442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match? Daily Updates Here!

Yesterday, in the journal Nature, the article “Population genomics of the Viking world,” was published by Margaryan, et al, a culmination of 6 years of work.

Just hours later, Science Daily published the article, “World’s largest DNA sequencing of Viking skeletons reveals they weren’t all Scandinavian.” Science magazine published “’Viking’ was a job description, not a matter of heredity, massive ancient DNA study shows.” National Geographic wrote here, and CNN here.

Vikings Not All Scandinavian – Or Blonde

Say what??? That’s not at all what we thought we knew. That’s the great thing about science – we’re always learning something new.

442 Viking skeletons from outside Scandinavia were sequenced by Eske Willerslev’s lab, producing whole genome sequences for both men and women from sites in Scotland, Ukraine, Poland, Russia, the Baltic, Iceland, Greenland and elsewhere in continental Europe. They were then compared to known Viking samples from Scandinavia.

Not the grave where the sample was taken, but a Viking cemetery from Denmark.

One Viking boat burial in an Estonian Viking cemetery shows that 4 Viking brothers died and were buried together, ostensibly perishing in the same battle, on the same day. Based on their DNA, the brothers probably came from Sweden.

Vikings raiding parties from Scandinavia originated in Norway, Sweden and Denmark. At least some Viking raiders seem to be closely related to each other, and females in Iceland appear to be from the British Isles, suggesting that they may have “become” Vikings – although we don’t really understand the social and community structure.

Genes found in Vikings were contributed from across Europe, including southern Europe, and as afar away as Asia. Due to mixing resulting from the Viking raids beginning at Lindisfarne in 793 , the UK population today carries as much as 6% Viking DNA. Surprisingly, Swedes had only 10%.

Some Viking burials in both Orkney and Norway were actually genetically Pictish men. Converts, perhaps? One of these burials may actually be the earliest Pict skeleton sequenced to date.

Y DNA

Of the 442 skeletons, about 300 were male. The whole genome sequence includes the Y chromosome along with mitochondrial DNA, although it requires special processing to separate it usefully.

Goran Runfeldt, a member of the Million Mito team and head of research at FamilyTreeDNA began downloading DNA sequences immediately, and Michael Sager began analyzing Y DNA, hoping to add or split Y DNA tree branches.

Given the recent split of haplogroup P and A00, these ancient samples hold HUGE promise.

Michael and Goran have agreed to share their work as they process these samples – providing a rare glimpse real-time into the lab.

You and the Tree

Everyone is so excited about this paper, and I want you to be able to see if your Y or mitochondrial DNA, or that of your relatives matches the DNA haplogroups in the paper.

The paper itself uses the older letter=number designations for Y DNA haplogroup, so FamilyTreeDNA is rerunning, aligning and certifying the actual SNPs. The column FTDNA Haplogroup reflects the SNP Y haplogroup name.

Note that new Y DNA branches appear on the tree the day AFTER the change is made, and right now, changes resulting from this paper are being made hourly. I will update the haplogroup information daily as more becomes available. Pay particular attention to the locations that show where the graves were found along with the FamilyTreeDNA notes.

Goran has also included the mtDNA haplogroup as identified in the paper. Mitochondrial DNA haplogroups have not been recalculated, but you just might see them in the Million Mito Project😊

Here’s what you’ll need to do:

  • Go to your Y or mitochondrial DNA results and find your haplogroup.

  • Do a browser search on this article to see if your haplogroup is shown. On a PC, that’s CTRL+F to show the “find” box. If your haplogroup isn’t showing, you could be downstream of the Viking haplogroup, so you’ll need to use the Y DNA Block Tree (for Big Y testers) or public haplotree, here.
  • If you’ve taken the Big Y test, click on the Block Tree on your results page and then look across the top of your results page to see if the haplogroup in question is “upstream” or a parent of your haplogroup.

click to enlarge

If you don’t see it, keep scanning to the left until you see the last SNP.

click to enlarge

  • If the haplogroup you are seeking is NOT shown in your direct upstream branches, you can type the name of the haplogroup into the search box. For example, I’ve typed I-BY3428. You can also simply click on the FTDNA name haplogroup link in the table, below, considerately provided by Goran.

click to enlarge

I don’t see the intersecting SNP yet, between the tester and the ancient sample, so if I click on I-Y2592, I can view the rest of the upstream branches of haplogroup I.

click to enlarge

By looking at the Y DNA SNPs of the tester, and the Y DNA SNPs of the ancient sample, I can see that the intersecting SNP is DF29, roughly 52 SNP generations in the past. Rule of thumb is that SNP generations are 80-100 years each.

How About You – Are You Related to a Viking?

Below, you’ll find the information from Y DNA results in the paper, reprocessed and analyzed, with FamilyTreeDNA verified SNP names, along with the mitochondrial DNA haplogroup of each Viking male.

Are you related, and if so, how closely?

I was surprised to find a sister-branch to my own mitochondrial J1c2f. J1c2 and several subclades or branches were found in Viking burials.

I need to check all of my ancestral lines, both male and female. There’s history waiting to be revealed. What have you discovered?

Ancient Viking Sample Information

Please note that this information will be updated on business days until all samples have been processed and placed on the Y DNA tree – so this will be a “live” copy of the most current phylogenetic information.

Link to the locations to see the locations of the excavation sites, and the haplogroups for the tree locations. Michael Sager is making comments as he reviews each sample.

Enjoy!

Sample: VK14 / Russia_Ladoga_5680-12
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-BY3428
mtDNA: J1c1a

Sample: VK16 / Russia_Ladoga_5680-2
Location: Ladoga, Russia
Age: Viking 11-12th centuries CE
Y-DNA: I-M253
mtDNA: X2b4

Sample: VK17 / Russia_Ladoga_5680-17
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: T-Y138678
FTDNA Comment: Shares 5 SNPs with a man from Chechen Republic, forming a new branch down of T-Y22559 (T-Y138678)
mtDNA: U5a2a1b

Sample: VK18 / Russia_Ladoga_5680-3
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: R-YP1370
mtDNA: H1b1

Sample: VK20 / Russia_Ladoga_5680-1
Location: Ladoga, Russia
Age: Viking 11th century CE
Y-DNA: I-Y22478
FTDNA Comment: Splits the I-Z24071 branch, positive only for Y22478. New path = I-Y22486>I-Y22478>I-Z24071
mtDNA: H6c

Sample: VK22 / Russia_Ladoga_5680-13
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-A8462
mtDNA: T2b

Sample: VK23 / Russia_Ladoga_5680-9
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-M253
mtDNA: U4a1a

Sample: VK24 / Faroe_AS34/Panum
Location: Hvalba, Faroes
Age: Viking 11th century
Y-DNA: R-FGC12948
mtDNA: J1b1a1a

Sample: VK25 / Faroe_1
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-FT381000
FTDNA Comment: Splits the R-BY11762 branch, positive for 5 variants ancestral for ~14, new path = R-A8041>R-BY11764>BY11762
mtDNA: H3a1a

Sample: VK27 / Faroe_10
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-L513
mtDNA: U5a1g1

Sample: VK29 / Sweden_Skara 17
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-S7642
mtDNA: T2b3b

Sample: VK30 / Sweden_Skara 105
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-S2857
mtDNA: U5b1c2b

Sample: VK31 / Sweden_Skara 194
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-L21
mtDNA: I4a

Sample: VK34 / Sweden_Skara 135
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY111759
mtDNA: HV-T16311C!

Sample: VK35 / Sweden_Skara 118
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-CTS4179
mtDNA: T2f1a1

Sample: VK39 / Sweden_Skara 181
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: G-Z1817
mtDNA: T2b4b

Sample: VK40 / Sweden_Skara 106
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY166438
FTDNA Comment: Shares 10 SNPs with a man with unknown origins (American) downstream of R-BY1701. New branch R-BY166438
mtDNA: T1a1

Sample: VK42 / Sweden_Skara 62
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: J-FGC32685
mtDNA: T2b11

Sample: VK44 / Faroe_17
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-S658
mtDNA: H3a1a

Sample: VK45 / Faroe_18
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-CTS8277
mtDNA: H3a1

Sample: VK46 / Faroe_19
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-BY202785
FTDNA Comment: Forms a branch with VK245 down of R-BY202785 (Z287). New branch = R-FT383000
mtDNA: H5

Sample: VK48 / Gotland_Kopparsvik-212/65
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-FGC52679
mtDNA: H10e

Sample: VK50 / Gotland_Kopparsvik-53.64
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: I-Y22923
mtDNA: H1-T16189C!

Sample: VK51 / Gotland_Kopparsvik-88/64
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: N-L1026
mtDNA: U5b1e1

Sample: VK53 / Gotland_Kopparsvik-161/65
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: I-CTS10228
mtDNA: HV9b

Sample: VK57 / Gotland_Frojel-03601
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-L151
mtDNA: J1c6

Sample: VK60 / Gotland_Frojel-00702
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-YP1026
mtDNA: H13a1a1b

Sample: VK64 / Gotland_Frojel-03504
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-BY58559
mtDNA: I1a1

Sample: VK70 / Denmark_Tollemosegard-EW
Location: Tollemosegård, Sealand, Denmark
Age: Early Viking Late Germanic Iron Age/early Viking
Y-DNA: I-BY73576
mtDNA: H7d4

Sample: VK71 / Denmark_Tollemosegard-BU
Location: Tollemosegård, Sealand, Denmark
Age: Early Viking Late Germanic Iron Age/early Viking
Y-DNA: I-S22349
mtDNA: U5a1a

Sample: VK75 / Greenland late-0929
Location: V051, Western Settlement, Greenland
Age: Late Norse 1300 CE
Y-DNA: R-P310
mtDNA: H54

Sample: VK87 / Denmark_Hesselbjerg Grav 41b, sk PC
Location: Hesselbjerg, Jutland, Denmark
Age: Viking 850-900 CE
Y-DNA: R-Z198
mtDNA: K1c2

Sample: VK95 / Iceland_127
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-S658
mtDNA: H6a1a3a

Sample: VK98 / Iceland_083
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: I-BY3433
FTDNA Comment: Splits I-BY3430. Derived for 1 ancestral for 6. New path = I-BY3433>I-BY3430
mtDNA: T2b3b

Sample: VK101 / Iceland_125
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-BY110718
mtDNA: U5b1g

Sample: VK102 / Iceland_128
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-Y96503
FTDNA Comment: Shares 3 SNPs with a man from Sweden. Forms a new branch downstream of R-FGC23826. New branch = R-Y96503
mtDNA: J1c3f

Sample: VK110 / Iceland_115S
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: I-FGC21682
mtDNA: H10-x

Sample: VK117 / Norway_Trondheim_SK328
Location: Trondheim, Nor_Mid, Norway
Age: Medieval 12-13th centuries CE
Y-DNA: R-S9257
mtDNA: H1a3a

Sample: VK123 / Iceland_X104
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-Y130994
FTDNA Comment: Shares 17 SNPs with a man from the UAE. Creates a new branch downstream of R2-V1180. New branch = R-Y130994
mtDNA: J1c9

Sample: VK127 / Iceland_HDR08
Location: Hringsdalur, Iceland
Age: Viking 10th century CE
Y-DNA: R-BY92608
mtDNA: H3g1b

Sample: VK129 / Iceland_ING08
Location: Ingiridarstadir, Iceland
Age: Viking 10th century CE
Y-DNA: R-BY154143
FTDNA Comment: Shares 3 SNPs with a man from Sweden. Forms a new branch downstream of R1a-YP275. New branch = R-BY154143
mtDNA: U5b1b1a

Sample: VK133 / Denmark_Galgedil KO
Location: Galgedil, Funen, Denmark
Age: Viking 8-11th centuries CE
Y-DNA: R-Z8
mtDNA: K1a4a1a3

Sample: VK134 / Denmark_Galgedil ALZ
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-BY97519
mtDNA: H1cg

Sample: VK138 / Denmark_Galgedil AQQ
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-S1491
mtDNA: T2b5

Sample: VK139 / Denmark_Galgedil ANG
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-BY32008
mtDNA: J1c3k

Sample: VK140 / Denmark_Galgedil PT
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: G-M201
mtDNA: H27f

Sample: VK143 / UK_Oxford_#7
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-Y13833
FTDNA Comment: Splits R-Y13816. Derived for 6 ancestral for 3. New path = R-Y13816>R-Y13833
mtDNA: U5b1b1-T16192C!

Sample: VK144 / UK_Oxford_#8
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-Y2592
mtDNA: V1a1

Sample: VK145 / UK_Oxford_#9
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-YP1708
mtDNA: H17

Sample: VK146 / UK_Oxford_#10
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-M6155
mtDNA: J1c3e1

Sample: VK147 / UK_Oxford_#11
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-Y75899
mtDNA: T1a1q

Sample: VK148 / UK_Oxford_#12
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-M253
mtDNA: H6a1a

Sample: VK149 / UK_Oxford_#13
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-M253
mtDNA: H1a1

Sample: VK150 / UK_Oxford_#14
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-FT4725
mtDNA: H1-C16239T

Sample: VK151 / UK_Oxford_#15
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-S19291
mtDNA: T2b4-T152C!

Sample: VK153 / Poland_Bodzia B1
Location: Bodzia, Poland
Age: Viking 10-11th centuries CE
Y-DNA: R-M198
mtDNA: H1c3

Sample: VK156 / Poland_Bodzia B4
Location: Bodzia, Poland
Age: Viking 10-11th centuries CE
Y-DNA: R-Y9081
mtDNA: J1c2c2a

Sample: VK157 / Poland_Bodzia B5
Location: Bodzia, Poland
Age: Viking 10-11th centuries CE
Y-DNA: I-S2077
mtDNA: H1c

Sample: VK159 / Russia_Pskov_7283-20
Location: Pskov, Russia
Age: Viking 10-11th centuries CE
Y-DNA: R-A7982
mtDNA: U2e2a1d

Sample: VK160 / Russia_Kurevanikka_7283-3
Location: Kurevanikha, Russia
Age: Viking 10-13th centuries CE
Y-DNA: R-YP1137
mtDNA: C4a1a-T195C!

Sample: VK163 / UK_Oxford_#1
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-M253
mtDNA: U2e2a1a1

Sample: VK165 / UK_Oxford_#3
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-S18218
mtDNA: U4b1b1

Sample: VK166 / UK_Oxford_#4
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-BY67003
FTDNA Comment: Splits R-BY45170 (DF27). Derived for 2, ancestral for 7. New path = R-BY67003>R-BY45170
mtDNA: H3ag

Sample: VK167 / UK_Oxford_#5
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-BY34674
mtDNA: H4a1a4b

Sample: VK168 / UK_Oxford_#6
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-Z18
mtDNA: H4a1a4b

Sample: VK170 / Isle-of-Man_Balladoole
Location: Balladoole, IsleOfMan
Age: Viking 9-10th centuries CE
Y-DNA: R-S3201
mtDNA: HV9b

Sample: VK172 / UK_Oxford_#16
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-FT7019
mtDNA: I1a1e

Sample: VK173 / UK_Oxford_#17
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-FT13004
FTDNA Comment: Splits I2-FT12648, derived for 5, ancestral for 7. New path FT13004>FT12648
mtDNA: U5a1b-T16362C

Sample: VK174 / UK_Oxford_#18
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-FGC17429
mtDNA: H1-C16239T

Sample: VK175 / UK_Oxford_#19
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-Y47841
FTDNA Comment: Shares 6 SNPs with man from Sweden down of R-BY38950 (R-Y47841)
mtDNA: H1a1

Sample: VK176 / UK_Oxford_#20
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: I-FT3562
mtDNA: H10

Sample: VK177 / UK_Oxford_#21
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-FT31867
FTDNA Comment: Shares 3 SNPs with a man from Greece. Forms a new branch downstream of R-BY220332 (U152). New branch = R-FT31867
mtDNA: H82

Sample: VK178 / UK_Oxford_#22
Location: St_John’s_College_Oxford, Oxford, England, UK
Age: Viking 880-1000 CE
Y-DNA: R-BY176639
FTDNA Comment: Links up with PGA3 (Personal Genome Project Austria) and FTDNA customer from Denmark. PGA and FTDNA customer formed a branch earlier this week, VK178 will join them at R-BY176639 (Under L48)
mtDNA: K2a5

Sample: VK179 / Greenland F2
Location: Ø029a, Eastern Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: I-F3312
mtDNA: K1a3a

Sample: VK183 / Greenland F6
Location: Ø029a, Eastern Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: I-F3312
mtDNA: T2b21

Sample: VK184 / Greenland F7
Location: Ø029a, Eastern Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: R-YP4342
mtDNA: H4a1a4b

Sample: VK186 / Greenland KNK-[6]
Location: Ø64, Eastern Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: I-Y79817
FTDNA Comment: Shares 3 SNPs with a man from Norway downstream of I-Y24625. New branch = I-Y79817
mtDNA: H1ao

Sample: VK190 / Greenland late-0996
Location: Ø149, Eastern Settlement, Greenland
Age: Late Norse 1360 CE
Y-DNA: I-FGC15543
FTDNA Comment: Splits I-FGC15561. Derived 11 ancestral for 6. New path = I-FGC15543>I-FGC15561
mtDNA: K1a-T195C!

Sample: VK201 / Orkney_Buckquoy, sk M12
Location: Buckquoy_Birsay, Orkney, Scotland, UK
Age: Viking 5-6th century CE
Y-DNA: I-B293
mtDNA: H3k1a

Sample: VK202 / Orkney_Buckquoy, sk 7B
Location: Buckquoy_Birsay, Orkney, Scotland, UK
Age: Viking 10th century CE
Y-DNA: R-A151
mtDNA: H1ai1

Sample: VK203 / Orkney_BY78, Ar. 1, sk 3
Location: Brough_Road_Birsay, Orkney, Scotland, UK
Age: Viking 10th century CE
Y-DNA: R-BY10450
FTDNA Comment: FT83323-
mtDNA: H4a1a1a1a1

Sample: VK204 / Orkney_Newark for Brothwell
Location: Newark_Deerness, Orkney, Scotland, UK
Age: Viking 10th century CE
Y-DNA: R-BY115469
mtDNA: H1m

Sample: VK205 / Orkney_Newark 68/12
Location: Newark_Deerness, Orkney, Scotland, UK
Age: Viking 10th century CE
Y-DNA: R-YP4345
mtDNA: H3

Sample: VK210 / Poland_Kraków-Zakrzówek gr. 24
Location: Kraków, Poland
Age: Medieval 11-13th centuries CE
Y-DNA: I-Z16971
mtDNA: H5e1a1

Sample: VK211 / Poland_Cedynia gr. 435
Location: Cedynia, Poland
Age: Medieval 11-13 centuries CE
Y-DNA: R-M269
mtDNA: W6

Sample: VK212 / Poland_Cedynia gr. 558
Location: Cedynia, Poland
Age: Viking 11-12th centuries CE
Y-DNA: R-CTS11962
mtDNA: H1-T152C!

Sample: VK215 / Denmark_Gerdrup-B; sk 1
Location: Gerdrup, Sealand, Denmark
Age: Viking 9th century CE
Y-DNA: R-M269
mtDNA: J1c2k

Sample: VK217 / Sweden_Ljungbacka
Location: Ljungbacka, Malmo, Sweden
Age: Viking 9-12th centuries CE
Y-DNA: R-L151
mtDNA: J1b1b1

Sample: VK218 / Russia_Ladoga_5680-4
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: R-BY2848
mtDNA: H5

Sample: VK219 / Russia_Ladoga_5680-10
Location: Ladoga, Russia
Age: Viking 10-11th centuries CE
Y-DNA: I-Y22024
mtDNA: T2b6a

Sample: VK220 / Russia_Ladoga_5680-11
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-FT253975
FTDNA Comment: CTS2208+, BY47171-, CTS7676-, Y20288-, BY69785-, FT253975+
mtDNA: J2b1a

Sample: VK221 / Russia_Ladoga_5757-14
Location: Ladoga, Russia
Age: Viking 9-10th centuries CE
Y-DNA: I-Y5473
mtDNA: K1d

Sample: VK223 / Russia_Gnezdovo 75-140
Location: Gnezdovo, Russia
Age: Viking 10-11th centuries CE
Y-DNA: I-BY67763
mtDNA: H13a1a1c

Sample: VK224 / Russia_Gnezdovo 78-249
Location: Gnezdovo, Russia
Age: Viking 10-11th centuries CE
Y-DNA: N-CTS2929
mtDNA: H7a1

Sample: VK225 / Iceland_A108
Location: Hofstadir, Iceland
Age: Viking 10-13th centuries CE
Y-DNA: R-BY92608
mtDNA: H3v-T16093C

Sample: VK232 / Gotland_Kopparsvik-240.65
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-Y16505
FTDNA Comment: Speculative placement – U106+, but U106 (C>T) in ancient samples can be misleading. LAV010, NA34, I7779, ble007, R55 and EDM124 are all non-R ancient samples that are U106+. More conservative placement is at R-P310
mtDNA: N1a1a1

Sample: VK234 / Faroe_2
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-FT381000
FTDNA Comment: Same split as VK25. They share one marker FT381000 (26352237 T>G)
mtDNA: H3a1a

Sample: VK237 / Faroe_15
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-S6355
mtDNA: J2a2c

Sample: VK238 / Faroe_4
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-YP396
mtDNA: H3a1a

Sample: VK239 / Faroe_5
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-M269
mtDNA: H5

Sample: VK242 / Faroe_3
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-S764
mtDNA: H3a1a

Sample: VK244 / Faroe_12
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-CTS4179
mtDNA: H2a2a2

Sample: VK245 / Faroe_16
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: R-BY202785
FTDNA Comment: Forms a branch with VK46 down of R-BY202785 (Z287). New branch = R-FT383000
mtDNA: H3a1

Sample: VK248 / Faroe_22
Location: Church2, Faroes
Age: Early modern 16-17th centuries CE
Y-DNA: I-M253
mtDNA: H49a

Sample: VK251 / Gotland_Kopparsvik-30.64
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-M459
mtDNA: U5b1e1

Sample: VK256 / UK_Dorset-3722
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-YP5718
mtDNA: H1c7

Sample: VK257 / UK_Dorset-3723
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: I-Y19934
mtDNA: H5a1c1a

Sample: VK258 / UK_Dorset-3733
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-YP1395
FTDNA Comment: Shares 5 SNPs with a man from Norway. Forms a new branch down of R-YP1395. New branch = R-PH420
mtDNA: K1a4a1

Sample: VK259 / UK_Dorset-3734
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-FT20255
FTDNA Comment: Both VK449 and VK259 share 3 SNPs with a man from Sweden. Forms a new branch down of R-FT20255 (Z18). New branch = R-FT22694
mtDNA: I2

Sample: VK260 / UK_Dorset-3735
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: Q-BY77336
mtDNA: H1e1a

Sample: VK261 / UK_Dorset-3736
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-BY64643
mtDNA: H52

Sample: VK262 / UK_Dorset-3739
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: I-FT347811
FTDNA Comment: Shares 2 SNPs with an American of unknown origins. Forms a new branch down of Y6908 (Z140). At the same time a new branch was discovered that groups this new Ancient/American branch with the established I-FT274828 branch. New ancient path = I-Y6908>I-FT273257>I-FT347811
mtDNA: J1c4

Sample: VK263 / UK_Dorset-3742
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-Z16372
mtDNA: K1a4d

Sample: VK264 / UK_Dorset-3744
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-BY30937
mtDNA: N1a1a1a2

Sample: VK267 / Sweden_Karda 21
Location: Karda, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-L23
mtDNA: T2b4b

Sample: VK268 / Sweden_Karda 22
Location: Karda, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-M269
mtDNA: K1c1

Sample: VK269 / Sweden_Karda 24
Location: Karda, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-M269
mtDNA: H1e1a

Sample: VK273 / Russia_Gnezdovo 77-255
Location: Gnezdovo, Russia
Age: Viking 10-11th centuries CE
Y-DNA: R-BY61747
mtDNA: U5a2a1b1

Sample: VK274 / Denmark_Kaargarden 391
Location: Kaagården, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-PH3519
mtDNA: T2b-T152C!

Sample: VK275 / Denmark_Kaargarden 217
Location: Kaagården, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: I-BY74743
mtDNA: H

Sample: VK279 / Denmark_Galgedil AXE
Location: Galgedil, Funen, Denmark
Age: Viking 10th century CE
Y-DNA: I-Y10639
mtDNA: I4a

Sample: VK280 / Denmark_Galgedil UO
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-Y3713
mtDNA: H11a

Sample: VK281 / Denmark_Barse Grav A
Location: Bårse, Sealand, Denmark
Age: Viking 10th century CE
Y-DNA: I-FGC22153
FTDNA Comment: Splits I-Y5612 (P109). Derived for 8, ancestral for 2. New path = I-Y5612>I-Y5619
mtDNA: T2

Sample: VK282 / Denmark_Stengade I, LMR c195
Location: Stengade_I, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-CTS1211
mtDNA: H4a1a4b

Sample: VK286 / Denmark_Bogovej Grav BJ
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-S10708
mtDNA: J1c-C16261T

Sample: VK287 / Denmark_Kaargarden Grav BS
Location: Kaagården, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-S22676
mtDNA: T2b

Sample: VK289 / Denmark_Bodkergarden Grav H, sk 1
Location: Bødkergarden, Langeland, Denmark
Age: Viking 9th century CE
Y-DNA: R-U106
mtDNA: J2b1a

Sample: VK290 / Denmark_Kumle Hoje Grav O
Location: Kumle_høje, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-FT264183
FTDNA Comment: Shares at least 4 SNPs with a man from Sweden, forming a new branch downstream R-FT263905 (U106). New branch = R-FT264183. HG02545 remains at R-FT263905
mtDNA: I1a1

Sample: VK291 / Denmark_Bodkergarden Grav D, sk 1
Location: Bødkergarden, Langeland, Denmark
Age: Viking 9th century CE
Y-DNA: I-Y20861
mtDNA: U5a1a2b

Sample: VK292 / Denmark_Bogovej Grav A.D.
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-M417
mtDNA: J1c2c1

Sample: VK295 / Denmark_Hessum sk 1
Location: Hessum, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-Y4738
mtDNA: T1a1

Sample: VK296 / Denmark_Hundstrup Mose sk 1
Location: Hundstrup_Mose, Sealand, Denmark
Age: Early Viking 660-780 CE
Y-DNA: I-S7660
mtDNA: HV6

Sample: VK297 / Denmark_Hundstrup Mose sk 2
Location: Hundstrup_Mose, Sealand, Denmark
Age: Early Viking 670-830 CE
Y-DNA: I-Y4051
mtDNA: J1c2h

Sample: VK301 / Denmark_Ladby Grav 4
Location: Ladby, Funen, Denmark
Age: Viking 640-890 CE
Y-DNA: I-FT105192
mtDNA: R0a2b

Sample: VK306 / Sweden_Skara 33
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-FT115400
FTDNA Comment: Shares 3 mutations with a man from Sweden. Forms a new branch down of I-S19291. New branch = I-FT115400. VK151 has no coverage for 2 of these mutations
mtDNA: H15a1

Sample: VK308 / Sweden_Skara 101
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY33037
mtDNA: H1c

Sample: VK309 / Sweden_Skara 53
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-YP6189
mtDNA: K1b1c

Sample: VK313 / Denmark_Rantzausminde Grav 2
Location: Rantzausminde, Funen, Denmark
Age: Viking 850-900 CE
Y-DNA: R-JFS0009
mtDNA: H1b

Sample: VK315 / Denmark_Bakkendrup Grav 16
Location: Bakkendrup, Sealand, Denmark
Age: Viking 850-900 CE
Y-DNA: I-Y98280
FTDNA Comment: Shares 1 SNP with a man from the Netherlands. Forms a new branch downstream of I-Y37415 (P109). New branch = I-Y98280
mtDNA: T1a1b

Sample: VK316 / Denmark_Hessum sk II
Location: Hessum, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-Y130659
FTDNA Comment: Splits I-Y130594 (Z59). Derived for 1 ancestral for 6. New path = I-Y130659>I-Y130594>I-Y130747. Ancient sample STR_486 also belongs in this group, at I-Y130747
mtDNA: K1a4

Sample: VK317 / Denmark_Kaargarden Grav BF99
Location: Kaagården, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: J-BY62479
FTDNA Comment: Splits J2-BY62479 (M67). Derived for 9, ancestral for 3. New path = J-BY62479>J-BY72550
mtDNA: H2a2a1

Sample: VK320 / Denmark_Bogovej Grav S
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: I-Y103013
FTDNA Comment: Shares 3 SNPs with a man from Sweden. Forms a new branch down of I-FT3562 (P109). New branch = I-Y103013
mtDNA: U5a1a1

Sample: VK323 / Denmark_Ribe 2
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-S10185
mtDNA: K2a6

Sample: VK324 / Denmark_Ribe 3
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-BY16590
FTDNA Comment: Splits R-BY16590 (L47). Derived for 7, ancestral for 3. New path = R-S9742>R-BY16950
mtDNA: N1a1a1a2

Sample: VK326 / Denmark_Ribe 5
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-Y52895
mtDNA: U5b1-T16189C!-T16192C!

Sample: VK327 / Denmark_Ribe 6
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-BY463
mtDNA: H6a1a5

Sample: VK329 / Denmark_Ribe 8
Location: Ribe, Jutland, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-S18894
mtDNA: H3-T152C!

Sample: VK332 / Oland_1088
Location: Oland, Sweden
Age: Viking 858 ±68 CE
Y-DNA: I-S8522
FTDNA Comment: Possibly falls beneath I-BY195155. Shares one C>T mutation with a BY195155* sample
mtDNA: T2b24

Sample: VK333 / Oland_1028
Location: Oland, Sweden
Age: Viking 885 ± 69 CE
Y-DNA: R-Z29034
mtDNA: H2a2a1

Sample: VK335 / Oland_1068
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-BY39347
FTDNA Comment: Shares 8 SNPs with a man from France. Forms a new branch down of R-BY39347 (U152). New branch = R-FT304388
mtDNA: K1b2a3

Sample: VK336 / Oland_1075
Location: Oland, Sweden
Age: Viking 853 ± 67 CE
Y-DNA: R-BY106906
mtDNA: K2a3a

Sample: VK337 / Oland_1064
Location: Oland, Sweden
Age: Viking 858 ± 68 CE
Y-DNA: I-BY31739
FTDNA Comment: Possible Z140
mtDNA: U5a1b3a

Sample: VK338 / Denmark_Bogovej Grav BV
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-A6707
mtDNA: W3a1

Sample: VK342 / Oland_1016
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-BY78615
FTDNA Comment: Shares 2 SNPs with a man from Finland. Forms a new branch down of I2-Y23710 (L801). New branch = I-BY78615
mtDNA: H2a1

Sample: VK343 / Oland_1021
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-Y7232
mtDNA: H3h

Sample: VK344 / Oland_1030
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-BY32357
mtDNA: J1c2t

Sample: VK345 / Oland_1045
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: R-FT148754
FTDNA Comment: Splits R-FT148754 (DF63). Derived for 8, ancestral for 6. New path = R-FT148796>R-FT148754
mtDNA: H4a1

Sample: VK346 / Oland_1057
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: J-Z8424
mtDNA: H2a2b

Sample: VK348 / Oland_1067
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-Z171
mtDNA: T2b28

Sample: VK349 / Oland_1073
Location: Oland, Sweden
Age: Viking 829 ± 57 CE
Y-DNA: R-BY166065
FTDNA Comment: Shares 2 SNPs with a man from England. Forms a branch down of R-BY166065 (L1066). New branch = R-BY167052
mtDNA: H1e2a

Sample: VK352 / Oland_1012
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-FGC35755
FTDNA Comment: Possibly forms a branch down of I-Y15295. 2 possible G>A mutations with a I-Y15295* sample
mtDNA: H64

Sample: VK354 / Oland_1026
Location: Oland, Sweden
Age: Viking 986 ± 38 CE
Y-DNA: R-S6752
mtDNA: H2a1

Sample: VK355 / Oland_1046
Location: Oland, Sweden
Age: Viking 847 ± 65 CE
Y-DNA: L-L595
FTDNA Comment: Joins 2 other ancients on this rare branch. ASH087 and I2923
mtDNA: U5b1b1a

Sample: VK357 / Oland_1097
Location: Oland, Sweden
Age: Viking 1053 ± 60 CE
Y-DNA: I-FT49567
FTDNA Comment: Shares 4 SNPs with a man from England. Forms a new branch down of I-A5952 (Z140). New branch = I-FT49567
mtDNA: J2b1a

Sample: VK362 / Denmark_Bogovej LMR 12077
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: E-CTS5856
FTDNA Comment: Possibly E-Z16663
mtDNA: V7b

Sample: VK363 / Denmark_Bogovej BT
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: I-BY198083
FTDNA Comment: Shares 2 SNPs with a man from Switzerland. Forms a new branch down of I-A1472 (Z140). New branch = I-BY198083
mtDNA: U4b1a1a1

Sample: VK365 / Denmark_Bogovej BS
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: R-BY34800
mtDNA: U8a2

Sample: VK367 / Denmark_Bogovej D
Location: Bogøvej, Langeland, Denmark
Age: Viking 10th century CE
Y-DNA: I-BY67827
FTDNA Comment: VK506 and VK367 split the I-BY67827 branch. Derived for 2 SNPs total. They also share one unique marker (26514336 G>C). New branches = I-Y16449>I-BY72774>I-FT382000
mtDNA: J1b1a1

Sample: VK369 / Denmark_Bakkendrup losfund-2, conc.1
Location: Bakkendrup, Sealand, Denmark
Age: Viking 850-900 CE
Y-DNA: R-FGC7556
FTDNA Comment: Shares 13 SNPs with an American. Forms a new branch down of R-FGC7556 (DF99). New branch = R-FT108043
mtDNA: H1a

Sample: VK373 / Denmark_Galgedil BER
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-L20
mtDNA: J2b1a

Sample: VK379 / Oland_1077
Location: Oland, Sweden
Age: Early Viking 700 CE
Y-DNA: I-FGC22048
mtDNA: U3b1b

Sample: VK380 / Oland_1078
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-Y22923
mtDNA: H27

Sample: VK382 / Oland_1132
Location: Oland, Sweden
Age: Early Viking 700 CE
Y-DNA: I-L813
mtDNA: H3g1

Sample: VK384 / Denmark_Hesselbjerg Grav 14, sk EU
Location: Hesselbjerg, Jutland, Denmark
Age: Viking 850-900 CE
Y-DNA: R-FGC10249
mtDNA: H3g1

Sample: VK386 / Norway_Oppland 5305
Location: Oppland, Nor_South, Norway
Age: Viking 9-11th centuries CE
Y-DNA: R-S695
mtDNA: J1b1a1

Sample: VK388 / Norway_Nordland 253
Location: Nordland, Nor_North, Norway
Age: Viking 8-16th centuries CE
Y-DNA: I-Y22507
FTDNA Comment: Splits I-Y22507. Derived for 1 ancestral for 5. New path = I-Y22504>I-Y22507
mtDNA: J1c5

Sample: VK389 / Norway_Telemark 3697
Location: Telemark, Nor_South, Norway
Age: Viking 10th century CE
Y-DNA: R-Z27210
FTDNA Comment: Splits R-Z27210 (U106). Derived for 1 ancestral for 2. New path = R-Y32857>R-Z27210
mtDNA: T2b

Sample: VK390 / Norway_Telemark 1648-A
Location: Telemark, Nor_South, Norway
Age: Iron Age 5-6th centuries CE
Y-DNA: R-FT7019
mtDNA: K2a3

Sample: VK394 / Norway_Hedmark 4460
Location: Hedmark, Nor_South, Norway
Age: Viking 10th century CE
Y-DNA: R-YP5161
FTDNA Comment: Shares 1 SNP with a man from Denmark. Forms a new branch down of R-YP5161 (L448). New branch = R-BY186623
mtDNA: H13a1a1a

Sample: VK395 / Sweden_Skara 275
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: N-BY21973
mtDNA: X2c1

Sample: VK396 / Sweden_Skara 166
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY18970
FTDNA Comment: Splits R-BY18970 (DF98). Derived for 2, ancestral for 4 (BY18964+?). New path = R-BY18973>R-BY18970
mtDNA: J1c2t

Sample: VK397 / Sweden_Skara 237
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-S7759
mtDNA: J1b1a1

Sample: VK398 / Sweden_Skara 231
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: T-BY215080
mtDNA: H1b1-T16362C

Sample: VK399 / Sweden_Skara 276
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: N-FGC14542
mtDNA: H4a1a1a

Sample: VK400 / Sweden_Skara 236
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-FGC21682
mtDNA: H1-C16239T

Sample: VK401 / Sweden_Skara 229
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-YP5155
FTDNA Comment: Splits R-YP5155. Derived for 4, ancestral for 1. New path = R-YP5155>R-Y29963
mtDNA: H2a2b

Sample: VK403 / Sweden_Skara 217
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-BY3222
mtDNA: K1a4a1a2b

Sample: VK404 / Sweden_Skara 277
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-BY55382
FTDNA Comment: Shares 3 SNPs with a man from Sweden. Forms a new branch down of I-BY55382 (L22). New branch = I-BY108664
mtDNA: U4a2

Sample: VK405 / Sweden_Skara 83
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-L21
mtDNA: K1a10

Sample: VK406 / Sweden_Skara 203
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: N-Y7795
FTDNA Comment: Shares 2 SNPs with a man from Sweden. Forms a new branch down of N-Y7795. New branch = N-FT381631
mtDNA: K1a4a1

Sample: VK407 / Sweden_Skara 274
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-Y18232
mtDNA: H1c21

Sample: VK408 / Russia_Ladoga_5757-18
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: R-CTS11962
mtDNA: H74

Sample: VK409 / Russia_Ladoga_5680-14
Location: Ladoga, Russia
Age: Viking 10-12th centuries CE
Y-DNA: I-DF29
mtDNA: H3h

Sample: VK410 / Russia_Ladoga_5680-15
Location: Ladoga, Russia
Age: Viking 11-12th centuries CE
Y-DNA: I-M253
mtDNA: X2b-T226C

Sample: VK411 / Denmark_Galgedil TT
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: R-M269
mtDNA: H1a1

Sample: VK414 / Norway_Oppland 1517
Location: Oppland, Nor_South, Norway
Age: Viking 10-11th centuries CE
Y-DNA: R-PH12
FTDNA Comment: Splits R1a-PH12. Derived for 2, ancestral for 1. New path R-Y66214>R-PH12
mtDNA: H6a1a

Sample: VK418 / Norway_Nordland 1502
Location: Nordland, Nor_North, Norway
Age: Iron Age 4th century CE
Y-DNA: R-CTS5533
mtDNA: J1c2c1

Sample: VK419 / Norway_Nordland 1522
Location: Nordland, Nor_North, Norway
Age: Viking 6-10th centuries CE
Y-DNA: N-S9378
FTDNA Comment: Shares 2 SNPs with a man from France. Forms a new branch down of N-S9378 (L550). New branch = N-BY160234
mtDNA: U5b1b1g1

Sample: VK420 / Norway_Hedmark 2813
Location: Hedmark, Nor_South, Norway
Age: Viking 8-11th centuries CE
Y-DNA: I-FGC15560
FTDNA Comment: Shares 8 SNPs with an American man. Forms a new branch down of I-BY158446. New branch = I-FT118954
mtDNA: I4a

Sample: VK421 / Norway_Oppland 3777
Location: Oppland, Nor_South, Norway
Age: Viking 10-11th centuries CE
Y-DNA: R-M198
mtDNA: U5b2c2b

Sample: VK422 / Norway_Hedmark 4304
Location: Hedmark, Nor_South, Norway
Age: Viking 10th century CE
Y-DNA: R-YP390
mtDNA: J1b1a1a

Sample: VK424 / Sweden_Skara 273
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-M269
mtDNA: K2b1a1

Sample: VK425 / Sweden_Skara 44
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-Z331
mtDNA: U3a1

Sample: VK426 / Sweden_Skara 216
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: R-M269
mtDNA: U6a1a1

Sample: VK427 / Sweden_Skara 209
Location: Varnhem, Skara, Sweden
Age: Viking 10-12th centuries CE
Y-DNA: I-Y5362
mtDNA: K1a4

Sample: VK430 / Gotland_Frojel-00502
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: N-S18447
mtDNA: T1a1b

Sample: VK431 / Gotland_Frojel-00487A
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-P312
mtDNA: H2a1

Sample: VK438 / Gotland_Frojel-04498
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-CTS11962
mtDNA: H1

Sample: VK443 / Oland_1101
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: I-A20404
mtDNA: U5b2b5

Sample: VK444 / Oland_1059
Location: Oland, Sweden
Age: Viking 847 ± 65 CE
Y-DNA: R-PH1477
mtDNA: K1a

Sample: VK445 / Denmark_Gl Lejre-A1896
Location: Gl._Lejre, Sealand, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-Z2040
mtDNA: U3b

Sample: VK446 / Denmark_Galgedil LS
Location: Galgedil, Funen, Denmark
Age: Viking 9-11th centuries CE
Y-DNA: I-BY19383
FTDNA Comment: Shares 1 SNP with a man from England. Forms a new branch down of I-BY19383 (Z2041). New branch = I-BY94803
mtDNA: U5a1a1-T16362C

Sample: VK449 / UK_Dorset-3746
Location: Ridgeway_Hill_Mass_Grave_Dorset, Dorset, England, UK
Age: Viking 10-11th centuries CE
Y-DNA: R-FT20255
FTDNA Comment: Both VK449 and VK259 share 3 SNPs with a man from Sweden. Forms a new branch down of R-FT20255 (Z18). New branch = R-FT22694
mtDNA: H6a2a

Sample: VK452 / Gotland_Kopparsvik-111
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-CTS11962
mtDNA: T2b

Sample: VK453 / Gotland_Kopparsvik-134
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-YP256
mtDNA: H8c

Sample: VK461 / Gotland_Frojel-025A89
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: N-Y5005
FTDNA Comment: Possibly down of Y15161. Shares 2 C>T mutations with a Y15161* kit
mtDNA: H7b

Sample: VK463 / Gotland_Frojel-019A89
Location: Frojel, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-Y13467
mtDNA: H1b5

Sample: VK466 / Russia_Gnezdovo 77-222
Location: Gnezdovo, Russia
Age: Viking 10-11th centuries CE
Y-DNA: R-PF6162
mtDNA: H6a1a4

Sample: VK468 / Gotland_Kopparsvik-235
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-BY125166
mtDNA: H1a1

Sample: VK469 / Gotland_Kopparsvik-260
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-FGC17230
mtDNA: H3ac

Sample: VK471 / Gotland_Kopparsvik-63
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-M417
mtDNA: H1m

Sample: VK473 / Gotland_Kopparsvik-126
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: I-S14887
mtDNA: N1a1a1a1

Sample: VK474 / Gotland_Kopparsvik-137
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: E-Y4971
FTDNA Comment: Possible E-Y4972 (Shares 1 G>A mutation with a E-Y4972* sample)
mtDNA: J1d

Sample: VK475 / Gotland_Kopparsvik-187
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: R-BY27605
mtDNA: H1a

Sample: VK479 / Gotland_Kopparsvik-272
Location: Kopparsvik, Gotland, Sweden
Age: Viking 900-1050 CE
Y-DNA: G-Y106451
mtDNA: H1a1

Sample: VK480 / Estonia_Salme_II-E
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-YP617
mtDNA: U4a2a1

Sample: VK481 / Estonia_Salme_II-F
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-FGC14542
FTDNA Comment: Shares 1 SNP with a man from Sweden. Forms a new branch down of N-FGC14542. New branch = N–BY149019. VK399 possibly groups with these two as well
mtDNA: T2a1a

Sample: VK482 / Estonia_Salme_II-P
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-SK1234
mtDNA: H1a

Sample: VK483 / Estonia_Salme_II-V
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y141089
FTDNA Comment: Said to be brother of VK497 at I-BY86407 which is compatible with this placement, although no further Y-SNP evidence exists due to low coverage
mtDNA: H16

Sample: VK484 / Estonia_Salme_II-Q
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-FT103482
FTDNA Comment: VK484 and VK486 both split R-FT103482 (Z283). Derived for 9 ancestral for 6. New path = R-FT104609>R-FT103482
mtDNA: H6a1a

Sample: VK485 / Estonia_Salme_II-O
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY266
FTDNA Comment: Said to be brother of VK497 at I-BY86407 which is compatible with this placement, although no further Y-SNP evidence exists due to low coverage
mtDNA: H16

Sample: VK486 / Estonia_Salme_II-G
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-FT103482
FTDNA Comment: VK484 and VK486 both split R-FT103482 (Z283). Derived for 9 ancestral for 6. New path = R-FT104609>R-FT103482
mtDNA: U4a2a

Sample: VK487 / Estonia_Salme_II-A
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-YP4932
FTDNA Comment: Joins ancient Estonian samples V9 and X14
mtDNA: H17a2

Sample: VK488 / Estonia_Salme_II-H
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-L813
mtDNA: H5c

Sample: VK489 / Estonia_Salme_II-Ä
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y21546
mtDNA: T2e1

Sample: VK490 / Estonia_Salme_II-N
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-FGC8677
FTDNA Comment: Said to be brother of VK497 at I-BY86407 which is compatible with this placement, although no further Y-SNP evidence exists due to low coverage
mtDNA: H16

Sample: VK491 / Estonia_Salme_II-Õ
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y141089
mtDNA: H6a1a

Sample: VK492 / Estonia_Salme_II-B
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Z73
mtDNA: H1b5

Sample: VK493 / Estonia_Salme_II-Š
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-S6353
FTDNA Comment: Shares 1 SNP with a man from Finland. Forms a new branch down of R-S6353. New branch = R-BY166432
mtDNA: H2a2a1

Sample: VK494 / Poland_Sandomierz 1/13
Location: Sandomierz, Poland
Age: Viking 10-11th centuries CE
Y-DNA: R-BY25698
mtDNA: X2c2

Sample: VK495 / Estonia_Salme_II-C
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY98617
FTDNA Comment: Shares 1 SNP with a man from Romania. Forms a branch down of I-BY98617 (L22). New branch = I-FT373923
mtDNA: H1b

Sample: VK496 / Estonia_Salme_II-W
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY198216
mtDNA: H1a

Sample: VK497 / Estonia_Salme_II-Ö
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY86407
mtDNA: H16

Sample: VK498 / Estonia_Salme_II-Z
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-S6752
mtDNA: H1q

Sample: VK504 / Estonia_Salme_I-1
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-S23232
mtDNA: H28a

Sample: VK505 / Estonia_Salme_I-2
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y30126
mtDNA: J1b1a1b

Sample: VK506 / Estonia_Salme_I-3
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-BY67827
FTDNA Comment: VK506 and VK367 split the I-BY67827 branch. Derived for 2 SNPs total. They also share one unique marker (26514336 G>C). New branches = I-Y16449>I-BY72774>I-FT382000
mtDNA: J1c2

Sample: VK507 / Estonia_Salme_I-4
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-CTS8407
FTDNA Comment: Shares 1 SNP with a man from Denmark. Forms a branch down of I-CTS8407 (P109). New branch = I-BY56459
mtDNA: HV6

Sample: VK508 / Estonia_Salme_I-5
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y10933
mtDNA: J1c5

Sample: VK509 / Estonia_Salme_I-6
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y36105
mtDNA: H1n-T146C!

Sample: VK510 / Estonia_Salme_I-7
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y19932
FTDNA Comment: Shares 8 SNPs with a man from Russia. Creates a new branch down of I-Y19932 (L22). New branch = I-BY60851
mtDNA: H10e

Sample: VK511 / Estonia_Salme_II-X
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Y132154
mtDNA: T2a1a

Sample: VK512 / Estonia_Salme_II-Ü
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y21546
mtDNA: H2a2b1

Sample: VK513 / Greenland F8
Location: Ø029, East_Settlement, Greenland
Age: Early Norse 10-12th centuries CE
Y-DNA: R-S2886
mtDNA: J1c1b

Sample: VK514 / Norway_Nordland 5195
Location: Nordland, Nor_North, Norway
Age: Viking 6-10th centuries CE
Y-DNA: R-YP4963
mtDNA: K2b1a1

Sample: VK515 / Norway_Nordland 4512
Location: Nordland, Nor_North, Norway
Age: Viking 10th century CE
Y-DNA: I-FGC8677
mtDNA: H52

Sample: VK516 / Norway_Sor-Trondelag 4481
Location: Sor-Trondelag, Nor_Mid, Norway
Age: Viking 10th century CE
Y-DNA: R-CTS8746
mtDNA: H6a1a

Sample: VK517 / Sweden_Uppsala_UM36031_623b
Location: Skämsta, Uppsala, Sweden
Age: Viking 11th century
Y-DNA: I-BY78615
mtDNA: J1c3f

Sample: VK519 / Norway_Nordland 4691b
Location: Nordland, Nor_North, Norway
Age: Viking 6-10th centuries CE
Y-DNA: I-M253
mtDNA: HV0a1

Sample: VK521 / Sol941 Grav900 Brondsager Torsiinre
Location: Brondsager_Torsiinre, Sealand, Denmark
Age: Iron Age 300 CE
Y-DNA: I-FGC43065
mtDNA: H16b

Sample: VK524 / Norway_Nordland 3708
Location: Nordland, Nor_North, Norway
Age: Viking 10th century CE
Y-DNA: I-M6155
mtDNA: HV0a1

Sample: VK528 / Norway_Troms 4049
Location: Troms, Nor_North, Norway
Age: Viking 8-9th centuries CE
Y-DNA: R-BY135243
mtDNA: K1a4a1b

Sample: VK529 / Norway_Nordland 642
Location: Nordland, Nor_North, Norway
Age: Viking 8-9th centuries CE
Y-DNA: I-BY106963
mtDNA: H7

Sample: VK531 / Norway_Troms 5001A
Location: Troms, Nor_North, Norway
Age: LNBA 2400 BC
Y-DNA: R-Y13202
mtDNA: U2e2a

Sample: VK532 / Kragehave Odetofter XL718
Location: Kragehave Odetofter, Sealand, Denmark
Age: Iron Age 100 CE
Y-DNA: I-S26361
FTDNA Comment: Shares 5 SNPs with a man from Sweden. Forms a new branch down of I-S26361 (Z2041). New branch = I-FT273387
mtDNA: U2e2a1a

Sample: VK533 / Oland 1076 28364 35
Location: Oland, Sweden
Age: Viking 9-11th centuries CE
Y-DNA: N-BY21933
FTDNA Comment: Splits N-BY21933 (L550). Derived for 1 ancestral for 13. New path = N-BY29005>N-BY21933
mtDNA: H13a1a1e

Sample: VK534 / Italy_Foggia-869
Location: San_Lorenzo, Foggia, Italy
Age: Medieval 11-13th centuries CE
Y-DNA: R-FGC71023
mtDNA: H1

Sample: VK535 / Italy_Foggia-891
Location: San_Lorenzo, Foggia, Italy
Age: Medieval 12-13th centuries CE
Y-DNA: R-Z2109
mtDNA: T1a5

Sample: VK538 / Italy_Foggia-1249
Location: Cancarro, Foggia, Italy
Age: Medieval 11-13th centuries CE
Y-DNA: L-Z5931
mtDNA: H-C16291T

Sample: VK539 / Ukraine_Shestovitsa-8870-97
Location: Shestovitsa, Ukraine
Age: Viking 10-12th centuries CE
Y-DNA: I-BY61100
FTDNA Comment: Splits I-BY61100 (Z2041). Derived for 5 ancestral for 3. New path I-BY65928>I-BY61100
mtDNA: V

Sample: VK541 / Ukraine_Lutsk
Location: Lutsk, Ukraine
Age: Medieval 13th century
Y-DNA: R-YP593
mtDNA: H7

Sample: VK542 / Ukraine_Chernigov
Location: Chernigov, Ukraine
Age: Viking 11th century
Y-DNA: I-S20602
mtDNA: H5a2a

Sample: VK543 / Ireland_EP55
Location: Eyrephort, Ireland
Age: Viking 9th century CE
Y-DNA: R-S2895
mtDNA: I2

Sample: VK545 / Ireland_SSG12
Location: Ship_Street_Great, Dublin, Ireland
Age: Viking 7-9th centuries CE
Y-DNA: R-DF105
mtDNA: H1bb

Sample: VK546 / Ireland_08E693
Location: Islandbridge, Dublin, Ireland
Age: Viking 9th century CE
Y-DNA: R-L448
mtDNA: HV6

Sample: VK547 / Norway_Nordland 4727
Location: Nordland, Nor_North, Norway
Age: Viking 8-11th centuries CE
Y-DNA: I-FT8660
FTDNA Comment: Splits I-FT8660 (L813) Derived for 3, ancestral for 3. New path = I-FT8660>I-FT8457
mtDNA: V

Sample: VK549 / Estonia_Salme_II-J
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-P109
mtDNA: T2b5a

Sample: VK550 / Estonia_Salme_II-D
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: N-Y4706
mtDNA: V

Sample: VK551 / Estonia_Salme_II-U
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: R-CTS4179
mtDNA: J2a1a1a2

Sample: VK552 / Estonia_Salme_II-K
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Z2900
mtDNA: H10e

Sample: VK553 / Estonia_Salme_II-M
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-FGC22026
FTDNA Comment: Splits I-FGC22026. Derived for 1, ancestral for 7. New path = I-FGC22035>I-FGC22026
mtDNA: K1c1h

Sample: VK554 / Estonia_Salme_II-L
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-M253
mtDNA: W6a

Sample: VK555 / Estonia_Salme_II-I
Location: Salme, Saaremaa, Estonia
Age: Early Viking 8th century CE
Y-DNA: I-Z73
mtDNA: U3b1b

Sample: VK579 / Oland 1099 1785/67 35
Location: Oland, Sweden
Age: Iron Age 200-400 CE
Y-DNA: N-L550
mtDNA: H1s

Sample: VK582 / SBM1028 ALKEN ENGE 2013, X2244
Location: Alken_Enge, Jutland, Denmark
Age: Iron Age 1st century CE
Y-DNA: I-L801
mtDNA: H6a1b3

Update History:

  • 9-17-2020 – updated 3 times, approximately one-third complete
  • 9-18-2020 – updated in afternoon with another 124 analyzed
  • 9-19-2020 – updated with 142 analyzed
  • 9-21-2020 – updates with 240 analyzed – only 60 to go!
  • 9-22-2020 – last update – A total of 285 entries analyzed and placed on the FTDNA tree where appropriate. 15 were too low quality or low coverage for a reliable haplogroup call, so they were excluded.

____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Y DNA Haplogroup P Gets a Brand-New Root – Plus Some Branches

With almost 35,000 branches comprised of 316,000 SNPs, branches on the Y DNA tree are split every day. In fact, roughly 1000 branches are being added to the Y DNA tree of mankind at Family Tree DNA each month. I wrote about how to navigate their public tree, here, and you can view the tree, here. You can also read about Y DNA terminology, here.

Splitting a deep, very old branch into subclades is unusual – and exciting. Finding a new root, taking the entire haplogroup back another notch in time is even more amazing, especially when that root is 46,000 years old.

Haplogroup P is the parent haplogroup of both Q and R.

This portion of the 2010 haplogroup poster provided to Family Tree DNA conference attendees shows the basic branching structure of haplogroup P, R and Q, with haplogroup P being defined at that time by several equivalent SNPs that had not yet been split into any other subgroups or branches of P. Notice that P295 is shown, but not F115 or PF5850 which would be discovered in years to come.

Haplogroup R, a subclade of P, is the most common haplogroup in Europe, with roughly half of European men falling on some branch of haplogroup R.

Map and haplogroup R distribution courtesy of FamilyTreeDNA

In Ireland, nearly all men fall into a subgroup of haplogroup R.

A lot of progress has been made in the past decade.

This week, FamilyTreeDNA identified a split in haplogroup P, upstream of haplogroups Q and R, establishing a new root above haplogroup P-P295.

The Previous 2020 Tree

This is a 2020 “before” picture of the tree as it pertains to haplogroup P. You can see P-P295 at the top as the root or beginning mutation that defined haplogroup P. That was, of course, before this new discovery.

click to enlarge

At Family Tree DNA, according to this tree where testers self-identify the location of their most distant known patrilineal ancestor, haplogroup P testers are found in multiple Asian locations. Some haplogroup P kits may have only purchased specific SNP tests, not the full Big Y and would actually be placed on downstream branches if they upgraded. Haplogroup P itself is quite rare and generally only found in Siberia, Southeast Asia, and diaspora regions.

Subgroups Q and R are found across Europe and Asia. Additionally, some subgroups of haplogroup Q migrated across the land bridge, Beringia, to populate the Americas.

You might be wondering – if there are only a few people who fall directly into haplogroup P, how was it split?

Great question.

How Was Haplogroup P Split?

Testing of ancient DNA has been a boon to science and genealogy, both, and one of my particular interests.

Recently, Goran Runfeldt who heads the R&D team at FamilyTreeDNA was reading the paper titled Ancient migrations in Southeast Asia and noticed that in the supplementary material, several genomic files from ancient samples were available to download. Of course, that was just the beginning, because the files had to be aligned and processed – then the accuracy verified – requiring input from other team members including Michael Sager who maintains the Y DNA haplotree.

Additionally, the paper’s authors sequenced the whole genomes of two present-day Jehai people from Northern Parak State, West Malaysia, a small group of traditional hunter-gatherers, many of whom still live in isolation. One of those samples was the individual whose Y DNA provided the new root SNP, P-PF5850, that is located above the previous root of haplogroup P, P-P295.

Until this sample was analyzed by Goran, Michael and team, three SNPs, PF5850, P295 and F115, were considered to be equivalent, because no tie-breaker had surfaced to indicate which SNPs occurred in what order. Now we know that PF5850 happened first and is the root of haplogroup P.

I asked Michael Sager, the phylogeneticist at FamilyTreeDNA, better-known as “Mr. Big Y,” due to his many-years-long Godfather relationship with the Y DNA tree, how he knew where to place PF5850, and how it became a new root.

Michael explained that we know that P-PF5850 is the new root because the three SNPs that indicated the previous root, P295, PF5850 and F115 are present in all previous samples, but mutations at both P295 and F115 are absent in the new sample, indicating that PF5850 preceded what is now the old P root.

The two SNPs, P295 and F115 occurred some time later.

This sample also included more than 300 additional unique mutations that may become branches in the future. As more people test and more ancient samples are found and sequenced, there’s lots of potential for further branching. Even with more than 50,000 NGS Big-Y DNA tests in the Family Tree DNA database, there’s still so much we don’t know, yet to be discovered.

Amazingly, mutation P-PF5850 occurred approximately 46,000 years ago meaning that this branch had remained hidden all this time. For all we know, he might be the only man left alive with this particular lineage of mankind, but it’s likely more will surface eventually.

click to enlarge

Michael Sager had previously analyzed samples from The population history of northeastern Siberia since the Pleistocene by Sikora et al. You’ll notice that additional branches of haplogroup P are reflected in ancient samples Yana1 and Yana2 which split P-M45, twice.

Branch Definitions

Today, haplogroup branches are defined by their SNP name, except for base and main branches such as P, P1, P2, etc. Haplogroup P is very old and you’ll find it referred to as simply P, P1 or P2 in most literature, not by SNP name. Goran labeled the old branch names beside the current SNP names, and provided a preliminary longhand letter+number branch name with the * for explanatory purposes.

The problem with the old letter+number system is that when new upstream branches are inserted, the current haplogroup “P” has to shift down and become something else. That’s problematic when reading papers. In order to understand which SNP the paper is actually referencing, you have to know what SNP was labeled as “P” at the time the paper was written.

For example, a new P was just defined, so P becomes P1, but the previous P1 has to become something else, resulting in a domino effect of renaming. While that’s not a significant issue with haplogroup P, because it has seldom changed, it’s a huge challenge with the 17,000+ haplogroup R branches. Hence, the transition several years ago to using SNP names such as P295 instead of the older letter+number designations such as P, which now needs to become something like P1.

Haplogroup Ages

Goran was kind enough to provide additional information as well, including the estimated “Time to Most Recent Common Ancestor,” or TMRCA, a feature currently in development for all haplogroups. You can see that P-PF5850 is estimated to be approximately 46,000 years old, “ca 46 kybp,” meaning “circa 46 thousand years before present.”

The founding ancestor of haplogroup Q lived approximately 31,000 years ago, and ancestral R lived about 28,000 years ago, someplace in Asia. Their common ancestor, P-P226, lived about 33,000 years ago.

How cool is this that you can peer back in time to view these ancient lineages – the story still told in our Y DNA today.

What About You?

If you’re a male, you can upgrade to or purchase a Big Y-700 to participate, here. In addition to discovering where you fall on the tree of mankind, you’ll discover who you match on your direct patrilineal side and where their ancestors are located in the world.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Search Techniques for Y and Mitochondrial DNA Test Candidates

I utilize DNA matches in various ways, some of which are a little unusual. In many cases, I mine autosomal DNA matches to search for people whose Y and mitochondrial DNA can provide descendants, including me and them, with additional insights into our common ancestors.

Y and mitochondrial DNA connects testers to their ancestors in ways that autosomal cannot. It’s a different type of DNA, not combined with the DNA of the other parent, so it’s not diluted and halved in each generation like autosomal DNA. Y and mitochondrial lines each descend from only one ancestral line, rich in historical information, with the ability to reach far back in time along with the ability to connect testers recently.

You First

The very first thing you can do to further your own research is to test yourself in three ways:

  • Autosomal DNA – Test at all 4 primary testing vendors, meaning FamilyTreeDNA, MyHeritage, Ancestry and 23andMe. The reason for testing at (or transferring to) multiple vendors is because they each have a unique focus and tools. Perhaps more importantly, they each have different people in their databases. Each testing company has benefits. FamilyTreeDNA has people who tested as long as 20 years ago and are no longer available for testing. MyHeritage has many European testers and you’ll find matches there that you won’t find elsewhere if your ancestors came from Europe. Ancestry has the largest database, but fewer advanced tools.
  • Full Sequence Mitochondrial DNA Available at FamilyTreeDNA, this test allows focus solely on your matrilineal line, meaning your mother’s mother’s mother’s line directly without confusion introduced by DNA from other lines.
  • Y DNA – For males only, also available at FamilyTreeDNA, provides focus on the direct patrilineal, or surname, line.

Obviously, if you haven’t upgraded your own Y and mitochondrial DNA tests to the highest level possible, the first thing you can do is to test or upgrade to the highest level where you receive the most refined amount of information.

(There’s a sale at FamilyTreeDNA right now, lasting until August 31, 2020, so it’s a great time to upgrade or order Y and mitochondrial. Check it out here.)

Different Kinds of DNA Serve Different Genealogical Purposes

Let’s look, briefly at how the various types of DNA tests benefit genealogy. Autosomal tests that you and family members can take will help you find other family members to test for specific Y and mitochondrial DNA lines.

Remember that you can test family members in addition to yourself, so if you’re a female, you may want to recruit your father or an uncle or brother to represent your patrilineal line DNA. If you’d like to read a brief article about the different types of DNA and their benefits, 4 Kinds of DNA for Genetic Genealogy is a good resource.

Y and Mito Pedigree.png

In this image, you can see that if you’re a male you can test for both your Y (blue-square) and mitochondrial DNA (red-circle) ancestral lines. If you’re a female, you can test only your mitochondrial DNA because females don’t have a Y chromosome. Both males and females, of course, can test (green) autosomal DNA which reveals a different type of connection to all of your ancestral lines, but with autosomal, you have to figure out which people match you on which lines.

Y and mitochondrial DNA provides you with a different type of information about laser-focused specific lines that you can’t obtain through autosomal testing, and reaches back in time far beyond the curtain when surnames were adopted.

personal pedigree

You personally can only test for the red-circle mitochondrial DNA line, and perhaps the blue-square Y DNA line if you’re a male. Unless you find family members to test for the Y and mitochondrial DNA of your ancestors, you’re leaving valuable information unresearched. That means all those colored boxes and squares that aren’t blue or red.

I’ve solved MANY brick walls using both Y and mitochondrial DNA, often in conjunction with autosomal.

Let’s take a look at each type of DNA testing a little more in-depth, so that you understand how each one works and why they are important to genealogy.

The Specifics

Y DNA – Y DNA descends through the direct male paternal line and is inherited by men only. You match against other Y DNA testers, hopefully finding surname links.

The Big Y test and upgrade at FamilyTreeDNA provides testers with all 111 traditional STR markers, plus another 589+ STRs available only in the Big Y test, plus a scan of the balance of the rest of the Y chromosome that is useful for genealogy. SNP results are increasingly being used for genealogy, in addition to STRs.

SNPs group men into genetic lineages and STRs help with defining and refining the closest generations when matching to each other. Often, the benefits of these two tests overlap, which is why I recommend that males test to the Big Y-700 level which provides 700+ STR markers plus all SNPs with mutations that define ancestral lineages.

Y DNA haplogroups, derived from SNPs, reveal the geographic part of the world where the lineage originated, such as Europe, the Americas, Asia and Africa, as well as a migration path across the continents based on where SNPs are and were historically found. Ancient DNA samples are being added to the database.

If you or a family member took an earlier Y DNA test, you can upgrade to the Big Y-700 today which provides you with matching for both the STR markers and separately, SNP markers, along with other genealogical tools.

You can order or upgrade your Y DNA here. Don’t forget family members accounts you may control. They may agree to have their kit upgraded too.

To upgrade, sign in to your account, and click on your desired upgrade level under Y DNA testing.

ymt y upgrade.png

Then click on upgrades.

ymt upgrade.png

I wrote about Y DNA in these recent articles:

I have more Y DNA articles planned for the future.

You can search for additional articles by going to the main page of this blog and enter “Y DNA” into the search box for additional articles already published.

Many features such as the matches maps, haplogroup origins and ancestral origins pages are the same for Y DNA results as mitochondrial DNA results. You can view mitochondrial articles here.

Mitochondrial DNA (mtDNA) – Mitochondrail DNA descends through the direct matrilineal line to both sexes of children. Everyone has mitochondrial DNA and it is inherited matrilineally by you from your mother, from her mother, from her mother, etc.

The FMS or full mitochondrial sequence DNA test tests the entire mitochondria that provides information about your direct matrilineal line. Family Tree DNA provides matching, which can sometimes lead to genealogical breakthroughs such as when I identified Lydia Brown, the mother of my Phoebe Crumley and then a couple years later, her mother, Phoebe Cole – via mitochondrial DNA. Those discoveries led us to her mother, Mary Mercy Kent, via genealogy records. All we needed was to punch our way through that initial brick wall – and mitochondrial DNA was our battering ram.

Additionally, you’ll receive a full haplogroup designation which allows you to look back in time before the advent of surnames and identifies the location where your ancestral line came from. For those seeking confirmation of Native American heritage, Y and mitochondrial DNA provides unquestionable proof and doesn’t wash out in time as autosomal DNA does.

Mitochondrial DNA includes haplogroups, matching and other genealogical tools.

You can order or upgrade you or a family member’s mitochondrial DNA here.

To upgrade, sign in to your account, and click on the desired upgrade level.

ymt mt upgrade

Then click on Upgrade if you’re upgrading or Add On if you’re ordering a new product for yourself.

ymt add ons upgrades.png

I wrote several mitochondrial DNA articles and compiled them into a summary article for your convenience.

Autosomal DNA – With autosomal DNA testing, you test once and there’s not an upgrade unless the vendor changes DNA testing platforms, which is rare. Each of the four vendors compares your DNA with all other people who’ve taken that test, or transferred from other companies. They match you with descendants from all of your ancestral lines. While the Y and mtDNA tests look back deeply in time as well as recently on one specific line, the autosomal tests are broad but not deep, spanning all ancestral lines, but limited to approximately 10 generations.

Each autosomal vendor has unique benefits and focus as well as shortcomings. I’ve listed the major points for each vendor relative to searching for Y and mitochondrial
DNA testing candidates. It’s important to understand the advantages of each vendor because it will help you understand the testers you are most likely to find in each database and may help focus your search.

FamilyTreeDNA’s Family Finder

  • Because FamilyTreeDNA archives customer’s DNA for 25 years, many people who tested Y or mitochondrial DNA 20 years ago and are now deceased upgraded to autosomal tests when they became available, or have been upgraded by family members since. These early testers often reach back another generation or so into the past to people born a century ago.
  • Advanced autosomal matching integrates with Y and mitochondrial DNA along with surname and other projects
  • Phased Family Matching provides the ability to link family members that match you to your tree which allows Family Tree DNA to group matches as paternal or maternal by utilizing matching segments to the same side of your family
  • Genetic Affairs, a third-party tool available for testers, builds common trees by reading the trees of your matches and comparing their trees with your own to identify common ancestors.
  • Genetic Affairs builds trees and pedigrees of your matches by searching for common ancestors in your MATCHES trees, even if you have no tree or don’t share those ancestors in your tree. This functionality includes Y and mitochondrial DNA if you have tested. This facilitates discovery of common ancestors of the people who you match, which may well lead you to ancestral discoveries as well.
  • Genetic Affairs offers clustering of your shared matches.
  • DNA file transfers are accepted from other vendors, free, with a $19 one time fee to unlock advanced tools.
  • Family Tree DNA has tested people worldwide, with a few location exceptions, since inception in the year 2000.
  • No direct triangulation, but Phased Family Matching provides maternal and paternal side triangulation when matches can be grouped into maternal and paternal sides.
  • Matches and segment match information are available for download.
  • The great thing about the advanced matching tool at Family Tree DNA is that it facilitates searching for people who match you on different kinds of tests, so it helps determine the potential closeness or distance of Y and mitochondrial relationships.

MyHeritage

Ancestry

  • Ancestry has the largest database, but did not begin testing until 2012 and did not test widely outside of the US/UK for some time. They now sell tests in 34 countries. Their testers are primarily focused in the US, Canada, England, Scotland, Ireland, and diaspora, with some overlap into Europe.
  • Ancestry offers ThruLines, a tool that connects testers whose DNA matches with common ancestors in their trees.
  • Ancestry does not provide a chromosome browser, a tool provided by the other three primary testing companies, nor do they provide triangulation or matching segment location information necessary to confirm that you match on the same segment with other people.
  • Ancestry has issued cease and desist orders to third party tools that perform functions such as clustering, autotrees, autopedigrees or downloading of matches. Ancestry does not provide these types of features for their users.
  • Ancestry does not accept transfers, so if you want to be in Ancestry’s database, you must test with Ancestry.
  • No Y or mitochondrial DNA testing available.
  • Match list is not available for download.

23andMe

  • The primary focus of 23andMe has always been health testing, so many people who test at 23andMe are not interested in genealogy.
  • 23andMe tests are sold in about 50 countries, but not worldwide.
  • 23andMe provides a chromosome browser, triangulation, segment information and a beta genetically constructed tree for close matches.
  • 23andMe does NOT support a genealogical tree either uploaded or created on their site, making tree comparisons impossible.
  • Genetic Affairs AutoCluster works at 23andMe, but AutoTree and AutoPedigree do not because 23andMe does not support trees.
  • 23andMe does make match files available for downloading.
  • No Y or mitochondrial DNA full testing or matching, but basic haplogroups are provided.
  • 23andMe caps matches at 2000, less any matches that have opted out of matching. My matches currently number 1770.
  • 23andMe does not accept transfers from other vendors, so if you want to be in their database, you must test with 23andMe.

Reaching Out to Find Testers

Unfortunately, we only carry the mitochondrial DNA of our mother and only men carry the Y DNA of their father. That means if we want to obtain that DNA information about our other family lines, we have to find people who descend appropriately from the ancestor in question and test that person.

I’ll share with you how I search for people who descend from each ancestor. After finding that person, I explain the situation, why the different kinds of tests are important, and offer a testing scholarship for the Y or mtDNA test at Family Tree DNA if they have not already taken that test. If they’ve tested their autosomal DNA elsewhere. I also explain that they can transfer their autosomal DNA file for free too and will receive new matches.

Here’s an article with links to upload/download instructions for each testing company. Feel free to share.

Each DNA testing company has different features, but you can use all of the companies to find people descended in the appropriate way from each ancestor. It’s easier if you know how to utilize each vendor’s tools to optimize your chances of success. I’m going to step you through the search process with hints and tips for each vendor.

Finding Y DNA and Mitochondrial DNA Candidates at FamilyTreeDNA

Because FamilyTreeDNA tests for both Y and mitochondrial DNA and has for 20 years, you stand a better chance of finding a candidate there who may have already tested, so that’s where I always begin.

Y DNA

Let’s say, for example, that I need to find a male descendant of my Ferverda line in order to ask them to test for Y DNA. The person can be descended from either a close relative, if I know of one, or a more distant relative that I don’t know, but need to find through searching other ways.

Search for Surnames and Projects at Family Tree DNA

First, search the FamilyTreeDNA website for your goal surname among existing testers, and then the appropriate surname project to see if your line has already tested.

ymt ferverda

On the main page, here, scroll down to until you see the prompt, above, and enter the surname. Be sure to consider alternate spellings too.

ymt ferverda search.png

In this case, I see that there is a Ferverda surname project with 18 people, and scrolling on down, that 4 people with this specific surname have tested.

ymt results.png

However, searching for an alternate spelling, the way it’s spelled in the Netherlands, I find that another 10 people have tested.

ymt ferwerda

Of course, some may be females, but they probably know males by that surname.

First, I’m going to check the Ferverda DNA project to see if a Ferverda male from my line has tested, and if so, to what level.

Click on the project link in the search results to see the DNA Project.

ymt admin.png

Note two things. First, the administrator’s name, as you may need this later. If you click on their name, their email address is displayed.

Second, click on DNA Results and select Y DNA if you’re presented with a choice. If the project has a public facing page, and most do, you’ll see something like the following information.

ymt project

Hey look, it’s my lucky day, given that both of these men descend from my ancestor. I happen to know that they have both taken the Big Y test, because I’m the project administrator, but you won’t know that. One way to get an idea is if they have less than the full 111 markers showing, they probably haven’t taken the Big Y, because a 111 upgrade is included in the Big Y test today.

You have three options at this point to contact one of these men:

  • See if the people are on your own autosomal DNA match list, or the match lists of kits from that family that you manage. If so, you can view their email address and contact them. If you haven’t yet tested autosomally, meaning the Family Finder test, at Family Tree DNA, you can transfer autosomal tests from elsewhere, for free, which means you will be viewing matches within hours or a couple days. Otherwise, you can order a Family Finder test, of course.
  • If the person with the Ferverda or Ferwerda surname is not on your Family Finder match list, reach out to the project administrator with a note to the person you want to contact and ask the administrator to forward your email to the project member.
  • If the administrator doesn’t answer, contact Family Tree DNA support and make the same request.

Checking Family Finder, one of those people is on my match list and I’m pretty sure it’s the right person, because when I click on his profile, not only does the haplogroup match the DNA project, but so does the ancestor.

ymt ferverda profile.png

Searching Family Finder

If there isn’t a DNA project match you can identify as your direct line ancestor, you can search your Family Finder matches for the surname to find a male with that surname. If your match has a tree, see if your ancestor or ancestral line is showing, then note whether they have taken a Y DNA test. They may have taken a Y test, but have not joined a project or not entered any “earliest known ancestor.” You can see which tests they’ve taken by looking at the little tabs above their profile on their tree, or on their profile card.

ymt ferverda tree

click to enlarge

Regardless, you’re now in touch with a potential contact.

Don’t dismiss females with that surname, or people who show that surname in their ancestral surname list. Women with the surname you’re looking for may have husbands, fathers, brothers or uncles who descend from the line you are seeking.

ymt search field.png

Utilize Genetic Affairs

My ace in the hole at FamilyTreeDNA is the Genetic Affairs AutoTree and AutoPedigree function.

Genetic Affairs is a third-party tool that you can use to assist with analysis of your matches at FamilyTreeDNA.

ymt genetic affairs

click to enlarge

At Genetic Affairs, selecting AutoTree generates trees where common ancestors of you and your matches, or your matches to each other, are displayed.

Your goal is to identify people descended from a common ancestor either directly paternally through all males for Y DNA or through all females to the current generation, which can be males, for mitochondrial DNA.

This article provides step-by-step instructions for the Genetic Affairs AutoTree and AutoPedigree functions.

Mitochondrial DNA

Mitochondrial DNA lineages are a bit more challenging because the surname changes every generation and DNA projects are unlikely to help.

The AutoTree/AutoPedigree report through Genetic Affairs serves the same purpose for mitochondrial DNA – building trees that intersect with a common ancestor. I generally drop the “minimum size of the largest DNA segment shared with the match” to 7 cM for this report. My goal running this report for this purpose isn’t to analyze autosomal DNA, but to find testing candidates based on how my matches descend from a specific ancestor, so I want to include as many matches as possible.

Family Finder Can Refine Y and mtDNA Information

In some cases, a Family Finder test can refine a potential relationship between two people who match on either Y DNA or mitochondrial. Additionally, you may want to encourage, or gift, specific matches with an upgrade to see if they continue to match you at higher testing levels.

Let’s say that two men match closely on a Y DNA test, but you’d like to know how far back the common ancestor lived.

ymt y matches.png

In this instance, you can see that the second match has taken a BIg Y and a Family Finder test, but the exact match (genetic distance of 0) has not. If the first individual cannot provide much genealogy, having them take a Family Finder test would help at least rule out a relationship through second cousins and would give you at least some idea how far back in time your common ancestor may have lived. If you do match on Family Finder, you receive an estimate of your relationship and can check the match level possibilities using the DNAPainter Shared cM Tool. If they upgrade to the Big Y-700 test, you may be able to differentiate your line from theirs, or confirm when and where a split occurred – or that there is no split.

This same autosomal testing scenario works for mitochondrial DNA.

For people who have taken both tests, Family Finder plus either Y or mitochondrial DNA, the Advanced Matching menu allows you to select combinations of tests and projects to query.

ymt advanced

click to enlarge

Finding Y and Mitochondrial DNA Candidates at MyHeritage

MyHeritage provides a wonderful tool called Theories of Family Relativity (TOFR) which finds common ancestors between you and your DNA matches, even if the ancestor is not in both trees, so long as a path exists between the two testers’ trees using other trees or research documents, such as census records. Of course, you’ll need to verify accuracy.

ymt tofr.png

At MyHeritage, select DNA Matches, then “Has Theory of Family Relativity.”

ymt mh ferverda

click to enlarge

You can see that I have 65 matches with a Theory of Family Relativity. Additionally, I can then search by surname.

ymt mh ferverda tree.png

click to enlarge

If I am looking for a Ferverda Y DNA candidate, I’ve found one thanks to this TOFR.

If you don’t find a tree where your match descends from your ancestor in the desired way, you can also widen the search by de-selecting Theories of Family Relativity and instead selecting SmartMatchs or shared surname combined with the name of your ancestor. There are many search and filter combinations available.

Let’s look at a mitochondrial DNA example where I’m searching for a descendant of Elizabeth Speaks who married Samuel Clarkson/Claxton.

ymt smartmatches

click to enlarge

In this case, I have one SmartMatch, which means that someone by the name of Elizabeth Speaks is found in my matches tree. I need to look to see if it’s the RIGHT Elizabeth Speaks and if my match descends through all females to the current generation. If so, I’ve found my mitochondrial DNA candidate and I can leave them a message.

You can also view SmartMatches (without a DNA match) from your own tree.

I can go to that person in my tree, click on their profile, and see how many SmartMatches I have. Clicking on 13 SmartMatches allows me to view those matches and I can click through to the connected trees.

ymt mt speaks.png

I can also click on “research this person” to discover more.

If you’re still not successful, don’t give up quite yet, because you can search in the records for trees that shows the person whom you seek. A SmartMatch is only created if the system thinks it’s the same person in both trees. Computers are far from perfect.

ymt mh trees

click to enlarge

Narrow the search as much as possible to make it easier to find the right individual, and then view the trees for descent in the proper manner.

Another wonderful tool at MyHeritage is the Genetic Affairs AutoCluster tool, built-in for MyHeritage users.

ymt mh cluster.png

The above cluster shows that one person carries the surname of Elizabeth’s husband. Viewing the accompanying spreadsheet for the AutoCluster run reveals that indeed, I’ve already identified a couple of matches as descendants of the desired ancestral couple. The spreadsheet shows links to their trees, my notes and more.

ymt cluster ss

Clusters show you where to look. Without the cluster, I had only identified two people as descendants of this ancestral couple. I found several more candidates to evaluate and two mitochondrial candidates are found in this cluster.

Finding Y and Mitochondrial DNA Candidates at 23andMe

23andMe is a little more tricky because they don’t support either uploaded or created user trees which makes finding descendants of a particular ancestor quite challenging.

However, 23andMe attempts to create a tree of your closer relatives genetically. which you can find under “DNA Relatives,” under the Ancestry tab, then “Family Tree” at the top.

I’ve added the names of my ancestors when I can figure out who the match is. Please note that this “created tree” is seldom exactly accurate, but there are often enough hints that you’ll be able to piece together at least some of the rest.

Here’s part of my “created” tree at 23andMe. I’m at far right.

ymt23 tree.png

click to enlarge

If you’re a genealogist, your eyes are going to glaze over about now, because the “people” aren’t in the correct locations – with maternal and paternal sides of the tree swapped. Also, please note, the locations in which they place people are estimates AND 23andMe does NOT take into account or provide for half-relationships.

That said, you can still obtain candidates for Y and mitochondrial DNA testing.

In this case, I’m searching for a mitochondrial DNA candidate for Evaline Miller, my grandfather’s mother or a Y DNA candidate for the Ferverda line.

I can tell by the surname of the male match, Ferverda, that he probably descends through a son, making him a Y DNA candidate.

Both Cheryl and Laura are possible mitochondrial DNA candidates for Evaline Miller, based on this tree, depending of course on how they actually do descend.

I can contact all of my matches, but in the event that they don’t answer, I’m not entirely out of luck. If I can determine EXACTLY how the match descends, and they descend appropriately for mitochondrial DNA, I can view the match to see at least a partial haplogroup. Since 23andMe only uses relatively close matches when constructing your tree, I’m relatively likely to recognize the names of the testers and may have them in my genealogy program.

By clicking on the Ferverda male, I can see that his Y haplogroup is I-Z58. That’s not nearly as refined as the Y DNA information at Family Tree DNA, but it’s something if I have nothing else and he doesn’t answer my query that would include the offer of a Y DNA test at Family Tree DNA.

ymt 23 hap

You can search at 23andMe by surname, but unless your match has entered their ancestral surnames and you recognize surnames that fit together, without a tree, unless your match answers your query, it’s very difficult to determine how you connect.

ymt 23 search.png

You can also view “Relatives in Common,” hoping to recognize someone you know as a common match.

ymt relatives in common

Please note that 23andMe does allow testers to enter a link to a tree, but few do.

ymt tree link.png

It’s worth checking, and be sure to enter your own tree link location.

Finding Y and Mitochondrial DNA Candidates at Ancestry

Ancestry’s ThruLines provides an excellent tool to find both Y and mitochondrial DNA participants.

Ancestry organizes their ThruLines by ancestor.

ymt thrulines

click to enlarge

Select your desired Ancestor, someone whose DNA you seek. Clearly, Y DNA candidates are very easy because you simply choose any male ancestor in the correct line with the surname and look for a male match with the appropriate surname.

In this case, I’m selecting Martha Ruth Dodson, because I need her mitochondrial DNA.

ymt dodson.png

By clicking on her “card” I then see my matches assigned to her ThruLine.

Ymt ancestry thruline

Obviously, for mitochondrial DNA, I’m looking for someone descended through all females, so Martha’s daughter, Elizabeth Estes’s son Robert won’t work, but her daughter, Louisa Vannoy, at left is the perfect candidate. Thankfully, my cousin whom I match, at bottom left is descended through all females to the current generation, which can be male or female, so is a mitochondrial DNA candidate.

Finding Y and Mitochondrial DNA Candidates in Trees in General

I’ve utilized the combination of trees and DNA matches at FamilyTreeDNA through Genetic Affairs, Ancestry and MyHeritage, but you can also simply search for people who descend from the same ancestor based on their tree alone at the vendors who support trees as part of genealogical records. This includes both Ancestry and MyHeritage but also sites like Geneanet which is becoming increasingly popular, especially in Europe. (I have not worked extensively with Geneanet yet but plan to take it for a test drive soon.)

My reason for utilizing DNA matches+trees first is that the person has already been introduced to the concept that DNA can help with genealogy, and has obviously embraced DNA testing at least once. Not only that, with the assist of a Theory of Family Relativity, ThruLine or genetic Affairs automation tools, it’s much easier to find appropriate candidates.

Finding Y and Mitochondrial DNA Candidates at WikiTree

If you reach beyond DNA testing companies, WikiTree provides a valuable feature which allows people to specify that they descend from a particular ancestor, and if they have DNA tested, how they descend – including Y DNA, mitochondrial DNA and autosomal.

Here’s an example on the profile of John Y. Estes at WikiTree, one of my Estes ancestors.

ymt wiki.png

If someone descends appropriately for either Y or mitochondrial DNA line, and has taken that test, their information is listed.

In this case, there are two Y DNA testers and two autosomal, but no mitochondrial DNA which would have descended from John’s mother, of course.

You can click on the little green arrow icon to see how any DNA tested person descends from the ancestor whose profile you are accessing.

ymt wiki compare

Of course, the same surname for males is a good indication that the man in question is descended from that paternal line, but check to be sure, because some males took their mother’s surname for various reasons.

Here’s my line-of-descent from John Y. Estes. I can click on anyone else whose DNA information is listed as well to see how they descend from John. If they descend from John through all females, then they obviously descend from his wife though all females too which means they are a mitochondrial DNA candidate for her.

ymt wiki relationship.png

click to enlarge

Clicking on autosomal testers may reveal someone appropriately descended from the ancestor in question.

You can then click on any ancestor shown to view their profile, and any DNA tested descendants.

By clicking on name of the descendant whose DNA test you are interested in, you’ll be able to view their profile. Look for the Collaboration section where you can send them a private message that will be delivered by email from WikiTree.

ymt collaborate

Finding Y and Mitochondrial DNA Candidates at GedMatch

One final avenue to find Y and mitochondrial DNA candidates is through GedMatch, It’s probably the least useful option, though, because the major vendors all have some sort of tree function, except for 23andMe, and for some reason, many people have not uploaded GEDCOM files (trees) to GEDmatch.

Therefore, if you can find someone on GedMatch that tested elsewhere perhaps, such as LivingDNA who also provides a base haplogroup, or 23andMe, and they uploaded a GEDCOM file (tree) to GedMatch, you can utilize the GEDmatch “Find common ancestors” automated tree-matching functionality.

gedmatch mrca matches

click to enlarge

GEDmatch produces a list of your matches with common ancestors in their trees, allowing you to select the appropriate ancestor or lineage.

I wrote step-by-step instructions in the article, GEDmatch Introduces Automated Tree Matching.

Additionally, GEDmatch includes the Genetic Affairs AutoCluster tool in their Tier1 subscription offering,

ymt gedmatch.png

Gedmatch users who know their Y and mitochondrial haplogroup can enter that information in their profile and it will be reflected on the autosomal match list.

ymt gedmatch hap

Summary Chart

In summary, each testing vendor has a different focus and unique tools that can be used to search for Y and mitochondrial DNA candidates. Additionally, two other resources, WikiTree and GEDmatch, although not DNA testing vendors, can lead to discovering Y and mtDNA candidates as well.

I’ve created a quick-reference chart.

  Family Tree DNA MyHeritage Ancestry 23andMe Wikitree GEDmatch
Y DNA Test Yes No No No, partial haplogroup provided No test, listed by ancestor No, user entered
mtDNA Test Yes No No No, partial haplogroup provided No test, listed by ancestor No, user entered
DNA Projects Yes No No No Some Some
Strengths other than mentioned categories 20 year worldwide customer base, phased family matching European focus, SmartMatches, wide variety of filters Largest autosomal database Genetic tree beta DNA by ancestor May include users not found elsewhere who tested outside the major companies
Drawbacks No direct triangulation or tree matching No Genetic Affairs AutoTree or AutoPedigree Can’t download matches, no triangulation, clusters, AutoTree, or AutoPedigree No trees, 2000 match limit “One tree” may be incorrect Few trees, no AutoTree or AutoPedigree
Clustering Genetic Affairs Included in advanced tools No, prohibited Genetic Affairs N/A Included in Tier1
Genetic Affairs AutoTree & AutoPedigree Yes No No No, no tree support N/A No
Tree matching between users No, through Genetic Affairs Theories of Family Relativity ThruLines No Not directly MRCA common ancestors in Tier1

Now it’s your turn. Which Y and mitochondrial DNA lines can you find today?

Happy Hunting!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Concepts: Inheritance

Inheritance.

What is it?

How does it work?

I’m not talking about possessions – but about the DNA that you receive from your parents, and their parents.

The reason that genetic genealogy works is because of inheritance. You inherit DNA from your parents in a known and predictable fashion.

Fortunately, we have more than one kind of DNA to use for genealogy.

Types of DNA

Females have 3 types of DNA and males have 4. These different types of DNA are inherited in various ways and serve different genealogical purposes.

Males Females
Y DNA Yes No
Mitochondrial DNA Yes Yes
Autosomal DNA Yes Yes
X Chromosome Yes, their mother’s only Yes, from both parents

Different Inheritance Paths

Different types of DNA are inherited from different ancestors, down different ancestral paths.

Inheritance Paths

The inheritance path for Y DNA is father to son and is inherited by the brother, in this example, from his direct male ancestors shown by the blue arrow. The sister does not have a Y chromosome.

The inheritance path for the red mitochondrial DNA for both the brother and sister is from the direct matrilineal ancestors, only, shown by the red arrow.

Autosomal DNA is inherited from all ancestral lines on both the father’s and mother’s side of your tree, as illustrated by the broken green arrow.

The X chromosome has a slightly different inheritance path, depending on whether you are a male or female.

Let’s take a look at each type of inheritance, how it works, along with when and where it’s useful for genealogy.

Autosomal DNA

Autosomal DNA testing is the most common. It’s the DNA that you inherit from both of your parents through all ancestral lines back in time several generations. Autosomal DNA results in matches at the major testing companies such as FamilyTreeDNA, MyHeritage, Ancestry, and 23andMe where testers view trees or other hints, hoping to determine a common ancestor.

How does autosomal DNA work?

22 autosomes

Every person has two each of 22 chromosomes, shown above, meaning one copy is contributed by your mother and one copy by your father. Paired together, they form the two-sided shape we are familiar with.

For each pair of chromosomes, you receive one from your father, shown with a blue arrow under chromosome 1, and one from your mother, shown in red. In you, these are randomly combined, so you can’t readily tell which piece comes from which parent. Therein lies the challenge for genealogy.

This inheritance pattern is the same for all chromosomes, except for the 23rd pair of chromosomes, at bottom right, which determined the sex of the child.

The 23rd chromosome pair is inherited differently for males and females. One copy is the Y chromosome, shown in blue, and one copy is the X, shown in red. If you receive a Y chromosome from your father, you’re a male. If you receive an X from your father, you’re a female.

Autosomal Inheritance

First, let’s talk about how chromosomes 1-22 are inherited, omitting chromosome 23, beginning with grandparents.

Inheritance son daughter

Every person inherits precisely half of each of their parents’ autosomal DNA. For example, you will receive one copy of your mother’s chromosome 1. Your mother’s chromosome 1 is a combination of her mother’s and father’s chromosome 1. Therefore, you’ll receive ABOUT 25% of each of your grandparents’ chromosome 1.

Inheritance son daughter difference

In reality, you will probably receive a different amount of your grandparent’s DNA, not exactly 25%, because your mother or father will probably contribute slightly more (or less) of the DNA of one of their parents than the other to their offspring.

Which pieces of DNA you inherit from your parents is random, and we don’t know how the human body selects which portions are and are not inherited, other than we know that large pieces are inherited together.

Therefore, the son and daughter won’t inherit the exact same segments of the grandparents’ DNA. They will likely share some of the same segments, but not all the same segments.

Inheritance maternal autosomalYou’ll notice that each parent carries more of each color DNA than they pass on to their own children, so different children receive different pieces of their parents’ DNA, and varying percentages of their grandparents’ DNA.

I wrote about a 4 Generation Inheritance Study, here.

Perspective

Keep in mind that you will only inherit half of the DNA that each of your parents carries.

Looking at a chromosome browser, you match your parents on all of YOUR chromosomes.

Inheritance parental autosomal

For example, this is me compared to my father. I match my father on either his mother’s side, or his father’s side, on every single location on MY chromosomes. But I don’t match ALL of my father’s DNA, because I only received half of what he has.

From your parents’ perspective, you only have half of their DNA.

Let’s look at an illustration.

Inheritance mom dad

Here is an example of one of your father’s pairs of chromosomes 1-22. It doesn’t matter which chromosome, the concepts are the same.

He inherited the blue chromosome from his father and the pink chromosome from his mother.

Your father contributed half of his DNA to you, but that half is comprised of part of his father’s chromosome, and part of his mother’s chromosome, randomly selected in chunks referred to as segments.

Inheritance mom dad segments

Your father’s chromosomes are shown in the upper portion of the graphic, and your chromosome that you inherited from you father is shown below.

On your copy of your father’s chromosome, I’ve darkened the dark blue and dark pink segments that you inherited from him. You did not receive the light blue and light pink segments. Those segments of DNA are lost to your line, but one of your siblings might have inherited some of those pieces.

Inheritance mom dad both segments

Now, I’ve added the DNA that you inherited from your Mom into the mixture. You can see that you inherited the dark green from your Mom’s father and the dark peach from your Mom’s mother.

Inheritance grandparents dna

These colored segments reflect the DNA that you inherited from your 4 grandparents on this chromosome.

I often see questions from people wondering how they match someone from their mother’s side and someone else from their father’s side – on the same segment.

Understanding that you have a copy of the same chromosome from your mother and one from your father clearly shows how this happens.

Inheritance match 1 2

You carry a chromosome from each parent, so you will match different people on the same segment. One match is to the chromosome copy from Mom, and one match is to Dad’s DNA.

Inheritance 4 gen

Here is the full 4 generation inheritance showing Match 1 matching a segment from your Dad’s father and Match 2 matching a segment from your Mom’s father.

Your Parents Will Have More Matches Than You Do

From your parents’ perspective, you will only match (roughly) half of the DNA with other people that they will match. On your Dad’s side, on segment 1, you won’t match anyone pink because you didn’t inherit your paternal grandmother’s copy of segment 1, nor did you inherit your maternal grandmother’s segment 1 either. However, your parents will each have matches on those segments of DNA that you didn’t inherit from them.

From your perspective, one or the other of your parents will match ALL of the people you match – just like we see in Match 1 and Match 2.

Matching you plus either of your parents, on the same segment, is exactly how we determine whether a match is valid, meaning identical by descent, or invalid, meaning identical by chance. I wrote about that in the article, Concepts: Identical by…Descent, State, Population and Chance.

Inheritance on chromosomes 1-22 works in this fashion. So does the X chromosome, fundamentally, but the X chromosome has a unique inheritance pattern.

X Chromosome

The X chromosome is inherited differently for males as compared to females. This is because the 23rd pair of chromosomes determines a child’s sex.

If the child is a female, the child inherits an X from both parents. Inheritance works the same way as chromosomes 1-22, conceptually, but the inheritance path on her father’s side is different.

If the child is a male, the father contributes a Y chromosome, but no X, so the only X chromosome a male has is his mother’s X chromosome.

Males inherit X chromosomes differently than females, so a valid X match can only descend from certain ancestors on your tree.

inheritance x fan

This is my fan chart showing the X chromosome inheritance path, generated by using Charting Companion. My father’s paternal side of his chart is entirely blank – because he only received his X chromosome from his mother.

You’ll notice that the X chromosome can only descend from any male though his mother – the effect being a sort of checkerboard inheritance pattern. Only the pink and blue people potentially contributed all or portions of X chromosomes to me.

This can actually be very useful for genealogy, because several potential ancestors are immediately eliminated. I cannot have any X chromosome segment from the white boxes with no color.

The X Chromsome in Action

Here’s an X example of how inheritance works.

Inheritance X

The son inherits his entire X chromosome from his mother. She may give him all of her father’s or mother’s X, or parts of both. It’s not uncommon to find an entire X chromosome inherited. The son inherits no X from his father, because he inherits the Y chromosome instead.

Inheritance X daughter

The daughter inherits her father’s X chromosome, which is the identical X chromosome that her father inherited from his mother. The father doesn’t have any other X to contribute to his daughter, so like her father, she inherits no portion of an X chromosome from her paternal grandfather.

The daughter also received segments of her mother’s X that her mother inherited maternally and paternally. As with the son, the daughter can receive an entire X chromosome from either her maternal grandmother or maternal grandfather.

This next illustration ONLY pertains to chromosome 23, the X and Y chromosomes.

Inheritance x y

You can see in this combined graphic that the Y is only inherited by sons from one direct line, and the father’s X is only inherited by his daughter.

X chromosome results are included with autosomal results at both Family Tree DNA and 23andMe, but are not provided at MyHeritage. Ancestry, unfortunately, does not provide segment information of any kind, for the X or chromosomes 1-22. You can, however, transfer the DNA files to Family Tree DNA where you can view your X matches.

Note that X matches need to be larger than regular autosomal matches to be equally as useful due to lower SNP density. I use 10-15 cM as a minimum threshold for consideration, equivalent to about 7 cM for autosomal matches. In other words, roughly double the rule of thumb for segment size matching validity.

Autosomal Education

My blog is full of autosomal educational articles and is fully keyword searchable, but here are two introductory articles that include information from the four major vendors:

When to Purchase Autosomal DNA Tests

Literally, anytime you want to work on genealogy to connect with cousins, prove ancestors or break through brick walls.

  • Purchase tests for yourself and your siblings if both parents aren’t living
  • Purchase tests for both parents
  • Purchase tests for all grandparents
  • Purchase tests for siblings of your parents or your grandparents – they have DNA your parents (and you) didn’t inherit
  • Test all older generation family members
  • If the family member is deceased, test their offspring
  • Purchase tests for estimates of your ethnicity or ancestral origins

Y DNA

Y DNA is only inherited by males from males. The Y chromosome is what makes a male, male. Men inherit the Y chromosome intact from their father, with no contribution from the mother or any female, which is why men’s Y DNA matches that of their father and is not diluted in each generation.

Inheritance y mtdna

If there are no adoptions in the line, known or otherwise, the Y DNA will match men from the same Y DNA line with only small differences for many generations. Eventually, small changes known as mutations accrue. After many accumulated mutations taking several hundred years, men no longer match on special markers called Short Tandem Repeats (STR). STR markers generally match within the past 500-800 years, but further back in time, they accrue too many mutations to be considered a genealogical-era match.

Family Tree DNA sells this test in 67 and 111 marker panels, along with a product called the Big Y-700.

The Big Y-700 is the best-of-class of Y DNA tests and includes at least 700 STR markers along with SNPs which are also useful genealogically plus reach further back in time to create a more complete picture.

The Big Y-700 test scans the entire useful portion of the Y chromosome, about 15 million base pairs, as compared to 67 or 111 STR locations.

67 and 111 Marker Panel Customers Receive:

  • STR marker matches
  • Haplogroup estimate
  • Ancestral Origins
  • Matches Map showing locations of the earliest known ancestors of matches
  • Haplogroup Origins
  • Migration Maps
  • STR marker results
  • Haplotree and SNPs
  • SNP map

Y, mitochondrial and autosomal DNA customers all receive options for Advanced Matching.

Big Y-700 customers receive, in addition to the above:

  • All of the SNP markers in the known phylotree shown publicly, here
  • A refined, definitive haplogroup
  • Their place on the Block Tree, along with their matches
  • New or unknown private SNPs that might lead to a new haplogroup, or genetic clan, assignment
  • 700+ STR markers
  • Matching on both the STR markers and SNP markers, separately

Y DNA Education

I wrote several articles about understanding and using Y DNA:

When to Purchase Y DNA Tests

The Y DNA test is for males who wish to learn more about their paternal line and match against other men to determine or verify their genealogical lineage.

Women cannot test directly, but they can purchase the Y DNA test for men such as fathers, brothers, and uncles.

If you are purchasing for someone else, I recommend purchasing the Big Y-700 initially.

Why purchase the Big Y-700, when you can purchase a lower level test for less money? Because if you ever want to upgrade, and you likely will, you have to contact the tester and obtain their permission to upgrade their test. They may be ill, disinterested, or deceased, and you may not be able to upgrade their test at that time, so strike while the iron is hot.

The Big Y-700 provides testers, by far, the most Y DNA data to work (and fish) with.

Mitochondrial DNA

Inheritance mito

Mitochondrial DNA is passed from mothers to both sexes of their children, but only females pass it on.

In your tree, you and your siblings all inherit your mother’s mitochondrial DNA. She inherited it from her mother, and your grandmother from her mother, and so forth.

Mitochondrial DNA testers at FamilyTreeDNA receive:

  • A definitive haplogroup, thought of as a genetic clan
  • Matching
  • Matches Map showing locations of the earliest know ancestors of matches
  • Personalized mtDNA Journey video
  • Mutations
  • Haplogroup origins
  • Ancestral origins
  • Migration maps
  • Advanced matching

Of course, Y, mitochondrial and autosomal DNA testers can join various projects.

Mitochondrial DNA Education

I created a Mitochondrial DNA page with a comprehensive list of educational articles and resources.

When to Purchase Mitochondrial DNA Tests

Mitochondrial DNA can be valuable in terms of matching as well as breaking down brick walls for women ancestors with no surnames. You can also use targeted testing to prove, or disprove, relationship theories.

Furthermore, your mitochondrial DNA haplogroup, like Y DNA haplogroups, provides information about where your ancestors came from by identifying the part of the world where they have the most matches.

You’ll want to purchase the mtFull sequence test provided by Family Tree DNA. Earlier tests, such as the mtPlus, can be upgraded. The full sequence test tests all 16,569 locations on the mitochondria and provides testers with the highest level matching as well as their most refined haplogroup.

The full sequence test is only sold by Family Tree DNA and provides matching along with various tools. You’ll also be contributing to science by building the mitochondrial haplotree of womankind through the Million Mito Project.

Combined Resources for Genealogists

You may need to reach out to family members to obtain Y and mitochondrial DNA for your various genealogical lines.

For example, the daughter in the tree below, a genealogist, can personally take an autosomal test along with a mitochondrial test for her matrilineal line, but she cannot test for Y DNA, nor can she obtain her paternal grandmother’s mitochondrial DNA directly by testing herself.

Hearts represent mitochondrial DNA, and stars, Y DNA.

Inheritance combined

However, our genealogist’s brother, father or grandfather can test for her father’s (blue star) Y DNA.

Her father or any of his siblings can test for her paternal grandmother’s (hot pink heart) mitochondrial DNA, which provides information not available from any other tester in this tree, except for the paternal grandmother herself.

Our genealogist’s paternal grandfather, and his siblings, can test for his mother’s (yellow heart) mitochondrial DNA.

Our genealogist’s maternal grandfather can test for his (green star) Y DNA and (red heart) mitochondrial DNA.

And of course, it goes without saying that every single generation upstream of the daughter, our genealogist, should all take autosomal DNA tests.

So, with several candidates, who can and should test for what?

Person Y DNA Mitochondrial Autosomal
Daughter No Y – can’t test Yes, her pink mother’s Yes – Test
Son Yes – blue Y Yes, his pink mother’s Yes – Test
Father Yes – blue Y Yes – his magenta mother’s Yes – Test
Paternal Grandfather Yes – blue Y – Best to Test Yes, his yellow mother’s – Test Yes – Test
Mother No Y – can’t test Yes, her pink mother’s Yes – Test
Maternal Grandmother No Y – can’t test Yes, her pink mother’s – Best to Test Yes – Test
Maternal Grandfather Yes – green Y – Test Yes, his red mother’s – Test Yes – Test

The best person/people to test for each of the various lines and types of DNA is shown bolded above…assuming that all people are living. Of course, if they aren’t, then test anyone else in the tree who carries that particular DNA – and don’t forget to consider aunts and uncles, or their children, as candidates.

If one person takes the Y and/or mitochondrial DNA test to represent a specific line, you don’t need another person to take the same test for that line. The only possible exception would be to confirm a specific Y DNA result matches a lineage as expected.

Looking at our three-generation example, you’ll be able to obtain a total of two Y DNA lines, three mitochondrial DNA lines, and 8 autosomal results, helping you to understand and piece together your family line.

You might ask, given that the parents and grandparents have all autosomally tested in this example, if our genealogist really needs to test her brother, and the answer is probably not – at least not today.

However, in cases like this, I do test the sibling, simply because I can learn and it may encourage their interest or preserve their DNA for their children who might someday be interested. We also don’t know what kind of advances the future holds.

If the parents aren’t both available, then you’ll want to test as many of your (and their) siblings as possible to attempt to recover as much of the parents’ DNA, (and matches) as possible.

Your family members’ DNA is just as valuable to your research as your own.

Increase Your Odds

Don’t let any of your inherited DNA go unused.

You can increase your odds of having autosomal matches by making sure you are in all 4 major vendor databases.

Both FamilyTreeDNA and MyHeritage accept transfers from 23andMe and Ancestry, who don’t accept transfers. Transferring and matching is free, and their unlock fees, $19 at FamilyTreeDNA, and $29 at MyHeritage, respectively, to unlock their advanced tools are both less expensive than retesting.

You’ll find easy-to-follow step-by-step transfer instructions to and from the vendors in the article DNA File Upload-Download and Transfer Instructions to and from DNA Testing Companies.

Order

You can order any of the tests mentioned above by clicking on these links:

Autosomal:

Transfers

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Y DNA: Step-by-Step Big Y Analysis

Many males take the Big Y-700 test offered by FamilyTreeDNA, so named because testers receive the most granular haplogroup SNP results in addition to 700+ included STR marker results. If you’re not familiar with those terms, you might enjoy the article, STRs vs SNPs, Multiple DNA Personalities.

The Big Y test gives testers the best of both, along with contributing to the building of the Y phylotree. You can read about the additions to the Y tree via the Big Y, plus how it helped my own Estes project, here.

Some men order this test of their own volition, some at the request of a family member, and some in response to project administrators who are studying a specific topic – like a particular surname.

The Big Y-700 test is the most complete Y DNA test offered, testing millions of locations on the Y chromosome to reveal mutations, some unique and never before discovered, many of which are useful to genealogists. The Big Y-700 includes the traditional Y DNA STR marker testing along with SNP results that define haplogroups. Translated, both types of test results are compared to other men for genealogy, which is the primary goal of DNA testing.

Being a female, I often recruit males in my family surname lines and sponsor testing. My McNiel line, historic haplogroup R-M222, has been particularly frustrating both genealogically as well as genetically after hitting a brick wall in the 1700s. My McNeill cousin agreed to take a Big Y test, and this analysis walks through the process of understanding what those results are revealing.

After my McNeill cousin’s Big Y results came back from the lab, I spent a significant amount of time turning over every leaf to extract as much information as possible, both from the Big Y-700 DNA test itself and as part of a broader set of intertwined genetic information and genealogical evidence.

I invite you along on this journey as I explain the questions we hoped to answer and then evaluate Big Y DNA results along with other information to shed light on those quandaries.

I will warn you, this article is long because it’s a step-by-step instruction manual for you to follow when interpreting your own Big Y results. I’d suggest you simply read this article the first time to get a feel for the landscape, before working through the process with your own results. There’s so much available that most people leave laying on the table because they don’t understand how to extract the full potential of these test results.

If you’d like to read more about the Big Y-700 test, the FamilyTreeDNA white paper is here, and I wrote about the Big Y-700 when it was introduced, here.

You can read an overview of Y DNA, here, and Y DNA: The Dictionary of DNA, here.

Ok, get yourself a cuppa joe, settle in, and let’s go!

George and Thomas McNiel – Who Were They?

George and Thomas McNiel appear together in Spotsylvania County, Virginia records. Y DNA results, in combination with early records, suggest that these two men were brothers.

I wrote about discovering that Thomas McNeil’s descendant had taken a Y DNA test and matched George’s descendants, here, and about my ancestor George McNiel, here.

McNiel family history in Wilkes County, NC, recorded in a letter written in 1898 by George McNiel’s grandson tells us that George McNiel, born about 1720, came from Scotland with his two brothers, John and Thomas. Elsewhere, it was reported that the McNiel brothers sailed from Glasgow, Scotland and that George had been educated at the University of Edinburgh for the Presbyterian ministry but had a change of religious conviction during the voyage. As a result, a theological tiff developed that split the brothers.

George, eventually, if not immediately, became a Baptist preacher. His origins remain uncertain.

The brothers reportedly arrived about 1750 in Maryland, although I have no confirmation. By 1754, Thomas McNeil appeared in the Spotsylvania County, VA records with a male being apprenticed to him as a tailor. In 1757, in Spotsylvania County, the first record of George McNeil showed James Pey being apprenticed to learn the occupation of tailor.

If George and Thomas were indeed tailors, that’s not generally a country occupation and would imply that they both apprenticed as such when they were growing up, wherever that was.

Thomas McNeil is recorded in one Spotsylvania deed as being from King and Queen County, VA. If this is the case, and George and Thomas McNiel lived in King and Queen, at least for a time, this would explain the lack of early records, as King and Queen is a thrice-burned county. If there was a third brother, John, I find no record of him.

My now-deceased cousin, George McNiel, initially tested for the McNiel Y DNA and also functioned for decades as the family historian. George, along with his wife, inventoried the many cemeteries of Wilkes County, NC.

George believed through oral history that the family descended from the McNiel’s of Barra.

McNiel Big Y Kisumul

George had this lovely framed print of Kisimul Castle, seat of the McNiel Clan on the Isle of Barra, proudly displayed on his wall.

That myth was dispelled with the initial DNA testing when our line did not match the Barra line, as can be seen in the MacNeil DNA project, much to George’s disappointment. As George himself said, the McNiel history is both mysterious and contradictory. Amen to that, George!

McNiel Big Y Niall 9 Hostages

However, in place of that history, we were instead awarded the Niall of the 9 Hostages badge, created many years ago based on a 12 marker STR result profile. Additionally, the McNiel DNA was assigned to haplogroup R-M222. Of course, today’s that’s a far upstream haplogroup, but 15+ years ago, we had only a fraction of the testing or knowledge that we do today.

The name McNeil, McNiel, or however you spell it, resembles Niall, so on the surface, this made at least some sense. George was encouraged by the new information, even though he still grieved the loss of Kisimul Castle.

Of course, this also caused us to wonder about the story stating our line had originated in Scotland because Niall of the 9 Hostages lived in Ireland.

Niall of the 9 Hostages

Niall of the 9 Hostages was reportedly a High King of Ireland sometime between the 6th and 10th centuries. However, actual historical records place him living someplace in the mid-late 300s to early 400s, with his death reported in different sources as occurring before 382 and alternatively about 411. The Annals of the Four Masters dates his reign to 379-405, and Foras Feasa ar Eirinn says from 368-395. Activities of his sons are reported between 379 and 405.

In other words, Niall lived in Ireland about 1500-1600 years ago, give or take.

Migration

Generally, migration was primarily from Scotland to Ireland, not the reverse, at least as far as we know in recorded history. Many Scottish families settled in the Ulster Plantation beginning in 1606 in what is now Northern Ireland. The Scots-Irish immigration to the states had begun by 1718. Many Protestant Scottish families immigrated from Ireland carrying the traditional “Mc” names and Presbyterian religion, clearly indicating their Scottish heritage. The Irish were traditionally Catholic. George could have been one of these immigrants.

We have unresolved conflicts between the following pieces of McNeil history:

  • Descended from McNeil’s of Barra – disproved through original Y DNA testing.
  • Immigrated from Glasgow, Scotland, and schooled in the Presbyterian religion in Edinburgh.
  • Descended from the Ui Neill dynasty, an Irish royal family dominating the northern half of Ireland from the 6th to 10th centuries.

Of course, it’s possible that our McNiel/McNeil line could have been descended from the Ui Neill dynasty AND also lived in Scotland before immigrating.

It’s also possible that they immigrated from Ireland, not Scotland.

And finally, it’s possible that the McNeil surname and M222 descent are not related and those two things are independent and happenstance.

A New Y DNA Tester

Since cousin George is, sadly, deceased, we needed a new male Y DNA tester to represent our McNiel line. Fortunately, one such cousin graciously agreed to take the Big Y-700 test so that we might, hopefully, answer numerous questions:

  • Does the McNiel line have a unique haplogroup, and if so, what does it tell us?
  • Does our McNiel line descend from Ireland or Scotland?
  • Where are our closest geographic clusters?
  • What can we tell by tracing our haplogroup back in time?
  • Do any other men match the McNiel haplogroup, and what do we know about their history?
  • Does the Y DNA align with any specific clans, clan history, or prehistory contributing to clans?

With DNA, you don’t know what you don’t know until you test.

Welcome – New Haplogroup

I was excited to see my McNeill cousin’s results arrive. He had graciously allowed me access, so I eagerly took a look.

He had been assigned to haplogroup R-BY18350.

McNiel Big Y branch

Initially, I saw that indeed, six men matched my McNeill cousin, assigned to the same haplogroup. Those surnames were:

  • Scott
  • McCollum
  • Glass
  • McMichael
  • Murphy
  • Campbell

Notice that I said, “were.” That’s right, because shortly after the results were returned, based on markers called private variants, Family Tree DNA assigned a new haplogroup to my McNeill cousin.

Drum roll please!!!

Haplogroup R-BY18332

McNiel Big Y BY18332

Additionally, my cousin’s Big Y test resulted in several branches being split, shown on the Block Tree below.

McNIel Big Y block tree

How cool is this!

This Block Tree graphic shows, visually, that our McNiel line is closest to McCollum and Campbell testers, and is a brother clade to those branches showing to the left and right of our new R-BY18332. It’s worth noting that BY25938 is an equivalent SNP to BY18332, at least today. In the future, perhaps another tester will test, allowing those two branches to be further subdivided.

Furthermore, after the new branches were added, Cousin McNeill has no more Private Variants, which are unnamed SNPs. There were all utilized in naming additional tree branches!

I wrote about the Big Y Block Tree here.

Niall (Or Whoever) Was Prolific

The first thing that became immediately obvious was how successful our progenitor was.

McNiel Big Y M222 project

click to enlarge

In the MacNeil DNA project, 38 men with various surname spellings descend from M222. There are more in the database who haven’t joined the MacNeil project.

Whoever originally carried SNP R-M222, someplace between 2400 and 5900 years ago, according to the block tree, either had many sons who had sons, or his descendants did. One thing is for sure, his line certainly is in no jeopardy of dying out today.

The Haplogroup R-M222 DNA Project, which studies this particular haplogroup, reads like a who’s who of Irish surnames.

Big Y Match Results

Big Y matches must have no more than 30 SNP differences total, including private variants and named SNPs combined. Named SNPs function as haplogroup names. In other words, Cousin McNeill’s terminal SNP, meaning the SNP furthest down on the tree, R-BY18332, is also his haplogroup name.

Private variants are mutations that have occurred in the line being tested, but not yet in other lines. Occurrences of private variants in multiple testers allow the Private Variant to be named and placed on the haplotree.

Of course, Family Tree DNA offers two types of Y DNA testing, STR testing which is the traditional 12, 25, 37, 67 and 111 marker testing panels, and the Big Y-700 test which provides testers with:

  • All 111 STR markers used for matching and comparison
  • Another 589+ STR markers only available through the Big Y test increasing the total STR markers tested from 111 to minimally 700
  • A scan of the Y chromosome, looking for new and known SNPs and STR mutations

Of course, these tests keep on giving, both with matching and in the case of the Big Y – continued haplogroup discovery and refinement in the future as more testers test. The Big Y is an investment as a test that keeps on giving, not just a one-time purchase.

I wrote about the Big Y-700 when it was introduced here and a bit later here.

Let’s see what the results tell us. We’ll start by taking a look at the matches, the first place that most testers begin.

Mcniel Big Y STR menu

Regular Y DNA STR matching shows the results for the STR results through 111 markers. The Big Y section, below, provides results for the Big Y SNPs, Big Y matches and additional STR results above 111 markers.

McNiel Big Y menu

Let’s take a look.

STR and SNP Testing

Of Cousin McNeil’s matches, 2 Big Y testers and several STR testers carry some variant of the Neal, Neel, McNiel, McNeil, O’Neil, etc. surnames by many spellings.

While STR matching is focused primarily on a genealogical timeframe, meaning current to roughly 500-800 years in the past, SNP testing reaches much further back in time.

  • STR matching reaches approximately 500-800 years.
  • Big Y matching reaches approximately 1500 years.
  • SNPs and haplogroups reach back infinitely, and can be tracked historically beyond the genealogical timeframe, shedding light on our ancestors’ migration paths, helping to answer the age-old question of “where did we come from.”

These STR and Big Y time estimates are based on a maximum number of mutations for testers to be considered matches paired with known genealogy.

Big Y results consider two men a match if they have 30 or fewer total SNP differences. Using NGS (next generation sequencing) scan technology, the targeted regions of the Y chromosome are scanned multiple times, although not all regions are equally useful.

Individually tested SNPs are still occasionally available in some cases, but individual SNP testing has generally been eclipsed by the greatly more efficient enriched technology utilized with Big Y testing.

Think of SNP testing as walking up to a specific location and taking a look, while NGS scan technology is a drone flying over the entire region 30-50 times looking multiple times to be sure they see the more distant target accurately.

Multiple scans acquiring the same read in the same location, shown below in the Big Y browser tool by the pink mutations at the red arrow, confirm that NGS sequencing is quite reliable.

McNiel Big Y browser

These two types of tests, STR panels 12-111 and the SNP-based Big Y, are meant to be utilized in combination with each other.

STR markers tend to mutate faster and are less reliable, experiencing frustrating back mutations. SNPs very rarely experience this level of instability. Some regions of the Y chromosome are messier or more complicated than others, causing problems with interpreting reads reliably.

For purposes of clarity, the string of pink A reads above is “not messy,” and “A” is very clearly a mutation because all ~39 scanned reads report the same value of “A,” and according to the legend, all of those scans are high quality. Multiple combined reads of A and G, for example, in the same location, would be tough to call accurately and would be considered unreliable.

You can see examples of a few scattered pink misreads, above.

The two different kinds of tests produce results for overlapping timeframes – with STR mutations generally sifting through closer relationships and SNPs reaching back further in time.

Many more men have taken the Y DNA STR tests over the last 20 years. The Big Y tests have only been available for the past handful of years.

STR testing produces the following matches for my McNiel cousin:

STR Level STR Matches STR Matches Who Took the Big Y % STR Who Took Big Y STR Matches Who Also Match on the Big Y
12 5988 796 13 52
25 6660 725 11 57
37 878 94 11 12
67 1225 252 21 23
111 4 2 50 1

Typically, one would expect that all STR matches that took the Big Y would match on the Big Y, since STR results suggest relationships closer in time, but that’s not the case.

  • Many STR testers who have taken the Big Y seem to be just slightly too distant to be considered a Big Y match using SNPs, which flies in the face of conventional wisdom.
  • However, this could easily be a function of the fact that STRs mutate both backward and forwards and may have simply “happened” to have mutated to a common value – which suggests a closer relationship than actually exists.
  • It could also be that the SNP matching threshold needs to be raised since the enhanced and enriched Big Y-700 technology now finds more mutations than the older Big Y-500. I would like to see SNP matching expanded to 40 from 30 because it seems that clan connections may be being missed. Thirty may have been a great threshold before the more sensitive Big Y-700 test revealed more mutations, which means that people hit that 30 threshold before they did with previous tests.
  • Between the combination of STRs and SNPs mutating at the same time, some Big Y matches are pushed just out of range.

In a nutshell, the correlation I expected to find in terms of matching between STR and Big Y testing is not what I found. Let’s take a look at what we discovered.

It’s worth noting that the analysis is easier if you are working together with at least your closest matches or have access via projects to at least some of their results. You can see common STR values to 111 in projects, such as surname projects. Project administrators can view more if project members have allowed access.

Unexpected Discoveries and Gotchas

While I did expect STR matches to also match on the Big Y, I don’t expect the Big Y matches to necessarily match on the STR tests. After all, the Big Y is testing for more deep-rooted history.

Only one of the McNiel Big Y matches also matches at all levels of STR testing. That’s not surprising since Big Y matching reaches further back in time than STR testing, and indeed, not all STR testers have taken a Big Y test.

Of my McNeill cousin’s closest Big Y matches, we find the following relative to STR matching.

Surname Ancestral Location Big Y Variant/SNP Difference STR Match Level
Scott 1565 in Buccleuch, Selkirkshire, Scotland 20 12, 25, 37, 67
McCollum Not listed 21 67 only
Glass 1618 in Banbridge, County Down, Ireland 23 12, 25, 67
McMichael 1720 County Antrim, Ireland 28 67 only
Murphy Not listed 29 12, 25, 37, 67
Campbell Scotland 30 12, 25, 37, 67, 111

It’s ironic that the man who matches on all STR levels has the most variants, 30 – so many that with 1 more, he would not have been considered a Big Y match at all.

Only the Campbell man matches on all STR panels. Unfortunately, this Campbell male does not match the Clan Campbell line, so that momentary clan connection theory is immediately put to rest.

Block Tree Matches – What They Do, and Don’t, Mean

Note that a Carnes male, the other person who matches my McNeill cousin at 111 STR markers and has taken a Big Y test does not match at the Big Y level. His haplogroup BY69003 is located several branches up the tree, with our common ancestor, R-S588, having lived about 2000 years ago. Interestingly, we do match other R-S588 men.

This is an example where the total number of SNP mutations is greater than 30 for these 2 men (McNeill and Carnes), but not for my McNeill cousin compared with other men on the same S588 branch.

McNiel Big Y BY69003

By searching for Carnes on the block tree, I can view my cousin’s match to Mr. Carnes, even though they don’t match on the Big Y. STR matches who have taken the Big Y test, even if they don’t match at the Big Y level, are shown on the Block Tree on their branch.

By clicking on the haplogroup name, R-BY69003, above, I can then see three categories of information about the matches at that haplogroup level, below.

McNiel Big Y STR differences

click to enlarge

By selecting “Matches,” I can see results under the column, “Big Y.” This does NOT mean that the tester matches either Mr. Carnes or Mr. Riker on the Big Y, but is telling me that there are 14 differences out of 615 STR markers above 111 markers for Mr. Carnes, and 8 of 389 for Mr. Riker.

In other words, this Big Y column is providing STR information, not indicating a Big Y match. You can’t tell one way or another if someone shown on the Block Tree is shown there because they are a Big Y match or because they are an STR match that shares the same haplogroup.

As a cautionary note, your STR matches that have taken the Big Y ARE shown on the block tree, which is a good thing. Just don’t assume that means they are Big Y matches.

The 30 SNP threshold precludes some matches.

My research indicates that the people who match on STRs and carry the same haplogroup, but don’t match at the Big Y level, are every bit as relevant as those who do match on the Big Y.

McNIel Big Y block tree menu

If you’re not vigilant when viewing the block tree, you’ll make the assumption that you match all of the people showing on the Block Tree on the Big Y test since Block Tree appears under the Big Y tools. You have to check Big Y matches specifically to see if you match people shown on the Block Tree. You don’t necessarily match all of them on the Big Y test, and vice versa, of course.

You match Block Tree inhabitants either:

  • On the Big Y, but not the STR panels
  • On the Big Y AND at least one level of STRs between 12 and 111, inclusive
  • On STRs to someone who has taken the Big Y test, but whom you do not match on the Big Y test

Big Y-500 or Big Y-700?

McNiel Big Y STR differences

click to enlarge

Looking at the number of STR markers on the matches page of the Block Tree for BY69003, above, or on the STR Matches page is the only way to determine whether or not your match took the Big Y-700 or the Big Y-500 test.

If you add 111 to the Big Y SNP number of 615 for Mr. Carnes, the total equals 726, which is more than 700, so you know he took the Big Y-700.

If you add 111 to 389 for Mr. Riker, you get 500, which is less than 700, so you know that he took the Big Y-500 and not the Big Y-700.

There are still a very small number of men in the database who did not upgrade to 111 when they ordered their original Big Y test, but generally, this calculation methodology will work. Today, all Big Y tests are upgraded to 111 markers if they have not already tested at that level.

Why does Big Y-500 vs Big Y-700 matter? The enriched chemistry behind the testing technology improved significantly with the Big Y-700 test, enhancing Y-DNA results. I was an avowed skeptic until I saw the results myself after upgrading men in the Estes DNA project. In other words, if Big Y-500 testers upgrade, they will probably have more SNPs in common.

You may want to contact your closest Big Y-500 matches and ask if they will consider upgrading to the Big Y-700 test. For example, if we had close McNiel or similar surname matches, I would do exactly that.

Matching Both the Big Y and STRs – No Single Source

There is no single place or option to view whether or not you match someone BOTH on the Big Y AND STR markers. You can see both match categories individually, of course, but not together.

You can determine if your STR matches took the Big Y, below, and their haplogroup, which is quite useful, but you can’t tell if you match them at the Big Y level on this page.

McNiel Big Y STR match Big Y

click to enlarge

Selecting “Display Only Matches With Big Y” means displaying matches to men who took the Big Y test, not necessarily men you match on the Big Y. Mr. Conley, in the example above, does not match my McNeill cousin on the Big Y but does match him at 12 and 25 STR markers.

I hope FTDNA will add three display options:

  • Select only men that match on the Big Y in the STR panel
  • Add an option for Big Y on the advanced matches page
  • Indicate men who also match on STRs on the Big Y match page

It was cumbersome and frustrating to have to view all of the matches multiple times to compile various pieces of information in a separate spreadsheet.

No Big Y Match Download

There is also no option to download your Big Y matches. With a few matches, this doesn’t matter, but with 119 matches, or more, it does. As more people test, everyone will have more matches. That’s what we all want!

What you can do, however, is to download your STR matches from your match page at levels 12-111 individually, then combine them into one spreadsheet. (It would be nice to be able to download them all at once.)

McNiel Big Y csv

You can then add your Big Y matches manually to the STR spreadsheet, or you can simply create a separate Big Y spreadsheet. That’s what I chose to do after downloading my cousin’s 14,737 rows of STR matches. I told you that R-M222 was prolific! I wasn’t kidding.

This high number of STR matches also perfectly illustrates why the Big Y SNP results were so critical in establishing the backbone relationship structure. Using the two tools together is indispensable.

An additional benefit to downloading STR results is that you can sort the STR spreadsheet columns in surname order. This facilitates easily spotting all spelling variations of McNiel, including words like Niel, Neal and such that might be relevant but that you might not notice otherwise.

Creating a Big Y Spreadsheet

My McNiel cousin has 119 Big Y-700 matches.

I built a spreadsheet with the following columns facilitating sorting in a number of ways, with definitions as follows:

McNiel Big Y spreadsheet

click to enlarge

  • First Name
  • Last Name – You will want to search matches on your personal page at Family Tree DNA by this surname later, so be sure if there is a hyphenated name to enter it completely.
  • Haplogroup – You’ll want to sort by this field.
  • Convergent – A field you’ll complete when doing your analysis. Convergence is the common haplogroup in the tree shared by you and your match. In the case of the green matches above, which are color-coded on my spreadsheet to indicate the closest matches with my McNiel cousin, the convergent haplogroup is BY18350.
  • Common Tree Gen – This column is the generations on the Block Tree shown to this common haplogroup. In the example above, it’s between 9 and 14 SNP generations. I’ll show you where to gather this information.
  • Geographic Location – Can be garnered from 4 sources. No color in that cell indicates that this information came from the Earliest Known Ancestor (EKA) field in the STR matches. Blue indicates that I opened the tree and pulled the location information from that source. Orange means that someone else by the same surname whom the tester also Y DNA matches shows this location. I am very cautious when assigning orange, and it’s risky because it may not be accurate. A fourth source is to use Ancestry, MyHeritage, or another genealogical resource to identify a location if an individual provides genealogical information but no location in the EKA field. Utilizing genealogy databases is only possible if enough information is provided to make a unique identification. John Smith 1700-1750 won’t do it, but Seamus McDougal (1750-1810) married to Nelly Anderson might just work.
  • STR Match – Tells me if the Big Y match also matches on STR markers, and if so, which ones. Only the first 111 markers are used for matching. No STR match generally means the match is further back in time, but there are no hard and fast rules.
  • Big Y Match – My original goal was to combine this information with the STR match spreadsheet. If you don’t wish to combine the two, then you don’t need this column.
  • Tree – An easy way for me to keep track of which matches do and do not have a tree. Please upload or create a tree.

You can also add a spreadsheet column for comments or contact information.

McNiel Big Y profile

You will also want to click your match’s name to display their profile card, paying particular attention to the “About Me” information where people sometimes enter genealogical information. Also, scan the Ancestral Surnames where the match may enter a location for a specific surname.

Private Variants

I added additional spreadsheet columns, not shown above, for Private Variant analysis. That level of analysis is beyond what most people are interested in doing, so I’m only briefly discussing this aspect. You may want to read along, so you at least understand what you are looking at.

Clicking on Private Variants in your Big Y Results shows your variants, or mutations, that are unnamed as SNPs. When they are named, they become SNPs and are placed on the haplotree.

The reference or “normal” state for the DNA allele at that location is shown as the “Reference,” and “Genotype” is the result of the tester. Reference results are not shown for each tester, because the majority are the same. Only mutations are shown.

McNiel Big Y private variants

There are 5 Private Variants, total, for my cousin. I’ve obscured the actual variant numbers and instead typed in 111111 and 222222 for the first two as examples.

McNiel Big Y nonmatching variants

In our example, there are 6 Big Y matches, with matches one and five having the non-matching variants shown above.

Non-matching variants mean that the match, Mr. Scott, in example 1, does NOT match the tester (my cousin) on those variants.

  • If the tester (you) has no mutation, you won’t have a Private Variant shown on your Private Variant page.
  • If the tester does have a Private Variant shown, and that variant shows ON their matches list of non-matching variants, it means the match does NOT match the tester, and either has the normal reference value or a different mutation. Explained another way, if you have a mutation, and that variant is listed on your match list of Non-Matching Variants, your match does NOT match you and does NOT have the same mutation.
  • If the match does NOT have the Private Variant on their list, that means the match DOES match the tester, and they both have the same mutation, making this Private Variant a candidate to be named as a new SNP.
  • If you don’t have a Private Variant listed, but it shows in the Non-Matching Variants of your match, that means you have the reference or normal value, and they have a mutation.

In example #1, above, the tester has a mutation at variant 111111, and 111111 is shown as a Non-Matching Variant to Mr. Scott, so Mr. Scott does NOT match the tester. Mr. Scott also does NOT match the tester at locations 222222 and 444444.

In example #5, 111111 is NOT shown on the Non-Matching Variant list, so Mr. Treacy DOES match the tester.

I have a terrible time wrapping my head around the double negatives, so it’s critical that I make charts.

On the chart below, I’ve listed the tester’s private variants in an individual column each, so 111111, 222222, etc.

For each match, I’ve copy and pasted their Non-Matching Variants in a column to the right of the tester’s variants, in the lavender region. In this example, I’ve typed the example variants into separate columns for each tester so you can see the difference. Remember, a non-matching variant means they do NOT match the tester’s mutation.

McNiel private variants spreadsheet

On my normal spreadsheet where the non-matching variants don’t have individuals columns, I then search for the first variant, 111111. If the variant does appear in the list, it means that match #1 does NOT have the mutation, so I DON’T put an X in the box for match #1 under 111111.

In the example above, the only match that does NOT have 111111 on their list of Non-Matching Variants is #5, so an X IS placed in that corresponding cell. I’ve highlighted that column in yellow to indicate this is a candidate for a new SNP.

You can see that no one else has the variant, 222222, so it truly is totally private. It’s not highlighted in yellow because it’s not a candidate to be a new SNP.

Everyone shares mutation 333333, so it’s a great candidate to become a new SNP, as is 555555.

Match #6 shares the mutation at 444444, but no one else does.

This is a manual illustration of an automated process that occurs at Family Tree DNA. After Big Y matches are returned, automated software creates private variant lists of potential new haplogroups that are then reviewed internally where SNPs are evaluated, named, and placed on the tree if appropriate.

If you follow this process and discover matches, you probably don’t need to do anything, as the automated review process will likely catch up within a few days to weeks.

Big Y Matches

In the case of the McNiel line, it was exciting to discover several private variants, mutations that were not yet named SNPs, found in several matches that were candidates to be named as SNPs and placed on the Y haplotree.

Sure enough, a few days later, my McNeill cousin had a new haplogroup assignment.

Most people have at least one Private Variant, locations in which they do NOT match another tester. When several people have these same mutations, and they are high-quality reads, the Private Variant qualifies to be added to the haplotree as a SNP, a task performed at FamilyTreeDNA by Michael Sager.

If you ever have the opportunity to hear Michael speak, please do so. You can watch Michael’s presentation at Genetic Genealogy Ireland (GGI) titled “The Tree of Mankind,” on YouTube, here, compliments of Maurice Gleeson who coordinates GGI. Maurice has also written about the Gleeson Y DNA project analysis, here.

As a result of Cousin McNeill’s test, six new SNPs have been added to the Y haplotree, the tree of mankind. You can see our new haplogroup for our branch, BY18332, with an equivalent SNP, BY25938, along with three sibling branches to the left and right on the tree.

McNiel Big Y block tree 4 branch

Big Y testing not only answers genealogical questions, it advances science by building out the tree of mankind too.

The surname of the men who share the same haplogroup, R-BY18332, meaning the named SNP furthest down the tree, are McCollum and Campbell. Not what I expected. I expected to find a McNeil who does match on at least some STR markers. This is exactly why the Big Y is so critical to define the tree structure, then use STR matches to flesh it out.

Taking the Big Y-700 test provided granularity between 6 matches, shown above, who were all initially assigned to the same branch of the tree, BY18350, but were subsequently divided into 4 separate branches. My McNiel cousin is no longer equally as distant from all 6 men. We now know that our McNiel line is genetically closer on the Y chromosome to Campbell and McCollum and further distant from Murphy, Scott, McMichael, and Glass.

Not All SNP Matches are STR Matches

Not all SNP matches are also STR matches. Some relationships are too far back in time. However, in this case, while each person on the BY18350 branches matches at some STR level, only the Campbell individual matches at all STR levels.

Remember that variants (mutations) are accumulating down both respective branches of the tree at the same time, meaning one per roughly every 100 years (if 100 is the average number we want to use) for both testers. A total of 30 variants or mutations difference, an average of 15 on each branch of the tree (McNiel and their match) would suggest a common ancestor about 1500 years ago, so each Big Y match should have a common ancestor 1500 years ago or closer. At least on average, in theory.

The Big Y test match threshold is 30 variants, so if there were any more mismatches with the Campbell male, they would not have been a Big Y match, even though they have the exact same haplogroup.

Having the same haplogroup means that their terminal SNP is identical, the SNP furthest down the tree today, at least until someone matches one of them on their Private Variants (if any remain unnamed) and a new terminal SNP is assigned to one or both of them.

Mutations, and when they happen, are truly a roll of the dice. This is why viewing all of your Big Y Block Tree matches is critical, even if they don’t show on your Big Y match list. One more variant and Campbell would have not been shown as a match, yet he is actually quite close, on the same branch, and matches on all STR panels as well.

SNPs Establish the Backbone Structure

I always view the block tree first to provide a branching tree structure, then incorporate STR matches into the equation. Both can equally as important to genealogy, but haplogroup assignment is the most accurate tool, regardless of whether the two individuals match on the Big Y test, especially if the haplogroups are relatively close.

Let’s work with the Block Tree.

The Block Tree

McNIel Big Y block tree menu

Clicking on the link to the Block Tree in the Big Y results immediately displays the tester’s branch on the tree, below.

click to enlarge

On the left side are SNP generation markers. Keep in mind that approximate SNP generations are marked every 5 generations. The most recent generations are based on the number of private variants that have not yet been assigned as branches on the tree. It’s possible that when they are assigned that they will be placed upstream someplace, meaning that placement will reduce the number of early branches and perhaps increase the number of older branches.

The common haplogroup of all of the branches shown here with the upper red arrow is R-BY3344, about 15 SNP generations ago. If you’re using 100 years per SNP generation, that’s about 1500 years. If you’re using 80 years, then 1200 years ago. Some people use even fewer years for calculations.

If some of the private variants in the closer branches disappear, then the common ancestral branch may shift to closer in time.

This tree will always be approximate because some branches can never be detected. They have disappeared entirely over time when no males exist to reproduce.

Conversely, subclades have been born since a common ancestor clade whose descendants haven’t yet tested. As more people test, more clades will be discovered.

Therefore, most recent common ancestor (MRCA) haplogroup ages can only be estimated, based on who has tested and what we know today. The tree branches also vary depending on whether testers have taken the Big Y-500 or the more sensitive Big Y-700, which detects more variants. The Y haplotree is a combination of both.

Big Y-500 results will not be as granular and potentially do not position test-takers as far down the tree as Big Y-700 results would if they upgraded. You’ll need to factor that into your analysis if you’re drawing genealogical conclusions based on these results, especially close results.

You’ll note that the direct path of descent is shown above with arrows from BY3344 through the first blue box with 5 equivalent SNPS, to the next white box, our branch, with two equivalent SNPs. Our McNeil ancestor, the McCollum tester, and the Campell tester have no unresolved private variants between them, which suggests they are probably closer in time than 10 generations back. You can see that the SNP generations are pushed “up” by the neighbor variants.

Because of the fact that private variants don’t occur on a clock cycle and occur in individual lines at an unsteady rate, we must use averages.

That means that when we look further “up” the tree, clicking generation by generation on the up arrow above BY3344, the SNP generations on the left side “adjust” based on what is beneath, and unseen at that level.

The Block Tree Adjusts

Note, in the example above, BY3344 is at SNP generation 15.

Next, I clicked one generation upstream, to R-S668.

McNiel Big Y block tree S668

click to enlarge

You can see that S668 is about 21 SNP generations upstream, and now BY3344 is listed as 20 generations, not 15. You can see our branch, BY3344, but you can no longer see subclades or our matches below that branch in this view.

You can, however, see two matches that descend through S668, brother branches to BY3344, red arrows at far right.

Clicking on the up arrow one more time shows us haplogroup S673, below, and the child branches. The three child branches on which the tester has matches are shown with red arrows.

McNiel Big Y S673

click to enlarge

You’ll immediately notice that now S668 is shown at 19 SNP generations, not 20, and S673 is shown at 20. This SNP generation difference between views is a function of dealing with aggregated and averaged private variants on combined lines and causes the SNP generations to shift. This is also why I always say “about.”

As you continue to click up the tree, the shifting SNP generations continue, reminding us that we can’t truly see back in time. We can only achieve approximations, but those approximations improve as more people test, and more SNPs are named and placed in their proper places on the phylotree.

I love the Block Tree, although I wish I could see further side-to-side, allowing me to view all of the matches on one expanded tree so I can easily see their relationships to the tester, and each other.

Countries and Origins

In addition to displaying shared averaged autosomal origins of testers on a particular branch, if they have taken the Family Finder test and opted-in to sharing origins (ethnicity) results, you can also view the countries indicated by testers on that branch along with downstream branches of the tree.

McNiel Big Y countries

click to enlarge

For example, the Countries tab for S673 is shown above. I can see matches on this branch with no downstream haplogroup currently assigned, as well as cumulative results from downstream branches.

Still, I need to be able to view this information in a more linear format.

The Block Tree and spreadsheet information beautifully augment the haplotree, so let’s take a look.

The Haplotree

On your Y DNA results page, click on the “Haplotree and SNPs” link.

McNIel Big Y haplotree menu

click to enlarge

The Y haplotree will be displayed in pedigree style, quite familiar to genealogists. The SNP legend will be shown at the top of the display. In some cases, “presumed positive” results occur where coverage is lacking, back mutations or read errors are encountered. Presumed positive is based on positive SNPs further down the tree. In other words, that yellow SNP below must read positive or downstream ones wouldn’t.

McNIel Big Y pedigree descent

click to enlarge

The tester’s branch is shown with the grey bar. To the right of the haplogroup-defining SNP are listed the branch and equivalent SNP names. At far right, we see the total equivalent SNPs along with three dots that display the Country Report. I wish the haplotree also showed my matches, or at least my matching surnames, allowing me to click through. It doesn’t, so I have to return to the Big Y page or STR Matches page, or both.

I’ve starred each branch through which my McNiell cousin descends. Sibling branches are shown in grey. As you’ll recall from the Block Tree, we do have matches on those sibling branches, shown side by side with our branch.

The small numbers to the right of the haplogroup names indicate the number of downstream branches. BY18350 has three, all displayed. But looking upstream a bit, we see that DF97 has 135 downstream branches. We also have matches on several of those branches. To show those branches, simply click on the haplogroup.

The challenge for me, with 119 McNeill matches, is that I want to see a combination of the block tree, my spreadsheet information, and the haplotree. The block tree shows the names, my spreadsheet tells me on which branches to look for those matches. Many aren’t easily visible on the block tree because they are downstream on sibling branches.

Here’s where you can find and view different pieces of information.

Data and Sources STR Matches Page Big Y Matches Page Block Tree Haplogroups & SNPs Page
STR matches Yes No, but would like to see who matches at which STR levels If they have taken Big Y test, but doesn’t mean they match on Big Y matching No
SNP matches *1 Shows if STR match has common haplogroup, but not if tester matches on Big Y No, but would like to see who matches at which STR level Big Y matches and STR matches that aren’t Big Y matches are both shown No, but need this feature – see combined haplotree/ block tree
Other Haplogroup Branch Residents Yes, both estimated and tested No, use block tree or click through to profile card, would like to see haplogroup listed for Big Y matches Yes, both Big Y and STR tested, not estimated. Cannot tell if person is Big Y match or STR match, or both. No individuals, but would like that as part of countries report, see combined haplotree/block tree
Fully Expanded Phylotree No No Would like ability to see all branches with whom any Big Y or STR match resides at one time, even if it requires scrolling Yes, but no match information. Matches report could be added like on Block Tree.
Averaged Ethnicities if Have FF Test No No Yes, by haplogroup branch No
Countries Matches map STR only No, need Big Y matches map Yes Yes
Earliest Known Ancestor Yes No, but can click through to profile card No No
Customer Trees Yes No, need this link No No
Profile Card Yes, click through Yes, click through Yes, click through No match info on this page
Downloadable data By STR panel only, would like complete download with 1 click, also if Big Y or FF match Not available at all No No
Path to common haplogroup No No, but would like to see matches haplogroup and convergent haplogroup displayed No, would like the path to convergent haplogroup displayed as an option No, see combined match-block -haplotree in next section

*1 – the best way to see the haplogroup of a Big Y match is to click on their name to view their profile card since haplogroup is not displayed on the Big Y match page. If you happen to also match on STRs, their haplogroup is shown there as well. You can also search for their name using the block tree search function to view their haplogroup.

Necessity being the mother of invention, I created a combined match/block tree/haplotree.

And I really, REALLY hope Family Tree DNA implements something like this because, trust me, this was NOT fun! However, now that it’s done, it is extremely useful. With fewer matches, it should be a breeze.

Here are the steps to create the combined reference tree.

Combo Match/Block/Haplotree

I used Snagit to grab screenshots of the various portions of the haplotree and typed the surnames of the matches in the location of our common convergent haplogroup, taken from the spreadsheet. I also added the SNP generations in red for that haplogroup, at far left, to get some idea of when that common ancestor occurred.

McNIel Big Y combo tree

click to enlarge

This is, in essence, the end-goal of this exercise. There are a few steps to gather data.

Following the path of two matches (the tester and a specific match) you can find their common haplogroup. If your match is shown on the block tree in the same view with your branch, it’s easy to see your common convergent parent haplogroup. If you can’t see the common haplogroup, it’s takes a few extra steps by clicking up the block tree, as illustrated in an earlier section.

We need the ability to click on a match and have a tree display showing both paths to the common haplogroup.

McNiel Big Y convergent

I simulated this functionality in a spreadsheet with my McNiel cousin, a Riley match, and an Ocain match whose terminal SNP is the convergent SNP (M222) between Riley and McNiel. Of course, I’d also like to be able to click to see everyone on one chart on their appropriate branches.

Combining this information onto the haplotree, in the first image, below, M222, 4 men match my McNeill cousin – 2 who show M222 as their terminal SNP, and 2 downstream of M222 on a divergent branch that isn’t our direct branch. In other words, M222 is the convergence point for all 4 men plus my McNeill cousin.

McNiel Big Y M222 haplotree

click to enlarge

In the graphic below, you can see that M222 has a very large number of equivalent SNPs, which will likely become downstream haplogroups at some point in the future. However, today, these equivalent SNPs push M222 from 25 generations to 59. We’ll discuss how this meshes with known history in a minute.

McNiel Big Y M222 block tree

click to enlarge

Two men, Ocain and Ransom, who have both taken the Big Y, whose terminal SNP is M222, match my McNiel cousin. If their common ancestor was actually 59 generations in the past, it’s very, very unlikely that they would match at all given the 30 mutation threshold.

On my reconstructed Match/Block/Haplotree, I included the estimated SNP generations as well. We are starting with the most distant haplogroups and working our way forward in time with the graphics, below.

Make no mistake, there are thousands more men who descend from M222 that have tested, but all of those men except 4 have more than 30 mutations total, so they are not shown as Big Y matches, and they are not shown individually on the Block Tree because they neither match on the Big Y or STR tests. However, there is a way to view information for non-matching men who test positive for M222.

McNiel Big Y M222 countries

click to enlarge

Looking at the Block Tree for M222, many STR match men took a SNP test only to confirm M222, so they would be shown positive for the M222 SNP on STR results and, therefore, in the detailed view of M222 on the Block tree.

Haplogroup information about men who took the M222 test and whom the tester doesn’t match at all are shown here as well in the country and branch totals for R-M222. Their names aren’t displayed because they don’t match the tester on either type of Y DNA test.

Back to constructing my combined tree, I’ve left S658 in both images, above and below, as an overlap placeholder, as we move further down, or towards current, on the haplotree.

McNiel Big Y combo tree center

click to enlarge

Note that BY18350, above, is also an overlap connecting below.

You’ll recall that as a result of the Big Y test, BY18350 was split and now has three child branches plus one person whose terminal SNP is BY18350. All of the men shown below were on one branch until Big Y results revealed that BY18350 needed to be split, with multiple new haplogroups added to the tree.

McNiel Big Y combo tree current

click to enlarge

Using this combination of tools, it’s straightforward for me to see now that our McNiel line is closest to the Campbell tester from Scotland according to the Big Y test + STRs.

Equal according to the Big Y test, but slightly more distant, according to STR matching, is McCollum. The next closest would be sibling branches. Then in the parent group of the other three, BY18350, we find Glass from Scotland.

In BY18350 and subgroups, we find several Scotland locations and one Northern Ireland, which was likely from Scotland initially, given the surname and Ulster Plantation era.

The next upstream parent haplogroup is BY3344, which looks to be weighted towards ancestors from Scotland, shown on the country card, below.

McNiel Big Y BY3344

click to enlarge

This suggests that the origins of the McNiel line was, perhaps, in Scotland, but it doesn’t tell us whether or not George and presumably, Thomas, immigrated from Ireland or Scotland.

This combined tree, with SNPs, surnames from Big Y matches, along with Country information, allows me to see who is really more closely related and who is further away.

What I didn’t do, and probably should, is to add in all of the STR matches who have taken the Big Y test, shown on their convergent branch – but that’s just beyond the scope of time I’m willing to invest, at least for now, given that hundreds of STR matches have taken the Big Y test, and the work of building the combined tree is all manual today.

For those reading this article without access to the Y phylogenetic tree, there’s a public version of the Y and mitochondrial phylotrees available, here.

What About Those McNiels?

No other known McNiel descendants from either Thomas or George have taken the Big Y test, so I didn’t expect any to match, but I am interested in other men by similar surnames. Does ANY other McNiel have a Big Y match?

As it turns out, there are two, plus one STR match who took a Big Y test, but is not a Big Y match.

However, as you can see on the combined match/block/haplotree, above, the closest other Big Y-matching McNeil male is found at about 19 SNP generations, or roughly 1900 years ago. Even if you remove some of the variants in the lower generations that are based on an average number of individual variants, you’re still about 1200 years in the past. It’s extremely doubtful that any surname would survive in both lines from the year 800 or so.

That McNeil tester’s ancestor was born in 1747 in Tranent, Scotland.

The second Big Y-matching person is an O’Neil, a few branches further up in the tree.

The convergent SNP of the two branches, meaning O’Neil and McNeill are at approximately the 21 generation level. The O’Neil man’s Neill ancestor is found in 1843 in Cookestown, County Tyrone, Ireland.

McNiel Big Y convergent McNeil lines

I created a spreadsheet showing convergent lines:

  • The McNeill man with haplogroup A4697 (ancestor Tranent, Scotland) is clearly closest genetically.
  • O’Neill BY91591, who is brother clades with Neel and Neal, all Irish, is another Big Y match.
  • The McNeill man with haplogroup FT91182 is an STR match, but not a Big Y match.

The convergent haplogroup of all of these men is DF105 at about the 22 SNP generation marker.

STRs

Let’s turn back to STR tests, with results that produce matches closer in time.

Searching my STR download spreadsheet for similar surnames, I discovered several surname matches, mining the Earliest Known Ancestor information, profiles and trees produced data as follows:

Ancestor STR Match Level Location
George Charles Neil 12, 25, match on Big Y A4697 1747-1814 Tranent, Scotland
Hugh McNeil 25 (tested at 67) Born 1800 Country Antrim, Northern Ireland
Duncan McNeill 12 (tested at 111) Married 1789, Argyllshire, Scotland
William McNeill 12, 25 (tested at 37) Blackbraes, Stirlingshire, Scotland
William McNiel 25 (tested at 67) Born 1832 Scotland
Patrick McNiel 25 (tested at 111) Trien East, County Roscommon, Ireland
Daniel McNeill 25 (tested at 67) Born 1764 Londonderry, Northern Ireland
McNeil 12 (tested at 67) 1800 Ireland
McNeill (2 matches) 25 (tested Big Y-  SNP FT91182) 1810, Antrim, Northern Ireland
Neal 25 – (tested Big Y, SNP BY146184) Antrim, Northern Ireland
Neel (2 matches) 67 (tested at 111, and Big Y) 1750 Ireland, Northern Ireland

Our best clue that includes a Big Y and STR match is a descendant of George Charles Neil born in Tranent, Scotland, in 1747.

Perhaps our second-best clue comes in the form of a 111 marker match to a descendant of one Thomas McNeil who appears in records as early as 1753 and died in 1761 In Rombout Precinct, Dutchess County, NY where his son John was born. This line and another match at a lower level both reportedly track back to early New Hampshire in the 1600s.

The MacNeil DNA Project tells us the following:

Participant 106370 descends from Isaiah McNeil b. 14 May 1786 Schaghticoke, Rensselaer Co. NY and d. 28 Aug 1855 Poughkeepsie, Dutchess Co., NY, who married Alida VanSchoonhoven.

Isaiah’s parents were John McNeal, baptized 21 Jun 1761 Rombout, Dutchess Co., NY, d. 15 Feb 1820 Stillwater, Saratoga Co., NY and Helena Van De Bogart.

John’s parents were Thomas McNeal, b.c. 1725, d. 14 Aug 1761 NY and Rachel Haff.

Thomas’s parents were John McNeal Jr., b. around 1700, d. 1762 Wallkill, Orange Co., NY (now Ulster Co. formed 1683) and Martha Borland.

John’s parents were John McNeal Sr. and ? From. It appears that John Sr. and his family were this participant’s first generation of Americans.

Searching this line on Ancestry, I discovered additional information that, if accurate, may be relevant. This lineage, if correct, and it may not be, possibly reaching back to Edinburgh, Scotland. While the information gathered from Ancestry trees is certainly not compelling in and of itself, it provides a place to begin research.

Unfortunately, based on matches shown on the MacNeil DNA Project public page, STR marker mutations for kits 30279, B78471 and 417040 when compared to others don’t aid in clustering or indicating which men might be related to this group more closely than others using line-marker mutations.

Matches Map

Let’s take a look at what the STR Matches Map tells us.

McNiel Big Y matches map menu

This 67 marker Matches Map shows the locations of the earliest known ancestors of STR matches who have entered location information.

McNiel Big Y matches mapMcNiel Big Y matches map legend

My McNeill cousin’s closest matches are scattered with no clear cluster pattern.

Unfortunately, there is no corresponding map for Big Y matches.

SNP Map

The SNP map provided under the Y DNA results allows testers to view the locations where specific haplogroups are found.

McNiel Big Y SNP map

The SNP map marks an area where at least two or more people have claimed their most distant known ancestor to be. The cluster size is the maximum amount of miles between people that is allowed in order for a marker indicating a cluster at a location to appear. So for example, the sample size is at least 2 people who have tested, and listed their most distant known ancestor, the cluster is the radius those two people can be found in. So, if you have 10 red dots, that means in 1000 miles there are 10 clusters of at least two people for that particular SNP. Note that these locations do NOT include people who have tested positive for downstream locations, although it does include people who have taken individual SNP tests.

Working my way from the McNiel haplogroup backward in time on the SNP map, neither BY18332 nor BY18350 have enough people who’ve tested, or they didn’t provide a location.

Moving to the next haplogroup up the tree, two clusters are formed for BY3344, shown below.

McNIel Big Y BY3344 map

S668, below.

McNiel Big Y S668 map

It’s interesting that one cluster includes Glasgow.

S673, below.

McNiel Big Y S673 map

DF85, below:

McNiel Big Y DF85 map

DF105 below:

McNiel BIg Y DF105 map

M222, below:

McNiel Big Y M222 map

For R-M222, I’ve cropped the locations beyond Ireland and Scotland. Clearly, RM222 is the most prevalent in Ireland, followed by Scotland. Wherever M222 originated, it has saturated Ireland and spread widely in Scotland as well.

R-M222

R-M222, the SNP initially thought to indicate Niall of the 9 Hostages, occurred roughly 25-59 SNP generations in the past. If this age is even remotely accurate, averaging by 80 years per generation often utilized for Big Y results, produces an age of 2000 – 4720 years. I find it extremely difficult to believe any semblance of a surname survived that long. Even if you reduce the time in the past to the historical narrative, roughly the year 400, 1600 years, I still have a difficult time believing the McNiel surname is a result of being a descendant of Niall of the 9 Hostages directly, although oral history does have staying power, especially in a clan setting where clan membership confers an advantage.

Surname or not, clearly, our line along with the others whom we match on the Big Y do descend from a prolific common ancestor. It’s very unlikely that the mutation occurred in Niall’s generation, and much more likely that other men carried M222 and shared a common ancestor with Niall at some point in the distant past.

McNiel Conclusion – Is There One?

If I had two McNiel wishes, they would be:

  • Finding records someplace in Virginia that connect George and presumably brothers Thomas and John to their parents.
  • A McNiel male from wherever our McNiel line originated becoming inspired to Y DNA test. Finding a male from the homeland might point the way to records in which I could potentially find baptismal records for George about 1720 and Thomas about 1724, along with possibly John, if he existed.

I remain hopeful for a McNiel from Edinburgh, or perhaps Glasgow.

I feel reasonably confident that our line originated genetically in Scotland. That likely precludes Niall of the 9 Hostages as a direct ancestor, but perhaps not. Certainly, one of his descendants could have crossed the channel to Scotland. Or, perhaps, our common ancestor is further back in time. Based on the maps, it’s clear that M222 saturates Ireland and is found widely in Scotland as well.

A great deal depends on the actual age of M222 and where it originated. Certainly, Niall had ancestors too, and the Ui Neill dynasty reaches further back, genetically, than their recorded history in Ireland. Given the density of M222 and spread, it’s very likely that M222 did, in fact, originate in Ireland or, alternatively, very early in Scotland and proliferated in Ireland.

If the Ui Neill dynasty was represented in the persona of the High King, Niall of the 9 Hostages, 1600 years ago, his M222 ancestors were clearly inhabiting Ireland earlier.

We may not be descended from Niall personally, but we are assuredly related to him, sharing a common ancestor sometime back in the prehistory of Ireland and Scotland. That man would sire most of the Irish men today and clearly, many Scots as well.

Our ancestors, whoever they were, were indeed in Ireland millennia ago. R-M222, our ancestor, was the ancestor of the Ui Neill dynasty and of our own Reverend George McNiel.

Our ancestors may have been at Knowth and New Grange, and yes, perhaps even at Tara.

Tara Niall mound in sun

Someplace in the mists of history, one man made a different choice, perhaps paddling across the channel, never to return, resulting in M222 descendants being found in Scotland. His descendants include our McNeil ancestors, who still slumber someplace, awaiting discovery.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

RootsTech 2020: It’s a Wrap

Before sharing photos and details about the last three days at RootsTech, I want to provide some general observations.

I expected the attendance to be down this year because of the concern about the Novel Corona Virus. There was a lot of hand-washing and sanitizer, but no hand-wringing.

I don’t think attendance was lagging at all. In fact, this show was larger, based on how my feet feel and general crowd observation than ever before. People appeared to be more engaged too.

According to RootsTech personnel, 4 major vendors pulled out the week before the show opened; 23andMe, LivingDNA, FindMyPast and a book vendor.

I doubt there’s much of a refund policy, so surely something happened in these cases. If you recall, LivingDNA and FindMyPast have a business relationship. 23andMe just laid off a number of people, but then again, so did Ancestry but you’d never know it based on the size of their booth and staffing here.

Family Search has really stepped up their game to modernize, capture stories, scan books and otherwise make genealogy interesting and attractive to everyone.

We got spoiled last year with the big DNA announcements at RootsTech, but nothing of that magnitude was announced this year. That’s not to say there weren’t vendor announcements, there were.

FamilyTreeDNA announced:

  • Their myOrigins Version 3.0 which is significantly updated by adding several worldwide populations, increasing the number from 24 to 90. I wrote about these features here.
  • Adding a myOrigins chromosome browser painted view. I am SOOO excited about this because it makes ethnicity actually useful for genealogy because we can compare specific ethnicity segments with genealogical matches. I can hardly wait.

RootsTech 2020 Sunny Paul

Sunny Morton with Family Tree Magazine interviewing Dr. Paul Maier, FamilyTreeDNA’s population geneticist. You can see the painted chromosome view on the screen behind Dr. Maier.

  • Providing, after initial release, a downloadable ethnicity estimate segment file.
  • Sponsorship of The Million Mito Project, a joint collaborative citizen science project to rewrite the mitochondrial tree of womankind includes team members Dr. Miguel Vilar, Lead Scientist of the National Geographic Genographic Project, Dr. Paul Maier, Population Geneticist at FamilyTreeDNA, Goran Runfeldt, Head of Research and Development at FamilyTreeDNA, and me, DNAeXplain, scientist, genetic genealogist, National Geographic Genographic Affiliate Researcher.

RootsTech 2020 Million Mito

I was honored to make The Million Mito Project announcement Saturday morning, but it was hard for me to contain my enthusiasm until Saturday. This initiative is super-exciting and I’ll be writing about the project, and how you can participate, as soon as I get home and recover just a bit.

  • Michael Sager, aka Mr. Big Y, announced additions to the Y Tree of Mankind in the Demo Theater, including a particularly impressive haplogroup D split.

Rootstech 2020 Sager

RootsTech 2020 Sager 2

RootsTech 2020 Sager hap d

In case anyone is counting, as of last week, the Y tree has 26,600+ named branches and over half a million detected (private variant) SNPs at FamilyTreeDNA waiting for additional testers to be placed on the tree. All I can say is WOW!!! In 2010, a decade ago, there were only 441 Y DNA branches on the entire Y tree. The Y tree has shot up from a twig to an evergreen. I think it’s actually a Sequoia and we just don’t know how large it’s going to grow to be.

RootsTech 2020 FTDNA booth

FamilyTreeDNA stepped up their game with a way-cool new booth that incorporated a lovely presentation area, greatly improved, which featured several guest presenters throughout the conference, including Judy Russell, below.

RootsTech 2020 Judy Russell

Yes, in case anyone is wondering, I DID ask permission to take Judy’s picture, AND to publish it in my article. Just sayin’😊

MyHeritage announced their new photo colorization, MyHeritage in Color, just before RootsTech. I wrote about it, here. At RootsTech MyHeritage had more announcements, including:

  • Enhancements coming soon to the photo colorization program. It was interesting to learn that the colorization project went live in less than 2 months from inception and resulted from an internal “hack-a-thon,” which in the technology industry is a fun think-tank sort of marathon endeavor where ideas flow freely in a competitive environment. Today, over a million photos have been colorized. People LOVE this feature.

RootsTech 2020 MyHeritage booth

One of their booth giveaways was a magnet – of your colorized ancestor’s photo. Conference attendees emailed the photo to a special email address and came by the booth a few minutes later to retrieve their photo magnet.

The photos on the board in front, above, are the colorized photos waiting for their family to pick them up. How fun!!!

  • Fan View for family trees which isn’t just a chart, but dynamic in that you can click on any person and they become the “center.” You can also add to your tree from this view.

RootsTech 2020 MyHeritage fan tree

One of the views is a colorful fan. If you sign on to your MyHeritage account, you’ll be asked if you’d like to see the new fan view. You can read about the new tree features on their blog, here.

  • The release of a MASSIVE 100-year US city directory digitization project that’s more than just imaging and indexing. If you’ve every used city directories, the unique abbreviations in each one will drive you batty. MyHeritage has solved that problem by providing the images, plus the “translation.” They’ve also used artificial intelligence to understand how to search further, incorporating things like spouse, address and more to provide you with not just one year or directory, but linear information that might allow you to infer the death of a spouse, for example. You can read their blog article, here.

RootsTech 2020 MyHeritage city directories

The MyHeritage booth incorporated a very cool feature this year about the Mayflower. Truthfully, I was quite surprised, because the Mayflower is a US thing. MyHeritage is working with folks in Leiden, Netherlands, where some Mayflower family members remained while others continued to what would become Plymouth Colony to prove the connection.

Rootstech 2020 MyHeritage Mayflower virtual

MyHeritage constructed a 3D area where you can sail with the Pilgrims.

I didn’t realize at first, but the chair swivels and as you move, your view in the 3D “goggles” changes to the direction on board the ship where you are looking.

RootsTech 2020 MyHeritage Mayflower virtual 2

The voyage in 1620 was utterly miserable – very rough with a great deal of illness. They did a good job of portraying that, but not “too much” if you get my drift. What you do feel is the utter smallness of the ship in the immense angry ocean.

I wonder how many descendants “sailed with their ancestors” on the virtual Mayflower. Do you have Mayflower ancestors? Mine are William Brewster, his wife, Mary and daughter, Patience along with Stephen Hopkins and his son, Gyles.

Ancestry’s only announcements were:

  • That they are “making things better” by listening and implementing improvements in the DNA area. I’ll forego any commentary because it would be based on their failure to listen and act (for years) about the absence of segment information and a chromosome browser. You’ve guessed it, that’s not mentioned.
  • That the WWII young man Draft Registration cards are now complete and online. Truthfully, I had no idea that the collection I was using online wasn’t complete, which I actually find very upsetting. Ancestry, assuming you actually are listening, how about warning people when they are using a partially complete collection, meaning what portion is and is not complete.
  • Listing content record additions planned for 2020 including the NYC birth index and other state and international records, some of which promise to be very useful. I wonder which states the statewide digitization projects pertain to and what that means, exactly.

OK, now we’re done with vendor announcements, so let’s just take a walk around the expo hall and see who and what we find. We might run into some people you know!

Walking Around

I sandwiched my walking around in-between my sessions. Not only did I present two RootsTech classes, but hosted the ToolMaker Meetup, attended two dinners, two lunches, announced The Million Mito Project, did two booth talks, one for FamilyTreeDNA and one for WikiTree, and I think something else I’ve forgotten about. Plus, all the planned and chance meetings which were absolutely wonderful.

Oh yes, and I attended a couple of sessions myself as an attendee and a few in the vendors booths too.

The great thing, or at least I think its great, is that most of the major vendors also have booth educational learning opportunities with presentation areas at their booths. Unfortunately, there is no centralized area where you can find out which booths have sessions, on what topics, when. Ditto for the Demo Theater.

Of course, that means booth presentations are also competing for your time with the regular sessions – so sometimes it’s really difficult to decide. It’s sort of like you’re awash in education for 4 days and you just can’t absorb enough. By Saturday, you’re physically and emotionally exhausted and you can’t absorb another iota, nor can you walk another step. But then you see someone you know and the pain in your feet is momentarily forgotten.

Please note that there were lots of other people that I saw and we literally passed, hugged and waved, or we were so engrossed in conversation that I didn’t realize until later that I had failed to take the photo. So apologies to all of those people.

RootsTech 2020 Amy Mags

I gave a presentation in the WikiTree booth about how to incorporate WikiTree into your 52 Ancestor stories, both as a research tool and as a way to bait the hook for cousins. Not to mention seeing if someone has already tested for Y or mtDNA, or candidates to do so.

That’s Amy Johnson Crow who started the 52 Ancestors challenge years ago, on the left and Mags Gaulden who writes at Grandma’s Genes and is a WikiTree volunteer (not to mention MitoY DNA.) Amy couldn’t stay for the presentation, so of course, I picked on her in her absence! I suspect her ears were burning. All in a good way of course.

RootsTech 2020 Kevin Borland

Kevin Borland of Borland Genetics, swabbing at the Family Tree DNA  booth, I hope for The Million Mito Project.

RootsTech 2020 Daniel Horowitz

Daniel Horowitz with MyHeritage at the blogger dinner. How about that advertising on his laptop lid. I need to do that with DNAexplain. Wonder where I can get one of those decals custom made.

RootsTech 2020 Hasani

Hasani Carter who I know from Facebook and who I discovered volunteering in a booth at RootsTech. I love to see younger people getting involved and to meet people in person. Love your dreads, Hasani.

RootsTech 2020 Randy Seaver

Cousin Randy Seaver who writes at Genea-Musings, daily, and has for YEARS. Believe it or not, he has published more than 13,000 articles, according to the Lifetime Achievement Award presented by Dear Myrtle at RootsTech. What an incredible legacy.

If you don’t already subscribe (it’s free), you’re missing out. By the way, I discovered Randy was my cousin when I read one of his 52 Ancestors articles, recognizing that his ancestor and my ancestor had the same surname in the same place. He knew the connection. Those articles really work. Thanks Randy – it was so good to see you again.

RootsTech 2020 univ dundee

The University of Dundee booth, with Sylvia Valentine and Pat Whatley, was really fun.  As part of their history and genealogy curriculum (you an earn certificates, bachelors and masters degrees,) they teach paleography, which, in case you are unaware is the official word for deciphering “ancient handwriting.” You didn’t know that’s what you’d been doing did you?

RootsTech 2020 paleography

They provided ink and quills for people to try their own hand.

RootsTech 2020 Paleography 2

The end of the feather quill pen is uneven and scratchy. Pieces separate and splatter ink. You can’t “write,” you draw the letters very, very carefully and slowly. I must say, my “signature” is more legible than normal.

Rootstech 2020 scribe

I now have a lot more empathy for those scribes. It’s probably a good thing that early records are no worse than they are.

RootsTech 2020 Gilad Japhet

Gilad Japhet at the MyHeritage luncheon. I have attended other vendor sponsored (but paid by the attendee) lunches at RootsTech in the past and found them disappointing, especially for the cost. Now MyHeritage is the only sponsored lunch that I attend and I always enjoy it immensely. Yes, I arrived early and sat dead center in front.

I also have a confession to make – I was so very excited about being contacted by Mary Tan Hai’s son that I was finishing colorizing the photos part of the time while Gilad was talking. (I did warn him so he didn’t think I was being rude.) But it’s HIS fault because he made these doggone photos so wonderful – and let’s just say time was short to get the photos to Mary’s family. You can read this amazing story, here.

Gilad always shares part of his own personal family story, and this time was no different. He shared that his mother is turning 85 soon and that the family, meaning her children and grandchildren all teamed up to make her a lovely video. Trust me, it was and made us all smile.

I’m so grateful for a genealogy company run by a genealogist. Speaking of that, Gilad’s mother was a MyHeritage board member in the beginning. That beginning also included a story about how the MyHeritage name came to be, and how Gilad managed to purchase the domain for an unwilling seller. Once again, by proxy, his mother entered into the picture. If you have the opportunity to hear Gilad speak – do – you won’t be disappointed. You’ll hear him speak for sure if you attend MyHeritage LIVE in Tel Aviv this October.

RootsTech 2020 Paul Woodbury

Paul Woodbury who works for Legacy Tree Genealogists, has a degree in both family history and genetics from BYU. He’s standing with Scott Fisher (left). Paul’s an excellent researcher and the only way you can put him to work on your brick wall is through Legacy Tree Genealogists. If you contact them for a quote, tell them I referred you for a $50 discount.

Rootstech 2020 Toolmaker meetup

From The ToolMaker’s Meetup, at far left, Jonny Pearl of DNAPainter, behind me, Dana Leeds who created The Leeds Method, and at right, Rob Warthen, the man behind DNAGedcom. Thanks to Michelle Patient for the photo.

RootsTech 2020 Toolmaker meetup 2

The meetup was well received and afforded people an opportunity to meet and greet, ask questions and provide input.

RootsTech 2020 Campbell baby

In fact, we’re working on recruiting the next generation. I have to say, my “grandma” kicked in and I desperately wanted to hold this beautiful baby girl. What a lovely family. Of course, when I noticed the family name is Campbell, we had a discussion of a different nature, especially since my cousin, Kevin Campbell and I were getting ready to have lunch. We will soon find out if Heidi’s husband is our relative, which makes her and her daughter our relative too!

Rootstech 2020 Kevin Campbell

It was so much fun to sit and develop a research plan with Kevin Campbell. We’re related, somehow on the Campbell line – we just have to sort out when and where.

Bless Your Heart

The photo I cherish most from RootsTech 2020 is the one that’s not pictured here.

A very special gentleman told me, when I asked if we could take a picture together, after he paid me the lovely compliment of saying that my session was the best one he had ever attended, that he doesn’t “do pictures.” Not in years, literally. I thought he was kidding at first, but he was deadly seriously.

The next day, I saw him again a couple of times and we shares stories. Our lives are very different, yet they still intersected in amazing ways. I feel like I’ve known him forever.

Then on the last day, he attended my Million Mito presentation and afterwards came up and told me a new story. How he had changed his mind, and what prompted the change of heart. Now we have a wonderful, lovely photo together which I will cherish all the more because I know how special it is – and how wonderful that makes me feel.

To my friend – you know who you are – thank you! You have blessed my heart. Bless yours😊

The Show Floor

I think I actually got all the way through the show floor, but I’m not positive. In some cases, the “rows” weren’t straight or had dead ends due to large booths, and it was possible to miss an area. I didn’t get to every booth I wanted to. Some were busy, some I simply forgot to take photos.

RootsTech 2020 everything

You can literally find almost anything.

I focused on booths related to genetic genealogy, but not exclusively.

RootsTech 2020 DNAPainter

Jonny Perl and the DNAPainter booth. I’ve written lots of articles, here, about using DNAPainter, one of my very favorite tools.

RootsTech 2020 Rootstech store

The RootsTech store was doing a brisk business.

RootsTech 2020 DNA basics

The RootsTech show area itself had a DNA Basics area which I thought was brilliant in its simplicity.

Inheritance is show by jellybeans.

Rootstech 2020 dNA beans

Put a cup under the outlet and pull the lever.

Rootstech 2020 beans in cup

How many of which color you receive in your cup is random, although you get exactly the same number from the maternal and paternal side.

Now you know I wanted to count these, don’t you?

Rootstech 2020 JellyGenes

And they are of course, called, “JellyGenes.” Those must be deletions still laying in the bin.

RootsTech 2020 Wikitree

WikiTree booth and volunteers. I love WikiTree – it’s “one great tree” is not perfect but these are the people, along with countless others that inject the “quality” into the process.

RootsTech 2020 MitoYDNA

MitoYDNA with Kevin Borland standing in front of the sign.

RootsTech 2020 Crossley

This amazing artist whose name I didn’t get. I was just so struck by her work, painting her ancestor from the picture on her phone.

RootsTech 2020 painter

I wish I was this talented. I would love to have some of my ancestor’s painted. Hmm….

Rootstech 2020 GeneaCreations

Jeanette at GeneaCreations makes double helix zipper pulls, along with lots of other DNA bling, and things not so blingy for men. These are just SOOO cool.

RootsTech 2020 zipper pull

I particularly love my “What’s Your Haplogroup” t-shirt and my own haplogroup t-shirt. Yes, she does custom work. What’s your haplogroup? You can see those goodies here.

Around the corner, I found CelebrateDNA.

RootsTech 2020 Celebrate DNA

Is that a Viking wearing a DNA t-shirt?

Rootstech 2020 day of the dead

CelebrateDNA has some very cool “Day of the Dead” bags, t-shirts and mouse pads, in addition to their other DNA t-shirts. I bought an “Every day is Day of the Dead for Genealogists” mouse pad which will live permanently in my technology travel bag. You can see their other goodies, here.

RootsTech 2020 skeleton

Hey, I think I found a relative. Can we DNA test to see?

Rootstech 2020 Mayflower replica

The Mayflower Society had a fun booth with a replica model ship.

RootsTech 2020 Mayflower passengers

Along with the list of passengers perched on a barrel of the type that likely held food or water for the Pilgrims.

RootsTech 2020 Webinar Marathon

Legacy Family Tree Webinars is going to have a 24-hour Genealogy Webinar Marathon March 12-13. So, who is going to stay up for this?Iit’s free and just take a look at the speakers, and topics, here. I’m guessing lots of people will take advantage of this opportunity. You can also subscribe for more webinars, here.

On March 4th, I’m presenting a FREE webinar, “3 Genealogy DNA Case Studies and How I Solved Them,” so sign up and join in!

Rootstech 2020 street art

Food at RootsTech falls into two categories. Anything purchased in the convention center meaning something to stave off starvation, and some restaurant with friends – the emphasis being on friends.

A small group went for pizza one evening when we were too exhausted to do anything else. Outside I found this interesting street art – and inside Settebello Pizzeria Napoletana I had the best Margarita Pizza I think I’ve ever had.

Then, as if I wasn’t already stuffed to the gills, attached through a doorway in the wall is Capo Gelateria Italiana, creators of artisan gelato. I’ve died and gone to heaven. Seriously, it’s a good thing I don’t live here.

Rootstech 2020 gelatto

Who says you can’t eat ice cold gelato in the dead of winter, outside waiting for the Uber, even if your insides are literally shivering and shaking!! It was that good.

This absolutely MUST BE a RootsTech tradition.

Rootstech 2020 ribbons

That’s it for RootsTech 2020. Hope you’ve enjoyed coming along on this virtual journey and that you’ve found something interesting, perhaps a new hint or tool to utilize.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Y DNA: Part 2 – The Dictionary of DNA

After my introductory article, Y DNA: Part 1 – Overview, I received several questions about terminology, so this second article will be a dictionary or maybe more like a wiki. Many terms about Y DNA apply to mitochondrial and autosomal as well.

Haplogroup – think of your Y or mitochondrial DNA haplogroup as your genetic clan. Haplogroups are assigned based on SNPs, specific nucleotide mutations that change very occasionally. We don’t know exactly how often, but the general schools of thought are that a new SNP mutation on the Y chromosome occurs someplace between every 80 and 145 years. Of course, those would only be averages. I’ve as many as two mutations in a father son pair, and no mutations for many generations.

Dictionary haplogroup.png

Y DNA haplogroups are quite reliably predicted by STR results at Family Tree DNA, meaning the results of a 12, 25, 37, 67 or 111 marker tests. Haplogroups are only confirmed or expanded from the estimate by SNP testing of the Y chromosome. Predictions are almost always accurate, but only apply to the upper level base haplogroups. I wrote about that in the article, Haplogroups and the Three Brothers.

Haplogroups are also estimated by some companies, specifically 23andMe and LivingDNA who provide autosomal testing. These companies estimate Y and mitochondrial haplogroups by targeting certain haplogroup defining locations in your DNA, both Y and mitochondrial. That doesn’t mean they are actually obtaining Y and mtDNA information from autosomal DNA, just that the chip they are using for DNA processing targets a few Y and mitochondrial locations to be read.

Again, the only way to confirm or expand that haplogroup is to test either your Y or mitochondrial DNA directly. I wrote about that in the article Haplogroup Comparisons Between Family Tree DNA and 23andMe and Why Different Haplogroup Results?.

Nucleotide – DNA is comprised of 4 base nucleotides, abbreviated as T (Thymine), A (Adenine), C (Cytosine) and G (Guanine.) Every DNA address holds one nucleotide.

In the DNA double helix, generally, A pairs with T and C pairs with G.

Dictionary helix structure.png

Looking at this double helix twist, green and purple “ladder rungs” represent the 4 nucleotides. Purple and green and have been assigned to one bonding pair, either A/T or C/G, and red and blue have been assigned to the other pair.

When mutations occur, most often A or T are replaced with their paired nucleotide, as are C and G. In this example, A would be replaced with T and vice versa. C with G and vice versa.

Sometimes that’s not the case and a mutation occurs that pairs A with C or G, for example.

For Y DNA SNPs, we care THAT the mutation occurred, and the identity of the replacing nucleotide so we know if two men match on that SNP. These mutations are what make DNA in general, and Y DNA in particular useful for genealogy.

The rest of this nucleotide information is not something you really need to know, unless of course you’re playing in the jeopardy championship. (Yes, seriously.) The testing lab worries about these things, as well as matching/not matching, so you don’t need to.

SNP – Single nucleotide polymorphism, pronounced “snip.” A mutation that occurs when the nucleotide typically found at a particular location (the ancestral value) is replaced with one of the other three nucleotides (the derived value.) SNPs that mutate are called variants.

In Y DNA, after discovery and confirmation that the SNP mutation is valid and carried by more than one man, the mutation is given a name something like R-M269 where R is the base haplogroup and M269 reflects the lab that discovered and named the SNP (M = Peter Underhill at Stanford) and an additional number, generally the next incremental number named by that lab (269).

Some SNPs were discovered simultaneously by different labs. When that happens, the same mutation in the identical location is given different names by different organizations, resulting in multiple names for the name mutation in the same DNA location. These are considered equivalent SNPs because they are identical.

In some cases, SNPs in different locations seem to define the same tree branching structure. These are functionally equivalent until enough tests are taken to determine a new branching structure, but they are not equivalent in the sense that the exact same DNA location was named by two different labs.

Some confusion exists about Y DNA SNP equivalence.

Equivalence Confusion How This Happens Are They the Same?
Same exact DNA location named by two labs Different SNP names for the same DNA location, named by two different labs at about the same time Exactly equivalent because SNPs are named for the the exact same DNA locations, define only one tree branch ever
Different DNA locations and SNP names, one current tree branch Different SNPs temporarily located on same branch of  the tree because branches or branching structure have not yet been defined When enough men test, different branches will likely be sorted out for the non-equivalent SNPs pointing to newly defined branch locations that divide the tree or branch

Let’s look at an example where 4 example SNPs have been named. Two at the same location, and two more for two additional locations. However, initially, we don’t know how this tree actually looks, meaning what is the base/trunk and what are branches, so we need more tests to identify the actual structure.

Dictionary SNPs before branching.png

The example structure of a haplogroup R branch, above, shows that there are three actual SNP locations that have been named. Location 1 has been given two different SNP names, but they are the same exact location. Duplicate names are not intentionally given, but result from multiple labs making simultaneous discoveries.

However, because we don’t have enough information yet, meaning not enough men have tested that carry at least some of the mutations (variants,), we can’t yet define trunks and branches. Until we do, all 4 SNPs will be grouped together. Examples 1 and 2 will always be equivalent because they are simply different names for the exact same DNA location. Eventually, a branching structure will emerge for Examples 1/2, Example 3 and Example 4..

Dictionary SNP branches.png

Eventually, the downstream branches will be defined and split off. It’s also possible that Example 4 would be the trunk with Examples 1 and 2 forming a branch and Example 3 forming a branch. Branching tree structure can’t be built without sufficient testers who take the NGS tests, specifically the Big Y-700 which doesn’t just confirm a subset of existing named SNPs, but confirms all named SNPs, unnamed variants and discovers new previously-undiscovered variants which define the branching tree structure.

SNP testing occurs in multiple ways, including:

  • NGS, next generation sequencing, tests such as the Big Y-700 which scans the gold standard region of the Y chromosome in order to find known SNPs at specific locations, mutations (variants) not yet named as SNPs, previously undiscovered variants and minimally 700 STR mutations.
  • WGS, whole genome sequencing although there currently exist no bundled commercial tools to separate Y DNA information from the rest of the genome, nor any comparison methodology that allows whole genome information to be transferred to Family Tree DNA, the only commercial lab that does both testing and matching of NGS Y DNA tests and where most of the Y DNA tests reside. There can also be quality issues with whole genome sequencing if the genome is not scanned a similar number of times as the NGS Y tests. The criteria for what constitues a “positive call” for a mutation at a specific location varies as well, with little standardization within the industry.
  • Targeted SNP testing of a specific SNP location. Available at Family Tree DNA  and other labs for some SNP locations, this test would only be done if you are looking for something very specific and know what you are doing. In some cases, a tester will purchase one SNP to verify that they are in a particular lineage, but there is no benefit such as matching. Furthermore, matching on one SNP alone does not confirm a specific lineage. Not all SNPs are individually available for purchase. In fact, as more SNPs are discovered at an astronomical rate, most aren’t available to purchase separately.
  • SNP panels which test a series of SNPs within a certain haplogroup in order to determine if a tester belongs to a specific subclade. These tests only test known SNPs and aren’t tests of discovery, scanning the useable portion of the Y chromosome. In other words, you will discern whether you are or are not a member of the specific subclades being tested for, but you will not learn anything more such as matching to a different subclade, or new, undiscovered variants (mutations) or subclades.

Subclade – A branch of a specific upstream branch of the haplotree.

Dictionary R.png

For example, in haplogroup R, R1 and R2 are subclades of haplogroup R. The graphic above conveys the concept of a subclade. Haplogroups beneath R1 and R2, respectively, are also subclades of haplogroup R as well as subclades of all clades above them on the haplotree.

Older naming conventions used letter number conventions such as R1 and R2 which expanded to R1b1c and so forth, alternating letters and numbers.

Today, we see most haplogroups designated by the haplogroup letter and SNP name. Using that notation methodology, R would be R-M207, R1 would be R-M173 and R2 would be R-M479.

Dictionary R branches.png

ISOGG documents Y haplogroup naming conventions and their history, maintaining both an alphanumeric and SNP tree for backwards compatibility. The reason that the alphanumeric tree was obsoleted was because there was no way to split a haplogroup like R1b1c when a new branch appeared between R1b and R1b1 without renaming everything downstream of R1b, causing constant reshuffling and renaming of tree branches. Haplogroup names were becoming in excess of 20 characters long. Today, the terminal SNP is used as a person’s haplogroup designation. The SNP name never changes and the individual’s Y haplogroup only changes if:

  • Further testing is performed and the tester is discovered to have an additional mutation further downstream from their current terminal SNP
  • A SNP previously discovered using the Big Y NGS test has since been named because enough men were subsequently discovered to carry that mutation, and the newly named SNP is the tester’s terminal SNP

Terminal SNP – It’s really not fatal. Used in this context, “terminal” means end of line, meaning furthest down and closest to present in the haplotree.

Depending on what level of testing you’ve undergone, you may have different haplogroups, or SNPs, assigned as your official “end of line” haplogroup or “terminal SNP” at various times.

If you took any of the various STR panel tests (12, 25, 37, 67 or 111) at Family Tree DNA your SNP was predicted based on STR matches to other men. Let’s say that prediction is R-M198. At that time, R-M198 was your terminal SNP. If you took the Big Y-700 test, your terminal SNP would almost assuredly change to something much further downstream in the haplotree.

If you took an autosomal test, your haplogroup was predicted based on a panel of SNPs selected to be informative about Y or mitochondrial DNA haplogroups. As with predicted haplogroups from STR test panels, the only way to discover a more definitive haplogroup is with further testing.

If you took a Y DNA STR test, you can see by looking at your match list that other testers may have a variety of “terminal SNPs.”

Dictionary Y matches.png

In the above example, the tester was originally predicted as R-M198 but subsequently took a Big Y test. His haplogroup now is R-YP729, a subclade of R-M198 several branches downstream.

Looking at his Y DNA STR matches to view the haplogroups of his matches, we see that the Y DNA predicted or confirmed haplogroup is displayed in the Y-DNA Haplogroup column – and several other men are M198 as well.

Anyone who has taken any type of confirming SNP test, whether it’s an individual SNP test, a panel test or the Big Y has their confirmed haplogroup at that level of testing listed in the Terminal SNP column. What we don’t know and can’t tell is whether the men whose Terminal SNP is listed as R-M198 just tested that SNP or have undergone additional SNP testing downstream and tested negative for other downstream SNPs. We can tell if they have taken the Big Y test by looking at their tests taken, shown by the red arrows above.

If the haplogroup has been confirmed by any form of SNP testing, then the confirmed haplogroup is displayed under the column, “Terminal SNP.” Unfortunately, none of this testers’ matches at this STR marker level have taken the Big Y test. As expected, no one matches him on his Terminal SNP, meaning his SNP farthest down on the tree. To obtain that level of resolution, one would have to take the Big Y test and his matches have not.

Dictionary Y block tree.png

Looking at this tester’s Big Y Block Tree results, we can see that there are indeed 3 people that match him on his terminal SNP, but none of them match him on the STR tests which generally produce genealogical matches closer in time. This suggests that these haplogroup level matches are a result of an ancestor further back in time. Note that these men also have an average of 5 variants each that are currently unnamed. These may eventually be named and become baby branches.

SNP matches can be useful genealogically, depending on when they occurred, or can originate further back in time, perhaps before the advent of surnames.

Our tester’s paternal ancestors migrated from Germany to Hungary in the late 1700s or 1800s, settling in a region now in Croatia, but he’s brick-walled on his paternal line due to record loss during the various wars.

The block tree reveals that the tester’s Big Y SNP match is indeed from Germany, born in 1718, with other men carrying this same terminal SNP originating in both Hungary and Germany even though they aren’t shown as a STR marker match to our tester.

You can read more about the block tree in the article, Family Tree DNA’s New Big Y Block Tree.

Haplotype – your individual values for results of gene sequencing, such as SNPs or STR values tested in the 12, 25, 37, 67 and 111 marker panels at Family Tree DNA. The haplotype for the individual shown below would be 13 for location DYS393, 26 for location DYS390, 16 for location DYS19, and so forth.

Dictionary panel 1.png

The values in a haplotype tend to be inherited together, so they are “unique” to you and your family. In this case, the Y DNA STR values of 13, 26, 16 and 10 are generally inherited together (unless a new mutation occurs,) passed from father to son on the Y chromosome. Therefore, this person’s haplotype is 13, 26, 16 and 10 for these 4 markers.

If this haplotype is rare, it may be very unique to the family. If the haplotype is common, it may only be unique to a much larger haplogroup reaching back hundreds or thousands of years. The larger the haplotype, the more unique it tends to be.

STR – Short tandem repeat. I think of a short tandem repeat as a copy machine or a stutter error. On the Y chromosome, the value of 13 at the location DYS393 above indicates that a series of DNA nucleotides is repeated a total of 13 times.

Indel example 1

Starting with the above example, let’s see how STR values accrue mutations.

STR example

In the example above, the value of CT was repeated 4 times in this DNA sequence, for a total of 5, so 5 would be the marker value.

Indel example 3

DNA can have deletions where the DNA at one or more locations is deleted and no DNA is found at that location, like the missing A above.

DNA can also have insertions where a particular value is inserted one or more times.

Dictionary insertion example.png

For example, if we know to expect the above values at DNA locations 1-10, and an insertion occurs between location 3 and 4, we know that insertion occurred because the alignment of the pattern of values expected in locations 4-10 is off by 1, and an unexpected T is found between 3 and 4, which I’ve labeled 3.1.

Dictionary insertion example 1.png

STR, or copy mutations are different from insertions, deletions or SNP mutations, shown below, where one SNP value is actually changed to another nucleotide.

Indel example 2

Haplotree – the SNP trees of humanity. Just a few years ago, we thought that there were only a few branches on the Y and mitochondrial trees of humanity, but the Big Y test has been a game changer for Y DNA.

At the end of 2019, the tree originating in Africa with Y chromosome Adam whose descendants populated the earth is comprised of more than 217,277 variants divided into 24,838 individual Y haplotree branches

A tree this size is very difficult to visualize, but you can take a look at Family Tree DNA’s public Y DNA tree here, beginning with haplogroup A. Today, there 25,880 branches, increased by more than 1000 branches in less than 3 weeks since year end. This tree is growing at breakneck speed as more men take the Big Y-700 test and new SNPs are discovered.

On the Public Y Tree below, as you expand each haplogroup into subgroups, you’ll see the flags representing the locations of where the testers’ most distant paternal ancestor lived.

Dictionary public tree.png

I wrote about how to use the Y tree in the article Family Tree DNA’s PUBLIC Y DNA Haplotree.

The mitochondrial tree can be viewed here. I wrote about to use the mitochondrial tree in the article Family Tree DNA’s Mitochondrial Haplotree.

Need Something Else?

I’ll be introducing more concepts and terms in future articles on the various Y DNA features. In the mean time, be sure to use the search box located in the upper right-hand corner of the blog to search for any term.

DNAexplain search box.png

For example, want to know what Genetic Distance means for either Y or mitochondrial DNA? Just type “genetic distance” into the search box, minus the quote marks, and press enter.

Enjoy and stay tuned for Part 3 in the Y DNA series, coming soon.

______________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by emailed each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

FamilyTreeDNA Thanksgiving Sale + New Comprehensive Health Report

FTDNA Thanksgiving.png

FamilyTreeDNA’s Thanksgiving Sale has begun. Almost everything is on sale. I don’t know about you, but I like to have all of my holiday planning and purchasing DONE before Thanksgiving. Some of the gifts I wanted for people this year are already sold out or backordered – but DNA testing is always available. The gift of history, and now of health too.

I wrote about the Big Y test and upgrades just a couple days ago, here, including the restructuring of the Big Y product resulting in a permanent $100 dollar reduction, in addition to sale prices.

FamilyTreeDNA has made a few product changes and introduced the new Tovana Health test.

I’ve included a special section of frequently asked questions (and answers) about tests and when upgrading does, and doesn’t, make sense.

Individual Tests

Let’s start with the sale prices for individual tests.

Test Sale Price Regular Price Savings
Family Finder (FF) $59 $79 $20
Y DNA 37 $99 $169 $70
Y DNA 111 *1 $199 $359 $160
Big Y-700 *2 $399 $649 $250
Mitochondrial Full Sequence *3 $139 $199 $60

*1 – You may notice that only the 37-marker and 111-marker tests are listed above. The 111-marker test was reduced to the 67-marker sale price, so, at least during the sale, the 67-marker test is not available. In other words, you get 111 markers for the price of 67.

*2 – The Big Y-700 test includes the Y 111 test plus another 589 STR markers (to equal or exceed 700 markers total) plus the SNP testing. You can read about the Big Y here.

*3 – The mitochondrial full sequence (FMS) aka mtFullSequence test is now the only mitochondrial DNA test available. I’m glad to see this change. The price of the mtFullSequence test has now dropped to the level of the less specific partial tests of yesteryear. Genealogists really need the granularity of the full test.

Bundles save even more – an additional $9 over purchasing the bundled items separately

Bundles

Test Sale Price Regular Price Savings
Family Finder + mtFullSequence $189 $278 $89
Family Finder + Y-37 $149 $248 $188
Family Finder + Y111 $249 $438 $189
Y-37 + mtFullSequence $229 $368 $139
Y-111 + mtFullSequence $329 $558 $229
Family Finder + Y-37 + mtFull $279 $447 $170
Family Finder + Y-111 + mtFull $379 $637 $258

When Does Upgrading Make Sense?

Y DNA Q&A

Q – If I have several Y DNA matches, will upgrading help?

A – If you need more specific or granular information to tease your line out of several matches – upgrading will help refine your matches and determine who is a closer match, assuming some of your matches have tested at a higher level.

Q – If I have tested at a lower level of STR markers and have no matches, will I have matches at a higher level?

A – Sometimes, but not usually. If your mutations just happen to fall in the lower panels, you may have matches on higher panels that allow for more mutations. If you do have matches on a higher test in this circumstance, the person may or may not have your surname. You can also join haplogroup and surname projects where thresholds are slightly lower for matching within projects.

If you don’t test, you’ll never know.

Q – If I have no matches on STR markers, meaning 12, 25, 37, 67 or 111, will upgrading to the Big Y be beneficial?

A – Possibly to probably – and here’s why, even if you don’t initially have matches:

  • The Big Y-700 provides multiple tools including matches at the SNP level, not just the STR level, so you are matched in two entirely different ways.
  • You may have same-surname matches at the SNP level that you do not have at the STR level which are further back in time, but still valuable and relevant to your family history.
  • You may have SNP matches that aren’t STR matches that are not your surname, but reflect your family history before the advent of surnames. These matches can tell you where your family came from before you can locate them in records. In fact, this is the ONLY way you can track your family before the advent of surnames.
  • Even if you don’t have matches, you’ll receive all of your SNP markers that allow you to view your results on the Block Tree, which is in essence a migration map back through time. You can read about the Block Tree here.
  • Your test contributes to building the phylotree – meaning the Y DNA tree of man – which benefits all genealogists. In just the first 10 months of 2019, 32,000 new SNPs have been placed on the tree, resulting in about 5,000 new individual branches. All because of Big Y-700
  • New people test every day and your DNA tests fish for you every minute of every day.

Mitochondrial DNA Q&A

If you’ve previously taken lower level mitochondrial HVR1 and HVR2 tests, now is the perfect time to upgrade.

Q – I have 5,000 <or fill in large number here> HVR1 level matches. Will upgrading reduce the number of matches to those that are more meaningful?

A – Absolutely! Your most genealogically relevant matches, meaning closest in time, are those that match you exactly at the full sequence level.

Q – I don’t know where my ancestor was from. Can a full sequence test help me?

A – Yes. You can use the Matches Map and see where the ancestors of your closest matches were from. That’s a huge hint. You can also utilize your haplogroup, which, in some instances, will point to a specific continent such as Africa, Europe, Asia or Native American and Jewish populations.

Q – If I have no matches at the HVR1 or HVR2 level? Will an upgrade help me?

A – Possibly. Both the HVR1 and HVR2 (now obsolete) tests only allowed for one mutation difference to be considered a match. The full sequence allows for many more differences. If you were unlucky and your mutations just happened to fall in the HVR1 or HVR2 levels, it would prevent a match which will occur at a higher level. Either way, you’ll receive information about your rare mutations – which may well explain why you don’t have matches (yet)! You’ll also receive a full haplogroup which will be useful, allowing you to use the mitochondrial haplotree to track back in time, which I wrote about here.

There are so many ways to obtain useful information. I wrote a step-by-step guide to using mitochondrial DNA, here.

Upgrade Options

Please note that if you are considering an upgrade, it maybe beneficial to upgrade to the maximum test available for either the Y or mitochondrial DNA, especially if you cannot obtain more of the sample. Of course, if it’s your own sample, you can always swab again, but others can’t.

Every time a vial is opened for testing, more DNA is used, until there is none left. Additionally, DNA degrades with time, depending on the quality of the original scraping and the amount of bacteria in the sample. Generally, the sample is viable for at least 5 years, but not always. Some older samples remain viable for many years. There’s no way to know in advance.

Test Sale Price Regular Price Savings
Y-12 to Y-37 $79 $109 $30
Y-12 to Y-67 $149 $199 $50
Y-12 to Y-111 $169 $359 $190
Y-25 to Y-37 $49 $59 $10
Y-25 to Y-67 $119 $159 $40
Y-25 to Y-111 $149 $269 $120
Y-37 to Y-67 $69 $109 $40
Y-37 to Y-111 $119 $228 $109
Y-67 to Y-111 $69 $99 $30
Y-12 to Big Y-700 $359 $629 $270
Y-25 to Big Y-700 $349 $599 $250
Y-37 to Big Y-700 $319 $569 $250
Y-67 to Big Y-700 $259 $499 $240
Y-111 to Big Y-700 $229 $499 $270
Big Y-500 to Big Y-700 $189 $249 $60
HVR1 to mtFullSequence $99 $159 $60
mtDNA Plus to mtFullSequence $99 $159 $60

Tovana – A New Limited Availability Exome Medical Report 

Recently, FamilyTreeDNA did a limited announcement about a medically supervised health exome health test for a subset of customers, specifically customers who:

  • Don’t live in Pennsylvania, New York, California or Maryland, due to state law restrictions.
  • Took the Family Finder test since October 2015 – meaning no transfers. The Family Finder test is used in conjunction with the exome chip to generate the customer report.

If you took the Family Finder test before October 2015, you are eligible but the rollout is being done in stages and your kit will be eligible in December.

This Tovana Genome Report is focused towards people who are health and wellness conscious. Meaning those who don’t want to die a premature death that might be preventable.

All genetic health tests focus on predispositions. You may or may not develop the condition, with a few notable exceptions, but forewarned is forearmed.

You might, however, be VERY interested in intervening, one way or another, BEFORE you develop potentially life-threatening conditions, or taking preventative actions to avoid developing those conditions. At the very least, you can be aware and monitor your health to catch them early, when they are treatable, manageable or potentially curable.

It only takes one, ONE, terrifying experience to convince you that health testing might make a difference.

Once you’re embroiled in that health nightmare, there is no going back in time to take a test and enact preventative measures.

My mother might still be with us had we known she was susceptible to blood clots. My sister had metastatic breast cancer.

Let me show you something from a Tovana report.

FTDNA Tovana.png

This portion of a page from an actual customer report shows this individual is positive for a mutation for a clotting disorder where clots are formed that can cause strokes, pulmonary embolisms and DVTs (deep vein thrombosis).

I’d give anything, any amount of money – to have had advance warning so we could have watched my mother more vigilantly and taken simple proactive measures that might have prevented her stroke and resulting death.

What would another 10 or 15 years with her have been worth?

We could have and would have discussed this with her doctors and asked about preventative measures, like taking aspirin or other measures as indicated by her health and other medications. (Please do not self-diagnose or medicate without discussing with your physician as drugs interact in ways patients may not be aware of.)

Compared to hospital (or funeral) bills, not to mention the sheer agony…the cost of this test at $799 is irrelevant. What better way to say, “I love you”?

I would pick up bottles by the side of the road, if I needed to, to be able to purchase this test for my Mom 15 years ago. Sadly, this type of testing wasn’t available then, but it is now.

Ignorance is not bliss.

I want to know if I or my children carry these predispositions so that we can take action.

The Tovana Test is Different

The Tovana test is different from and much more comprehensive than the tests offered by Ancestry, MyHeritage and 23andMe that utilize only your autosomal genealogy test.

To begin with, the Tovana test is run on an exome chip that tests over 50 million locations in addition to the 700,000+ locations tested in the Family Finder test.

The completed report that I viewed was 128 pages in length, with lots of graphics. This  explain explains autosomal dominant inheritance.

FTDNA Tovana autosomal dominant.png

The report is very user-friendly, including drawings, a risk-meter for polygenic conditions that involve more than a simple yes or no answer, explanations and recommendations for each condition reported.

FTDNA Tovana risk meter.png

And yes, in case you’re wondering, the report also includes the fun traits like ear wax and such that you can discuss if you’re bored beyond imagination at a cocktail party.

Each report is centered around and tailored to the family information you provide, such as known Jewish heritage, or known cases of cancer.

FTDNA Tovana Table of Contents.png

Comparisons

I’ve compiled a chart with some comparison details – although this test is in a class by itself where the other three tests compete directly with each other.

I’ve personally taken the other tests, except for the Ancestry upgrade. I also took an early exome test a few years ago, but THAT ONE CAME WITH NO REPORT OR EXPLANATIONS.

  23andme Ancestry Health Core MyHeritage Family Tree DNA Tovana Test
# DNA locations tested About 700,000 About 700,000 About 700,000 >50 million plus the 700,000 in the Family Finder test
# Results Provided to Customer 78 health + polygenic diabetes +34 traits such as freckles 84 88+ polygenic heart, diabetes, breast cancer 3000+ including many polygenic diseases including heart, diabetes & 35 genes associated with breast cancer
Physician Oversight No PWNHealth PWNHealth Tovana
Personal Clinical Analysis No No No Yes
Analysis, Interpretation by board certified geneticist No No No Yes
Genetic Counseling No Yes, limited Yes, limited $50 for 30-minute session
Updates Yes, episodic depending on test level, may not receive, sometimes have to purchase new test No, one time results only Yes, free for first year then with $99 per year subscription Not at this time, but under consideration
Cost – Initial Purchase $149 upgrade only after DNA test $199 new purchase -combined health plus ancestry $799 introductory price
Upgrade if Already Tested No $49 upgrade if have already tested $120 to upgrade if already tested, plus $99 year subscription after year 1 Not relevant
Requirements None This is an upgrade from an existing Ancestry test Must test with MyHeritage, not a transfer kit

Are You Eligible?

To see if you are one of the customers eligible to purchase the Tovane Genome Report, sign in, here, and then check your personal page under “Additional Features” to see if the Tovana Genome Report is available. If so, click for more information or to order.

FTDNA Tovana order.png

You’ve probably guessed what my family is receiving for Christmas😊. No one else is going to suffer from or die from something preventable if I can help it.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Big Y News and Stats + Sale

I must admit – this past January when FamilyTreeDNA announced the Big Y-700, an upgrade from the Big Y-500 product, I was skeptical. I wondered how much benefit testers would really see – but I was game to purchase a couple upgrades – and I did. Then, when the results came back, I purchased more!

I’m very pleased to announce that I’m no longer skeptical. I’m a believer.

The Big Y-700 has produced amazing results – and now FamilyTreeDNA has decoupled the price of the BAM file in addition to announcing substantial sale prices for their Thanksgiving Sale.

I’m going to discuss sale pricing for products other than the Big Y in a separate article because I’d like to focus on the progress that has been made on the phylogenetic tree (and in my own family history) as a result of the Big Y-700 this year.

Big Y Pricing Structure Change

FamilyTreeDNA recently anounced some product structure changes.

The Big Y-700 price has been permanently dropped by $100 by decoupling the BAM file download from the price of the test itself. This accomplishes multiple things:

  • The majority of testers don’t want or need the BAM file, so the price of the test has been dropped by $100 permanently in order to be able to price the Big Y-700 more attractively to encourage more testers. That’s good for all of us!!!
  • For people who ordered the Big Y-700 since November 1, 2019 (when the sale prices began) who do want the BAM file, they can purchase the BAM file separately through the “Add Ons and Upgrades” page, via the “Upgrades” tab for $100 after their test results are returned. There will also be a link on the Big Y-700 results page. The total net price for those testers is exactly the same, but it represents a $100 permanent price drop for everyone else.
  • This BAM file decoupling reduces the initial cost of the Big Y-700 test itself, and everyone still has the option of purchasing the BAM file later, which will make the Big Y-700 test more affordable. Additionally, it allows the tester who wants the BAM file to divide the purchase into two pieces, which will help as well.
  • The current sale price for the Big Y-700 for the tester who has taken NO PREVIOUS Y DNA testing is now just $399, formerly $649. That’s an amazing price drop, about 40%, in the 9 months since the Big Y-700 was introduced!
  • Upgrade pricing is available too, further down in this article.
  • If you order an upgrade from any earlier Big Y to the Big Y-700, you receive an upgraded BAM file because you already paid for the BAM file when you ordered your initial Big Y test.
  • The VCF file is still available for download at no additional cost with any Big Y test.
  • There is no change in the BAM file availability for current customers. Everyone who ordered before November 1, 2019 will be able to download their BAM file as always.

The above changes are permanent, except for the sale price.

2019 has been a Banner Year

I know how successful the Big Y-700 has been for kits and projects that I manage, but how successful has it been overall, in a scientific sense?

I asked FamilyTreeDNA for some stats about the number of SNPs discovered and the number of branches added to the Y phylotree.

Drum roll please…

Branches Added This Year Total Tree Branches Variants Added to Tree This Year Total Variants Added to Tree
2018 6,259 17,958 60,468 132.634
2019 4,394 22.352 32,193 164,827

The tests completed in 2019 are only representative for 10 months, through October, and not the entire year.

Haplotree Branches

Not every SNP discovered results in a new branch being added to the haplotree, but many do. This chart shows the number of actual branches added in 2018 and 2019 to date.

Big Y 700 haplotree branches.png

These stats, provided by FamilyTreeDNA, show the totals in the bottom row, which is a cumulative branch number total, not a monthly total. At the end of October 2019, the total number of individual branches were 22,352.

Big Y 700 haplotree branches small.png

This chart, above, shows some of the smaller haplogroups.

Big Y 700 haplotree branches large.png

This chart shows the larger haplogroups, including massive haplogroup R.

Haplotree Variants

The number of variants listed below is the number of SNPs that have been discovered, named and placed on the tree. You’ll notice that these numbers are a lot larger than the number of branches, above. That’s because roughly 168,000 of these are equivalent SNPs, meaning they don’t further branch the tree – at least not yet. These 168K variants are the candidates to be new branches as more people test and the tree can be further split.

Big Y 700 variants.png

These numbers also don’t include Private Variants, meaning SNPs that have not yet been named.

If you see Private Variants listed in your Big Y results, when enough people have tested positive for the same variant, and it makes sense, the variants will be given a SNP name and placed on the tree.

Big Y 700 variants small.png

The smaller haplogroups variants again, above, followed by the larger, below.

Big Y 700 variants large.png

Upgrades from the Big Y, or Big Y-500 to Big Y-700

Based on what I see in projects, roughly one third of the Big Y and Big Y-500 tests have upgraded to the Big Y-700.

For my Estes line, I wondered how much value the Big Y-700 upgrade would convey, if any, but I’m extremely glad I upgraded several kits. As a result of the Big Y-700, we’ve further divided the sons of Abraham, born in 1747. This granularity wasn’t accomplished by STR testing and wasn’t accomplished by the Big Y or Big Y-500 testing alone – although all of these together are building blocks. I’m ECSTATIC since it’s my own ancestral line that has the new lineage defining SNP.

Big Y 700 Estes.png

Every Estes man descended from Robert born in 1555 has R-BY482.

The sons of the immigrant, Abraham, through his father, Silvester, all have BY490, but the descendants of Silvester’s brother, Robert, do not.

Moses, son of Abraham has ZS3700, but the rest of Abraham’s sons don’t.

Then, someplace in the line of kit 831469, between Moses born in 1711 and the present-day tester, we find a new SNP, BY154784.

Big Y 700 Estes block tree.png

Looking at the block tree, we see the various SNPs that are entirely Estes, except for one gentleman who does not carry the Estes surname. I wrote about the Block Tree, here.

Without Big Y testing, none of these SNPs would have been found, meaning we could never have split these lines genealogically.

Every kit I’ve reviewed carries SNPs that the Big Y-700 has been able to discern that weren’t discovered previously.

Every. Single. One.

Now, even someone who hasn’t tested Y DNA before can get the whole enchilada – meaning 700+ STRs, testing for all previously discovered SNPs, and new branch defining SNPs, like my Estes men – for $399.

If a new Estes tester takes this test, without knowing anything about his genealogy, I can tell him a great deal about where to look for his lineage in the Estes tree.

Reduced Prices

FamilyTreeDNA has made purchasing the Big Y-700 outright, or upgrading, EXTREMELY attractive.

Test Price
Big Y-700 purchase with no previous Y DNA test

 

$399
Y-12 upgrade to Big Y-700 $359
Y-25 upgrade to Big Y-700 $349
Y-37 upgrade to Big Y-700 $319
Y-67 upgrade to Big Y-700 $259
Y-111 upgrade to Big Y-700 $229
Big Y or Big Y-500 upgrade to Big Y-700 $189

Note that the upgrades include all of the STR markers as yet untested. For example, the 12-marker to Big Y-700 includes all of the STRs between 25 and 111, in addition to the Big Y-700 itself. The Big Y-700 includes:

  • All of the already discovered SNPs, called Named Variants, extending your haplogroup all the way to the leaf at the end of your branch
  • Personal and previously undiscovered SNPs called Private Variants
  • All of the untested STR markers inclusive through 111 markers
  • A minimum of a total of 700 STR markers, including markers above 111 that are only available through Big Y-700 testing

With the refinements in the Big Y test over the past few years, and months, the Big Y is increasingly important to genealogy – equally or more so than traditional STR testing. In part, because SNPs are not prone to back mutations, and are therefore more stable than STR markers. Taken together, STRs and SNPs are extremely informative, helping to break down ancestral brick walls for people whose genealogy may not reach far back in time – and even those who do.

If you are a male and have not Y DNA tested, there’s never been a better opportunity. If you are a female, find a male on a brick wall line and sponsor a scholarship.

Click here to order or upgrade!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Big Y-500 STR Matching

Family Tree DNA recently introduced Big Y-500 STR matching for men who have taken  the Big Y-500 test. This is in addition to the SNP results and matching. If you’d like an introduction or definition of the terms STR and SNP, you can read about SNPs and STRs here.

Beginning in April 2018, Family Tree DNA included an additional 379+ STR markers for free for Big Y testers as a bonus, meaning for free, including all earlier testers.

While the Big Y-500 STR marker values have been included in customers’ results for several months, unless you contacted your matches directly, you didn’t know how many of those additional markers above 111 you matched on – until now.

If you haven’t taken the Big Y test, the article Why the Big Y Test? will explain why you might want to. In addition to the Big Y results, which refine your haplogroup and scan the entire gold standard region of the Y chromosome looking for SNPs, you’ll also receive at least 389 Y STR markers above the 111 STR panel for total of at least 500, for free – which is why the name of the Big Y test was changed to the Big Y-500. If you haven’t tested at the 111 marker level, don’t worry about that because the cost of the upgrade is bundled in the price of the Big Y-500 test. Click here to sign in to your account and then click on the blue upgrade button to view pricing.

Big Y-500 STR Matching

To view your matches and values above the traditional 111 makers, sign on to your account and click on Y DNA matches.

You’ll see the following display.

Y500 matches

The column “Big Y-500 STR Differences” is new. If you have not taken the Big Y-500 test, you won’t see this column.

If you have taken the Big Y-500, you’ll see results for any other man that you match who has taken the Big Y-500 test. In this example, 5 of this person’s matches have also taken the Big Y-500 test.

What Are Big Y-500 STR Differences?

The “Big Y-500 STR Differences” column values are expressed in the format “4 of 441” or something similar.

The first number represents the number of non-matching locations you have above 111 markers – in this case, 4. In the csv download file, this value is displayed in the “Big Y-500 Differences” column.

The second number represents the total number of markers above 111 that have a value for both of you – in this case, 441. In other words, you and the other man are being compared on 441 marker locations. In the csv download file, this value is displayed in the “Big Y-500 Compared” column.

Because the markers above 111 are processed using NGS (next generation sequencing) scan technology, virtually every kit will have some marker locations that have no-calls, meaning the test doesn’t read reliably at that location in spite of being scanned several times.

It’s more difficult to read STRs accurately using NGS scan technology, as compared to SNPs. SNPs are only one position in length, so only one position needs to be read correctly. STRs are repeated of a sequence of nucleotides. A 20 repeat sequence could consist of 20 copies of a series of 4 nucleotides, so a total of 80 positions in a row would need to be successfully read several times.

Let’s take a look at how matching works.

How Does Big Y-500 STR Matching Work?

If you have a total of 441 markers that read reliably, but your match has a total of 439 that produced results, the maximum number of markers possible to share would be 439. If you both have no calls on different marker locations, you would match on fewer than 439 locations. Here’s an example just using 9 fictitious markers.

Y500 match example

Based on the example above, we can see that the red cells can’t match because they experienced no-calls, and the yellow cells do have results, but don’t match.

Y500 summary

New Filter

There’s also a new filter option so you can view only matches that have taken the Big Y-500 test.

Y500 filter

Let’s look at some of the questions people have been asking.

Frequently Asked Questions

Question 1: Are the markers above 111 taken into account in the Genetic Distance column?

Answer: No, the values calculated in the genetic distance column are the number of mismatches for the marker level you are viewing using a combination of the step-wise and infinite alleles mutation models. (Stay with me here.)

In our example, we’re viewing the 111 marker level, so the genetic distance tells you the number of mismatches at 111 markers. If we were viewing the 67 marker level, then the genetic distance would be for 67 markers.

The number of mismatches above 111 markers shows separately in the “Big Y-500 STR Differences” column and is calculated using the infinite alleles model, meaning every mutation is counted as one difference. You can read more about genetic distance in the article, Concepts – Genetic Distance.

The good news is that you don’t need to calculate anything, but you may want to understand how the markers are scored and how the genetic distance is calculated. If so, go ahead and read question 2. If not, skip to question 3.

Question 2: What’s the difference between the step-wise model and the infinite alleles model?

Answer: The step-wise model assumes that a mutated value on a particular marker of multiple steps, meaning a difference between a 28 for one man and a 30 for another is a result of two separate mutation events that happened at different times, so counted as 2 mutations, 2 steps, so a genetic distance of 2.

However, this doesn’t work well with palindromic markers, explained here, where multi-copy markers, such as DYS464, often mutate more than one step at a time.

Counting multiple mathematical differences as only one mutation event is called the infinite alleles model. For example, a dual copy marker that has a value of 15-16 could mutate to 15-18 in one step and would be counted as one mutation event, and one difference and a genetic distance of one using the infinite alleles model. The same event would count as 2 mutation events (steps) and a genetic distance of 2 using the step-wise mutation model. In this article, I explain which markers are calculated using which methodology.

Another good infinite alleles example is when a location loses it’s DNA at a marker entirely. If the marker value for most men being compared is 10 and is being compared to a  person with no DNA at that location, resulting in a null value of 0 (which is not the same as a no-call which means the location couldn’t be read successfully), the mutation event happened in one step, and the difference should be counted as one event, one step and a genetic distance of one, not 10 events, 10 steps and a genetic distance of 10.

To recap, the values of markers 1-111 are calculated by a combination of the step-wise model and the infinite alleles model, depending on the marker number and situation. The differences in markers above 111 are calculated using the infinite alleles model where every mutation or difference equals a distance of one unless a zero (null) is encountered. In that case, the mutation event is considered a one. However, above 111 markers, using NGS technology, most instances where no DNA is encountered results in a no-read, not a null value.

Question 3: Has the TIP calculator been updated?

Answer: No, the TIP calculator does not take into account the new markers above 111. The TIP calculator relies upon the combined statistical mutation frequency for each marker and includes haplogroup differences. Therefore, it would be difficult to compensate for different numbers of markers, with various markers missing for each individual above 111 markers. The TIP calculator only utilizes markers 1-111.

Question 4: Do projects display more than 111 markers?

Answer: No, projects don’t display the additional markers, at least not yet. The 111 marker results require scrolling to the right significantly, and 500 markers would require 5 times as much scrolling to compare values. Anyone with an idea how to better accomplish a public project display/comparison should submit their idea to Family Tree DNA.

Question 5: Which markers above 111 are fast versus slow mutating?

Answer: Results for these markers are new and statistical compilations aren’t yet available. However, initial results for surname projects in which several men who share a surname and match have tested indicate that there’s not as much variation in these additional markers as we’ve seen in the previous 111 markers, meaning Family Tree DNA already selected the most informative genealogical markers initially. This suggests that the additional markers may provide additional mutations but probably not five times as many as the initial 111 markers.

Question 6: Why do I have more mutations in the first 111 markers than I do in the 389+ markers above the 111 panel?

Answer: That’s a really good question. You’ve probably noticed in our example that the men have dis-proportionally more mutations in the first 111 markers than in the markers above 111.

Y500 genetic distance

The trend is clearly for the first 111 markers to mutate more frequently than the 379+ markers above 111. This means that the first 111 markers are generally going to be more genealogically informative than the balance of the 379+ markers. However, and this is a big however, if the line marker mutation that you need to sort out your group of men occurs in the markers above 111, the number of mutations and the percentages don’t mean anything at all. The information that matters is how you can utilize these markers to differentiate men within the line you are working with, and what story those markers tell.

Of course, the markers above 111 are free as part of the Big Y-500 test which is designed to extract as much SNP information as possible. In essence, these STR markers are icing on the cake – a treat we never expected.

Bottom Line

Here’s the bottom line about the Big-Y 500 STR markers. You don’t know what you don’t know and these 379+ STR markers come along with the Big Y test as a bonus. If you’re looking for line-marker STR mutations in groups of men, the Big Y-500 is a logical next step after 111 marker testing.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research