Ancient Ireland’s Y and Mitochondrial DNA – Do You Match???

Ancient Ireland – the land of Tara and Knowth and the passage tombs of New Grange. Land of legend, romance, and perchance of King Arthur, or at least some ancient king who became Arthur in legend.

The island of Ireland, today Ireland and Northern Ireland, was a destination location, it seems, the westernmost island in the British Isles, and therefore the western shore of Europe. Anyone who sailed further west had better have weeks of food, water, and a great deal of good luck.

But who settled Ireland, when, and where did they come from? How many times was Ireland settled, and did the new settlers simply mingle with those already in residence, or did they displace the original settlers? Oral history recorded in the most ancient texts speaks of waves of settlement and conquest.

According to two papers, discussed below, which analyze ancient DNA, there were two horizon events that changed life dramatically in Europe, the arrival of agriculture about 3750 BC, or about 5770 years ago, and the arrival of metallurgy about 2300 BC, or 4320 years ago.

The people who lived in Ireland originally are classified as the Mesolithic people, generally referred to as hunter-gatherers. The second wave was known as Neolithic or the people who arrived as farmers. The third wave heralded the arrival of the Bronze Age when humans began to work with metals.

Our answers about Irish settlers come from the skeletons of the people who lived in Ireland at one time and whose bones remain in various types of burials and tombs.

The first remains to be processed with high coverage whole genome sequencing were those of 3 males whose remains were found in a cist burial on volcanic Rathlin Island, located in the channel between Ireland and Scotland.

In 795, Rathlin had the dubious honor of being the first target of Viking raiding and pillaging.

Rathlin Island is but a spit of land, with a total population of about 150 people, 4 miles east to west and 2.5 miles north to south. Conflict on the island didn’t stop there, with the Campbell and McDonald clan, among others, having bloody clashes on this tiny piece of land, with losers being tossed from the cliffs.

The island is believed to have been settled during the Mesolithic period, according to O’Sullivan in Maritime Ireland, An Archaeology of Coastal Communities (2007). The original language of Rathlin was Gaelic. Having been a half-way point between Ireland and Scotland, it’s believed that Rathlin served as an important cog in the Dalriada diaspora with Dalriada people taking their language, through Rathlin, into Scotland from about 300 AD, or 1700 years ago.

The first Irish remains whose DNA was sequenced at the whole genome level are from those three men and a much earlier Neolithic woman.

  • Three men from a cist burial in Rathlin Island, Co. Antrim (2026-1534 BC) with associated food vessel pottery.
  • A Neolithic woman (3343-3030 BC) from Ballynahatty, County, Down, south of Belfast, found in an early megalithic passage-like grave

Megalithic tomb at the centre of the Giant’s Ring in Ballynahatty, Ireland, photo by robertpaulyoung – [1], CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=3221494

The female is clearly older than the three Rathlin males. According to Cassidy, et al, 2016, she clusters with 5 other Middle Neolithic individuals from Germany, Spain, and Scandinavia, while the males cluster with early Bronze Age genomes from central and northern Europe, reflecting a division between hunter-gatherer and early farmer individuals.

The males reflect genetic components of the Yamnaya, early Bronze Age herders from the Pontic Steppe, along with an equal level of Caucasus admixture.

The threshold between the Neolithic and Bronze Age fell at about 3750 BC in western Europe and Ireland, right between these two burials.

Even Earlier Burials

In 2020, Cassidy et al sequenced another 44 individuals from Irish passage grave burials ranging in age from 4793 to 2910 BC, or about 3000 to 7000 years ago. All of the men are members of haplogroup I, except two who are Y haplogroup H.

The Rathlin males, all haplogroup R1b, combined with evidence provided by later genetic analysis of passage grave remains point decisively towards a population replacement – with haplogroup R males replacing the previous inhabitants of both Europe and the British Isles.

In far western Ireland, haplogroup R and subgroups reach nearly 100% today.

I would encourage you to read the two papers, linked below, along with supplemental information. They are absolutely fascinating and include surprises involving both the history between Ireland and continental Europe, along with the relationships between the people buried at Newgrange.

Not only that, but the oral history regarding an elite sibling relationship involving the sun was passed down through millenia and seems to be corroborated by the genetics revealed today.

The most recent 2020 paper includes extensive archaeological context revolving around passage graves and megalithic tombs. When I visited New Grange in 2017, above, I was told that genetic analysis was underway on remains from several ancient burials.

I’m incredibly grateful that Dr. Dan Bradley’s ancient DNA lab at the Smurfit Institute of Genetics in Dublin, which I was also privileged to visit, was not only working on these historical treasures but that they were successful in obtaining high-quality results for Y DNA, autosomal and mitochondrial.

Dr. Dan Bradley in his ancient DNA lab in Dublin.

Take a look at these fascinating papers and then, see if you match any of the ancient samples.

Papers

Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome by Cassidy et al 2016

This paper included the Ballynahatty female and the three Rathlin Island males.

Significance

Modern Europe has been shaped by two episodes in prehistory, the advent of agriculture and later metallurgy. These innovations brought not only massive cultural change but also, in certain parts of the continent, a change in genetic structure. The manner in which these transitions affected the islands of Ireland and Britain on the northwestern edge of the continent remains the subject of debate. The first ancient whole genomes from Ireland, including two at high coverage, demonstrate that large-scale genetic shifts accompanied both transitions. We also observe a strong signal of continuity between modern-day Irish populations and the Bronze Age individuals, one of whom is a carrier for the C282Y hemochromatosis mutation, which has its highest frequencies in Ireland today.

Abstract

The Neolithic and Bronze Age transitions were profound cultural shifts catalyzed in parts of Europe by migrations, first of early farmers from the Near East and then Bronze Age herders from the Pontic Steppe. However, a decades-long, unresolved controversy is whether population change or cultural adoption occurred at the Atlantic edge, within the British Isles. We address this issue by using the first whole genome data from prehistoric Irish individuals. A Neolithic woman (3343–3020 cal BC) from a megalithic burial (10.3× coverage) possessed a genome of predominantly Near Eastern origin. She had some hunter–gatherer ancestry but belonged to a population of large effective size, suggesting a substantial influx of early farmers to the island. Three Bronze Age individuals from Rathlin Island (2026–1534 cal BC), including one high coverage (10.5×) genome, showed substantial Steppe genetic heritage indicating that the European population upheavals of the third millennium manifested all of the way from southern Siberia to the western ocean. This turnover invites the possibility of accompanying introduction of Indo-European, perhaps early Celtic, language. Irish Bronze Age haplotypic similarity is strongest within modern Irish, Scottish, and Welsh populations, and several important genetic variants that today show maximal or very high frequencies in Ireland appear at this horizon. These include those coding for lactase persistence, blue eye color, Y chromosome R1b haplotypes, and the hemochromatosis C282Y allele; to our knowledge, the first detection of a known Mendelian disease variant in prehistory. These findings together suggest the establishment of central attributes of the Irish genome 4,000 y ago.

A Dynastic elite in monumental Neolithic society by Cassidy et al, 2020

Poulnabrone Dolmen, County Clare, where disarticulated remains of 35 individuals have been excavated and two, approximately 5500-6000 years old, have resulting haplogroups.

This second article includes a great deal of archaeological and burial information which includes caves, reefs, cist burials, boulder chambers, peat bogs, dry-stone walls, portal tombs (think Stonehenge style structures), megalithic tombs such as the Giant’s Ring, court tombs, and passage tombs, including Newgrange.

Abstract

The nature and distribution of political power in Europe during the Neolithic era remains poorly understood1. During this period, many societies began to invest heavily in building monuments, which suggests an increase in social organization. The scale and sophistication of megalithic architecture along the Atlantic seaboard, culminating in the great passage tomb complexes, is particularly impressive2. Although co-operative ideology has often been emphasized as a driver of megalith construction1, the human expenditure required to erect the largest monuments has led some researchers to emphasize hierarchy3—of which the most extreme case is a small elite marshalling the labour of the masses. Here we present evidence that a social stratum of this type was established during the Neolithic period in Ireland. We sampled 44 whole genomes, among which we identify the adult son of a first-degree incestuous union from remains that were discovered within the most elaborate recess of the Newgrange passage tomb. Socially sanctioned matings of this nature are very rare, and are documented almost exclusively among politico-religious elites4—specifically within polygynous and patrilineal royal families that are headed by god-kings5,6. We identify relatives of this individual within two other major complexes of passage tombs 150 km to the west of Newgrange, as well as dietary differences and fine-scale haplotypic structure (which is unprecedented in resolution for a prehistoric population) between passage tomb samples and the larger dataset, which together imply hierarchy. This elite emerged against a backdrop of rapid maritime colonization that displaced a unique Mesolithic isolate population, although we also detected rare Irish hunter-gatherer introgression within the Neolithic population.

Y DNA Analysis at FamilyTreeDNA

Fortunately, the minimum coverage threshold for the Bradley lab was 30X, meaning 30 scanned reads. Of the 37 males sequenced, the lab was able to assign a Y DNA haplogroup to 36.

Family Tree DNA downloaded the BAM files and Michael Sager analyzed the Y DNA. The results split about 8 Y DNA lines, resulting in a total of 16 different haplogroup assignments. There are a couple more that may split with additional tests.

Cassidy et al report that the Y DNA results in several geographic locations, using the ISOGG tree (2018) for haplogroup assignment, although in some cases, I did find some inconsistencies in their haplogroup and SNP names. I would recommend reading the paper in full for the context, including the supplementary information, and not simply extracting the SNP information, because the context is robust as is their analysis.

If your family hails from the Emerald Isle, chances are very good that these people represent your ancestral lines, one way or another – even if you don’t match them exactly. The events they witnessed were experienced by your ancestors too. There appears to have been a vibrant, diverse community, or communities, based on the burials and history revealed.

Of course, we all want to know if our Y DNA or mitochondrial DNA haplogroups, or that of our family members matches any of these ancient samples.

Thank you to Michael Sager, phylogeneticist, and Goran Runfeldt, head of R&D at Family Tree DNA for making this information available. Without their generosity, we would never know that an ancient sample actually split branches of the tree, nor could we see if we match.

Do You Match?

I explained, in this article, here, step-by-step, how to determine if your Y DNA or mitochondrial DNA matches these ancient samples.

If you only have a predicted or base haplogroup, you can certainly see if your haplogroup is upstream of any of these ancient men. However, you’ll receive the best results if you have taken the detailed Big Y-700 test, or for the mitochondrial DNA lines, the full sequence test. You can upgrade or order those tests, here. (Sale started today.)

Sample: Rathlin1 / RM127 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 2026-1885 cal BC
Y-DNA: R-DF21
mtDNA: U5a1b1e

Sample: Rathlin2 / RSK1 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 2024-1741 cal BC
Y-DNA: R-DF21
mtDNA: U5b2a2

Sample: Rathlin3 / RSK2 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 1736-1534 cal BC
Y-DNA: R-L21
mtDNA: J2b1a

Sample: Ballynahatty / BA64 (Cassidy et al. 2016)
Sex: Female
Location: Ballynahatty, Down, Northern Ireland
Age: Middle to Late Neolithic 3343-3020 cal BC
mtDNA: HV0-T195C!

The above 4 samples were from the original 2016 paper, with the additional samples from 2020 added below

Sample: Ashleypark3 / ASH3 (Cassidy et al. 2020)
Sex: Male
Location: Ashleypark, Tipperary, Ireland
Age: Early-Middle Neolithic 3712-3539 cal BC
Y-DNA: I-FT344600
FTDNA Comment: Ashleypark3, Parknabinnia186, Parknabinnia2031, Parknabinnia672, Parknabinnia675, Parknabinnia768 and Poulnabrone06 split the I2-L1286 (S21204+/L1286-) branch. These samples, along with SBj (Gunther 2018), I1763 (Mathieson 2018), Ajv54 (Malmström 2019) and Ajv52, Ajv58 and Ajv70 (Skoglund 2012) form the branch I-FT344596. All Cassidy samples form an additional branch downstream, I-FT344600. There is further evidence that SBj, Ajv58 and Ajv52 might form an additional branch, sibling to I-FT344600
mtDNA: T2c1d1

Sample: Killuragh6 / KGH6 (Cassidy et al. 2020)
Sex: Male
Location: Killuragh, Limerick, Ireland
Age: Mesolithic 4793-4608 cal BC
Y-DNA: I-V4921
FTDNA Comment: Joins ancient samples Loschbour, Motala12, Motala3 (Lazaridis 2015) and Steigen (Gunther 2018) at I2-V4921
mtDNA: U5b2a

Loschbour Man is from present-day Luxembourg, Motala is from Sweden and Steigen is from Norway.

Sample: Parknabinnia186 / PB186 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3518-3355 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: X2b-T226C

Sample: Parknabinnia2031 / PB2031 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3632-3374 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: K1a2b

Sample: Parknabinnia672 / PB672 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3626-3196 cal BC; 3639-3384 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: T2c1d-T152C!

Sample: Parknabinnia675 / PB675 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3263-2910 cal BC; 3632-3372 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H1

Sample: Parknabinnia768 / PB768 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3642-3375 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H4a1a1

Sample: Poulnabrone06 / PN06 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3635-3376 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H

Sample: Sramore62 / SRA62 (Cassidy et al. 2020)
Sex: Male
Location: Sramore, Leitrim, Ireland
Age: Mesolithic 4226-3963 cal BC
Y-DNA: I-S2519
FTDNA Comment: Split the I2-S2519 branch. Pushes Cheddar man and SUC009 down to I-S2497. Other relevant pre-L38s include I2977 (I-Y63727) and R11, I5401, I4971, I4915 I4607 (I-S2599)
mtDNA: U5a2d

This branch is ancestral to Cheddar Man who dates from about 9000 years ago and was found in Cheddar Gorge, Somerset, England. S2497 has 141 subbranches.

Sample: Annagh1 / ANN1 (Cassidy et al. 2020)
Sex: Male
Location: Annagh, Limerick, Ireland
Age: Middle Neolithic 3638-3137 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: K1a-T195C!

Men from Germany and Ireland are also found on this branch which hosts 47 subbranches.

Sample: Annagh2 / ANN2 (Cassidy et al. 2020)
Sex: Male
Location: Annagh, Limerick, Ireland
Age: Middle Neolithic 3705-3379 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: H4a1a1

Along with men from Germany and Ireland, and 47 subbranches.

Sample: Ardcroney2 / ARD2 (Cassidy et al. 2020)
Sex: Male
Location: Ardcrony, Tipperary, Ireland
Age: Middle Neolithic 3624-3367 cal BC
Y-DNA: I-FT354500
FTDNA Comment: Ardcroney2 and Parknabinnia443 split the I2-Y13518 branch and form a branch together (I-FT354500). Additional ancient samples residing on I-Y13518 include I2637, I2979, I6759, and Kelco cave
mtDNA: J2b1a

Kelco Cave is in Yorkshire, England.

Sample: Ashleypark1 / ASH1 (Cassidy et al. 2020)
Sex: Male
Location: Ashleypark, Tipperary, Ireland
Age: Middle Neolithic 3641-3381 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: K2a9

Sample: Baunogenasraid72 / BG72 (Cassidy et al. 2020)
Sex: Male
Location: Baunogenasraid, Carlow, Ireland
Age: Middle Neolithic 3635-3377 cal BC
Y-DNA: H-FT362000
FTDNA Comment: Baunogenasraid72 and Jerpoint14 split the H-SK1180 branch and form branch together (H-FT362000). Several other additional ancient samples belong to this branch as well including FLR001, FLR002, FLR004, GRG022, GRG041 (Rivollat 2020), and BUCH2 (Brunel 2020)
mtDNA: K1a4a1

Y haplogroup H is hen’s-teeth rare.

Sample: Carrowkeel531 / CAK531 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2881-2625 cal BC
Y-DNA: I-FT380380
FTDNA Comment: Joins ancient sample prs013 (Sánchez-Quinto 2019)
mtDNA: H1

Sample: Carrowkeel532 / CAK532 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 3014-2891 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: J1c3

One current sample from Portugal.

Sample: Carrowkeel534 / CAK534 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Neolithic None
Y-DNA: I-M284
mtDNA: X2b4

This branch has several subclades as well as people from Ireland, Scotland, England, British Isles, Germany, France, Denmark, Northern Ireland and Norway.

Sample: Carrowkeel68 / CAK68 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2833-2469 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H

Sample: Cohaw448 / CH448 (Cassidy et al. 2020)
Sex: Male
Location: Cohaw, Cavan, Ireland
Age: Middle Neolithic 3652-3384 cal BC
Y-DNA: I-L1498
mtDNA: H1

This branch has 129 subbranches and men from England, Ireland, UK, France, Germany, Czech Republic, Norway, Northern Ireland and Scotland.

Sample: Glennamong1007 / GNM1007 (Cassidy et al. 2020)
Sex: Male
Location: Glennamong, Mayo, Ireland
Age: Middle Neolithic 3507-3106 cal BC
Y-DNA: I-Y3713
FTDNA Comment: Joins VK280
mtDNA: K1a-T195C!

Branch has 42 subbranches and men from Ireland, England, Scotland, France, and Germany. I wrote about VK280, a Viking skeleton from Denmark, here.

Sample: Glennamong1076 / GNM1076 (Cassidy et al. 2020)
Sex: Male
Location: Glennamong, Mayo, Ireland
Age: Middle Neolithic 3364-2940 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H1c

Sample: MillinBay6 / MB6 (Cassidy et al. 2020)
Sex: Male
Location: Millin Bay (Keentagh Td.), Down, Ireland
Age: Middle Neolithic 3495-3040 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: J1c3

Branch has 51 subbranches and men from Ireland and England.

Sample: Jerpoint14 / JP14 (Cassidy et al. 2020)
Sex: Male
Location: Jerpoint West, Kilkenny, Ireland
Age: Middle Neolithic 3694-3369 cal BC
Y-DNA: H-FT362000
FTDNA Comment: Baunogenasraid72 and Jerpoint14 split the H-SK1180 branch and form branch together (H-FT362000). Several other additional ancient samples belong to this branch as well including FLR001, FLR002, FLR004, GRG022, GRG041 (Rivollat 2020), and BUCH2 (Brunel 2020)
mtDNA: T2c1d1

Sample: Newgrange10 / NG10 (Cassidy et al. 2020)
Sex: Male
Location: Newgrange, Main Chamber, Meath, Ireland
Age: Middle Neolithic 3338-3028 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U5b1-T16189C!-T16192C!

Sample: Parknabinnia1327 / PB1327 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3631-3353 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: T2b3

Sample: Parknabinnia443 / PB443 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3636-3378 cal BC
Y-DNA: I-FT354500
FTDNA Comment: Ardcroney2 and Parknabinnia443 split the I2-Y13518 branch and form a branch together (I-FT354500). Additional ancient samples residing on I-Y13518 include I2637, I2979, I6759, and Kelco_cave
mtDNA: K1b1a1

Sample: Parknabinnia581 / PB581 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3631-3362 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: T2b

Sample: Poulnabrone02 / PN02 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3704-3522 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: U5b1c1

Sample: Poulnabrone03 / PN03 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3635-3376 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: K1a1

Sample: Poulnabrone04 / PN04 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3944-3665 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H1-T16189C!

Sample: Poulnabrone05 / PN05 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3941-3661 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: K1a-T195C!

Sample: Poulnabrone07 / PN07 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3629-3371 cal BC
Y-DNA: I-FT370113
FTDNA Comment: Forms a branch with Raschoille_1 (Brace 2019) and I3041 (Olalde 2018). Other relevant ancient samples are Carsington_Pasture_1, I3134, I7638 at I-BY166411, and Coldrum_1 and I2660 at I-BY168618. These 8 ancients all group with two modern men, 1 from Ireland and 1 of unknown origins.
mtDNA: U5b1c

Sample: Poulnabrone107 / PN107 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3926-3666 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U4a2f

Sample: Poulnabrone112 / PN112 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3696-3535 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U5b2b

Sample: Poulnabrone12 / PN12 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3621-3198 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H

Sample: Poulnabrone13 / PN13 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3704-3536 cal BC
Y-DNA: I-S2639
mtDNA: V

Branch has 172 subclades.

Sample: Carrowkeel530 / CAK530 (Cassidy et al. 2020)
Sex: Female
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2883-2634 cal BC
mtDNA: W5b

Sample: Carrowkeel533 / CAK533 (Cassidy et al. 2020)
Sex: Female
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 3085-2904 cal BC
mtDNA: H

Sample: NewgrangeZ1 / NGZ1 (Cassidy et al. 2020)
Sex: Female
Location: Site Z, Newgrange, Meath, Ireland
Age: Middle Neolithic 3320-2922 cal BC
mtDNA: X2b-T226C

Sample: Parknabinnia1794 / PB1794 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3647-3377 cal BC
mtDNA: J1c6

Sample: Parknabinnia357 / PB357 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Early-Middle Neolithic 3640-3381 cal BC; 3774-3642 cal BC
mtDNA: U8b1b

Sample: Parknabinnia754 / PB754 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3617-3138 cal BC
mtDNA: U5b2a3

Sample: Poulnabrone10_113 / PN113 (Cassidy et al. 2020)
Sex: Female
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3940-3703 cal BC
mtDNA: H4a1a1a

Sample: Poulnabrone16 / PN16 (Cassidy et al. 2020)
Sex: Female
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3633-3374 cal BC
mtDNA: K1b1a1

So, how about it? Do you match?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

  • com – lots of wonderful genealogy research books

Longobards Ancient DNA from Pannonia and Italy – What Does Their DNA Tell Us? Are You Related?

The Longobards, Lombards, also known as the Long-beards – who were they? Where did they come from? And when?

Perhaps more important – are you related to these ancient people?

In the paper, Understanding 6th-century barbarian social organizatoin and migration through paleogenomics, by Amorim et al, the authors tell us in the abstract:

Despite centuries of research, much about the barbarian migrations that took place between the fourth and sixth centuries in Europe remains hotly debated. To better understand this key era that marks the dawn of modern European societies, we obtained ancient genomic DNA from 63 samples from two cemeteries (from Hungary and Northern Italy) that have been previously associated with the Longobards, a barbarian people that ruled large parts of Italy for over 200 years after invading from Pannonia in 568 CE. Our dense cemetery-based sampling revealed that each cemetery was primarily organized around one large pedigree, suggesting that biological relationships played an important role in these early medieval societies. Moreover, we identified genetic structure in each cemetery involving at least two groups with different ancestry that were very distinct in terms of their funerary customs. Finally, our data are consistent with the proposed long-distance migration from Pannonia to Northern Italy.

Both the Germans and French have descriptions of this time of upheaval in their history. Völkerwanderung in German and Les invasions barbares in French refer to the various waves of invasions by Goths, Franks, Anglo-Saxons, Vandals, and Huns. All of these groups left a genetic imprint, a story told without admixture by their Y and mitochondrial DNA.

click to enlarge

The authors provide this map of Pannonia, the Longobards kingdom, and the two cemeteries with burial locations.

One of their findings is that the burials are organized around biological kinship. Perhaps they weren’t so terribly different from us today.

Much as genealogists do, the authors created a pedigree chart – the only difference being that their chart is genetically constructed and lacks names, other than sample ID.

One man is buried with a horse, and one of his relatives, a female, is not buried in a family unit but in a half-ring of female graves.

The data suggests that the cemetery in Pannonia, Szolad, shown in burgundy on the map, may have been a “single-generation” cemetery, in use for only a limited time as the migration continued westward. Collegno, in contrast, seems to have been used for multiple generations, with the burials radiating outward over time from the progenitor individual.

Because the entire cemetery was analyzed, it’s possible to identify those individuals with northern or northeastern European ancestry, east of the Rhine and north of the Danube, and to differentiate from southern European ancestry in the Lombard cemetery – in addition to reassembling their family pedigrees. The story is told, not just by one individual’s DNA, but how the group is related to each other, and their individual and group origins.

For anyone with roots in Germany, Hungary, or the eastern portion of Europe, you know that this region has been embroiled in upheaval and warfare seemingly as long as there have been people to fight over who lived in and controlled these lands.

Are You Related?

Goran Rundfeldt’s R&D group at Family Tree DNA reanalyzed the Y DNA samples from this paper and has been kind enough to provide a summary of the results. Michael Sager has utilized them to branch the Y DNA tree – in a dozen places.

Mitochondrial DNA haplogroups have been included where available from the authors, but have not been reanalyzed.

Note the comments added by FTDNA during analysis.

Many new branches were formed. I included step-by-step instructions, here, so you can see if your Y DNA results match either the new branch or any of these samples upstream.

If you’re a male and you haven’t yet tested your Y DNA or you would like to upgrade to the Big Y-700 to obtain your most detailed haplogroup, you can do either by clicking here. My husband’s family is from Hungary and I just upgraded his Y DNA test to the Big Y-700. I want to know where his ancestors came from.

And yes, this first sample really is rare haplogroup T. Each sample is linked to the Family Tree DNA public tree. We find haplogroups G and E as well as the more common R and I. Some ancient samples match contemporary testers from France (2), the UK, England, Morocco, Denmark (5), and Italy. Fascinating!

Sample: CL23
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: T-BY45363
mtDNA: H

Sample: CL30
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-P312
mtDNA: I1b

Sample: CL31
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: G-FGC693
FTDNA Comment: Authors warn of possible contamination. Y chromosome looks good – and there is support for splitting this branch. However, because of the contamination warning – we will not act on this split until more data is available.
mtDNA: H18

Sample: CL38
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: E-BY3880
mtDNA: X2

Sample: CL49
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-CTS6889

Sample: CL53
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-FGC24138
mtDNA: H11a

Sample: CL57
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-BY48364
mtDNA: H24a

Sample: CL63
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: I-FT104588
mtDNA: H

Sample: CL84
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-U198
mtDNA: H1t

Sample: CL92
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: H

Sample: CL93
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: J2b1a

Sample: CL94
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-DF99
mtDNA: K1c1

Sample: CL97
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-L23

Sample: CL110
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-L754

Sample: CL121
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-BY70163
FTDNA Comment: Shares 2 SNPs with a man from France. Forms a new branch down of R-BY70163 (Z2103). New branch = R-BY197053
mtDNA: T2b

Sample: CL145
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: T2b

Sample: CL146
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-A8472
mtDNA: T2b3

Sample: SZ1
Location: Szólád, Somogy County, Hungary
Study Information: The skeletal remains from an individual dating to the Bronze Age 10 m north of the cemetery.
Age: Bronze Age
Y-DNA: R-Y20746
mtDNA: J1b

Sample: SZ2
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-Z338
FTDNA Comment: Shares 5 SNPs with a man from the UK. Forms a new branch down of R-Z338 (U106). New branch = R-BY176786
mtDNA: T1a1

Sample: SZ3
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-BY3605
mtDNA: H18

Sample: SZ4
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-ZP200
FTDNA Comment: Splits R-ZP200 (U106). Derived (positive) for 2 SNPs and ancestral (negative) for 19 SNPs. New path = R-Y98441>R-ZP200
mtDNA: H1c9

Sample: SZ5
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-BY3194
FTDNA Comment: Splits R-BY3194 (DF27). Derived for 19 SNPs, ancestral for 9 SNPs. New path = R-BY3195>R-BY3194
mtDNA: J2b1

Sample: SZ6
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-P214

Sample: SZ7
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: T2e

Sample: SZ11
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-FGC13492
FTDNA Comment: Shares 1 SNP with a man from Italy. Forms a new branch down of R-FGC13492 (U106). New branch = R-BY138397
mtDNA: K2a3a

Sample: SZ12
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: W6

Sample: SZ13
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 422-541 cal CE
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: N1b1b1

Sample: SZ14
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-CTS616
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: I3

Sample: SZ15
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-YP986
mtDNA: H1c1

Sample: SZ16
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-U106
mtDNA: U4b1b

Sample: SZ18
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: E-BY6865
FTDNA Comment: Shares 1 SNP with a man from Morocco. Forms a new branch down of E-BY6865. New branch = E-FT198679
mtDNA: H13a1a2

Sample: SZ22
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-Y6876
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: N1b1b1

Sample: SZ23
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-S10271
mtDNA: H13a1a2

Sample: SZ24
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-ZS3
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: U4b

Sample: SZ27B
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 412-538 cal CE
Y-DNA: R-FGC4166
FTDNA Comment: Shares 1 SNP with a man from France. Forms a new branch down of R-FGC4166 (U152). New branch = R-FT190624
mtDNA: N1a1a1a1

Sample: SZ36
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: T-Y15712
mtDNA: U4c2a

Sample: SZ37
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 430-577 cal CE
Y-DNA: R-P312
mtDNA: H66a

Sample: SZ42
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-P312
mtDNA: K2a6

Sample: SZ43
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 435-604 cal CE
Y-DNA: I-BY138
mtDNA: H1e

Sample: SZ45
Location: Szólád, Somogy County, Hungary
Study Information: ADMIXTURE analysis showed SZ45 to possess a unique ancestry profile.
Age: Longobard 6th Century
Y-DNA: I-FGC21819
FTDNA Comment: Shares 2 SNPs with a man from England forms a new branch down of FGC21819. New branch = I-FGC21810
mtDNA: J1c

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Ancient Icelandic Viking Settlers Expand the Y DNA Tree

The harsh yet starkly beautiful volcanic island of Iceland was only settled about 1100 years ago, between 870 and 930 CE (current era). Obviously, the original settlers had to originate in locations where populations were already established. During this time, Vikings had been raiding islands and coastal regions of Ireland, Scotland, and England.

Their DNA, now unearthed, tells their tale.

This 2018 paper, Ancient genomes from Iceland reveal the making of a human population by Ebenesersdóttir et al, along with the supplementary material, here, provides insight into the genomes of 27 ancient Icelanders who are a combination of Norse, Gaelic and admixed individuals. The Irish Times wrote a non-academic article, here.

Unequal contributions of the ancient founders, plus isolation resulting in genetic drift separates the current Icelandic population from the founder populations. These ancient Icelandic genomes, autosomally, are more similar to their founding populations than today’s Icelanders.

While autosomal DNA recombines in each generation, Y and mitochondrial DNA does not, revealing the exact DNA of the original founding members of the population. This, of course, allows us to peer back in time. We can see who they match, historically, and where. Today, we can see if our Y and mitochondrial DNA matches them as well.

The authors of the paper selected 35 ancient individuals, believed to be first-generation founders, to have their whole genomes sequenced, of which 27 were successful. Sometimes the ancient DNA is just too degraded to sequence properly.

Nineteen of these burials are pre-Christian, 2 from Christian burials and one that is “Early Modern,” dated to 1678 CE. Ages are expressed, as follows:

  • Pre-Christian <1000 CE
  • Pre-Christian 950-1050 CE
  • Early modern Born 1678 CE
  • Pre-Christian <1050 cal CE

Dates that say “cal CE” mean that they were carbon 14 dated and calibrated and CE (alone) means that those dates are based on the archaeological context of grave goods, other remains, and environmental indicators such as volcanic ash.

As he did with the 442 ancient Viking genomes that I wrote about, here, Goran Runfeldt who heads the research department at FamilyTreeDNA downloaded the Icelandic genomes, extracted and aligned the mitochondrial and Y DNA results.

Michael Sager analyzed the Y DNA and those results, once again, have refined, enhanced or split at least 8 branches of the Y DNA tree.

For instructions about how to see if your mitochondrial or Y DNA results match any of these ancient genomes, please click here. If you haven’t yet tested, you can order or upgrade a Y or mitochondrial DNA test, here.

The Graves

This map, provided in the paper by the authors, shows the burial locations of the remains, noted by sample numbers. Circles are females, squares are male. Light gray was later excluded from the author’s study.

Some of these burials and grave goods are fascinating. For example, note the horse and dog burials.

Goran and Michael have been kind enough to share their analysis, below, along with comments. Thanks, guys!

Sample: DAV-A9
Location: Dalvík (Brimnes), North, Iceland
Study Information: One of the largest and most studied pre-Christian burial sites in Iceland. Thirteen human skeletal remains, six horse skeletons, and the remains of three dogs were found at the site. In one of the graves, the deceased individual had been placed in a sitting position at the rear of a boat
Age: Pre-Christian 900-1000 CE
Y-DNA: I-FGC21765
FTDNA Comment: Likely splits this branch
mtDNA: H1

Sample: DKS-A1
Location: Öndverðarnes, West, Iceland
Study Information: Grave goods included a sword, a spearhead, a knife, a shield-boss, a bone-pin, and fragments of iron. According to a morphological analysis, the skeletal remains show evidence of developmental delay that could be explained by hypogonadism caused by Klinefelter syndrome, testicular disorder or castration.
Age: Pre-Christian 850-1000 CE
Y-DNA: R-YP6099
mtDNA: U5a1h

Sample: FOV-A1
Location: Fossvellir, East, Iceland
Study Information: The remains are thought to have been placed at the site after the individual was deceased. The bones had been carefully arranged on top of each other and were surrounded by stone slabs and turf.
Age: Christian 1246-1302 CE
Y-DNA: R-DF23
mtDNA: HV17a

Sample: GRS-A1
Location: Grímsstaðir, North, Iceland
Study Information: Three pre-Christian burials were found in close proximity to each other near the site of a farmstead. We analysed one of the skeletal remains (GRS-A1), which were excavated in 1937. No grave goods were found at the site.
Age: Pre-Christian <1050 cal CE
Y-DNA: R-BY92608
mtDNA: K1a1b1b

Sample: GTE-A1
Location: Gilsárteigur, East, Iceland
Study Information: In 1949, field-leveling exposed a pre-Christian burial site near an old farm site. The remains of two skeletons were excavated in 1957. Both burials contained grave goods.
Age: Pre-Christian <1000 CE
Y-DNA: R-CTS4179
mtDNA: H4a1a4b

Sample: HSJ-A1
Location: Hrólfsstaðir, East, Iceland
Study Information: A comb, knife, and pieces of charcoal were found in the grave.
Age: Pre-Christian <1000 CE
Y-DNA: I-BY202281
FTDNA Comment: forms a branch with 2 men (Scotland and England). I-BY202281. The two modern samples share an additional 11 markers that HSJ-A1 is ancestral for
mtDNA: H3g1

Sample: KNS-A1
Location: Karlsnes, South, Iceland
Study Information: Grave goods included a spearhead, a knife, two lead weights, three beads, and a small stone.
Age: Pre-Christian 950-1050 CE
Y-DNA: R-Z290
mtDNA: H5

Sample: KOV-A2
Location: Kópavogur, West, Iceland
Study Information: Two skeletal remains. Based on archaeological evidence, the remains were identified as a female, born 1664, and a male, born 1678. According to historical records, they were executed in 1704 for the murder of the female’s husband. The male was beheaded, and his impaled head publicly exhibited, whereas the female was drowned. Their remains were buried in unconsecrated ground at a site called Hjónadysjar.
Age: Early modern Born 1678 CE
Y-DNA: R-L151
mtDNA: H1

Sample: MKR-A1
Location: Viðar (Másvatn), North, Iceland
Study Information: The remains date to <1477 C.E. based on volcanic ash chronology, and are thought to be from a pre-Christian burial site.
Age: Pre-Christian <1050 cal CE
Y-DNA: R-YP1258
mtDNA: K1c1b

Sample: NNM-A1
Location: Njarðvík, East, Iceland
Study Information: A human skull (NNM-A1) was found at a site considered to be a badly damaged pre-Christian burial.
Age: Pre-Christian <1000 CE
Y-DNA: R-BY56981
mtDNA: H2a2b5a

Sample: ORE-A1
Location: Ormsstaðir, East, Iceland
Study Information: Pre-Christian site near an old farmstead was excavated after being exposed during field leveling. One human skeleton (ORE-A) was found, along with an axe, a knife, and three lead weights. A single human bone from another individual was found nearby.
Age: Pre-Christian 900-1000 CE
Y-DNA: R-PH93
mtDNA: K1a3a

Sample: SBT-A1
Location: Smyrlaberg, North, Iceland
Study Information: Pre-Christian burial site in an old gravel quarry. Two years later its excavation revealed a male skeleton (SBT-A1) and an iron knife. Another grave, badly damaged, was found nearby, but only fragments of bone were recovered.
Age: Pre-Christian <1000 CE
Y-DNA: I-FGC74518
FTDNA Comment: Shares 6 SNPs with a man from England. Forms a branch down of I-BY46619 (Z140). Branch = I-FGC74518
mtDNA: H3g1a

Sample: SSG-A2
Location: Sílastaðir, North, Iceland
Study Information: A cluster of four pre-Christian graves. Based on morphological analysis, three of the skeletons were deemed male, and one female.
Age: Pre-Christian 850-1000 CE
Y-DNA: R-BY41282
FTDNA Comment: Split the R-BY23441 block – derived only for BY41282 (Z246)
mtDNA: J1c3g

Sample: SSG-A3
Location: Sílastaðir, North, Iceland
Study Information: A cluster of four pre-Christian graves. Based on morphological analysis, three of the skeletons were deemed male, and one female.
Age: Pre-Christian 850-1000 CE
Y-DNA: I-FGC9493
mtDNA: T2b2b

Sample: SSJ-A2
Location: Surtsstaðir, East, Iceland
Study Information: The remains of two individuals were found at the site, along with grave goods.
Age: Pre-Christian 850-1000 CE
Y-DNA: I-Y129187
mtDNA: U5a1a1

Sample: STT-A2
Location: Straumur, East, Iceland
Study Information: Pre-Christian burial site was excavated, which included the remains of four individuals (one child, one male, one female, and another adult whose sex could not be determined by morphological analysis). Grave goods included a horse bone, a small axe, thirty boat rivets, a lead weight, two pebbles, and a knife.
Age: Pre-Christian 975-1015 cal CE
Y-DNA: R-FT118419
FTDNA Comment: Shares 22 SNPs with a man from Wales. They form the branch R-FT118419 (Z251)
mtDNA: U4b1b1

Sample: SVK-A1
Location: Svínadalur, North, Iceland
Study Information: Human skeletal remains were brought to the National Museum of Iceland. They had been exposed for many years near an old farmhouse. There were no grave goods found at the site, but the remains are thought to be pre-Christian.
Age: Pre-Christian <1050 cal CE
Y-DNA: I-FGC21682
FTDNA Comment: Joins VK110 and VK400 as an additional I-FGC21682* (P109)
mtDNA: I2

Sample: TGS-A1
Location: Tunga, North, Iceland
Study Information: Human skeletal remains (TGS-A1) were excavated in 1981 by inhabitants at a nearby farm. They were classified at the National Museum of Iceland as having unknown temporal origin. The remains were radiocarbon dated for this study, indicating that they date from the 10th century C.E.
Age: Pre-Christian 943-1024 cal CE
Y-DNA: R-Y10827
FTDNA Comment: Likely R-BY4659. Also PH1220+, but this is a C>T mutation also present in hg I ancient samples R7 and Carrowkeel531.
mtDNA: T2e1

Sample: TSK-A26 / ÞSK-A26
Location: Skeljastaðir, South, Iceland
Study Information: Christian cemetery at Skeljastaðir in Þjórsárdalur. The remains are dated to before 1104 C.E., as the site was abandoned in the wake of a volcanic eruption of Mount Hekla in that year.
Age: Christian 1120 cal CE
Y-DNA: R-Y77406
FTDNA Comment: Shares 2 SNPs with a man from Norway. Forms branch down of R-BY30235 (L448). New branch = R-Y77406
mtDNA: J1b1a1a

Sample: VDP-A6
Location: Vatnsdalur, West, Iceland
Study Information: Boat grave with seven skeletal remains (three females and four males), along with a dog skeleton. Grave goods included a knife, thirty beads, a silver Thor’s hammer, a fragmented Cufic coin (ca. 870–930 C.E.) and jewelry.
Age: Pre-Christian 850-1050 CE
Y-DNA: R-YP1120
mtDNA: H1c3a

Sample: VDP-A7
Location: Vatnsdalur, West, Iceland
Study Information: Boat grave with seven skeletal remains (three females and four males), along with a dog skeleton. Grave goods included a knife, thirty beads, a silver Thor’s hammer, a fragmented Cufic coin (ca. 870–930 C.E.) and jewelry.
Age: Pre-Christian 850-1050 CE
Y-DNA: R-FT209682
FTDNA Comment: Shares 7 SNPs with a man from Sweden. Forms branch down of R-BY71305 (Z18). New branch = R-FT209682
mtDNA: H4a1a1

Sample: YGS-B2
Location: Ytra-Garðshor, North, Iceland
Study Information: The site included the disturbed remains of nine human skeletons (four males, two females, one child and two individuals whose sex could not be inferred based on morphological analysis). There were grave goods in all graves.
Age: Pre-Christian <1000 CE
Y-DNA: R-Y98267
FTDNA Comment: Split the R-Y84777 block (L238). Derived only for Y98267
mtDNA: J1c1a

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match? Daily Updates Here!

Yesterday, in the journal Nature, the article “Population genomics of the Viking world,” was published by Margaryan, et al, a culmination of 6 years of work.

Just hours later, Science Daily published the article, “World’s largest DNA sequencing of Viking skeletons reveals they weren’t all Scandinavian.” Science magazine published “’Viking’ was a job description, not a matter of heredity, massive ancient DNA study shows.” National Geographic wrote here, and CNN here.

Vikings Not All Scandinavian – Or Blonde

Say what??? That’s not at all what we thought we knew. That’s the great thing about science – we’re always learning something new.

442 Viking skeletons from outside Scandinavia were sequenced by Eske Willerslev’s lab, producing whole genome sequences for both men and women from sites in Scotland, Ukraine, Poland, Russia, the Baltic, Iceland, Greenland and elsewhere in continental Europe. They were then compared to known Viking samples from Scandinavia.

Not the grave where the sample was taken, but a Viking cemetery from Denmark.

One Viking boat burial in an Estonian Viking cemetery shows that 4 Viking brothers died and were buried together, ostensibly perishing in the same battle, on the same day. Based on their DNA, the brothers probably came from Sweden.

Vikings raiding parties from Scandinavia originated in Norway, Sweden and Denmark. At least some Viking raiders seem to be closely related to each other, and females in Iceland appear to be from the British Isles, suggesting that they may have “become” Vikings – although we don’t really understand the social and community structure.

Genes found in Vikings were contributed from across Europe, including southern Europe, and as afar away as Asia. Due to mixing resulting from the Viking raids beginning at Lindisfarne in 793 , the UK population today carries as much as 6% Viking DNA. Surprisingly, Swedes had only 10%.

Some Viking burials in both Orkney and Norway were actually genetically Pictish men. Converts, perhaps? One of these burials may actually be the earliest Pict skeleton sequenced to date.

Y DNA

Of the 442 skeletons, about 300 were male. The whole genome sequence includes the Y chromosome along with mitochondrial DNA, although it requires special processing to separate it usefully.

Goran Runfeldt, a member of the Million Mito team and head of research at FamilyTreeDNA began downloading DNA sequences immediately, and Michael Sager began analyzing Y DNA, hoping to add or split Y DNA tree branches.

Given the recent split of haplogroup P and A00, these ancient samples hold HUGE promise.

Michael and Goran have agreed to share their work as they process these samples – providing a rare glimpse real-time into the lab.

You and the Tree

Everyone is so excited about this paper, and I want you to be able to see if your Y or mitochondrial DNA, or that of your relatives matches the DNA haplogroups in the paper.

The paper itself uses the older letter=number designations for Y DNA haplogroup, so FamilyTreeDNA is rerunning, aligning and certifying the actual SNPs. The column FTDNA Haplogroup reflects the SNP Y haplogroup name.

Note that new Y DNA branches appear on the tree the day AFTER the change is made, and right now, changes resulting from this paper are being made hourly. I will update the haplogroup information daily as more becomes available. Pay particular attention to the locations that show where the graves were found along with the FamilyTreeDNA notes.

Goran has also included the mtDNA haplogroup as identified in the paper. Mitochondrial DNA haplogroups have not been recalculated, but you just might see them in the Million Mito Project😊

Here’s what you’ll need to do:

  • Go to your Y or mitochondrial DNA results and find your haplogroup.

  • Do a browser search on this article to see if your haplogroup is shown. On a PC, that’s CTRL+F to show the “find” box. If your haplogroup isn’t showing, you could be downstream of the Viking haplogroup, so you’ll need to use the Y DNA Block Tree (for Big Y testers) or public haplotree, here.
  • If you’ve taken the Big Y test, click on the Block Tree on your results page and then look across the top of your results page to see if the haplogroup in question is “upstream” or a parent of your haplogroup.

click to enlarge

If you don’t see it, keep scanning to the left until you see the last SNP.

click to enlarge

  • If the haplogroup you are seeking is NOT shown in your direct upstream branches, you can type the name of the haplogroup into the search box. For example, I’ve typed I-BY3428. You can also simply click on the FTDNA name haplogroup link in the table, below, considerately provided by Goran.

click to enlarge

I don’t see the intersecting SNP yet, between the tester and the ancient sample, so if I click on I-Y2592, I can view the rest of the upstream branches of haplogroup I.

click to enlarge

By looking at the Y DNA SNPs of the tester, and the Y DNA SNPs of the ancient sample, I can see that the intersecting SNP is DF29, roughly 52 SNP generations in the past. Rule of thumb is that SNP generations are 80-100 years each.

How About You – Are You Related to a Viking?

Below, you’ll find the information from Y DNA results in the paper, reprocessed and analyzed, with FamilyTreeDNA verified SNP names, along with the mitochondrial DNA haplogroup of each Viking male.

Are you related, and if so, how closely?

I was surprised to find a sister-branch to my own mitochondrial J1c2f. J1c2 and several subclades or branches were found in Viking burials.

I need to check all of my ancestral lines, both male and female. There’s history waiting to be revealed. What have you discovered?

Ancient Viking Sample Information

Please note that this information will be updated on business days until all samples have been processed and placed on the Y DNA tree – so this will be a “live” copy of the most current phylogenetic information.

Link to the locations to see the locations of the excavation sites, and the haplogroups for the tree locations. Michael Sager is making comments as he reviews each sample.

Enjoy!

Sample: VK14 / Russia_Ladoga_5680-12
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-BY3428
mtDNA: J1c1a

Sample: VK16 / Russia_Ladoga_5680-2
Location: Ladoga, Russia
Age: Viking 11-12th centuries CE
Y-DNA: I-M253
mtDNA: X2b4

Sample: VK17 / Russia_Ladoga_5680-17
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: T-Y138678
FTDNA Comment: Shares 5 SNPs with a man from Chechen Republic, forming a new branch down of T-Y22559 (T-Y138678)
mtDNA: U5a2a1b

Sample: VK18 / Russia_Ladoga_5680-3
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: R-YP1370
mtDNA: H1b1

Sample: VK20 / Russia_Ladoga_5680-1
Location: Ladoga, Russia
Age: Viking 11th century CE
Y-DNA: I-Y22478
FTDNA Comment: Splits the I-Z24071 branch, positive only for Y22478. New path = I-Y22486>I-Y22478>I-Z24071
mtDNA: H6c

Sample: VK22 / Russia_Ladoga_5680-13
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-A8462
mtDNA: T2b

Sample: VK23 / Russia_Ladoga_5680-9
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-M253
mtDNA: U4a1a

Sample: VK24 / Faroe_AS34/Panum
Location: Hvalba, Faroes
Age: Viking 11th century
Y-DNA: R-FGC12948
mtDNA: J1b1a1a

Sample: VK25 / Faroe_1
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-FT381000
FTDNA Comment: Splits the R-BY11762 branch, positive for 5 variants ancestral for ~14, new path = R-A8041>R-BY11764>BY11762
mtDNA: H3a1a

Sample: VK27 / Faroe_10
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-L513
mtDNA: U5a1g1

Sample: VK29 / Sweden_Skara 17
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-S7642
mtDNA: T2b3b

Sample: VK30 / Sweden_Skara 105
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-S2857
mtDNA: U5b1c2b

Sample: VK31 / Sweden_Skara 194
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-L21
mtDNA: I4a

Sample: VK34 / Sweden_Skara 135
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY111759
mtDNA: HV-T16311C!

Sample: VK35 / Sweden_Skara 118
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-CTS4179
mtDNA: T2f1a1

Sample: VK39 / Sweden_Skara 181
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: G-Z1817
mtDNA: T2b4b

Sample: VK40 / Sweden_Skara 106
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY166438
FTDNA Comment: Shares 10 SNPs with a man with unknown origins (American) downstream of R-BY1701. New branch R-BY166438
mtDNA: T1a1

Sample: VK42 / Sweden_Skara 62
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: J-FGC32685
mtDNA: T2b11

Sample: VK44 / Faroe_17
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-S658
mtDNA: H3a1a

Sample: VK45 / Faroe_18
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-CTS8277
mtDNA: H3a1

Sample: VK46 / Faroe_19
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-BY202785
FTDNA Comment: Forms a branch with VK245 down of R-BY202785 (Z287). New branch = R-FT383000
mtDNA: H5

Sample: VK48 / Gotland_Kopparsvik-212/65
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-FGC52679
mtDNA: H10e

Sample: VK50 / Gotland_Kopparsvik-53.64
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: I-Y22923
mtDNA: H1-T16189C!

Sample: VK51 / Gotland_Kopparsvik-88/64
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: N-L1026
mtDNA: U5b1e1

Sample: VK53 / Gotland_Kopparsvik-161/65
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: I-CTS10228
mtDNA: HV9b

Sample: VK57 / Gotland_Frojel-03601
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-L151
mtDNA: J1c6

Sample: VK60 / Gotland_Frojel-00702
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-YP1026
mtDNA: H13a1a1b

Sample: VK64 / Gotland_Frojel-03504
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-BY58559
mtDNA: I1a1

Sample: VK70 / Denmark_Tollemosegard-EW
Location: Tollemosegård, Sealand, Denmark
Age: Early Viking Late Germanic Iron Age/early Viking
Y-DNA: I-BY73576
mtDNA: H7d4

Sample: VK71 / Denmark_Tollemosegard-BU
Location: Tollemosegård, Sealand, Denmark
Age: Early Viking Late Germanic Iron Age/early Viking
Y-DNA: I-S22349
mtDNA: U5a1a

Sample: VK75 / Greenland late-0929
Location: V051, Western Settlement, Greenland
Age: Late Norse 1300 CE
Y-DNA: R-P310
mtDNA: H54

Sample: VK87 / Denmark_Hesselbjerg Grav 41b, sk PC
Location: Hesselbjerg, Jutland, Denmark
Age: Viking 850-900 CE
Y-DNA: R-Z198
mtDNA: K1c2

Sample: VK95 / Iceland_127
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-S658
mtDNA: H6a1a3a

Sample: VK98 / Iceland_083
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: I-BY3433
FTDNA Comment: Splits I-BY3430. Derived for 1 ancestral for 6. New path = I-BY3433>I-BY3430
mtDNA: T2b3b

Sample: VK101 / Iceland_125
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-BY110718
mtDNA: U5b1g

Sample: VK102 / Iceland_128
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-Y96503
FTDNA Comment: Shares 3 SNPs with a man from Sweden. Forms a new branch downstream of R-FGC23826. New branch = R-Y96503
mtDNA: J1c3f

Sample: VK110 / Iceland_115S
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: I-FGC21682
mtDNA: H10-x

Sample: VK117 / Norway_Trondheim_SK328
Location: Trondheim, Nor_Mid, Norway
Age: Medieval 12-13th centuries CE
Y-DNA: R-S9257
mtDNA: H1a3a

Sample: VK123 / Iceland_X104
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-Y130994
FTDNA Comment: Shares 17 SNPs with a man from the UAE. Creates a new branch downstream of R2-V1180. New branch = R-Y130994
mtDNA: J1c9

Sample: VK127 / Iceland_HDR08
Location: Hringsdalur, Iceland
Age: Viking 10th century CE
Y-DNA: R-BY92608
mtDNA: H3g1b

Sample: VK129 / Iceland_ING08
Location: Ingiridarstadir, Iceland
Age: Viking 10th century CE
Y-DNA: R-BY154143
FTDNA Comment: Shares 3 SNPs with a man from Sweden. Forms a new branch downstream of R1a-YP275. New branch = R-BY154143
mtDNA: U5b1b1a

Sample: VK133 / Denmark_Galgedil KO
Location: Galgedil, Funen, Denmark
Age: Viking 8-11th centuries CE
Y-DNA: R-Z8
mtDNA: K1a4a1a3

Sample: VK134 / Denmark_Galgedil ALZ
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-BY97519
mtDNA: H1cg

Sample: VK138 / Denmark_Galgedil AQQ
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-S1491
mtDNA: T2b5

Sample: VK139 / Denmark_Galgedil ANG
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-BY32008
mtDNA: J1c3k

Sample: VK140 / Denmark_Galgedil PT
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: G-M201
mtDNA: H27f

Sample: VK143 / UK_Oxford_#7
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-Y13833
FTDNA Comment: Splits R-Y13816. Derived for 6 ancestral for 3. New path = R-Y13816>R-Y13833
mtDNA: U5b1b1-T16192C!

Sample: VK144 / UK_Oxford_#8
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-Y2592
mtDNA: V1a1

Sample: VK145 / UK_Oxford_#9
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-YP1708
mtDNA: H17

Sample: VK146 / UK_Oxford_#10
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-M6155
mtDNA: J1c3e1

Sample: VK147 / UK_Oxford_#11
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-Y75899
mtDNA: T1a1q

Sample: VK148 / UK_Oxford_#12
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-M253
mtDNA: H6a1a

Sample: VK149 / UK_Oxford_#13
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-M253
mtDNA: H1a1

Sample: VK150 / UK_Oxford_#14
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-FT4725
mtDNA: H1-C16239T

Sample: VK151 / UK_Oxford_#15
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-S19291
mtDNA: T2b4-T152C!

Sample: VK153 / Poland_Bodzia B1
Location: Bodzia, Poland
Age: Viking 10-11th centuries CE
Y-DNA: R-M198
mtDNA: H1c3

Sample: VK156 / Poland_Bodzia B4
Location: Bodzia, Poland
Age: Viking 10-11th centuries CE
Y-DNA: R-Y9081
mtDNA: J1c2c2a

Sample: VK157 / Poland_Bodzia B5
Location: Bodzia, Poland
Age: Viking 10-11th centuries CE
Y-DNA: I-S2077
mtDNA: H1c

Sample: VK159 / Russia_Pskov_7283-20
Location: Pskov, Russia
Age: Viking 10-11th centuries CE
Y-DNA: R-A7982
mtDNA: U2e2a1d

Sample: VK160 / Russia_Kurevanikka_7283-3
Location: Kurevanikha, Russia
Age: Viking 10-13th centuries CE
Y-DNA: R-YP1137
mtDNA: C4a1a-T195C!

Sample: VK163 / UK_Oxford_#1
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-M253
mtDNA: U2e2a1a1

Sample: VK165 / UK_Oxford_#3
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-S18218
mtDNA: U4b1b1

Sample: VK166 / UK_Oxford_#4
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-BY67003
FTDNA Comment: Splits R-BY45170 (DF27). Derived for 2, ancestral for 7. New path = R-BY67003>R-BY45170
mtDNA: H3ag

Sample: VK167 / UK_Oxford_#5
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-BY34674
mtDNA: H4a1a4b

Sample: VK168 / UK_Oxford_#6
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-Z18
mtDNA: H4a1a4b

Sample: VK170 / Isle-of-Man_Balladoole
Location: Balladoole, IsleOfMan
Age: Viking 9-10th centuries CE
Y-DNA: R-S3201
mtDNA: HV9b

Sample: VK172 / UK_Oxford_#16
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-FT7019
mtDNA: I1a1e

Sample: VK173 / UK_Oxford_#17
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-FT13004
FTDNA Comment: Splits I2-FT12648, derived for 5, ancestral for 7. New path FT13004>FT12648
mtDNA: U5a1b-T16362C

Sample: VK174 / UK_Oxford_#18
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-FGC17429
mtDNA: H1-C16239T

Sample: VK175 / UK_Oxford_#19
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-Y47841
FTDNA Comment: Shares 6 SNPs with man from Sweden down of R-BY38950 (R-Y47841)
mtDNA: H1a1

Sample: VK176 / UK_Oxford_#20
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-FT3562
mtDNA: H10

Sample: VK177 / UK_Oxford_#21
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-FT31867
FTDNA Comment: Shares 3 SNPs with a man from Greece. Forms a new branch downstream of R-BY220332 (U152). New branch = R-FT31867
mtDNA: H82

Sample: VK178 / UK_Oxford_#22
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-BY176639
FTDNA Comment: Links up with PGA3 (Personal Genome Project Austria) and FTDNA customer from Denmark. PGA and FTDNA customer formed a branch earlier this week, VK178 will join them at R-BY176639 (Under L48)
mtDNA: K2a5

Sample: VK179 / Greenland F2
Location: Ø029a, Eastern Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: I-F3312
mtDNA: K1a3a

Sample: VK183 / Greenland F6
Location: Ø029a, Eastern Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: I-F3312
mtDNA: T2b21

Sample: VK184 / Greenland F7
Location: Ø029a, Eastern Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: R-YP4342
mtDNA: H4a1a4b

Sample: VK186 / Greenland KNK-[6]
Location: Ø64, Eastern Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: I-Y79817
FTDNA Comment: Shares 3 SNPs with a man from Norway downstream of I-Y24625. New branch = I-Y79817
mtDNA: H1ao

Sample: VK190 / Greenland late-0996
Location: Ø149, Eastern Settlement, Greenland
Age: Late Norse 1360 CE
Y-DNA: I-FGC15543
FTDNA Comment: Splits I-FGC15561. Derived 11 ancestral for 6. New path = I-FGC15543>I-FGC15561
mtDNA: K1a-T195C!

Sample: VK201 / Orkney_Buckquoy, sk M12
Location: Buckquoy_Birsay, Orkney, Scotland, UK
Age: Viking 5-6th century CE
Y-DNA: I-B293
mtDNA: H3k1a

Sample: VK202 / Orkney_Buckquoy, sk 7B
Location: Buckquoy_Birsay, Orkney, Scotland, UK
Age: Viking 10th century CE
Y-DNA: R-A151
mtDNA: H1ai1

Sample: VK203 / Orkney_BY78, Ar. 1, sk 3
Location: Brough_Road_Birsay, Orkney, Scotland, UK
Age: Viking 10th century CE
Y-DNA: R-BY10450
FTDNA Comment: FT83323-
mtDNA: H4a1a1a1a1

Sample: VK204 / Orkney_Newark for Brothwell
Location: Newark_Deerness, Orkney, Scotland, UK
Age: Viking 10th century CE
Y-DNA: R-BY115469
mtDNA: H1m

Sample: VK205 / Orkney_Newark 68/12
Location: Newark_Deerness, Orkney, Scotland, UK
Age: Viking 10th century CE
Y-DNA: R-YP4345
mtDNA: H3

Sample: VK210 / Poland_Kraków-Zakrzówek gr. 24
Location: Kraków, Poland
Age: Medieval 11-13th centuries CE
Y-DNA: I-Z16971
mtDNA: H5e1a1

Sample: VK211 / Poland_Cedynia gr. 435
Location: Cedynia, Poland
Age: Medieval 11-13 centuries CE
Y-DNA: R-M269
mtDNA: W6

Sample: VK212 / Poland_Cedynia gr. 558
Location: Cedynia, Poland
Age: Viking 11-12th centuries CE
Y-DNA: R-CTS11962
mtDNA: H1-T152C!

Sample: VK215 / Denmark_Gerdrup-B; sk 1
Location: Gerdrup, Sealand, Denmark
Age: Viking 9th century CE
Y-DNA: R-M269
mtDNA: J1c2k

Sample: VK217 / Sweden_Ljungbacka
Location: Ljungbacka, Malmo, Sweden
Age: Viking 9-12th centuries CE
Y-DNA: R-L151
mtDNA: J1b1b1

Sample: VK218 / Russia_Ladoga_5680-4
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: R-BY2848
mtDNA: H5

Sample: VK219 / Russia_Ladoga_5680-10
Location: Ladoga, Russia
Age: Viking 10-11th centuries CE
Y-DNA: I-Y22024
mtDNA: T2b6a

Sample: VK220 / Russia_Ladoga_5680-11
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-FT253975
FTDNA Comment: CTS2208+, BY47171-, CTS7676-, Y20288-, BY69785-, FT253975+
mtDNA: J2b1a

Sample: VK221 / Russia_Ladoga_5757-14
Location: Ladoga, Russia
Age: Viking 9-10th centuries CE
Y-DNA: I-Y5473
mtDNA: K1d

Sample: VK223 / Russia_Gnezdovo 75-140
Location: Gnezdovo, Russia
Age: Viking 10-11th centuries CE
Y-DNA: I-BY67763
mtDNA: H13a1a1c

Sample: VK224 / Russia_Gnezdovo 78-249
Location: Gnezdovo, Russia
Age: Viking 10-11th centuries CE
Y-DNA: N-CTS2929
mtDNA: H7a1

Sample: VK225 / Iceland_A108
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-BY92608
mtDNA: H3v-T16093C

Sample: VK232 / Gotland_Kopparsvik-240.65
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-Y16505
FTDNA Comment: Speculative placement – U106+, but U106 (C>T) in ancient samples can be misleading. LAV010, NA34, I7779, ble007, R55 and EDM124 are all non-R ancient samples that are U106+. More conservative placement is at R-P310
mtDNA: N1a1a1

Sample: VK234 / Faroe_2
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-FT381000
FTDNA Comment: Same split as VK25. They share one marker FT381000 (26352237 T>G)
mtDNA: H3a1a

Sample: VK237 / Faroe_15
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-S6355
mtDNA: J2a2c

Sample: VK238 / Faroe_4
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-YP396
mtDNA: H3a1a

Sample: VK239 / Faroe_5
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-M269
mtDNA: H5

Sample: VK242 / Faroe_3
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-S764
mtDNA: H3a1a

Sample: VK244 / Faroe_12
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-CTS4179
mtDNA: H2a2a2

Sample: VK245 / Faroe_16
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-BY202785
FTDNA Comment: Forms a branch with VK46 down of R-BY202785 (Z287). New branch = R-FT383000
mtDNA: H3a1

Sample: VK248 / Faroe_22
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: I-M253
mtDNA: H49a

Sample: VK251 / Gotland_Kopparsvik-30.64
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-M459
mtDNA: U5b1e1

Sample: VK256 / UK_Dorset-3722
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-YP5718
mtDNA: H1c7

Sample: VK257 / UK_Dorset-3723
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: I-Y19934
mtDNA: H5a1c1a

Sample: VK258 / UK_Dorset-3733
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-YP1395
FTDNA Comment: Shares 5 SNPs with a man from Norway. Forms a new branch down of R-YP1395. New branch = R-PH420
mtDNA: K1a4a1

Sample: VK259 / UK_Dorset-3734
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-FT20255
FTDNA Comment: Both VK449 and VK259 share 3 SNPs with a man from Sweden. Forms a new branch down of R-FT20255 (Z18). New branch = R-FT22694
mtDNA: I2

Sample: VK260 / UK_Dorset-3735
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: Q-BY77336
mtDNA: H1e1a

Sample: VK261 / UK_Dorset-3736
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-BY64643
mtDNA: H52

Sample: VK262 / UK_Dorset-3739
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: I-FT347811
FTDNA Comment: Shares 2 SNPs with an American of unknown origins. Forms a new branch down of Y6908 (Z140). At the same time a new branch was discovered that groups this new Ancient/American branch with the established I-FT274828 branch. New ancient path = I-Y6908>I-FT273257>I-FT347811
mtDNA: J1c4

Sample: VK263 / UK_Dorset-3742
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-Z16372
mtDNA: K1a4d

Sample: VK264 / UK_Dorset-3744
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-BY30937
mtDNA: N1a1a1a2

Sample: VK267 / Sweden_Karda 21
Location: Karda, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-L23
mtDNA: T2b4b

Sample: VK268 / Sweden_Karda 22
Location: Karda, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-M269
mtDNA: K1c1

Sample: VK269 / Sweden_Karda 24
Location: Karda, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-M269
mtDNA: H1e1a

Sample: VK273 / Russia_Gnezdovo 77-255
Location: Gnezdovo, Russia
Age: Viking 10-11th centuries CE
Y-DNA: R-BY61747
mtDNA: U5a2a1b1

Sample: VK274 / Denmark_Kaargarden 391
Location: Kaagården, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-PH3519
mtDNA: T2b-T152C!

Sample: VK275 / Denmark_Kaargarden 217
Location: Kaagården, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: I-BY74743
mtDNA: H

Sample: VK279 / Denmark_Galgedil AXE
Location: Galgedil, Funen, Denmark
Age: Viking 10th century CE
Y-DNA: I-Y10639
mtDNA: I4a

Sample: VK280 / Denmark_Galgedil UO
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-Y3713
mtDNA: H11a

Sample: VK281 / Denmark_Barse Grav A
Location: Bårse, Sealand, Denmark
Age: Viking 10th century CE
Y-DNA: I-FGC22153
FTDNA Comment: Splits I-Y5612 (P109). Derived for 8, ancestral for 2. New path = I-Y5612>I-Y5619
mtDNA: T2

Sample: VK282 / Denmark_Stengade I, LMR c195
Location: Stengade_I, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-CTS1211
mtDNA: H4a1a4b

Sample: VK286 / Denmark_Bogovej Grav BJ
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-S10708
mtDNA: J1c-C16261T

Sample: VK287 / Denmark_Kaargarden Grav BS
Location: Kaagården, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-S22676
mtDNA: T2b

Sample: VK289 / Denmark_Bodkergarden Grav H, sk 1
Location: Bødkergarden, Langeland, Denmark
Age: Viking 9th century CE
Y-DNA: R-U106
mtDNA: J2b1a

Sample: VK290 / Denmark_Kumle Hoje Grav O
Location: Kumle_høje, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-FT264183
FTDNA Comment: Shares at least 4 SNPs with a man from Sweden, forming a new branch downstream R-FT263905 (U106). New branch = R-FT264183. HG02545 remains at R-FT263905
mtDNA: I1a1

Sample: VK291 / Denmark_Bodkergarden Grav D, sk 1
Location: Bødkergarden, Langeland, Denmark
Age: Viking 9th century CE
Y-DNA: I-Y20861
mtDNA: U5a1a2b

Sample: VK292 / Denmark_Bogovej Grav A.D.
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-M417
mtDNA: J1c2c1

Sample: VK295 / Denmark_Hessum sk 1
Location: Hessum, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-Y4738
mtDNA: T1a1

Sample: VK296 / Denmark_Hundstrup Mose sk 1
Location: Hundstrup_Mose, Sealand, Denmark
Age: Early Viking 660-780 CE
Y-DNA: I-S7660
mtDNA: HV6

Sample: VK297 / Denmark_Hundstrup Mose sk 2
Location: Hundstrup_Mose, Sealand, Denmark
Age: Early Viking 670-830 CE
Y-DNA: I-Y4051
mtDNA: J1c2h

Sample: VK301 / Denmark_Ladby Grav 4
Location: Ladby, Funen, Denmark
Age: Viking 640-890 CE
Y-DNA: I-FT105192
mtDNA: R0a2b

Sample: VK306 / Sweden_Skara 33
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-FT115400
FTDNA Comment: Shares 3 mutations with a man from Sweden. Forms a new branch down of I-S19291. New branch = I-FT115400. VK151 has no coverage for 2 of these mutations
mtDNA: H15a1

Sample: VK308 / Sweden_Skara 101
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY33037
mtDNA: H1c

Sample: VK309 / Sweden_Skara 53
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-YP6189
mtDNA: K1b1c

Sample: VK313 / Denmark_Rantzausminde Grav 2
Location: Rantzausminde, Funen, Denmark
Age: Viking 850-900 CE
Y-DNA: R-JFS0009
mtDNA: H1b

Sample: VK315 / Denmark_Bakkendrup Grav 16
Location: Bakkendrup, Sealand, Denmark
Age: Viking 850-900 CE
Y-DNA: I-Y98280
FTDNA Comment: Shares 1 SNP with a man from the Netherlands. Forms a new branch downstream of I-Y37415 (P109). New branch = I-Y98280
mtDNA: T1a1b

Sample: VK316 / Denmark_Hessum sk II
Location: Hessum, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-Y130659
FTDNA Comment: Splits I-Y130594 (Z59). Derived for 1 ancestral for 6. New path = I-Y130659>I-Y130594>I-Y130747. Ancient sample STR_486 also belongs in this group, at I-Y130747
mtDNA: K1a4

Sample: VK317 / Denmark_Kaargarden Grav BF99
Location: Kaagården, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: J-BY62479
FTDNA Comment: Splits J2-BY62479 (M67). Derived for 9, ancestral for 3. New path = J-BY62479>J-BY72550
mtDNA: H2a2a1

Sample: VK320 / Denmark_Bogovej Grav S
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: I-Y103013
FTDNA Comment: Shares 3 SNPs with a man from Sweden. Forms a new branch down of I-FT3562 (P109). New branch = I-Y103013
mtDNA: U5a1a1

Sample: VK323 / Denmark_Ribe 2
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-S10185
mtDNA: K2a6

Sample: VK324 / Denmark_Ribe 3
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-BY16590
FTDNA Comment: Splits R-BY16590 (L47). Derived for 7, ancestral for 3. New path = R-S9742>R-BY16950
mtDNA: N1a1a1a2

Sample: VK326 / Denmark_Ribe 5
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-Y52895
mtDNA: U5b1-T16189C!-T16192C!

Sample: VK327 / Denmark_Ribe 6
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-BY463
mtDNA: H6a1a5

Sample: VK329 / Denmark_Ribe 8
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-S18894
mtDNA: H3-T152C!

Sample: VK332 / Oland_1088
Location: Oland, Sweden
Age: Viking 858 ±68 CE
Y-DNA: I-S8522
FTDNA Comment: Possibly falls beneath I-BY195155. Shares one C>T mutation with a BY195155* sample
mtDNA: T2b24

Sample: VK333 / Oland_1028
Location: Oland, Sweden
Age: Viking 885 ± 69 CE
Y-DNA: R-Z29034
mtDNA: H2a2a1

Sample: VK335 / Oland_1068
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-BY39347
FTDNA Comment: Shares 8 SNPs with a man from France. Forms a new branch down of R-BY39347 (U152). New branch = R-FT304388
mtDNA: K1b2a3

Sample: VK336 / Oland_1075
Location: Oland, Sweden
Age: Viking 853 ± 67 CE
Y-DNA: R-BY106906
mtDNA: K2a3a

Sample: VK337 / Oland_1064
Location: Oland, Sweden
Age: Viking 858 ± 68 CE
Y-DNA: I-BY31739
FTDNA Comment: Possible Z140
mtDNA: U5a1b3a

Sample: VK338 / Denmark_Bogovej Grav BV
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-A6707
mtDNA: W3a1

Sample: VK342 / Oland_1016
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-BY78615
FTDNA Comment: Shares 2 SNPs with a man from Finland. Forms a new branch down of I2-Y23710 (L801). New branch = I-BY78615
mtDNA: H2a1

Sample: VK343 / Oland_1021
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-Y7232
mtDNA: H3h

Sample: VK344 / Oland_1030
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-BY32357
mtDNA: J1c2t

Sample: VK345 / Oland_1045
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-FT148754
FTDNA Comment: Splits R-FT148754 (DF63). Derived for 8, ancestral for 6. New path = R-FT148796>R-FT148754
mtDNA: H4a1

Sample: VK346 / Oland_1057
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: J-Z8424
mtDNA: H2a2b

Sample: VK348 / Oland_1067
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-Z171
mtDNA: T2b28

Sample: VK349 / Oland_1073
Location: Oland, Sweden
Age: Viking 829 ± 57 CE
Y-DNA: R-BY166065
FTDNA Comment: Shares 2 SNPs with a man from England. Forms a branch down of R-BY166065 (L1066). New branch = R-BY167052
mtDNA: H1e2a

Sample: VK352 / Oland_1012
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-FGC35755
FTDNA Comment: Possibly forms a branch down of I-Y15295. 2 possible G>A mutations with a I-Y15295* sample
mtDNA: H64

Sample: VK354 / Oland_1026
Location: Oland, Sweden
Age: Viking 986 ± 38 CE
Y-DNA: R-S6752
mtDNA: H2a1

Sample: VK355 / Oland_1046
Location: Oland, Sweden
Age: Viking 847 ± 65 CE
Y-DNA: L-L595
FTDNA Comment: Joins 2 other ancients on this rare branch. ASH087 and I2923
mtDNA: U5b1b1a

Sample: VK357 / Oland_1097
Location: Oland, Sweden
Age: Viking 1053 ± 60 CE
Y-DNA: I-FT49567
FTDNA Comment: Shares 4 SNPs with a man from England. Forms a new branch down of I-A5952 (Z140). New branch = I-FT49567
mtDNA: J2b1a

Sample: VK362 / Denmark_Bogovej LMR 12077
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: E-CTS5856
FTDNA Comment: Possibly E-Z16663
mtDNA: V7b

Sample: VK363 / Denmark_Bogovej BT
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: I-BY198083
FTDNA Comment: Shares 2 SNPs with a man from Switzerland. Forms a new branch down of I-A1472 (Z140). New branch = I-BY198083
mtDNA: U4b1a1a1

Sample: VK365 / Denmark_Bogovej BS
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-BY34800
mtDNA: U8a2

Sample: VK367 / Denmark_Bogovej D
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: I-BY67827
FTDNA Comment: VK506 and VK367 split the I-BY67827 branch. Derived for 2 SNPs total. They also share one unique marker (26514336 G>C). New branches = I-Y16449>I-BY72774>I-FT382000
mtDNA: J1b1a1

Sample: VK369 / Denmark_Bakkendrup losfund-2, conc.1
Location: Bakkendrup, Sealand, Denmark
Age: Viking 850-900 CE
Y-DNA: R-FGC7556
FTDNA Comment: Shares 13 SNPs with an American. Forms a new branch down of R-FGC7556 (DF99). New branch = R-FT108043
mtDNA: H1a

Sample: VK373 / Denmark_Galgedil BER
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-L20
mtDNA: J2b1a

Sample: VK379 / Oland_1077
Location: Oland, Sweden
Age: Early Viking 700 CE
Y-DNA: I-FGC22048
mtDNA: U3b1b

Sample: VK380 / Oland_1078
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-Y22923
mtDNA: H27

Sample: VK382 / Oland_1132
Location: Oland, Sweden
Age: Early Viking 700 CE
Y-DNA: I-L813
mtDNA: H3g1

Sample: VK384 / Denmark_Hesselbjerg Grav 14, sk EU
Location: Hesselbjerg, Jutland, Denmark
Age: Viking 850-900 CE
Y-DNA: R-FGC10249
mtDNA: H3g1

Sample: VK386 / Norway_Oppland 5305
Location: Oppland, Nor_South, Norway
Age: Viking 9-11th centuries CE
Y-DNA: R-S695
mtDNA: J1b1a1

Sample: VK388 / Norway_Nordland 253
Location: Nordland, Nor_North, Norway
Age: Viking 8-16th centuries CE
Y-DNA: I-Y22507
FTDNA Comment: Splits I-Y22507. Derived for 1 ancestral for 5. New path = I-Y22504>I-Y22507
mtDNA: J1c5

Sample: VK389 / Norway_Telemark 3697
Location: Telemark, Nor_South, Norway
Age: Viking 10th century CE
Y-DNA: R-Z27210
FTDNA Comment: Splits R-Z27210 (U106). Derived for 1 ancestral for 2. New path = R-Y32857>R-Z27210
mtDNA: T2b

Sample: VK390 / Norway_Telemark 1648-A
Location: Telemark, Nor_South, Norway
Age: Iron Age 5-6th centuries CE
Y-DNA: R-FT7019
mtDNA: K2a3

Sample: VK394 / Norway_Hedmark 4460
Location: Hedmark, Nor_South, Norway
Age: Viking 10th century CE
Y-DNA: R-YP5161
FTDNA Comment: Shares 1 SNP with a man from Denmark. Forms a new branch down of R-YP5161 (L448). New branch = R-BY186623
mtDNA: H13a1a1a

Sample: VK395 / Sweden_Skara 275
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: N-BY21973
mtDNA: X2c1

Sample: VK396 / Sweden_Skara 166
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY18970
FTDNA Comment: Splits R-BY18970 (DF98). Derived for 2, ancestral for 4 (BY18964+?). New path = R-BY18973>R-BY18970
mtDNA: J1c2t

Sample: VK397 / Sweden_Skara 237
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-S7759
mtDNA: J1b1a1

Sample: VK398 / Sweden_Skara 231
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: T-BY215080
mtDNA: H1b1-T16362C

Sample: VK399 / Sweden_Skara 276
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: N-FGC14542
mtDNA: H4a1a1a

Sample: VK400 / Sweden_Skara 236
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-FGC21682
mtDNA: H1-C16239T

Sample: VK401 / Sweden_Skara 229
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-YP5155
FTDNA Comment: Splits R-YP5155. Derived for 4, ancestral for 1. New path = R-YP5155>R-Y29963
mtDNA: H2a2b

Sample: VK403 / Sweden_Skara 217
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY3222
mtDNA: K1a4a1a2b

Sample: VK404 / Sweden_Skara 277
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-BY55382
FTDNA Comment: Shares 3 SNPs with a man from Sweden. Forms a new branch down of I-BY55382 (L22). New branch = I-BY108664
mtDNA: U4a2

Sample: VK405 / Sweden_Skara 83
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-L21
mtDNA: K1a10

Sample: VK406 / Sweden_Skara 203
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: N-Y7795
FTDNA Comment: Shares 2 SNPs with a man from Sweden. Forms a new branch down of N-Y7795. New branch = N-FT381631
mtDNA: K1a4a1

Sample: VK407 / Sweden_Skara 274
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-Y18232
mtDNA: H1c21

Sample: VK408 / Russia_Ladoga_5757-18
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: R-CTS11962
mtDNA: H74

Sample: VK409 / Russia_Ladoga_5680-14
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-DF29
mtDNA: H3h

Sample: VK410 / Russia_Ladoga_5680-15
Location: Ladoga, Russia
Age: Viking 11-12th centuries CE
Y-DNA: I-M253
mtDNA: X2b-T226C

Sample: VK411 / Denmark_Galgedil TT
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-M269
mtDNA: H1a1

Sample: VK414 / Norway_Oppland 1517
Location: Oppland, Nor_South, Norway
Age: Viking 10-11th centuries CE
Y-DNA: R-PH12
FTDNA Comment: Splits R1a-PH12. Derived for 2, ancestral for 1. New path R-Y66214>R-PH12
mtDNA: H6a1a

Sample: VK418 / Norway_Nordland 1502
Location: Nordland, Nor_North, Norway
Age: Iron Age 4th century CE
Y-DNA: R-CTS5533
mtDNA: J1c2c1

Sample: VK419 / Norway_Nordland 1522
Location: Nordland, Nor_North, Norway
Age: Viking 6-10th centuries CE
Y-DNA: N-S9378
FTDNA Comment: Shares 2 SNPs with a man from France. Forms a new branch down of N-S9378 (L550). New branch = N-BY160234
mtDNA: U5b1b1g1

Sample: VK420 / Norway_Hedmark 2813
Location: Hedmark, Nor_South, Norway
Age: Viking 8-11th centuries CE
Y-DNA: I-FGC15560
FTDNA Comment: Shares 8 SNPs with an American man. Forms a new branch down of I-BY158446. New branch = I-FT118954
mtDNA: I4a

Sample: VK421 / Norway_Oppland 3777
Location: Oppland, Nor_South, Norway
Age: Viking 10-11th centuries CE
Y-DNA: R-M198
mtDNA: U5b2c2b

Sample: VK422 / Norway_Hedmark 4304
Location: Hedmark, Nor_South, Norway
Age: Viking 10th century CE
Y-DNA: R-YP390
mtDNA: J1b1a1a

Sample: VK424 / Sweden_Skara 273
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-M269
mtDNA: K2b1a1

Sample: VK425 / Sweden_Skara 44
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-Z331
mtDNA: U3a1

Sample: VK426 / Sweden_Skara 216
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-M269
mtDNA: U6a1a1

Sample: VK427 / Sweden_Skara 209
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-Y5362
mtDNA: K1a4

Sample: VK430 / Gotland_Frojel-00502
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: N-S18447
mtDNA: T1a1b

Sample: VK431 / Gotland_Frojel-00487A
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-P312
mtDNA: H2a1

Sample: VK438 / Gotland_Frojel-04498
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-CTS11962
mtDNA: H1

Sample: VK443 / Oland_1101
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-A20404
mtDNA: U5b2b5

Sample: VK444 / Oland_1059
Location: Oland, Sweden
Age: Viking 847 ± 65 CE
Y-DNA: R-PH1477
mtDNA: K1a

Sample: VK445 / Denmark_Gl Lejre-A1896
Location: Gl._Lejre, Sealand, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-Z2040
mtDNA: U3b

Sample: VK446 / Denmark_Galgedil LS
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-BY19383
FTDNA Comment: Shares 1 SNP with a man from England. Forms a new branch down of I-BY19383 (Z2041). New branch = I-BY94803
mtDNA: U5a1a1-T16362C

Sample: VK449 / UK_Dorset-3746
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-FT20255
FTDNA Comment: Both VK449 and VK259 share 3 SNPs with a man from Sweden. Forms a new branch down of R-FT20255 (Z18). New branch = R-FT22694
mtDNA: H6a2a

Sample: VK452 / Gotland_Kopparsvik-111
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-CTS11962
mtDNA: T2b

Sample: VK453 / Gotland_Kopparsvik-134
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-YP256
mtDNA: H8c

Sample: VK461 / Gotland_Frojel-025A89
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: N-Y5005
FTDNA Comment: Possibly down of Y15161. Shares 2 C>T mutations with a Y15161* kit
mtDNA: H7b

Sample: VK463 / Gotland_Frojel-019A89
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-Y13467
mtDNA: H1b5

Sample: VK466 / Russia_Gnezdovo 77-222
Location: Gnezdovo, Russia
Age: Viking 10-11th centuries CE
Y-DNA: R-PF6162
mtDNA: H6a1a4

Sample: VK468 / Gotland_Kopparsvik-235
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-BY125166
mtDNA: H1a1

Sample: VK469 / Gotland_Kopparsvik-260
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-FGC17230
mtDNA: H3ac

Sample: VK471 / Gotland_Kopparsvik-63
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-M417
mtDNA: H1m

Sample: VK473 / Gotland_Kopparsvik-126
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: I-S14887
mtDNA: N1a1a1a1

Sample: VK474 / Gotland_Kopparsvik-137
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: E-Y4971
FTDNA Comment: Possible E-Y4972 (Shares 1 G>A mutation with a E-Y4972* sample)
mtDNA: J1d

Sample: VK475 / Gotland_Kopparsvik-187
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-BY27605
mtDNA: H1a

Sample: VK479 / Gotland_Kopparsvik-272
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: G-Y106451
mtDNA: H1a1

Sample: VK480 / Estonia_Salme_II-E
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-YP617
mtDNA: U4a2a1

Sample: VK481 / Estonia_Salme_II-F
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-FGC14542
FTDNA Comment: Shares 1 SNP with a man from Sweden. Forms a new branch down of N-FGC14542. New branch = N–BY149019. VK399 possibly groups with these two as well
mtDNA: T2a1a

Sample: VK482 / Estonia_Salme_II-P
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-SK1234
mtDNA: H1a

Sample: VK483 / Estonia_Salme_II-V
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y141089
FTDNA Comment: Said to be brother of VK497 at I-BY86407 which is compatible with this placement, although no further Y-SNP evidence exists due to low coverage
mtDNA: H16

Sample: VK484 / Estonia_Salme_II-Q
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-FT103482
FTDNA Comment: VK484 and VK486 both split R-FT103482 (Z283). Derived for 9 ancestral for 6. New path = R-FT104609>R-FT103482
mtDNA: H6a1a

Sample: VK485 / Estonia_Salme_II-O
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY266
FTDNA Comment: Said to be brother of VK497 at I-BY86407 which is compatible with this placement, although no further Y-SNP evidence exists due to low coverage
mtDNA: H16

Sample: VK486 / Estonia_Salme_II-G
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-FT103482
FTDNA Comment: VK484 and VK486 both split R-FT103482 (Z283). Derived for 9 ancestral for 6. New path = R-FT104609>R-FT103482
mtDNA: U4a2a

Sample: VK487 / Estonia_Salme_II-A
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-YP4932
FTDNA Comment: Joins ancient Estonian samples V9 and X14
mtDNA: H17a2

Sample: VK488 / Estonia_Salme_II-H
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-L813
mtDNA: H5c

Sample: VK489 / Estonia_Salme_II-Ä
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y21546
mtDNA: T2e1

Sample: VK490 / Estonia_Salme_II-N
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-FGC8677
FTDNA Comment: Said to be brother of VK497 at I-BY86407 which is compatible with this placement, although no further Y-SNP evidence exists due to low coverage
mtDNA: H16

Sample: VK491 / Estonia_Salme_II-Õ
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y141089
mtDNA: H6a1a

Sample: VK492 / Estonia_Salme_II-B
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Z73
mtDNA: H1b5

Sample: VK493 / Estonia_Salme_II-Š
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-S6353
FTDNA Comment: Shares 1 SNP with a man from Finland. Forms a new branch down of R-S6353. New branch = R-BY166432
mtDNA: H2a2a1

Sample: VK494 / Poland_Sandomierz 1/13
Location: Sandomierz, Poland
Age: Viking 10-11th centuries CE
Y-DNA: R-BY25698
mtDNA: X2c2

Sample: VK495 / Estonia_Salme_II-C
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY98617
FTDNA Comment: Shares 1 SNP with a man from Romania. Forms a branch down of I-BY98617 (L22). New branch = I-FT373923
mtDNA: H1b

Sample: VK496 / Estonia_Salme_II-W
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY198216
mtDNA: H1a

Sample: VK497 / Estonia_Salme_II-Ö
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY86407
mtDNA: H16

Sample: VK498 / Estonia_Salme_II-Z
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-S6752
mtDNA: H1q

Sample: VK504 / Estonia_Salme_I-1
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-S23232
mtDNA: H28a

Sample: VK505 / Estonia_Salme_I-2
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y30126
mtDNA: J1b1a1b

Sample: VK506 / Estonia_Salme_I-3
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY67827
FTDNA Comment: VK506 and VK367 split the I-BY67827 branch. Derived for 2 SNPs total. They also share one unique marker (26514336 G>C). New branches = I-Y16449>I-BY72774>I-FT382000
mtDNA: J1c2

Sample: VK507 / Estonia_Salme_I-4
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-CTS8407
FTDNA Comment: Shares 1 SNP with a man from Denmark. Forms a branch down of I-CTS8407 (P109). New branch = I-BY56459
mtDNA: HV6

Sample: VK508 / Estonia_Salme_I-5
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y10933
mtDNA: J1c5

Sample: VK509 / Estonia_Salme_I-6
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y36105
mtDNA: H1n-T146C!

Sample: VK510 / Estonia_Salme_I-7
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y19932
FTDNA Comment: Shares 8 SNPs with a man from Russia. Creates a new branch down of I-Y19932 (L22). New branch = I-BY60851
mtDNA: H10e

Sample: VK511 / Estonia_Salme_II-X
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y132154
mtDNA: T2a1a

Sample: VK512 / Estonia_Salme_II-Ü
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y21546
mtDNA: H2a2b1

Sample: VK513 / Greenland F8
Location: Ø029, East_Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: R-S2886
mtDNA: J1c1b

Sample: VK514 / Norway_Nordland 5195
Location: Nordland, Nor_North, Norway
Age: Viking 6-10th centuries CE
Y-DNA: R-YP4963
mtDNA: K2b1a1

Sample: VK515 / Norway_Nordland 4512
Location: Nordland, Nor_North, Norway
Age: Viking 10th century CE
Y-DNA: I-FGC8677
mtDNA: H52

Sample: VK516 / Norway_Sor-Trondelag 4481
Location: Sor-Trondelag, Nor_Mid, Norway
Age: Viking 10th century CE
Y-DNA: R-CTS8746
mtDNA: H6a1a

Sample: VK517 / Sweden_Uppsala_UM36031_623b
Location: Skämsta, Uppsala, Sweden
Age: Viking 11th century
Y-DNA: I-BY78615
mtDNA: J1c3f

Sample: VK519 / Norway_Nordland 4691b
Location: Nordland, Nor_North, Norway
Age: Viking 6-10th centuries CE
Y-DNA: I-M253
mtDNA: HV0a1

Sample: VK521 / Sol941 Grav900 Brondsager Torsiinre
Location: Brondsager_Torsiinre, Sealand, Denmark
Age: Iron Age 300 CE
Y-DNA: I-FGC43065
mtDNA: H16b

Sample: VK524 / Norway_Nordland 3708
Location: Nordland, Nor_North, Norway
Age: Viking 10th century CE
Y-DNA: I-M6155
mtDNA: HV0a1

Sample: VK528 / Norway_Troms 4049
Location: Troms, Nor_North, Norway
Age: Viking 8-9th centuries CE
Y-DNA: R-BY135243
mtDNA: K1a4a1b

Sample: VK529 / Norway_Nordland 642
Location: Nordland, Nor_North, Norway
Age: Viking 8-9th centuries CE
Y-DNA: I-BY106963
mtDNA: H7

Sample: VK531 / Norway_Troms 5001A
Location: Troms, Nor_North, Norway
Age: LNBA 2400 BC
Y-DNA: R-Y13202
mtDNA: U2e2a

Sample: VK532 / Kragehave Odetofter XL718
Location: Kragehave Odetofter, Sealand, Denmark
Age: Iron Age 100 CE
Y-DNA: I-S26361
FTDNA Comment: Shares 5 SNPs with a man from Sweden. Forms a new branch down of I-S26361 (Z2041). New branch = I-FT273387
mtDNA: U2e2a1a

Sample: VK533 / Oland 1076 28364 35
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: N-BY21933
FTDNA Comment: Splits N-BY21933 (L550). Derived for 1 ancestral for 13. New path = N-BY29005>N-BY21933
mtDNA: H13a1a1e

Sample: VK534 / Italy_Foggia-869
Location: San_Lorenzo, Foggia, Italy
Age: Medieval 11-13th centuries CE
Y-DNA: R-FGC71023
mtDNA: H1

Sample: VK535 / Italy_Foggia-891
Location: San_Lorenzo, Foggia, Italy
Age: Medieval 12-13th centuries CE
Y-DNA: R-Z2109
mtDNA: T1a5

Sample: VK538 / Italy_Foggia-1249
Location: Cancarro, Foggia, Italy
Age: Medieval 11-13th centuries CE
Y-DNA: L-Z5931
mtDNA: H-C16291T

Sample: VK539 / Ukraine_Shestovitsa-8870-97
Location: Shestovitsa, Ukraine
Age: Viking 10-12th centuries CE
Y-DNA: I-BY61100
FTDNA Comment: Splits I-BY61100 (Z2041). Derived for 5 ancestral for 3. New path I-BY65928>I-BY61100
mtDNA: V

Sample: VK541 / Ukraine_Lutsk
Location: Lutsk, Ukraine
Age: Medieval 13th century
Y-DNA: R-YP593
mtDNA: H7

Sample: VK542 / Ukraine_Chernigov
Location: Chernigov, Ukraine
Age: Viking 11th century
Y-DNA: I-S20602
mtDNA: H5a2a

Sample: VK543 / Ireland_EP55
Location: Eyrephort, Ireland
Age: Viking 9th century CE
Y-DNA: R-S2895
mtDNA: I2

Sample: VK545 / Ireland_SSG12
Location: Ship_Street_Great, Dublin, Ireland
Age: Viking 7-9th centuries CE
Y-DNA: R-DF105
mtDNA: H1bb

Sample: VK546 / Ireland_08E693
Location: Islandbridge, Dublin, Ireland
Age: Viking 9th century CE
Y-DNA: R-L448
mtDNA: HV6

Sample: VK547 / Norway_Nordland 4727
Location: Nordland, Nor_North, Norway
Age: Viking 8-11th centuries CE
Y-DNA: I-FT8660
FTDNA Comment: Splits I-FT8660 (L813) Derived for 3, ancestral for 3. New path = I-FT8660>I-FT8457
mtDNA: V

Sample: VK549 / Estonia_Salme_II-J
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-P109
mtDNA: T2b5a

Sample: VK550 / Estonia_Salme_II-D
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y4706
mtDNA: V

Sample: VK551 / Estonia_Salme_II-U
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-CTS4179
mtDNA: J2a1a1a2

Sample: VK552 / Estonia_Salme_II-K
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Z2900
mtDNA: H10e

Sample: VK553 / Estonia_Salme_II-M
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-FGC22026
FTDNA Comment: Splits I-FGC22026. Derived for 1, ancestral for 7. New path = I-FGC22035>I-FGC22026
mtDNA: K1c1h

Sample: VK554 / Estonia_Salme_II-L
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-M253
mtDNA: W6a

Sample: VK555 / Estonia_Salme_II-I
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Z73
mtDNA: U3b1b

Sample: VK579 / Oland 1099 1785/67 35
Location: Oland, Sweden
Age: Iron Age 200-400 CE
Y-DNA: N-L550
mtDNA: H1s

Sample: VK582 / SBM1028 ALKEN ENGE 2013, X2244
Location: Alken_Enge, Jutland, Denmark
Age: Iron Age 1st century CE
Y-DNA: I-L801
mtDNA: H6a1b3

Update History:

  • 9-17-2020 – updated 3 times, approximately one-third complete
  • 9-18-2020 – updated in afternoon with another 124 analyzed
  • 9-19-2020 – updated with 142 analyzed
  • 9-21-2020 – updates with 240 analyzed – only 60 to go!
  • 9-22-2020 – last update – A total of 285 entries analyzed and placed on the FTDNA tree where appropriate. 15 were too low quality or low coverage for a reliable haplogroup call, so they were excluded.

____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

August Hot News: Ancestry Match Tagging Script, DNA Sales, DNAPainter Newsletter & More

August news.png

This wasn’t exactly how I had in mind to convey these news items, but you know that saying, “Life is what happens when you’re making other plans,”? Well, let’s just say it’s one of those weeks/months and years.

So, this article is going to be short and sweet, and I promise a more detailed article in a few days.

However, you need at least some of this info ASAP, so here it is in its rather unrefined raw state.

  • Ancestry Tagging Script
  • Ancestry Acquisition Update
  • Summer Sales
  • MyHeritage Sale
  • FamilyTreeDNA Sale
  • DNAPainter Free Newsletter
  • New Ancient Ancestor

Ancestry Tagging Script (to Save Your Sanity)

A very nice person, Roger Frøysaa, has written a free javascript to group your Ancestry matches. Of course, I’m referring to your 6-8 cM matches that are subject to the upcoming purge later in August.  I’m using Roger’s gracious gift, but struggling because the script keeps timing out, or Ancestry’s backend keeps timing out, etc.

You might need to be at least somewhat comfortable with computers for this to work and it doesn’t work on a tablet or iPad, but does work on a Mac.

I have the latest version of both Chrome and Edge browsers installed on a relatively new computer with lots of memory. For me, the script works best on Edge and in the middle of the night when Ancestry’s servers are less busy. Still, I can’t seem to get below my 6.2 cM matches without the script or Ancestry bombing. It doesn’t help any that my internet service has been flaky this week too.

The author recommends Firefox. (Update. I’ve installed Firefox and it’s running like a champ.)

Here are the instructions: https://docs.google.com/document/d/100BqYdjeVdwmHaT9gTL3miknxm7bKik4KwcHaoUX72I/edit?fbclid=IwAR04u0VQaaVeG-6pkif-ILYmLPQgHTtCf13A0lW4EMPTm0QwOb1hDb9o7L4

Print these out, read them thoroughly, and follow them step by step.

Here’s a link to the script on GitHub: https://github.com/lrf1/ancestry_scripts/blob/master/ancestry_dnsmatches_grouptagger_v2.js

Here’s a YouTube video about how to use the script: https://www.youtube.com/watch?v=pnqGChJL0kw&fbclid=IwAR04iTVzcaKF8YJx2ewX_2rMEXQFaFaNIW5YfPQMlJYG6yfd1U6NvCN47Vc

Individual tweaking is required.

In my case, I have named the group where I want my 6-8 cM matches saved “1saved.” I selected that name because the 1 locates it near the top and I’ll know what’s there.

August ancestry 1saved

Following Roger’s instructions, 1saved should be row 3, but I had to enter row “2” in the script to get the matches to save to the group 1saved.

// MODIFY THE FOLLOWING LINES AS NEEDED

var groupTitle = “1saved“;

var groupRow = 2;

Regardless, the script works, and truthfully, all I really care about is that these matches are preserved.

My biggest problem occurs after the script bombs the first few times, and it will – you’ll need to restart it. Until the script manages to work its way to the location in the file, which is increasing further down in the scrolling, where it discovers matches to be tagged, I must re-enter and re-enter the script to reinitiate the searching.

This is by NO MEANS a complaint because I’m very grateful for this free tool. It’s just an observation that I hope will help you too. Having said that, I can’t tell you how many surnames like Bolton, my grandmother’s birth surname, Estes and Vannoy by various spellings, my great-grandmother’s surname I’ve seen scroll past as they are being tagged. There’s gold in those matches.

Furthermore, many people are reporting successes now that they’re actually looking at these smaller matches. If half of these are identical by chance, or false positives, that means half are NOT false and you need to use your analytical skills to figure out which is which.

Someone asked me earlier if I know anyone who will run the script or tag on behalf of someone else. I don’t, but you could ask on any number of Facebook groups, specifically the AncestryDNA Matching group or the ISOGG group.

If you’re NOT going to use the script, I recommend the following methodology to save at least some of your highest quality matches that are most likely to be relevant.

Select both “Common Ancestors” and “Shared DNA.” Enter the levels of shared DNA you want to view, meaning 6-6 or 6-7 or 7-7, which will display all of your matches where a potentially shared ancestor has been identified (ThruLine.)

August ancestry common plus 6.png

This won’t save anyplace near all of your 6-8 cM matches, but it will save the potentially most beneficial.

I wrote the article, Ancestry to Remove DNA Matches Soon – Preservation Strategies with Detailed Instructions, here, and Ancestry Match Purge Update here.

Note that Ancestry has stated they are delaying the purge until “late August,” but I’m seeing multiple people report that their 6-8 cM matches are already gone, so if you want to save them, one way or another, don’t delay.

Ancestry Acquisition Update

Ancestry’s announced acquisition by Blackstone Group, which I wrote about here, has raised questions about privacy. An article this week in Vice quotes both an Ancestry and Blackstone spokesperson on the topic who say that Blackstone will not have access to user data nor will it be shared with Blackstone’s portfolio companies.

Summer Sales Have Arrived

Late summer always ushers in summer DNA sales.

Right now, FamilyTreeDNA, MyHeritage, and Ancestry are having sales.

AncestryDNA is on sale for $59, here.

MyHeritage is on sale for $49, here and has a significant customer base in Europe where most of my ancestors originated.

Of course, FamilyTreeDNA has Y DNA and mitochondrial DNA in addition to autosomal plus 20 years’ worth of testers in their database.

Regardless of where you’ve tested, having family members in the same database makes your own test so much more valuable because many of your matches will match family members too. I’m in all of the databases, and several of my family members are as well.

Remember, you can transfer tests for free to both MyHeritage and Family Tree DNA from other vendors. Instructions for each company can be found here.

MyHeritage Sale

The MyHeritage DNA kit is on sale right now for $49 and free shipping with 2 or more.

August myheritage

Don’t forget that if you’ve tested elsewhere, you can transfer to MyHeritage for free and pay just $29 to unlock the advanced tools, such as Theories of Family Relativity, or subscribe to the full records package and the unlock is free.

Family Tree DNA Sale

Family Tree DNA offers their Family Finder autosomal test, but additionally, they offer Y and mitochondrial DNA testing and matching which provide insights you can’t obtain with autosomal DNA testing alone.

  • Y DNA is for males only and tests the direct paternal (surname) line.
  • Mitochondrial DNA is for both men and women and tests your direct matrilineal line – your mother, her mother, her mother, etc.

If you’ve already tested at a lower level, you can upgrade.

august ftdna 2

If you know what you want, go right ahead and order.

This is a wonderful time to order tests for family members who represent Y DNA and mitochondrial lines that you can’t test for yourself.

Early in the week, I’ll publish an article that shows how to locate people at each testing company who are appropriately descended from your ancestor whose Y DNA or mitochondrial DNA results you’d like to have.

This sale runs through the end of August, so you have time to search out and find people to ask if they’d be willing to test. Of course, if you already know people appropriately descended, by all means, ask them and get a kit on order. I generally offer a DNA testing scholarship so that the $$ factor is removed from my request. It makes it easier for them to say yes. If they agree, I add a Family Finder test too. I believe in striking while the iron is hot.

If you’d like to read about the different kinds of DNA testing, the article 4 Kinds of DNA for Genetic Genealogy is great to share with others as well.

Free DNAPainter Newsletter

I received an email this week from Jonny Perl at DNAPainter, one of my favorite tools, and he’s now offering a free monthly newsletter with tips on how to use DNAPainter. You can sign up here. I certainly did.

I’ve written extensively about DNAPainter, here.

New Ancient Mystery Ancestor

Guess what, you may have a new mystery ancestor. How cool is this??!!

LiveScience reported this week that scientists have detected traces of an earlier human ancestor in Neanderthal and Denisovan DNA. That ancient ancestor existed 200,000-300,000 years ago, in Africa, leaving and intermixing with the Neanderthals then living in the Middle East or elsewhere outside of Africa, but before the move to Europe.

You can read the PLOS article, here.

I don’t know about you, but I find this absolutely fascinating.

TTFN

Enough news for now, although I’ve probably forgotten something.

Order a DNA test, find an ancestor, subscribe to the DNAPainter newsletter, and enjoy summer, safely.

I’ll see you later this week with an article about how to search for family members, in particular Y and mitochondrial DNA carriers that represent your ancestral lines. You never know what critical information is waiting just to be discovered.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Rare African Y DNA Haplogroup A00 Sprouts New Branches

In 2012, the great-grandson of Albert Perry, a man born into slavery in South Carolina, tested his Y DNA and the result was the groundbreaking discovery of haplogroup A00, a very ancient branch of the Y tree found in Africa.

The results were announced at the Family Tree DNA Conference in 2012 and published the following year.

Early Y DNA tree dating was imprecise at best. As the tree expands and additional branches are added, our understanding of the Y tree structure, the movement of peoples, and the evolution of branches is enhanced.

In 2015, two Mbo people from Cameroon tested as described in the paper by Karmin et al.

A00 tree.png

Click to enlarge

Those men added branch A-YP2683 to the tree.

In 2018, a paper by D’Atanasio et al sequenced 104 living males including a man from Cameroon which added branch A-L1149.

In 2020, the paper by Lipson et all found an ancient branch of A00 subsequently named A-L1087 that was added above A00, dating from between 3,000 and 8,000 years ago and believed to have been found among the remains of Bantu-speakers. Of course, that doesn’t tell us when A-L1087 occurred, but it does tell us that it occurred sometime before they were born.

How do you like the little skull indicating ancient DNA, as compared to the flags indicating the location of the earliest known ancestor of present-day testers? I’m very pleased to see ancient DNA results being incorporated into the tree.

A00 Lipson

What About Albert Perry’s Great-Grandson’s Y DNA?

The Y DNA of Albert Perry’s great-grandson had never been NGS sequenced with either the Big Y-500 or the current Big Y-700. NGS technology for Y DNA wasn’t yet available at the time. Is there more information to be gleaned from his DNA?

Recently, Albert Perry’s great-grandson’s DNA was upgraded to the Big Y-700, and two other descendants of Albert Perry tested at the Big Y-700 level as well.

The original 2012 tester, Albert Perry’s great-grandson, added branch A-L1100, and Albert’s great-great and great-great-great-grandsons split his branch once again by adding branch A-FT272432.

The haplogroup A Y DNA tree shows the new tree structure.

Looking at the Block Tree at FamilyTreeDNA, Albert Perry’s descendants are shown, along with the ancient sample at the far right.

A00 Perry block tree.png

Click to enlarge

Because so few men have tested and fallen into this line, the dark blue equivalent SNPs reach far back in time. As more men test, these will eventually be broken into individual branches.

The men who carry these important SNPs and their branching information will either be men from Africa or the diaspora.

I would like to thank the Perry family for their continuing contributions to science.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Honoring Veteran USMC William Tully Brown, Navajo Code Talker

Veteran USMC William Tully Brown, Navajo Code Talker

Veteran USMC William Tully Brown, 97-year-old Navajo Code Talker of North Cottonwood, Arizona, holding his DNA kit from Family Tree DNA after swabbing, photo courtesy Vee F. Browne-Yellowhair.

I can’t even begin to describe the honor I feel to be able to write a Memorial Day article honoring WWII USMC veteran, William Tully Brown, one of the few living Navajo Code Talkers.

I first became aware of William because he matches the Anzick Child in one of the DNA projects at Family Tree DNA that I administer. I reached out to his daughter Vee F. Browne-Yellowhair who has graciously facilitated communications with her father.

William is 100% Native American, Navajo, as confirmed by his autosomal DNA, family genealogy and tribal history.

If you’re wondering about how a Navajo man born on the Navajo reservation in Arizona might match the DNA of a child buried approximately 12,500 years ago in Montana, the answer is because they share a common ancestor very long ago from a highly endogamous population.

Neither Anzick Child nor William have any ancestors that weren’t Native American, so any DNA that they share must come from Native American ancestors. In other words, their DNA is identical by population.

The original group of individuals migrating across Beringia who would settle in the Americas, the ancestors of all of the Native people extending across North, Central and South America, is thought to have been very small. Of course, there were no humans living in the American continents at that time, so that founding population had no new DNA sources to introduce into the expanding population. All aboriginal people descended from the original group.

beringia map

By Erika Tamm et al – Tamm E, Kivisild T, Reidla M, Metspalu M, Smith DG, et al. (2007) Beringian Standstill and Spread of Native American Founders. PLoS ONE 2(9): e829. doi:10.1371/journal.pone.0000829. Also available from PubMed Central., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=16975303

It’s believed by some scientists that over time, additional migrations arrived from far Northeast Asia, in what is now Siberia, but that founding population in Asia is the same population that the original group left.

Today, we see fully Native people, including William, with ethnicity results that include North and Central America, Siberia and often, a small amount of East Asian, totaling 100%.

William’s DNA contributions are amazing, and we’ll cover them in a future article, but what I’d really like to do today is to honor his military service and incredible legacies. Yes, legacies, plural. When I think I couldn’t love and respect this man any more, he contributes selflessly again as he approaches the century mark. God Bless this man!

Let’s begin by talking about William’s incredible service with the Navajo Code Talkers.

The Navajo Code Talkers

Veteran USMC William Tully Brown, Navajo Code Talker WWII

William Tully Brown in a younger photo, courtesy Vee F. Browne-Yellowhair.

The Navajo Code Talkers, highly intelligent and incredibly brave men, were the heroes of WWII. The original group of Navajo Marines recruited specifically for their language skills to serve in the Pacific theater numbered 29 but had been expanded to more than 400 by the end of the war.

Only 7 Code Talkers are still alive today. William Tully Brown is 97 years old and is pictured at the beginning of this article in his Marine uniform, which he still loves, and above in a younger photo.

The great irony is that the Navajo had been forbidden as children to speak their Native language, practice their religion, arts or culture, raised often in boarding schools intended to assimilate them and rid them of their Native “ways.” It’s those same children, as men, who saved the very country that tried to “beat the Indian” out of them, teaching them to suffer in silence, according to now deceased Code Talker, Chester Nez.

We should all be incredibly grateful that the Navajo were so forgiving.

Navajo is a very complex language with many dialects, making it unintelligible to other language speakers. It was estimated that only about 30 non-Navajo individuals spoke or understood Navajo in 1942 – making it a wonderful choice for a secret code.

The Navajo language proved to be undecipherable, even by the best cryptographers, and remained so for decades. Meanwhile, the Code Talkers translated communications and tactical information to and from the Navajo language, utilizing radio, telephone and other communications on the front lines of the war. The work of the Code Talkers was essential to the Allied Victory of WWII, with Code Talkers being present at many important battles including Utah Beach and Iwo Jima.

At the Battle of Iwo Jima, Major Howard Connor, 5th Marine Division signal officer, had six Navajo code talkers working around the clock during the first two days of the battle. These six sent and received over 800 messages, all without error. Connor later stated, “Were it not for the Navajos, the Marines would never have taken Iwo Jima.”

For many years, the humble Navajo men weren’t recognized, keeping their military secrets, even from their families. It wasn’t until 1968, a quarter century later, that the documents were declassified, resulting in recognition for the brave Code Talkers.

August 14th was designated as National Navajo Code Talkers Day in 1982 by President Ronald Reagan. In 2000, Bill Clinton signed a law which awarded gold medals of honor to the 29 men who developed the special Navajo military code, and silver congressional medals to all Code Talkers. You can view William Tully Brown’s name in the Congressional Record, here.

Their pride and loyalty remains unwavering.

You can read more about the Code Talkers here.

The Language of Our Ancestors

Veteran Code Talker, Kee Etsicitty said, ” We, the Navajo people, were very fortunate to contribute our language as a code for our country’s victory. For this, I strongly recommend we teach our children the language our ancestors were blessed with at the beginning of time. It is very sacred and represents the power of life.”

The Navajo language isn’t the only language and legacy that William Tully Brown will be remembered for. His DNA, yet another language, is a second selfless legacy that he leaves.

William Brown tested his DNA at Family Tree DNA which matches not only with the Anzick child, but with many other individuals who are Navajo or carry Native American DNA.

The Navajo history tells us that they migrated from the far north. Remnants of that journey remain in their oral legends. Archaeologists suggest that the migration from the northwest occurred around the year 1500.

The Navajo language roots confirms that connection.

Navajo is a Na Dene language, a derivative of Athabaskan which is also spoken in Alaska, in northwestern Canada, and along the North American Pacific rim.

This map shows the areas where the Na-Dene languages are spoken today.

The languages spoken in areas of the southwestern part of the US are referred to as Southern Athabaskan languages.

Therefore, it doesn’t come as a surprise that we find DNA matches to William Brown by several individuals whose ancestry is Native from and who still live in areas within the northern orange regions.

DNA is Forever

William Tully Brown’s legacy isn’t only in the Navajo code words he spoke in WWII, or his bravery, but also the code carried in his DNA that he has so generously contributed. William’s DNA has now been documented and will endure forever.

William’s genetic legacy reaches out to future generations, extending the connection to the ancestors through the threads of time, back to the Anzick child and forward for generations to come – drawing us all together.

Thank you Marine veteran William Tully Brown for your immense generosity, sacrifices and altruistic contribution of both life-saving and live-giving codes. How fitting that your heroism began 80 years ago with a war-winning language that would rescue both our country and democracy, as well as our Allies – and now, near your century mark, you are leaving a remarkable legacy by contributing your own genetic words, your DNA, for posterity.

Preserving our country then and our Native heritage now, uniting past, present and future. Gathering the generations together, lighting their way home.

_______________________

Attribution:

Thank you to Vee F. Browne-Yellowhair, the daughter of USMC veteran William Tully Brown, Code Talker, for permission to write this article, her generosity, and for his photos.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

2018 – The Year of the Segment

Looking in the rear view mirror, what a year! Some days it’s been hard to catch your breath things have been moving so fast.

What were the major happenings, how did they affect genetic genealogy and what’s coming in 2019?

The SNiPPY Award

First of all, I’m giving an award this year. The SNiPPY.

Yea, I know it’s kinda hokey, but it’s my way of saying a huge thank you to someone in this field who has made a remarkable contribution and that deserves special recognition.

Who will it be this year?

Drum roll…….

The 2018 SNiPPY goes to…

DNAPainter – The 2018 SNiPPY award goes to DNAPainter, without question. Applause, everyone, applause! And congratulations to Jonny Perl, pictured below at Rootstech!

Jonny Perl created this wonderful, visual tool that allows you to paint your matches with people on your chromosomes, assigning the match to specific ancestors.

I’ve written about how to use the tool  with different vendors results and have discovered many different ways to utilize the painted segments. The DNA Painter User Group is here on Facebook. I use DNAPainter EVERY SINGLE DAY to solve a wide variety of challenges.

What else has happened this year? A lot!

Ancient DNA – Academic research seldom reports on Y and mitochondrial DNA today and is firmly focused on sequencing ancient DNA. Ancient genome sequencing has only recently been developed to a state where at least some remains can be successfully sequenced, but it’s going great guns now. Take a look at Jennifer Raff’s article in Forbes that discusses ancient DNA findings in the Americas, Europe, Southeast Asia and perhaps most surprising, a first generation descendant of a Neanderthal and a Denisovan.

From Early human dispersals within the Americas by Moreno-Mayer et al, Science 07 Dec 2018

Inroads were made into deeper understanding of human migration in the Americas as well in the paper Early human dispersals within the Americas by Moreno-Mayer et al.

I look for 2019 and on into the future to hold many more revelations thanks to ancient DNA sequencing as well as using those sequences to assist in understanding the migration patterns of ancient people that eventually became us.

Barbara Rae-Venter and the Golden State Killer Case

Using techniques that adoptees use to identify their close relatives and eventually, their parents, Barbara Rae-Venter assisted law enforcement with identifying the man, Joseph DeAngelo, accused (not yet convicted) of being the Golden State Killer (GSK).

A very large congratulations to Barbara, a retired patent attorney who is also a genealogist. Nature recognized Ms. Rae-Venter as one of 2018’s 10 People Who Mattered in Science.

DNA in the News

DNA is also represented on the 2018 Nature list by Viviane Slon, a palaeogeneticist who discovered an ancient half Neanderthal, half Denisovan individual and sequenced their DNA and He JianKui, a Chinese scientist who claims to have created a gene-edited baby which has sparked widespread controversy. As of the end of the year, He Jiankui’s research activities have been suspended and he is reportedly sequestered in his apartment, under guard, although the details are far from clear.

In 2013, 23andMe patented the technology for designer babies and I removed my kit from their research program. I was concerned at the time that this technology knife could cut two ways, both for good, eliminating fatal disease-causing mutations and also for ethically questionable practices, such as eugenics. I was told at the time that my fears were unfounded, because that “couldn’t be done.” Well, 5 years later, here we are. I expect the debate about the ethics and eventual regulation of gene-editing will rage globally for years to come.

Elizabeth Warren’s DNA was also in the news when she took a DNA test in response to political challenges. I wrote about what those results meant scientifically, here. This topic became highly volatile and politicized, with everyone seeming to have a very strongly held opinion. Regardless of where you fall on that opinion spectrum (and no, please do not post political comments as they will not be approved), the topic is likely to surface again in 2019 due to the fact that Elizabeth Warren has just today announced her intention to run for President. The good news is that DNA testing will likely be discussed, sparking curiosity in some people, perhaps encouraging them to test. The bad news is that some of the discussion may be unpleasant at best, and incorrect click-bait at worst. We’ve already had a rather unpleasant sampling of this.

Law Enforcement and Genetic Genealogy

The Golden State Killer case sparked widespread controversy about using GedMatch and potentially other genetic genealogy data bases to assist in catching people who have committed violent crimes, such as rape and murder.

GedMatch, the database used for the GSK case has made it very clear in their terms and conditions that DNA matches may be used for both adoptees seeking their families and for other uses, such as law enforcement seeking matches to DNA sequenced during a criminal investigation. Since April 2018, more than 15 cold case investigations have been solved using the same technique and results at GedMatch. Initially some people removed their DNA from GedMatch, but it appears that the overwhelming sentiment, based on uploads, is that people either aren’t concerned or welcome the opportunity for their DNA matches to assist apprehending criminals.

Parabon Nanolabs in May established a genetic genealogy division headed by CeCe Moore who has worked in the adoptee community for the past several years. The division specializes in DNA testing forensic samples and then assisting law enforcement with the associated genetic genealogy.

Currently, GedMatch is the only vendor supporting the use of forensic sample matching. Neither 23anMe nor Ancestry allow uploaded data, and MyHeritage and Family Tree DNA’s terms of service currently preclude this type of use.

MyHeritage

Wow talk about coming onto the DNA world stage with a boom.

MyHeritage went from a somewhat wobbly DNA start about 2 years ago to rolling out a chromosome browser at the end of January and adding important features such as SmartMatching which matches your DNA and your family trees. Add triangulation to this mixture, along with record matching, and you’re got a #1 winning combination.

It was Gilad Japhet, the MyHeritage CEO who at Rootstech who christened 2018 “The Year of the Segment,” and I do believe he was right. Additionally, he announced that MyHeritage partnered with the adoption community by offering 15,000 free kits to adoptees.

In November, MyHeritage hosted MyHeritage LIVE, their first user conference in Oslo, Norway which focused on both their genealogical records offerings as well as DNA. This was a resounding success and I hope MyHeritage will continue to sponsor conferences and invest in DNA. You can test your DNA at MyHeritage or upload your results from other vendors (instructions here). You can follow my journey and the conference in Olso here, here, here, here and here.

GDPR

GDPR caused a lot of misery, and I’m glad the implementation is behind us, but the the ripples will be affecting everyone for years to come.

GDPR, the European Data Protection Regulation which went into effect on May 25,  2018 has been a mixed and confusing bag for genetic genealogy. I think the concept of users being in charge and understanding what is happened with their data, and in this case, their data plus their DNA, is absolutely sound. The requirements however, were created without any consideration to this industry – which is small by comparison to the Googles and Facebooks of the world. However, the Googles and Facebooks of the world along with many larger vendors seem to have skated, at least somewhat.

Other companies shut their doors or restricted their offerings in other ways, such as World Families Network and Oxford Ancestors. Vendors such as Ancestry and Family Tree DNA had to make unpopular changes in how their users interface with their software – in essence making genetic genealogy more difficult without any corresponding positive return. The potential fines, 20 million plus Euro for any company holding data for EU residents made it unwise to ignore the mandates.

In the genetic genealogy space, the shuttering of both YSearch and MitoSearch was heartbreaking, because that was the only location where you could actually compare Y STR and mitochondrial HVR1/2 results. Not everyone uploaded their results, and the sites had not been updated in a number of years, but the closure due to GDPR was still a community loss.

Today, mitoydna.org, a nonprofit comprised of genetic genealogists, is making strides in replacing that lost functionality, plus, hopefully more.

On to more positive events.

Family Tree DNA

In April, Family Tree DNA announced a new version of the Big Y test, the Big Y-500 in which at least 389 additional STR markers are included with the Big Y test, for free. If you’re lucky, you’ll receive between 389 and 439 new markers, depending on how many STR markers above 111 have quality reads. All customers are guaranteed a minimum of 500 STR markers in total. Matching was implemented in December.

These additional STR markers allow genealogists to assemble additional line marker mutations to more granularly identify specific male lineages. In other words, maybe I can finally figure out a line marker mutation that will differentiate my ancestor’s line from other sons of my founding ancestor😊

In June, Family Tree DNA announced that they had named more than 100,000 SNPs which means many haplogroup additions to the Y tree. Then, in September, Family Tree DNA published their Y haplotree, with locations, publicly for all to reference.

I was very pleased to see this development, because Family Tree DNA clearly has the largest Y database in the industry, by far, and now everyone can reap the benefits.

In October, Family Tree DNA published their mitochondrial tree publicly as well, with corresponding haplogroup locations. It’s nice that Family Tree DNA continues to be the science company.

You can test your Y DNA, mitochondrial or autosomal (Family Finder) at Family Tree DNA. They are the only vendor offering full Y and mitochondrial services complete with matching.

2018 Conferences

Of course, there are always the national conferences we’re familiar with, but more and more, online conferences are becoming available, as well as some sessions from the more traditional conferences.

I attended Rootstech in Salt Lake City in February (brrrr), which was lots of fun because I got to meet and visit with so many people including Mags Gaulden, above, who is a WikiTree volunteer and writes at Grandma’s Genes, but as a relatively expensive conference to attend, Rootstech was pretty miserable. Rootstech has reportedly made changes and I hope it’s much better for attendees in 2019. My attendance is very doubtful, although I vacillate back and forth.

On the other hand, the MyHeritage LIVE conference was amazing with both livestreamed and recorded sessions which are now available free here along with many others at Legacy Family Tree Webinars.

Family Tree University held a Virtual DNA Conference in June and those sessions, along with others, are available for subscribers to view.

The Virtual Genealogical Association was formed for those who find it difficult or impossible to participate in local associations. They too are focused on education via webinars.

Genetic Genealogy Ireland continues to provide their yearly conference sessions both livestreamed and recorded for free. These aren’t just for people with Irish genealogy. Everyone can benefit and I enjoy them immensely.

Bottom line, you can sit at home and educate yourself now. Technology is wonderful!

2019 Conferences

In 2019, I’ll be speaking at the National Genealogical Society Family History Conference, Journey of Discovery, in St. Charles, providing the Special Thursday Session titled “DNA: King Arthur’s Mighty Genetic Lightsaber” about how to use DNA to break through brick walls. I’ll also see attendees at Saturday lunch when I’ll be providing a fun session titled “Twists and Turns in the Genetic Road.” This is going to be a great conference with a wonderful lineup of speakers. Hope to see you there.

There may be more speaking engagements at conferences on my 2019 schedule, so stay tuned!

The Leeds Method

In September, Dana Leeds publicized The Leeds Method, another way of grouping your matches that clusters matches in a way that indicates your four grandparents.

I combine the Leeds method with DNAPainter. Great job Dana!

Genetic Affairs

In December, Genetic Affairs introduced an inexpensive subscription reporting and visual clustering methodology, but you can try it for free.

I love this grouping tool. I have already found connections I didn’t know existed previously. I suggest joining the Genetic Affairs User Group on Facebook.

DNAGedcom.com

I wrote an article in January about how to use the DNAGedcom.com client to download the trees of all of your matches and sort to find specific surnames or locations of their ancestors.

However, in December, DNAGedcom.com added another feature with their new DNAGedcom client just released that downloads your match information from all vendors, compiles it and then forms clusters. They have worked with Dana Leeds on this, so it’s a combination of the various methodologies discussed above. I have not worked with the new tool yet, as it has just been released, but Kitty Cooper has and writes about it here.  If you are interested in this approach, I would suggest joining the Facebook DNAGedcom User Group.

Rootsfinder

I have not had a chance to work with Rootsfinder beyond the very basics, but Rootsfinder provides genetic network displays for people that you match, as well as triangulated views. Genetic networks visualizations are great ways to discern patterns. The tool creates match or triangulation groups automatically for you.

Training videos are available at the website and you can join the Rootsfinder DNA Tools group at Facebook.

Chips and Imputation

Illumina, the chip maker that provides the DNA chips that most vendors use to test changed from the OmniExpress to the GSA chip during the past year. Older chips have been available, but won’t be forever.

The newer GSA chip is only partially compatible with the OmniExpress chip, providing limited overlap between the older and the new results. This has forced the vendors to use imputation to equalize the playing field between the chips, so to speak.

This has also caused a significant hardship for GedMatch who is now in the position of trying to match reasonably between many different chips that sometimes overlap minimally. GedMatch introduced Genesis as a sandbox beta version previously, but are now in the process of combining regular GedMatch and Genesis into one. Yes, there are problems and matching challenges. Patience is the key word as the various vendors and GedMatch adapt and improve their required migration to imputation.

DNA Central

In June Blaine Bettinger announced DNACentral, an online monthly or yearly subscription site as well as a monthly newsletter that covers news in the genetic genealogy industry.

Many educators in the industry have created seminars for DNACentral. I just finished recording “Getting the Most out of Y DNA” for Blaine.

Even though I work in this industry, I still subscribed – initially to show support for Blaine, thinking I might not get much out of the newsletter. I’m pleased to say that I was wrong. I enjoy the newsletter and will be watching sessions in the Course Library and the Monthly Webinars soon.

If you or someone you know is looking for “how to” videos for each vendor, DNACentral offers “Now What” courses for Ancestry, MyHeritage, 23andMe, Family Tree DNA and Living DNA in addition to topic specific sessions like the X chromosome, for example.

Social Media

2018 has seen a huge jump in social media usage which is both bad and good. The good news is that many new people are engaged. The bad news is that people often given faulty advice and for new people, it’s very difficult (nigh on impossible) to tell who is credible and who isn’t. I created a Help page for just this reason.

You can help with this issue by recommending subscribing to these three blogs, not just reading an article, to newbies or people seeking answers.

Always feel free to post links to my articles on any social media platform. Share, retweet, whatever it takes to get the words out!

The general genetic genealogy social media group I would recommend if I were to select only one would be Genetic Genealogy Tips and Techniques. It’s quite large but well-managed and remains positive.

I’m a member of many additional groups, several of which are vendor or interest specific.

Genetic Snakeoil

Now the bad news. Everyone had noticed the popularity of DNA testing – including shady characters.

Be careful, very VERY careful who you purchase products from and where you upload your DNA data.

If something is free, and you’re not within a well-known community, then YOU ARE THE PRODUCT. If it sounds too good to be true, it probably is. If it sounds shady or questionable, it’s probably that and more, or less.

If reputable people and vendors tell you that no, they really can’t determine your Native American tribe, for example, no other vendor can either. Just yesterday, a cousin sent me a link to a “tribe” in Canada that will, “for $50, we find one of your aboriginal ancestors and the nation stamps it.” On their list of aboriginal people we find one of my ancestors who, based on mitochondrial DNA tests, is clearly NOT aboriginal. Snake oil comes in lots of flavors with snake oil salesmen looking to prey on other people’s desires.

When considering DNA testing or transfers, make sure you fully understand the terms and conditions, where your DNA is going, who is doing what with it, and your recourse. Yes, read every single word of those terms and conditions. For more about legalities, check out Judy Russell’s blog.

Recommended Vendors

All those DNA tests look yummy-good, but in terms of vendors, I heartily recommend staying within the known credible vendors, as follows (in alphabetical order).

For genetic genealogy for ethnicity AND matching:

  • 23andMe
  • Ancestry
  • Family Tree DNA
  • GedMatch (not a vendor because they don’t test DNA, but a reputable third party)
  • MyHeritage

You can read about Which DNA Test is Best here although I need to update this article to reflect the 2018 additions by MyHeritage.

Understand that both 23andMe and Ancestry will sell your DNA if you consent and if you consent, you will not know who is using your DNA, where, or for what purposes. Neither Family Tree DNA, GedMatch, MyHeritage, Genographic Project, Insitome, Promethease nor LivingDNA sell your DNA.

The next group of vendors offers ethnicity without matching:

  • Genographic Project by National Geographic Society
  • Insitome
  • LivingDNA (currently working on matching, but not released yet)

Health (as a consumer, meaning you receive the results)

Medical (as a contributor, meaning you are contributing your DNA for research)

  • 23andMe
  • Ancestry
  • DNA.Land (not a testing vendor, doesn’t test DNA)

There are a few other niche vendors known for specific things within the genetic genealogy community, many of whom are mentioned in this article, but other than known vendors, buyer beware. If you don’t see them listed or discussed on my blog, there’s probably a reason.

What’s Coming in 2019

Just like we couldn’t have foreseen much of what happened in 2018, we don’t have access to a 2019 crystal ball, but it looks like 2019 is taking off like a rocket. We do know about a few things to look for:

  • MyHeritage is waiting to see if envelope and stamp DNA extractions are successful so that they can be added to their database.
  • www.totheletterDNA.com is extracting (attempting to) and processing DNA from stamps and envelopes for several people in the community. Hopefully they will be successful.
  • LivingDNA has been working on matching since before I met with their representative in October of 2017 in Dublin. They are now in Beta testing for a few individuals, but they have also just changed their DNA processing chip – so how that will affect things and how soon they will have matching ready to roll out the door is unknown.
  • Ancestry did a 2018 ethnicity update, integrating ethnicity more tightly with Genetic Communities, offered genetic traits and made some minor improvements this year, along with adding one questionable feature – showing your matches the location where you live as recorded in your profile. (23andMe subsequently added the same feature.) Ancestry recently said that they are promising exciting new tools for 2019, but somehow I doubt that the chromosome browser that’s been on my Christmas list for years will be forthcoming. Fingers crossed for something new and really useful. In the mean time, we can download our DNA results and upload to MyHeritage, Family Tree DNA and GedMatch for segment matching, as well as utilize Ancestry’s internal matching tools. DNA+tree matching, those green leaf shared ancestor hints, is still their strongest feature.
  • The Family Tree DNA Conference for Project Administrators will be held March 22-24 in Houston this year, and I’m hopeful that they will have new tools and announcements at that event. I’m looking forward to seeing many old friends in Houston in March.

Here’s what I know for sure about 2019 – it’s going to be an amazing year. We as a community and also as individual genealogists will be making incredible discoveries and moving the ball forward. I can hardly wait to see what quandaries I’ve solved a year from now.

What mysteries do you want to unravel?

I’d like to offer a big thank you to everyone who made 2018 wonderful and a big toast to finding lots of new ancestors and breaking down those brick walls in 2019.

Happy New Year!!!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Female Viking Warrior Discovered Through DNA Testing

Hervor dying after the Battle of the Goths and Huns. A painting by Peter Nicolai Arbo, a Norwegian historical painter. Hervor dressed like a man, fought, killed and pillaged under her male surname Hjörvard.

Then the high-born lady saw them play the wounding game,

she resolved on a hard course and flung off her cloak;

she took a naked sword and fought for her kinsmen’s lives,

she was handy at fighting, wherever she aimed her blows.

The Greenlandic Poem of Atli (st. 49), The poetic Edda. Oxford: Oxford University Press.

Ancient DNA

I just love ancient DNA. Not only does it provide us a way to “view” long deceased individuals who we may be related to, one way or another (Y, mtDNA or autosomal), but it gives us a peephole into history as well.

Recently, a Viking warrior long presumed to be male has been positively identified as female through DNA analysis.

The paper titled A female Viking warrior confirmed by genomics by Hedenstiera-Jonson et al provides details.

Oral history tells us of female Viking warriors, but mostly, those stories have been dismissed as mythology. But guess what – they weren’t.

A Viking warrior grave excavated in Birka, Sweden in the 1970s was originally identified as a female. That finding was initially dismissed in light of the extensive warrior burial artifacts. The skeleton was presumed to be a warrior male due to extensive funerary objects indicating a high ranking individual. Similar female warrior burials have been dismissed as well by saying that the warrior artifacts might have been heirlooms and don’t identify the burial as a warrior.

The warrior burial has now been indeed proven to be a female using DNA analysis.

From the paper’s authors:

This type of reasoning takes away the agency of the buried female. As long as the sex is male, the weaponry in the grave not only belong to the interred but also reflects his status as warrior, whereas a female sex has raised doubts, not only regarding her ascribed role but also in her association to the grave goods.

A great deal can be told about skeletal remains through their bones – and certain traits indicate males or females. In 2014, a scientist again suggested that the bones of this burial suggested the warrior had been a female, but that commentary was met with significant skepticism because of the warrior’s high rank based on the grave goods. DNA was determined to be the only way to resolve the question. Thank goodness this avenue was pursued and was productive.

From their abstract:

The objective of this study has been to confirm the sex and the affinity of an individual buried in a well-furnished warrior grave (Bj 581) in the Viking Age town of Birka, Sweden. Previously, based on the material and historical records, the male sex has been associated with the gender of the warrior and such was the case with Bj 581. An earlier osteological classification of the individual as female was considered controversial in a historical and archaeological context. A genomic confirmation of the biological sex of the individual was considered necessary to solve the issue.

From their results:

The genomic results revealed the lack of a Y-chromosome and thus a female biological sex, and the mtDNA analyses support a single-individual origin of sampled elements. The genetic affinity is close to present-day North Europeans, and within Sweden to the southern and south-central region. Nevertheless, the Sr values are not conclusive as to whether she was of local or nonlocal origin.

And their discussion:

The identification of a female Viking warrior provides a unique insight into the Viking society, social constructions, and exceptions to the norm in the Viking time-period. The results call for caution against generalizations regarding social orders in past societies.

The paper further states that over 3,000 warrior graves are known, with approximately 1,100 excavated. I have to wonder how many of those graves might be females too.

The Birka warrior was confirmed to be a female by the absence of a Y chromosome, but her mitochondrial DNA can tell us even more.

Mitochondrial DNA

Her mitochondrial DNA is haplogroup T2b.

Dr. David Pike is the administrator of the haplogroup T mtDNA project and the mtDNA T2 project at Family Tree DNA. He notified me of these results and offered the following information:

The list of mtDNA mutations in the supplement (namely those obtained from a canine tooth) are actually quite thorough (see page 15 of the supplement). They include all of the mutations that lead up to and including mtDNA haplogroup T2b. And then they go on to include two more that do not yet fit into any currently-named subgroup of T2b. These are T5774C and C16354T.

People who are curious about their own mtDNA can determine their status at position 16354 by a simple HVR1 test at FTDNA, but position 5774 requires a full mtDNA sequence test.

Within the T projects for which I’m an administrator, there are a few people with T5774C with none that have both of these two mutations. At least not yet… it would be nice to encourage more people to do full mtDNA testing.

If you have tested at a company other than Family Tree DNA that provides you with only a haplogroup, and it’s T, T2 or T2b, you might want to consider the mitochondrial test at Family Tree DNA to obtain a more definitive haplogroup and your actual mutations. Someone, someplace, may well match this Viking warrior woman.

Who is She Most Like?

The report indicates that the Birka female warrior showed autosomal genetic affinity to the following present-day populations:

  • British Island of England and Scotland,
  • North Atlantic Islands of Iceland and the Orkneys
  • Scandinavian countries of Denmark and Norway
  • Baltic counties of Lithuania and Latvia
  • Sweden from the south-central and southern region

The warrior was more like northern Europeans than southern Europeans, which shouldn’t come as a surprise.

Your Mitochondrial DNA

Mitochondrial DNA holds so many secrets and provides testers with information you can’t possible discover about your ancestors any other way. Males and females can both test. If you haven’t taken the full sequence mitochondrional DNA test, please consider doing so.

Want to know what you might discover? Please read the articles, Mitochondrial DNA – Your Mom’s Story and Jasmine’s Journey of Discovery.

You can click here to order the mtFull Sequence test or upgrade an existing test to the full sequence level.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Dublin – Heartbeat of the Emerald Isle

In the fall of 2017, I was privileged to spend 10 days in Dublin. I arrived a few days prior to my speaking engagement at Genetic Genealogy Ireland and planned to spend 4 days seeing Ireland, the home of my ancestors. Aside from losing a day to Hurricane Ophelia, I managed to stay on schedule, at least somewhat, with my preplanned tour schedule with my trusty tour guide, Brian O’Reilly.

Because of Hurricane Ophelia, no place, literally, was open on Monday and Tuesday was iffy and very wet. A hurricane is not a storm that ends shortly, but peters out as it moves on, which can take days. A few days later, the remains of Hurricane Brian (not to be confused with tour guide Brian) arrived too, but it was more like a normal (very) windy storm.

Therefore, I spent more time in Dublin itself than I had anticipated since a 12 hour roundtrip drive to either the Cliffs of Moher or the Giant’s Causeway didn’t seem terribly attractive in that weather.

Following the Genetic Genealogy Ireland conference, I spent another day in Dublin with a group of ISOGG volunteers and speakers. These are the folks who make this conference happen.

On our Monday ISOGG “day out”, among other places, we visited Trinity College at the University of Dublin including the Book of Kells and Dr. Dan Bradley’s ancient DNA lab before moving on to UCD (University College Dublin) where we visited a second ancient DNA facility, enjoying both tours and lectures .

I am combining these various adventures scattered over several days into one article.

I don’t know of any specific ancestors that lived in or near Dublin, but Dublin is a medieval city, established officially in 988, with humans having inhabited the area since before 140 AD when Ptolemy provided what is believed to be the earliest reference to a settlement where Dublin would one day be located.

In 841, the Vikings invaded followed by the Norman invasion of 1169, so needless to say, Dublin is a mixture of people that arrived from elsewhere.

Even the “native Irish” were a mixture beginning with Neolithic hunter-gatherers that settled and built the massive passage mounds more than 5000 years ago. Their descendants would have assimilated later with Celts who arrived about 500 BC as well as Anglo-Saxons who announced their arrival with a raid in 684 AD.

Dublin was the center of commerce and trade for eastern Ireland. If your ancestors lived anyplace in the area, they may well have traded here or transacted other kinds of business. One way or another, what happened in Dublin affected all of Ireland.

Ireland isn’t a large island. At its widest point, it’s 174 miles wide, 302 miles north to south and roughly equivalent to the size of the state of Indiana.

The Irish have a very different perspective of distance than people from the US.

Ireland may be small, but they have a rich and sometimes violent history – which makes genealogy research both enthralling and challenging. They also have some of the most beautiful scenery in the world, not to mention historical sites.

To preserve their heritage, Ireland has established the National Museum, which is actually a series of free museums, including The Museum of Archaeology where I discovered several archaeological and historical treasures.

National Museum

The National Museum is chocked full of wonderful items from throughout Ireland’s history.

For me, the most interesting artifacts were the bog bodies, the flint mace head excavated at Knowth and the Tara Brooch.

The front of the this carved flint mace head looks eerily like a face.

The side of the mace head had beautiful spirals, echoing the many spirals carved into the rocks at both Knowth and New Grange.

The bog bodies are in an incredible state of preservation, including hair. Much of Ireland, meaning the part not mountainous, is boggy.

Old Crogham Man’s leather armband survived.

This individual is nearly complete.

Unfortunately, DNA has not been able to be recovered from the bog bodies due to the conditions in the bog.

The Tara Brooch, in an incredible state of preservation, was found on a beach by schoolchildren and is believed by some, due to its incredible artistry, to have belonged to the High Kings of Ireland.

Just the day prior, I visited Tara, so finding the brooch in the museum was icing on the cake.

Dublina

I enjoyed visiting Dublina, a recreated medieval village of Dublin adjacent to Christ Church Cathedral. This exhibit would be excellent for children, complete with an archaeology lab and re-enactors demonstrating various parts of medieval life.

The information at Dublina and at the National Museum is duplicated somewhat, but presented differently. I actually preferred the Dublina approach, as the display cards in the Museum were wall-mounted with small print, not displayed in the cases with the artifacts, so the overall experience in Dublina was more enjoyable. Of course, the National Museum has most of the national treasures. Two unique places, both worth a visit.

In 841, the Vikings invaded Dublin, adding their DNA to the Celts and the original Neolithic people who had already settled in Ireland millennia before.

Can you write your name in the runic language?

I cheated and you can too, at this PBS link.

Vikings both owned and sold slaves, which might explain how Viking mitochondrial DNA came to be found in the British Isles.

Even the Vikings were concerned about toilet paper. Maybe it’s in their DNA, given Dublin’s fascination with toilet paper. You’ll see what I mean later!

In medieval Dublin, life was often short, with an average life expectancy of only 30 years. As you might imagine, sanitation in cities was problematic.

Guinness Storehouse

No trip to Dublin is complete without a tour of the Guinness Storehouse, a very popular tourist attraction. This wasn’t my favorite, but I can see why it is for many people.

While the Guinness Storehouse is now a museum, of sorts, Guinness brewing continues among a series of interconnected buildings. The Guinness family owns most of this portion of Dublin and has a 9000 year lease, issued in 1759 to Arthur Guinness who then established the brewery at St. James Gate. And no, that’s not a typo – it’s really 9000.

The Guinness Storehouse tour is self-guided, taking you through the history of beer-making in general, and of Guinness in particular.

I didn’t know that the word beer originated in the Anglo-Saxon language.

Nor had I ever seen hops before. In one area, the flavors in the beer are discussed and you can sniff each one, before tasting the Guinness itself. I always enjoy the science portions of tours.

The best part of the Guinness Storehouse is the top floor Gravity Bar with a panoramic view of all of Dublin where you’re also served a…wait for it…a Guinness. It wasn’t crowded when I visited, but be aware that the lines are often long and the top floor is glassed in and VERY HOT in the summer. Air conditioning is uncommon in Ireland.

The panoramic view is absolutely amazing.

The Wicklow Mountains are the source for the water used to brew Guinness.

Soda Bread

If you thought that potatoes were the staple food of Ireland, it’s not. It’s really soda bread, which is served with just about everything. You can always find soda bread along with tea. Sometimes soda bread, “just like grandma used to make,” is enjoyed with nothing, sometimes with butter and often with butter and some kind of jam.

Soda bread and tea just make everything better. If you don’t believe me, try it for yourself.

Doors

Dublin is the city of colorful doors.

Because much of Dublin is historic in nature, owners can change very little of the outside façade, but they can customize their door color, and they do.

When you don’t have a large canvas, you have to be creative in a small space.

There’s an entire store devoted to door jewelry.

Door of the home of the Guinness family, founders of the Guinness empire.

Dubliners tell you about their doors, and stop so you can see either outstanding or remarkable doors, or the doors of the houses of famous people.

Pubs

Dublin is also a city of pubs.

Pubs are generally neighborhood establishments, local places, where people gather to eat, drink and socialize. After all, these people are Irish.

My flight arrived at 9 in the morning, on Sunday, and the hotel couldn’t get me into a room for another 6 hours. What was I to do? Take the hop-on-hop-off tour, of course. These tours are fun. You can stay on the bus and listen to the guide, get off and back onto a later bus, or whatever combination suits your fancy.

As luck would have it, the bus stayed in the starting location for about 40 minutes, parked immediately outside of a pub, Madigans. I know. I know. What luck.

I was hungry and needed to find a restroom, so I decided to have bowl of soup. With soda bread, of course.

Hence, I was introduced to the Irish pub in the nicest of ways. My only regret was that I wasn’t able to return for the traditional Irish music or the Irish step dancing at the Arlington Hotel, recommended by Brian.

Pubs are literally everyplace, on every corner, and often in-between too.

Think you might want to drive in Ireland? Think again! Look at those road signs. Merges, roundabouts and unusual traffic patterns are everyplace. And remember, the cars are coming from the opposite direction you expect when crossing the street.

If you can make it across the street, there’s a pub on the corner where you can take refuge!

Another historic pub that’s also a B&B, the Ferryman.  If crossing the street is dangerous sober, think about it with a couple Guinness under your belt. Aye, better to stay in the pub or at the B&B!!!

Pub grub is the best.

The food in every pub is unique and I failed miserably in my attempts to sample it all!

Some pubs are named after owners, former owners or something in the neighborhood. This pub, The Horse Show House, is located across from the Royal Dublin Society, an area devoted to rugby.

This small village pub in the Wicklow Mountains was extremely unique with its painted ceiling.

And then, some pubs are portable.

I so wanted to ask, but then…perhaps some things are best left unknown!

Toilet Paper

Dubliners are obsessed with toilet paper. Seriously. Remember the Vikings and their moss – I think that trait has descended to the current day population.

In particular, Dubliners are obsessed with getting a good price on toilet paper – to the point that there are pop-up toilet paper markets along the street and on corners. Thankfully I had Brian to explain this phenomenon to me, because I would have never figured it out otherwise.

Brian says that a Dubliner will save $5 on toilet paper and then go the pub and spend $100 the same night bragging about what a good deal he got on toilet paper. We saw a man carrying a large package of TP on his shoulder into the bar across the street. I kid you not.

I love experiencing the culture of different places. I mean, I can hear the negotiations now.

“But that’s only one ply and me fingers break through…”

“Well, yes, I could give it for Christmas, but only for half the price of the Charmin over there….”

Bridges

Old, new, large or small, Dublin has them all. Like all early settlements, Dublin was founded on a river which continues to be the city center. I was lucky to be graced with a beautiful rainbow as we crossed this bridge.

Even the older bridges are beautiful, but one of Dublin’s bridges is famous and shaped like a harp.

The harp is the much beloved national emblem of Ireland. The Brian Boru harp, having nothing to do with Brian Boru, bearing the O’Neill coat of arms and dating from the 14th or 15th century is displayed in the Long Room at Trinity College.

By Marshall Henrie – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32781748

In 2009,  a harp shaped bridge was designed for central Dublin in honor of Irish writer and poet, Samuel Beckett. Along with the contemporary design came unwelcome traffic restrictions which inspired an unpublishable Irish ditty about the bridge and inconvenience introduced by the bridge in a high-traffic and already congested area. Let’s just say that some of the words rhyme with Beckett and in Ireland, words are pronounced differently. For example, an equivalent sounding word for Beckett in the US would be Buckett.

You can view the bridge opening ceremony in 2014 in this You Tube video as water through firehoses “plays” the bridge cables like harp strings. It’s truly amazing and probably one of the most unique bridges on the planet.

Through the harp bridge, you can see Dublin’s new conference center which looks like it’s a bit tipsy and had one too many Guinnesses – a fate that has befallen more than one Irishman!

Royal Dublin Society

Genetic Genealogy Ireland was held at the Royal Dublin Society, known as the RDS, for three full days.

The schedule was chocked full of great speakers. The sessions were live streamed and can be seen in the Facebook group, Genetic Genealogy Ireland. The sessions, except for a couple that can’t be posted pending the publication of a paper, will all be available on Genetic Genealogy Ireland’s YouTube channel thanks to Maurice Gleeson. In the meantime, you can watch the sessions from the last 4 years. What a wonderful resource.

ISOGG volunteer, Emily Aulicino, at left, assists a visitor with which Family Tree DNA tests would be best to purchase for which relatives. Emily also had her book, Genetic Genealogy: The Basics and Beyond available for purchase.

My two presentations went very well, even with a challenging environment in terms of the acoustics in the facility.

If you’re a member of the Facebook group, Genetic Genealogy Ireland, you can see Autosomal Tips and Tools at Family Tree DNA and the second presentation, Autosomal DNA Through the Generations – but I’d actually suggest that you might want to wait until the Genetic Genealogy Ireland YouTube videos are released, because the audio will be better – or I surely hope so.

However, I just have to share something fun with you. This is me, just before my session, Autosomal DNA Through the Generations, where I compare the DNA of my granddaughters through three ancestral generations – including 3 of 4 grandparents and one great-grandparent. (Very big thank you to my family and my daughter-in-law’s family!)

Do you spot anything remarkable?  Hint – the dress. Now do you see it? If not, I’ll have an upcoming lighthearted article. Yes, yes, I know I’m very much a geek at heart!

Let’s take a quick look at a couple slides from other presentations that I found quite interesting.  As you probably know, I’m fascinated by ancient DNA, and we were extremely fortunate to have two presentations by scientists who work with ancient DNA in the lab.

I particularly enjoyed the ancient DNA presentations. Here, Dr. Eppie Jones from Cambridge University and Trinity College discusses Ancient DNA and the Genetic History of Europeans.

Dr. Dan Bradley from Trinity discussing Prehistoric Genomics at the Atlantic Edge.

You can see a few more photos of Genetic Genealogy Ireland, courtesy of Gerard Corceran, at this link.

I was so looking forward to visiting both Trinity College and UCD, including the genetics labs, so let’s go!!!

Trinity College, University of Dublin

One of the highlights of my visit was Trinity College, founded in 1592, and in particular, the ancient DNA lab. The wooden gate, above, opens into the plaza, below.

First, we had a delightful tour of the University of Dublin campus by this delightful philosophy professor, Joseph O. Gorman, sporting a charming green waistcoat making him appear something of a leprechaun.

If Joseph Gorman had been my prof, I might have paid more attention. He was excellent, a font of knowledge with a way of making everything interesting.

Here, the group of volunteers and speakers gathers, listening in rapt attention in the plaza inside the college gates. The wooden doored gate through which we entered is in the background, just to the left of professor Gorman’s head. The various college buildings on the campus are entirely inside the area walled by buildings and surround the plaza, an area once the location of the Priory of All Hallows where monks resided.

If you would like to view some very interesting videos about Trinity College and the historical buildings, click here and here for a lovely YouTube introduction including the charming Irish brogue.

Come on, let’s walk around the campus!

If it’s called a buttery, it can’t be bad. I love campuses with history!

The Trinity campus is just beautiful, with gardens polka dotted from place to place like living jewels.

Along with old trees growing in what was the cemetery from the monastery originally located here.

I could hardly wait to see the Book of Kells, created about 800 AD and eventually stored in the monastery in Kells, not far from Dublin and from where the book received its name, up close and personal.

Unfortunately, cameras weren’t allowed, although I certainly understand why.

On the second floor, above the Book of Kells exhibit on the main floor, we find is the infamous Trinity Library Long Room. I don’t think I’ve ever been in such an incredibly beautiful library.

In the library long room, this beautiful spiral staircase is still in use.

By Diliff – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42693401

This amazing room is full of artifacts as well, some of them books, some busts and  just this incredible room itself.  Just look at that ceiling!

Taken from across the green, the old Trinity Library building is actually very long, unheated and uncooled. Translated, it is very hot and very cold, depending on the time of year. The actual “long room” is on the second floor, with the Book of Kells exhibit on the bottom floor.

Past more gardens and on to the Smurfit Institute of Genetics.

Yes, I think this building should be blue!

Of course. Whoever thought we’d come so far from pea pods in 1866 to the discovery of DNA in 1953 and on to the human genome being sequenced in 2003.  And today, we visit the ancient DNA lab.

We didn’t get any closer than the hallway. They aren’t being rude.  Contamination is the bane of genetics, and especially ancient genetic extraction when samples are already contaminated and scientists have so little to work with in the first place.

However, we could peek in.

I think this is the neatest lab I’ve ever seen.

Irish humor is everyplace.

Ok, I can’t leave my trolley in the plants, but you didn’t say anything about my mops.

Not the ancient DNA lab where chances are few and mistakes are catastrophic, but geneticists in training in a more traditional lab.

James Watson, greeting students every day at the top of the stairs. Just think, this field is new enough that I bet Dr. Bradley knows James Watson.

Dr. Dan Bradley explaining how genetic research was done with gel plates when he first began. I think these are antiques now!

Dan explaining the discovery that the Petrous bone in the skull contains by far the best preserved DNA in ancient specimens. This groundbreaking research came out of this lab. The skull that Dr. Bradley is holding is a plastic model, not a real skull.

Here, a bovine Petrous bone with Dr. Bradley in the background.

Dr. Eppie Jones, the face of the future in genetics. All I can say is that I hope bright young women stay in STEM focused education and sit up and take notice of Eppie’s accomplishments!

On the way from Trinity to UCD (University College Dublin), we passed this wall art. DNA is finally mainstream.

You can view additional photos of Trinity, courtesy Gerard Corcoran, here.

University College Dublin (UCD)

UCD has an ancient genetics lab too.

The ancient DNA lab is vacant today.

We were treated to a presentation about the analysis of DNA, ancient and otherwise. With the advances in both DNA extraction and the analysis of those results, the science of genetics has now morphed into two segments, the actual technical part of the extraction and processing, and the subsequent analysis.

The Insight Center for Data Analytics specializes in the analysis process.

Now that we have the ability to gather huge amounts of genetic information, what can we do with the data, how we advance science and at the same time, make the results understandable?

In the genetics lab at UCD.

New, super fast, super expensive sequencing machine.

Dr. Sean Ennis with the Genomics Medicine Ireland project discussing the Irish Genome initiative. How are the Irish alike and different from others? What defines the Irish, genetically?

The Irish are 95% lactose tolerant, reaching nearly 100% in Western Ireland.

What more can we learn in the future? The project is undertaking sampling DNA of the Irish who have a disease and those who are healthy as well.

Genetic pathways, art in the UCD genetics building.

You can view additional (lovely) photos of UCD at this link, courtesy of Gerard Corcoran who arranged the day’s festivities.

The Irish Folklore Collection

While UCD is a tremendously modern research facility, that’s not all it has to offer. The library hosts the Irish Folklore Collection which has recently undertaken to digitize oral histories recorded in the 1930s, which reach back into the mid 1800s.

At this link, you can search the catalog by name, surname, location or keyword.

You can search by surname here as well.

In the schools collection, you can search by surname or location. It would be worth looking to see where your ancestral surname is found in the early 1900s because the same family may be found in the same location much earlier.

Dinner

Our day ended at a Chinese restaurant where the walls were literally tiles with quarter inch tiles, arranged in the shape of flowers.

This entire restaurant was tiled in this manner. Absolutely amazing!

And since we’re on the subject of art, let’s visit take a side trip!

Quilts, the Universal Language

When possible, I always try to find a quilt shop. Brian and I found 4 in or near Dublin. Two were closed, one was relatively small, although I did find a souvenir fabric, but the last shop, Apple Tree Crafts, held two beautiful quilts.

These stylized trees are each hand embroidered – putting thread to fabric in the creation of art.

Of course, these poppies spoke to me and said, “Take me home,” so I did! Not the whole quilt, just the poppy fabric.

If you’re looking for quilt shops in Ireland, check out this link from the Quilter’s Guild of Ireland and always, always call ahead.

Around the corner from the quilt shop, we found a florist decorated for halloween.

I guess it’s evident that Ireland celebrates Halloween too.

Bye to Dublin

Dublin is a wonderful city. I barely scratched the surface in my 10 days. Of course, I was distracted by the conference and the hurricane. Minor details.

I never realized before my visit how genuinely nice and helpful the Irish are. The language is delightful, both Gaelic and English with that wonderful brogue. I can hear some of that brogue in Appalachia where so many Scots-Irish were transplanted.

The Irish have a wonderful and charming sense of humor as well as being very difficult to upset. They have a permanent lemonade out of lemons attitude. Or more specifically, a trip to the local pub can fix anything, along with Guinness, soda bread and some cheap toilet paper.

How does life get better?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research