the videos now, click here.

You can also check your results, of course. If you should have received an email and didn’t, check your spam folder, and if it’s not there, notify FamilyTreeDNA in case your email has managed to get on the bounce list.

Group project administrators will receive notifications when a haplogroup is updated for a member in a project that they manage. This doesn’t just apply to Family Finder haplogroup updates for STR results – notifications will arrive when Big Y haplogroups are updated, too.

Emails about haplogroup updates will include both the old and the updated haplogroup.

Haplogroups may change as other testers receive results, forming a new haplogroup. The Big Y-700 test is evergreen, meaning as the Y tree grows, testers’ results are updated on an ongoing basis.

New View

Let’s take a look at what customers will receive.

In one of my surname projects, one male has taken a Family Finder test, but not the Y DNA test.

Several other men in that same paternal line, who are clearly related (including his brother), have taken Y DNA tests – both STR and the Big Y-700.

We have men who have taken the Big Y-700 test, STR tests only (no Big Y), and one with only a Family Finder test, so let’s compare all three, beginning with the man who has taken a Family Finder test but no Y DNA tests.

He has now been assigned to haplogroup I-BY1031, thanks to his Family Finder test.

Before today, because he has not taken a Y DNA test, he had no haplogroup or Y DNA Results section on his personal page.

Today, he does. Of course, he doesn’t have STR results or matches, but he DOES have confirmed SNP results, at least part way down the tree.

He can view these results on the Haplotree & SNPs tab or in Discover. Let’s look at both.

Haplotree & SNPs

By clicking on the Haplotree & SNPs link, you can view the results by variants (mutations,) as shown below, or by countries, surnames, or recommended projects for each haplogroup.

Of course, as more Family Finder results are rolled out, the more names and countries will appear on the Haplotree.

Recommended Projects

It’s easy to determine which haplogroup projects would be a good fit for people with these new haplogroups to join.

Just view by Recommended Projects, then scan up that column above the selected haplogroup. You can even just click right there to join. It’s that easy!

Results still won’t show on the public project page, because these testers don’t have STR results to display. Perhaps this will encourage additional testing in order to match with other men.

Download SNP Results

If you’re interested, you can download your SNP results in spreadsheet format.

I’m only showing four of my cousin’s positive SNPs, but FamilyTreeDNA was able to extract 358 positive SNPs to assign him to haplogroup I-BY1031.

Are Family Finder Haplogroups Better Than STR Test Predicted Haplogroups?

How do Family Finder haplogroups stack up against STR-predicted haplogroups?

Viewing the Y DNA results of related cousins who have taken STR tests, but not the Big Y-700, we see that their Y DNA haplogroup was predicted as I-M253.

We also know that the haplogroup determined by the Big Y-700 for this line is I-BY73911.

How can we use this information beneficially, and what does it mean?

Discover

Family Finder haplogroups can access Discover, which I wrote about, here.

Clicking on the Discover link takes you to your haplogroup story.

Let’s look at the new Family Finder Haplogroup Story for this tester.

Haplogroup I-BY1031 is about 3100 years old and is found in England, Sweden, the US, and 14 other countries. Of course, as more Family Finder haplogroups are provided to customers, this information will change for many haplogroups, so check back often.

Of course, you’ll want to review every single tab, which are chapters in your ancestral story! The Time Tree shows your haplogroup age in perspective to other haplogroups and their formation, and Ancient Connections anchors haplogroups through archaeology.

You can share any Discover page in several ways. This is a good opportunity to excite other family members about the discoveries revealed through DNA testing and genealogy. Prices are reduced right now with the Holiday Sale, too, so it’s a great time to gift someone else or yourself.

Compare – How Good is Good?

Ok, so how much better is the Family Finder haplogroup than the STR-predicted haplogroup, and how much better is the Big Y-700 haplogroup than the other two?

I’ll use the Discover “Compare” feature to answer these questions.

First, let’s compare the STR-predicted haplogroup of I-M253 to the Family Finder haplogroup of I-BY1031.

I clicked on Compare and entered the haplogroup I wish to compare to I-BY1031.

I-M253 I-BY1031 I-BY73199
Haplogroup Source STR Predicted Family Finder Big Y-700
Formation Year 2600 BCE 1100 BCE 1750 CE
Age – Years ago 4600 3100 270
Era Stone Age, Metal Age Metal Age Modern
Ancestral Locations England, Sweden, Germany, UK, +100 Sweden, England, US, +14 Netherlands
Tested Descendants 26,572 121 2
Branches 6779 69 0 – this is the pot-of-gold end leaf on the branch today

I created this chart to compare the major features of all three haplogroups.

The STR-predicted haplogroup, I-M253, takes you to about 2,600 BCE, or about 4,600 years ago. The Family Finder haplogroup shifts that significantly to about 1100 BCE, or 3100 years ago, so it’s about 1500 years more recent. However, the Big Y haplogroup takes you home – from 3100 years ago to about 270 years ago.

Notice that there’s a LOT of room for refinement under haplogroup I-M253. A Big Y tester might wind up on any of those 6779 branches, and might well be assigned to a newly formed branch with his test. The Family Finder haplogroup, I-BY1031, which was, by the way, discovered through Big Y testing, moved the autosomal test taker forward 1500 years where there are 121 descendants in 69 branches. The Big Y-700 test is the most refined possible, moving you directly into a genealogically relevant timeframe with a very specific location.

I-M253 is found in over 100 countries, I-BY1031 in 17 and I-BY73199 is found only in one – the Netherlands.

Based on confirmed genealogy, the common ancestor of the two men who have Big Y-700 haplogroup I-BY73199 was a man named Hendrik Jans Ferwerda, born in 1806 in the Netherlands, so 217 years ago. Of course, that haplogroup itself could have been born a generation or two before Hendrik. We simply won’t know for sure until more men test. More testers refine the haplotree, haplogroup ages, and refine our genealogy as well.

Haplogroup Comparison and Analysis

Let’s look at the Discover “Compare” feature of the three haplogroups from my family line from the Netherlands. Please note that your results will differ because every haplogroup is different, but this is a good way to compare the three types of haplogroup results and an excellent avenue to illustrate why testing and upgrades are so important.

The haplogroup ages are according to the Discover Time Tree.

Y-Adam to Haplogroup I1 I-M253 STR Haplogroup  to I-BY1031 Family Finder Haplogroup I-BY1031 Family Finder Haplogroup to BY73199 Big Y Haplogroup
Y-Adam (haplogroup A-PR2921) lived about 234,000 years ago
A0-T
A1
A1b
CT
CF
F
GHIJK
HIJK
IJK
IJ
I
M170
Z2699
L840
I1 I1
I-M253 lived about 4600 years ago
DF29
Z58
Z2041
Z2040
Z382
Y3643
Y2170
FT92441
FT45372
PH1178
BY1031 I-BY1031 lived about 3100 years ago
FT230048
BY65928
BY61100
I-BY73199 lived about 270 years ago

 All of the base haplogroups in the first column leading to Haplogroup I span the longest elapsed time, about 230,000 years, from Y-Adam to I-M253, the STR-predicted haplogroup, but are the least relevant to contemporary genealogy. They do tell us where we came from more distantly.

The second column moves you about 1500 years forward in time to the Family Finder confirmed haplogroup, reducing the location from pretty much everyplace in Europe (plus a few more locations) with more than 6700 branches, to 69 branches in only 17 countries.

With the fewest haplogroups, the third column spans the most recent 2800 years, bringing you unquestionably into the genealogically relevant timeframe, 270 years ago, in only one country where surnames apply.

If we had more testers from the Netherlands or nearby regions, there would probably be more branches on the tree between BY1031 and BY73199, the Big Y-700 haplogroup.

The second column is clearly an improvement over the first column which gets us to I-M253. The Family Finder upgrade from I-M253 to BY1031 provides information about our ancestors 3000-4500 years ago, where they lived and culturally, what they were doing. Ancient Connections enhance that understanding.

But the third column moves into the modern area where surnames are relevant and is the holy grail of genealogy. It’s a journey to get from Adam to the Netherlands in one family 270 years ago, but we can do it successfully between Family Finder and the Big Y-700.

Family Finder Matching

Given that these new haplogroups result from Family Finder, how do these results show in Family Finder matching? How do we know if someone with a haplogroup has taken a Y DNA test or if their haplogroup is from their Family Finder test?

  • All Family Finder haplogroups will show in the results for people who tested at FamilyTreeDNA as soon as they are all rolled out
  • All MyHeritage and Vitagene uploads, because they are processed by the Gene by Gene lab, will be shown IF they have purchased the unlock.
  • No Ancestry or 23andMe haplogroups will be shown to Family Finder matches

To determine whether or not your matches’ haplogroups result from a Y DNA test or a Family Finder haplogroup, on your Family Finder match page, look just beneath the name of your matches.

The first man above received the Family Finder haplogroup. You can see he has no other tests listed. The second man has taken the Big Y-700 test. You can see that he has a different haplogroup, and if you look beneath his name, you’ll see that he took the Big Y-700 test.

For other men, you may see the 67 or 111 marker tests, for example, so you’ll know that they are available for Y-DNA matching. That may be important information because you can then visit the appropriate surname project to see if they happen to be listed with an earliest known ancestor.

After the rollout is complete, If you have a male Family Finder match with no haplogroup shown, you know that:

  • They did not test at FamilyTree DNA
  • If they uploaded from MyHeritage or Vitagene, they did not unlock the advanced Family Finder features
  • Or, they tested at either 23andMe or Ancestry, and uploaded their results

You can always reach out to your match and ask.

How to Use This Information

There are several great ways to utilize this new information.

I have a roadblock with my Moore line. Moore is a common surname with many, many origins, so I have autosomal matches to several Moore individuals who may or may not be from my Moore line.

I do know the base haplogroup of my Moore men, but I do not have a Big Y, unfortunately, and can’t upgrade because the tester is deceased. (I wish I had ordered the Big Y out the gate, but too late now.)

As soon as the results are complete for all of the testers, I’ll be able, by process of elimination to some extent, focus ONLY on the testers who fall into Family Finder haplogroup of my Moore cousins, or at least haplogroup close for Ancestry or 23andMe upload customers. In other words, I can eliminate the rest.

I can then ask the men with a similar haplogroup to my proven Moore cousins for more information, including whether they would be willing to take a Y DNA test.

  • Second, as soon as the Family Finder processing is complete, I will know that all male Family Finder matches and uploads from MyHeritage and Vitagene that have paid for the unlock will have haplogroups displayed on the Family Finder Match page. Therefore, if there’s a male Moore with no haplogroup, I can reach out to see where they tested and if a haplogroup has been assigned, even if it’s from Ancestry or 23andMe and isn’t displayed in Family Finder.

If so, and they share the haplogroup with me, I’ll be able to include or exclude them. If included, I can then ask if they would consider taking a Y DNA test.

  • Third, for lines I don’t yet have Y DNA testers for, I can now peruse my matches, and my cousins’ matches for that line. See items one and two, above. Even if they don’t reply or agree to Y DNA testing, at least now I have SOME haplogroup for that missing line.

Discover will help me flesh out the information I have, narrow regions, find projects, look at ancient DNA for hints, and more.

  • Fourth, the haplogroups themselves. I don’t know how many million tests FamilyTreeDNA has in their database, but if we assume that half of those are male, some percentage won’t have taken a Y DNA test at all. We’ll be able to obtain Y-DNA information for lines where there may be no other living descendant. I have at least one like that. He was the end of the surname line and is deceased, with no sons.

I’m literally ecstatic that I’ll be able to obtain at least something for that line. If it’s anything like my example Netherlands lineage, the Family Finder haplogroup may be able to point me to an important region of Europe – or maybe someplace else very unexpected.

The Bottom Line

Here’s the bottom line. You don’t know what you don’t know – and our ancestors are FULL of surprises.

I can’t even begin to tell you how MUCH I’m looking forward to this haplogroup rollout.

To prepare, I’m making a list of my genealogical lines:

  • If the paternal line, meaning surname line, is represented by any match in any database
  • If that line is represented by a known person in the FamilyTreeDNA database and by whom
  • If they or someone from that line has joined a surname or other FamilyTreeDNA project, and if so, which one
  • If they’ve taken a Y DNA test, and what kind – watch STR results for an updated haplogroup
  • If they’ve taken a Family Finder test – my cousin is a good example of a known individual whose kit I can watch for a new haplogroup
  • Old and new haplogroup, if applicable

If my only relative from that line is in another vendor’s database, I’ll ask if they will upload their file to FamilyTreeDNA – and explain why by sharing this article. (Feel free to do the same.) A Y DNA haplogroup is a good incentive, and I would be glad to pay for the unlock at FamilyTreeDNA for cousins who represent Y and mitochondrial DNA lines I don’t already have.

One way I sweeten the pie is to offer testing scholarships to select lines where I need either the Y DNA or mitochondrial DNA of relevant ancestors. It’s a good thing these haplogroups are being rolled out a few thousand at a time! I need to budget for all the scholarships I’ll want to offer.

I feel like I won the lottery, and FamilyTreeDNA is giving me a free haplogroup encyclopedia of information about my ancestors through my cousins – even those who haven’t taken Y DNA tests. I can’t even express how happy this makes me.

What lines do you want to discover more about, and what is your plan? Tests are on sale now if you need them!

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Holiday DNA Sales Are Here!!!

I apologize for the brevity of this posting, but I came home from the FamilyTreeDNA Conference this past weekend with “conference crud.”

I’ll catch you up on that great conference later, but sales won’t wait, and the holiday sales have already begun. This is a great time to order. These prices are the lowest ever.

MyHeritage

The MyHeritage autosomal test is only $36, and shipping is free if you order two or more DNA tests. That’s a GREAT deal. Click here to order.

If you’ve already tested elsewhere, you can upload your raw DNA file from that vendor to MyHeritage, here. I’ve provided step-by-step instructions, here. After you’ve uploaded, be sure to purchase the $29 unlock for advanced autosomal features, including the MyHeritage chromosome browser and Theories of Family Relativity, which shows you how you connect with DNA matches who share the same ancestor in MyHeritage’s collection of 52 million trees.

If you’re new to MyHeritage, you can also purchase a data or records subscription here, including a free trial.

I use this combination of DNA, trees, and tools almost daily and love that MyHeritage sends me regular record matches from their billions of genealogy records.

FamilyTreeDNA

Every test is on sale at FamilyTreeDNA.

As you know, FamilyTreeDNA provides Y-DNA, mitochondrial, and autosomal testing through their Family Finder test. They also accept autosomal DNA file uploads from Ancestry and MyHeritage. You’ll find easy download and upload instructions for each vendor, here. The advanced feature unlock is on sale now for just $9!

You can order each test individually or bundle tests for a better price.

Note that the introductory Y-DNA 37-marker test is available for $99, and can later be upgraded to the Big-Y test. However, the Big Y-700 is on sale for $399 which is a great price. Y-DNA testing unlocks your paternal ancestor’s history revealed in FamilyTreeDNA‘s world-class Discover tools.

If you’ve already tested at FamilyTreeDNA and would like to add another test for yourself or upgrade, say to the Big-Y test, just click here, sign on, and click on the Add Ons and Upgrade button in the upper right-hand corner.

I hope I’m not spilling the beans, but all sale prices, including upgrades and autosomal transfer unlocks, are shown below:

Genealogy Goals

The holidays are coming! Take a look at what you need for your genealogy.

I decided a long time ago it’s absolutely fine to “gift myself” with purchases and upgrades for my cousins. Especially the Big Y-700 at FamilyTreeDNA and the mitochondrial DNA test, which is vastly underutilized. This helps my genealogy immensely, as well as theirs. Most people are happy to swab, especially if you’re doing the genealogy work.

My goal is to:

  • Have the autosomal DNA of each of my family members and cousins in both databases that provide chromosome browsers so that I can confirm ancestors at FamilyTreeDNA and MyHeritage.
  • Find male cousins to test for the Y-DNA, the surname lineage of each of my ancestral lines. Males who descend paternally from each male ancestor can usually be tracked by their surname.
  • Mitochondrial DNA for each of my ancestors. For mitochondrial DNA testing, we need testers descended through all females from each female ancestor, although males in the current generation can test. Everyone has their mother’s direct matrilineal line mitochondrial DNA.

To find testing candidates for your lineages, check projects at FamilyTreeDNA, autosomal matches at all vendors, your ancestors at WikiTree, ThruLines at Ancestry, even though ThruLines is still having issues, and Theories of Family Relativity at MyHeritage.

With DNAtests on sale right now, this is a great time to purchase tests at MyHeritage and FamilyTreeDNA.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on, and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Ancestry’s ThruLines Are a Hot Mess Right Now – But Here Are Some Great Alternatives

Right now, ThruLines at Ancestry is one hot mess.

Aside from the inherent frustration, especially over a holiday weekend when many people had planned to work on their genealogy, I’d like to say, “don’t panic.”

I don’t have any inside information about what’s going on at Ancestry, and I’ve attempted to make contact through their support page with no luck. They make talking to a person exceedingly difficult; plus, it’s a holiday weekend, and they are probably inundated.

Regardless, I have an idea of what is happening. Ancestry has been in the midst of recalculating “things,” perhaps in relation to their other changes, which I’ll write about separately in a few days.

In any event, Ancestry SURELY MUST KNOW there’s a significant problem because I imagine thousands of their customers are screaming right about now. Adding another voice won’t be helpful.

Symptoms

  • You may not have ThruLines at all.
  • If you do have ThruLines, don’t trust the information, or more to the point, don’t trust that it’s in any way complete.

I have two tests at Ancestry, both connected to different trees so that my matches and Thrulines are calculated separately for each test.

Test One

My first Ancestry test is connected to my primary tree. I’ve been amassing Thrulines cousins ever since the feature was released. I have hundreds of cousin matches descended from some of my more prolific ancestors.

Additionally, my sister’s grandchildren have tested, as have other close relatives who have connected their tests to their trees.

Today, those people are still showing on my match list, but are NOT showing as matches in ThruLines. None of them. Most of my ThruLines ancestors are showing zero matches, and the rest are only showing very few. Ancestors who had hundreds before now have 2, for example.

Here’s an example with my cousin, Erik.

My grandfather, William George Estes, shown in Erik’s tree, above, is his great-grandfather. Erik is my half first cousin, once removed, and we share 417 cM over 16 segments.

Yet, looking at my ThruLine for William George Estes, neither he nor my other cousins are shown as matches. Same for William George’s parents, and so forth.

ThruLines is VERY ill right now.

Test Two

My second DNA test at Ancestry is even worse. There are no ThruLines calculated, even though my DNA is tree-attached, and I had ThruLines previously.

I see this message now, and I can’t even begin to tell you how irritating this is – in part because it suggests the problem is my fault. It’s clearly not. My tree hasn’t changed one bit. I’m not alone, either. I’ve seen other people posting this same message.

And yes, if you’re thinking that there is absolutely no excuse for this – you’re right.

However, outrage isn’t good for us and won’t help – so let’s all do something else fun and productive instead.

Productive Genealogy Plans

Here are some productive suggestions.

At MyHeritage:

At FamilyTreeDNA:

  • Build your haplogroup pedigree chart by locating people through different companies descended from each ancestor in your tree through the appropriate line of descent, and see if they have or will take a Y-DNA or mtDNA test.
  • Tests are on sale right now, and there’s no subscription required at FamilyTreeDNA for anything.
  • Check Y-DNA and mtDNA tests to see if there are new matches and if you share a common ancestor.

At 23andMe:

  • Check for new matches and triangulation.
  • Check to see if 23andMe has added any of your new matches to your genetic tree.

Remember, the parental sides are typically accurate, but the exact placement may not be, and 23andMe deals poorly with half-relationships. It’s certainly still worth checking though, because 23andMe does a lot of heavy lifting for you.

DNAPainter

For me, the most productive thing to do this weekend would be to copy the segment information from new matches with whom I can identify common ancestors at FamilyTreeDNA, MyHeritage and 23andMe – the vendors who provide segment data – and paint those segments to DNAPainter.

Not only does DNAPainter allow me to consolidate my match data in one place, DNAPainter provides the ability for me to confirm ancestors through triangulation, and to assign unknown matches to ancestors as well.

As you can see, I’ve successfully assigned about 90% of my segments to an ancestor, meaning I’ve confirmed descent from that ancestor based on my autosomal matches’ descent from that same ancestor – preferably through another child. Will new matches propel me to 91%? I hope so.

What percentage can you or have you been able to assign?

If you need help getting started, or ideas, I’ve written about DNAPainter several times and provided a compiled resource library of those articles, here.

Have fun!!!

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Haplogroups: DNA SNPs Are Breadcrumbs – Follow Their Path

Recently a reader asked some great questions.

If Y-DNA is unchanged, then why isn’t the Y-DNA of every man the same today? And if it’s not the same, then how do we know that all men descend from Y-Adam? Are the scientists just guessing?

The scientists aren’t guessing, and the recent scientific innovations behind how this works is pretty amazing, so let’s unravel these questions one at a time.

The first thing we need to understand is how Y-DNA is inherited differently from autosomal DNA, and how it mutates.

First, a reminder that:

  • Y-DNA tests the Y chromosome passed from father to son in every generation, unmixed with any DNA of the mother. This article focuses on Y-DNA.
  • Mitochondrial DNA tests the mitochondria passed from mothers to all of their children, but is only passed on by the females, unmixed with the DNA of the father. This article also pertains to mitochondrial SNPS, but we will cover that more specifically later in another article.
  • Autosomal DNA is passed from both parents to their children. Each child inherits half of each parent’s autosomal DNA.

Let’s look at how this works.

Autosomal vs Y-DNA Inheritance

Click on image to enlarge

Autosomal DNA, shown here with the green (male) and pink (female) images, divides in each generation as it’s passed from the parent to their child. Each child inherits half of each parent’s autosomal DNA, meaning chromosomes 1-22. For this discussion, each descendant shown above is a male and has a Y chromosome.

This means that in the first generation, which would be the great-grandfather, about 700,000 locations of his green autosomal DNA are tested for genealogy purposes.

His female partner (pink) also has about 700,000 locations. During recombination, they each contribute about 350,000 SNPs (Single Nucleotide Polymorphisms) of autosomal DNA to their child. Their offspring then has a total of 700,000 SNPs, 350,000 green and 350,000 pink contributed by each parent.

This process is repeated for each child, whether male or female (with the exception of the X chromosome, which is beyond the scope of this article), but each child does not receive exactly the same half of their parents’ autosomal DNA. Recombination is random.

In the four generations shown above, the green autosomal DNA of generation one, the great-grandfather, has been divided and recombined three times. The original 700,000 locations of great-grandfather’s green DNA has now been whittled down to about 87,500 locations of his green DNA.

Y-DNA in the Same Generation

Looking now at the blue Y-DNA at left, the Y-DNA remains the same in each generation with the exception of one mutation approximately every two or three generations.

As you can see in the chart, in the exact same number of generations, the Y-DNA of each male, which he inherited from his father:

  • Never recombines with any DNA from the mother
  • Never divides and gets smaller in subsequent generations
  • Remains essentially unchanged in each generation

The key word here is “essentially.”

Y-DNA

The Y chromosome consists of about 59 million locations or SNPs of DNA. STR tests, Short Tandem Repeats, which are essentially insertions and deletions, test limited numbers of carefully curated markers selected for the fact that they mutate in a genealogically relevant timeframe. These markers are combined in panels of either 67 or 111 marker tests available for purchase at FamilyTreeDNA today, or historically 12, 25, 37, 67, and 111 marker panels. The STR test was the original Y-DNA test for genealogy and is still used as an introductory test or to see if a male matches a specific line, or not.

From the STR tests, in addition to matching, FamilyTreeDNA can reliably predict a relatively high-level haplogroup, or genetic clan, based on the frequency of the combinations of those marker values in specific STR locations.

SNPs are much more reliable than STRs, which tend to be comparatively unstable, mutating at an unreliable rate, and back mutating, which can be very disconcerting for genealogy. We need reliable consistency to be able to assign a male tester to a specific lineage with confidence. We can, however, find genealogically relevant matches that may be quite important, so I never disregard STR tests or testers. STR tests aren’t relevant for deeper history, nor can they reliably discern a specific lineage within a surname. SNP tests can and do.

The Big Y-700 SNP test gives us that and more, along with the earlier Big Y-500 test which scanned about 30 million locations. The Big Y-700 is a significant improvement; men can upgrade from the Big Y-500 or STR tests.

The Big Y-700 test scans about 50 million Y-DNA locations, known as the gold standard region, for all mutations. It reports 700 or more STR markers for matching, but more importantly, it scans for all SNP mutations in those 50 million locations.

All mutations are confirmed by at least five positive repeat scans and are then assigned a haplogroup name if found in two or more men.

Y-DNA Testing

If Y-DNA remained exactly the same, then the Y-DNA of men today would be entirely indistinguishable from each other – essentially all matching humankind’s first common ancestor. With no changes, Y-DNA would not be useful for genealogy. We need inherited mutations to be able to compare men and determine their level of relatedness to each other.

Fortunately, Y-DNA SNPs do mutate. Y-DNA is never divided or combined, so it stays essentially the same except for occasional mutations which are inherited by the following generations.

Using SNP markers scanned in the Big Y test, one new mutation happens on the average of every two or three generations. Of course, that means that sometimes there are no mutations for a few generations, and sometimes there are two mutations between father and son.

What this does, though, very effectively, is provide a trail of SNP mutations – breadcrumbs essentially – that we can use for matching, AND for tracking our mutations, which equate to ancestors, back in time.

Estes Male Breadcrumb Trail

I’ve tested several Estes men of known lineage, so I’m going to use this line as an example of how mutations act as breadcrumbs, allowing us to track our ancestors back in time and across the globe.

Multiple cousins in my Estes line have taken the Big Y-700 test.

My closest male cousin matches two other men on a unique mutation. That SNP has been named haplogroup R-ZS3700.

We know, based on our genealogy, that this mutation occurred in Virginia and is found in the sons of Moses Estes born in 1711.

How do we know that?

We know that because three of Moses’s descendants have tested and all three of those men have the same mutation, R-ZS3700, and none of the sons of Moses’s brothers have that mutation.

I’ve created a chart to illustrate the Estes pedigree chart, and the haplogroups assigned to those men. So, it’s a DNA pedigree chart too. This is exactly what the Big-Y DNA test does for us.

In the red-bordered block of testers, you can see the three men that all have R-ZS3700 (in red), and all are sons of Moses born in 1711. I have not typed the names of all the men in each generation because, for purposes of this illustration, names aren’t important. However, the concept and the fact that we have been able to connect them genealogically, either before or because of Y-DNA testing, is crucial.

Directly above Moses born in 1711, you can see his father Abraham born in 1647, along with Moses’ brothers at right and left; John, Richard, Sylvester, and Elisha whose descendants have taken the Big Y-700 test. Moses’s brothers’ descendants all have haplogroup R-BY490 (in blue), but NOT R-ZS3700. That tells us that the mutation responsible for R-ZS3700 happened between Abraham born in 1647, and Moses born in 1711. Otherwise, Moses’s brothers would have the mutation if his father had the mutation.

Moses’s descendants also have R-BY490, but it’s NOT the last SNP or haplogroup in their lineage. For Moses’s descendants, R-ZS3700 occurred after R-BY490.

You can see haplogroup R-BY490 boxed in blue.

We know that Moses and his father, Abraham, both have haplogroup R-BY490 because all of Abraham’s sons have this haplogroup. Additionally, we know that Abraham’s father, Silvester also had haplogroup R-BY490.

How do we know that?

Abraham’s brother, Richard’s descendant, tested and he has haplogroup R-BY490.

However, Silvester’s father, Robert born in 1555 did NOT have R-BY490, so it formed between him and his son, Silvester.

How do we know that?

Robert’s other son, Robert born in 1603 has a descendant who tested and has haplogroup R-BY482, but does NOT have R-BY490 or R-ZS3700.

All of the other Eates testers also have R-BY482, blocked in green, in addition to R-BY490, so we know that the mutation of R-BY490 developed between Robert born in 1555 and his son, Silvester born in 1600, because his other son’s descendant does not have it.

Looking at only the descent of the haplogroups, in order, we have

  • R-BY482 (green) found in Robert born in 1555 and all of his descendants.
  • R-BY490 (blue) found in Silvester born in 1600 and all of his descendants, but not his brother
  • R-ZS3700 (red) found in Moses born in 1711 and all of his descendants, but not his brothers

If we had Estes men who descend from the two additional documented generations upstream of Robert born in 1555, we might discover when R-BY482 occurred, but to date, we don’t have any additional testers from those lines.

Now that we understand the genesis of these three haplogroups in the Estes lineage, what else can we discover through our haplogroup breadcrumbs?

The Discover Reports

By entering the haplogroup in the Discover tool, either on the public page, here, or clicking on Discover on your personal page at FamilyTreeDNA if you’ve taken the Big-Y test, you will see several reports for your haplogroup.

I strongly suggest reviewing each category, because they cumulatively act as chapters to the book of your haplogroup story, but we’re going to skip directly to the breadcrumbs, which is called the Ancestral Path.

The Ancestral Path begins with your haplogroup in Line 1 then lists the first upstream or parent haplogroup in Line 2. In this case, the haplogroup I entered is R-ZS3700.

You can see the estimated age of the haplogroup, meaning when it formed, at about 1700 CE. Moses Estes who was born in 1711 is the first Estes man to carry haplogroup R-ZS3700, so that’s extremely close.

Line 2, R-BY490 occurred or was born about 1650, and we know that it actually occurred between Robert and Silvester born in 1600, so that’s close too.

Scanning down to Line 3, R-BY482 is estimated to have occurred about 1500 CE, and we know for sure it had occurred by 1555 when Robert was born.

We see the parent haplogroup of R-BY487 on Line 4, dating from about 750 CE. Of course, if more men test, it’s possible that more haplogroups will emerge between BY482 and BY487, forming a new branch. Given the time involved, those men wouldn’t be expected to carry the Estes surname, as surnames hadn’t yet been adopted in that timeframe.

Moving down to Line 9, we see R-ZP18 from 2250 BCE, or about 4250 years ago. Looking at the right column, there’s one ancient sample with that haplogroup. The location of ancient samples anchors haplogroups definitively in a particular location at a specific time.

Haplogroup by haplogroup, step by step, we can follow the breadcrumbs back in time to Y-Adam, the first homo sapiens male known to have descendants today, meaning he’s the MRCA, or most recent common ancestor for all men.

Neanderthals and Denisovans follow, but their Y-DNA is only available through ancient samples. They have no known direct male survivors, but someday, maybe someone will test and their Y-DNA will be found to descend from Neanderthals or Denisovans.

Now that we know when those haplogroups occurred, how did our ancestors get from Africa 232,000 years ago to Kent, England, in the 1400s? What path did they take?

The new Globetrekker tool answers that question.

The Breadcrumb Trail

In Globetrekker, each haplogroup’s location is placed by a combination of testers’ results, their identified earliest known ancestor (EKA) country and location, combined with ancient samples, climatic factors like glaciers and sea levels, and geographic features. You can read about Globetrekker here and here.

To view the Globetrekker tool, you must sign it to an account that has taken the Big Y test. It’s a tool exclusively provided for Big-Y testers.

You can click at the bottom of your Globetrekker map to play the animated video.

Beginning in Africa, our ancestors began their journey with Y-Adam, then migrated through the Near East, South Asia, East Asia, then west through central Asia into Europe. The Estes ancestors crossed the English Channel and migrated around what is now England before settling in Deal, on the east coast.

Clicking on any haplogroup provides a description of that haplogroup and how it was placed in that location.

Enabling the option for ancient DNA shows those locations as well, near the haplogroups they represent when the animation is playing.

Clicking on the shovel icon explains about that particular ancient DNA sample, what is known, and how it relates to the haplogroup it’s connected to by a dotted line on the map.

Pretty cool, huh!!

End to End

As you can see from this example, Big Y results are an end-to-end tool.

We can use the Big Y-700 haplogroups very successfully for recent genealogy – assigning testers to specific lines in a genealogy timeframe. Some haplogroups are so specific that, without additional information, we can place a man in his exact generation, or within a generation or two.

Not shown in my Estes pedigree chart is an adoptee with a different surname, of course. We know that he descends from Moses’s line because he carries haplogroup R-ZS3700, but we are still working on the more recent generations using autosomal DNA to connect him accurately.  If more of Moses’s descendants tested, we could probably place him very specifically. Without the Big Y-700 test, he wouldn’t know his biological surname or that he descends from Moses. That’s a HUGE breakthrough for him.

There’s more about the Estes line to learn, however.

If our Estes cousins tested their brothers, uncles or other Estes males in their line, they would likely receive a more refined haplogroup that’s relevant only to that line.

Using Big-Y test results, we can place men within a couple of generations and identify a common ancestor, even when all men within a haplogroup don’t know their genealogical lineage. Using those same test results, we can follow the breadcrumbs all 50 steps back in time more than 230,000 years to Y-Adam.

End to end, the Big-Y test coupled with breadcrumbs in Discover, Globetrekker, and other amazing tools is absolutely the most informative and powerful test available to male testers for their paternal line genealogy.

These amazing innovations tracking more than 50,000 haplogroups across the globe answer the original questions about how we know.

The more people who take or upgrade to the Big Y-700 test, the more haplogroup branches will be added, and the more refined the breadcrumbs, ages, and maps will become. In other words, there’s still more to learn.

Test if you haven’t, and check back often for new matches and breadcrumbs, aka updates.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

 

Genealogy Books

  • com – Lots of wonderful genealogy research books
  • American Ancestors – Wonderful selection of genealogy books

Genealogy Research

 

 

New Information About Philip Jacob Miller (c1726-1799) and Magdalena Possibly Rochette (c1730-1800/1808) – 52 Ancestors #404

I’ve written about Philip Jacob Miller and his wife, Magdalena, whose birth surname has been reported forever as Rochette.

One of the reasons I publish such extensive articles, including literally everything I know or can find about each ancestor, is to cast a trail of breadcrumbs. There’s always a chance that a future researcher will come across something new. I may or may not be here, but I really do want accurate information to outlive me.

Recently, that’s exactly what happened. Christine Berwanger, Ph. D., a descendant of Philip Jacob Miller and Magdalena through daughters Christena who married Henry Snell, and Hannah who married Arnold Snider, contacted me with information I did not previously have. I’m very grateful to both Christine and Doris Sullivan Bache, who Christine credits with doing a great deal of the original research back in the 1980s.

Doris, an avid researcher and descendant of Philip Jacob Miller and Magdalena through the Snider line passed away in 2009 and is memorialized here.

Thankfully, Doris shared with Christine, who shared with me and has graciously granted me permission to share with you.

Let’s start with Philip Jacob Miller’s estate packet.

Philip Jacob Miller’s Estate Packet

Christine said that Doris ordered Philip Jacob’s entire estate packet and sent her copies of receipts along with a letter in 1989.

From Christine’s May 2023 email to me:

An ancestor’s estate file provides perhaps the most complete picture we will have of his life. Hence, I include the transcribed inventory and settlement of Philip Jacob Miller’s worldly possessions, in addition to his generous bequeaths of land to his children and their families. Note the Bible. Also of interest, the descriptions of the animals, the smoothbore gun, and the coffee mill.

Note the large sum due from Col. Thomas Hart to the estate. Thomas Hart was a prominent merchant in Hagerstown, Maryland, and an associate of Daniel Boone, who removed to Lexington, Kentucky in 1794. He was the father-in-law of Henry Clay. Henry Snell purchased his Fleming County land from Hart[i] There was clearly a relationship with this prominent person and the Miller/Snell family.

Receipt No. 54, 22 Nov 1795[ii], includes payment for a trip to Annapolis, and a payment of 9.15.1 to Nathaniel Rochester – who was a close associate and partner of Col. Hart, Hagerstown Postmaster 1793-1803, Washington County Maryland Sheriff 1804-1806, the first president of the Hagerstown Bank founded in 1807, and founder of Rochester, New York.[iii]

Other prominent persons are named in the estate. Martin Baum, born in Hagerstown in 1765 and later mayor of Cincinnati, was a witness to:

Receipt No. 33, 20 Sep 1808[iv]

Received at Cincinnati Septr 20th 1808 of Abraham Miller one of the Administrators of Philip Jacob Millers Estate Twenty Dollars being part of my legacy of the said Estate In witness whereof I hereunto set my hand

                                               his

Martin Baum            Arnold      x    Snider

                                             Mark

The estate was a complex one: the inventory was conducted in Sep 1799, but the settlement was not completed until Sep 1808. Abraham, as Administrator, documented thirty-nine days travel back to Hagerstown, Maryland, three trips to Lexington, Kentucky, four days travel to Chillicothe, Ohio (state Capitol and location of a land office), four days to the Court in Newport, Kentucky, and four days showing the land to appraisers. He charged the estate $88.50 for travel and expenses. David Miller, as Administrator, spent eighteen days travelling to Lexington, eight days to Fleming County, fifteen days going to Court, two days to the Sheriff of Campbell County, recording a deed in Williamsburg, four days to Chillicothe, for expenses of $58.18 ¾. He also credited himself with $8 paid to his mother.[v] Abraham and David had families and farms and were active in their Brethren Church. These duties must have been onerous, yet they persisted.

Collecting debts owed to the estate involved several transactions. The estate paid Nicholas Rochester 5.7.6 for collecting $699 2/100. (The image clearly reads Nicholas; I have been unable to match a Nicholas Rochester. Nathaniel did not have a son or a brother by that name. If Nathaniel was meant, this is a different transaction than the one in 1795.) Surveyor General of the Virginia Military District and prominent landowner William Lytle signed a receipt pertaining to the debt owed the estate by Col Thomas Hart. Witness James Taylor was a prominent resident of Newport, Kentucky.

Receipt No. 55, 14 Apr 1800[vi]

Received of Daniel Miller by the hands of David Miller an order for Two hundred dollars on Colo Thomas Hart of Lexington Kentucky, which if accepted, is to be in full for the one hundred acres of land on which the said Daniel now lives as witness my hand this 14th of April 1800

Teste James Taylor                   Wm. Lytle

Summary, Life and Estate of Philip Jacob Miller:

Philip Jacob Miller was devoted to his family, his religion, his land, his community, and his country. He, in accordance with the principles of the German Baptist Brethren and other sects such as the Amish and Mennonites, chose to live a simple life. His estate inventory attests to that. Yet, he accrued wealth. He loaned money rather than spent it. He accrued enough to bequest each of his ten children 200 acres and further distributions from his estate.

He moved in the circles of the merchants and landowners of his time as well as the circles of his neighbors and co-religionists. His simple lifestyle did not mean he did not participate in the life of the broader community. Records attest that he did. We use our understanding of history to understand the context of the lives our ancestors lived; yet our ancestor’s lives influenced that history.

Mary Christine Berwanger

[1] Editor James F. Hopkins and Associate Editor Mary W. M. Hargreaves, editor, The Papers of Henry Clay. 2, The Rising statesman, 1815-1820 (Lexington, Kentucky: University Press of Kentucky, 1961).

2 Receipts, Estate of Philip Jacob Miller, Campbell County KY Estate Administration, Settlement Drawer 1817-1836, envelope 1828 (should be 1808), Alexandria, Kentucky. 22 Feb 1989, Doris S. Bache mailed to me a transcript of receipts No. 27 through No. 66, typed pages 7 through 13, mostly distributions from the estate to family beneficiaries. Pages 1 through 6 were not included, presumably because they did not pertain to family members. This was in the day of taking handwritten notes, typing them up, and going to the library to make copies to mail to other researchers.

3 Biography at Sheriff Nathaniel Rochester’s Records, Washington County, 1804-1806

http://www.whilbr.org/rochester/index.aspx

4 Receipt No. 33, Receipts, Estate of Philip Jacob Miller.

5 Receipt No. 66, Receipts, Estate of Philip Jacob Miller.

6 Receipt No. 55, Receipts, Estate of Philip Jacob Miller.

[i] Editor James F. Hopkins and Associate Editor Mary W. M. Hargreaves, editor, The Papers of Henry Clay. 2, The Rising statesman, 1815-1820 (Lexington, Kentucky: University Press of Kentucky, 1961).

[ii] Receipts, Estate of Philip Jacob Miller, Campbell County KY Estate Administration, Settlement Drawer 1817-1836, envelope 1828 (should be 1808), Alexandria, Kentucky. 22 Feb 1989, Doris S. Bache mailed to me a transcript of receipts No. 27 through No. 66, typed pages 7 through 13, mostly distributions from the estate to family beneficiaries. Pages 1 through 6 were not included, presumably because they did not pertain to family members. This was in the day of taking handwritten notes, typing them up, and going to the library to make copies to mail to other researchers.

[iii] Biography at Sheriff Nathaniel Rochester’s Records, Washington County, 1804-1806

http://www.whilbr.org/rochester/index.aspx

[iv] Receipt No. 33, Receipts, Estate of Philip Jacob Miller.

[v] Receipt No. 66, Receipts, Estate of Philip Jacob Miller.

[vi] Receipt No. 55, Receipts, Estate of Philip Jacob Miller.

Rochette

The source of Magdalena’s oft-reported surname as Rochette has baffled me and many other researchers for decades.

Christine, thanks to Doris, has been able to provide what is probably the original source for that surname. I’m saying it now, and I’ll say it again – this by no means proves that Magdalena’s surname was Rochette. It does, however, provide one more piece of evidence and an answer to the question of where that name came from.

From Christine:

Rochette – from a “loose paper in a family bible”

Click on the image to enlarge

This may be a copy of the “loose paper in a family bible.”

Doris S. Bache mentioned in her letter of 22 Feb 1989: “When I heard from Sharon Biggs in reference to the maiden name of Magdalena Miller, the name “Rochette” had come from a loose paper in a family bible. Author unknown, also. I am accepting the maiden name, but as you will note, most of the earlier information is incorrect, with the alternating of Phillip and Jacob in the generations before 1729. Of course, the name Morgan has been proven to be Maugens.” Doris is referring to the two pages above, taped together, which was included with her letter. She received this from Sharon Biggs.

Philip Jacob Miller married Magdalena Rochette, born in Sedan, France. Their children are listed (pencil checkmarks) with Abraham underlined. Both the name Rochette and the place Sedan, France are specific. If this is a copy of the loose paper from the bible, the (presumably) descendent who wrote it, knew the names of Philip and Magdalen’s children, so might indeed have known Magdalena’s surname and place of birth.

Sedan, France was a source of Huguenot refugees following the revocation of the Edict of Nantes in 1685.

French Huguenots relocated throughout Europe and to the Americas. It is possible that Magdalen’s family fled to Germany or America.

Philip Jacob Miller and Magdalena Rochette are apparently the Miller ancestors of the author. Listed below their names are the Maugans / Morgan ancestors: Conrad Morgan, said to be born in Virginia, and wife. Listed are some of their known children, with Katherine underlined. The wife named, “Margaret Mynne or Marie” does not match other sources, who give his wife as Anna Rebecca Hoffman (1739–1810).

Next, Abraham Miller, son of Philip Jacob and Magdalena, married Katherine Morgan, daughter of Conrad and wife. Their son Matthias Miller is underlined. He married Elizabeth Gorman. Their daughter Emma Miller (1849-1925) is underlined. She married Elihu T. Hedrick.

The paper comprises a direct line Ahnentafel from Emma Miller to her great-grandparents. The author of the paper is likely Emma herself or one of her children. It is certainly possible for a person to know from family history the names and origins of his or her great-grandparents. It is also possible for confusion on the part of the person writing down notes from memory.

Abraham Miller’s entry gives his birthdate and place as 28 Apr 1764 in Frederick County, Maryland, which agrees with the entry in Philip Jacob Miller’s Bible: “My son Abraham was born April 28, 1764.” Katherine Morgan his wife, was born 16 Jul 1767 in Frederick County. The note further states, “Their children were born in Clermont Co. Ohio, on bounty land given to Abraham Miller’s father by King George 2.” This statement is a confusion of time and place, but as with most oral history, there is some truth in it.

Abraham’s father, Philip Jacob Miller, intended each of his children to have a 200-acre parcel. Sons Abraham and David, as administrators of his estate, purchased 2000 acres, most in Virginia Military Survey 3790. The Virginia Military District was established as bounty land for Virginia Revolutionary soldiers. Often, they did not occupy the land but sold it to someone else. “Survey 3790, for Taylor, James et. al for Jacob Miller, C. C. [chain carrier], Jacob Snyder, C. C. [chain carrier], and Abraham Miller, M [marker]. With William Lytle, D. S. [Deputy Surveyor], and dates February 20, 1880 and June 9, 1802. These survey crews were comprised of: The D. S. Deputy Surveyor, C. C. chain carriers, and M. marker. The crews were often early settlers in the area.”  Hence Survey of 3790, from which Philip Jacob’s estate subsequently purchased 2000 acres of William Lytle, was in the Virginia Military District, hence bounty land. Abraham sold his 200-acre lot from his father’s estate to William Spence for $400, 22 Apr 1805. He instead resided in Clermont County, but I have not tracked his deeds.

In 1808, Abraham and David surveyed part of the Virginia Military District in Goshen Township, Clermont County, Survey 5959. “Abraham Miller was marker, David Miller was Chain Carrier.”

Perhaps land that Philip Jacob Miller’s father Michael Miller bought in Pennsylvania was originally granted by George the Second. I have not seen his Chester County deeds. Stinchcomb’s deed was in 1725, sold to Michael Miller et al in 1744. George II reigned from 1727-1760.

Summary, Questions, and Coincidences: This document records family history, and most of the information is verified by other sources.

The name Rochette and origin in Sedan, France is too specific to disregard out of hand, especially since this document existed prior to the Internet, when one could search a name and connect it to a person with no other evidence than the surname.

Coincidence?

There was a French Huguenot Rochet family from Sedan, France, and daughter Suzanne was smuggled out, married, and settled in Virginia.

“The most interesting story relating to the Huguenots of Manakin Town [Virginia] is that of Suzanne Rochet. After Revocation of Edict of Nantes in 1658, the refugee daughters of Moses Rochet wrote from Amsterdam to their father in France to send them their youngest sister, Suzanne. Since the French government was keeping strict watch to prevent the escape of Huguenots from the country, the Rochets always referred to Suzanne as “the Little Nightcap.” After several unsuccessful attempts to send his daughter past the Guards, Rochet finally smuggled her out of the country to Holland with the aid of a friendly ship-captain. In the French Church Amsterdam, Suzanne married July 1692 Abraham Michaux, a Huguenot refugee from Sedan. By 1705 they and their children had joined the colony at Manakin Town” [Virginia].

Source: “The Little Nightcap” by the Rev. W. Twyman Williams recorded here.

“At the same time, her sisters in Holland became very much concerned about her. They had found refuge in Amsterdam and wished to have her in safety there with them. So they wrote to their father, but for fear that the letter might be read by spies and informers, they did not refer to Suzanne. Instead, they asked their father to make every effort to send them “the little nightcap” they had left behind when they made their escape. But how? At last, Jean Rochet hit upon a plan. He found a ship’s captain.” “This man, though not a Huguenot, was kindly enough disposed to help. So Jean Rochet had his daughter set into a hogshead marked “merchandise,” fastened down the head of the large barrel, and hauled it to the ship. The captain had it taken aboard and stowed away. The ship was searched, but the hidden girl was not discovered. As soon as the danger of further search was over, the captain let her out of her uncomfortable hiding place and got her safely to Holland.”

This paper says Conrad Maugans / Morgan was born in Virginia. Some ancestry trees claim Magdalena Rochette was his sister. Is there any evidence that the Maugans were Huguenot? Or that they were in Virginia?

The name Rochette is sometimes given as LaRoche, which broadens the search possibilities.

French Huguenots went to Germany, and went to Pennsylvania, where they married into German families. It is possible that Philip Jacob Miller married a French woman, known to the family in Germany or met in Pennsylvania. “The French Element among the Pennsylvania Germans” should be understood before concluding that Philip Jacob Miller did not marry a French woman.

There is a German site dedicated to Huguenot genealogy, which contains the name Rochette.

Sources:

Alma A. Smith, The Virginia Military Surveys of Clermont and Hamilton Counties, Ohio 1787-1849 (Cincinnati, Ohio: A.A. Smith, 1985), p. 141, 20 Feb 1800.

 Alma A. Smith, The Virginia Military Surveys of Clermont and Hamilton Counties, Ohio 1787-1849, p. 174, 19 May 1808.

Excellent description of the connections and intermarriages of the French and Germans. George G. Struble, “The French Element among the Pennsylvania Germans” Pennsylvania History: A Journal of Mid-Atlantic Studies, Vol 22 (July 1955)pp, 267–76,  https://journals.psu.edu/phj/article/view/22432/22201.

Deutsche Hugenotten-Gesellschaft e.V., https://www.hugenotten.de/genealogie/arbeitsgemeinschaft-datenbank.php

Click to access 2018-08-namensliste-pro-gen.pdf

My Analysis

I’m incredibly grateful to Christine, Doris, and Sharon Biggs. I’m especially impressed that Christine can actually find a letter from 1989!

Let’s take a look at this information.

The analysis of Philip Jacob Miller’s estate packet brings his life into perspective in a new and different light. The information I had previously was a list of inventory items and a list of bills. Doris clearly possessed the entire packet that included receipts with additional information, not to mention the additional research into the identities of the various people mentioned in the estate settlement.

It appears that Philip Jacob was quite well-off later in his life. I can’t help but wonder if the fact that he reluctantly served in the Revolutionary War may have opened doors that allowed him to purchase the 2000 acres, providing a 200-acre farm to each of his children.

Let’s look at the information in that unsourced but clearly authentic Bible record.

Philip Jacob’s birth location is likely incorrect. Philip Jacob Miller’s parents were living in Krotelbach, Germany, when they were married in 1714, with their first child baptized the following year. In April of 1719, another son was baptized in Kallstadt. A third son was born on the farm by the name of Weilach near Bad Durkheim in April of 1721. There is absolutely nothing to indicate that the family settled in the Netherlands before immigrating to the US. Therefore, it’s highly unlikely that Philip Jacob was born in the Netherlands between 1723 and 1727.

The second questionable item from that Bible record involves Conrad Maugans, sometimes referred to as Morgan. This man was born around 1735 and was clearly German. It’s unlikely, but not impossible, that he was born in Virginia. It’s also very unlikely that Magdalena was his sister. Three of her children married Conrad’s children. David Miller married Conrad’s daughter Magdalene Maugans.  Additionally, her son Abraham Miller married Catherine Maugans. A third child, Esther Miller, married Gabriel Maugans. First-cousin marriages did occur in Brethren families so that alone does not rule out Magdalena and Conrad being siblings. However, it is interesting that she has no child named Conrad, nor do her children who did not marry his children.

I have found no evidence whatsoever to indicate that Philip Jacob’s wife, Magdalena, was a Maugans. I’ve seen that rumor for years as well.

I strongly suspect the confusion arose because Conrad’s daughter, Magdalene married a Miller and was therefore Magdalene Miller. Conrad’s will was written in German, but has been translated by an anonymous researcher.

Next, let’s do some math. We know that Magdalena Miller was born sometime around 1730, and that she and Philip Jacob Miller likely married in York County, PA, around 1750 but no later than July of 1751 based on the birth date of their first child. It’s also possible that they married in Lancaster Co., PA or Frederick Co., MD. Unfortunately, Brethren did not register their marriages.

Philip Jacob was Brethren, so she would have to have been Brethren too, or converted, in order for them to be married and remain within the church. What I do know, absolutely, positively, is that there is no Rochette surname of any family in any of these three counties in a relevant timeframe. Women in that time and place did NOT travel around without their family. If Magdalena was a Rochette, then where was her father or other family members?

Furthermore, if Magdalena was indeed the Suzanne Rochet, Huguenot from Sedan, she was born sometime around 1658 and married Abraham Michaux in 1692, so she clearly is not the Magdalena born around 1730. The “little nightcap” story, however, is lovely and excellent history all by itself.

There is some discussion that the Magdalena in question is Suzanne’s daughter, but then her surname would be Michaux, not Rochette.

I’m highly skeptical based on that, in addition to the fact that the Magdalena who married Philip Jacob had to have been Brethren, either before or certainly at the time of their marriage.

I’d feel a lot better about the Rochette surname and the Sedan location if the rest of that Bible information was accurate. Doris mentioned that she had found additional discrepancies.

Having said that, the information is very specific, including the Sedan location. Perhaps this information is not entirely wrong, just a generation or two offset?

If Magdalena’s surname was Rochette or something similar, I would expect to have at least a few DNA matches. I have MANY Miller matches from Philip Jacob’s father, Michael Miller, through is other children.

However, I don’t have matches to someone with the surname of Rochette, or similar, with two exceptions.

Unfortunately, at Ancestry, I can’t search by ancestor, so while I do have matches to people with Rochette in their trees, the ones I reviewed are Magdalena listed as Rochette. What I really need to do is be able to filter by Rochette matches not=Magdalena Rochette who is married to Philip Jacob Miller.

I did find a Rochette match at MyHeritage, but the match to this person could be through a different line. Another French match that could be helpful has a private tree, so no cigar there, either.

At FamilyTreeDNA, my mother’s matches to Rochette are only trees reflecting Magdalena as a Rochette.

I checked Filae and found nothing for a Magdalena Rochette of the right age, but Christine jumped right into serious research.

Christine’s French Huguenot Research

From Christine:

Note: Madeleine or Magdeleine are French versions of Magdalena.

The Huguenots were Calvinist Protestants, and their Reformed Churches recorded sacramental records.

“On October 18, 1685, the Edict of Nantes was revoked and French Huguenots could either convert to Catholicism, face life in a prison or convent, or flee the country. At this time, there were about 800,000 Huguenots in France, and nearly one-fourth of them left the country.”

French Reformed sacramental records are available from Sedan, Ardennes, France, from the 1500s and 1600s, indexed on FamilySearch (link here) but not (on FamilySearch) after the Edict of Nantes when the French Reformed Churches were suppressed. The baptism records which documented “the Little Nightcap” family are amazingly easy to read.

From these records and online ancestry or FamilySearch trees, this Sedan Rochette family included men who did not marry or die in Sedan (from these records) who might have moved elsewhere to become the grand-father, father, uncle of Magdalena / Madeleine. [Chart below is incomplete, not verified with original sources.]

Little Night Cap had a daughter Anne Madeleine. [I did not record all her children. Daughter Olive Judith married an Anthony Morgan, who does not seem to be related to the Maugans/ Morgans of the Miller lines.]

Little Night Cap is not the only Rochette woman to come to the New World [see Susanna daughter of Isaac] and it is likely some of the Rochette men came also. Having their baptismal dates and relationships from the Sedan records makes it more likely to match them to other men of the same name and age.

Did Magdalena/Madeleine’s family also leave before 1685? Did the Huguenots who remained in France continue to record their sacramental records? If so, where might those be?

They migrated to Protestant Countries, so in those places their later sacraments would have been recorded, such as in the Netherlands (cited in Little Night Cap’s family), parts of Germany, etc., and their churches in the New World. They did end up assimilating.

Descendancy Narrative of Moses Thiery Rochet

From Christine:

Moses Thiery1 ROCHET was born in 1615. He married Suzanne RONDEAU on 7 Feb 1638 at Sedan, Ardennes, France.1 He died on 31 Dec 1649.

Jean2 ROCHET was born in 1641 at Sedan, Ardennes, France. He married Marie TRUFET on 21 Dec 1664 at Sedan, Ardennes, France.2

Susan3 “Little Night Cap” ROCHET. Her married name was MICHAUX. She was baptized on 13 Apr 1667 at Sedan, Ardennes, France.3 She married Abraham MICHAUX on 13 Jul 1692 at Amsterdam, Netherlands. She immigrated on 8 May 1701 to London, England. She died on 18 Dec 1744 at Virginia at age 77.4

      1. Olive Judi4 MICHAUX married Anthony MORGAN. Her married name was MORGAN. She was born in 1706 at Virginia.5 She died on 27 Oct 1760 at Virginiia.6
      2. Anne Madeline4 MICHAUX was born in 1706 at Virginia. She died in 1796 at Virginia.

Isaac3 ROCHET died in 1672. He was baptized on 30 Aug 1672 at Sedan, Ardennes, France.7

Louis3 ROCHET was baptized on 5 May 1676 at Sedan, Ardennes, France.8 He died on 1 Oct 1726 at age 50.9

Daniel3 ROCHET was baptized on 5 Jan 1679 at Sedan, Ardennes, France.10

Jacques2 ROCHET was born in 1642. He died in 1647.

Isaac2 ROCHET was also known as Isaac DE LA ROQUET. He was born in 1641 at Sedan, Ardennes, France.11 He was baptized on 10 Jan 1644 at Sedan, Ardennes, France.12 He married Jeanne DUFRAY on 16 May 1666 at Reformed Protestant Church, Sedan, Ardennes, France. He married Jeanne DUFRAY on 16 May 1666 at Sedan, Ardennes, France.2 He died in Nov 1695 at age 51.

    1. Susanna3 ROCHET. Her married name was GARRIGUES. She was born in 1686 at Sedan, Ardennes, France.13 She married Matthieu GARRIGUES on 28 May 1702 at Netherlands. She died on 30 Sep 1746 at Philadelphia, Pennsylvania.14

Marie2 ROCHET was born on 22 Aug 1645.15 She died in 1763 at Sedan, Ardennes, France.

Vincent2 ROCHET was born on 18 Sep 1646.

Charles2 ROCHET was born on 29 Dec 1647.16 He died on 12 Jul 1670 at Sedan, Ardennes, France, at age 22.17

Printed on: 13 May 2023

Prepared by: Mary Christine Berwanger, Ph.D.

Endnotes:

  1. Ardennes: Sedan – Tables alphabétique des mariages, Ms 664/index, 1573-1682 family search.
  2. Ardennes: Sedan – Tables alphabétique des mariages, Ms 664/index, 1573-1682 familysearch.
  3. Name Susane Rochet
    Sex     Female
    Father’s Name     Jean Rochet
    Mother’s Name     Marie Trufet
    Event Baptism, 13 Apr 1667, Sedan, Ardennes, France
    “France, registres protestants, 1536-1897,” database with images, FamilySearch (https://familysearch.org/ark:/61903/1:1:QVN3-4BVH : 19 February 2021), Susane Rochet, 13 Apr 1667; citing Baptism, Societe de L’histoire du Protestantisme Francais (Society of the History of French Protestantism), Paris.
  4. Suzanne Laroche ROCHETTE (1667–1744)
    Birth 13 APR 1667 • Sedan, Ardennes, Champagne-Ardenne, France
    Death 18 DEC 1744 • Manakin Sabot, Goochland, Virginia, USA.
  5. Olive Judi Morgan (1706–1760) Birth 1706 • Manakin, Goochland County, Virginia, USA.
  6. Death 27 OCTOBER 1760 • Cumberland County, Virginia, USA.
  7. Name Isaac Rochet
    Sex     Male
    Father’s Name     Jean Rochet
    Mother’s Name     Marie Trufet
    Event    Baptism, 30 Aug 1672, Sedan, Ardennes, France.
  8. Name Louis Rochet
    Sex     Male
    Father’s Name     Jean Rochet
    Mother’s Name     Marie Truffet
    Event  Baptism 05 May 1676, Sedan, Ardennes, France.
  9. 1 October 1726.
  10. Christening • 1 Source 5 January 1679Sedan, Ardennes, Champagne-Ardenne, France.
  11. Isaac De La Roquet (Rochet) (1641–1695)
    Birth 1641 • Sedan, Ardennes, Champagne-Ardenne, France
    Death NOV 1695.
  12. 10 January 1644, familysearch.
  13. Birth 1686 • Sedan, Ardennes, Champagne-Ardenne, France.
  14. Death 30 SEP 1746 • Christ Church, Philadelphia, Pennsylvania, Colonial America.
  15. Birth 22 August 1645 Sedan, Ardennes, Champagne-Ardenne, France
    Death 1763 Sedan, France.
  16. 29 December 1647.
  17. 12 July 1670 Sedan, Ardennes, Champagne-Ardenne, France.

Rochette, or Not?

Combining the information provided by Christine and Doris along with additional research provides additional information but no smoking gun. The jury is still out. However, we now have additional information, including the probable source of the surname, Rochette.

At this point, I’m no more convinced that her surname was Rochette than I was before. I am, however, very grateful to have solved the mystery of where the Rochette rumor originated.

I’m hoping that some of the Miller researchers will be able to provide additional information about the source of the Bible or maybe even more about the source of Rochette.

I’m also VERY hopeful that someone will discover information about Magdalena’s origins. Or, perhaps someone has additional Rochette information that might be helpful. I was unable to find Rochette information in the relevant counties, but maybe other researchers have or can.

Just putting this out there and hoping that this update finds its way to the right researcher and that one day, we can actually solve the mystery of Magdalena’s parents.

However, we do have another clue…

Can DNA Help?

We have the mitochondrial DNA of Magdalena. Mitochondrial DNA is inherited from your mother through a direct line of females – so her mother, and her mother, on up the tree.

We know that Magdalena’s mitochondrial DNA is an exact match with a descendant of Mary Myers born February 8, 1775, in Pennsylvania and who died on September 28, 1849, in Montgomery County, Ohio. Unfortunately, we don’t know who Mary Myer’s parents were. Maybe one of you descends from this line or has information about the Myers family. Also spelled Meyers, Moyers.

Of course, mitochondrial DNA can reach far back in time, but the migration path from Pennsylvania to Montgomery County, Ohio, is the path the Brethren took to settle that region, and is where Magdalena’s descendant lives who tested. Montgomery County was the dispersion point for the Brethren North into Indiana and westward as well.

Another mitochondrial match also connects to the Zircle/Meyer family in Rockingham/Augusta County, VA where several Brethren families settled about the time of the Revolutionary War. These families originated in the Lancaster/York County, PA region or the Frederick County, MD region.

Tracking a match back to the earliest ancestor, I found that Peter Zirkle (c1745-c1818)’s wife’s name was “Fanny” and she is reported to be Frene “Fannie” Meyer. I have found several attributions, but no place can I find how the Meyer surname was attributed to her, or who here parents were. Assuming Fanny was born about 1745 as well, Magdalena born about 1730 could have been her sister or maybe a cousin.

Meyer/Moyer is noted as one of the founding Brethren families in York County, PA where Philip Jacob Miller was living when he married. It’s VERY likely that he married within the Brethren families.

The History of York Co, PA, written in 1907 tells us that the first Brethren congregation in York (now Adams) County was the Conewago Church which was established in 1738, “20 miles west from the town of York, on the Little Conewago,” which was in the vicinity of Hanover.

Surnames of the families who were among the early church members were Eldrick, Dierdorff, Bigler, Gripe (Cripe), Studsman (Stutzman) and others.

Prominent members include Jacob Moyer, James Henrick, preachers; Hans Adam Snyder, George Wine, Daniel Woods, Henry Geing, Joseph Moyer, Nicholas Hostetter, Christian Hostetter, Rudy Brown, Dobis Brother, Jacob Miller, Michael Koutz, Stephen Peter, Henry Tanner, Michael Tanner, John Moyer, Jacob Souder, Henry Hoff, John Swartz.  The wives of these persons named were also members of the church.

Unmarried members were Barbara Snyder John Geing, Maud Bowser, George Peter, Hester Wise, Christian Etter, John Peter Weaver, Barbara Bear, Elizabeth Boering, Grace Hymen. Their first preacher was Daniel Leatherman, Sr, followed by Nicholas Martin, Jacob Moyer (Meyers) and James Hendrich (Henry.)

In 1741, a new church was founded “on the Great Conewago, about 14 miles west from the new town of York.”  Founding members there include John Neagley, Adam Sower, Jacob Sweigard, Peter Neiper and Joseph Latshaw. The first elder was George Adam Martin followed by Daniel Leatherman Jr. and Nicholas Martin. In 1770 members included George Brown, John Heiner, Peter Fox, Anthony Dierdorff, Nicholas Moyer, Manasseh Brough, Michael Bosserman, David Ehrhard, Daniel Baker, Abraham Stauffer, Henry Dierdorff, John Burkholder, Andrew Trimmer, Eastace Rensel, Peter Dierdorff, Barnett Augenbaugh, John Neagley, Michael Brissel, Welty Brissel, Matthias Bouser, Laurence Baker, Philip Snell, Nicholas Baker Jr., Adam Sower, Adam Dick, Henry Brissel, David Brissel, Henry Radibush, George Wagner and George Reeson.  Unmarried members were Peter Wertz, Ann Mummert, Christian Fray, Samuel Arnold, Mary Latshaw, Catharine Studabaker, Nicholas Baker, Marillas Baker, Sarah Brissel, Jacob Miller, Rudolph Brown.

Can anyone tell me what happened to the Moyer men listed above?

  • Jacob Moyer
  • Joseph Moyer
  • John Moyer
  • Nicholas Moyer

Are they related? Who is their father? Who were their wives?  And perhaps more importantly, did they have a sibling or child, Magdalena, born about 1730?

Does anyone know if any of these men wound up in Rockingham County, VA by 1773 or so?

Please reach out if you descend from these families, and especially if you descend from these families through all females to the current generation, which can be male or female. If you do, you carry the mitochondrial DNA of their wife and daughters. Please reach out to me.

Do You Descend from a Brethren Female Line?

Do you descend matrilineally from a Brethren female line, meaning through all females beginning with your mother? If so, your mitochondrial DNA descends from a Brethren family.

If you have already taken the mitochondrial DNA test at FamilyTreeDNA, please join the Miller-Brethren DNA project. If you have not tested, please order a mitochondrial DNA test, here, and join the Miller Brethren DNA Project.

Based on the Brethren cultural handicap of not registering marriages, mitochondrial DNA testing is critically important. It provides the tools to identify and place Brethren females with their families. DNA, in this case, promises to do what traditional genealogy cannot.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Which DNA Test Should I Buy? And Why?

Which DNA test should I buy, and why?

I receive questions like this often. As a reminder, I don’t take private clients anymore, which means I don’t provide this type of individual consulting or advice. However, I’m doing the next best thing! In this article, I’m sharing the step-by-step process that I utilize to evaluate these questions so you can use the process too.

It’s important to know what questions to ask and how to evaluate each situation to arrive at the best answer for each person.

Here’s the question I received from someone I’ll call John. I’ve modified the wording slightly and changed the names for privacy.

I’m a male, and my mother was born in Charleston, SC. My maternal grandmother’s maiden name was Jones and a paternal surname was Davis. The family was supposed to have been Black, Dutch, Pennsylvania Dutch, and Scots-Irish…only once was I told I was 3/16 Indian, with Davis being 3/4 and Jones being full Indian.

Do I have enough reasonable information to buy a test, and which one?

Please note that it’s common for questions to arrive without all the information you need to provide a sound answer – so it’s up to you to ask those questions and obtain clarification.

Multiple Questions

There are actually multiple questions here, so let me parse this a bit.

  1. John never mentioned what his testing goal was.
  2. He also never exactly said how the paternal line of Davis was connected, so I’ve made an assumption. For educational purposes, it doesn’t matter because we’re going to walk through the evaluation process, which is the same regardless.
  3. John did not include a tree or a link to a tree, so I created a rudimentary tree to sort through this. I need the visuals and normally just sketch it out on paper quickly.
  4. Does John have enough information to purchase a test?
  5. If so, which test?

There is no “one size fits all” answer, so let’s discuss these one by one.

Easy Answers First

The answer to #4 is easy.

Anyone with any amount of information can purchase a DNA test. Adoptees do it all the time, and they have no prior information.

So, yes, John can purchase a test.

The more difficult question is which test, because that answer depends on John’s goals and whether he’s just looking for some quick information or really wants to delve into genealogy and learn. Neither approach is wrong.

Many people think they want a quick answer –  and then quickly figure out that they really want to know much more about their ancestors.

I wrote an article titled DNA Results – First Glances at Ethnicity and Matching for new testers, here.

Goals

Based on what John said, I’m going to presume his goals are probably:

  • To prove or disprove the family oral history of Black, Dutch, Pennsylvania Dutch (which is actually German,) Scots-Irish, and potentially Native American.
  • John didn’t mention actual genealogy, which would include DNA matches and trees, so we will count that as something John is interested in secondarily. However, he may need genealogy records to reach his primary goal.

If you’re thinking, “The process of answering this seemingly easy question is more complex than I thought,” you’d be right.

Ethnicity in General

It sounds like John is interested in ethnicity testing. Lots of people think that “the answer” will be found there – and sometimes they are right. Often not so much. It depends.

The great news is that John really doesn’t need any information at all to take an autosomal DNA test, and it doesn’t matter if the test-taker is male or female.

To calculate each tester’s ethnicity, every testing company compiles their own reference populations, and John will receive different results at each of the major companies. Each company updates their ethnicity results from time to time as well, and they will change.

Additionally, each company provides different tools for their customers.

The ethnicity results at different companies generally won’t match each other exactly, and sometimes the populations look quite different.

Normally, DNA from a specific ancestor can be found for at least 5 or 6 generations. Of course, that means their DNA, along with the DNA from all of your other ancestors is essentially combined in a communal genetic “pot” of your chromosomes, and the DNA testing company needs to sort it out and analyze your DNA for ethnicity.

DNA descended from ancestors, and their populations, further back in people’s trees may not be discerned at all using autosomal DNA tests.

A much more specific “ethnicity” can be obtained for both the Y-DNA line, which is a direct patrilineal line for men (blue arrow,) and the mitochondrial DNA line (pink arrows,) which is a direct matrilineal line for everyone, using those specific tests.

We will discuss both of those tests after we talk about the autosomal tests available from the four major genealogy DNA testing companies. All of these tools can and should be used together.

Let’s Start with Native American

Let’s evaluate the information that John provided.

John was told that he “was 3/16 Indian, with Davis being 3/4 and Jones being full Indian.”

We need to evaluate this part of his question slightly differently.

I discussed this in the article, Ancestral DNA Percentages – How Much of Them is in You?

First, we need to convert generations to 16ths.

You have two ancestors in your parent’s generation, four in your grandparents, and so forth. You have 16 great-great-grandparents. So, if John was 3/16th Native, then three of his great-great-grandparents would have been fully Native, or an equivalent percentage. In other words, six ancestors in that generation could have been half-Native. Based on what John said, they would have come from his mother’s side of the tree. John is fortunate to have that much information to work with.

He told us enough about his tree that we can evaluate the statement that he might be 3/16ths Native.

Here’s the tree I quickly assembled in a spreadsheet based on John’s information.

His father, at left, is not part of the equation based on the information John provided.

On his mother’s side, John said that Grandfather Davis is supposed to be three-quarters Native, which translates to 12/16ths. Please note that it would be extremely beneficial to find a Y-DNA tester from his Davis line, like one of his mother’s brothers, for example.

John said that his Grandmother Jones is supposed to be 100% Native, so 16/16ths.

Added together, those sum to 28/32, which reduces down to 14/16th or 7/8th for John’s mother.

John would have received half of his autosomal DNA from his mother and half from his non-Native father. That means that if John’s father is 100% non-Native, John would be half of 14/16ths or 7/16ths, so just shy of half Native.

Of course, we know that we don’t always receive exactly 50% of each of our ancestors’ DNA (except for our parents,) but we would expect to see something in the ballpark of 40-45% Native for John if his grandmother was 100% Native and his grandfather was 75%.

Using simple logic here, for John’s grandmother to be 100% Native, she would almost assuredly have been a registered tribal member, and the same if his grandfather was 75% Native. I would think that information would be readily available and well-known to the family – so I doubt that this percentage is accurate. It would be easy to check, though, on various census records during their lifetimes where they would likely have been recorded as “Indian.” They might have been in the special “Indian Census” taken and might be living on a reservation.

It should also be relatively easy to find their parents since all family members were listed every ten years in the US beginning with the 1850 census.

The simple answer is that if John’s grandparents had as much Native as reported, he would be more than 3/16th – so both of these factoids cannot simultaneously be accurate. But that does NOT mean neither is accurate.

John could be 7/8th or 40ish%, 3/16th or 18ish%, or some other percentage. Sometimes, where there is smoke, there is fire. And that seems to be the quandary John is seeking to resolve.

Would  Ethnicity/Population Tests Show This Much Native?

Any of the four major testing companies would show Native for someone whose percentage would be in the 40% or 18% ballpark.

The easiest ethnicities to tell apart from one another are continental-level populations. John also stated that he thinks he may also have Black ancestry, plus Dutch, Pennsylvania Dutch (German), and Scots-Irish. It’s certainly possible to verify that using genealogy, but what can DNA testing alone tell us?

How far back can we expect to find ethnicities descending from particular ancestors?

In this table, you can see at each generation how many ancestors you have in that generation, plus the percentage of DNA, on average, you would inherit from each ancestor.

All of the major DNA testing companies can potentially pick up small trace percentages, but they don’t always. Sometimes one company does, and another doesn’t. So, if John has one sixth-generation Native American ancestor, he would carry about 1.56% Native DNA, if any.

  • Sometimes a specific ethnicity is not found because, thanks to random recombination, you didn’t inherit any of that DNA from those ancestors. This is why testing your parents, grandparents, aunts, uncles, and siblings can be very important. They share your same ancestors and may have inherited DNA that you didn’t that’s very relevant to your search.
  • Sometimes it’s not found because the reference populations and algorithms at that testing company aren’t able to detect that population or identify it accurately, especially at trace levels. Every DNA testing company establishes their own reference populations and writes internal, proprietary ethnicity analysis algorithms.
  • Sometimes it’s not found because your ancestor wasn’t Native or from that specific population.
  • Sometimes it’s there, but your population is called something you don’t expect.

For example, you may find Scandinavian when your ancestor was from England or Ireland. The Vikings raided the British Isles, so while some small amount of Scandinavian is not what you expect, that doesn’t mean it‘s wrong. However, if all of your family is from England, it’s not reasonable to have entirely Scandinavian ethnicity results.

It’s also less likely as each generation passes by that the information about their origins gets handed down accurately to following generations. Most non-genealogists don’t know the names of their great-grandparents, let alone where their ancestors were from.

Using a 25-year average generation length, by the 4th generation, shown in the chart above, you have 16 ancestors who lived approximately 100 years before your parents were born, so someplace in the mid-1800s. It’s unlikely for oral history from that time to survive intact. It’s even less likely from a century years earlier, where in the 7th generation, you have 128 total ancestors.

The best way to validate the accuracy of your ethnicity estimates is by researching your genealogy. Of course, you need to take an ethnicity test, or two, in order to have results to validate.

Ethnicity has a lot more to offer than just percentages.

Best Autosomal Tests for Native Ethnicity

Based on my experience with people who have confirmed Native ancestry, the two best tests to detect Native American ethnicity, especially in smaller percentages, are both FamilyTreeDNA and 23andMe.

Click images to enlarge

In addition to percentages, both 23andMe and FamilyTreeDNA provide chromosome painting for ethnicity, along with segment information in download files. In other words, they literally paint your ethnicity results on your chromosomes.

They then provide you with a file with the “addresses” of those ethnicities on your chromosomes, which means you can figure out which ancestors contributed those ethnicity segments.

The person in the example above, a tester at FamilyTreeDNA, is highly admixed with ancestors from European regions, African regions and Native people from South America.

Trace amounts of Native American with a majority of European heritage would appear more like this.

You can use this information to paint your chromosome segments at DNAPainter, along with your matching segments to other testers where you can identify your common ancestors. This is why providing trees is critically important – DNA plus ancestor identification with our matches is how we confirm our ancestry.

This combination allows you to identify which Native (or another ethnicity) segments descended from which ancestors. I was able to determine which ancestor provided that pink Native American segment on chromosome 1 on my mother’s side.

I’ve provided instructions for painting ethnicity segments to identify their origins in specific ancestors, here.

Autosomal and Genealogy

You may have noticed that we’ve now drifted into the genealogy realm of autosomal DNA testing. Ethnicity is nice, but if you want to know who those segments came from, you’ll need:

  • Autosomal test matching to other people
  • To identify your common ancestor with as many matches as you can
  • To match at a company who provides you with segment information for each match
  • To work with DNAPainter, which is very easy

The great news is that you can do all of that using the autosomal tests you took for ethnicity, except at Ancestry who does not provide segment information.

Best Autosomal Test for Matching Other Testers

The best autosomal test for matching may be different for everyone. Let’s look at some of the differentiators and considerations.

If you’re basing a testing recommendation solely on database size, which will probably correlate to more matches, then the DNA testing vendors fall into this order:

If you’re basing that recommendation on the BEST, generally meaning the closest matches for you, there’s no way of knowing ahead of time. At each of the four DNA testing companies, I have very good matches who have not tested elsewhere. If I weren’t in all four databases, I would have missed many valuable matches.

If you’re basing that recommendation on which vendor began testing earliest, meaning they have many tests from people who are now deceased, so you won’t find their autosomal tests in other databases that don’t accept uploads, the recommended testing company order would be:

If you’re basing that recommendation on matches to people who live in other countries, the order would be:

Ancestry and 23andMe are very distant third/fourth because they did not sell widely outside the US initially and still don’t sell in as many countries as the others, meaning their testers’ geography is more limited. However, Ancestry is also prevalent in the UK.

If you’re basing that recommendation on segment information and advanced tools that allow you to triangulate and confirm your genetic link to specific ancestors, the order would be:

Ancestry does NOT provide any segment information.

If you’re basing that recommendation on unique tools provided by each vendor, every vendor has something very beneficial that the others don’t.

In other words, there’s really no clear-cut answer for which single autosomal DNA test to order. The real answer is to be sure you’re fishing in all the ponds. The fish are not the same. Unique people test at each of those companies daily who will never be found in the other databases.

Test at or upload your DNA to all four DNA testing companies, plus GEDmatch. Step-by-step instructions for downloading your raw data file and uploading it to the DNA testing companies who accept uploads can be found, here.

Test or Upload

Not all testing companies accept uploads of raw autosomal DNA data files from other companies. The good news is that some do, and it’s free to upload and receive matches.

Two major DNA testing companies DO NOT accept uploads from other companies. In other words, you have to test at that company:

Two testing companies DO accept uploads from the other three companies. Uploads and matching are free, and advanced features can be unlocked very cost effectively.

  • FamilyTreeDNA – free matching and $19 unlock for advanced features
  • MyHeritage – free matching and $29 unlock.for advanced features

I recommend testing at both 23andMe and Ancestry and uploading one of those files to both FamilyTreeDNA and MyHeritage, then purchasing the respective unlocks.

GEDmatch

GEDmatch is a third-party matching site, not a DNA testing company. Consider uploading to GEDmatch because you may find matches from Ancestry who have uploaded to GEDmatch, giving you access to matching segment information.

Other Types of DNA

John provided additional information that may prove to be VERY useful. Both Y-DNA and mitochondrial DNA can be tested as well and may prove to be more useful than autosomal to positively identify the origins of those two specific lines.

Let’s assume that John takes an autosomal test and discovers that indeed, the 3/16th Native estimate was close. 3/16th equates to about 18% Native which would mean that three of his 16 great-great-grandparents were Native.

John told us that his Grandmother Jones was supposed to be 100% Native.

At the great-great-grandparent level, John has 16 ancestors, so eight on his mother’s side, four from maternal grandmother Jones and four from his maternal grandfather Davis.

John carries the mitochondrial DNA of his mother (red boxes and arrows,) and her mother, through a direct line of females back in time. John also carries the Y-DNA of his father (dark blue box, at left above, and blue arrows below.)

Unlike autosomal DNA which is admixed in every generation, mitochondrial DNA (red arrows) is inherited from that direct matrilineal line ONLY and never combines with the DNA of the father. Mothers give their mitochondrial DNA to both sexes of their children, but men never contribute their mitochondrial DNA to offspring. Everyone has their mother’s mitochondrial DNA.

Because it never recombines with DNA from the father, so is never “watered down,” we can “see” much further back in time, even though we can’t yet identify those ancestors.

However, more importantly, in this situation, John can test his own mitochondrial DNA that he inherited from his mother, who inherited it from her mother, to view her direct matrilineal line.

John’s mitochondrial DNA haplogroup that will be assigned during testing tells us unquestionably whether or not his direct matrilineal ancestor was Native on her mother’s line, or not. If not, it may well tell us where that specific line originated.

You can view the countries around the world where Y-DNA haplogroups are found, here, and mitochondrial haplogroups, here.

If John’s mitochondrial DNA haplogroup is Native, that confirms that one specific line is Native. If he can find other testers in his various lines to test either their Y-DNA or mitochondrial DNA, John can determine if other ancestors were Native too. If not, those tests will reveal the origins of that line, separate from the rest of his genealogical lines.

Although John didn’t mention his father’s line, if he takes a Y-DNA test, especially at the Big Y-700 level, that will also reveal the origins of his direct paternal line. Y-DNA doesn’t combine with the other parent’s DNA either, so it reaches far back in time too.

Y-DNA and mitochondrial DNA tests are laser-focused on one line each, and only one line. You don’t have to try to sort it out of the ethnicity “pot,” wondering which ancestor was or was not Native.

My Recommendation

When putting together a testing strategy, I recommend taking advantage of free uploads and inexpensive unlocks when possible.

  • To confirm Native American ancestry via ethnicity testing, I recommend testing at 23andMe and uploading to FamilyTreeDNA, then purchasing the $19 unlock. The free upload and $19 unlock are less expensive than testing there directly.
  • For matching, I recommend testing at Ancestry and uploading to MyHeritage, then unlocking the MyHeritage advanced features for $29, which is less expensive than retesting. Ancestry does not provide segment information, but MyHeritage (and the others) do.

At this point, John will have taken two DNA tests, but is now in all four databases, plus GEDmatch if he uploads there.

  • For genealogy research on John’s lines to determine whether or not his mother’s lines were Native, I recommend an Ancestry and a MyHeritage records subscription, plus using WikiTree, which is free.
  • To determine if John’s mother’s direct matrilineal female line was Native, I recommend that John order the mitochondrial DNA test at FamilyTreeDNA.
  • When ordering multiple tests, or uploading at FamilyTreeDNA, be sure to upload/order all of one person’s tests on the same DNA kit so that those results can be used in combination with each other.

Both males and females can take autosomal and mitochondrial DNA tests.

  • To discover what he doesn’t know about his direct paternal, meaning John’s surname line – I recommend the Big Y-700 test at FamilyTreeDNA.

Only males can take a Y-DNA test, so women would need to ask their father, brother, or paternal uncle, for example, to test their direct paternal line.

  • If John can find a male Davis from his mother’s line, I recommend that he purchase the Big Y-700 test at FamilyTreeDNA for that person, or check to see if someone from his Davis line may have already tested by viewing the Davis DNA Project. Like with mitochondrial DNA, the Y-DNA haplogroup will tell John the origins of his direct Davis male ancestor – plus matching of course. He will be able to determine if they were Native, and if not, discover the origins of the Davis line.
  • For assigning segments to ancestors and triangulating to confirm descent from a common ancestor, I recommend 23andMe, MyHeritage, FamilyTreeDNA and GEDmatch, paired with DNAPainter as a tool.

Shopping and Research List

Here are the tests and links recommended above:

More Than He Asked

I realize this answer is way more than John expected or even knew to ask. That’s because there is often no “one” or “one best” answer. There are many ways to approach the question after the goal is defined, and the first “answer” received may be a bit out of context.

For example, let’s say John has 2% Native ancestry and took a test at a vendor who didn’t detect it. John would believe he had none. But a different vendor might find that 2%. If it’s on his mother’s direct matrilineal line, mitochondrial DNA testing will confirm, or refute Native, beyond any doubt, regardless of autosomal ethnicity results – but only for that specific ancestral line.

Autosomal DNA can suggest Native across all your DNA, but Y-DNA and mitochondrial DNA confirm it for each individual ancestor.

Even when autosomal testing does NOT show Native American, or African, for example, it’s certainly possible that it’s just too far back in time or has not been passed down during random recombination, but either Y-DNA or mitochondrial DNA will unquestionably confirm (or refute) the ancestry in question if the right person is tested.

This is exactly why I attempt to find a cousin who descends appropriately from every ancestor and provide testing scholarships. It’s important to obtain Y-DNA and mitochondrial DNA information for each ancestor.

Which Test Should I Order?

What steps will help you decide which test or tests to take?

  1. Define your testing goal.
  2. Determine if your Y-DNA or mitochondrial DNA will help answer the question.
  3. Determine if you need to find ancestors another generation or two back in time to get the most benefit from DNA testing. In our example, if John discovered that both of his grandparents were enrolled tribal members, that’s huge, and the tribe might have additional information about his family.
  4. Subscribe to Ancestry and MyHeritage records collections as appropriate to perform genealogical research. Additional information not only provides context for your family, it also provides you with the ability to confirm or better understand your ethnicity results.
  5. Extend your tree so that you can obtain the best results from the three vendors who support trees; Ancestry, FamilyTreeDNA, and MyHeritage. All three use trees combined with DNA tests to provide you with additional information.
  6. Order 23andMe and Ancestry autosomal DNA tests.
  7. Either test at or upload one of those tests to MyHeritage, FamilyTreeDNA, and GEDmatch.
  8. If a male, order the Big Y-700 DNA test. Or, find a male from your ancestral line who has taken or will take that test. I always offer a testing scholarship and, of course, share the exciting results!
  9. Order a mitochondrial DNA test for yourself and for appropriately descended family members to represent other ancestors. Remember that your father (and his siblings) all carry your paternal grandmother’s mitochondrial DNA. That’s often a good place to start after testing your own DNA.
  10. If your parents or grandparents are alive, or aunts and uncles, test their autosomal DNA too. They are (at least) one generation closer to your ancestors than you are and will carry more of your ancestors’ DNA.
  11. Your siblings will carry some of your ancestors’ DNA that you do not, so test them too if both of your parents aren’t available for testing.

Enjoy!!!

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Comparing DNA Results – Different Tests at the Same Testing Company

Several people have asked about different tests at the same DNA testing company. They wondered if matching is affected, meaning whether your matches are different if you have two different tests at the same company. Specifically, they asked if you are better off purchasing a test AT a DNA testing vendor that allows uploads, rather than uploading a test from a different vendor. Does it make a difference to the tester or their matches? Do they have the same matches?

These are great questions, and the answer isn’t conclusive. It varies based on several factors.

Having multiple tests at the same DNA testing company can occur in three ways:

  • The same person tests twice at the same DNA testing company.
  • The same person tests once at the DNA testing company and uploads a test from a different testing company. Only two of the primary four DNA testing companies accept uploads from other vendors – FamilyTreeDNA and MyHeritage.
  • The same person uploads two different files from other DNA testing companies to the DNA testing company in question. For example, the DNA company could be FamilyTreeDNA and the two uploaded DNA files could be from either MyHeritage, 23andMe or Ancestry.

All DNA testing companies allow users to download their raw DNA data files. This enables the tester to upload their DNA file to the vendors who accept uploaded files. Both FamilyTreeDNA and MyHeritage provide matching for free, but advanced tools require a small unlock fee of $19 and $29, respectively.

Testing Company Accepts Uploads from Other Companies Download Upload Instructions
23andMe No Instructions here
Ancestry No Instructions here
FamilyTreeDNA Yes, some Instructions here
MyHeritage Yes, some Instructions here

I wrote about developing a DNA testing and transfer/upload strategy, here, and about which companies accept which tests, here.

Not all DNA files are created equal. Therefore, not all files from vendors are compatible with other vendors for various reasons.

Multiple Tests at the Same DNA Testing Company

I have at least two tests at each of the four major vendors. I did this for research purposes, meaning to write articles to share with you.

If you actually test twice at a vendor, meaning purchase two separate tests and take them yourself, you will have two test results at that testing company. At some companies, specifically 23andMe, if you purchase a new test through their “upgrade” procedure, you won’t have two tests, just the newer one.

However, if you’re testing at the DNA testing company, and also uploading, I generally don’t recommend more than one test at each vendor. All it really does is clog up people’s match lists with no or little additional benefit. At 23andMe, with their restrictions on the size of your match list, if everyone had two tests, the effective match limit would be half of their stated limit of about 1500 matches for earlier testers and about 5000 for current testers with subscriptions.

So, in essence, I’m telling you to “do as I say, not as I do.” We all have better things to do with our money rather pay for the same test twice. If you haven’t tested your Y-DNA or mitochondrial DNA, that’s much more beneficial than two autosomal tests at one vendor.

Chips and Chip Evolution

Before we begin the side-by-side comparison, let’s briefly discuss DNA testing chips and how they work.

Each DNA testing company purchases DNA processing equipment. Illumina is the big dog in this arena. Illumina defines the capacity and structure of each chip. In part, how the testing companies use that capacity, or space on each chip, is up to each company. This means that the different testing companies test many of the same autosomal DNA SNP locations, but not all of the same locations.

Furthermore, the individual testing companies can specify a number of “other” locations to be included on their chip, up to the chip maximum size limit. The testing companies who offer Y-DNA or mitochondrial DNA haplogroups from autosomal tests use part of their chip array space for selected known haplogroup-defining SNP locations. This does NOT mean that Y-DNA or mitochondrial DNA is autosomal, just that the testing company used part of their chip array space to target these SNPs in your genome. Of course, for your most refined haplogroup and Y-DNA or mitochondrial DNA matching, you have to take those specific tests at FamilyTreeDNA .

This means that each testing company includes and reports many of the same, but also some different SNP locations when they scan your DNA.

In the lab, after your DNA is extracted from either your saliva or the cheek swab, it’s placed on this array chip which is then placed in the processing equipment.

There are several steps in processing your DNA. Each DNA location specified on the chip is scanned and read multiple times, and the results are recorded. The final output is the raw DNA results file that you see if/when you download your raw DNA file.

Here’s an example from my file. The RSID is the reference SNP cluster ID which is the naming convention used for specific SNPs. It’s not relevant to you, but it is to the lab, along with the chromosome number and position, which is in essence the address on the chromosome.

In the Result column, your file reports one nucleotide (T, A, C or G) that you inherited from each parent at each tested position. They are not listed in “parent order” because your DNA is not organized in that fashion. There’s no way for the lab to know which nucleotide came from which parent, unless they are the same, of course. You can read about nucleotides, here.

When you upload your raw DNA file to a different DNA testing company (vendor), they have to work with a file that isn’t entirely compatible with the files they generate, or the other files uploaded from other DNA testing companies.

In addition to dealing with different file formats and contents from multiple DNA vendors, companies change their own chips and file structure from time to time. In some cases, it’s a forced change by the chip manufacturer. Other times, the vendors want to include different locations or make improvements. For example, with 23andMe’s focus on health, they probably add new medically related SNP locations regularly. Regardless of why, some DNA files include locations not included in other files and are not 100% compatible.

Looking at the first few entries in my example file above, let’s say that the testing vendor included the first ten positions, but an uploaded file from another company did not. Or perhaps the chip changed, and a different version of the company’s own file contains different positions.

DNA testing companies have to “fill in the blanks” for compatibility, and they do this using a technique called imputation. Illumina forced their customers to adopt imputation in 2017 when they dropped the capacity of their chip. I was initially quite skeptical, but imputation has worked surprisingly well. Some of the matching differences you will see when comparing the results of two different DNA files is a result of imputation.

I wrote about imputation in an early article here. Please note the companies have fixed many issues with imputation and improved matching greatly, but the concepts and imputation processes still apply. The downloaded raw data files are your results BEFORE imputation, meaning that it’s up to any company where you upload to process your raw file in the same way they would process a file that they generated. A lot goes on behind the scenes when you upload a file to a DNA testing company.

At both 23andMe and Ancestry, you know that all of your matches tested there, meaning they did not upload a file from another testing company. You don’t know and can’t tell what chip was utilized when your matches tested. The only way to determine a chip testing version, aside from knowing the date or remembering the chip version from when you tested, is to look at the beginning of the raw data download file, although not all files contain that information.

Ok, now that you understand the landscape, let’s look at my results at each company.

23andMe

I tested twice at 23andMe on two different chip versions, V3 and V4, which tested some different locations of my DNA. Neither of these chips is the current version. I originally tested twice to evaluate the differences between the two test versions which you can read about, here.

23andMe named their ethnicity results Ancestry Composition.

They last updated my V3 test’s Ancestry Composition results on July 28, 2021.

The percentages are shown at left, and the country locations are highlighted at right for my 23andMe V3 test.

Click to enlarge any graphic

The 23andMe V4 test was also updated for the last time on July 28, 2021.

The ethnicity results differ substantially between the two chip versions, even though they were both updated on the same date.

In October of 2020, in an effort to “encourage” their customers to pay for a new test on their V5 chip, 23andMe announced that there would be no ethnicity updates on older tests. So, I really don’t know for sure when my tests were actually updated. Just note how different the results are. It’s also worth mentioning that 23andMe does not show trace amounts on their map, so even though my Indigenous American results were found, they aren’t displayed on the map.

Indigenous is, however, shown in yellow on their DNA Chromosome Painting.

No other testing company restricts updates, penalizing their customers who purchased earlier versions of tests.

Matches at 23andMe

23andMe limits your matches to about 1500 unless you have purchased the current test, including health AND pay for an annual $69 subscription which buys you about 5000 matches. I have not purchased this test.

Your number of actual matches displayed/retained is also affected by how many people you have communicated with, or at least initiated communications with. 23andMe does not roll those people off of your match list.

I have 1803 matches on both of my tests, meaning I’ve reached out to about 300 people who would have otherwise been removed from my match list. 23andMe retains your highest matches, deleting lower matches after you reach the maximum match threshold.

I’ve randomly evaluated several of the same matches at each vendor, at least five maternal and five paternal, separated by a blank row. I wanted to determine whether they match me on the same number of centimorgans, meaning the same amount of DNA, on both tests, and the same number of segments.

Match 23and Me V3 23and Me V4
Patricia 292 cM – 12 segments Same as V3
Joe 148 cM, 8 segments Same
Emily 73 cM, 4 segs 72 cM, 4 seg
Roland 27 cM, 1 seg Same
Ian 62 cM, 4 seg Same
Stacy 469 cM, 16 segments 482 cM, 16 segments
Harold 134 cM, 6 segments Same
Dean 69 cM, 3 seg Same
Carl 95 cM, 4 seg Same
Debbie 83 cM, 4 seg 84 cM, 4 seg

As you can see, the matches are either exact or xclose.

Please note that bolded matches are also found at another company. I will include a summary table at the end comparing the same match across multiple vendors.

23and Me Summary

The 23andMe V3 and V4 match results are very close. Since the match limit is the same, and the results are so close between tests, they are essentially identical in terms of matching.

The ethnicity results are similar, but the V4 test reflects a broader region. Italian baffles me in both versions.

Ethnicity should never be taken at face value at any DNA testing company, especially with smaller percentages which could be noise or a combination of other regions which just happens to resemble Italy, in my case.

I don’t know what type of comparison the current chip would yield since I suspect it has more medical and less genealogical SNPs on board.

Reprocessing Tests

This is probably a good place to note that it’s very expensive for any company to update their customer’s ethnicity results because every single customer’s DNA results file must be completely rerun. Note that this does not mean their DNA itself is retested. The output raw data file is reprocessed using a new algorithm.

Rerunning means reprocessing that specific portion of every test, meaning the vendors must rent “time in the cloud.” We are talking millions of dollars for each run. I don’t know how much it costs per test, but think about the expense if it takes $1 to rerun each test in the vendor’s database. Ancestry has more than 20 million tests.

While we, as consumers, are always chomping at the bit for new and better ethnicity results – the testing companies need to be sure it really is “better,” not just different before they invest the money to reprocess and update results.

This is probably why 23andMe decided to cease updating older kits. The newer tests require a subscription which is recurring revenue.

The same is true when DNA testing companies need to rematch their entire user base. This happens when the criteria for matching changes. For example, Ancestry purged a large number of matches for all of their customers back in 2020. While match algorithm changes necessitate rematching, with associated costs, this change also provided Ancestry with the huge benefit of eliminating approximately half of their customer’s matches. This freed up storage space, either physically in their data center or space rented in the cloud, representing substantial cost-savings.

How long can a DNA testing company reasonably be expected to continue investing in a product which never generates additional revenue but for which the maintenance and reinvestment costs never end?

Ancestry and MyHeritage both hope to offset the expenses of maintaining their customer’s DNA tests and providing free updates by selling subscriptions to their record services. 23andMe wants you to purchase a new test and a yearly subscription. FamilyTreeDNA wants you to purchase a Big Y-DNA and mitochondrial DNA test.

OK, now let’s look at my matches at Ancestry.

Ancestry

I’ve taken two Ancestry tests, V1 and V2. There were some differences, which I wrote about here and here. V2 is no longer the current chip.

Except for 23andMe who wants their customers to purchase their most current test, the other companies no longer routinely announce new chip versions. They just go about their business. The only way you know that a vendor actually changed something is when the other companies who accept uploads suddenly encounter an issue with file formats. It always takes a few weeks to sort that out.

My Ancestry V1 test’s ethnicity results don’t show my Native American ethnicity.

Ancestry results were updated in June 2022

However, my V2 results do include Native American ethnicity.

Matches at Ancestry

I have many more matches on my V1 test at Ancestry because I took steps to preserve my smaller matches when Ancestry initiated its massive purge in 2020. I wrote about that here and here.

Ancestry’s SideView breaks matches down into maternal, paternal, and unassigned based on your side selection. You tell Ancestry which side is which. You may be able to determine which “side” is maternal or paternal either by your ethnicity or shared matches. While SideView is not always accurate, it’s a good place to begin.

Match Category Ancestry V1 Test Ancestry V2 Test
Maternal 15,587 15,116
Paternal 42,247 41,870
Both 2 2
Unassigned 48,999 4,127
Total 106,835 61,115

Ancestry either displays all your matches or your matches by side, which I used to compile the table above. I suspect that Ancestry is not assigning any of the smaller preserved matches to “sides” based on the numbers above.

Ancestry implemented a process called Timber that removes DNA that they feel is “too matchy,” meaning you match enough people in this region that they think it’s a pileup region for you personally, and therefore not useful. In some cases, enough DNA is removed causing that person to no longer be considered a match because they fall beneath the match threshold. I am not a fan of Timber.

Your match amount shown is AFTER Timber has removed those segments. Unweighted shared DNA is your pre-Timber match amount.

You can view the Unweighted shared DNA by clicking on the amount of shared DNA on your match list.

You can read Ancestry’s Matching White Paper, here.

Let’s take a look at my matches. I’ve listed both weighted and unweighted where they are different.

Match Ancestry V1 Ancestry V2
Michael 755 cM, 35 seg 737 cM, 33 seg
Edward 66 cM, 4 seg (unweighted 86 cM) 65 cM, 4 seg (unweighted 86 cM)
Tom 59 cM, 3 seg (unweighted 63) Same
Jonathon 43 cM, 4 seg, (unweighted 52 cM) Same
Matthew 20 cM, 2 seg (unweighted 35 cM) Same
Harold 132 cM, 7 seg 135 cM, 6 seg
Dean 67 cM, 4 seg (unweighted 78 cM) 66 cM, 4 seg (unweighted 78 cM)
Debbie 93 cM, 5 seg Same
Valli 142 cM, 3 seg Same
Jared 20 cM, 1 seg (unweighted 22 cM) Same

Timber only removes DNA when the match is under 90 cM. Almost every match under 90 cM has some DNA removed.

Ancestry Summary

The results of the two Ancestry tests are very close.

In some circumstances, no DNA is removed by Timber, so the unweighted is the same as the weighted. However, in other cases, a significant amount is removed. 15 cM of Matthew’s 35 cM was removed by Timber, reducing his total to 20 cM.

Remember that Ancestry does not show shared matches unless they are greater than 20 cM, which is different than any other DNA testing company.

At one point, Ancestry was selling a health test that was also a genealogy test. That test utilized a different chip that is not accepted for uploads by other vendors. The results of that test might well be different that the “normal” Ancestry tests focused on genealogy. The Ancestry health test is no longer offered.

Companies that Accept Uploads

DNA testing companies that accept uploaded DNA files from other DNA testing companies need to process the uploaded file, just like a file that is generated in their own lab. Of course, they must deal with the differences between uploaded files and their own file format. The processing includes imputation and formulates the uploaded file so that it works with the tools that they provide for their customers, including ethnicity (by whatever name they use) matching, family matching (bucketing), advanced matching, the match matrix, triangulation, AutoClusters, Theories of Family Relativity, and other advanced tools.

Of course, the testing company accepting uploads can only work with the DNA locations provided by the original DNA testing company in the uploaded file.

Matching and some additional tools are free to uploaders, but advanced tools require an inexpensive unlock.

FamilyTreeDNA

I took a test at FamilyTreeDNA, plus uploaded a copy of both of my Ancestry DNA files.

FamilyTreeDNA named their population (ethnicity) test myOrigins and the current version is V3. I wrote about the rollout and comparison in September of 2020, here.

My DNA test taken at FamilyTreeDNA, above, reveals Native American segments that match reference populations found both in North and South America and the Caribbean Islands.

At FamilyTreeDNA, my Ancestry V1 uploaded file results show Native American population matches only in North America.

Interestingly, my Ancestry V1 file processed AT Ancestry did not reveal Native American ancestry, but the same file uploaded to and processed at FamilyTreeDNA did show Native American results, reflecting the difference between the vendors’ internal algorithms and reference populations utilized.

My myOrigins results from my Ancestry V2 uploaded file at FamilyTreeDNA also include my North American Native American segments. The V2 test also showed Native American ethnicity at Ancestry, so clearly something changed in Ancestry’s algorithm, locations tested, and/or reference populations between V1 and V2.

Fortunately, FamilyTreeDNA provides both chromosome painting and a population download file so I can match those Native segments with my autosomal matches to identify which of my ancestors contributed those specific segments.

One of my Native segments is shown in pink on Chromosome1. My mother has a Native segment in exactly the same location, so I know that this segment originated with my mother’s ancestors.

I downloaded the myOrigins population segment file and painted my results at DNAPainter, along with the matches where I can identify our common ancestor. This allowed me to pinpoint the ancestral line that contributed this Native segment in my maternal line. You can read about using DNAPainter, here.

FamilyTreeDNA Matches

I have significantly more matches at FamilyTreeDNA on their test than on either of my Ancestry tests that I uploaded. However, nearly the same number are maternally or paternally assigned through Family Matching, with the remainder unassigned. You can read about Family Matching here.

Match Category FamilyTreeDNA Test Ancestry V1 at FamilyTreeDNA Ancestry V2 at FamilyTreeDNA
Paternal 3,479 3,572 3,422
Maternal 1,549 1,536 1,477
Both 3 3 3
All 8,154 6,397 6,579

Family matching, aka bucketing, automatically assigns my matches as maternal and paternal by linking known relatives to their place in my tree.

I completed the following match chart using my original test taken at FamilyTreeDNA, plus the same match at FamilyTreeDNA for both of my Ancestry tests.

In other words, Cheryl matched me at 467 cM on 21 segments on the original test taken at FamilyTreeDNA. She matched me on 473 cM and 21 segments on my Ancestry V1 test uploaded to FamilyTreeDNA and on 483 cM and 22 segments on the Ancestry V2 test uploaded to FamilyTreeDNA.

Match FamilyTreeDNA Ancestry V1 at FTDNA Ancestry V2 at FTDNA
Cheryl 467 cM, 21 seg 473 cM, 21 seg 483 cM, 22 seg
Patricia 195 cM, 11 seg 189 cM, 11 seg 188 cM, 11 seg
Tom 77 cM, 4 seg 71 cM, 4 seg 76 cM, 4 seg
Thomas 72 cM, 3 seg 71 cM, 3 seg 74 cM, 3 seg
Roland 29 cM, 1 seg 35 cM, 2 seg 35 cM, 2 seg
Rex 62 cM, 4 seg 55 cM, 3 seg 57 cM, 3 seg
Don 395 cM, 18 seg 362 cM, 15 seg 398 cM, 18 seg
Ian 64 cM, 4 seg 56 cM, 4 seg 64 cM, 4 seg
Stacy 490 cM, 18 seg 494 cM, 15 seg 489 cM, 14 seg
Harold 127 cM, 5 cM 133 cM, 6 seg 143 cM, 6 seg
Dean 81 cM, 4 seg 75 cM, 3 seg 83 cM, 4 seg
Carl 103 cM, 4 seg 101 cM, 4 seg 102 cM, 4 seg
Debbie 99 cM, 5 seg 97 cM, 5 seg 99 cM, 5 seg
David 373 cM, 16 seg 435 cM, 19 seg 417 cM, 18 seg
Amos 176 cM, 7 seg 177 cM. 8 seg 177 cM, 7 seg
Buster 387 cM, 15 seg 396 cM, 16 seg 402 cM, 17 seg
Charlene 461 cM, 21 seg 450 cM, 21 seg 448 cM, 20 seg
Carol 65 cM, 6 seg 64 cM, 6 seg 65 cM, 6 seg

I have tested many of my cousins at FamilyTreeDNA and encouraged others to test or upload. I’ve attempted to include enough people so that I can have common matches at least at one other DNA testing company for comparison.

FamilyTreeDNA Summary

The matches are relatively close, with a few being exact.

Interestingly, some of the segment counts are different. In most cases, this results from one segment being broken into multiple segments by one or more of the tests, but not always. In the couple that I checked, the entire segment seems to descend from the same ancestral couple, so the break is likely a result of not all of the same DNA locations being tested, plus the limits of imputation.

MyHeritage

I have two tests at MyHeritage. One taken at MyHeritage, and an uploaded file from FamilyTreeDNA.

MyHeritage displays both ethnicity results and Genetic Groups which maps groups of people that you match. I left the Genetic Groups setting at the highest confidence level. Shifting it to lower displays additional Genetic Groups, some of which overlap with or are within ethnicity regions.

My test taken at MyHeritage, above, shows several ethnicities and Genetic Groups, but no Native American.

My FamilyTreeDNA kit processed at MyHeritage shows the same ethnicity regions, one additional Genetic Group, plus Native American heritage in the Amazon which is rather surprising given that I don’t show Native in North American regions where I’m positive my Native ancestors lived.

MyHeritage Matching

At MyHeritage, I compared the results of the test I took with MyHeritage, and a test I uploaded from FamilyTreeDNA. Fewer than half of my matches can be assigned to a parent via shared matching.

Matches MyHeritage Test FamilyTreeDNA at MyHeritage
Paternal 4,422 6,501
Maternal 2,660 3,655
Total 13,233 16,147

I have rounded my matches at MyHeritage to the closest cM.

Match MyHeritage Test FamilyTreeDNA at MyHeritage
Michael 801 cM, 32 seg 823 cM, 31 segments
Cheryl 467 cM, 23 seg 477 cM, 23 seg
Roland No match 28 cM, 1 seg
Patty 156 cM, 9 seg 151 cM, 9 seg
Rex 43 cM, 4 seg 53 cM, 3 seg
Don 369 cM, 16 seg 382 cM, 17 seg
 
David 449 cM, 17 seg 460 cM, 17 seg
Charlene 454 cM, 23 seg 477 cM, 24 seg
Buster 408 cM, 15 seg 410 cM, 16 seg
Amos 183 cM, 8 seg Same
Carol 78 cM, 6 seg 87 cM, 7 seg

MyHeritage Summary

I was surprised to discover that Roland had no match with the MyHeritage test, but did with the FamilyTreeDNA test. I wonder if this is a searching or matching glitch, especially since both companies use the same chip. 28 cM in one segment is a reasonably large match, and even if it was divided in two, it would still be over the matching threshold. I know this is a valid match because Roland triangulates with me and several cousins, I’m positive of our common ancestor, and he also matches me at both FamilyTreeDNA and 23andMe.

Other than that, the matches are reasonably close, with one being exact.

Your Matches Aren’t Everyplace

I unsuccessfully searched for someone who was a match to me in all four databases. Ancestry does not permit match downloads, so I had to search manually. People don’t always use the same names in different databases.

Surprisingly, I was unable to find one match who is in all of the databases. Many people only suggest testing at Ancestry because they have the largest database, but if you look at the following comparison chart that I’ve created, you’ll see that 16 of 26 people, or 62% were not at Ancestry. Conversely, many people were at Ancestry and not elsewhere. I could not find five maternal and five paternal matches at Ancestry that I could identify as matches in another database. 40% were not elsewhere.

If you think for one minute that it doesn’t matter for genealogy if you’re in all four major databases, please reconsider. It surely does matter.

Every single vendor has matches that the others don’t. Substantial, important matches. I have found first and second-cousin matches in every database that weren’t elsewhere.

Many of the original testers have passed away and can’t test again. My mother can never test at either 23andMe or Ancestry, but she is at both FamilyTreeDNA and MyHeritage because I could upgrade her kit at FamilyTreeDNA after she died. I uploaded her to MyHeritage. Of course, because she is a generation closer to our ancestors, she has many valuable matches that I don’t.

Each vendor provides either an email address or a messaging platform for you to contact your matches. Don’t be discouraged if they don’t answer. Just today, I received a reply that was years in the making.

Genealogists hope for immediate gratification, but we are actually in this for the long game. Play it with every tool at your disposal.

The Answer

Does it matter if you test at a DNA testing company, or upload a file?

I know this was a very long answer to what my readers hoped was a simple yes or no question.

There is no consistent answer at either FamilyTreeDNA or MyHeritage, the two DNA testing companies that accept uploads. Be sure you’re in both databases. My closest two matches that I did not test were found at MyHeritage. Here’s a direct link to upload at MyHeritage.

Of the vendors, those two should be the closest to each other because they are both processed in the GenebyGene lab, but again, the actual chip version, when the test was originally taken, and each vendor’s internal processing will result in differences. Neither the original test at the DNA testing company nor the uploaded files have consistently higher or lower matches. Neither type of test or upload appears to be universally more or less accurate. Differences in either direction seem to occur on a match-by-match basis. Many are so close as to be virtually equivalent, with a few seemingly random exceptions. Of course, we always have to consider Timber.

If you upload, unlock the advanced features at both FamilyTreeDNA and MyHeritage.

If you upload to a DNA testing company, you may discover in the future that some features and functions will only be available to original testers.

Personally, if I had the option, I would test at the company directly simply because it eliminates or at least reduces the possibility of future incompatibilities – with the exception of 23andMe which has chosen to not provide consistent updates to older tests. I’m incredibly grateful I didn’t test my mother or now deceased family members at 23andMe, and only there. I would be heartsick, heartbroken, and furious.

Our DNA is an extremely valuable resource for our genealogy. It’s the gift that truly keeps on giving, day after day, even when other records don’t exist. Be sure you and your family members are in each database one way or another, and test your Y-DNA (for males) and mitochondrial DNA (for everyone) to have a complete arsenal at your disposal.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Mother’s Day Visitation Two Decades Out

I hope that you are enjoying Mother’s Day, whether you’re the Mom being honored, you’re honoring your mother, or you’re one of the millions who “mother” and love others, one way or another.

I didn’t have time to complete my normal article for today, but I certainly didn’t want to let Mother’s Day pass without acknowledgment.

I didn’t get my article finished because, let’s just say, I’ve been extremely busy with something VERY interesting.

I can’t tell you everything, but I can tell you a little!

Just a couple of days ago, I was able to visit Mom once again in the freezer at FamilyTreeDNA.

Mom’s DNA has been housed there since 2003, when she swabbed for her first DNA test. It’s so hard to believe that was two decades ago. So much has changed.

That stored DNA sample allowed me to upgrade Mom to the Family Finder test in 2012, six years after she passed away.

In 2013, I visited Mom at FamilyTreeDNA in the freezer and realized, as I looked in that little window, that there was more of my mother in that freezer than anywhere else on earth. My DNA is in there too, with her, just sayin’. I won’t be buried beside her in the soil, but I am near her in that freezer every day. Somebody has to keep an eye on her!

In intervening years, FamilyTreeDNA purchased a larger freezer and moved Mom from the earlier location across the room to the larger cryo-preservation cemetery – I mean freezer.

Now, Mom, with a few million of her friends and several thousand of our relatives, is partying it up in there when no one is looking.

Time Capsule

Every time I stare through that window, it’s like peering backward into a time capsule. I wonder, if all the Y-DNA was processed at the Big Y-700 level, how much of the entire Y-DNA phylogenetic tree would we be able to reconstruct?

People often skip testing mitochondrial DNA, passed from mothers to all their children, thinking it won’t be genealogically useful. I assure you, that’s not always the case. Furthermore, if you don’t test, DNA can never be useful. Every single person has mitochondrial DNA, so just imagine how much of the mitochondrial tree would be created if every one of those samples was tested at or upgraded to the full sequence level.

How many dead ends are in that freezer, meaning no living people carry that line anymore? I’m one of those people because I have no grandchildren through my daughter. Mom’s, her mother’s, and my mitochondrial DNA dies with my generation.

Based on my mitochondrial DNA sequence, meaning my mutations, I’ll VERY likely have a new haplogroup when the Million Mito Project rolls out, and even more likely that it will be at least three branches down the tree, closer in time.

What pieces of our human history will be lost if the people in that freezer don’t test their mitochondrial DNA at the full sequence level? The full sequence is needed to construct the mitochondrial tree of all humanity.

How many more matches would we have if everyone in that freezer had a Family Finder test? How many brick walls would fall? How many mysteries would be solved? Would we be able to reconstruct the DNA of our ancestors from their descendants?

What happens if we never open that time capsule, individually and collectively?

“Just Do It”

I had to pinch myself, though. As I stood in that lab, viewing through that window what I considered a sacred and hallowed space for Mom and humanity as well, I was reminded of what Mom said to me not long before she died. In fact, I can hear her frail voice.

“You need to do that.” 

What was “that”?

“That” was transforming her DNA results into a story – her story, her history and genealogy – and how she connected with the story of all humankind. Her “story” revealed her history, our history, even before genealogy, connecting with her soul. She could touch people whose names she would never know, but who contributed their mitochondrial DNA to her. It brought them alive.

I had an entire litany of sensible, level-headed reasons why I could never “do that,” beginning with the fact that I already had a career and owned a business. I had a family, children, and responsibilities – nope – no can do, Mom.

Not to be deterred, Mom gently stopped me in the process of listing all the perfectly logical and valid reasons why that would never work and told me that all of that was just preparing me for what I was “supposed to do,” and I needed to “just do it.” This was nothing like the mother I knew, always conservative in her advice and never wanting me to step out, even a little bit, onto an unstable limb. Let alone leap off the cliff of uncertainty with absolutely no safety net.

What had happened to my mother?

I simply couldn’t make her understand – all those years ago.

Then, my gaze drifts back to the present, and I remember that I’m staring into a freezer, not a time machine. Mom has already had all the tests available today. But many of her frozen neighbors have not.

As I stood, looking into that window, into the past, and perhaps into the future, I was afraid to turn around.

People were standing behind me, filming. I didn’t want anyone to see those tears slipping down my cheeks. After all, I had simply been looking at a window, right? Just a window. Not a cemetery. Not a portal. Not a time machine, no reason for tears – unless you understand the magnitude of what the freezer holds.

I so hoped that those hot tears didn’t entirely ruin my makeup, or that I could at least escape to the restroom to fix it without being noticed.

The Greatest Journey

On the way to the restroom, I saw this framed magazine, a wink and a nod from Mom, I’m sure. Indeed, our DNA is the greatest journey ever told, ever embarked upon, and the story is not yet entirely written. Mom said DNA would change the world as we know it, and she was right.

Mom, I found a way – or maybe fate found me back in 2004. That fateful fork in the road, although I’m not sure I even realized I had slipped onto that road untaken until it was too late to turn back.

Maybe Mom pushed those buttons from the other side, because I’ve been passionately “doing that” one way or another now for almost two decades. And finally, finally, we are going to be able to tell a larger story.

You and me, Mom. Hand in hand with our cousins. All of them – on every continent around the world.

Making history is on the horizon. DNA rocks. Here’s to all the mothers!!!

Thank You

Happy Mother’s Day, Mom. I love and miss you oh so much. And, while I wasn’t at the time, I’m – ahem – so incredibly grateful for the swift kick in the behind called encouragement.

But then, isn’t that the age-old story of motherhood?

Until next time Mom, you behave in there!

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

What Is a Sibling Anyway? Full, Half, Three-Quarters, Step, Adopted, Donor-Conceived & Twins

I’ve seen the term sibling used many different ways, sometimes incorrectly.

When referring to their own siblings, people usually use the term brother or sister, regardless of whether they are talking about a full, half or step-sibling. It’s a term of heart or description. It’s often genealogists who are focused on which type of sibling. As far as I’m concerned, my brother is my brother, regardless of which type of brother. But in terms of genetics, and genealogy, there’s a huge difference. How we feel about our sibling(s) and how we are biologically related are two different things.

Let’s cover the various types of siblingship and how to determine which type is which.

  • Full Siblings – Share both parents
  • Half-Siblings – Share only one parent
  • Three-Quarter Siblings – It’s complicated
  • Adopted Siblings
  • Donor-Conceived
  • Step-Siblings – Share no biological parent
  • Twins – Fraternal and Identical

Full Siblings

Full siblings share both parents and share approximately 50% of their DNA with each other.

You can tell if you are full siblings with a match in various ways.

  1. You share the same fairly close matches on both parents’ sides. For example, aunts or uncles or their descendants.

Why do I say close matches? You could share one parent and another more distant relative on the other parent’s side. Matching with close relatives like aunts, uncles or first cousins at the appropriate level is an excellent indicator unless your parents or grandparents are available for testing. If you are comparing to grandparents, be sure to confirm matches to BOTH grandparents on each side.

  1. Full siblings will share in the ballpark of 2600 cM, according to DNAPainter’s Shared cM Tool.

Keep in mind that you can share more or less DNA, hence the range. It’s also worth noting that some people who reported themselves as full siblings in the Shared cM project were probably half siblings and didn’t realize it.

  1. Full siblings will share a significant amount of fully identical regions (FIR) of DNA with each other, meaning they share DNA at the same DNA address from both parents, as illustrated above. Shared DNA with each other inherited from Mom and Dad are blocked in green. The fully identical regions, shared with both parents, are bracketed in purple. You can’t make this determination at FamilyTreeDNA, MyHeritage or Ancestry, but you can at both 23andMe and GEDmatch.

At GEDmatch, the large fully green areas in the chromosome browser “graphics and positions” display indicates full siblings, where DNA is shared from both parents at that location.

I wrote about the details of how to view fully identical regions (FIR) versus half identical regions (HIR) in the article, DNA: In Search of…Full and Half-Siblings.

  1. If your parents/grandparents have tested, you and your full sibling will both match both parents/grandparents. Yes, I know this sounds intuitive, but sometimes it’s easy to miss the obvious.

At FamilyTreeDNA, you can use the matrix tool to see who matches each other in a group of people that you can select. In this case, both siblings are compared to the father, but if the father isn’t available, a close paternal relative could substitute. Remember that all people who are 2nd cousins or closer will match.

  1. At Ancestry, full siblings will be identified as either “brother” or “sister,” while half-siblings do not indicate siblingship. Half-siblings are called “close family” and a range of possible relationships is given. Yes, Ancestry, is looking under the hood at FIR/HIR regions. I have never seen a full sibling misidentified as anything else at Ancestry. Unfortunately, Ancestry does not give customers access to their matching chromosome segment location data.
  2. Y-DNA of males who are full siblings will match but may have some slight differences. Y-DNA alone cannot prove a specific relationship, with very rare exceptions, but can easily disprove a relationship if two males do not match. Y-DNA should be used in conjunction with autosomal DNA for specific relationship prediction when Y-DNA matches.
  3. Y-DNA testing is available only through FamilyTreeDNA, but high-level haplogroup-only estimates are available through 23andMe. Widely divergent haplogroups, such as E versus R, can be considered a confirmed non-match. Different haplogroups within the same base haplogroup, such as R, but obtained from different vendors or different testing levels may still be a match if they test at the Big Y-700 level at FamilyTreeDNA.
  4. Mitochondrial DNA, inherited matrilineally from the mother, will match for full siblings (barring unusual mutations such as heteroplasmies) but cannot be used in relationship verification other than to confirm nonmatches. For both Y-DNA and mitochondrial DNA, it’s possible to have a lineage match that is not the result of a direct parental relationship.
  5. Mitochondrial DNA testing is available only through FamilyTreeDNA, but haplogroup-only estimates are included at 23andMe. Different base haplogroups such as H and J can be considered a non-match.
  6. A difference in ethnicity is NOT a reliable indicator of half versus full siblings.

Half-Siblings

Half-siblings share only one parent, but not both, and usually share about 25% of their DNA with each other.

You will share as much DNA with a half-sibling as you do some other close matches, so it’s not always possible for DNA testing companies to determine the exact relationship.

Referencing the MyHeritage cM Explainer tool, you can see that people who share 1700 cM of DNA could be related in several ways. I wrote about using the cM Explainer tool here.

Hints that you are only half-siblings include:

  1. At testing vendors, including Ancestry, a half-sibling will not be identified as a sibling but as another type of close match.
  2. If your parents or grandparents have tested, you will only match one parent or one set of grandparents or their descendants.
  3. You will not have shared matches on one parent’s side. If you know that specific, close relatives have tested on one parent’s side, and you don’t match them, but your other family members do, that’s a very big hint. Please note that you need more than one reference point, because it’s always possible that the other person has an unknown parentage situation.
  4. At 23andMe, you will not show fully identical regions (FIR).
  5. At GEDmatch, you will show only very minimal FIR.

Scattered, very small green FIR locations are normal based on random recombination. Long runs of green indicate that significant amounts of DNA was inherited from both parents. The example above is from half-siblings.

  1. At FamilyTreeDNA and 23andMe, most men who share a mother will also share an X chromosome match since men only inherit their X chromosome from their mother. However, it is possible for the mother to give one son her entire X chromosome from her father, and give the other son her entire X chromosome from her mother. Therefore, two men who do share a mother but don’t have an X chromosome match could still be siblings. The X is not an entirely reliable relationship predictor. However, if two men share an entire X chromosome match, it’s very likely that they are siblings on their mother’s side, or that their mothers are very close relatives.

Three-Quarter Siblings

This gets a little more complicated.

Three-quarter siblings occur when one parent is the same, and the other parents are siblings to each other.

Let’s use a real-life example.

A couple marries and has children. The mother dies, and the father marries the mother’s sister and has additional children. Those children are actually less than full siblings, but more than half-siblings.

Conversely, a woman has children by two brothers and those children are three-quarter siblings.

These were common situations in earlier times when a man needed a female companion to raise children and women needed a male companion to work on the farm. Neither one could perform both childcare and the chores necessary to earn a living in an agricultural society, and your deceased spouse’s family members were already people you knew. They already loved your children too.

Neither of these situations is historically unusual, but both are very difficult to determine using genetics alone, even in the current generation.

Neither X-DNA nor mitochondrial DNA will be helpful, and Y-DNA will generally not be either.

Unfortunately, three-quarter siblings’ autosomal DNA will fall in the range of both half and full siblings, although not at the bottom of the half-sibling range, nor at the top of the full sibling range – but that leaves a lot of middle ground.

I’ve found it almost impossible to prove this scenario without prior knowledge, and equally as impossible to determine which of multiple brothers is the father unless there is a very strong half-sibling match in addition.

The DNA-Sci blog discusses this phenomenon, but I can’t utilize comparison screenshots according to their terms of service.

Clearly, what we need are more known three-quarter siblings to submit data to be studied in order to (possibly) facilitate easier determination, probably based on the percentage frequency distribution of FIR/HIR segments. Regardless, it’s never going to be 100% without secondary genealogical information.

Three-quarter siblings aren’t very common today, but they do exist. If you suspect something of this nature, really need the answer, and have exhausted all other possibilities, I recommend engaging a very experienced genetic genealogist with experience in this type of situation. However, given the random nature of recombination in humans, we may never be able to confirm using any methodology, with one possible exception.

There’s one possibility using Y-DNA if the parents in question are two brothers. If one brother has a Y-DNA SNP mutation that the other does not have, and this can be verified by testing either the brothers who are father candidates or their other known sons via the Big Y-700 test – the father of the siblings could then be identified by this SNP mutation as well. Yes, it’s a long shot.

Three-quarter sibling situations are very challenging.

Step-siblings, on the other hand, are easy.

Step-Siblings

Step-siblings don’t share either parent, so their DNA will not match to each other unless their parents are somehow related to each other. Please note that this means either of their parents, not just the parents who marry each other.

One child’s parent marries the other child’s parent, resulting in a blended family. The children then become step-siblings to each other.

The terms step-sibling and half-sibling are often used interchangeably, and they are definitely NOT the same.

Adopted Siblings

Adopted siblings may not know they are adopted and believe, until DNA testing, that they are biological siblings.

Sometimes adopted siblings are either half-siblings or are otherwise related to each other but may not be related to either of their adoptive parents. Conversely, adopted siblings, one or both, may be related to one of their adoptive parents.

The same full and half-sibling relationship genetic clues apply to adopted siblings, as well as the tools and techniques in the In Search of Unknown Family series of articles.

Donor-Conceived Siblings

Donor-conceived siblings could be:

  • Half-siblings if the donor is the same father but a different mother.
  • Half-siblings if they share an egg donor but not a father.
  • Full siblings if they are full biological siblings to each other, meaning both donors are the same but not related to the woman into whom the fertilized egg was implanted, nor to her partner, their legal parents.
  • Not biologically related to each other or either legal parent.
  • Biologically related to one or both legal parents when a family member is either an egg or sperm donor.

Did I cover all of the possible scenarios? The essence is that we literally know nothing and should assume nothing.

I have known of situations where the brother (or brothers) of the father was the sperm donor, so the resulting child or children appear to be full or three-quarters siblings to each other. They are related to their legal father who is the mother’s partner. In other words, in this situation, the mother’s husband was infertile, and his brother(s) donated sperm resulting in multiple births. The children from this family who were conceived through different brothers and had very close (half-sibling) matches to their “uncles'” children were very confused until they spoke with their parents about their DNA results.

The same techniques to ascertain relationships would be used with donor-conceived situations. Additionally, if it appears that a biological relationship exists, but it’s not a full or half-sibling relationship, I recommend utilizing other techniques described in the In Search of Unknown Family series.

Twins or Multiple Birth Siblings

Two types of twin or multiple birth scenarios exist outside of assisted fertilization.

Fraternal twins – With fraternal or dizygotic twins, two eggs are fertilized independently by separate sperm. Just view this as one pregnancy with two siblings occupying the same space for the same 9 months of gestation. Fraternal twins can be male, female or one of each sex.

Fraternal twins are simply siblings that happen to gestate together and will match in the same way that full siblings match.

Please note that it’s possible for two of a woman’s eggs to be fertilized at different times during the same ovulation cycle, potentially by different men, resulting in twins who are actually half-siblings.

A difference in ethnicity is NOT a reliable indicator of fraternal or identical twins. Submitting your own DNA twice often results in slightly different ethnicity results.

Identical twins – Identical or monozygotic twins occur when one egg is fertilized by one sperm and then divides into multiple embryos that develop into different children. Those children are genetically identical since they were both developed from the same egg and sperm.

Two of the most famous identical twins are astronauts Mark and Scott Kelly.

Identical twins are the same sex and will look the same because they have the same DNA, except for epigenetic changes, but of course external factors such as haircuts, clothes and weight can make identical twins physically distinguishable from each other.

DNA testing companies will either identify identical twins as “self,” “identical twin” or “parent/child” due to the highest possible shared cM count plus fully matching FIR regions.

For identical twins, checking the FIR versus HIR is a positive identification as indicated above at GEDmatch with completely solid green FIR regions. Do not assume twins that look alike are identical twins.

Siblings

Whoever thought there would be so many kinds of siblings!

If you observe the need to educate about either sibling terminology or DNA identification methodologies, feel free to share this article. When identifying relationships, never assume anything, and verify everything through multiple avenues.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search Of…Your Grandparents

Are you searching for an unknown relative or trying to unravel and understand unexpected results? Maybe you discovered that one or both of your parents is not your biological parent. Maybe one of your siblings might be a half-sibling instead. Or maybe you suddenly have an unexpected match that looks to be an unknown close relative, possibly a half-sibling. Perhaps there’s a close match you can’t place.

Or, are you searching for the identity of your grandparent or grandparents? If you’re searching for your parent or parents, often identifying your grandparents is a necessary step to narrow the parent-candidates.

I’ve written an entire series of “In Search of Unknown Family” articles, permanently listed together, here. They will step you through the search process and help you understand how to unravel your results. If you’re new, reading these, in order, before proceeding, would be a good idea.

Identifying a Grandparent

I saved this “grandparents” article for later in the series because you will need the tools and techniques I’ve introduced in the earlier articles. Identifying grandparents is often the most challenging of any of the relationships we’ve covered so far. In part because each of those four individuals occupies a different place in your tree, meaning their X, Y-DNA and mitochondrial DNA is carried by different, and not all, descendants. This means we sometimes have to utilize different tools and techniques.

If you’re trying to identify any of your four grandparents, females are sometimes more challenging than males.

Why?

Women don’t have a Y chromosome to test. This can be a double handicap. Female testers can’t test a Y chromosome, and maternal ancestors don’t have a Y chromosome to match.

Of course, every circumstance differs. You may not have a male to test for paternal lines either.

The maternal grandfather can be uniquely challenging, because two types of DNA, Y-DNA and mitochondrial DNA matching are immediately eliminated for all testers.

While I’ve focused on the maternal grandfather in this example, these techniques can be utilized for all four grandparents as well as for parents. At the end, I’ll review other grandparent relationships and additional tools you might be able to utilize for each one.

In addition to autosomal DNA, we can also utilize mitochondrial DNA, Y-DNA and sometimes X DNA in certain situations.

Testing, Tests and Vendors

As you recall, only men have a Y chromosome (blue arrow), so only genetic males can take a Y-DNA test. Men pass their Y chromosome from father to son in each generation. Daughters don’t receive a Y chromosome.

Everyone has their mother’s mitochondrial DNA (pink arrow.) Women pass their mitochondrial DNA to both sexes of their children, but only females pass it on. In the current generation, represented by the son and daughter, above, the mother’s yellow heart-shaped mitochondrial DNA is inherited by both sexes of her children. In the current generation, males and females can both test for their mother’s mitochondrial DNA.

Of course, everyone has autosomal DNA, inherited from all of their ancestral lines through at least the 5th or 6th generation, and often further back in time. Autosomal DNA is divided in half in each generation, as children inherit half of each parents’ autosomal DNA (with the exception of the X chromosome, which males only inherit from their mother.)

The four major vendors, Ancestry, 23andMe, FamilyTreeDNA and MyHeritage sell autosomal DNA tests, but only FamilyTreeDNA sells Y-DNA and mitochondrial DNA tests.

Only 23andMe and FamilyTreeDNA report X matching.

All vendors except Ancestry provide segment location information along with a chromosome browser.

You can read about the vendor’s strengths and weaknesses in the third article, here.

Ordering Y and Mitochondrial DNA Tests

If you’re seeking the identities of grandparents, the children and parents, above, can test for the following types of DNA in addition to autosomal:

Person in Pedigree Y-DNA Mitochondrial
Son His father’s blue star His mother’s pink heart
Daughter None Her mother’s pink heart
Father His father’s blue star His mother’s gold heart
Mother None Her mother’s pink heart

Note that none of the people shown above in the direct pedigree line carry the Y-DNA of the green maternal grandfather. However, if the mother has a full sibling, the green “Male Child,” he will carry the Y-DNA of the maternal grandfather. Just be sure the mother and her brother are full siblings, because otherwise, the brother’s Y-DNA may not have been inherited from your mother’s father. I wrote about full vs half sibling determination, here.

Let’s view this from a slightly different perspective. For each grandparent in the tree, which of the two testers, son or daughter, if either, carry that ancestor’s DNA of the types listed in the columns.

Ancestor in Tree Y-DNA Mitochondrial DNA Autosomal DNA X DNA
Paternal Grandfather Son Neither Son, daughter Neither
Paternal Grandmother Has no Y chromosome None (father has it, doesn’t pass it on to son or daughter) Son, daughter Daughter (son does not receive father’s X chromosome)
Maternal Grandfather Neither Neither Son, daughter Son, daughter (potentially)
Maternal Grandmother Has no Y chromosome Son, daughter Son, daughter Son, daughter (potentially)

Obtaining the Y-DNA and mitochondrial DNA of those grandparents from their descendants will provide hints and may be instrumental in identifying the grandparent.

FamilyTreeDNA

You’ll need to order Y-DNA (males only) and mitochondrial DNA tests separately from autosomal DNA tests. They are three completely different tests.

At FamilyTreeDNA, the autosomal DNA test is called Family Finder to differentiate it from their Y-DNA and mitochondrial DNA tests.

Their autosomal test is called Family Finder whether you order a test from FamilyTreeDNA, or upload your results to their site from another vendor (instructions here.)

I recommend ordering the Big Y-700 Y-DNA test if possible, and if not, the highest resolution Y-DNA test you can afford. The Big Y-700 is the most refined Y-DNA test available, includes multiple tools and places Big Y-700 testers on the Time Tree through the Discover tool, providing relatively precise estimates of when those men shared a common ancestor. If you’ve already purchased a lower-precision Y-DNA test at FamilyTreeDNA, you can easily upgrade.

I wrote about using the Discover tool here. The recently added Group Time Tree draws a genetic Y-DNA tree of Big-Y testers in common projects, showing earliest known ancestors and the date of the most recent common ancestor.

You need to make sure your Family Finder, mitochondrial DNA and Y-DNA (if you’re a male) tests are ordered from the same account at FamilyTreeDNA.

You want all 3 of your tests on the same account (called a kit number) so that you can use the advanced search features that display people who match you on combinations of multiple kinds of tests. For example, if you’re a male, do your Y-DNA matches also match you on the autosomal Family Finder test, and if so, how closely? Advanced matching also provides X matching tools.

X DNA is included in autosomal tests. X DNA has a distinct matching pattern for males and females which makes it uniquely useful for genealogy. I wrote about X DNA matching here.

If you upload your autosomal results to FamilyTreeDNA from another company, you’re only uploading a raw DNA file, not the DNA itself, so FamilyTreeDNA will need to send you a swab kit to test your Y-DNA and mitochondrial DNA. If you upload your autosomal DNA, simply sign in to your kit, purchase the Y-DNA and/or mitochondrial DNA tests and they will send you a swab kit.

If you test directly at FamilyTreeDNA, you can add any test easily by simply signing in and placing an order. They will use your archived DNA from your swab sample, as long as there’s enough left and it’s of sufficient quality.

Fish In All Ponds

The first important thing to do in your grandparent search is to be sure you’re fishing in all ponds. In other words, be sure you’ve tested at all 4 vendors, or uploaded files to FamilyTreeDNA and MyHeritage.

When you upload files to those vendors, be sure to purchase the unlock for their advanced tools, because you’re going to utilize everything possible.

If you have relatively close matches at other vendors, ask if they will upload their files too. The upload is free. Not only will they receive additional matches, and another set of ethnicity results, their results will help you by associating your matches with specific sides of your family.

Why Order Multiple Tests Now Instead of Waiting?

I encourage testers to order their tests at the beginning of their journey, not one at a time. Each new test from a vendor takes about 6-8 weeks from the time you initially order – they send the test, you swab or spit, return it, and they process your DNA. Of course, uploading takes far less time.

If you’re adding elapsed time, two autosomal tests (Ancestry and 23andMe), two uploads (FamilyTreeDNA and MyHeritage,) a Y-DNA and a mitochondrial DNA test, if all purchased serially, one after the other, means you’ll be waiting about 6-8 months.

Do you want to wait 6-8 months? Can you afford to?

Part of that answer has to do with what, exactly, you’re seeking.

A Name or Information?

Are you seeking the name of a person, or are you seeking information about that person? With grandparents, you may be hoping to meet them, and time may be of the essence. Time delayed may not be able to be recovered or regained.

Most people don’t just want to put a name to the person they are seeking – they want to learn about them. You will have different matches at each company. Even after you identify the person you seek, the people you match at each company may have information about them, their photos, know about their life, family, and their ancestors. They may be able and willing to facilitate an introduction if that’s what you seek.

One cousin that I assisted discovered that his father had died just 6 weeks before he made the connection. He was heartsick.

Having data from all vendors simultaneously will allow you to compile that data and work with it together as well as separately. Using your “best” matches at each company, augmented by both Y-DNA and mitochondrial DNA can make MUCH shorter work of this search.

Your Y-DNA, if you’re a male will give you insights into your surname line, and the Big-Y test now comes with estimates of how far in the past you share a common ancestor with other men that have taken the Big-Y test. This can be a HUGE boon to a male trying to figure out his surname line.

Y-DNA and mitochondrial DNA, respectively, will eliminate many people from being your mother or father, or your direct paternal or direct maternal line ancestor. Both provide insights into which population and where that population originated as well. In other words, it provides you lineage-specific information not available elsewhere.

Your Y-DNA and mitochondrial DNA can also provide critically important information about whether that direct line ancestor belonged to an endogamous population, and where they came from.

Strategies

You may be tempted to think that you only need to test at one vendor, or at the vendor with the largest database, but that’s not necessarily true.

Here’s a table of my closest matches at the 4 vendors.

Vendor Closest Maternal Closest Paternal Comments
Ancestry 1C, 1C1R Half 1C, 2C I recognized both of the maternal and neither of the paternal.
23andMe 2C, 2C 1C1R, half-gr-niece Recognized both maternal, one paternal
MyHeritage Mother uploaded, 1C Half-niece, half 1C Recognized both maternal, one paternal
FamilyTreeDNA Mother tested, 1C1R Parent/child, half-gr-niece Recognized all 4

To be clear, I tested my mother at FamilyTreeDNA before she passed away, but if I was an adoptee searching for my mother, that’s the first database she would be in. As her family, we were able to order the Family Finder test from her archived DNA after she had passed away. I then uploaded her DNA file to MyHeritage, but she’ll never be at either 23andMe or Ancestry because they don’t accept uploads and she clearly can’t test.

Additionally, being able to identify maternal matches by viewing shared matches with my mother separates out close matches from my paternal side.

Let’s put this another way, I stand a MUCH BETTER chance of unraveling this mystery with the combined closest matches of all 4 databases instead of the top ones from just one database.

I’m providing analysis methodologies for working with results from all of the vendors together, in case your answer is not immediately obvious. Taking multiple tests facilitates using all of these tools immediately, not months later. Solving the puzzle sooner means you may not miss valuable connection opportunities.

You may also discover that the door slams shut with some people, but another match may be unbelievably helpful. Don’t unnecessarily limit your possibilities.

Here’s the testing and upload strategy I recommend.

What When Ancestry 23andMe MyHeritage FamilyTreeDNA GEDmatch
Order autosomal test Initially Yes Yes Upload Upload Upload
Order Big-Y DNA test if male Initially Yes
Order mitochondrial DNA test Initially Yes
Upload free autosomal file From Ancestry or 23andMe Yes Yes Yes
Unlock Advanced Tools When upload file $29 $19 $9.95 month
Includes X Matching No Yes No Yes Yes
Chromosome Browser, segment location information No Yes Yes Yes Yes

When you upload a DNA file to a vendor site, only upload one file per site, per tester. Otherwise, multiple tests simply glom up everyone’s match list with multiple matches to the same person and can be very confusing.

  • One person took an autosomal test at a company that accepts uploads, forgot about it, uploaded a file from another vendor later, and immediately thought she had found her parent. She had not. She “found” herself.
  • Another person though she had found two sisters, but one person had uploaded their own file from two different vendors.

Multiple vendor sites reveal multiple close matches to different people which increase your opportunity to discover INFORMATION about your family, not just the identity of the person.

Match Ranges

Given that we are searching for an unknown maternal grandfather, your mother may not have had any (known) full siblings. The “best” match would be to a full or half siblings to your parents, or their descendants, depending on how old your grandparents would be.

Let’s take the “worst case” scenario, meaning there are no full siblings AND there are many possible generations between you and the people you may match.

Now, let’s look at DNAPainter’s Shared cM tool.

You’re going to be looking for someone who is either your mother’s half sibling on her father’s side, or who is a full sibling.

If your mother is adopted, it’s possible that she has or had full siblings. If your mother was born circa 1920, it’s likely that you will be matching the next generation, or two, or three.

However, if your mother was born later, you could be matching her siblings directly.

I’m going to assume half siblings for this example, because they are more difficult than full siblings.

Full sibling relationships for your mother’s siblings are listed at right. Your full aunt or uncle at top, then their descendant generations below.

At left, in red, are the half-sibling relationships and the matching amounts.

You can see that if you’re dealing with half 1C3R (half first cousin three times removed,) you may not match.

Therefore, in order to isolate matches, it’s imperative to test every relevant relative possible.

Who’s Relevant for DNA Testing?

Who is relevant to test If you’re attempting to identify your maternal grandfather?

The goal is to be able to assign matches to the most refined ancestor possible. In other words, if you can assign someone to either your grandmother’s line, or your grandfather’s line, that’s better than assigning the person to your grandparents jointly.

Always utilize the tests of the people furthest up the tree, meaning the oldest generations. Their DNA is less-diluted, meaning it has been divided fewer times. Think about who is living and might be willing to test.

You need to be able to divide your matches between your parents, and then between your grandparents on your mother’s side.

  • Test your parents, of course, and any of their known siblings, half or full.
  • If those siblings have passed away, test as many of their children as you can.
  • If any of your grandparents are living, test them
  • If BOTH of your grandparents on the same side aren’t available to test, test any, preferably all, living aunts or uncles.
  • If your maternal grandmother had siblings, test them or their descendants if they are deceased.
  • If your parents are deceased, test your aunts, uncles, full siblings and half-siblings on your mother’s side. (Personally, I’d test all half-siblings, not just maternal.)
  • Half-siblings are particularly valuable because there is no question which “side” your shared DNA came from. They will match people you don’t because they received part of your parent’s DNA that you did not.

Furthermore, shared matches to half-siblings unquestionably identify which parent those matches are through.

Essentially, you’re trying to account for all matches that can be assigned to your grandparents whose identities you know – leaving only people who descend from your unknown maternal grandfather.

Testing your own descendants will not aid your quest. There is no need to test them for this purpose, given that they received half of your DNA.

I wrote about why testing close relatives is important in the article Superpower: Your Aunts’ and Uncles’ DNA is Your DNA Too – Maximize Those Matches!

Create or Upload a Tree

Three of the four major vendors, plus GEDMatch, support and utilize family trees.

You’ll want to either upload or create a tree at each of the vendor sites.

You can either upload a GEDCOM file from your home computer genealogy software, or you can create a tree at one of the vendors, download it, and upload to the others. I described that process at Ancestry, here.

Goal

Your goal is to work with your highest matches first to determine how they are related to you, thereby eliminating matches to known lineages.

Assuming you’re only searching for the identity of one grandparent, it’s beneficial to have done enough of your genealogy on your three known grandparents to be able to assign matches from those lines to those sides.

Step 1 is to check each vendor for close matches that might fall into that category.

The Top 15 at Each Vendor

Your closest several autosomal matches are the most important and insightful. I begin with the top 15 autosomal results at each vendor, initially, which provides me with the best chance of meaningful close relationship discoveries.

Create a Spreadsheet or Chart

I hate to use that S word (spreadsheet), because I don’t want non-technical people to be discouraged. So, I’m going to show you how I set up a spreadsheet and you can simply create a chart or even draw this out on paper if you wish.

I’ve color-coded columns for each of my 4 grandparents. The green column is the target Maternal Grandfather whose identity I’m seeking.

I match our first example; Erik, at 417 cM. Based on various pieces of information, taken together, I’ve determined that I’m Erik’s half 1C1R. His 8 great-grandparent surnames, or the ones he has provided, indicate that I’m related to Eric on my paternal grandfather’s line.

You’ll want to record your closest matches in this fashion.

Let’s look at how to find this information and work with the tools at the individual vendors.

23andMe

Let’s start at 23andMe, because they create a potential genetic tree for you, which may or may not be accurate.

I have two separate tests at 23andMe. One is a V3 and one is a V4 test. I keep one in its pristine state, and I work with the second one. You’ll see two of “me” in the tree, and that’s why.

23andMe makes it easy to see estimated relationships, although they are not always correct. Generally, they are close, and they can be quite valuable.

Click on any image to enlarge

The maternal and paternal “sides” may not be positioned where genealogists are used to seeing them. Remember, 23andMe has no genealogy trees, so they are attempting to construct a genetic tree based on how people are related to you and to each other, with no prior knowledge. They do sometimes have issues with half-relationships, so I’d encourage you to use this tree to isolate people to the three grandparents you know.

In my case, I was able to determine the maternal and paternal sides easily based on known cousins. This is the perfect example of why it’s important to test known relatives from both sides of your family.

My paternal side, at right, in blue, was easy because I recognized my half-sister’s family, and because of known cousins who I recognized from having tested elsewhere. I’ve worked with them for years. The blue stars show people I could identify, mostly second cousins.

My maternal side is at left, in red. Normally, for genealogists, the maternal side is at right, and the paternal at left, so don’t make assumptions, and don’t let this positioning throw you.

I’m pretending I don’t know who my maternal grandfather is. I was able to identify my maternal grandmother’s side based on a known second cousin.

That leaves my target – my maternal grandfather’s line.

All of the matches to the left of the red circle would, by process of elimination, be on my maternal grandfather’s side.

The next step would be to figure out how the 5 people descending from my maternal grandfather’s line are related to each other – through which of their ancestors.

On the DNA Relatives match list, here’s what needs to be checked:

  • Do your matches share surnames with you or your ancestors?
  • Do they show surnames in common with each other?
  • Is there a common location?
  • Birth year which helps you understand their potential generation.
  • Did they list their grandparents’ birthplaces?
  • Did they provide a family tree link?
  • Do they also match each other using the Relatives in Common feature?
  • Do they triangulate, indicated by “DNA Overlap” in Relatives in Common?
  • Who else is on the Relatives in Common list, and what do they have in common with each other?
  • Looking at your Ancestry Composition compared with theirs, what are your shared populations, and are they relevant? If you are both 100% European, then shared populations aren’t useful, but if both people share the same minority ancestry, especially on the same segments, it may indeed be relevant – especially if it can’t be accounted for on the known sides of the family.

Reach out to these people and see what they know about their genealogy, if they have tested elsewhere, and if they have a genealogy tree someplace that you can view.

If they can tell you their grandparents’ names, birth and death dates and locations, you can check public sources like WikiTree, FamilySearch and Geni, or build trees for them. You can also use Newspaper resources, like Newspapers.com, NewspaperArchive and the newspapers at MyHeritage.

I added the top 15 23andMe matches into the spreadsheet I created.

You’ll notice that not many people at 23andMe enter surnames. However, if you can identify individuals from your 3 known lines, you can piggyback the rest by using Relatives in Common in conjunction with the genetic tree placement.

Be sure to check all the people that are connected to the target line in your genetic tree.

You’ll want to harvest your DNA segments to paint at DNAPainter if you don’t solve this mystery with initial reviews at each vendor.

Ancestry

Let’s move to Ancestry next.

At Ancestry, you’ll want to start with your closest matches on your match list.

Ancestry classifies “Close Matches” as anyone 200 cM or greater, which probably won’t reach as far down as the matches we’ll want to include.

Some of the categories in the Shared cM Chart from DNAPainter, above, don’t work based on ages, so I’ve eliminated those. I also know, for example, that someone who could fall in the grandparent/grandchild category (blue star,) in my case, does not, so must be a different relationship.

Second cousins, who share great-grandparents, can be expected to share about 229 cM of DNA on average, or between 41 and 592 cM. First cousins share 866 cM, and half first cousins share 449 cM on average.

I have 13 close matches (over 200 cM), but I’m including my top 15 at each vendor, so I added two more. You can always go back and add more matches if necessary. Just keep in mind that the smaller the match, the greater the probability that it came from increasingly distant generations before your grandparents. Your sweet spot to identify grandparents is between 1C and 2C.

I need to divide my close matches into 4 groups, each one equating to a grandparent. Record this on your spreadsheet.

You can group your matches at Ancestry using colored dots, which means you can sort by those groups.

You can also select a “side” for a match by clicking on “Yes” under the question, “Do you recognize them?”

Initially, you want to determine if this person is related to you on your mother’s or father side, and hopefully, through which grandparent.

Recently, Ancestry added a feature called SideView which allows testers to indicate, based on ethnicity, which side is “parent 1” and which side is “parent 2.” I wrote about that, here.

Make your selection, assuming you can tell which “side” of you descends from which parent based on ethnicity and/or shared matches. How you label “parent 1,” meaning either maternal or paternal, determines how Ancestry assigns your matches, when possible.

Using these tools, which may not be completely accurate, plus shared matches with people you can identify, divide your matches among your three known grandparents, meaning that the people you cannot assign will be placed in the fourth “unknown” column.

On my spreadsheet, I assign all of my closest matches to one of my grandparents. Michael is my first cousin (1C) and we share both maternal grandparents, so he’s not helpful in the division because he can’t be assigned to only one grandparent.

The green maternal grandfather is who I’m attempting to identify.

There are 4 people, highlighted in yellow, who don’t fall into the other three grandparent lines, so they get added to the green column and will be my focus.

I would be inclined to continue adding matches using a process known as the Leeds Method, until I had several people in each category. Looking back at the DNAPainter cM chart, at this point, we don’t have anyone below 200 cM and the matches we need might be below that threshold. The more matches you have to work with, the better.

At Ancestry, you cannot download your matches into a spreadsheet, nor can you work with other clustering tools such as Genetic Affairs, so you’ll have to build out your spreadsheet manually.

Check for the same types of information that I reviewed at 23andMe:

  • Review trees, if your matches have them, minimally recording the surnames of their 8 great-grandparents.
  • Review shared matches, looking for common names in the trees in recent generations.
  • View shared matches with people with whom you have a “Common Ancestor” indication, which means a ThruLine. You won’t have Thrulines with your target grandparent, of course, but Thrulines will allow you to place the match in one of the other columns. I wrote about ThruLines here, here and here.
  • ThruLines sometimes suggests ancestors based on other people’s trees, so be EXCEEDINGLY careful with potential ancestor suggestions. That’s not to say you should discount those suggestions. Just treat them as tree hints that may have been copy/pasted hundreds of times, because that’s what they are.

I make notes on each match so I can easily see the connection by scanning without opening the match.

Now, I have a total of 30 entries on my spreadsheet, 15 from 23and Me and 15 from Ancestry.

Why Not Use Autosclusters?

Even with vendors who allow or provide cluster tools, I don’t use an automated autocluster tool at this point. Autocluster tools often omit your closest matches because your closest matches would be in nearly half of all your clusters, which isn’t exactly informative. However, for this purpose, those are the very matches we need to evaluate.

After identifying groups of people that represent the missing grandparent, using our spreadsheet methodology, autoclusters could be useful to identify common surnames and even to compare the trees of our matches using AutoTree, AutoPedigree and AutoKinship. AutoClusters cannot be utilized at Ancestry, but is available through MyHeritage and at GEDmatch, or through Genetic Affairs for 23andMe and FamilyTreeDNA.

Next, let’s move to FamilyTreeDNA.

FamilyTreeDNA

FamilyTreeDNA is the only vendor that provides Family Matching, also known as “bucketing.” FamilyTreeDNA assigns your matches to either a paternal or maternal bucket, or both, based on triangulated matches with someone you’ve linked to a profile in your tree.

The key to Family Matching is to link known Family Finder matches to their profile cards in your tree.

Clicking on the Family Tree link at the top of your personal page allows you to link your matches to the profile cards of your matches.

FamilyTreeDNA utilizes these linked matches to assign those people, and matches who match you and those people, both, on at least one common segment, to the maternal or paternal tabs on your match list.

Always link as many known people as possible (red stars) which will result in more matches being bucketed and assigned to parents’ sides for you, even if neither parent is available to test.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

You can see at the top of my match list that I have a total of 8000 matches of which 3422 are paternal, 1517 are maternal and 3 match on both sides. Full siblings, their (and my) children and their descendants will always match on both sides. People with endogamy across both parents may have several matches on both sides.

If your relevant parent has tested, always work from their test.

Because we are searching for the maternal grandfather, in this case, we can ignore all tests that are bucketed as paternal matches.

Given that we are searching for my maternal grandfather, I probably have not been able to link as many maternal matches, other than possibly ones from my maternal grandmother. This means that the maternal grandfather’s matches are not bucketed because there are no identified matches to link on that side of my tree.

If you sort by maternal and paternal tabs, you’ll miss people who aren’t bucketed, meaning they have no maternal or paternal icon, so I recommend simply scanning down the list and processing maternal matches and non-bucketed matches.

By being able to confidently ignore paternally bucketed matches and only processing maternal and non-assigned matches, this is equivalent to processing the first 48 total matches. If I were to only look at the first 15 matches, 12 were paternal and only 3 are maternal.

Using bucketing at FamilyTreeDNA is very efficient and saves a lot of work.

Omitting paternal matches also means we are including smaller matches which could potentially be from common ancestors further back in the tree. Or, they could be younger testers. Or simply smaller by the randomness of recombination.

FamilyTreeDNA is a goldmine, with 16 of 20 maternal matches being from the unknown maternal grandfather.

Next, let’s see what’s waiting at MyHeritage.

MyHeritage

MyHeritage is particularly useful if your lineage happens to be from Europe. Of course, if you’re searching for an unknown person, you probably have no idea where they or their ancestors are from. Two of my best matches first appeared at MyHeritage.

Of course, your matches with people who descend from your unknown maternal grandfather won’t have any Theories of Family Relativity, as that tool is based on BOTH a DNA match plus a tree or document match. However, Theories is wonderful to group your matches to your other three grandparents.

MyHeritage provides a great deal of information for each match, including common surnames with your tree. If you recognize the surnames (and shared matches) as paternal or maternal, then you can assign the match. However, the matches you’re most interested in are the highest matches without any surnames in common with you – which likely point to the missing maternal grandfather.

However, those people may, and probably do, have surnames in common with each other.

Of the matches who aren’t attributed to the other three grandparents, the name Ferverda arises again and again. So does Miller, which suggests the grandparent or great-grandparent couple may well be Ferverda/Miller.

Let’s continue working through the process with our spreadsheet and see what we can discover about those surnames.

Our 60 Results

Of the 60 total results, 15 from each vendor, a total of 24 cannot be assigned to other columns through bucketing or shared matches, so are associated with the maternal grandfather. Of course, Michael who descends from both of my maternal grandparents won’t be helpful initially.

Cheryl, Donald and Michael are duplicates at different vendors, but the rest are not.

Of the relevant matches, the majority, 12 are from FamilyTreeDNA, four each are from Ancestry and MyHeritage, and three are from 23andMe.

Of the names provided in the surname fields of matches, in matches’ trees in the first few generations, and the testers’ surnames, Ferverda is repeated 12 times, for 50% of the time. Miller is repeated 9 times, so it’s likely that either of those are the missing grandfather’s surname. Of course, if we had Y-DNA, we’d know the answer to that immediately.

Comparing trees of my matches, we find John Ferverda as the common ancestor between two different matches. John is the son of Hiram Ferverda and Eva Miller who are found in several trees.

That’s a great hint. But is this the breakthrough I need?

What’s Next?

The next step is to look for connections between the maternal grandmother, Edith Lore, who is known in our example, and a Ferverda male. He is probably one of the sons of Hiram Ferverda and Eva Miller. Do they lived in the same area? In close proximity? Do they attend the same church or school? Are they neighbors or live close to the family or some of their relatives? Does she have connections with Ferverda family members? We are narrowing in.

Some of Hiram and Eva’s sons might be able to be eliminated based on age or other factors, or at least be less likely candidates. Any of their children who had moved out of state when the child was conceived would be less likely candidates. Age would be a factor, as would opportunity.

Target testing of the Ferverda sons’ children, or the descendants of their children would (probably) be able to pinpoint which of their sons is more closely related to me (or my mother) than the rest.

In our case, indeed, John Ferverda is the son we are searching for and his descendant, Michael is the highest match on the list. Cheryl and Donald descend from John’s brother, which eliminates him as a candidate. Another tester descends from a third Ferverda son, which eliminates that son as well.

Michael, my actual first cousin with a 755 cM match at one vendor, and 822 cM at a second vendor, is shown by the MyHeritage cM Explainer with an 88% probability that he is my first cousin.

However, when I’m trying to identify the maternal grandfather, which is half of that couple, I need to focus one generation further back in time to eliminate other candidates.

The second and third closest matches are both Donald at 395 cM and Cheryl at 467 cM who also share the same Ferverda/Miller lineage and are the children of my maternal grandfather’s brother.

On the spreadsheet, I need to look at the trees of people who have both Ferverda and Miller, which brought me to both Cheryl and Donald, then Michael, which allowed me to identify John Ferverda, unquestionably, as my grandfather based on the cM match amounts.

Cheryl and Donald, who are confirmed full siblings, and my mother either have to be first cousins, or half siblings. Their match with mother is NOT in the half-sibling range for one sibling, and on the lower edge with the other. Mother also matches Michael as a nephew, not more distantly as she would if he were a first cousin once removed (1C1R) instead of a nephew.

Evaluating these matches combined confirms that my maternal grandfather is indeed John Ferverda.

What About X DNA?

The X chromosome has a unique inheritance path which is sometimes helpful in this circumstance, especially to males.

Women inherit an X chromosome from both parents, but males inherit an X chromosome from ONLY their mother. A male inherits a Y chromosome from his father which is what makes him male. Women inherit two X chromosomes, one from each parent, and no Y, which is what makes them female.

Therefore, if you are a male and are struggling with which side of your tree matches are associated with, the X chromosome may be of help.

Your mother passed her X chromosome to you, which could be:

  • Her entire maternal X, meaning your maternal grandmother’s X chromosome
  • Her entire paternal X, meaning your maternal grandfather’s X chromosome (which descends from his mother)
  • Some combination of your maternal grandmother and maternal grandfather’s chromosomes

One thing we know positively is that a male’s X matches are ALWAYS from their maternal side only, so that should help when dividing a male’s matches maternally or paternally. Note – be aware of potential pedigree collapse, endogamy and identical-by-chance matches if it looks like a male has a X match on his father’s side.

Unfortunately, the X chromosome cannot assist females in the same way, because females inherit an X from both parents. Therefore, they can match people in the same was as a male, but also in additional ways.

  • Females will match their paternal grandmother on her entire X chromosome, and will match one or both of their maternal grandparents on the X chromosome.
  • Females will NEVER match their paternal grandfather’s X chromosome because their father did not inherit an X chromosome from his father.
  • Males will match one or both of their maternal grandparents on their X chromosome.
  • Males will NEVER match their paternal grandparents, because males do not receive an X chromosome from their father.

The usefulness of X DNA matching depends on the inheritance path of both the tester AND their match.

When Can Y-DNA or Mitochondrial DNA Help with Grandparent Identification?

If you recall, I selected the maternal grandfather as the person to seek because no tester carries either the Y-DNA or mitochondrial DNA of their maternal grandfather. In other words, this was the most difficult identification, meaning that any of the other three grandparents would be, or at least could be, easier with the benefit of Y-DNA and/or mitochondrial DNA testing.

In addition to matching, both Y-DNA and mitochondrial DNA will provide testers with location origins, both continental and often much more specific locations based on where other testers and matches are from.

Y-DNA often provides a surname.

Let’s see how these tests, matches and results can assist us.

  • Paternal grandfather – If I was a male descended from John Ferverda paternally, I could have tested both my autosomal DNA PLUS my Y-DNA, which would have immediately revealed the Ferverda surname via Y-DNA. Two Ferverda men are shown in the Ferverda surname DNA project, above.

That revelation would have confirmed the Ferverda surname when combined with the high frequency of Ferverda found among autosomal matches on the spreadsheet.

  • Maternal grandmother – If we were searching for a maternal grandmother, both the male and female sibling testers (as shown in the pedigree chart) would have her mitochondrial DNA which could provide matches to relevant descendants. Mitochondrial DNA at both FamilyTreeDNA and 23andMe could also eliminate anyone who does not match on a common haplogroup, when comparing 23andMe results to 23andMe results, and FamilyTreeDNA to FamilyTreeDNA results at the same level.

At 23andMe, only base level haplogroups are provided, but they are enough to rule out a direct matrilineal line ancestor.

At FamilyTreeDNA, the earlier HVR1 and HVR2 tests provide base level haplogroups, while full sequence testing provides granular, specific haplogroups. Full sequence is the recommended testing level.

  • Paternal grandmother – If we were searching for a paternal grandmother, testers would, of course, need either their father to test his mitochondrial DNA, or for one of his siblings to test which could be used in the same way as described for maternal grandmother matching.

Summary

Successfully identifying a grandparent is dependent on many factors. Before you make that identification, it’s very difficult to know which are more or less important.

For example, if the grandparent is from a part of the world with few testers, you will have far fewer matches, potentially, than other lines from more highly tested regions. In my case, two of my four grandparents’ families, including Ferverda, immigrated in the 1850s, so they had fewer matches than families that have been producing large families in the US for generations.

Endogamy may be a factor.

Family size in past and current generations may be a factor.

Simple luck may be a factor.

Therefore, it’s always wise to test your DNA, and that of your parents and close relatives if possible, and upload to all of the autosomal databases. Then construct an analysis plan based on:

  • How you descend from the grandparent in question, meaning do you carry their X DNA, Y-DNA or mitochondrial DNA.
  • Who else is available to test their autosomal DNA to assist with shared matches and the process of elimination.
  • Who else is available to test for Y-DNA and/or mitochondrial DNA of the ancestor in question.

If you don’t find the answer initially, schedule a revisit of your matches periodically and update your spreadsheet. Sometimes DNA and genealogy is a waiting same.

Just remember, luck always favors the prepared!

Resources

You may find the following resource articles beneficial in addition to the links provided throughout this article.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research