Big Y News and Stats + Sale

I must admit – this past January when FamilyTreeDNA announced the Big Y-700, an upgrade from the Big Y-500 product, I was skeptical. I wondered how much benefit testers would really see – but I was game to purchase a couple upgrades – and I did. Then, when the results came back, I purchased more!

I’m very pleased to announce that I’m no longer skeptical. I’m a believer.

The Big Y-700 has produced amazing results – and now FamilyTreeDNA has decoupled the price of the BAM file in addition to announcing substantial sale prices for their Thanksgiving Sale.

I’m going to discuss sale pricing for products other than the Big Y in a separate article because I’d like to focus on the progress that has been made on the phylogenetic tree (and in my own family history) as a result of the Big Y-700 this year.

Big Y Pricing Structure Change

FamilyTreeDNA recently anounced some product structure changes.

The Big Y-700 price has been permanently dropped by $100 by decoupling the BAM file download from the price of the test itself. This accomplishes multiple things:

  • The majority of testers don’t want or need the BAM file, so the price of the test has been dropped by $100 permanently in order to be able to price the Big Y-700 more attractively to encourage more testers. That’s good for all of us!!!
  • For people who ordered the Big Y-700 since November 1, 2019 (when the sale prices began) who do want the BAM file, they can purchase the BAM file separately through the “Add Ons and Upgrades” page, via the “Upgrades” tab for $100 after their test results are returned. There will also be a link on the Big Y-700 results page. The total net price for those testers is exactly the same, but it represents a $100 permanent price drop for everyone else.
  • This BAM file decoupling reduces the initial cost of the Big Y-700 test itself, and everyone still has the option of purchasing the BAM file later, which will make the Big Y-700 test more affordable. Additionally, it allows the tester who wants the BAM file to divide the purchase into two pieces, which will help as well.
  • The current sale price for the Big Y-700 for the tester who has taken NO PREVIOUS Y DNA testing is now just $399, formerly $649. That’s an amazing price drop, about 40%, in the 9 months since the Big Y-700 was introduced!
  • Upgrade pricing is available too, further down in this article.
  • If you order an upgrade from any earlier Big Y to the Big Y-700, you receive an upgraded BAM file because you already paid for the BAM file when you ordered your initial Big Y test.
  • The VCF file is still available for download at no additional cost with any Big Y test.
  • There is no change in the BAM file availability for current customers. Everyone who ordered before November 1, 2019 will be able to download their BAM file as always.

The above changes are permanent, except for the sale price.

2019 has been a Banner Year

I know how successful the Big Y-700 has been for kits and projects that I manage, but how successful has it been overall, in a scientific sense?

I asked FamilyTreeDNA for some stats about the number of SNPs discovered and the number of branches added to the Y phylotree.

Drum roll please…

Branches Added This Year Total Tree Branches Variants Added to Tree This Year Total Variants Added to Tree
2018 6,259 17,958 60,468 132.634
2019 4,394 22.352 32,193 164,827

The tests completed in 2019 are only representative for 10 months, through October, and not the entire year.

Haplotree Branches

Not every SNP discovered results in a new branch being added to the haplotree, but many do. This chart shows the number of actual branches added in 2018 and 2019 to date.

Big Y 700 haplotree branches.png

These stats, provided by FamilyTreeDNA, show the totals in the bottom row, which is a cumulative branch number total, not a monthly total. At the end of October 2019, the total number of individual branches were 22,352.

Big Y 700 haplotree branches small.png

This chart, above, shows some of the smaller haplogroups.

Big Y 700 haplotree branches large.png

This chart shows the larger haplogroups, including massive haplogroup R.

Haplotree Variants

The number of variants listed below is the number of SNPs that have been discovered, named and placed on the tree. You’ll notice that these numbers are a lot larger than the number of branches, above. That’s because roughly 168,000 of these are equivalent SNPs, meaning they don’t further branch the tree – at least not yet. These 168K variants are the candidates to be new branches as more people test and the tree can be further split.

Big Y 700 variants.png

These numbers also don’t include Private Variants, meaning SNPs that have not yet been named.

If you see Private Variants listed in your Big Y results, when enough people have tested positive for the same variant, and it makes sense, the variants will be given a SNP name and placed on the tree.

Big Y 700 variants small.png

The smaller haplogroups variants again, above, followed by the larger, below.

Big Y 700 variants large.png

Upgrades from the Big Y, or Big Y-500 to Big Y-700

Based on what I see in projects, roughly one third of the Big Y and Big Y-500 tests have upgraded to the Big Y-700.

For my Estes line, I wondered how much value the Big Y-700 upgrade would convey, if any, but I’m extremely glad I upgraded several kits. As a result of the Big Y-700, we’ve further divided the sons of Abraham, born in 1747. This granularity wasn’t accomplished by STR testing and wasn’t accomplished by the Big Y or Big Y-500 testing alone – although all of these together are building blocks. I’m ECSTATIC since it’s my own ancestral line that has the new lineage defining SNP.

Big Y 700 Estes.png

Every Estes man descended from Robert born in 1555 has R-BY482.

The sons of the immigrant, Abraham, through his father, Silvester, all have BY490, but the descendants of Silvester’s brother, Robert, do not.

Moses, son of Abraham has ZS3700, but the rest of Abraham’s sons don’t.

Then, someplace in the line of kit 831469, between Moses born in 1711 and the present-day tester, we find a new SNP, BY154784.

Big Y 700 Estes block tree.png

Looking at the block tree, we see the various SNPs that are entirely Estes, except for one gentleman who does not carry the Estes surname. I wrote about the Block Tree, here.

Without Big Y testing, none of these SNPs would have been found, meaning we could never have split these lines genealogically.

Every kit I’ve reviewed carries SNPs that the Big Y-700 has been able to discern that weren’t discovered previously.

Every. Single. One.

Now, even someone who hasn’t tested Y DNA before can get the whole enchilada – meaning 700+ STRs, testing for all previously discovered SNPs, and new branch defining SNPs, like my Estes men – for $399.

If a new Estes tester takes this test, without knowing anything about his genealogy, I can tell him a great deal about where to look for his lineage in the Estes tree.

Reduced Prices

FamilyTreeDNA has made purchasing the Big Y-700 outright, or upgrading, EXTREMELY attractive.

Test Price
Big Y-700 purchase with no previous Y DNA test

 

$399
Y-12 upgrade to Big Y-700 $359
Y-25 upgrade to Big Y-700 $349
Y-37 upgrade to Big Y-700 $319
Y-67 upgrade to Big Y-700 $259
Y-111 upgrade to Big Y-700 $229
Big Y or Big Y-500 upgrade to Big Y-700 $189

Note that the upgrades include all of the STR markers as yet untested. For example, the 12-marker to Big Y-700 includes all of the STRs between 25 and 111, in addition to the Big Y-700 itself. The Big Y-700 includes:

  • All of the already discovered SNPs, called Named Variants, extending your haplogroup all the way to the leaf at the end of your branch
  • Personal and previously undiscovered SNPs called Private Variants
  • All of the untested STR markers inclusive through 111 markers
  • A minimum of a total of 700 STR markers, including markers above 111 that are only available through Big Y-700 testing

With the refinements in the Big Y test over the past few years, and months, the Big Y is increasingly important to genealogy – equally or more so than traditional STR testing. In part, because SNPs are not prone to back mutations, and are therefore more stable than STR markers. Taken together, STRs and SNPs are extremely informative, helping to break down ancestral brick walls for people whose genealogy may not reach far back in time – and even those who do.

If you are a male and have not Y DNA tested, there’s never been a better opportunity. If you are a female, find a male on a brick wall line and sponsor a scholarship.

Click here to order or upgrade!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Family Tree DNA Names 100,000 New Y DNA SNPs

Recently, Family Tree DNA named 100,000 new SNPs on the Y DNA haplotree, bringing their total to over 153,000. Given that Family Tree DNA does the majority of the Y DNA NGS “full sequence” testing in the industry with their Big Y product, it’s not at all surprising that they have discovered these new SNPs, currently labeled as “Unnamed Variants” on customers’ Big Y Results pages.

The surprising part was twofold:

Family Tree DNA single-handedly propelled science forward with the introduction of the Big Y test. They likely have performed more NGS Y chromosome tests than the entire rest of the world combined. Assuredly, they have commercially.

Originally, in the early 2000s, a new SNP wasn’t named until there were three independent instances of discovery. That pre-NGS “rule” didn’t take into account three men from the same family line because very few men had been tested at that point in time, let alone multiple men from the same family. This type of testing was originally only done in an academic environment. A caveat was put into place by Family Tree DNA when they started discovering SNPs that the 3 individuals had to be from separate family lines and the SNP in question had to be verified by Sanger sequencing before being considered for name assignment and tree placement. At that time, they were pushing the scientific envelope.

In recent years, that criteria changed to two individuals. With this new development, the SNP is being named with one reliable occurrence, BUT, the SNP still is not being placed on the tree without two high quality occurrences.

Naming the SNPs early while awaiting that second occurrence allows discussion about the validity of that particular finding. Family Tree DNA was not the first to move to this practice.

Some time ago, two other firms began analyzing the BAM files produced by Family Tree DNA for an additional analysis fee. Those firms began naming SNPs before three occurrences had been documented, a practice which has been well-accepted by the genetic genealogy community. Everyone seems to be anxious to see their SNP(s) named and placed on the tree, although there is little consensus or standardization about the criteria to place a SNP on the tree or the line between high, medium and low quality SNP read results.

The definition of a new haplogroup, meaning a high quality named SNP, is a new branch in the Y tree. Every new SNP mutation has the potential to be carried for many generations – or to go extinct in one or two.

As the industry has matured, SNP naming procedures have evolved too.

How SNP Names Are Assigned

The lab or entity that discovers a SNP gets to name the SNP. That means that their abbreviation is appended to the beginning of the SNP number, thereby in essence crediting that entity for the discovery. Clearly more conservative namers can’t append their initials to nearly as many SNPs as aggressive namers.

Here’s a list of the naming entities, maintained by ISOGG.

In 2006, the first year that ISOGG compiled a SNP tree, the number of Y DNA haplogroups was 460, including singletons, not tens of thousands. No one would ever have believed this SNP tsunami would happen, let alone in such a short time.

Naming SNPs

Family Tree DNA waiting to name SNPs until 3 were discovered in unrelated family lines, and requiring confirmation by Sanger sequencing allowed the analysis entities to “discover” and name the SNP with their own preceding prefix by implementing less stringent naming criteria. It also increased the possibility of dual naming, a phenomenon that occurs when multiple entities name the same SNP about the same time.

Some people who maintain trees list all of these equivalent SNPs that were named for the exact same mutation, at the same time. Family Tree DNA does not. If the same SNP is named more than once, Family Tree DNA selects one to name the tree branch – in the example below, ZP58. Checking YBrowse, this SNP was also named FGC11161 and ZP56.2.

However, you can see, that SNP ZP58 has several other SNPs keeping it company on the same branch, at least for now.

The FGC SNPs above are only assigned as branch equivalents of ZP58 until a discovery is made that will further divide this branch into two or more branches. That’s how the tree is built.

Sometimes defining a unique SNP is not as straightforward as one would think, especially not utilizing scan technology.

While YFull doesn’t do testing, Full Genomes Corporation does. All of the YFull named SNPs are a result of interpreting BAM files of individuals who have tested elsewhere and naming SNPs that the testing labs didn’t name.

Today, YBrowse, also maintained by ISOGG in conjunction with Thomas Krahn shows the following three organizations with the highest named SNP totals:

  • Family Tree DNA – BY and L prefixes, (L from before the Big Y test) – 153,902
  • YFull – Y prefix – 133,571 (plus 6447 YP SNPs submitted by citizen scientists for verification)
  • Full Genomes Corporation – FGC prefix – 81,363

Just because a SNP is named doesn’t mean that it has been placed on the haplotree. Today, Family Tree DNA has just over 14,100 branches on their tree, with a total of 102,104 SNPs (from all naming sources) placed on their tree. That number increases daily as the following placement criteria is met:

  • Read quality confirmed by the lab
  • Two or more instances of the SNP

SNPs Applied to Family History

All SNPs discovered through the Big Y process and named by Family Tree DNA begin with BY, so my Estes lineage is BY490. This mutation (SNP) occurred since Robert Eastye born in 1555, because one of his son’s descendants carries only BY482 and the descendants of another son carry BY490.

In the pedigree above, kit 166011, to the far right is BY482 and the rest are all BY490, which is one mutation below BY482 on the haplotree.

This means of course that the mutation BY490, occurred someplace between the common ancestor of all of these men, Robert Eastye born in 1555, and Abraham Estes born in 1647. All of Abraham’s descendants carry BY490 along with BY482, but kit 166011 does not. Therefore, we know within two generations of when BY490 occurred. Furthermore, if someone descended from one of Abraham’s brothers (Robert, Silvester, Thomas, Richard, Nicholas or John,) represented on this chart by Richard, we could tell from that result if the mutation occurred between Robert and Silvester, or between Silvester and Abraham.

Unnamed Variants Versus Named SNPs

As it turns out, reserving a location for the Unnamed Variants in the SNP tree is much like making a dinner reservation. It’s yours to claim, assuming everyone shows up.

In the case of Unnamed Variants, Family Tree DNA reserved the SNP name and the SNP will be placed on the tree as soon as a second occurrence is discovered and the SNP is entirely vetted for quality and accuracy. Palindromic and high repeat regions were excluded unless manually verified.

While this article isn’t going to delve into how to determine read quality, every SNP placed on the tree at Family Tree DNA is individually evaluated to assure that they are not being placed erroneously or that a “mutation” isn’t really a misalignment or read issue.

Currently, Family Tree DNA is working their way through the entire haplotree, placing SNPs in the correct location. As you can see, they have more than 100,000 to go and more SNPs are discovered every day.

In the case of the Estes men, you can see their branch placement in the much larger tree.

As we learn more, sometimes branch placements move.

Is Your Unnamed Variant on the List?

ISOGG maintains an index of BY SNPs. BY of course equates to Big Y.

Before using the index, you first need to sign on to your Family Tree DNA account and look at your Unnamed Variants on your Big Y personal page.

If you don’t have any Unnamed Variants, that means all of your Unnamed Variants have already been named. Congratulations!

If you do have Unnamed Variants, click on the position number to take a look on the browser.

This unnamed variant result is clearly a valid read, with almost every forward and reverse read showing the same mutation, all high-quality reads and no “messy” areas nearby that might suggest an alignment issue. You can read more about how to work with your Big Y results in the article, Working With the New Big Y Results (hg38).

Next, go to the ISOGG BY Index page and enter the position number of the variant in the search box – in this case, 13311600.

In this case, 13311600 is not included in the BY Index because YFull already beat Family Tree DNA to the punch and named this SNP.

How do I know that? Because after seeing that there was no result for 13311600 on the ISOGG page, I checked YBrowse.

You can utilize YBrowse to see if an Unnamed Variant has previously been named. You can see the SNP name, Y93760, directly above the left side of the red bar below. The “Y” of course tells you that YFull was the naming entity. (Note that you can click on any image to enlarge.)

YBrowse is more fussy and complex to use than doing the simple ISOGG search. You only need to utilize YBrowse if your Unnamed Variant isn’t listed in the BY ISOGG search tool.

To use YBrowse successfully, you must enter the search in the format of “chrY:13311600..1311600” without the quotation marks and where the number is the variant location, and then click search.

The next Unnamed Variant, 14070341, is included in the ISOGG search list, so no need to utilize YBrowse for this one.

To see the new name that this SNP will be awarded when/if it’s placed on the tree, click on the link “BY SNPs 100K.” You’ll see the page, below.

Then, scroll down or use your browser search to find the variant location.

There we go – this variant will be named BY105782 as soon as Family Tree DNA places it on the tree! I’ll be watching!

Where will it be located on the tree, and will it be the new Estes terminal SNP, meaning the SNP that defines our haplogroup? I can’t wait to find out! It’s so much fun to be a part of scientific discovery.

If you’re a male and haven’t taken the Big Y test, now’s a great timeClick here to order. You can play a role in scientific discovery too. Does your Y DNA carry undiscovered SNPs?

A big thank you to Family Tree DNA for making resources available to answer questions about their new SNPs and naming processes.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research