FamilyTreeDNA DISCOVER™ Launches – Including Y DNA Haplogroup Ages

FamilyTreeDNA just released an amazing new group of public Y DNA tools.

Yes, a group of tools – not just one.

The new Discover tools, which you can access here, aren’t just for people who have tested at FamilyTreeDNA . You don’t need an account and it’s free for everyone. All you need is a Y DNA haplogroup – from any source.

I’m going to introduce each tool briefly because you’re going to want to run right over and try Discover for yourself. In fact, you might follow along with this article.

Y DNA Haplogroup Aging

The new Discover page provides seven beta tools, including Y DNA haplogroup aging.

Haplogroup aging is THE single most requested feature – and it’s here!

Discover also scales for mobile devices.

Free Beta Tool

Beta means that FamilyTreeDNA is seeking your feedback to determine which of these tools will be incorporated into their regular product, so expect a survey.

If you’d like changes or something additional, please let FamilyTreeDNA know via the survey, their support line, email or Chat function.

OK, let’s get started!

Enter Your Haplogroup

Enter your Y DNA haplogroup, or the haplogroup you’re interested in viewing.

If you’re a male who has tested with FamilyTreeDNA , sign on to your home page and locate your haplogroup badge at the lower right corner.

If you’re a female, you may be able to test a male relative or find a haplogroup relevant to your genealogy by visiting your surname group project page to locate the haplogroup for your ancestor.

I’ll use one of my genealogy lines as an example.

In this case, several Y DNA testers appear under my ancestor, James Crumley, in the Crumley DNA project.

Within this group of testers, we have two different Big Y haplogroups, and several estimated haplogroups from testers who have not upgraded to the Big Y.

If you’re a male who has tested at either 23andMe or LivingDNA, you can enter your Y DNA haplogroup from that source as well. Those vendors provide high-level haplogroups.

The great thing about the new Discover tool is that no matter what haplogroup you enter, there’s something for you to enjoy.

I’m going to use haplogroup I-FT272214, the haplogroup of my ancestor, James Crumley, confirmed through multiple descendants. His son John’s descendants carry haplogroup I-BY165368 in addition to I-FT272214, which is why there are two detailed haplogroups displayed for this grouping within the Crumley haplogroup project, in addition to the less-refined I-M223.

Getting Started

When you click on Discover, you’ll be asked to register briefly, agree to terms, and provide your email address.

Click “View my report” and your haplogroup report will appear.

Y DNA Haplogroup Report

For any haplogroup you enter, you’ll receive a haplogroup report that includes 7 separate pages, shown by tabs at the top of your report.

Click any image to enlarge

The first page you’ll see is the Haplogroup Report.

On the first page, you’ll find Haplogroup aging. The TMRCA (time to most recent common ancestor) is provided, plus more!

The report says that haplogroup I-FT272214 was “born,” meaning the mutation that defines this haplogroup, occurred about 300 years ago, plus or minus 150 years.

James Crumley was born about 1710. We know his sons carry haplogroup I-FT272214, but we don’t know when that mutation occurred because we don’t have upstream testers. We don’t know who his parents were.

Three hundred years before the birth of our Crumley tester would be about 1670, so roughly James Crumley’s father’s generation, which makes sense.

James’ son John’s descendants have an additional mutation, so that makes sense too. SNP mutations are known to occur approximately every 80 years, on average. Of course, you know what average means…may not fit any specific situation exactly.

The next upstream haplogroup is I-BY100549 which occurred roughly 500 years ago, plus or minus 150 years. (Hint – if you want to view a haplogroup report for this upstream haplogroup, just click on the haplogroup name.)

There are 5 SNP confirmed descendants of haplogroup I-FT272214 claiming origins in England, all of whom are in the Crumley DNA project.

Haplogroup descendants mean this haplogroup and any other haplogroups formed on the tree beneath this haplogroup.

Share

If you scroll down a bit, you can see the share button on each page. If you think this is fun, you can share through a variety of social media resources, email, or copy the link.

Sharing is a good way to get family members and others interested in both genealogy and genetic genealogy. Light the spark!

I’m going to be sharing with collaborative family genealogy groups on Facebook and Twitter. I can also share with people who may not be genealogists, but who will think these findings are interesting.

If you keep scrolling under the share button or click on “Discover More” you can order Y DNA tests if you’re a biological male and haven’t already taken one. The more refined your haplogroup, the more relevant your information will be on the Discover page as well as on your personal page.

Scrolling even further down provides information about methods and sources.

Country Frequency

The next tab is Country Frequency showing the locations where testers with this haplogroup indicate that their earliest known ancestors are found.

The Crumley haplogroup has only 5 people, which is less than 1% of the people with ancestors from England.

However, taking a look at haplogroup R-M222 with many more testers, we see something a bit different.

Ireland is where R-M222 is found most frequently. 17% of the men who report their ancestors are from Ireland belong to haplogroup R-M222.

Note that this percentage also includes haplogroups downstream of haplogroup R-M222.

Mousing over any other location provides that same information for that area as well.

Seeing where the ancestors of your haplogroup matches are from can be extremely informative. The more refined your haplogroup, the more useful these tools will be for you. Big Y testers will benefit the most.

Notable Connections

On the next page, you’ll discover which notable people have haplogroups either close to you…or maybe quite distant.

Your first Notable Connection will be the one closest to your haplogroup that FamilyTreeDNA was able to identify in their database. In some cases, the individual has tested, but in many cases, descendants of a common ancestor tested.

In this case, Bill Gates is our closest notable person. Our common haplogroup, meaning the intersection of Bill Gates’s haplogroup and my Crumley cousin’s haplogroup is I-L1195. The SNP mutation that defines haplogroup I-L1145 occurred about 4600 years ago. Both my Crumley cousin and Bill Gates descend from that man.

If you’re curious and want to learn more about your common haplogroup, remember, you can enter that haplogroup into the Discover tool. Kind of like genetic time travel. But let’s finish this one first.

Remember that CE means current era, or the number of years since the year “zero,” which doesn’t technically exist but functions as the beginning of the current era. Bill Gates was born in 1955 CE

BCE means “before current era,” meaning the number of years before the year “zero.” So 2600 BCE is approximately 4600 years ago.

Click through each dot for a fun look at who you’re “related to” and how distantly.

This tool is just for fun and reinforces the fact that at some level, we’re all related to each other.

Maybe you’re aware of more notables that could be added to the Discover pages.

Migration Map

The next tab provides brand spanking new migration maps that show the exodus of the various haplogroups out of Africa, through the Middle East, and in this case, into Europe.

Additionally, the little shovel icons show the ancient DNA sites that date to the haplogroup age for the haplogroup shown on the map, or younger. In our case, that’s haplogroup I-M223 (red arrow) that was formed about 16,000 years ago in Europe, near the red circle, at left. These haplogroup ancient sites (shovels) would all date to 16,000 years ago or younger, meaning they lived between 16,000 years ago and now.

Click to enlarge

By clicking on a shovel icon, more information is provided. It’s very interesting that I-L1145, the common haplogroup with Bill Gates is found in ancient DNA in Cardiff, Wales.

This is getting VERY interesting. Let’s look at the rest of the Ancient Connections.

Ancient Connections

Our closest Ancient Connection in time is Gen Scot 24 (so name in an academic paper) who lived in the Western Isles of Scotland.

These ancient connections are more likely cousins than direct ancestors, but of course, we can’t say for sure. We do know that the first man to develop haplogroup I-L126, about 2500 years ago, is an ancestor to both Gen Scot 24 and our Crumley ancestor.

Gen Scot 24 has been dated to 1445-1268 BCE which is about 3400 years ago, which could actually be older than the haplogroup age. Remember that both dating types are ranges, carbon dating is not 100% accurate, and ancient DNA can be difficult to sequence. Haplogroup ages are refined as more branches are discovered and the tree grows.

The convergence of these different technologies in a way that allows us to view the past in the context of our ancestors is truly amazing.

All of our Crumley cousin’s ancient relatives are found in Ireland or Scotland with the exception of the one found in Wales. I think, between this information and the haplogroup formation dates, it’s safe to say that our Crumley ancestors have been in either Scotland or Ireland for the past 4600 years, at least. And someone took a side trip to Wales, probably settled and died there.

Of course, now I need to research what was happening in Ireland and Scotland 4600 years ago because I know my ancestors were involved.

Suggested Projects

I’m EXTREMELY pleased to see suggested projects for this haplogroup based on which projects haplogroup members have joined.

You can click on any of the panels to read more about the project. Remember that not everyone joins a project because of their Y DNA line. Many projects accept people who are autosomally related or descend from the family through the mitochondrial line, the direct mother’s line.

Still, seeing the Crumley surname project would be a great “hint” all by itself if I didn’t already have that information.

Scientific Details

The Scientific Details page actually has three tabs.

The first tab is Age Estimate.

The Age Estimate tab provides more information about the haplogroup age or TMRCA (Time to Most Recent Common Ancestor) calculations. For haplogroup I-FT272214, the most likely creation date, meaning when the SNP occurred, is about 1709, which just happens to align well with the birth of James Crumley about 1710.

However, anyplace in the dark blue band would fall within a 68% confidence interval (CI). That would put the most likely years that the haplogroup-defining SNP mutation took place between 1634 and 1773. At the lower end of the frequency spectrum, there’s a 99% likelihood that the common ancestor was born between 1451 and 1874. That means we’re 99% certain that the haplogroup defining SNP occurred between those dates. The broader the date range, the more certain we can be that the results fall into that range.

The next page, Variants, provides the “normal” or ancestral variant and the derived or mutated variant or SNP (Single Nucleotide Polymorphism) in the position that defines haplogroup I-FT272214.

The third tab displays FamilyTreeDNA‘s public Y DNA Tree with this haplogroup highlighted. On the tree, we can see this haplogroup, downstream haplogroups as well as upstream, along with their country flags.

Your Personal Page

If you have already taken a DNA test at FamilyTreeDNA, you can find the new Discover tool conveniently located under “Additional Tests and Tools.”

If you are a male and haven’t yet tested, then you’ll want to order a Y DNA test or upgrade to the Big Y for the most refined haplogroup possible.

Big Y tests and testers are why the Y DNA tree now has more than 50,000 branches and 460,000 variants. Testing fuels growth and growth fuels new tools and possibilities for genealogists.

What Do You Think?

Do you like these tools?

What have you learned? Have you shared this with your family members? What did they have to say? Maybe we can get Uncle Charley interested after all!

Let me know how you’re using these tools and how they are helping you interpret your Y DNA results and assist your genealogy.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Just Released – Mitochondrial Haplogroup L7 Video!

I’m still VERY excited about the haplogroup L7 discovery. Mitochondrial Eve’s new 100,000-year-old great-granddaughter. So is the rest of the Million Mito Team

We’ve created a short video explaining just why this is so cool.

Paul, Dr. Maier, the Population Geneticist on our Million Mito team did a great job as producer. He’s certainly multi-talented! Thanks Paul.

Please understand that this is “just us,” no professional production, editors or anything like that. You’re seeing the real deal here. This video is something we wanted to do for all of you. We’re excited to tell this amazing story – one that we’ve explained in terms that everyone can understand and enjoy. We want you to love mitochondrial DNA as much as we do.

Please share this video far and wide with your family and friends. Remind them that everyone inherits their mother’s (and only their mother’s) mitochondrial DNA. They can make cool discoveries too.

But wait, there’s more!

Dr. Miguel Vilar’s Article

FamilyTreeDNA just published a guest blog article titled A 100,000Year-Old Human Lineage Rediscovered, written by genetic anthropologist Dr. Miguel Villar.

You’ll recognize Miguel as one of the four Million Mito team members in the video, but you may also remember him as the Senior Program Officer for the National Geographic Society and the Lead Scientist for the Genographic Project.

I think you’ll agree, he’s a great writer too!

What’s Your Story?

Not only is mitochondrial DNA (mtDNA) useful genealogically, it’s the story of all womankind. You don’t have to be a genealogist to appreciate and enjoy your mtDNA journey.

Mitochondrial DNA tells a story about each of us that we would never know otherwise.

The best part is that every single person can test their own mitochondrial DNA to learn more about their family story – and very specifically about their mother’s direct line ancestry that may be eclipsed or overshadowed in autosomal DNA by more recent admixture.

Where does your mitochondrial DNA lead?

What Else Can You Do?

You, your mother, and your maternal siblings all share the same mitochondrial DNA, passed to you by your mother. But what about your father? He inherited HIS mother’s mitochondrial DNA, but you didn’t.

You can discover your paternal grandmother’s mtDNA story by testing your father’s mtDNA, or his maternal line siblings if he’s not available for testing.

Your paternal grandmother’s story is your family story too!

Let me know if you like the video and if it makes mtDNA easier to understand and explain to your relatives. I hope this discovery and video help sew the seeds of curiosity.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Mitochondrial Eve Gets a Great-Granddaughter: African Mitochondrial Haplogroup L7 Discovered

Such wonderful news today!

We have a birth announcement, of sorts, detailed in our new paper released just today,  “African mitochondrial haplogroup L7: a 100,000-year-old maternal human lineage discovered through reassessment and new sequencing.”

Woohoo, Mitochondrial Eve has a new great-granddaughter!

Back in 2018, Goran Runfeldt and Bennett Greenspan at FamilyTreeDNA noticed something unusual about a few mitochondrial DNA sequences, but there weren’t enough sequences to be able to draw any conclusions. As time went on, more sequences became available, both in the FamilyTreeDNA database and in the academic community, including an ancient sequence.

This group of sequences did not fit cleanly into the phylogenetic tree as structured and seemed to cluster together, but more research and analysis were needed.

Were these unique sequences a separate branch? One branch or several? What would creating that branch do to the rest of the tree?

Given that Phylotree, last updated in 2016, did not contain an applicable branch, what were we to do with these puzzle pieces that really didn’t fit?

These discussions, and others similar, led to the decision to launch the Million Mito Project to update the mitochondrial phylogenetic tree which is now 6 years old and seriously out-of-date. For the record, phylogenetics on this scale is EXTREMELY challenging, which is probably why Phylotree hasn’t been updated, but that’s a topic for another article, another day. Today is the day to celebrate haplogroup L7.

Haplogroup L7

The Million Mito team knew there were lots of candidate haplogroups waiting to be formed near the ends of the branches of the phylotree, but what we didn’t expect was a new haplogroup near the root of the tree.

Put another way, in terms that genealogists are used to, the new branch is Eve’s great-granddaughter.

Haplogroup L now has 8 branches, instead of 7, beginning with L0. We named this new branch haplogroup L7 in order not to disrupt the naming patterns in the existing tree.

Let’s take a look.

I used the phylogenetic tree from our paper and added Eve.

Just to be clear, we aren’t talking literal daughters and granddaughters. These are phylogenetic daughters which represent many generations between each (known) branch. Of course, we can only measure the branches that survived and are tested today or are found in ancient DNA.

The only way we have of discovering and deciphering Eve and her “tree” of descendants is identifying mutations that occurred, providing breadcrumbs back in time that allow us to reconstruct Eve’s mitochondrial DNA sequence.

Those mutations are then carried forever in daughter branches (barring a back-mutation). This means that, yes, you and I have all of those mutations today – in addition to several more that define our individual branches.

You can see that Eve has two daughter branches. One branch, at left, is L0.

Eve’s daughter to the right, which I’ve labeled, is the path to the new L7 branch.

Before this new branch was identified, haplogroup L5 existed. Now, Eve has a new great-granddaughter branch L5’7 that then splits into two branches; L5 and L7.

L5 is the existing branch, but L7 is the new branch that includes a few sequences formerly misattributed to L5.

Even more exciting, the newly discovered haplogroup L7 has sub-branches too, including L7a, L7a1, L7b1 and L7b2.

In fact, haplogroup L7 has a total of 13 sublineages.

How Cool is This?!!

Haplogroup L7 is 100,000 years old. This is the oldest lineage since haplogroup L5 was discovered 20 years ago. To put this in perspective, that’s about the same time the first full sequence mitochondrial DNA test was offered to genealogists.

It took 20 years for enough people to test, and two eagle-eyed scientists to notice something unusual.

Hundreds of thousands of people have had their mitochondrial DNA tested, and so far, only 19 people are assigned to haplogroup L7 or a subgroup.

One of those people, shown as L7a* on the tree above, is 80,000 years removed from their closest relative. Yes, their DNA is hens-teeth rare. No, they don’t have any matches at FamilyTreeDNA, just in case you were wondering😊

However, in time, as more people test, they may well have matches. This is exactly why I encourage everyone to take a mitochondrial DNA test. If someone is discouraged from testing, you never know who they might have matched – or how rare their DNA may be. If they don’t test, that opportunity is lost forever – to them, to other people waiting for a match, and to science.

Are there other people out there with this haplogroup, in either Africa or the diaspora? Let’s hope so!

With so few L7 people existing today, it looks like this lineage might have been on the verge of extinction at some point, but somehow survived and is now found in a few places around the world.

Ancient DNA

One 16,000-year-old ancient DNA sample from Malawi has been reclassified from L5 to L7.

This figure from the paper shows the distribution of haplogroup L within Africa, and the figure below shows the Haplogroup L7 range within Africa, with Tanzania having the highest frequency. Malawi abuts Tanzania on the Southwest corner.

Where in the World?

Checking on the public tree at FamilyTreeDNA, you can see the new L5’7 branch with L7 and sub-haplogroups beneath.

We find L7 haplogroups in present-day testers from:

  • South Africa
  • Kenya
  • Ethiopia
  • Sudan
  • United Arab Emirates
  • Yemen
  • Tanzania

It’s also found in people who live in two European countries now, but with their roots reaching back into Africa. Surprisingly, no known African-Americans have yet tested with this haplogroup. I suspect finding the haplogroup in the Americas is just a matter of time, and testing.

The FamilyTreeDNA customers who are lucky enough to be in haplogroup L7 have had their haplogroup badges updated.

If you are haplogroup L at FamilyTreeDNA, check and see if you have a new badge.

Credit Where Credit is Due

I want to give a big shout-out to my colleagues and co-authors. Dr. Paul Maier (lead author,) Dr. Miguel Vilar and Goran Runfeldt.

I can’t even begin to express the amount of heavy lifting these fine scientists did on the long journey from initial discovery to publication. This includes months of analysis, writing the paper, creating the graphics, and recording a video which will be available soon.

I’m especially grateful to people like you who test their DNA, and academic researchers who continue to sequence mitochondrial DNA in both contemporary and ancient samples. Without testers, there would be no scientific discoveries, nor genealogy matching. If you haven’t yet tested, you can order (or upgrade) a mitochondrial DNA test here.

I also want to thank both Bennett Greenspan, Founder, and President, Emeritus of FamilyTreeDNA who initially greenlit the Million Mito Project in early 2020, and Dr. Lior Rauschberger, CEO who continues to support this research.

FamilyTreeDNA paid the open access fees so the paper is free for everyone, here, and not behind a paywall. If you’re downloading the pdf, be sure to download the supplements too. Lots of graphics and images that enhance the article greatly.

Congratulations to Mitochondrial Eve for this new branch in her family tree. Of course, her family tree is your family and mine – the family of man and womankind!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Ancestry Only Shows Shared Matches of 20 cM and Greater – What That Means & Why It Matters

Recently, I’ve noticed an uptick in confused people who’ve taken Ancestry’s DNA test.

They are using shared matches, which is a great tool and exactly what they should be doing, but they become confused when no shared matches appear with some specific people.

This is especially perplexing when they know through information sharing or because they manage multiple DNA kits that those two people who both match them actually do share DNA and match each other, meaning they “should” appear on a shared match list. Or worse, yet, conflicting match information is displayed, with one person showing the shared match, but the other person reciprocally does not.

What gives?

That’s exactly what this article addresses. It’s not quite as simple as it sounds, but it’s certainly easier once you understand.

What Are Matches and Shared Matches?

Matches occur when two people match each other. From your perspective as a DNA tester, matches are people who have taken DNA tests and appear on your match list because you share some level of DNA equal to or greater than the match threshold of the vendor in question.

At Ancestry, that minimum matching threshold is 8 cM (centimorgans) of matching DNA.

Individual matches are always one-to-one. Your match list is a list of people who all match you.

So, you match person 1, and you match person 2, individually.

Your matches may or may not also match each other. If they do match each other in addition to matching you, that’s a shared match which is a hint as to a potential common ancestor between all three people.

Shared matches are a list of people who match you PLUS any one other match on your list. In other words, shared matches are three-way matches.

In the diagram above, you can see that you match Match 1 and you also match Match 2. In this case, Match 1 and Match 2 also match each other, so all three of you match each other, but not necessarily on the same segment. Therefore, you’re all three shared matches, as shown in the center of the three circles.

Viewing Shared Matches

To view a list of people who match you and Match 1, you would request shared matches with Match 1 by clicking on “View Match” or “Learn More” on your match list, then on “Shared Matches” on the next screen.

The resulting shared match list consist of people who match you AND Match 1, both. It’s easy to make assumptions about why you have shared matches, but don’t.

Shared Matches are Hints

A shared match CAN mean:

  • That all three people share a common ancestral line.
  • You share a common ancestor with Match 1 and Match 2, but Match 1 and 2 match each other because they share an entirely different ancestor.
  • You match Match 1 because you share DNA from Ancestor A and you match Match 2 because you share DNA from Ancestor B. Match 1 and 2 match each other either because they share one or both of those common ancestors.
  • Match 1 and Match 2 might match because Match 1 and Match 2 share an ancestor that isn’t related to you.
  • That one (or more) of the matches is identical by chance, meaning the DNA combined from two parents in a random way that just happens to match with someone else.

Shared matches are great hints to be sifted for relevance. The operative word here is hint.

What If We Don’t Have Shared Matches?

Conversely, NOT having a shared match doesn’t mean you don’t share a common ancestor.

Sorry about the triple negative. Let me say that another way, because this is important.

Even though you and someone else aren’t on a shared match list, you might still share DNA and you may share a common ancestor, whether you share their DNA or not.

Ancestry’s shared matches work differently than shared matches at other vendors. Before we discuss that, let’s talk about why shared matches are important.

Why Do Shared Matches Matter Anyway?

Matches and shared matches are how genealogists perform two critically important functions:

  • Verifying “known” ancestors. Sometimes paper trails aren’t accurate and certainly, neither are trees.
  • Identifying unknown ancestors. Looking for common families among shared DNA matches is a HUGE hint when tracking down those pesky unknown ancestors.

I wrote about shared matches, here, when Ancestry purged segments under 8 cM, but I think the message about the limitations of shared matches and how the process actually works deserves its own article, especially for new users. Shared matches and segment cM numbers can be quite confusing, but they don’t need to be.

I wrote an article titled DNA Beginnings: Matching at Ancestry and What It Means that includes lots of useful information.

Ok, now let’s look specifically at using shared matches and why sometimes shared matches just don’t seem to make sense.

Matches

By far, the majority of your matches at any vendor will be more distant matches. That’s because you have thousands of distant relatives, most of whom you don’t know (yet).

You’ll only have a few closer relatives.

At Ancestry, I have 102,000+ total matches, of which more than 97,000 are distant matches. Based on these numbers, keep in mind that about 95.74% of my matches are distant, meaning 20 cM or below, and yours probably are too. You’ll need that number later.

Note that 20 cM is Ancestry’s threshold between close matches and distant matches.

That’s about exactly where you’d expect, on average, to see a 20 cM match – generally at or further back than 4th cousins. 20 cM is roughly the 4th to 6th cousin level.

Of course, you won’t match most of your 5th cousins at all, yet you’ll match some with more than 20 cM. That’s just the roll of the genetic dice.

Closer ancestors (meaning closer matches) is also the area of genealogy where much of the lower-hanging fruit has been plucked.

In my case, the closest unknown ancestor in my tree occurs at the 6th generation level and I have 5 or 6 missing sixth-generation ancestors – all females with no surnames. Two have no names at all.

Click to enlarge any image

How Much DNA Do Cousins Share?

One of my priorities as a genealogist is to identify those unknown people, which is why matches, and shared matching at that level are critical for me.

Ancestry tells me that this 20 cM match is likely my 4th-6th cousin.

At DNAPainter, in the Shared cM Tool, you can enter the total cM number of a match, which is the total amount of DNA that you share after Ancestry’s Timber algorithm has been applied. The range of relationship probabilities for 20 cM is shown below.

For a total match of 20 cM with another individual, several relationships ranging between half 3C2R/3C3R and 8th cousins are the most probable relationships at 58%.

For the record, this is total cM, which does not necessarily mean one segment. Ancestry reports the number of segments, but Ancestry does not show you the segment locations, nor do they have a chromosome browser. Without a chromosome browser, you have no way of determining whether or not you match with shared matches on the same segment(s). In other words, there is no triangulation at Ancestry, meaning confirmation of a specific shared DNA segment descended from a common ancestor. You can find triangulation resources, here.

Close Matches

The best way to figure out how you are related to closer matches (assuming you don’t already know them and Ancestry has not found a common ancestor) is using shared matches. Hopefully, you will share matches with people you do know or with whom you’ve already identified your common ancestor.

One of my relatively close DNA matches at Ancestry is Lonnie. I don’t know Lonnie, but it looks like I should because he’s probably a 1st or 2nd cousin. We share 357 cM of DNA over 20 segments.

I thought I knew all of my 1st and 2nd cousins. Let’s see if I can figure out how I’m related to Lonnie.

By clicking on Lonnie’s name on my match list, then on Shared Matches, I can determine that Lonnie and I connect through my Estes and Vannoy lines based on who we both match, which means that our common ancestor is either my paternal grandfather or my great-grandparents, Lazarus Estes and Elizabeth Vannoy.

You can see the notes I’ve made about these matches I share with Lonnie.

Viewing Lonnie’s unlinked tree verifies the ancestral line that shared matches suggest. An unlinked tree means that Lonnie has not linked his DNA test to himself in his tree. Since Ancestry doesn’t know who he is in the tree, they can’t find a common ancestor for me and Lonnie. However, I can by viewing his tree.

Our common ancestor is Lazarus Estes and his wife, Elizabeth Vannoy. Therefore, Lonnie is my 2nd cousin.

That wasn’t difficult, in part because I had already worked on the genealogy of our common matches and Lonnie had a small unlinked tree where I could confirm our common ancestor.

Now let’s move to more distant, not-so-easy matches.

Distant Matches

I’ve spent a lot of time over the years identifying common ancestors with my matches.

When I make that connection, whether or not Ancestry has been able to identify our common ancestor, I make notes about common ancestors and anything else that seems relevant. Notes very conveniently show on my match list so I don’t need to open each match to see how we are related.

Ancestry does identify potential common ancestors using ThruLines. Note the word potential. Ancestry compares the trees of you and your matches searching for common ancestors and suggests connections. It’s up to you to verify. ThruLines are hints, not gospel. Additionally, you may have multiple ancestral links to your matches. Ancestry can only work with the fact that you have a DNA match with someone AND the user-provided trees of your matches.

Ancestry’s ThruLines only reach back a maximum of 7 generations to suggest common ancestors. At 7 generations distance, you’d be a 5th cousin to a descendant who is also 7 generations downstream from that ancestor.

The information from DNAPainter, who utilizes the Shared CM Project compiled data shows that the most likely amount of shared DNA for 5th cousins, is, you’ve guessed it – 20 cM.

Jacob Dobkins is my 7th generation ancestor. I have ThruLines for him and his wife, but not for their parents who are one generation too distant for ThruLines. I’d LOVE to see Ancestry extend ThruLines another 2 or 3 generations.

ThruLines matches me with people who descend from Jacob through his other children. Other children are important because the only ancestors you share with those people are (presumably) that ancestral couple.

Matches with Jacob’s descendants range from 8 cM (the smallest amount Ancestry reports) to 32 cM.

Here’s an example.

Ancestry displays some shared matches with all of your matches, regardless of the size of your match to that person. However, Ancestry ONLY shows shared matches to a third person if you share more than 20 cM of DNA with that third person.

For example, I match KO with 8 cM of DNA. Ancestry shows my shared matches with KO, below.

I only have 3 shared matches with KO. I only match KO at 8 cM, but I match our shared matches at 39, 31 and 21 cM, respectively.

Ancestry does NOT show shared matches below 20 cM, so it’s unknown how many additional shared matches KO and I actually have if shared matches less than 20 cM were displayed.

Perspective is Critical

Whether you see a shared match or not is sometimes a matter of perspective, meaning which of two people you request shared matches with.

In this case, I requested shared matches with KO. I only share 8 cM of DNA with KO, but that doesn’t matter. The amount of DNA you share with the person you’re requesting shared matches with is irrelevant.

Ancestry’s Shared Matches with KO include Ker

I will see shared matches with KO to anyone we mutually share as matches above 20 cM, including Ker.

If I request shared matches with Ker, with whom I share 39 cM of DNA, I will see all of our mutual matches at 20 cM (or greater) of DNA. However, that does NOT include KO because I only share 8 cM of DNA with KO.

This restriction applies regardless of how much DNA KO and Ker share, which is an unknown to me of course.

Ancestry’s Shared Matches with Ker does NOT include KO

Nothing has changed between these matches, yet KO does not appear on my shared matches list with Ker when I request shared matches with Ker.

I still share 8 cM with KO and 39 cM with Ker. KO and Ker still both match each other. The only difference is that Ker shows up on my shared match list with KO because I share more than 20 cM with Ker. However, when I request a match list with Ker, KO does NOT appear because I only share 8 cM with KO.

This is the source of the confusion and often, why people disagree about shared matches. It’s kind of a “now you see it, now you don’t” situation.

If a person shows as a shared match depends on:

  1. Whether the third person actually does share DNA with the tester and the person they’ve asked for shared matches with
  2. Whether the third person shares 20 cM DNA or more with the tester, the person requesting the shared match list with one of their matches

Whether someone appears on a shared match list can literally be a matter of perspective unless the match and the shared matches all match the tester at 20 cM or larger.

Another Example

Let’s look at a larger match to a descendant of the same ancestor.

I share exactly 20 cM with Joyce, my 5C1R.

Viewing my shared matches with Joyce, I match 50 other people that she matches as well.

I only share 25 cM of DNA with the smallest match with Joyce. Apparently, there are no matches with Joyce with whom I share between 20 and 25 cM of DNA.

Bottom Line

Here’s the bottom line.

Ancestry NEVER shows any shared matches below 20 cM from the perspective of the tester, meaning people who match you and someone else, both.

If you recall our earlier math, that means that approximately 95.74% of my shared matches aren’t shown.

This puts shared matches in a different perspective because now I realize just how many matches I’m not seeing.

Why is This Confusing?

If you aren’t aware of this shared match limitation, and that a majority of your shared matches are actually below 20 cM, you may interpret shared match results to mean you actually DON’T share specific matches with that other person. That isn’t necessarily true, as we saw above with KO and Ker.

Furthermore, let’s say you manage your DNA kit plus 3 more, A, B and C. Because you manage all 4 kits, that means you can see the results for all 4 people.

  • A – 10 cM
  • B – 20 cM
  • C – 40 cM

From the perspective of YOUR kit, you will see some shared matches FOR all of those matches.

What you won’t see is shared matches if you don’t match the shared match (third person) at 20 cM or greater.

Always remember, shared match information at Ancestry is ALWAYS from the perspective of your DNA kit combined with the person with whom you request the match.

I’ve put this information in a grid because that’s how I make sense of things like this.

Here are your matches. When you click on shared matches with person A who you match at 10 cM, you’ll see both person B and person C as shared matches since you match both of those people at 20 cM or larger. You WILL see 20 cM shared matches, but you will not see 19 cM shared matches.

When you request shared matches for A, you will see both B and C.

When you request shared matches with kits B and C, you will not see A because you only match them at 10 cM.

However, from the perspective of DNA kits A, B and C, shared matches look different.

Let’s look at shared matches from the perspective of Kits A, B and C.

Kit A matches you, Kit B and C, but can only see Kit B as a shared match because matches with you and Kit C are under 20 cM.

Kit B doesn’t match C at all, so they clearly won’t have shared matches. However, they do match you and Kit A, both at 20 cM and over, so Kit B will see you as a shared match with Kit A, and Kit A as a shared match with you.

Kit C doesn’t match Kit B, so no shared matches with that person at all. Kit C does match you and Kit A. However, when Kit C clicks on shared matches for you, Kit A doesn’t show up because they only match Kit A on 9 cM. When Kit C clicks on Kit A for shared matches, you ARE listed as a shared match because you share 40 cM of DNA with Kit C.

There’s no way to discern whether two of your matches match each other unless they show as a match in the shared match tool. You can’t tell if their absence on the shared match list means they actually don’t match, or their shared match absence is because they match you at less than 20 cM.

Whew, that was a mouthful.

You may need to refer back to this from time to time if you’re confused by your shared matches at Ancestry.

If you need to remember rules, remember this.

  1. You can obtain shared matches with yourself plus any match, regardless of how much or how little DNA you share with that one match. Prove this to yourself by finding a match under 20 cM, like my 8 cM match, and viewing your shared matches.
  2. No one will show on a shared match list with another person unless they match you at 20 cM or greater. Prove this to yourself by viewing the smallest shared match with anyone.

Strategy

The takeaway of this is if you have a larger (20 cM or over) and smaller match (under 20 cM), always request shared matches from the perspective of the smaller match because the smaller match won’t show up as a shared match on any shared match list.

The only way you can see shared matches that includes people under 20 cM is to request to view shared matches with individual people who match you below 20 cM. 

In my case, I will never see KO on any shared match list because I only match KO at 8 cM. However, I can request my shared matches with KO in which case I’ll see all 20 cM or greater shared matches with KO.

Alternatives

Every vendor provides a shared match feature, and each functions differently.

In the chart below, I’ve provided basic shared match information for each vendor.

If you’re interested in uploading your DNA file from Ancestry or another vendor, I’ve provided upload/download step-by-step instructions for each vendor, here.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Million Mito Project Team – Introduction and Progress Update

Let me introduce you to the Million Mito Project team.

Left to right, Goran Runfeldt, Dr. Paul Maier, me, and Dr. Miguel Vilar. And yes, I know we look kind of like a band😊. The Merry Mito Band maybe, except, trust me, I can’t sing.

Yes, we finally, finally got to meet in person recently, and let me tell you, that was one joyful meeting. I hadn’t realized that while I know everyone, not everyone else had met in person before.

We have been working for almost two years together via Zoom, but separately. Just 10 days after the Million Mito Project was announced, we went into Covid lockdown.

It’s difficult to work remotely on such a huge collaborative project, but we have been making inroads, albeit slower than we had initially hoped.

Complicating this was the merger of FamilyTreeDNA with myDNA in January of 2021, with Bennett Greenspan stepping down as the CEO in that process. Bennett greenlit the Million Mito project initially. (Thank you, Bennett!)

Thankfully, the new CEO, Dr. Lior Rauschberger continued that greenlight without hesitation as soon our team was able to inform him about this wonderful scientific project that was underway. (Thank you, Lior!)

I can’t tell you what a HUGE relief that was.

While all change is challenging, and complicated by the Covid landscape, life events, and geographic distance, that merger really was the right decision. Lior is committed to scientific research, discovery, and the genealogy marketspace. He’s looking to expand, not contract.

You’re probably wondering where we are now in the Million Mito process.

Million Mito Project Update

I’d like to provide a brief update.

  • We have an academic paper in the final stages of the submission process, but this paper is not the final tree. It is, however, something extremely cool and important to the history of womankind! I can’t say more until publication, but I’ll write an article when the paper is published.
  • The team hopes to work with a million samples between all sources including FamilyTreeDNA testers, research-consented Genographic samples, Genbank, and other academic samples. Not all samples from those sources are full mitochondrial sequences, or necessarily pass our QC checks.

If you haven’t yet taken a full sequence test, you can help reach the one million goal by ordering a mitochondrial DNA test at FamilyTreeDNA, here. If you tested at a lower level some years back, please sign on to your account and upgrade so you can be a part of this scientific frontier.

  • We discovered that the authors of Phylotree never documented the “recipe” for reconstructing the tree behind the scenes, so we can’t exactly use the recipe for Phylotree as the basis for constructing a future tree.
  • We have been in the process of writing phylogenetic software that arrives at a similar tree to use as a baseline reference structure in order to preserve as many of the current Phylotree haplogroup names as possible.

Hand curation and placement is possible for hundreds or a few thousand samples, but it’s not possible for large numbers. While phylogenetic software to do this kind of work has existed for a long time, it typically can’t handle huge trees like what we are building.

Phylogenetic methods also struggle with highly recurrent mutations, and rapid star-burst expansions that we see on the human trees. A phylogenetic problem of this magnitude requires lots of innovations to correctly interpret lineage history from complex mutations.

Automated software to handle very large numbers of sequences must be adapted or developed.

  • Furthermore, simply building upon an existing scaffold without automating the process does not provide an ongoing, sustainable procedure to discover where new dividing branches are discovered internally within the tree, versus at the tips. In other words, adding new branches based on common mutations is only easy when you’re simply appending a new haplogroup to an existing one.

For example, I might have a new haplogroup J1c2f1 derived from J1c2f. That’s easy. It’s another matter entirely if haplogroup J1 itself, high up in the tree, were broken into multiple new branches. Only automated software can “reconstruct” the tree regularly to discover new major branches as the results of more testers become available.

Challenges

Let me share some examples of the kinds of challenges that we’ve encountered. Not only are these interesting, but they are also educational.

These figures are from Paul Maier’s RootsTech presentation, which I strongly recommend that you view, here.

Mitochondrial DNA is both fascinating and habit-forming. The more you know, the more you want to know.

Let’s start with the basics. Haplogroups are defined by one or more mutations that everyone upstream does NOT have, and everyone downstream DOES have.

Pretty simple so far, right!

Haplogroup-Defining Mutations

Here’s an example of a nice simple mutation that is one of the multiple mutations that define haplogroup L1, near the base of the mitochondrial tree (Mitochondrial Eve) in the center. At location 3666, the “normal” value is G, but in this branch, the G in that position has been replaced by an A.

You can see that the other haplogroups shown in the circle by black dots don’t have the G-to-A mutation at location 3666, but the red dot locations do carry that mutation. Therefore, G3666A is one of the mutations that defines haplogroup L1. Haplogroups can be defined by only one unique mutation, or multiple mutations.

Multiple Haplogroup-Defining Mutations

Haplogroups with multiple mutations that define that specific haplogroup are candidates to be split into multiple branches forming new haplogroups at some point in the future when other people test who have:

  1. One or the other of those mutations if there are only two
  2. A subset of the mutations
  3. But not all of the mutations

Click on images to enlarge

For example, in the view of the public mitochondrial haplotree at FamilyTreeDNA which you can view here, you see that haplogroup L1 is defined by a total of 6 mutations. Someday, people may test that only have half (or a portion) of those mutations which would cause haplogroup L1 to split or branch into two separate haplogroups.

Unstable Mutations

Some mitochondrial locations are unstable, such as 16519C, along with a few other hypervariable locations. By unstable, I mean that they have mutated back and forth in the tree many times. The historical branching patterns of such unstable mutations can be difficult to decipher (the technical term is “saturation”), suggesting perhaps that they should not be the foundation for a new haplogroup.

Do we ignore those unstable locations entirely?

After discounting those well-known unstable locations, we still find some mutations, often in the HVR (hypervariable) regions that occur close to 100 times in the full tree.

This mutation at location 150 from C to T occurred four distinct times just in this small subset of haplogroup L. You can see the 4 locations I’ve bracketed with red boxes.

Is C150T stable enough to form a haplogroup? Multiple haplogroups? Should it be used high in the tree if this affects the complete downstream structure?

This same mutation occurs additional times further downstream in the tree, as well.

Reverse Mutations

Of course, some haplogroups are defined by reverse mutations, where the original mutation reverts back to its original state.

What about locations that have as many as 3 reverse mutations, which means that one location mutates back and forth 6 times in total? Kind of like a drunken sailor zigging and zagging along the street.

If we counted each mutation and reversal as a new haplogroup, we would have 6 new haplogroups based on this one single location in one parent haplogroup. Is that accurate, or should we ignore it altogether?

Here’s an example of one mutation and a corresponding back mutation.

In this scenario, the mutation of location 7055 from A to G occurred once in the formation of haplogroup L1. However, a back mutation took place, signified by the ! (exclamation mark) after the A, which is a defining mutation for haplogroup L1c3. All of the other L1c haplogroups still carry the A to G mutation, while L1c3 does not.

In some scenarios, the same location bounces back and forth. Should it still be counted as a haplogroup defining mutation, or is it simply “noise”?

Heteroplasmies

How do heteroplasmies play into this scenario?

Heteroplasmies occur when more than one value is discerned in an individual’s DNA at a specific location. Heteroplasmies do not define haplogroups, but they are reported in your personal results.

To be reported as a heteroplasmy, both values need to be detected at a level of over 20%. In the above scenario, if both G and A were found greater than 20% of the time, it would be counted at a heteroplasmy with a special notation.

For example, if G and A are both found more than 20% of the time, the notation would be R instead of either G or A. If the location was G7055, above, and G and A were both found above 20%, the notation would be G7055R.

However, if G was found 81% of the time or more, then it would be counted as G, which is “normal,” and if A was found 81% of the time or more, then the value would be reported as A, a mutation. If we see the normal state of G, then an A, then a G, is that a mutation and a back mutation? How many samples would need to contain that back mutation to count it as a mutation and not an aberration, an undetected borderline heteroplasmy slipping back and forth over the threshold, or simply noise?

Transitions Versus Transversions

There are two types of mutations, transitions and transversions, that probably should be weighted differently – but how differently, and why?

Some types of mutations occur more easily than others and are therefore more common. Paul explains this very well in his RootsTech video, but in a nutshell, transitions between T/C and A/G are much more common than transversions between A/C, G/T, C/G, and A/T. Therefore, transversions are noted with a small letter, shown above as T7624a.

In phylogenetics, the rarer mutation which is chemically less likely to occur (transversion) is weighted more heavily than the likelier mutations (transitions).

Insertions

Insertions are another type of challenge. Insertions happen when extra DNA is inserted at a specific location, kind of like the genetic equivalent of cutting in line.

In this graphic, we see that at location 5899, there’s an extension of .XC, written as 5899.XC. This means that at this location, you’ll find an unknown or varying number of additional Cs inserted. Paul showed several example sequences in the box at upper left. In some people who have this mutation, there are only one or two inserted Cs. In other people, there are several Cs, shown in the bottom two sequences.

You might recognize this as a phenomenon similar to Y DNA STRs which are short tandem repeats. Of course, we don’t use STRs for haplogroup identification in Y DNA. How should we handle insertions, especially multiple insertions, in building the Mitotree?

Deletions

We see deletions of DNA too, indicated by a small “d” after the location. In some cases, we find large deletions.

At location 8281, there is a 9 base-pair deletion (8281 through 8289) that is one of the haplogroup defining mutations for haplogroup L0a2. We find a 9 base-pair deletion in exactly the same location again within subclades of haplogroups B and U.

Is there something about this specific location that makes it more prone to deletions, and specifically a deletion of exactly 9 base pairs?

Seeking Answers

Of course, we’re seeking all of these answers.

The team has been writing code to create structural trees based on various scenarios and trying to determine which ones make the most sense, all factors considered.

The current official tree, meaning the 2016 Build 17 version of Phylotree, is based on about 8,000 samples. Working with one million versus 8,000 is a challenge that ramps exponentially, necessitating substantial computing power.

Working with 125 times more data provides amazing potential, but it has also introduced challenges that never had to be addressed before. It’s evident, to us at least, why Phylotree wasn’t updated after 2016. The tools simply don’t exist.

Sneak Peek

We fully expect hundreds if not thousands of new haplogroups to form. Today, Paul’s haplogroup is U5a2b2a which was formed about 5,000 years ago during the Bronze Age.

The haplogroup itself is useful to determine roughly where your ancestors were at that time, and often provide information about more recent population group history, but you need mitochondrial DNA matching to provide more genealogically useful information.

Paul’s test results show that he has 8 extra mutations, which means those mutations are in addition to his haplogroup-defining mutations. These extra mutations are what make genealogical matching so useful.

Paul has 16 full sequence matches that match him at a genetic distance of 3 mutations or less, although due to privacy restrictions at FamilyTreeDNA, we can’t see which matches share which mutations.

Given that Paul has 8 extra mutations, this means that it’s possible that one or more new haplogroups will be formed using some or all of those 8 extra mutations, and that those people who match him at a GD of 3 or less will very likely be members of a newly formed haplogroup.

Here’s a comparison of Paul’s haplogroup today, at left, with the newly created U5a2b2a branch and resulting subclades in a beta version of our experimental Mitotree, at right. This moves Paul’s new haplogroup, the pink node at right, from 5,000 to 500 years ago which is clearly within a genealogically relevant timeframe.

The single haplogroup, U5a2b2a, now has been expanded to 7 subgroups. If U5a2b2a is representative of the expansion capability of the entire tree, that’s a 7-fold increase.

Of Paul’s 16 matches, those with the same new haplogroup are those where he needs to focus his genealogical research.

Where Are We?

This is not a commitment, but we expect to release a sneak preview of the new Mitotree this year.

If you have extra or missing mutations, especially in the coding region, you and your close matches may very well receive a new, expanded haplogroup.

Highly refined haplogroups will improve the ability to use mitochondrial DNA for genealogical purposes – similar to what the Big Y-700 SNP testing and the expanded haplotree have done for Y DNA.

Like with Y DNA, you’ll want to use your new haplogroup in combination with genealogical trees.

The more people that test, the more success stories emerge, and the more people that WILL test. Just think what would happen if everyone who took a Y or autosomal DNA test also took a mitochondrial DNA test. We’d be bulldozing through brick walls every day.

I don’t know about you, but I have so many women in my trees with no parents. I need more tools and can hardly wait.

Resources

The new Mitotree is fueled by the Million Mito Project which is fueled by full sequence DNA testing, so please purchase yours today.

And yes, in case you were wondering, the new Mitotree will be free and public, just like the existing Mitochondrial DNA Tree and Y DNA Tree are at FamilyTreeDNA today.

You can read more about the Million Mito project here and here.

You can watch Paul’s Million Mito RootsTech presentation, here.

Paul, Miguel and I will be co-presenting Mitochondrial DNA Academy on Saturday, April 23, during the ECCGC Conference which you can read about here and register here.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Hurry: Relatives at RootsTech Ends March 25 – Search for Y & Mitochondrial DNA Cousins While You Can

Relatives for RootsTech is still available through March 25th, even though RootsTech, the event, is over for this year. (Obviously, the video sessions are still available.)

Relatives at RootsTech provides participants with the opportunity to see cousins, organized in different ways, including by ancestor, with a path for both of you drawn back to your common ancestors.

Be sure to fully utilize the Relatives at RootsTech connections to easily find cousins who descend appropriately to be testing candidates for Y DNA and mitochondrial DNA for your ancestors. I’ve included step-by-step instructions in this article along with a few hints I’ve discovered.

Just navigate to RootsTech, here, and scroll down to the relatives at RootsTech button.

Click that button, then on “view relatives” and voila, here you are.

FamilySearch has made this easy by displaying your relatives by ancestor, at least for several generations back in time. You can see how many of your cousins descend from any particular ancestor.

While my closest ancestors are showing few cousins, more distant ancestors further down my relatives list, (and further back in my tree,) have hundreds.

It’s Easy Peasy

Eventually, every single line brick walls. Y DNA and mitochondrial DNA are the ONLY types of DNA you can use that doesn’t divide in every generation and remains as reliable 10 or more generations ago as today. Y DNA and mitochondrial DNA are laser lights shining back through time. We need them for every single ancestral line to push beyond that brick wall, whenever and wherever we hit it.

I’ve spent time in the past few days fishing for cousins and messaging people who are good candidates to represent lines that I don’t have represented in my DNA pedigree chart.

In my own desktop software, I enter my ancestor’s haplogroup as a middle name. The * means I’ve written a 52 Ancestors series article about this person. (I don’t do this in public trees, just my own.)

I can see at a glance which ancestors don’t have haplogroups, which means I need to find cousins who descend appropriately to have inherited either the Y DNA or the mitochondrial DNA of that ancestor.

The blue boxes above represent the Y DNA inheritance path, and the red, mitochondrial inheritance. You can read more about Y and mitochondrial DNA inheritance paths, here.

Neither Y nor mitochondrial DNA are admixed with the DNA of the other parent, so it’s a rich source of information that never divides during meiosis. This gives us the ability to see far back in time without dilution.

Focus

I created a small spreadsheet so I wouldn’t lose track of whose DNA I’m looking for and the message I sent to various cousins.

By focusing only on ancestral lines I specifically need, I’ve eliminated a lot of busy work. Initially, I was going to record every cousin, but there are too many for me to be able to complete that task. Now I’m focused on:

  • Lines where I have very few matches. These may represent closer cousins I haven’t yet met, or people in the Netherlands who are now participating. I found a new Dutch cousin. Hopefully they will reply to my message.
  • Y DNA lines
  • Mitochondrial DNA lines

Timesaving Hint

When searching in this manner, find your most distant ancestor on the relatives list in that line. For example, I only have two cousins on my Lazarus Estes list, but as I look at ancestors on up that Estes line, I have several more by the time you get to Moses Estes, 4 generations earlier. My two cousins who descend from Lazarus will ALSO be on the Moses Estes list – as will all the rest of my cousins who descend from Estes males between Lazarus Estes and Moses Estes.

Moving to the earliest ancestors in a line immediately saves you a heap of time because you don’t need to view your cousins in the closer generations.

Y DNA

Finding appropriate cousins for Y DNA is easy. They will generally carry the surname of the ancestor in question. If I’m searching for a descendant of Andrew McKee (c1766-1814), I’ll just look for McKee surname cousins on my list.

To see how your cousin descends from your common ancestor click on Relationship. A nice dual path is shown to your common ancestors.

I found a female, so I messaged her and ask if she has a father or brother or uncle who would be willing to test to represent the McKee Y DNA line.

In my message, I briefly explain how beneficial this would be for everyone in that line and might well help break down those upstream brick walls. Who were Andrew’s parents?

I don’t know now, but I’d surely know more after a Y DNA test. So would she!

In this next example, my cousin is male, and the last male shown descending from Andrew is Robert Clayton McKee. I “presume” my cousin descends through two upstream males, but sometimes that’s not the case. Either of those two greyed out people could be females. I’m always “gentle” in these messages and say that “It appears that you descend from Andrew through all males. FamilySearch conceals the identity of your closest generations for privacy.”

I ask my cousin to confirm how they descend and ask if they have tested or are interested in DNA testing. I also provide my email address and offer a testing scholarship.

Mitochondrial DNA

Locating mitochondrial DNA testing candidates takes slightly more effort, but can be VERY productive.

Let’s say I’m searching for a mitochondrial DNA candidate for Andrew McKee’s wife.

Notice, I said “wife” and did not mention her name. All we really know, from a deed signature releasing her dower right, is that her first name is Elizabeth. The reason I would be seeking her mitochondrial DNA is to figure out who her parents were.

At FamilySearch, Elizabeth has been assigned a full name, including surname, but there are no sources that provide her surname.

DO NOT DISREGARD THIS RECORD!

My first inclination is to disregard this record because there is no evidence that Barnes is Elizabeth’s surname, at least not that I’ve ever seen. If any reader has actual evidence, please do share.

However, in this case, we are searching for anyone descended from the wife of Andrew McKee, REGARDLESS OF HER NAME. Her name, in this context and for this purpose does not matter.

In other words, if we can find a candidate for Andrew’s wife’s mitochondrial DNA, we may then be able to determine if indeed she does match someone in the Barnes family line.

It’s very easy to skim your matches ancestral line. If you see any blue in their lineage, indicating a male in your cousin’s line, that’s an immediate “no,” so you can just proceed to the next cousin in your list.

Mitochondrial DNA is only passed from women to their children. Men don’t pass it on, so a male in that line is a blocker. Andrew McKee Jones, in this example, inherited his mother’s mitochondrial DNA, but his children inherited the mitochondrial DNA of their mother.

Fortunately, FamilySearch also identifies daughter or son when names are ambiguous.

Scholarships

I always offer a DNA testing scholarship at FamilyTreeDNA for the appropriate Y DNA or mitochondrial test. FamilyTreeDNA also offers their autosomal Family Finder test, of course, and I often include that test in the scholarship.

Other vendors do not offer Y and mitochondrial DNA testing. However, if your cousins have already tested autosomally at Ancestry, 23andMe, or MyHeritage, they can upload their DNA files to FamilyTreeDNA for free after you order their scholarship test. Step-by-step upload instructions can be found, here.

I always check to see if Y DNA and mtDNA testers’ matches are also autosomal matches. That too can provide valuable clues.

March 25th

Don’t wait. The Relatives at RootsTech tool is only available until March 25th. It will take you some time to review the lists, but it’s fun because it’s like mining for buried ancestral gold nuggets. Except it’s not just a game. There is real genealogical gold hiding there, just itching to be discovered.

If you message someone, or click on the contact button, they will be added to your list which remains available after March 25th.

Do you have ancestors whose Y DNA and mitochondrial DNA you need? Your gold-nugget cousin may be waiting for you!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches DNA Monkey Wrenches https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA Keynote, RootsTech Wrap + Special Show Pricing Still Available

Am I ever whipped. My two live Sessions that were actually a series of three classes each took place on Friday. Yes, that means I presented 6 sessions on Friday, complete with a couple of Zoom gremlins, of course. It’s the nature of the time we live in.

RootsTech tried something new that they’ve never done before. The Zoom class sessions were restricted to 500 attendees each. RootsTech was concerned about disappointed attendees when the room was full and they couldn’t get in, so we live-streamed three of my sessions to Facebook in addition to the 500 Zoom seats.

As of this evening, 6,800 of you have viewed the Facebook video, “Associating Autosomal DNA Segments With Ancestors.” I’m stunned, and touched. Thank you, thank you. Here’s the Facebook link, and here’s the RootsTech YouTube link.

My afternoon sessions, “What Can I DO With Ancestral DNA Segments?” can be viewed here at RootsTech or here on YouTube.

I must admit, I’m really, REALLY looking forward to being together again because RootsTech without the socializing and in-person Expo Hall just isn’t the same. Still, be sure to take a virtual walk through the Expo Hall, here. There’s lots of content in the vendors” booths and it will remain available for all of 2022, until the beginning of RootsTech 2023..

Between prep for my classes and presenting, I didn’t have a lot of time to watch other sessions, but I was able to catch the FamilyTreeDNA keynote and their 2022 Product Sneak Peek. Both were quite worthwhile.

However, I just realized that FamilyTreeDNA’s special show pricing promo codes are still valid for the next two days.

 Special Prices Are Still Available

Every single test that FamilyTreeDNA offers, including UPGRADES, is on sale right now by using special RootsTech promo codes. These prices are good for two more days, through March 7th, so if you want to purchase a Y DNA test, mitochondrial, or Family Finder autosomal test, or upgrade, click here to see the prices only available at RootsTech (and to you through my blog.) It’s not too late, but it will be soon.

To order, click here to sign on or place your order.

FamilyTreeDNA’s Keynote

FamilyTreeDNA’s keynote was titled FamilyTreeDNA: 22 Years of Breaking Down Brick Walls.

I really enjoyed this session, in part because I’ve been a part of the genetic genealogy revolution and evolution from the beginning. Not only that, but I know every single person they interviewed for this video, and have for years. If you’ve been participating in genetic genealogy for some time, you’ll know many of these people too. For a minute, it was almost as good as visiting in person.

I’m going to share a few highlights from the session, but I’m also going to include information NOT in the video. I was one of the early project administrators, so I’ve been along for the ride for just a few months shy of 22 years.

FamilyTreeDNA was the first US company to enter the DNA testing space, the first to offer Y DNA testing, and the only one of the early companies that remains viable today. FamilyTreeDNA was the result of Bennett Greenspan’s dream – but initially, he was only dreaming small. Just like any other genealogist – he was dreaming about breaking down a brick wall which he explains in the video.

I’m so VERY grateful that Bennett had that dream, and persisted, because it means that now millions of us can do the same – and will into the future.

Bennett tells this better than anyone else, along with his partner, Max Blankfeld.

“Some people were fascinated,” Bennett said.

Yep, that’s for sure! I certainly was.

“Among the first genetic genealogists in the world.”

“Frontier of the genetic genealogy revolution.”

Indeed, we were and still are. Today’s genetic genealogy industry wouldn’t even exist were it not for FamilyTreeDNA and their early testers.

I love Max Blankfeld’s story of their first office, and you will too.

This IS the quintessential story of entrepreneurship.

In 2004, when FamilyTreeDNA was only four years old, they hosted the very first annual international project administrator’s conference. At that time, it was believed that the only people that would be interested in learning at that level and would attend a DNA conference would be project administrators who were managing surname and regional projects. How times have changed! This week at RootsTech, we probably had more people viewing DNA sessions than people that had tested altogether in 2004. I purchased kit number 30,087 on December 28, 2004, and kit 50,000 a year later on New Year’s Eve right at midnight!

In April 2005, Nat Geo partnered with FamilyTreeDNA and founded the Genographic Project which was scheduled to last for 5 years. They were hoping to attract 100,000 people who would be willing to test their DNA to discover their roots – and along with that – our human roots. The Genographic Project would run for an incredible 15 years.

In 2005 when the second Project Administrator’s conference was held at the National Geographic Society headquarters in Washington DC, I don’t think any of us realized the historic nature of the moment we were participating in.

I remember walking from my hotel, ironically named “Helix,” to that iconic building. I had spent my childhood reading those yellow magazines at school and dreaming of far-away places. As an adult, I had been a life-long subscriber. Never, in my wildest dreams did I imagine ever visiting Nat Geo and walking the marble Explorer’s Hall with the portraits of the founders and early explorers hanging above and keeping a watchful eye on us. We would not disappoint them.

That 100,000 participation goal was quickly reached, within weeks, and surpassed, leading us all to walk the road towards the building that housed the Explorer’s Hall, Explorers’ in Residence, and so much more.

We were all explorers, pioneers, adventurers seeking to use the DNA from our ancestors in the past to identify who they were. Using futuristic technology tools like a mirror to look backward into the dim recesses of the past.

The archaeology being unearthed and studied was no longer at the ends of the earth but within our own bodies. The final frontier. Reaching out to explore meant reaching inward, and backward in time, using the most progressive technology of the day.

Most of the administrators in attendance, all volunteers, were on a first-name basis with each other and also with Max, Bennett, and the scientists.

Here, Bennett with a member of the science team from the University of Arizona describes future research goals. Every year FamilyTreeDNA has improved its products in numerous ways.

Today, that small startup business has its own ground-breaking state-of-the-art lab. More than 10,000 DNA projects are still administered by passionate volunteer administrators who focus on what they seek – such as the history of their surname or a specific haplogroup. Their world-class lab allows FamilyTreeDNA to focus on research and science in addition to DNA processing. The lab allows constant improvement so their three types of genetic genealogy products, Y, mitochondrial and autosomal DNA.

Those three types of tests combine to provide genealogical insights and solutions. The more the science improves, the more solutions can and will be found.

If you watch the video, you’ll see 6 people who have solved particularly difficult and thorny problems. We are all long-time project administrators, all participate on a daily basis in this field and community – and all have an undying love for both genealogy and genetic genealogy.

You’ll recognize most of these people, including yours truly.

  • I talk about my mother’s heritage, unveiled through mitochondrial DNA.
  • Rob Warthen speaks about receiving a random phone call from another genealogist as his introduction to genetic genealogy. Later, he purchased a DNA test for his girlfriend, an adoptee, for Christmas and sweetened the deal by offering to “go where you’re from” for vacation. He didn’t realize why she was moved to tears – that test revealed the first piece of information she had ever known about her history. DNA changed her and Rob’s life. He eventually identified her birth parents – and went on to found both DNAAdoption.org and DNAGedcom.
  • Richard Hill was adopted and began his search in his 30s, but it would be DNA that ended his search. His moving story is told in his book, Finding Family: My Search for Roots and the Secrets in My DNA.
  • Mags Gaulden, professional genealogist and founder of Grandma’s Genes and MitoYDNA.org tells about her 91-year-old adopted client who had given up all hope of discovering her roots. Back in the 1950s, there was literally nothing in her client’s adoption file. She was reconciled to the fact that “I would never know who I was.” Mags simply could not accept that and 2 years later, Mags found her parents’ names.

  • Lara Diamond’s family was decimated during the holocaust. Lara’s family thought everyone in her grandfather’s family had been killed, but in 2013, autosomal DNA testing let her to her grandfather’s aunt who was not killed in the holocaust as everyone thought. The aunt and first cousin were living in Detroit. Lara went from almost no family to a family reunion, shown above. She says she finally met “people who look like me.”
  • Katherine Borges founded ISOGG.org, the International Society of Genetic Genealogy in 2005, following the first genetic genealogy conference in late 2004 where she realized that the genealogy community desperately needed education – beginning with DNA terms. I remember her jokingly standing in the hallway saying that she understood three words, “a, and and the.” While that’s cute today, it was real at that time because DNA was a foreign language, technology, and concept to genealogy. In fact, for years we were banned from discussing the topic on RootsWeb. The consummate genetic genealogist, Katherine carries DNA kits in her purse, even to Scotland!

Bennett says that he’s excited about the future, for the next generation of molecular scientific achievements. It was Bennett that greenlit the Million Mito project. Bennett’s challenge as a genetic genealogy/business owner was to advance the science that led to products while making enough money to be able to continue advancing the science. It was a fine line, but Max and Bennett navigated those waters quite well.

Apparently, Max, Bennett, and the FamilyTreeDNA customers weren’t the only people who believe that.

In January 2021, myDNA acquired and merged with FamilyTreeDNA. Max and Bennett remain involved as board members.

Dr.Lior Rauchberger, CEO of myDNA which includes FamilyTreeDNA

Dr. Lior Rauchberger, the CEO of the merged enterprise believes in the power of genetics, including genetic genealogy, and is continuing to make investments in FamilyTreeDNA products – including new features. There have already been improvements in 2021 and in the presentation by Katy Rowe, the Product Manager for the FamilyTreeDNA products, she explains what is coming this year.

I hope you enjoyed this retrospective on the past 22 years and are looking forward to crossing new frontiers, and breaking down those brick walls, in the coming decades.

Sneak Peek at FamilyTreeDNA – New Features and Upcoming Releases

You can watch Katy Rowe’s Sneak Peek video about what’s coming, here.

Of course, while other companies need to split their focus between traditional genealogy research records and DNA, FamilyTreeDNA does not. Their only focus is genetics. They plan to make advances in every aspect of their products.

FamilyTreeDNA announced a new Help Center which you can access, here. I found lots of short videos and other helpful items. I had no idea it existed.

In 2021, customers began being able to order a combined Family Finder and myDNA test to provide insights into genealogy along with health and wellness

Wellness includes nutrition and fitness insights.

Existing customers either are or will be able to order the myDNA upgrade to their existing test. The ability to upgrade is being rolled out by groups. I haven’t had my turn yet, but when I do, I’ll test and let you know what I think. Trust me, I’m not terribly interested in how many squats I can do anymore, because I already know that number is zero, but I am very interested in nutrition and diet. I’d like to stay healthy enough to research my ancestors for a long time to come.

FamilyTreeDNA announced that over 72,000 men have taken the Big Y test which has resulted in the Y DNA tree of mankind surpassing 50,000 branches.

This is utterly amazing when you consider how far we’ve come since 2002. This also means that a very high number of men, paired with at least one other man, actually form a new branch on the Y haplotree.

The “age” of tester’s Y DNA haplogroups is now often within the 500-year range – clearly genealogical in nature. Furthermore, many leaf-tip haplogroups as defined by the Big Y SNPs are much closer than that and can differentiate between branches of a known family. The Big Y-700 is now the go-to test for Y DNA and genealogy.

Of course, all these new branches necessitate new maps and haplogroup information. These will be released shortly and will provide users with the ability to see the paths together, which is the view you see here, or track individual lines. The same is true for mitochondrial DNA as well.

Y DNA tree branch ages will be forthcoming soon too. I think this is the #1 most requested feature.

On the Mitochondrial DNA side of the house, the Million Mito project has led to a significant rewrite of the MitoTree. As you know, I’m a Million Mito team member.

Here’s Dr. Paul Maier’s branch, for example. You can see that in the current version of the Phylotree, there is one blue branch and lots of “child” branches beneath that. Of course, when we’re measuring the tree from “Eve,” the end tip leaf branches look small, but it’s there that our genealogy resides.

In the new version, yet to be released, there is much more granularity in the branches of U5a2b2a.

To put this another way, in today’s tree, haplogroup U5a2b2a is about 5,000 years old, but the newly defined branches bring the formation of Paul’s (new) haplogroup into the range of about 500 years. Similar in nature to the Y DNA tree and significantly more useful for genealogical purposes. If you have not taken a mitochondrial DNA full sequence test, please order one now. Maybe your DNA will help define a new branch on the tree plus reveal new information about your genealogy.

Stay tuned on this one. You know the Million Mito Project is near and dear to my heart.

2022 will also see much-needed improvements in the tree structure and user experience, as well as the matches pages.

There are a lot of exciting things on FamilyTreeDNA’s plate and I’m excited to see these new features and functions roll out over the next few months.

Just the Beginning

The three days of RootsTech 2022 may be over, but the content isn’t.

In fact, it’s just the beginning of being able to access valuable information at your convenience. The vendor booths will remain in the Expo Hall until RootsTech 2023, so for a full year, plus the individual instructor’s sessions will remain available for three years.

In a few days, after I take a break, I’ll publish a full list of DNA sessions, along with links for your convenience.

Thank You Shout Outs

I want to say a HUGE thank you to RootsTech for hosting the conference and making it free. I specifically want to express my gratitude to the many, many people working diligently behind the scenes during the last year, and frantically during the past three days.

Another huge thank you to the speakers and vendors whose efforts provide the content for the conference.

And special thanks to you for loving genealogy, taking your time to watch and learn, and for reading this blog.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

How to Find RootsTech 2022 Sessions + Other Info You Need to Know

Tomorrow, Thursday, March 3rd is the beginning of RootsTech 2022 which is completely free and entirely virtual this year.

You’ll find a bouquet of speakers from around the world providing sessions in many languages. An auto-translate feature is available through YouTube as well.

I hope you’ve already signed up for RootsTech. If not, here are instructions.

The opening presentation by Steve Rockwood will take place on the “Main Stage, here,” at 10 AM EST.

The Expo Hall opens at the same time, and class sessions begin as well.

The navigation bar is at the top of your page.

New Options

Like last year, RootsTech is offering 15-20 minute sessions, with a few sessions being offered as a series which means there are either two, or three, 15-20 minute sessions that are intended to be viewed serially.

Additionally, some presentations, including several of mine, are live this year. Fingers crossed that Zoom doesn’t act up and technology gremlins don’t attend RootsTech too.

Session Availability

Classes, presentations or sessions, however you refer to them, will be offered for three full days and will be available for some time after as well.

How long they will be available depends on the source of the class/session/presentation. If the presentation is given by a vendor, the vendor’s booths and content won’t be available for as long as sessions presented by individuals.

I don’t know how long keynotes will be available either.

I do know that the RootsTech team told the speakers that their intention is for the sessions to remain online for three years unless they are no longer relevant for some reason.

I’ll explain how to find different classes and create a playlist in a minute. There are a few workarounds that will be very beneficial and several places you’ll want to look to be sure you find everything – including the Expo Hall.

Expo Hall

The Expo Hall, meaning vendor booths, organizations, and supporters will also open at 10 AM EST on Thursday, March 3rd and they will remain open through Saturday, March 5th, closing at 7 PM EST. This is the time that the booth is “staffed.” You can of course stop by anytime. The content in each booth may be available for longer and was last year.

Don’t overlook vendor booths thinking you can only find items for sale there. That’s not the case at all. Many if not most vendors and organizations will also have presentations and other resources available for you there too. What better source to find out about that organization’s tools and how to use them successfully than from the horse’s mouth, or booth, in this case.

Speaker’s Bookstore

There will be a Speaker’s Bookstore this year, and no, you cannot purchase a speaker in the store. You can, however, purchase things the speaker might have to sell, like books or services or whatever is relevant to their specialty. The Speaker’s Bookstore will be found in the Expo Hall.

This is a great way to support the speakers, plus, don’t forget to “like” sessions you enjoy.

Sessions

There are several ways to navigate the RootsTech website, and not all types of sessions are in the same place, so I want to be sure you know how to find everything and how to create a playlist for yourself. Furthermore, RootsTech is still trying to iron out some last-minute issues, so I’ve detailed ways I’ve found to deal with challenges.

Please also note that last year’s 2021 sessions are still available as well. Here’s a comprehensive list of 2021 DNA sessions that I created for your convenience, with links to the session recordings.

Live Sessions Calendar

To view all of the live sessions, including several roundtables, in one place, go to the Calendar, here.

You’ll notice that there are three days, and three groups of presentations, with 9 total sets of live sessions for you to choose from. Some sessions are scheduled “very late” in the US, but remember that late here is early someplace else and vice versa. RootsTech has a worldwide audience.

Be sure to review each group and make your selections.

In order to add a session to your playlist, click on the little “+” sign. It’s OK if you select multiple events for the same timeslot. You’ll just have to choose between them later, or watch some as recordings. All live sessions are being recorded. I don’t know how soon they will be available for viewing.

The PlayList can also serve as a “to do” list for after RootsTech as well. Just uncheck the ones you’ve already seen.

I like to watch live sessions because the speakers often provide time-sensitive information. You may also have the opportunity to ask chat questions of live presenters.

Session Search

Let’s say you’re interested in viewing presentations of a specific speaker.

Click to enlarge any image

Click on “Sessions,” and you’ll see the search box. Type the name of the speaker or any keyword into the search box. Be aware that the search/filter function is one of the aspects that the RootsTech team is still diligently working on. We’ll be discussing different ways to find things so you can be positive you’ve found what’s relevant for you.

Session Filters

On the left side, you see a list of filters. You can use these filters alone, in groups, or in conjunction with the search feature.

I suggest viewing each drop down and experimenting a bit, especially combinations.

I typed the word “dna” in the search box, selected the DNA category under Topic, plus selected only 2022 and I see a total of 151 DNA sessions. That’s a smorgasbord!!!!

Adding 2021 for both years shows a total of 278 sessions.

You could add language or other filters as well.

Series Filter

The “Series Episode” filter under “Content Type” isn’t showing all of the sessions that are a series of 2 or 3 contiguous sessions. My series sessions aren’t showing yet (as of this writing,) but some series sessions are. I hope this will be fixed soon.

Doggone Pesky Bugs

The searches and filters aren’t working consistently correctly right now. I only mention this because you may not see everything available for individual speakers, vendors or categories, so try various avenues, meaning search and filter in multiple ways to be sure you’re seeing everything relevant.

Creating a virtual event to serve over a million attendees is a daunting task, and the team really is working hard to resolve issues.

Add to the PlayList

When you add a session to your playlist, the “+” becomes an “X”.

I definitely want to hear what Paul Maier has to say about the Million Mito Project! You can read more about the Million Mito Project here and here.

Using Your PlayList

Your PlayList can be viewed at the top under the menu.

Your sessions will be listed in chronological order, generally with the day and time displayed, but not always. Hmmm…

I noticed that the first session showing, “The Million Mito Project” by Paul Maier doesn’t display a date or time, so I clicked to view the session. It is scheduled for 8 PM on March 2nd, before the conference actually opens, so be sure to check the session times. I’ll check back later today to be sure this is accurate.

I heartily recommend putting this session on your PlayList.

As a Million Mito team member, I might or might or might not be writing a short article soon on this very topic! 😊

Innovators Portal

Take a look at the Innovators Portal where you’ll find several “incognito sessions.”

I haven’t found all of these sessions listed elsewhere, and several are quite interesting.

This is a great place to see what vendors are doing.

Y DNA age estimates – OMG finally! I’m adding this one to my PlayList for sure!!!

You can also view your PlayList by clicking on the little “play” shortcut arrow.

My Sessions

I want to be sure you can find and view my sessions.

I have 4 sessions this year, two of which are actually a series of three sessions each. If you’re counting, yes, that means I’ve created a total of 8 sessions. If you’re thinking, “she’s nuts,” you’d be right. I’ll likely never do this again. It’s just so easy to get inspired, but then the weeks of work comes later.

If you’d like to view my autosomal DNA session from 2021, DNA Triangulation: What, Why and How, click here.

My 2021 session, Revealing Your Mother’s Ancestors and Where They Came From lives in the RootsTech DNA Learning Center, and you can watch it here.

I’m very pleased to offer four sessions in 2022 that I’ve listed in schedule order, below.

DNA for Native American Ancestryclick here to add to PlayList and view.

Thursday, March 3rd – 10 AM EST

I’ll be talking about the contents of DNA for Native American Genealogy, my new book. I wrote this book to help people identify their Native American ancestors, or put those rumors to rest.

There is a myriad of ways to approach this challenge, beginning with your family history, then using several genetic tools. The book covers methodology, geography, ethnicity results, Y DNA, mitochondrial DNA, autosomal DNA, your cousins as gold nuggets, third-party tools, identifying that elusive Native ancestor, and more.

This session is recorded, so you can watch it anytime after the conference opens.

Native American DNA – Ancient and Contemporary Mapsclick here to add to PlayList and view.

Thursday, March 3rd – 2 PM EST LIVE

One of my very favorite parts of writing the book was working with ancient DNA which informs our understanding of where specific groups of people lived, where they migrated – and where their descendants are found today.

Whether you’re interested in Native American heritage, history, anthropology or you’re a map junkie – join me because we are going to have a GREAT time.

Associating Autosomal DNA Segments With Ancestorsclick here to add to PlayList and view.

Friday, March 4th – 10 AM LIVE, Series

This session is a series of three 20-minute sessions that you can view by simply signing in to the first session. Each individual session will have a short Q&A following the session before moving on to the next one. This series will be recorded live so that the individual sessions can be viewed later, either together or separately.

I discuss why segments are important to genealogy, how to find ancestral segments at each major DNA testing vendor, plus GEDmatch, and identifying which ancestor(s) those segments descend from. You might be surprised to learn that I utilize Ancestry in this process too, even though they don’t have a chromosome browser.

After figuring out how to associate your DNA segments with specific ancestors, there’s so much more you can do! I hope you’ll join me for this next session too!

What Can I DO With Ancestral DNA Segments?click here to add to PlayList and view.

Friday March 4th – 2 PM LIVE, Series

This session is a series of three 20-minute sessions that you can view by simply signing in to the first session. Each session will have a short Q&A following the session before moving on to the next one. This live series will be recorded so that the individual sessions can be viewed later, either together or separately.

In this series, I review the more advanced tools at the DNA testing vendors, plus third-party tools like Genetic Affairs, DNAPainter and GEDmatch.

The great thing is that this painter’s pallet of tools has automated what we had been doing manually for several years – and every vendor and tool has something unique to offer genealogists.

Your Turn

Now it’s time to create your PlayList of sessions and make your RootsTech viewing plan. Hope to “see” you there!

Earlier RootsTech 2022 Articles

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

AutoKinship at GEDmatch by Genetic Affairs

Genetic Affairs has created a new version of AutoKinship at GEDmatch. The new AutoKinship report adds new features, allows for more kits to be included in the analysis, and integrates multiple reports together:

  • AutoCluster – the autoclusters we all know and love
  • AutoSegment – clusters based on segments
  • AutoTree – reconstructed tree based on GEDCOM files of you and your matches, even if you don’t have a tree
  • AutoKinship – the original AutoKinship report provided genetic trees. The new AutoKinship report includes AutoTree, combines both, and adds features called AutoKinship Tree. (Trust me on this one – you’ll see in a minute!)
  • Matches
    • Common Ancestors with your ancestors
    • Common Ancestors between matches, even if they don’t match your tree
    • Common Locations

Maybe the best news is that some reports provide automatic triangulation because, at GEDmatch, it’s possible to not only see how you match multiple people, but also if those people match each other on that same segment. Of course, triangulation requires three-way matching in addition to the identification of common ancestors which is part of what AutoKinship provides, in multiple ways.

Let’s step through the included reports and features one at a time, using my clusters as an example.

Order Your Report

As a Tier 1 GEDmatch customer, sign in, select AutoKinship and order your report.

Note that there are now two clustering settings, the default setting and one that will provide more dense clusters. The last setting is the default setting for AutoKinship, since it has been shown to produce better AutoKinship results.

You can also select the number of kits to consider. Since this tool is free with a GEDmatch Tier 1 subscription, you can start small and rerun if you wish, as often as you wish.

Currently, a maximum of 500 matches can be included, but that will be increased to 1000 in the future. Your top 500 matches will be included that fall within the cM matching parameters specified.

I’m leaving this at the maximum 400 cM threshold, so every match below that is included. I generally leave this default threshold because otherwise my closest matches will be in a huge number of clusters which may cause processing issues.

For a special use case where you will want to increase the cM threshold, see the Special Use Cases section near the end of this article.

You can select a low number of matches, like 25 or 50 which is particularly useful if you want to examine the closest matches of a kit without a tree.

Keep in mind that there is currently a maximum processing time of 10 minutes allowed per report. This means that if you have large clusters, which are the last ones processed, you may not have AutoKinship results for those clusters.

This also means that if you select a high cM threshold and include all 500 allowable matches, you will receive the report but the AutoKinship results may not be complete.

When finished, your report will be delivered to you as a download link with an attached zipped file which you will need to save someplace where you can find it.

Unzip

If you’re a PC user, you’ll need to unzip or extract the files before you can use the files. You’ll see the zipper on the file.

If you don’t extract the contents, you can click on the file to open which will display a list of the files, so it looks like the files are extracted, but they aren’t.

You can see that the file is still zipped.

You can click on the html file which will display the AutoCluster correctly too, but when you click on any other link within that file, you’ll receive this error message if the file is still zipped.

If this happens to you, it means the file is still zipped. Close the files you have open, right click on the yellow zipped file folder and “extract all.”

Then click on the HTML link again and everything should work.

Ok, on to the fun part – the tools.

Tools

I’ve written about most of these tools individually before, except for the new combinations of course. I’ve put all of the Genetic Affairs Tools, Instructions and Resources in one article that you can find here.

I recommend that you take a look to be sure you’re using each tool to its greatest advantage.

AutoCluster

Click on the html file and watch your AutoCluster fly into place. I always, always love this part.

The first thing I noticed about my AutoCluster at GEDmatch is that it’s HUGE! I have a total of 144 clusters and that’s just amazing!

Information about the cluster file, including the number of matches, maximum and minimum cM used for the report, and minimum cluster size appears beneath your cluster chart.

22 people met the criteria but didn’t have other matches that did, so they are listed for my review, but not included in the cluster chart.

At first glance, the clusters look small, but don’t despair, they really aren’t.

My clusters only look small because the tool was VERY successful, and I have many matches in my clusters. The chart has to be scaled to be able to display on a computer monitor.

New Layout

Genetic Affairs has introduced a new layout for the various included tools.

Each section opens to provide a brief description of the tool and what is occurring. This new tool includes four previous tools plus a new one, AutoCluster Tree, as follows:

AutoCluster

AutoCluster first organizes your DNA matches into shared match clusters that likely represent branches of your family. Everyone in a cluster will likely be on the same ancestral line, although the MRCA between any of the matches and between you and any match may vary. The generational level of the clusters may vary as well. One may be your paternal grandmother’s branch, another may be your paternal grandfather’s father’s branch.

AutoSegment

AutoSegment organizes your matches based on triangulating segments. AutoSegment employs the positional information of segments (chromosome and start and stop position) to identify overlapping segments in order to link DNA matches. In addition, triangulated data is used to collaborate these links. Using the user defined minimum overlap of a DNA segment we perform a clustering of overlapping DNA segments to identify segment clusters. The overlap is calculated in centimorgans using human genetic recombination maps. Another aspect of overlapping segments is the fact that some regions of our genome seem to have more matches as compared to the other regions. These so-called pile-up areas can influence the clustering. The removal of known pile-up regions based on the paper of Li et al 2014 is optional and is not performed for this analysis However, a pileup report is provided that allows you to examine your genome for pileup regions.

AutoTree

By comparing the tree of the tested person and the trees from the members of a certain cluster, we can identify ancestors that are common amongst those trees. First, we collect the surnames that are present in the trees and create a network using the similarity between surnames. Next, we perform a clustering on this network to identify clusters of similar surnames. A similar clustering is performed based on a network using the first names of members of each surname cluster. Our last clustering uses the birth and death years of members of a cluster to find similar persons. As a consequence, initially large clusters (based on the surnames) are divided up into smaller clusters using the first name and birth/death year clustering.

AutoKinship

AutoKinship automatically predicts family trees based on the amount of DNA your DNA matches share with you and each other. Note that AutoKinship does not require any known genealogical trees from your DNA matches. Instead, AutoKinship looks at the predicted relationships between your DNA matches, and calculates many different paths you could all be related to each other. The probabilities used by this AutoKinship analysis are based on simulated data for GEDmatch matches and are kindly provided by Brit Nicholson (methodology described here). Based on the shared cM data between shared matches, we create different trees based on the putative relationships. We then use the probabilities to test every scenario which are then ranked.

AutoKinship Tree

Predicted trees from the AutoTree analysis are based on genealogical trees shared by the DNA matches and, if available, shared by the tested person. The relationships between DNA matches based on their common ancestors as provided AutoTree are used to perform an AutoKinship analysis and are overlayed on the predicted AutoKinship tree.

AutoKinship Tree is New

AutoKinship Tree is the new feature that combines the features of both AutoTree and AutoKinship. You receive:

  • Common ancestors between you and your matches
  • Trees of people who don’t share your common ancestors but share ancestors with each other
  • Combined with relationship predictions and
  • A segment analysis

Of course, the relative success of the tree tools depends upon how many people have uploaded GEDCOM files.

Big hint, if you haven’t uploaded your family tree, do so now. If you are an adoptee or searching for a parent and don’t know who your ancestors are, AutoKinship Tree does its best without your tree information, and you will still benefit from the trees of others combined with predicted relationships based on DNA.

It’s easier to show you than to tell you, so let’s step through my results one section at a time.

I’m going to be using cluster 5 which has 32 members and cluster 136 which has 8 members. Ironically, cluster 136 is a much more useful cluster, with 8 good matches, than cluster 5 which includes 32 people.

Results of the AutoKinship Analyses

As you scroll down your results, you’ll see a grid beneath the Explanation area.

It’s easy to see which cluster received results for each tool. My cluster 5 has results in each category, along with surnames. (Notice that you can search for surnames which displays only the clusters that contain that surname.)

I can click on each icon to see what’s there waiting for me.

Additionally, you can click at the top on the blue middle “here” for an overview of all common ancestors. Who can resist that, right?

Click on the ancestor’s name or the tree link to view more information.

You can also view common locations too by clicking on the blue “here” at far right. A location, all by itself, is a HUGE hint.

Clicking on the tree link shows you the tree of the tester with ancestors at that location. I had several others from North Carolina, generally, and other locations specifically. Let’s take a look at a few examples.

Common Ancestor Clusters

Click on the first blue link to view all common ancestors.

Common Ancestor Clusters summarize all of the clusters by ancestor. In other words, if any of your matches have ancestors in common in their tree, they are listed here.

These clusters include NOT just the people who share ancestors in a tree with you, but who also share known ancestors with each other BUT NOT YOU. That may be incredibly important when you are trying to identify your ancestors – as in brick walls. Your ancestors may be their ancestors too, or your common segments might lead to your common ancestors if you complete their tree.

There are other important hints too.

In my case, above, Jacob Lentz is my known ancestor.

However, Sarah Barron is not my ancestor, nor is John Vincent Dodson. They are the descendants of my Dodson ancestor though. I recognized that surname and those people. In other instances, recognizing a common geography may be your clue for figuring out how you connect.

In the cluster column at left, you can see the cluster number in which these people are found.

Common Locations Table

Clicking on the second link provides a Common Location Table

Some locations are general, like a state, and others are town, county or even village names. Whatever people have included in their GEDCOM files that can be connected.

Looking at this first entry, I recognize some of the ancestral surnames of Karen’s ancestors. The fact that we are found in the same cluster and share DNA indicates a common ancestor someplace.

Check for this same person in additional locations, then, look at their tree.

Ok, back to the AutoKinship Analysis Table and Cluster 136.

Cluster 136

I’m going to use Cluster 136 as an example because this cluster has generated great reports using all of the tools, indicated by the icon under each column heading. Some clusters won’t have enough information for everything so the tools generate as much as possible.

Scrolling down to Cluster 136 in the AutoCluster Information report, just beneath the list of clusters, I can see my 8 matches in that cluster.

Of course, I can click on the links for specific information, or contact them via email. At the end of this article in the “Tell Me Everything” section, I’ll provide a way to retrieve as much information as possible about any one match. For now, let’s move to the AutoTree.

Cluster 136 AutoTree

Clicking on the icon under AutoTree shows me how two of the matches in this cluster are related to each other and myself.

Note that the centimorgan badges listed refer to the number of cM that I share with each of these people, not how much they share with each other.

Click on any of the people to see additional information.

When I click on J Lentz m F Moselman, a popup box shows me how this couple is related to me and my matches.

Of course, you can also view the Y DNA or mitochondrial DNA haplogroups if the testers have provided that information when they set up their GEDmatch profile information.

Just click on the little icons.

If the testers have not provided that information, you can always check at FamilyTreeDNA or 23andMe, if they have tested at either of those vendors, to view their haplogroup information.

Today, GEDmatch kit numbers are assigned randomly, but in the early days, before Genesis, the leading letter of A meant AncestryDNA, F or T for FamilyTreeDNA, M for 23andMe and H for MyHeritage. If the kit number is something else, perform a one-to-one or a one-to-many report which will display the source of their DNA file.

The small number, 136 in this case, beside the cM number indicates the cluster or clusters that these people are members of. Some people are members of multiple clusters

Let’s see what’s next.

Cluster 136 Common Ancestors

Clicking on the Ancestors icon provides a report that shows all of the Ancestor Clusters in cluster 136.

The difference between this ancestor chart and the larger chart is that this only shows ancestors for cluster 136, while the larger chart shows ancestors for the entire AutoCluster report.

Cluster 136 Locations

All of the locations shown are included in trees of people who cluster together in cluster 136. Of course, this does NOT mean that these locations are all relevant to cluster 136. However, finding my own tree listed might provide an important clue.

Using the location tool, I discover 5 separate location clusters. This location cluster includes me with each tester’s ancestors who are found in Montgomery County, Ohio.

The difference between this chart for cluster 136 only and the larger location chart is that every location in this chart is relevant for people who all cluster together meaning we all share some ancestral line.

Viewing the trees of other people in the cluster may suggest ancestors or locations that are essential for breaking down brick walls.

Cluster 136 AutoKinship

Clicking on the anchor in the AutoKinship column provides a genetically reconstructed tree based on how closely each of the people match me, and each other. Clearly, in order to be able to provide this prediction, information about how your matches also match each other, or don’t, is required.

Again, the cM amount shown is the cM match with me, not with each other. However, if you click on a match, a popup will be shown that shows the shared cM between that person and the other matches as well as the relationship prediction between them in this tree

So, Bill matches David with a total of 354.3 cM and they are positioned as first cousins once removed in this tree. The probability of the match being a 1C1R (first cousin once removed) is 64.9%, meaning of course that other relationships are possible.

Note that Bill and David ALSO share a segment with me in autosegment cluster 185, on chromosome 3.

It’s important to note that while 136 is the autocluster number, meaning that colored block on the report, WITHIN clusters, autosegment clusters are formed and numbered. 

Each autosegment cluster receives its own number and the numbers are for the entire report. You will have more autosegment clusters than autoclusters, because at least some of the colorful autoclusters will contain more than one segment cluster.

Remember, autoclusters are those colorful boxes of matches that fly into place. Autosegment clusters are the matching triangulated clusters on chromosomes and they are represented by the blue bars, shown below.

AutoCluster 136 contains 5 different autosegment clusters, but Bill is only included in one of those autosegment clusters.

You’ll notice that there are some people, like Robin at the bottom, who do match some other people in the cluster, but either not enough people, or not enough overlapping DNA to be included as an autocluster member.

The small colored chromosomes with numbers, boxed in red, indicate the chromosome on which this person matches me.

If you click on that chromosome icon, you’ll see a popup detailing everyone who matches me on that segment.

Note that in some cases a member of a segment cluster, like Robin, did not make it in the AutoCluster cluster. You can spot these occurrences by scrolling down and looking at the cluster column which will then be empty for that particular match.

Reconstructed AutoKinship Trees in Most Likely Order

Scrolling down the page, next we see that we have multiple possible trees to view. We are shown the most likely tree first.

Tree likelihood is constructed based on the combined probability of my matching cM to an individual plus their likely relationship to each other based on the amount of DNA they share with each other as well.

In my case, all of the first 8 trees are equally as likely to be accurate, based on autosomal genetic relationships only. The ninth tree is only very slightly less likely to be accurate.

The X chromosome is not utilized separately in this analysis, nor are Y or mitochondrial DNA haplogroups if provided.

DNA Relationship Matrix

Continuing to scroll down, we next see the DNA matrix that shows relationships for cluster 5 in a grid format. Click on “Download Relationship Matrix” to view in a spreadsheet.

Keep scrolling for the next view which is the Individual Segment Cluster Information

Individual Segment Cluster Information

Remember that we are still focused on only one cluster – in this case, cluster 136. Each cluster contains people who all match at least some subset of other people in the cluster. Some people will match each other and the tested person on the same chromosome segment, and some won’t. What we generally see within clusters are “subclusters” of people who match each other on different chromosomes and segments. Also, some matches from cluster 136 might match other people but those matches might not be a member of cluster 136.

In autocluster 136, I have 14 DNA segments that converge into 5 segment clusters with my matches. Here’s segment cluster 185 that consists of two people in addition to me. Note that for individuals to be included in these segment clusters at GEDmatch, they must triangulate with people in the same segment cluster.

From left to right, we see the following information:

  • AutoCluster number 136, shown below

  • Segment cluster 185. This is a segment cluster within autocluster 136.

  • Segment cluster 185 occurs on chromosome 3, between the designated start and stop locations.
  • The segment representation shows the overlapping portions of the two matches, to me. You can easily see that they overlap almost exactly with each other as well.
  • The SNP count is shown, followed by the name and cM count.

Cluster 136 AutoKinship Tree

The AutoKinship Tree column is different from the AutoKinship column in one fundamental way. The new AutoKinship Tree feature combines the genealogical AutoTree and the genetic AutoKinship output together in one report.

You can see that the “prior” genealogical tree information that one of my matches also descends from Jacob Lentz (and wife, if you click further) has now been included. The matches without trees have been reconstructed around the known genealogy based on how they match me and each other.

I was already aware of how I’m related to Bill, David, *C and *R, but I don’t know how I am related to these other people. Based on their kit identifier, I can go to the vendor where they tested and utilize tools there, and I can check to see if they have uploaded their DNA files elsewhere to discover additional records information or critical matches. Now at least I know where in the tree to search.

Cluster 136 AutoSegment

Clicking on AutoSegment provides you with segment information. Each cluster is painted on your chromosomes.

By hovering over the darkly colored segments, which are segment clusters, you can view who you match, although to view multiple matches, continue scrolling.

In the next section, you’ll see the two segment clusters contained wholly within cluster 136.

Following that is the same information for segment clusters partially linked to cluster 136, but not contained wholly within 136.

Bonus – Tell Me Everything – Individual Match Clusters

We’ve focused specifically on the AutoKinship tools, but if you’re interested in “everything” about one specific match, you can approach things from that perspective too. I often look at a cluster, then focus on individuals, beginning with those I can identify which focuses my search.

If you click on any person in your match list, you’ll receive a report focusing on that person in your autocluster.

Let’s use cousin Bill as an example. I know how he’s related to me.

You can choose to display your chosen cluster by:

  • Cluster
  • Number of shared matches
  • Shared cM with the tester
  • Name

I would suggest experimenting with all of the options and see which one displays information that is most useful to the question you’re trying to answer.

Beneath the cluster for Bill, you’ll see the relevant information about the cluster itself. Bill has cluster matches on two different chromosomes.

The AutoCluster Cluster member Information report shows you how much DNA each cluster member shares with the tested person, which is me, and with each other cluster member. It’s easy to see at a glance who Bill is most closely related to by the number of cMs shared.

Only one of Bill’s chromosomes, #3, is included in clusters, but this tells me immediately that this/these segments on chromosome 3 triangulate between me, Bill, and at least one other person.

Segments shown in orange (chromosome 22) match me, but are not included in a cluster.

Special Use Cases – Unknown People

For adoptees and people trying to figure out how they are related to closer relatives, especially those without a tree, this new combined AutoKinship tool is wonderful.

400 cM is the upper default limit when running the report, meaning that close family members will not be included because they would be included in many clusters. However, you can make a different selection. If you’re trying to determine how several closely related people intersect, select a high threshold to include everyone.

Select a lower number of matches, like 25 or 50.

In this example, ‘no limit” was selected as the upper total match threshold and 25 closest matches.

AutoKinship then constructs a genetic tree and tells you which trees are possible and most likely. If some people do have trees, that common ancestor information would be included as well.

Note that when matches occur over the 400 cM threshold, there will be too many common chromosome matches so the chromosome numbers are omitted. Just check the other reports.

This tool would have helped a great deal with a recent close match who didn’t know how they are related to my family.

You can see this methodology in action and judge its accuracy by reconstructing your own family, assuming some of your known family members have uploaded to GEDmatch. Try it out.

It’s a Lot!

I know there’s a lot here to absorb, but take your time and refer back to this article as needed.

This flexible new tool combines DNA matching, genealogy trees, genetic trees, locations, autoclusters, a chromosome browser, and triangulation. It took me a few passes and working with different clusters to understand and absorb the information that is being provided.

For people who don’t know who their parents or close relatives are, these tools are amazing. Not only can they determine who they are related to, and who is related to each other, but with the use of trees, they can view common ancestors which provides possible ancestors for them too.

For people painting their triangulated segments at DNAPainter, AutoKinship provides triangulation groups that can be automatically painted using the Cluster Auto Painter, here, plus helps to identify that common ancestor. You can read more about DNAPainter, here.

For people seeking to break down brick walls, AutoKinship Tree provides assistance by providing tree matching between your matches for common ancestors NOT IN YOUR TREE, but that ARE in theirs. Your brick walls are clearly not (yet) identified in your tree, although that’s our fervent hope, right?

Even if your matches’ trees don’t go far enough back, as a genealogist, you can extend those trees further to hopefully reveal a previously unknown common ancestor.

The Best Things You Can Do

Aside from DNA testing, the three best things you can do to help yourself, and your clusters are:

  • Upload your GEDCOM file, complete with locations, so you have readily available trees. Ask your matches to do so as well. Trees help you and others too.
  • Encourage people you match at Ancestry who provides no chromosome segment information or chromosome browser to upload a copy of their DNA files and tree.
  • Test your family members and cousins, and encourage them to upload their DNA and their trees. Offer to assist them. You can find step-by-step download/upload instructions here.

Have fun!

______________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research