Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches DNA Monkey Wrenches https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Preserving Items for Future DNA Testing – Teeth, Stamps, Envelopes, Hats, Hair and More

I often receive questions about testing items from deceased people. Is that type of testing available, and is it successful?

The answer is some shade of grey depending on several factors.

So, let’s start with no and work our way up!

NO

Today for the normal air-breathing human, testing items for DNA in a commercial lab for genealogical purposes is not yet feasible. In part, this is due to the labor-intensive extraction costs plus the fact that often, when DNA is able to be retrieved, it’s not of sufficient quality to pass the stringent guidelines of the testing companies.

Compounding that issue is one of consent. How does the testing company actually know the item is from someone deceased AND that you have the legal right to request the specified service?

There are other problems too.

How do you know the stamp was really licked by your ancestor or the intended person and not by the person at the post office, or a family member or neighbor? You don’t.

How do you know the DNA retrieved is actually that of your ancestor or intended person and not contaminant DNA from someone else? You don’t.

And yes, I know there are companies that enter our periphery from time to time that advertise the ability to provide this service. So far, I’ve not seen consistent success which is why these companies don’t stay around long. It’s very expensive, for them and for the consumer, just to try. Regardless of the outcome.

The Technology

The intricate extraction methodology and processing is the same technology used to process forensic samples from crime scenes or to identify unknown deceased people.

Clearly, in some cases, it’s technically possible. However, remember that this type of work requires a special lab, costs in the ballpark of $2000 per sample, or more, and the results often need to be compared in a database environment that accepts partial or degraded results.

My advice – don’t even attempt this now unless you have LOTS of whatever it is from the deceased person and don’t mind sacrificing some of it, along with some big $$, and be prepared to receive no result. I’ve now tried this twice without success.

However, this isn’t the situation with someone recently deceased.

YES

While processing DNA from the recently deceased is not a commercially available service today, it’s sometimes possible.

You need to collect a DNA sample immediately after death using a swab kit. If you’re like me, you always have a DNA kit at home, but you might not be like me or you might not be at home.

You can call FamilyTreeDNA and have them overnight a kit to you or the funeral home, or you can go to the closest pharmacy and purchase an Identigene DNA kit. This brand includes swabs. Ask the mortician to swab the inside of the cheeks of the deceased. (Do NOT send the swabs in the kit to Identigene – you’re only using their swabs in order to send it to FamilyTreeDNA.)

Hopefully, there is no denture adhesive present, as that interferes with DNA processing.

While swabbing is recommended prior to embalming, if embalming has already occurred, ask them to swab anyway. The worst thing that will happen is that it won’t work. It’s worth a try.

I wrote about the process, here.

Clearly, with a swab kit, you’ll need a DNA company that uses swabs to do the processing. That eliminates both Ancestry and 23andMe which use spit kits, leaving as candidates only FamilyTreeDNA and MyHeritage. Fortunately, you can upload DNA files from one to the other.

MAYBE

Some things fall in-between yes and no, meaning taking a swab of a recently deceased person to process at FamilyTreeDNA and attempting to process an artifact.

For example, blood cards or tissue samples fall into this category. In this case, the challenge will be finding a lab that will accept that item.

FamilyTreeDNA may, but you’ll need to contact them in advance as it’s on a case-by-case basis.

Candidate Items

Please keep in mind that all items can be contaminated by handling. To handle, wear sterile gloves and use sterile tweezers. Your goal is to avoid contamination by handling or storage.

We’ll discuss storage and preservation in the next section.

Here’s a list of common candidate items and my comments:

Item Comments
Hair Can be contaminated. May not include the follicle which is your best bet for autosomal DNA. While mitochondrial DNA is most typically extracted from hair, using forensic methods, in some cases, autosomal can be extracted as well.
Envelopes and stamps High probability of contamination. Special processing needs to be utilized due to the adhesive which in some cases is animal-based which means it contains animal DNA.
Teeth Should be in good shape and not have cavities, meaning baby teeth are better candidates than extracted teeth. Normally, adult teeth aren’t extracted without a reason. Don’t throw anything away though.
Hearing aids Hearing aids often contain ear wax and skin cells and make good candidates.
Glasses nose pads The nose pad or metal connecting the nose pad to the glasses frame sometimes harbors skin cells.
Dentures Possible candidates although adhesive interferes with DNA as does soaking denture in cleaning solutions.
Electric razors Excellent candidates since residue held in razors generally contains skin cells. However, be sure your relative is the only person who used the razor. Contact the lab for instructions before extracting the contents.
Blood cards and tissue samples Excellent source but the lab needs to be contacted about whether they accept this type of sample and how to send it safely. Blood and tissue samples may be held by a medical facility if the person was hospitalized, received treatment, or a post-mortem was performed.
Hats, sweaty items, etc. Possible candidates but it depends on the item, its age, and condition. Contact the lab with specifics. With hats, check for embedded hairs which may be a better source than the hat itself.
Used Kleenex type tissue If you’re positive that the tissue was used by the target person, this is a great source of DNA.
Toothbrush Sometimes, but bacteria can be an issue. Doesn’t hurt to save a toothbrush after allowing to dry completely
Fingernail and toenail clippings Clippings are a great source of DNA. Be sure to check clippers, as some have little “catchers” built-in. Also check the drawer where clippers are stored, assuming there is only one individual using those clippers.
Travel bag If your relative traveled from time to time, check the bag in their suitcase that held their personal items. You never know what you might find. Mine holds many DNA-rich items and yours probably does too.

If your relative passed away from something communicable, you need to take that into consideration.

Storage and Preservation Guidelines

While this type of DNA processing service isn’t commercially available as an off-the-shelf service yet today, as technology improves and prices reduce, I feel confident it will be a viable, readily-available service someday. I’ve been saying that for years now, and I just hope someday isn’t too far in the future.

Your challenge is to keep your sample of whatever it is in good condition, so it doesn’t degrade irrecoverably while you are waiting.

  • NEVER store items in plastic including ziplocks or baggies. Plastic prevents air circulation and encourages mold.
  • NEVER use any type of tape or adhesive.
  • DO store each item individually in paper, like an envelope, preferable acid-free paper.
  • If you store an item in fabric, DO wash the fabric first to remove dye, stabilizers and dirt as well as DNA residue from other people. Handle the fabric with sterile gloves after washing.
  • DON’T store the item against wood and not in a cedar chest. Wood contains tannins which are acids that stain and leach into other items.
  • DON’T store the item in the sun, a hot attic or humid basement.
  • DO store the item in a safe, dark location in a temperature-controlled area of your home.
  • DO label the container the item is stored in.

I have several items from my father and grandfather that I’m keeping with the hope of someday being able to utilize them. I have them stored individually in an acid-free envelope, in a small train case, buffered by acid free tissue paper, with nothing else touching the envelope, in my closet.

I’ve also enclosed a note for my daughter, just in case she finds those one day and wonders what they are and why they are packaged in that manner.

Don’t Throw It Away

Let’s say you’ve already done DNA testing on your parent, then they pass away.

As you go through their things, you see hairbrushes and razors and maybe even find a tissue in a nightgown pocket.

You think about how those items would be good for DNA testing and you’re glad you already did that. That means you don’t need to save those things, right? Wrong!

DON’T throw those items away. They’re treasure. There may be new vendors in the future, new companies that process and utilize DNA. There will assuredly be advances in science and new products, and you may wish you had those DNA sources.

I saved my Mom’s hairbrush and Kleenexes from her bathrobe pocket for this exact reason. She lived alone and no one else would have used those items.

Complicating Circumstances

Biological processes accelerate and degrade DNA.

For example, heat.

The heat of modern-day cremations destroys all DNA, even though residual bone fragments are left.

Cold, meaning freezing, would typically preserve DNA, unless a repeated freeze/thaw cycle is involved. In other words, don’t store those teeth in a frost-free refrigerator. I know someone who froze something in an ice cube tray and suffice it to say that a guest received a VERY unexpected surprise one hot summer day. In another instance, a power failure caused everything in a freezer to be thrown away. Freezing is generally not the best choice.

If your ancestor died in a fire, or the home burned but some items were preserved – maybe.

If flooding or water was involved, again, think mold and rapid degradation. Dry those items but without high heat and not in a dryer. If you’re dealing with sewer water, dispose of the items.

The bottom line is this – if there’s enough of an item left to see and identify, other than cremains, there’s enough to preserve, just in case.

Truly, you never know. The best you can do is to begin preservation now and work with what you have.

Staying on the Right Side of the Law

I’m not a lawyer, but I do know that there are required legal procedures to exhume remains for testing. Those laws and procedures vary by location.

Do not try this at home. Contact a lawyer in the jurisdiction where the person you hope to test is buried and be prepared to convince at least five people that your need is pressing and justifiable:

  • The lawyer (bring a large check)
  • Other family members, ALL of whom will likely be required to sign and notarize their agreement
  • A judge who will ultimately decide
  • The coroner or other individual to arrange exhumation and take the sample
  • A lab to process the sample and if it’s not your DNA testing lab, agreement from your DNA lab to allow your sample to be uploaded

You’ve probably figured out why you never see anyone discussing having exhumed their dearly departed for testing. The hoops are many and the process is exorbitantly complex and expensive. Just moving a grave a mile or so down the road when a cemetery was being permanently flooded, without getting a court order or taking a biological sample cost a friend in excess of $20,000 several years ago.

Alternate Strategies

If you’re seeking the Y DNA or mitochondrial DNA of that ancestor, another family member appropriately descended may be able to serve as a proxy. Work your way up the tree to find test candidates and create a DNA Pedigree Chart.

Males inherit their father’s Y chromosome along with their surname. Everyone received their mother’s mitochondrial DNA, but only females pass it on.

Autosomal DNA, at least in part can sometimes be inferred by matching with other people from the same side through family matching, or conversely, not sharing a match with someone that you know is from either your paternal or maternal side on the same segment.

You can read more about how different kinds of DNA is passed to descendants, here.

Summary

Today, testing most artifact items isn’t a viable strategy to retrieve DNA, but there are some notable exceptions. Alternate testing strategies may prove more fruitful

However, taking appropriate measures to preserve these items for future testing is a great strategy. The worst that can happen is that it doesn’t work. You’ll never know if you don’t take those preservation steps today.

The best outcome, of course, is that one day your ancestor’s DNA will be able to assist your genealogy. I can hardly wait!

______________________________________________________________

Sign Up For This Blog Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free to automatically receive new articles by emailed each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

AutoKinship at GEDmatch by Genetic Affairs

Genetic Affairs has created a new version of AutoKinship at GEDmatch. The new AutoKinship report adds new features, allows for more kits to be included in the analysis, and integrates multiple reports together:

  • AutoCluster – the autoclusters we all know and love
  • AutoSegment – clusters based on segments
  • AutoTree – reconstructed tree based on GEDCOM files of you and your matches, even if you don’t have a tree
  • AutoKinship – the original AutoKinship report provided genetic trees. The new AutoKinship report includes AutoTree, combines both, and adds features called AutoKinship Tree. (Trust me on this one – you’ll see in a minute!)
  • Matches
    • Common Ancestors with your ancestors
    • Common Ancestors between matches, even if they don’t match your tree
    • Common Locations

Maybe the best news is that some reports provide automatic triangulation because, at GEDmatch, it’s possible to not only see how you match multiple people, but also if those people match each other on that same segment. Of course, triangulation requires three-way matching in addition to the identification of common ancestors which is part of what AutoKinship provides, in multiple ways.

Let’s step through the included reports and features one at a time, using my clusters as an example.

Order Your Report

As a Tier 1 GEDmatch customer, sign in, select AutoKinship and order your report.

Note that there are now two clustering settings, the default setting and one that will provide more dense clusters. The last setting is the default setting for AutoKinship, since it has been shown to produce better AutoKinship results.

You can also select the number of kits to consider. Since this tool is free with a GEDmatch Tier 1 subscription, you can start small and rerun if you wish, as often as you wish.

Currently, a maximum of 500 matches can be included, but that will be increased to 1000 in the future. Your top 500 matches will be included that fall within the cM matching parameters specified.

I’m leaving this at the maximum 400 cM threshold, so every match below that is included. I generally leave this default threshold because otherwise my closest matches will be in a huge number of clusters which may cause processing issues.

For a special use case where you will want to increase the cM threshold, see the Special Use Cases section near the end of this article.

You can select a low number of matches, like 25 or 50 which is particularly useful if you want to examine the closest matches of a kit without a tree.

Keep in mind that there is currently a maximum processing time of 10 minutes allowed per report. This means that if you have large clusters, which are the last ones processed, you may not have AutoKinship results for those clusters.

This also means that if you select a high cM threshold and include all 500 allowable matches, you will receive the report but the AutoKinship results may not be complete.

When finished, your report will be delivered to you as a download link with an attached zipped file which you will need to save someplace where you can find it.

Unzip

If you’re a PC user, you’ll need to unzip or extract the files before you can use the files. You’ll see the zipper on the file.

If you don’t extract the contents, you can click on the file to open which will display a list of the files, so it looks like the files are extracted, but they aren’t.

You can see that the file is still zipped.

You can click on the html file which will display the AutoCluster correctly too, but when you click on any other link within that file, you’ll receive this error message if the file is still zipped.

If this happens to you, it means the file is still zipped. Close the files you have open, right click on the yellow zipped file folder and “extract all.”

Then click on the HTML link again and everything should work.

Ok, on to the fun part – the tools.

Tools

I’ve written about most of these tools individually before, except for the new combinations of course. I’ve put all of the Genetic Affairs Tools, Instructions and Resources in one article that you can find here.

I recommend that you take a look to be sure you’re using each tool to its greatest advantage.

AutoCluster

Click on the html file and watch your AutoCluster fly into place. I always, always love this part.

The first thing I noticed about my AutoCluster at GEDmatch is that it’s HUGE! I have a total of 144 clusters and that’s just amazing!

Information about the cluster file, including the number of matches, maximum and minimum cM used for the report, and minimum cluster size appears beneath your cluster chart.

22 people met the criteria but didn’t have other matches that did, so they are listed for my review, but not included in the cluster chart.

At first glance, the clusters look small, but don’t despair, they really aren’t.

My clusters only look small because the tool was VERY successful, and I have many matches in my clusters. The chart has to be scaled to be able to display on a computer monitor.

New Layout

Genetic Affairs has introduced a new layout for the various included tools.

Each section opens to provide a brief description of the tool and what is occurring. This new tool includes four previous tools plus a new one, AutoCluster Tree, as follows:

AutoCluster

AutoCluster first organizes your DNA matches into shared match clusters that likely represent branches of your family. Everyone in a cluster will likely be on the same ancestral line, although the MRCA between any of the matches and between you and any match may vary. The generational level of the clusters may vary as well. One may be your paternal grandmother’s branch, another may be your paternal grandfather’s father’s branch.

AutoSegment

AutoSegment organizes your matches based on triangulating segments. AutoSegment employs the positional information of segments (chromosome and start and stop position) to identify overlapping segments in order to link DNA matches. In addition, triangulated data is used to collaborate these links. Using the user defined minimum overlap of a DNA segment we perform a clustering of overlapping DNA segments to identify segment clusters. The overlap is calculated in centimorgans using human genetic recombination maps. Another aspect of overlapping segments is the fact that some regions of our genome seem to have more matches as compared to the other regions. These so-called pile-up areas can influence the clustering. The removal of known pile-up regions based on the paper of Li et al 2014 is optional and is not performed for this analysis However, a pileup report is provided that allows you to examine your genome for pileup regions.

AutoTree

By comparing the tree of the tested person and the trees from the members of a certain cluster, we can identify ancestors that are common amongst those trees. First, we collect the surnames that are present in the trees and create a network using the similarity between surnames. Next, we perform a clustering on this network to identify clusters of similar surnames. A similar clustering is performed based on a network using the first names of members of each surname cluster. Our last clustering uses the birth and death years of members of a cluster to find similar persons. As a consequence, initially large clusters (based on the surnames) are divided up into smaller clusters using the first name and birth/death year clustering.

AutoKinship

AutoKinship automatically predicts family trees based on the amount of DNA your DNA matches share with you and each other. Note that AutoKinship does not require any known genealogical trees from your DNA matches. Instead, AutoKinship looks at the predicted relationships between your DNA matches, and calculates many different paths you could all be related to each other. The probabilities used by this AutoKinship analysis are based on simulated data for GEDmatch matches and are kindly provided by Brit Nicholson (methodology described here). Based on the shared cM data between shared matches, we create different trees based on the putative relationships. We then use the probabilities to test every scenario which are then ranked.

AutoKinship Tree

Predicted trees from the AutoTree analysis are based on genealogical trees shared by the DNA matches and, if available, shared by the tested person. The relationships between DNA matches based on their common ancestors as provided AutoTree are used to perform an AutoKinship analysis and are overlayed on the predicted AutoKinship tree.

AutoKinship Tree is New

AutoKinship Tree is the new feature that combines the features of both AutoTree and AutoKinship. You receive:

  • Common ancestors between you and your matches
  • Trees of people who don’t share your common ancestors but share ancestors with each other
  • Combined with relationship predictions and
  • A segment analysis

Of course, the relative success of the tree tools depends upon how many people have uploaded GEDCOM files.

Big hint, if you haven’t uploaded your family tree, do so now. If you are an adoptee or searching for a parent and don’t know who your ancestors are, AutoKinship Tree does its best without your tree information, and you will still benefit from the trees of others combined with predicted relationships based on DNA.

It’s easier to show you than to tell you, so let’s step through my results one section at a time.

I’m going to be using cluster 5 which has 32 members and cluster 136 which has 8 members. Ironically, cluster 136 is a much more useful cluster, with 8 good matches, than cluster 5 which includes 32 people.

Results of the AutoKinship Analyses

As you scroll down your results, you’ll see a grid beneath the Explanation area.

It’s easy to see which cluster received results for each tool. My cluster 5 has results in each category, along with surnames. (Notice that you can search for surnames which displays only the clusters that contain that surname.)

I can click on each icon to see what’s there waiting for me.

Additionally, you can click at the top on the blue middle “here” for an overview of all common ancestors. Who can resist that, right?

Click on the ancestor’s name or the tree link to view more information.

You can also view common locations too by clicking on the blue “here” at far right. A location, all by itself, is a HUGE hint.

Clicking on the tree link shows you the tree of the tester with ancestors at that location. I had several others from North Carolina, generally, and other locations specifically. Let’s take a look at a few examples.

Common Ancestor Clusters

Click on the first blue link to view all common ancestors.

Common Ancestor Clusters summarize all of the clusters by ancestor. In other words, if any of your matches have ancestors in common in their tree, they are listed here.

These clusters include NOT just the people who share ancestors in a tree with you, but who also share known ancestors with each other BUT NOT YOU. That may be incredibly important when you are trying to identify your ancestors – as in brick walls. Your ancestors may be their ancestors too, or your common segments might lead to your common ancestors if you complete their tree.

There are other important hints too.

In my case, above, Jacob Lentz is my known ancestor.

However, Sarah Barron is not my ancestor, nor is John Vincent Dodson. They are the descendants of my Dodson ancestor though. I recognized that surname and those people. In other instances, recognizing a common geography may be your clue for figuring out how you connect.

In the cluster column at left, you can see the cluster number in which these people are found.

Common Locations Table

Clicking on the second link provides a Common Location Table

Some locations are general, like a state, and others are town, county or even village names. Whatever people have included in their GEDCOM files that can be connected.

Looking at this first entry, I recognize some of the ancestral surnames of Karen’s ancestors. The fact that we are found in the same cluster and share DNA indicates a common ancestor someplace.

Check for this same person in additional locations, then, look at their tree.

Ok, back to the AutoKinship Analysis Table and Cluster 136.

Cluster 136

I’m going to use Cluster 136 as an example because this cluster has generated great reports using all of the tools, indicated by the icon under each column heading. Some clusters won’t have enough information for everything so the tools generate as much as possible.

Scrolling down to Cluster 136 in the AutoCluster Information report, just beneath the list of clusters, I can see my 8 matches in that cluster.

Of course, I can click on the links for specific information, or contact them via email. At the end of this article in the “Tell Me Everything” section, I’ll provide a way to retrieve as much information as possible about any one match. For now, let’s move to the AutoTree.

Cluster 136 AutoTree

Clicking on the icon under AutoTree shows me how two of the matches in this cluster are related to each other and myself.

Note that the centimorgan badges listed refer to the number of cM that I share with each of these people, not how much they share with each other.

Click on any of the people to see additional information.

When I click on J Lentz m F Moselman, a popup box shows me how this couple is related to me and my matches.

Of course, you can also view the Y DNA or mitochondrial DNA haplogroups if the testers have provided that information when they set up their GEDmatch profile information.

Just click on the little icons.

If the testers have not provided that information, you can always check at FamilyTreeDNA or 23andMe, if they have tested at either of those vendors, to view their haplogroup information.

Today, GEDmatch kit numbers are assigned randomly, but in the early days, before Genesis, the leading letter of A meant AncestryDNA, F or T for FamilyTreeDNA, M for 23andMe and H for MyHeritage. If the kit number is something else, perform a one-to-one or a one-to-many report which will display the source of their DNA file.

The small number, 136 in this case, beside the cM number indicates the cluster or clusters that these people are members of. Some people are members of multiple clusters

Let’s see what’s next.

Cluster 136 Common Ancestors

Clicking on the Ancestors icon provides a report that shows all of the Ancestor Clusters in cluster 136.

The difference between this ancestor chart and the larger chart is that this only shows ancestors for cluster 136, while the larger chart shows ancestors for the entire AutoCluster report.

Cluster 136 Locations

All of the locations shown are included in trees of people who cluster together in cluster 136. Of course, this does NOT mean that these locations are all relevant to cluster 136. However, finding my own tree listed might provide an important clue.

Using the location tool, I discover 5 separate location clusters. This location cluster includes me with each tester’s ancestors who are found in Montgomery County, Ohio.

The difference between this chart for cluster 136 only and the larger location chart is that every location in this chart is relevant for people who all cluster together meaning we all share some ancestral line.

Viewing the trees of other people in the cluster may suggest ancestors or locations that are essential for breaking down brick walls.

Cluster 136 AutoKinship

Clicking on the anchor in the AutoKinship column provides a genetically reconstructed tree based on how closely each of the people match me, and each other. Clearly, in order to be able to provide this prediction, information about how your matches also match each other, or don’t, is required.

Again, the cM amount shown is the cM match with me, not with each other. However, if you click on a match, a popup will be shown that shows the shared cM between that person and the other matches as well as the relationship prediction between them in this tree

So, Bill matches David with a total of 354.3 cM and they are positioned as first cousins once removed in this tree. The probability of the match being a 1C1R (first cousin once removed) is 64.9%, meaning of course that other relationships are possible.

Note that Bill and David ALSO share a segment with me in autosegment cluster 185, on chromosome 3.

It’s important to note that while 136 is the autocluster number, meaning that colored block on the report, WITHIN clusters, autosegment clusters are formed and numbered. 

Each autosegment cluster receives its own number and the numbers are for the entire report. You will have more autosegment clusters than autoclusters, because at least some of the colorful autoclusters will contain more than one segment cluster.

Remember, autoclusters are those colorful boxes of matches that fly into place. Autosegment clusters are the matching triangulated clusters on chromosomes and they are represented by the blue bars, shown below.

AutoCluster 136 contains 5 different autosegment clusters, but Bill is only included in one of those autosegment clusters.

You’ll notice that there are some people, like Robin at the bottom, who do match some other people in the cluster, but either not enough people, or not enough overlapping DNA to be included as an autocluster member.

The small colored chromosomes with numbers, boxed in red, indicate the chromosome on which this person matches me.

If you click on that chromosome icon, you’ll see a popup detailing everyone who matches me on that segment.

Note that in some cases a member of a segment cluster, like Robin, did not make it in the AutoCluster cluster. You can spot these occurrences by scrolling down and looking at the cluster column which will then be empty for that particular match.

Reconstructed AutoKinship Trees in Most Likely Order

Scrolling down the page, next we see that we have multiple possible trees to view. We are shown the most likely tree first.

Tree likelihood is constructed based on the combined probability of my matching cM to an individual plus their likely relationship to each other based on the amount of DNA they share with each other as well.

In my case, all of the first 8 trees are equally as likely to be accurate, based on autosomal genetic relationships only. The ninth tree is only very slightly less likely to be accurate.

The X chromosome is not utilized separately in this analysis, nor are Y or mitochondrial DNA haplogroups if provided.

DNA Relationship Matrix

Continuing to scroll down, we next see the DNA matrix that shows relationships for cluster 5 in a grid format. Click on “Download Relationship Matrix” to view in a spreadsheet.

Keep scrolling for the next view which is the Individual Segment Cluster Information

Individual Segment Cluster Information

Remember that we are still focused on only one cluster – in this case, cluster 136. Each cluster contains people who all match at least some subset of other people in the cluster. Some people will match each other and the tested person on the same chromosome segment, and some won’t. What we generally see within clusters are “subclusters” of people who match each other on different chromosomes and segments. Also, some matches from cluster 136 might match other people but those matches might not be a member of cluster 136.

In autocluster 136, I have 14 DNA segments that converge into 5 segment clusters with my matches. Here’s segment cluster 185 that consists of two people in addition to me. Note that for individuals to be included in these segment clusters at GEDmatch, they must triangulate with people in the same segment cluster.

From left to right, we see the following information:

  • AutoCluster number 136, shown below

  • Segment cluster 185. This is a segment cluster within autocluster 136.

  • Segment cluster 185 occurs on chromosome 3, between the designated start and stop locations.
  • The segment representation shows the overlapping portions of the two matches, to me. You can easily see that they overlap almost exactly with each other as well.
  • The SNP count is shown, followed by the name and cM count.

Cluster 136 AutoKinship Tree

The AutoKinship Tree column is different from the AutoKinship column in one fundamental way. The new AutoKinship Tree feature combines the genealogical AutoTree and the genetic AutoKinship output together in one report.

You can see that the “prior” genealogical tree information that one of my matches also descends from Jacob Lentz (and wife, if you click further) has now been included. The matches without trees have been reconstructed around the known genealogy based on how they match me and each other.

I was already aware of how I’m related to Bill, David, *C and *R, but I don’t know how I am related to these other people. Based on their kit identifier, I can go to the vendor where they tested and utilize tools there, and I can check to see if they have uploaded their DNA files elsewhere to discover additional records information or critical matches. Now at least I know where in the tree to search.

Cluster 136 AutoSegment

Clicking on AutoSegment provides you with segment information. Each cluster is painted on your chromosomes.

By hovering over the darkly colored segments, which are segment clusters, you can view who you match, although to view multiple matches, continue scrolling.

In the next section, you’ll see the two segment clusters contained wholly within cluster 136.

Following that is the same information for segment clusters partially linked to cluster 136, but not contained wholly within 136.

Bonus – Tell Me Everything – Individual Match Clusters

We’ve focused specifically on the AutoKinship tools, but if you’re interested in “everything” about one specific match, you can approach things from that perspective too. I often look at a cluster, then focus on individuals, beginning with those I can identify which focuses my search.

If you click on any person in your match list, you’ll receive a report focusing on that person in your autocluster.

Let’s use cousin Bill as an example. I know how he’s related to me.

You can choose to display your chosen cluster by:

  • Cluster
  • Number of shared matches
  • Shared cM with the tester
  • Name

I would suggest experimenting with all of the options and see which one displays information that is most useful to the question you’re trying to answer.

Beneath the cluster for Bill, you’ll see the relevant information about the cluster itself. Bill has cluster matches on two different chromosomes.

The AutoCluster Cluster member Information report shows you how much DNA each cluster member shares with the tested person, which is me, and with each other cluster member. It’s easy to see at a glance who Bill is most closely related to by the number of cMs shared.

Only one of Bill’s chromosomes, #3, is included in clusters, but this tells me immediately that this/these segments on chromosome 3 triangulate between me, Bill, and at least one other person.

Segments shown in orange (chromosome 22) match me, but are not included in a cluster.

Special Use Cases – Unknown People

For adoptees and people trying to figure out how they are related to closer relatives, especially those without a tree, this new combined AutoKinship tool is wonderful.

400 cM is the upper default limit when running the report, meaning that close family members will not be included because they would be included in many clusters. However, you can make a different selection. If you’re trying to determine how several closely related people intersect, select a high threshold to include everyone.

Select a lower number of matches, like 25 or 50.

In this example, ‘no limit” was selected as the upper total match threshold and 25 closest matches.

AutoKinship then constructs a genetic tree and tells you which trees are possible and most likely. If some people do have trees, that common ancestor information would be included as well.

Note that when matches occur over the 400 cM threshold, there will be too many common chromosome matches so the chromosome numbers are omitted. Just check the other reports.

This tool would have helped a great deal with a recent close match who didn’t know how they are related to my family.

You can see this methodology in action and judge its accuracy by reconstructing your own family, assuming some of your known family members have uploaded to GEDmatch. Try it out.

It’s a Lot!

I know there’s a lot here to absorb, but take your time and refer back to this article as needed.

This flexible new tool combines DNA matching, genealogy trees, genetic trees, locations, autoclusters, a chromosome browser, and triangulation. It took me a few passes and working with different clusters to understand and absorb the information that is being provided.

For people who don’t know who their parents or close relatives are, these tools are amazing. Not only can they determine who they are related to, and who is related to each other, but with the use of trees, they can view common ancestors which provides possible ancestors for them too.

For people painting their triangulated segments at DNAPainter, AutoKinship provides triangulation groups that can be automatically painted using the Cluster Auto Painter, here, plus helps to identify that common ancestor. You can read more about DNAPainter, here.

For people seeking to break down brick walls, AutoKinship Tree provides assistance by providing tree matching between your matches for common ancestors NOT IN YOUR TREE, but that ARE in theirs. Your brick walls are clearly not (yet) identified in your tree, although that’s our fervent hope, right?

Even if your matches’ trees don’t go far enough back, as a genealogist, you can extend those trees further to hopefully reveal a previously unknown common ancestor.

The Best Things You Can Do

Aside from DNA testing, the three best things you can do to help yourself, and your clusters are:

  • Upload your GEDCOM file, complete with locations, so you have readily available trees. Ask your matches to do so as well. Trees help you and others too.
  • Encourage people you match at Ancestry who provides no chromosome segment information or chromosome browser to upload a copy of their DNA files and tree.
  • Test your family members and cousins, and encourage them to upload their DNA and their trees. Offer to assist them. You can find step-by-step download/upload instructions here.

Have fun!

______________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Identify Your Ancestors – Follow Nested Ancestral Segments

I don’t think that we actively think about our DNA segments as nested ancestors, like Russian Matryoshka dolls, but they are.

That’s exactly why segment information is critical for genealogists. Every segment, and every portion of a segment, has an incredibly important history. In fact, you could say that the further back in time we can track a segment, the more important it becomes.

Let’s see how to unveil nested segments. I’ll use my chromosome 20 as an example because it’s a smaller chromosome. But first, let’s start with my pedigree chart.

Pedigree

Click images to enlarge.

Before we talk about nested segments that originated with specific ancestors, it’s important to take a look at the closest portion of my maternal pedigree chart. My DNA segments came from and through these people. I’ll be working with the first 5 generations, beginning with my mother as generation #1.

Generation 1 – Parents

In the first generation, we receive a copy of each chromosome from each parent. I have a copy of chromosome 20 from my mother and a copy from my father.

At FamilyTreeDNA, you can see that I match my mother on the entire tested region of each chromosome.

Therefore, the entire length of each of my chromosomes is assigned to both mother and father because I received a copy from each parent. I’m fortunate that my mother’s DNA was able to be tested before she passed away.

We see that each copy of chromosome 20 is a total of 110.20 cM long with 17,695 SNPs.

Of course, my mother inherited the DNA on her chromosome 20 from multiple ancestors whose DNA combined in her parents, a portion of which was inherited by my mother. Mom received one chromosome from each of her parents.

I inherited only one copy of each chromosome (In this case, chromosome 20) from Mom, so the DNA of her two parents was divided and recombined so that I inherited a portion of my maternal chromosome 20 from both of my maternal grandparents.

Identifying Maternal and Paternal Matches

Associating matches with your maternal or paternal side is easy at FamilyTreeDNA because their Family Finder matching does it automatically for you if you upload (or create) a tree and link matches that you can identify to their proper place in your tree.

FamilyTreeDNA then uses that matching segment information from known, identified relatives in your tree to place people who match you both on at least one significant-sized segment in the correct maternal, paternal, (or both) buckets. That’s triangulation, and it happens automatically. All you have to do is click on the Maternal tab to view your triangulated maternal matches. As you can see, I have 1432 matches identified as maternal. 

Some other DNA testing companies and third-party tools provide segment information and various types of triangulation information, but they aren’t automated for your entire match list like Family Finder matching at FamilyTreeDNA.

You can read about triangulation in action at MyHeritage, here, 23andMe, here, GEDmatch, here, and DNAPainter, which we’ll use, here. Genetic Affairs AutoKinship tool incorporates triangulation, as does their AutoSegment Triangulation Cluster Tool at GEDmatch. I’ve compiled a reference resource for triangulation, here.

Every DNA testing vendor has people in their database that haven’t tested anyplace else. Your best strategy for finding nested segments and identifying matches to specific ancestors is to test at or transfer your DNA file to every vendor plus GEDmatch where people who test at Ancestry sometimes upload for matching. Ancestry does not provide segment information or a chromosome browser so you’ll sometimes find Ancestry testers have uploaded to GEDmatch, FamilyTreeDNA  or MyHeritage where segment information is readily available. I’ve created step-by-step download/upload instructions for all vendors, here.

Generation 2 – Grandparents

In the second generation, meaning that of my grandparents, I inherited portions of my maternal and paternal grandmother’s and grandfather’s chromosomes.

My maternal and paternal chromosomes can be divided into two pieces or groups each, one for each grandparent.

Using DNAPainter, we can see my father’s chromosome 20 on top and my mother’s on the bottom. I have previously identified segments assigned to specific ancestors which are represented by different colors on these chromosomes. You can read more about how to use DNAPainter, here.

We can divide the DNA inherited from each parent into the DNA inherited from each grandparent based on the trees of people we match. If we test cousins from each side, assigning segments maternally or paternally becomes much, much easier. That’s exactly why I’ve tested several.

For the rest of this article, I’m focusing only on my mother’s side because the concepts and methods are the same regardless of whether you’re working on your maternal side or your paternal side.

Using DNAPainter, I expanded my mother’s chromosome 20 in order to see all of the people I’ve painted on my mother’s side.

DNAPainter allows us to paint matching segments from multiple testing vendors and assign them to specific ancestors as we identify common ancestors with our matches.

Based on these matches, I’ve divided these maternal matches into two categories:

  • Maternal grandmother, meaning my mother’s mother, bracketed in red boxes
  • Maternal grandfather, meaning my mother’s father, bracketed in black boxes.

The text and arrows in these graphics refer to the colors of the brackets/boxes, and NOT the colors of the segments beside people’s names. For example, if you look at the large black box at far right, you’ll see several people, with their matching segments identified by multiple colored bars. The different colored segments (bars) mean I’ve associated the match with different ancestors in multiple or various levels of generations.

Generation 3 – Great-grandparents

Within those maternal and paternal grandparent segments, more nested information is available.

The black Ferverda grandfather segments are further divided into black, from Hiram Ferverda, and gold from his wife Eva Miller. The same concept applies to the red grandmother segments which are now divided into red representing Nora Kirsch and purple representing Curtis Lore, her husband.

While I have only been able to assign the first four segments (at the top) to one person/ancestor, there’s an entire group of matches who share the grouping of segments at right, in gold, descended through Eva Miller. The Miller line is Brethren and Mennonite with lots of testers, so this is a common pattern in my DNA matches.

Eva Miller, the gold ancestor, has two parents, Margaret Elizabeth Lentz and John David Miller, so her segments would come from those two sides.

Generation 4 and 5 – Fuschia Segment

I was able to track the segment shown in fuschia indicated by the blue arrow to Jacob Lentz and his wife Fredericka Ruhle, German immigrant ancestors. Other people in this same match (triangulation) group descend from Margaret Elizabeth Lentz and John David Miller – but that fuschia match is the one that shows us where that segment originated. This allows us to assign that entire gold/blue bracketed set of segments to a specific ancestor or ancestral couple because they triangulate, meaning they all match me and each other.

Therefore, all of the segments that match with the fuschia segment also track back to Jacob Lentz and Fredericka Ruhle, or to their ancestors. We would need people who descend from Jacob’s parents and/or Fredericka’s parents to determine the origins of that segment.

In other words, we know all of these people share a common source of that segment, even if we don’t yet know exactly who that common ancestor was or when they lived. That’s what the process of tracking back discovers.

To be very clear, I received that segment through Jacob and Fredericka, but some of those matches who I have not been able to associate with either Jacob or Fredericka may descend from either Jacob or Fredericka’s ancestors, not Jacob and Fredericka themselves. Connecting the dots between Jacob/Fredericka and their ancestors may be enlightening as to the even older source of that segment.

Let’s take a look at nested segments on my pedigree chart.

Nested Pedigree

Click to enlarge.

You can see the progression of nesting on my pedigree chart, using the same colors for the brackets/boxes. The black Ferverda box at the grandparent level encompasses the entire paternal side of my mother’s ancestry, and the red includes her mother’s entire side. This is identical to the DNAPainter graphic, just expressed on my pedigree chart instead of my chromosome 20.

Then the black gets broken into smaller nested segments of black, gold and fuschia, while the red gets broken into red and purple.

If I had more matches that could be assigned to ancestors, I would have even more nested levels. Of course, if I was using all of my chromosomes, not just 20, I would be able to go back further as well.

You can see that as we move further back in time, the bracketed areas assigned to each color become smaller and smaller, as do the actual segments as viewed on my DNAPainter chromosomes.

Segments Get Progressively Smaller

You can see in the pedigree chart and segment painting above that the segments we inherit from specific ancestors divide over time. As we move further and further back in our tree, the segments inherited from any specific ancestor get smaller and smaller too.

Dr. Paul Maier in the MyOrigins 3.0 White Paper provides this informative graphic that shows the reduction in segments and the number of ancestors whose DNA we carry reaching back in time.

I refer to this as a porcupine chart.

Eventually, we inherit no segments from red ancestors, and the pieces of DNA that we inherit from the distant blue ancestors become so small and fragmented that they cannot be positively identified as coming from a specific ancestor when compared to and matched with other people. That’s why vendors don’t show small segment matches, although different vendors utilize different segment thresholds.

The debate about how small is too small continues, but the answer is not simply segment size alone. There is no one-size-fits-all answer.

As segments become smaller, the probability, or chances that we match another person by chance (IBC) increases. Proof that someone shares a specific ancestor, especially when dealing with increasingly smaller segments is a function of multiple factors, such as tree completeness for both people, shared matches, parental match confirmation, and more. I wrote about What Constitutes Proof, here.

In the Family Finder Matching White Paper, Dr. Maier provides this chart reflecting IBD (Identical By Descent) and IBC (Identical By Chance) segments and the associated false positivity rate. That means how likely you are to match someone on a segment of that size by chance and NOT because you both share the DNA from a common ancestor.

I wrote Concepts: Identical by Descent, State, Population and Chance to help you better understand how this works.

In the chart below, I’ve combined the generations, relationships, # of ancestors, assuming no duplicates, birth year range based on an approximate 30-year generation, percent of DNA assuming exactly half of each ancestor’s DNA descends in each generation (which we know isn’t exactly accurate), and the average amount of total inherited cMs using that same assumption.

Note that beginning with the 7th generation, on average, we can expect to inherit less than 1% of the DNA of an ancestor, or approximately 55 total cM which may be inherited in multiple segments.

The amount of actual cMs inherited in each generation can vary widely and explains why, beginning with third cousins, some people won’t share DNA from a common ancestor above the various vendor matching thresholds. Yet, other cousins several generations removed will match. Inheritance is random.

Parallel Inheritance

In order to match someone else descended from that 11th generation ancestor, BOTH you AND your match will need to have inherited the exact SAME DNA segment, across 11 generations EACH in order to match. This means that 11 transmission events for each person will need to have taken place in parallel with that identical segment being passed from parent to child in each line. For 22 rolls of the genetic dice in a row, the same segment gets selected to be passed on.

You can see why we all need to work to prove that distant matches are valid.

The further back in time we work, the more factors we must take into consideration, and the more confirming proof is needed that a match with another individual is a result of a shared ancestor.

Having said that, shared distant matches ARE the key to breaking through brick-wall ancestors. We just need to be sure we are chasing the real deal and not a red herring.

Exciting Possibilities

The most exciting possibility is that some segments are actually passed intact for several generations, meaning those segments don’t divide into segments too small for matching.

For example, the 22 cM fuschia segment that tracks through generations 4 and 5 to Jacob Lentz and Fredericka Ruhle has been passed either intact or nearly intact to all of those people who stack up and match each other and me on that segment. 22 cM is definitely NOT a small segment and we know that it descended from either Jacob or Fredericka, or perhaps combined segments from each. In any case, if someone from the Lentz line in Germany tested and matched me on that segment (and by inference, the rest of these people too), we would know that segment descended to me from Jacob Lentz – or at least the part we match on if we don’t match on the entire segment.

This is exactly what nested segments are…breadcrumbs to ancestors.

Part of that 22cM segment could be descended from Jacob and part from Fredericka. Then of Jacob’s portion, for example, pieces could descend from both his mother and father.

This is why we track individual segments back in time to discern their origin.

The Promise of the Future

The promise of the future is when a group of other people triangulate on a reasonably sized segment AND know where it came from. When we match that triangulation group, their identified segment may well help break down our brick walls because we match all of them on that same segment.

It is exactly this technique that has helped me identify a Womack segment on my paternal line. I still haven’t identified our common ancestor, but I have confirmed that the Womacks and my Moore/Rice family interacted as neighbors 8 generations ago and likely settled together in Amelia county, migrating from eastern Virginia. In time, perhaps I’ll be able to identify the common Womack ancestor and the link into either my Moore or Rice lines.

I’m hoping for a similar breakthrough on my mother’s side for Philip Jacob Miller’s wife, Magdalena, 7 generations back in my tree. We know Magdalena was Brethren and where they lived when they took up housekeeping. We don’t know who her parents were. However, there are thousands of Miller descendants, so it’s possible that eventually, we will be able to break down that brick wall by using nested segments – ours and people who descend from Magdalena’s siblings, aunts, and uncles.

Whoever those people were, at least some of their descendants will likely match me and/or my cousins on at least one nested Miller segment that will be the same segment identified to their ancestors.

Genealogy is a team sport and solving puzzles using nested segments requires that someone out there is working on identifying triangulated segments that track to their common ancestors – which will be my ancestors too. I have my fingers crossed that someone is working on that triangulation group and I find them or they find me. Of course, I’m working to triangulate and identify my segments to specific ancestors – hoping for a meeting in the middle – that much-desired bridge to the past.

By the time you’ve run out of other records, nested segments are your last chance to identify those elusive ancestors. 

Do you have genealogical brick walls that nested segments could solve?

__________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here. You can also subscribe to receive emails when I publish articles by clicking the “Follow” button at www.DNAexplain.com.

You’re always welcome to forward articles or links to friends.

You Can Help Out and It’s Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA for Native American Genealogy – Hot Off the Press!

Drum roll please…my new book, DNA for Native American Genealogy, was just released today, published by Genealogical.com.

I’m so excited! I expected publication around the holidays. What a pleasant surprise.

This 190-page book has been a labor of love, almost a year in the making. There’s a lot.

  • Vendor Tools – The book incorporates information about how to make the best use of the autosomal DNA tools offered by all 4 of the major testing vendors; FamilyTreeDNA, MyHeritage, Ancestry, and 23andMe.
  • Chromosome Painting – I’ve detailed how to use DNAPainter to identify which ancestor(s) your Native heritage descends from by painting your population/ethnicity segments provided by FamilyTreeDNA and 23andMe.
  • Y and Mitochondrial DNA – I’ve described how and when to utilize the important Y and mitochondrial DNA tests, for you and other family members.
  • Maps – Everyone wants to know about ancient DNA. I’ve included ancient DNA information complete with maps of ancient DNA sites by major Native haplogroups, gathered from many academic papers, as well as mapped contemporary DNA locations.
  • Haplogroups – Locations in the Americas, by haplogroup, where individual haplogroups and subgroups are found. Some haplogroups are regional in nature. If you happen to have one of these haplogroups, that’s a BIG HINT about where your ancestor lived.
  • Tribes – Want to know, by tribe, which haplogroups have been identified? Got you covered there too.
  • Checklist – I’ve provided a checklist type of roadmap for you to follow, along with an extensive glossary.
  • Questions – I’ve answered lots of frequently asked questions. For example – what about joining a tribe? I’ve explained how tribes work in the US and Canada, complete with links for relevant forms and further information.

But wait, there’s more…

New Revelations!!!

There is scientific evidence suggesting that two haplogroups not previously identified as Native are actually found in very low frequencies in the Native population. Not only do I describe these haplogroups, but I provide their locations on a map.

I hope other people will test and come forward with similar results in these same haplogroups to further solidify this finding.

It’s important to understand the criteria required for including these haplogroups as (potentially) Native. In general, they:

  • Must be found multiple times outside of a family group
  • Must be unexplained by any other scenario
  • Must be well-documented both genetically as well as using traditional genealogical records
  • Must be otherwise absent in the surrounding populations

This part of the research for the book was absolutely fascinating to me.

Description

Here’s the book description at Genealogical.com:

DNA for Native American Genealogy is the first book to offer detailed information and advice specifically aimed at family historians interested in fleshing out their Native American family tree through DNA testing.

Figuring out how to incorporate DNA testing into your Native American genealogy research can be difficult and daunting. What types of DNA tests are available, and which vendors offer them? What other tools are available? How is Native American DNA determined or recognized in your DNA? What information about your Native American ancestors can DNA testing uncover? This book addresses those questions and much more.

Included are step-by-step instructions, with illustrations, on how to use DNA testing at the four major DNA testing companies to further your genealogy and confirm or identify your Native American ancestors. Among the many other topics covered are the following:

    • Tribes in the United States and First Nations in Canada
    • Ethnicity
    • Chromosome painting
    • Population Genetics and how ethnicity is assigned
    • Genetic groups and communities
    • Y DNA paternal direct line male testing for you and your family members
    • Mitochondrial DNA maternal direct line testing for you and your family members
    • Autosomal DNA matching and ethnicity comparisons
    • Creating a DNA pedigree chart
    • Native American haplogroups, by region and tribe
    • Ancient and contemporary Native American DNA

Special features include numerous charts and maps; a roadmap and checklist giving you clear instructions on how to proceed; and a glossary to help you decipher the technical language associated with DNA testing.

Purchase the Book and Participate

I’ve included answers to questions that I’ve received repeatedly for many years about Native American heritage and DNA. Why Native DNA might show in your DNA, why it might not – along with alternate ways to seek that information.

You can order DNA for Native American Genealogy, here.

For customers in Canada and outside the US, you can use the Amazon link, here, to reduce the high shipping/customs costs.

I hope you’ll use the information in the book to determine the appropriate tests for your situation and fully utilize the tools available to genealogists today to either confirm those family rumors, put them to rest – or maybe discover a previously unknown Native ancestor.

Please feel free to share this article with anyone who might be interested.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Genetic Affairs – New AutoKinship Tool Predicts Relationships and Builds Genetic Trees

Genetic Affairs recently introduced a new tool – AutoKinship. Evert-Jan (EJ) Blom, the developer was kind enough to step through these results with me to assure that I’m explaining things correctly. Thanks EJ!

AutoKinship automatically predicts family trees and pathways that you may be related to your matches based on how they match you and each other. Not only is this important for genealogists trying to piece our family tree together, it’s indispensable for anyone searching for unknown ancestors, beginning with parents and walking right on up the tree for the closest several generations.

Right now, the automated AutoKinship tool is limited to 23andMe profiles, but will also work as a standalone tool where users can fill in the shared DNA information for their matches. MyHeritage, 23andMe, and GEDMatch provide centiMorgan information about how your matches also match each other. Here’s a tutorial for the standalone tool.

Unfortunately, Ancestry does not provide their customers with segment information, but fortunately, you can upload a copy of your Ancestry DNA file to MyHeritage, FamilyTreeDNA or GEDmatch, for free. You’ll find step-by-step instructions, here.

Automated AutoKinship Tool

After signing into to your Genetic Affairs account, assuming you have already set up your 23andMe profile at Genetic Affairs, click on “Run AutoKinship for 23andMe.”

I manage multiple profiles at 23andMe, so I need to click on “Profiles.”

Select the correct profile if you manage multiple kits at 23andMe.

You’ll see your various options that can be run for your 23andMe kit.

Select AutoKinship

If you select AutoKinship, you automatically receive an AutoCluster because AutoKinship is built on the AutoCluster functionality.

Make your selections. I recommend leaving these settings at the default, at least initially.

The default of 250 cM excludes your closest matches. You don’t want your closest matches because they will be members of too many clustered groups.

In my initial run, I made the mistake of changing the 50 cM lower threshold to 20 cM because I wanted more matches to be included. Unfortunately, the effect this had on my results was that my largest two clusters did not produce trees.

Hint: EJ states that the software tool works from the smallest cluster to the largest when producing trees. If you notice that your largest cluster, which is usually the first one displayed in the upper left hand corner (orange here), does not have associated trees, or some people are missing, that’s your clue that the AutoKinship ran out of server time to process and you need to raise either the minimum match threshold, in this case, 50 cM, or the minimum amount of DNA shared between your matches to each other, in this case, 10 cM.

You can also select between shared matches and triangulated groups. I selected shared matches, but I may well rerun this report with triangulated groups because that provides me with a great deal of even more useful information.

When you’re ready, click on the big green “you can’t miss it” Perform AutoCluster Analysis button.

Make a cup of coffee. Your report is processing. If your email doesn’t arrive, you can click on the little envelope in your Genetic Affairs profile and the report can be downloaded to your computer directly from that link.

Your Report Arrives!

You’ll receive a zip file in the email that you MUST SAVE TO YOUR COMPUTER to work correctly. You’ll see these files, but you can’t use them yet.

First, you MUST EXTRACT THE FILES from the zip file. My zip file displays the names of the file inside of the zipped file, but they are not extracted.

You must right click, as shown above, and then click on “Extract All” on a PC. Not sure what MAC users need to do but I think it autoextracts. If you click on some of the files in this article and they don’t load correctly, or say they aren’t present, that likely means:

  • You either forgot to save the file in the email to your computer
  • Or you failed to do the extract

The bottom two files are your normal AutoCluster visual html file and the same information in an excel file.

Click on the AutoCluster html file to activate.

Personally, I love watching the matches all fly into place in their clusters. This html file is going to be our home base, the file we’ll be operating from for all of the functions.

I have a total of 23 interrelated autoclusters. The question is, how are we all related to each other. You can read my article about AutoClusters and how they work here.

People who are members of more than one cluster are shown with those little grey squares signifying that they match people in two clusters, not just one cluster.

For example, one cluster might be my grandparents, but the second cluster might be my maternal great-great-grandfather. Membership in both clusters tells me that my matching DNA with those people in the second cluster probably descends from my great-great-grandfather. Some of the DNA matches in the first cluster assuredly also descend from that man, but some of them may descend from other related ancestors, like my maternal grandmother. It’s our job as genealogists to discern the connections, but the entire purpose of AutoKinship is to make that process much easier.

We are going to focus on the first few clusters to see what kinds of information Genetic Affairs can produce about these clusters. Notice that the first person in row 1 is related to the orange cluster, the green cluster, the purple and the brown clusters. That’s important information about that person, and also about the interrelationship of those clusters themselves and the ancestors they represent.

Remember, to be included in a grandparent cluster, that person’s DNA segment(s) must have descended from other ancestors, represented in other clusters. So you can expect one person to be found potentially in multiple clusters that serve to trace those common ancestors (and associated segments) back in time.

AutoKinship

The AutoKinship portion of this tool creates hypothetical trees based on relationships of you to each person in the cluster, and to the other cluster members to each other.

If you’re thinking triangulation, you’re right. I selected matches, not triangulated groups which is also an option. Some people do triangulate, but some people may match each other on different segments. Right now, it’s a jumble of hints, but we’ll sort some of this out.

If you scroll down in your html file, below your cluster, and below the explanation (which you should read,) you’ll see the AutoKinship verbiage.

I want to do a quick shout-out to Brit Nicholson, the statistician that works with EJ on probabilities of relationships for this tool and describes his methodology, here.

AutoKinship Table

You’ll see the AutoKinship Table that includes a link for each cluster that could be assembled into a potential tree.

Click on the cluster you wish to view.

In my case, clusters 1 through 5 are closely related to each other based on the common members in each cluster. I selected cluster 1.

Your most probable tree for that cluster will be displayed.

I’m fortunate that I recognized three of my third cousins. AutoKinship constructed a probable genetic pedigree, but I’ve overlayed what I know to be the correct pedigree.

With the exception of one person, this AutoKinship tree is accurate to the best of my knowledge. A slot for Elizabeth, the mother of William George Estes and the daughter of Joel is missing. I probably know why. I match two of my cousins with a higher than expected amount of DNA which means that I’m shown “closer” in genetic distance that I normally would be for that relationship level.

In one case, Charles and I share multiple ancestors. In the other case, I don’t know why I match Everett on so much more DNA than his brother Carl or our other cousin, Vianna. Regardless, I do.

In one other instance, there’s a half-relationship that throws a wrench into the tree. I know that, but it’s very difficult to factor half-relationships into tree building without prior knowledge.

If you continue to scroll down, you’ll see multiple options for trees for this cluster.

DNA Matrix

Below that, you’ll see a wonderful downloadable DNA matrix of how everyone in the cluster shares DNA with everyone else in the cluster.

At this point, exit from cluster one and return to your original cluster file that shows your cluster matrix.

Beneath the AutoKinship table, you’ll see AutoCluster Cluster Information.

AutoCluster Cluster Information

Click on any one of those people. I’m selecting Everett because I know how we are related.

Voila, a new cluster configuration forms.

I can see all of the people I match in common with Everett in each cluster. This tells me two things:

  • Which clusters are related to this line. In particular, the orange cluster, green, red, purple, brown, magenta and dark grey clusters. If you mouse over each cell in the cluster, more information is provided.
  • The little helix in each cell tells you that those two people triangulate with each other and the tester. How cool is that?!!

Note that you can display this cluster in 4 different ways.

Return again to your main autocluster page and scroll down once again.

This just might be my favorite part.

Chromosome Segments

You can import chromosome segment information into DNAPainter – instructions here.

What you’ll see next is the clusters painted on your chromosomes. I love this!!!

Of course, Genetic Affairs can’t tell you which side is maternal and which is paternal. You’ll need to do that yourself after you import into DNAPainter.

Just beneath this painting, you’ll see a chart titled Chromosome segment statistics per AutoCluster cluster.

I’m only showing the first couple as an example.

Click on one of links. I’m selecting cluster 1.

Cluster 1 has painted portions of each chromosome, but I’m only displaying chromosomes 1-7 here.

Following the painting is a visual display of each overlap region by cluster, by overlapping segment on each chromosome.

You can clearly see where these segments overlap with each other!

Surname Enrichment

If you select the surname enrichment option, you’ll receive two additional features in your report.

Please note that I ran this option separately at a different time, so the cluster members and clusters themselves do not necessarily correlate with the examples above.

The Enriched Surname section of your report shows surnames in common found between the matches in each specific cluster.

Keep in mind, this does NOT just mean surnames in common with YOUR surname list, assuming you’ve entered your surnames at 23andMe. (If you haven’t please do so now.) 23andMe does not support user trees, so your entered surnames are all that can be utilized when comparing information from your matches.

These are surnames that are found more than once among your matches. I’ve framed the ones in red that I recognize as being found in my tree, and I’ve framed the ones in black that I recognize as being “married in.” In other words, some people may descend through children of my ancestors who married people with that black bracketed surname.

I can tell you immediately, based on these surnames, that the first cluster is the cluster formed around my great-great-grandparents, Joel Vannoy and his wife, Phebe Crumley.

Cluster 6 is less evident, but Anderson might be connected to the Vannoy family. I’ll need to view the common matches in that cluster at 23andMe and look for additional clues.

Cluster 9 is immediately evident too. Ferverda is Hiram Ferverda, my great-grandfather and Eva Miller is his wife.

Cluster 10 is probably the Miller line as well. Indiana is a location in this case, not a surname.

Click on “Detailed Surname Table” for more information, as shown below.

Each group of people that shares any surname is shown in a table together. In this case, these three people, who I happen to know are brothers, all share these surnames. The surnames they also share with me are shown with red boxes. The other surnames are shared only with each other and no one else in the cluster. I know they aren’t shared with me because I know my tree.

While your initial reaction may be that this isn’t terribly useful, it is actually a HUGE gift. Especially if you find a cluster you aren’t familiar with.

Mystery Cluster

A mystery cluster is an opportunity to break down a brick wall. This report tells you which people to view on your match list who share that surname. My first step is to use that list and see who I match in common with each person at 23andMe.

My relatives in common with my Cluster 10 matches include my close Ferverda cousins who descend from our common Miller ancestor, plus a few Miller cousins. This confirms that this cluster does indeed originate in the Miller line.

Not everyone in that cluster shares the surname Miller. That might be a good thing.

I have a long-standing brick wall with Magdalena (surname unknown) who was married to Philip Jacob Miller, my 5-times great-grandparents. My cousins through that couple, at my same generation, would be about 6th cousins.

These matches are matching me at the approximate 4th cousin level or more distantly, so it’s possible that at least some of these matches COULD be through Magdalena’s family. In that case, I certainly would not recognize the common surnames. Therefore, it’s imperative that I chase these leads. I can also adjust the matching threshold to obtain more matches, hopefully, in this cluster, and run the report again.

Are you in love with Autokinship and its associated features yet? I am!

Summary

Wow is all I can say. There’s enough in this one report to keep me busy for days, especially since 23andMe does not support a tree function in the traditional genealogical sense.

I have several matches that I have absolutely no idea how they are related to me. This helps a great deal and allows to me systematically approach tree-building or identifying ancestors.

You can see if 23andMe has predicted these relationships in the same way, but other than messaging your matches, or finding them at another vendor who does support a tree, there’s no way to know if either 23andMe’s autogenerated tree or the Genetic Affairs trees are accurate.

What Genetic Affairs provides that 23andMe does not is composite information in one place – as a group in a cluster. You don’t have to figure out who matches whom one by one and create your own matrix. (Yes, I used to do that.)

You can also import the Genetic Affairs information into DNAPainter to make further use of these segments. I’ve written about using DNAPainter, here.

Once you’ve identified how one person in any cluster connects, you’ve found your lever to unlock the identity of the ancestors whose DNA is represented in that particular cluster – and an important clue/link to associated clusters as well.

If you don’t recognize these cousins at 23andMe, look for common surnames on your DNA Relatives match list, or see if a known close relative on your maternal or paternal side matches these people found in a cluster. Click on each match at 23andMe to see if they have provided notes, surnames, locations or even a link to a tree at another vendor.

Don’t forget, you can also select the “Based on Triangulated Groups” option instead of the “Based on Shared Matches” option initially.

Run A Report

If you have tested at 23andMe, give the Genetic Affairs AutoKinship report a try.

Is it accurate for you? Have you gained insight? Identified how people are related to you? Are there any surprises?

Do you have a mystery cluster? I hope so, because an answer just might be hiding there.

If you’d like to read more about Genetic Affairs tools, click here for my free repository of Genetic Affairs articles.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here. You’re always welcome to forward articles or links to friends.

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

Books

Genealogy Research

Genetic Genealogy at 20 Years: Where Have We Been, Where Are We Going and What’s Important?

Not only have we put 2020 in the rear-view mirror, thankfully, we’re at the 20-year, two-decade milestone. The point at which genetics was first added to the toolbox of genealogists.

It seems both like yesterday and forever ago. And yes, I’ve been here the whole time,  as a spectator, researcher, and active participant.

Let’s put this in perspective. On New Year’s Eve, right at midnight, in 2005, I was able to score kit number 50,000 at Family Tree DNA. I remember this because it seemed like such a bizarre thing to be doing at midnight on New Year’s Eve. But hey, we genealogists are what we are.

I knew that momentous kit number which seemed just HUGE at the time was on the threshold of being sold, because I had inadvertently purchased kit 49,997 a few minutes earlier.

Somehow kit 50,000 seemed like such a huge milestone, a landmark – so I quickly bought kits, 49,998, 49,999, and then…would I get it…YES…kit 50,000. Score!

That meant that in the 5 years FamilyTreeDNA had been in business, they had sold on an average of 10,000 kits per year, or 27 kits a day. Today, that’s a rounding error. Then it was momentous!

In reality, the sales were ramping up quickly, because very few kits were sold in 2000, and roughly 20,000 kits had been sold in 2005 alone. I know this because I purchased kit 28,429 during the holiday sale a year earlier.

Of course, I had no idea who I’d test with that momentous New Year’s Eve Y DNA kit, but I assuredly would find someone. A few months later, I embarked on a road trip to visit an elderly family member with that kit in tow. Thank goodness I did, and they agreed and swabbed on the spot, because they are gone today and with them, the story of the Y line and autosomal DNA of their branch.

In the past two decades, almost an entire generation has slipped away, and with them, an entire genealogical library held in their DNA.

Today, more than 40 million people have tested with the four major DNA testing companies, although we don’t know exactly how many.

Lots of people have had more time to focus on genealogy in 2020, so let’s take a look at what’s important? What’s going on and what matters beyond this month or year?

How has this industry changed in the last two decades, and where it is going?

Reflection

This seems like a good point to reflect a bit.

Professor Dan Bradley reflecting on early genetic research techniques in his lab at the Smurfit Institute of Genetics at Trinity College in Dublin. Photo by Roberta Estes

In the beginning – twenty years ago, there were two companies who stuck their toes in the consumer DNA testing water – Oxford Ancestors and Family Tree DNA. About the same time, Sorenson Genomics and GeneTree were also entering that space, although Sorenson was a nonprofit. Today, of those, only FamilyTreeDNA remains, having adapted with the changing times – adding more products, testing, and sophistication.

Bryan Sykes who founded Oxford Ancestors announced in 2018 that he was retiring to live abroad and subsequently passed away in 2020. The website still exists, but the company has announced that they have ceased sales and the database will remain open until Sept 30, 2021.

James Sorenson died in 2008 and the assets of Sorenson Molecular Genealogy Foundation, including the Sorenson database, were sold to Ancestry in 2012. Eventually, Ancestry removed the public database in 2015.

Ancestry dabbled in Y and mtDNA for a while, too, destroying that database in 2014.

Other companies, too many to remember or mention, have come and gone as well. Some of the various company names have been recycled or purchased, but aren’t the same companies today.

In the DNA space, it was keep up, change, die or be sold. Of course, there was the small matter of being able to sell enough DNA kits to make enough money to stay in business at all. DNA processing equipment and a lab are expensive. Not just the equipment, but also the expertise.

The Next Wave

As time moved forward, new players entered the landscape, comprising the “Big 4” testing companies that constitute the ponds where genealogists fish today.

23andMe was the first to introduce autosomal DNA testing and matching. Their goal and focus was always medical genetics, but they recognized the potential in genealogists before anyone else, and we flocked to purchase tests.

Ancestry settled on autosomal only and relies on the size of their database, a large body of genealogy subscribers, and a widespread “feel-good” marketing campaign to sell DNA kits as the gateway to “discover who you are.”

FamilyTreeDNA did and still does offer all 3 kinds of tests. Over the years, they have enhanced both the Y DNA and mitochondrial product offerings significantly and are still known as “the science company.” They are the only company to offer the full range of Y DNA tests, including their flagship Big Y-700, full sequence mitochondrial testing along with matching for both products. Their autosomal product is called Family Finder.

MyHeritage entered the DNA testing space a few years after the others as the dark horse that few expected to be successful – but they fooled everyone. They have acquired companies and partnered along the way which allowed them to add customers (Promethease) and tools (such as AutoCluster by Genetic Affairs), boosting their number of users. Of course, MyHeritage also offers users a records research subscription service that you can try for free.

In summary:

One of the wonderful things that happened was that some vendors began to accept compatible raw DNA autosomal data transfer files from other vendors. Today, FamilyTreeDNA, MyHeritage, and GEDmatch DO accept transfer files, while Ancestry and 23andMe do not.

The transfers and matching are free, but there are either minimal unlock or subscription plans for advanced features.

There are other testing companies, some with niche markets and others not so reputable. For this article, I’m focusing on the primary DNA testing companies that are useful for genealogy and mainstream companion third-party tools that complement and enhance those services.

The Single Biggest Change

As I look back, the single biggest change is that genetic genealogy evolved from the pariah of genealogy where DNA discussion was banned from the (now defunct) Rootsweb lists and summarily deleted for the first few years after introduction. I know, that’s hard to believe today.

Why, you ask?

Reasons varied from “just because” to “DNA is cheating” and then morphed into “because DNA might do terrible things like, maybe, suggest that a person really wasn’t related to an ancestor in a lineage society.”

Bottom line – fear and misunderstanding. Change is exceedingly difficult for humans, and DNA definitely moved the genealogy cheese.

From that awkward beginning, genetic genealogy organically became a “thing,” a specific application of genealogy. There was paper-trail traditional genealogy and then the genetic aspect. Today, for almost everyone, genealogy is “just another tool” in the genealogist’s toolbox, although it does require focused learning, just like any other tool.

DNA isn’t separate anymore, but is now an integral part of the genealogical whole. Having said that, DNA can’t solve all problems or answer all questions, but neither can traditional paper-trail genealogy. Together, each makes the other stronger and solves mysteries that neither can resolve alone.

Synergy.

I fully believe that we have still only scratched the surface of what’s possible.

Inheritance

As we talk about the various types of DNA testing and tools, here’s a quick graphic to remind you of how the different types of DNA are inherited.

  • Y DNA is inherited paternally for males only and informs us of the direct patrilineal (surname) line.
  • Mitochondrial DNA is inherited by everyone from their mothers and informs us of the mother’s matrilineal (mother’s mother’s mother’s) line.
  • Autosomal DNA can be inherited from potentially any ancestor in random but somewhat predictable amounts through both parents. The further back in time, the less identifiable DNA you’ll inherit from any specific ancestor. I wrote about that, here.

What’s Hot and What’s Not

Where should we be focused today and where is this industry going? What tools and articles popped up in 2020 to help further our genealogy addiction? I already published the most popular articles of 2020, here.

This industry started two decades ago with testing a few Y DNA and mitochondrial DNA markers, and we were utterly thrilled at the time. Both tests have advanced significantly and the prices have dropped like a stone. My first mitochondrial DNA test that tested only 400 locations cost more than $800 – back then.

Y DNA and mitochondrial DNA are still critically important to genetic genealogy. Both play unique roles and provide information that cannot be obtained through autosomal DNA testing. Today, relative to Y DNA and mitochondrial DNA, the biggest challenge, ironically, is educating newer genealogists about their potential who have never heard about anything other than autosomal, often ethnicity, testing.

We have to educate in order to overcome the cacophony of “don’t bother because you don’t get as many matches.”

That’s like saying “don’t use the right size wrench because the last one didn’t fit and it’s a bother to reach into the toolbox.” Not to mention that if everyone tested, there would be a lot more matches, but I digress.

If you don’t use the right tool, and all of the tools at your disposal, you’re not going to get the best result possible.

The genealogical proof standard, the gold standard for genealogy research, calls for “a reasonably exhaustive search,” and if you haven’t at least considered if or how Y
DNA
and mitochondrial DNA along with autosomal testing can or might help, then your search is not yet exhaustive.

I attempt to obtain the Y and mitochondrial DNA of every ancestral line. In the article, Search Techniques for Y and Mitochondrial DNA Test Candidates, I described several methodologies to find appropriate testing candidates.

Y DNA – 20 Years and Still Critically Important

Y DNA tracks the Y chromosome for males via the patrilineal (surname) line, providing matching and historical migration information.

We started 20 years ago testing 10 STR markers. Today, we begin at 37 markers, can upgrade to 67 or 111, but the preferred test is the Big Y which provides results for 700+ STR markers plus results from the entire gold standard region of the Y chromosome in order to provide the most refined results. This allows genealogists to use STR markers and SNP results together for various aspects of genealogy.

I created a Y DNA resource page, here, in order to provide a repository for Y DNA information and updates in one place. I would encourage anyone who can to order or upgrade to the Big Y-700 test which provides critical lineage information in addition to and beyond traditional STR testing. Additionally, the Big Y-700 test helps build the Y DNA haplotree which is growing by leaps and bounds.

More new SNPs are found and named EVERY SINGLE DAY today at FamilyTreeDNA than were named in the first several years combined. The 2006 SNP tree listed a grand total of 459 SNPs that defined the Y DNA tree at that time, according to the ISOGG Y DNA SNP tree. Goran Rundfeldt, head of R&D at FamilyTreeDNA posted this today:

2020 was an awful year in so many ways, but it was an unprecedented year for human paternal phylogenetic tree reconstruction. The FTDNA Haplotree or Great Tree of Mankind now includes:

37,534 branches with 12,696 added since 2019 – 51% growth!
defined by
349,097 SNPs with 131,820 added since 2019 – 61% growth!

In just one year, 207,536 SNPs were discovered and assigned FT SNP names. These SNPs will help define new branches and refine existing ones in the future.

The tree is constructed based on high coverage chromosome Y sequences from:
– More than 52,500 Big Y results
– Almost 4,000 NGS results from present-day anonymous men that participated in academic studies

Plus an additional 3,000 ancient DNA results from archaeological remains, of mixed quality and Y chromosome coverage at FamilyTreeDNA.

Wow, just wow.

These three new articles in 2020 will get you started on your Y DNA journey!

Mitochondrial DNA – Matrilineal Line of Humankind is Being Rewritten

The original Oxford Ancestor’s mitochondrial DNA test tested 400 locations. The original Family Tree DNA test tested around 1000 locations. Today, the full sequence mitochondrial DNA test is standard, testing the entire 16,569 locations of the mitochondria.

Mitochondrial DNA tracks your mother’s direct maternal, or matrilineal line. I’ve created a mitochondrial DNA resource page, here that includes easy step-by-step instructions for after you receive your results.

New articles in 2020 included the introduction of The Million Mito Project. 2021 should see the first results – including a paper currently in the works.

The Million Mito Project is rewriting the haplotree of womankind. The current haplotree has expanded substantially since the first handful of haplogroups thanks to thousands upon thousands of testers, but there is so much more information that can be extracted today.

Y and Mitochondrial Resources

If you don’t know of someone in your family to test for Y DNA or mitochondrial DNA for a specific ancestral line, you can always turn to the Y DNA projects at Family Tree DNA by searching here.

The search provides you with a list of projects available for a specific surname along with how many customers with that surname have tested. Looking at the individual Y DNA projects will show the earliest known ancestor of the surname line.

Another resource, WikiTree lists people who have tested for the Y DNA, mitochondrial DNA and autosomal DNA lines of specific ancestors.

Click on images to enlarge

On the left side, my maternal great-grandmother’s profile card, and on the right, my paternal great-great-grandfather. You can see that someone has tested for the mitochondrial DNA of Nora (OK, so it’s me) and the Y DNA of John Estes (definitely not me.)

MitoYDNA, a nonprofit volunteer organization created a comparison tool to replace Ysearch and Mitosearch when they bit the dust thanks to GDPR.

MitoYDNA accepts uploads from different sources and allows uploaders to not only match to each other, but to view the STR values for Y DNA and the mutation locations for the HVR1 and HVR2 regions of mitochondrial DNA. Mags Gaulden, one of the founders, explains in her article, What sets mitoYDNA apart from other DNA Databases?.

If you’ve tested at nonstandard companies, not realizing that they didn’t provide matching, or if you’ve tested at a company like Sorenson, Ancestry, and now Oxford Ancestors that is going out of business, uploading your results to mitoYDNA is a way to preserve your investment. PS – I still recommend testing at FamilyTreeDNA in order to receive detailed results and compare in their large database.

CentiMorgans – The Word of Two Decades

The world of autosomal DNA turns on the centimorgan (cM) measure. What is a centimorgan, exactly? I wrote about that unit of measure in the article Concepts – CentiMorgans, SNPs and Pickin’ Crab.

Fortunately, new tools and techniques make using cMs much easier. The Shared cM Project was updated this year, and the results incorporated into a wonderfully easy tool used to determine potential relationships at DNAPainter based on the number of shared centiMorgans.

Match quality and potential relationships are determined by the number of shared cMs, and the chromosome browser is the best tool to use for those comparisons.

Chromosome Browser – Genetics Tool to View Chromosome Matches

Chromosome browsers allow testers to view their matching cMs of DNA with other testers positioned on their own chromosomes.

My two cousins’ DNA where they match me on chromosomes 1-4, is shown above in blue and red at Family Tree DNA. It’s important to know where you match cousins, because if you match multiple cousins on the same segment, from the same side of your family (maternal or paternal), that’s suggestive of a common ancestor, with a few caveats.

Some people feel that a chromosome browser is an advanced tool, but I think it’s simply standard fare – kind of like driving a car. You need to learn how to drive initially, but after that, you don’t even think about it – you just get in and go. Here’s help learning how to drive that chromosome browser.

Triangulation – Science Plus Group DNA Matching Confirms Genealogy

The next logical step after learning to use a chromosome browser is triangulation. If fact, you’re seeing triangulation above, but don’t even realize it.

The purpose of genetic genealogy is to gather evidence to “prove” ancestral connections to either people or specific ancestors. In autosomal DNA, triangulation occurs when:

  • You match at least two other people (not close relatives)
  • On the same reasonably sized segment of DNA (generally 7 cM or greater)
  • And you can assign that segment to a common ancestor

The same two cousins are shown above, with triangulated segments bracketed at MyHeritage. I’ve identified the common ancestor with those cousins that those matching DNA segments descend from.

MyHeritage’s triangulation tool confirms by bracketing that these cousins also match each other on the same segment, which is the definition of triangulation.

I’ve written a lot about triangulation recently.

If you’d prefer a video, I recorded a “Top Tips” Facebook LIVE with MyHeritage.

Why is Ancestry missing from this list of triangulation articles? Ancestry does not offer a chromosome browser or segment information. Therefore, you can’t triangulate at Ancestry. You can, however, transfer your Ancestry DNA raw data file to either FamilyTreeDNA, MyHeritage, or GEDmatch, all three of which offer triangulation.

Step by step download/upload transfer instructions are found in this article:

Clustering Matches and Correlating Trees

Based on what we’ve seen over the past few years, we can no longer depend on the major vendors to provide all of the tools that genealogists want and need.

Of course, I would encourage you to stay with mainstream products being used by a significant number of community power users. As with anything, there is always someone out there that’s less than honorable.

2020 saw a lot of innovation and new tools introduced. Maybe that’s one good thing resulting from people being cooped up at home.

Third-party tools are making a huge difference in the world of genetic genealogy. My favorites are Genetic Affairs, their AutoCluster tool shown above, DNAPainter and DNAGedcom.

These articles should get you started with clustering.

If you like video resources, here’s a MyHeritage Facebook LIVE that I recorded about how to use AutoClusters:

I created a compiled resource article for your convenience, here:

I have not tried a newer tool, YourDNAFamily, that focuses only on 23andMe results although the creator has been a member of the genetic genealogy community for a long time.

Painting DNA Makes Chromosome Browsers and Triangulation Easy

DNAPainter takes the next step, providing a repository for all of your painted segments. In other words, DNAPainter is both a solution and a methodology for mass triangulation across all of your chromosomes.

Here’s a small group of people who match me on the same maternal segment of chromosome 1, including those two cousins in the chromosome browser and triangulation sections, above. We know that this segment descends from Philip Jacob Miller and his wife because we’ve been able to identify that couple as the most distant ancestor intersection in all of our trees.

It’s very helpful that DNAPainter has added the functionality of painting all of the maternal and paternal bucketed matches from Family Tree DNA.

All you need to do is to link your known matches to your tree in the proper place at FamilyTreeDNA, then they do the rest by using those DNA matches to indicate which of the rest of your matches are maternal and paternal. Instructions, here. You can then export the file and use it at DNAPainter to paint all of those matches on the correct maternal or paternal chromosomes.

Here’s an article providing all of the DNAPainter Instructions and Resources.

DNA Matches Plus Trees Enhance Genealogy

Of course, utilizing DNA matching plus finding common ancestors in trees is one of the primary purposes of genetic genealogy – right?

Vendors have linked the steps of matching DNA with matching ancestors in trees.

Genetic Affairs take this a step further. If you don’t have an ancestor in your tree, but your matches have common ancestors with each other, Genetic Affairs assembles those trees to provide you with those hints. Of course, that common ancestor might not be relevant to your genealogy, but it just might be too!

click to enlarge

This tree does not include me, but two of my matches descend from a common ancestor and that common ancestor between them might be a clue as to why I match both of them.

Ethnicity Continues to be Popular – But Is No Shortcut to Genealogy

Ethnicity is always popular. People want to “do their DNA” and find out where they come from. I understand. I really do. Who doesn’t just want an answer?

Of course, it’s not that simple, but that doesn’t mean it’s not disappointing to people who test for that purpose with high expectations. Hopefully, ethnicity will pique their curiosity and encourage engagement.

All four major vendors rolled out updated ethnicity results or related tools in 2020.

The future for ethnicity, I believe, will be held in integrated tools that allow us to use ethnicity results for genealogy, including being able to paint our ethnicity on our chromosomes as well as perform segment matching by ethnicity.

For example, if I carry an African segment on chromosome 1 from my father, and I match one person from my mother’s side and one from my father’s side on that same segment – one or the other of those people should also have that segment identified as African. That information would inform me as to which match is paternal and which is maternal

Not only that, this feature would help immensely tracking ancestors back in time and identifying their origins.

Will we ever get there? I don’t know. I’m not sure ethnicity is or can be accurate enough. We’ll see.

Transition to Digital and Online

Sometimes the future drags us kicking and screaming from the present.

With the imposed isolation of 2020, conferences quickly moved to an online presence. The genealogy community has all pulled together to make this work. The joke is that 2020’s most used phrase is “can you hear me?” I can vouch for that.

Of course while the year 2020 is over, the problem isn’t and is extending at least through the first half of 2021 and possibly longer. Conferences are planned months, up to a year, in advance and they can’t turn on a dime, so don’t even begin to expect in-person conferences until either late in 2021 or more likely, 2022 if all goes well this year.

I expect the future will eventually return to in-person conferences, but not entirely.

Finding ways to be more inclusive allows people who don’t want to or can’t travel or join in-person to participate.

I’ve recorded several sessions this year, mostly for 2021. Trust me, these could be a comedy, mostly of errors😊

I participated in four MyHeritage Facebook LIVE sessions in 2020 along with some other amazing speakers. This is what “live” events look like today!

Screenshot courtesy MyHeritage

A few days ago, I asked MyHeritage for a list of their LIVE sessions in 2020 and was shocked to learn that there were more than 90 in English, all free, and you can watch them anytime. Here’s the MyHeritage list.

By the way, every single one of the speakers is a volunteer, so say a big thank you to the speakers who make this possible, and to MyHeritage for the resources to make this free for everyone. If you’ve ever tried to coordinate anything like this, it’s anything but easy.

Additonally, I’ve created two Webinars this year for Legacy Family Tree Webinars.

Geoff Rasmussen put together the list of their top webinars for 2020, and I was pleased to see that I made the top 10! I’m sure there are MANY MORE you’d be interested in watching. Personally, I’m going to watch #6 yet today! Also, #9 and #22. You can always watch new webinars for free for a few days, and you can subscribe to watch all webinars, here.

The 2021 list of webinar speakers has been announced here, and while I’m not allowed to talk about something really fun that’s upcoming, let’s just say you definitely have something to look forward to in the springtime!

Also, don’t forget to register for RootsTech Connect which is entirely online and completely free, February 25-27, here.

Thank you to Penny Walters for creating this lovely graphic.

There are literally hundreds of speakers providing sessions in many languages for viewers around the world. I’ve heard the stats, but we can’t share them yet. Let me just say that you will be SHOCKED at the magnitude and reach of this conference. I’m talking dumbstruck!

During one of our zoom calls, one of the organizers says it feels like we’re constructing the plane as we’re flying, and I can confirm his observation – but we are getting it done – together! All hands on deck.

I’ll be presenting an advanced session about triangulation as well as a mini-session in the FamilySearch DNA Resource Center about finding your mother’s ancestors. I’ll share more information as it’s released and I can.

Companies and Owners Come & Go

You probably didn’t even notice some of these 2020 changes. Aside from the death of Bryan Sykes (RIP Bryan,) the big news and the even bigger unknown is the acquisition of Ancestry by Blackstone. Recently the CEO, Margo Georgiadis announced that she was stepping down. The Ancestry Board of Directors has announced an external search for a new CEO. All I can say is that very high on the priority list should be someone who IS a genealogist and who understands how DNA applies to genealogy.

Other changes included:

In the future, as genealogy and DNA testing becomes ever more popular and even more of a commodity, company sales and acquisitions will become more commonplace.

Some Companies Reduced Services and Cut Staff

I understand this too, but it’s painful. The layoffs occurred before Covid, so they didn’t result from Covid-related sales reductions. Let’s hope we see renewed investment after the Covid mess is over.

In a move that may or may not be related to an attempt to cut costs, Ancestry removed 6 and 7 cM matches from their users, freeing up processing resources, hardware, and storage requirements and thereby reducing costs.

I’m not going to beat this dead horse, because Ancestry is clearly not going to move on this issue, nor on that of the much-requested chromosome browser.

Later in the year, 23andMe also removed matches and other features, although, to their credit, they have restored at least part of this functionality and have provided ethnicity updates to V3 and V4 kits which wasn’t initially planned.

It’s also worth noting that early in 2020, 23andMe laid off 100 people as sales declined. Since that time, 23andMe has increasingly pushed consumers to pay to retest on their V5 chip.

About the same time, Ancestry also cut their workforce by about 6%, or about 100 people, also citing a slowdown in the consumer testing market. Ancestry also added a health product.

I’m not sure if we’ve reached market saturation or are simply seeing a leveling off. I wrote about that in DNA Testing Sales Decline: Reason and Reasons.

Of course, the pandemic economy where many people are either unemployed or insecure about their future isn’t helping.

The various companies need some product diversity to survive downturns. 23andMe is focused on medical research with partners who pay 23andMe for the DNA data of customers who opt-in, as does Ancestry.

Both Ancestry and MyHeritage provide subscription services for genealogy records.

FamilyTreeDNA is part of a larger company, GenebyGene whose genetics labs do processing for other companies and medical facilities.

A huge thank you to both MyHeritage and FamilyTreeDNA for NOT reducing services to customers in 2020.

Scientific Research Still Critical & Pushes Frontiers

Now that DNA testing has become a commodity, it’s easy to lose track of the fact that DNA testing is still a scientific endeavor that requires research to continue to move forward.

I’m still passionate about research after 20 years – maybe even more so now because there’s so much promise.

Research bleeds over into the consumer marketplace where products are improved and new features created allowing us to better track and understand our ancestors through their DNA that we and our family members inherit.

Here are a few of the research articles I published in 2020. You might notice a theme here – ancient DNA. What we can learn now due to new processing techniques is absolutely amazing. Labs can share files and information, providing the ability to “reprocess” the data, not the DNA itself, as more information and expertise becomes available.

Of course, in addition to this research, the Million Mito Project team is hard at work rewriting the tree of womankind.

If you’d like to participate, all you need to do is to either purchase a full sequence mitochondrial DNA kit at FamilyTreeDNA, or upgrade to the full sequence if you tested at a lower level previously.

Predictions

Predictions are risky business, but let me give it a shot.

Looking back a year, Covid wasn’t on the radar.

Looking back 5 years, neither Genetic Affairs nor DNAPainter were yet on the scene. DNAAdoption had just been formed in 2014 and DNAGedcom which was born out of DNAAdoption didn’t yet exist.

In other words, the most popular tools today didn’t exist yet.

GEDmatch, founded in 2010 by genealogists for genealogists was 5 years old, but was sold in December 2019 to Verogen.

We were begging Ancestry for a chromosome browser, and while we’ve pretty much given up beating them, because the horse is dead and they can sell DNA kits through ads focused elsewhere, that doesn’t mean genealogists still don’t need/want chromosome and segment based tools. Why, you’d think that Ancestry really doesn’t want us to break through those brick walls. That would be very bizarre, because every brick wall that falls reveals two more ancestors that need to be researched and spurs a frantic flurry of midnight searching. If you’re laughing right now, you know exactly what I mean!

Of course, if Ancestry provided a chromosome browser, it would cost development money for no additional revenue and their customer service reps would have to be able to support it. So from Ancestry’s perspective, there’s no good reason to provide us with that tool when they can sell kits without it. (Sigh.)

I’m not surprised by the management shift at Ancestry, and I wouldn’t be surprised to see several big players go public in the next decade, if not the next five years.

As companies increase in value, the number of private individuals who could afford to purchase the company decreases quickly, leaving private corporations as the only potential buyers, or becoming publicly held. Sometimes, that’s a good thing because investment dollars are infused into new product development.

What we desperately need, and I predict will happen one way or another is a marriage of individual tools and functions that exist separately today, with a dash of innovation. We need tools that will move beyond confirming existing ancestors – and will be able to identify ancestors through our DNA – out beyond each and every brick wall.

If a tester’s DNA matches to multiple people in a group descended from a particular previously unknown couple, and the timing and geography fits as well, that provides genealogical researchers with the hint they need to begin excavating the traditional records, looking for a connection.

In fact, this is exactly what happened with mitochondrial DNA – twice now. A match and a great deal of digging by one extremely persistent cousin resulting in identifying potential parents for a brick-wall ancestor. Autosomal DNA then confirmed that my DNA matched with 59 other individuals who descend from that couple through multiple children.

BUT, we couldn’t confirm those ancestors using autosomal DNA UNTIL WE HAD THE NAMES of the couple. DNA has the potential to reveal those names!

I wrote about that in Mitochondrial DNA Bulldozes Brick Wall and will be discussing it further in my RootsTech presentation.

The Challenge

We have most of the individual technology pieces today to get this done. Of course, the combined technological solution would require significant computing resources and processing power – just at the same time that vendors are desperately trying to pare costs to a minimum.

Some vendors simply aren’t interested, as I’ve already noted.

However, the winner, other than us genealogists, of course, will be the vendor who can either devise solutions or partner with others to create the right mix of tools that will combine matching, triangulation, and trees of your matches to each other, even if you don’t’ share a common ancestor.

We need to follow the DNA past the current end of the branch of our tree.

Each triangulated segment has an individual history that will lead not just to known ancestors, but to their unknown ancestors as well. We have reached critical mass in terms of how many people have tested – and more success would encourage more and more people to test.

There is a genetic path over every single brick wall in our genealogy.

Yes, I know that’s a bold statement. It’s not future Jetson’s flying-cars stuff. It’s doable – but it’s a matter of commitment, investment money, and finding a way to recoup that investment.

I don’t think it’s possible for the one-time purchase of a $39-$99 DNA test, especially when it’s not a loss-leader for something else like a records or data subscription (MyHeritage and Ancestry) or a medical research partnership (Ancestry and 23andMe.)

We’re performing these analysis processes manually and piecemeal today. It’s extremely inefficient and labor-intensive – which is why it often fails. People give up. And the process is painful, even when it does succeed.

This process has also been made increasingly difficult when some vendors block tools that help genealogists by downloading match and ancestral tree information. Before Ancestry closed access, I was creating theories based on common ancestors in my matches trees that weren’t in mine – then testing those theories both genetically (clusters, AutoTrees and ThruLines) and also by digging into traditional records to search for the genetic connection.

For example, I’m desperate to identify the parents of my James Lee Clarkson/Claxton, so I sorted my spreadsheet by surname and began evaluating everyone who had a Clarkson/Claxton in their tree in the 1700s in Virginia or North Carolina. But I can’t do that anymore now, either with a third-party tool or directly at Ancestry. Twenty million DNA kits sold for a minimum of $79 equals more than 1.5 billion dollars. Obviously, the issue here is not a lack of funds.

Including Y and mitochondrial DNA resources in our genetic toolbox not only confirms accuracy but also provides additional hints and clues.

Sometimes we start with Y DNA or mitochondrial DNA, and wind up using autosomal and sometimes the reverse. These are not competing products. It’s not either/or – it’s *and*.

Personally, I don’t expect the vendors to provide this game-changing complex functionality for free. I would be glad to pay for a subscription for top-of-the-line innovation and tools. In what other industry do consumers expect to pay for an item once and receive constant life-long innovations and upgrades? That doesn’t happen with software, phones nor with automobiles. I want vendors to be profitable so that they can invest in new tools that leverage the power of computing for genealogists to solve currently unsolvable problems.

Every single end-of-line ancestor in your tree represents a brick wall you need to overcome.

If you compare the cost of books, library visits, courthouse trips, and other research endeavors that often produce exactly nothing, these types of genetic tools would be both a godsend and an incredible value.

That’s it.

That’s the challenge, a gauntlet of sorts.

Who’s going to pick it up?

I can’t answer that question, but I can say that 23andMe can’t do this without supporting extensive trees, and Ancestry has shown absolutely no inclination to support segment data. You can’t achieve this goal without segment information or without trees.

Among the current players, that leaves two DNA testing companies and a few top-notch third parties as candidates – although – as the past has proven, the future is uncertain, fluid, and everchanging.

It will be interesting to see what I’m writing at the end of 2025, or maybe even at the end of 2021.

Stay tuned.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Y DNA Resources and Repository

I’ve created a Y DNA resource page with the information in this article, here, as a permanent location where you can find Y DNA information in one place – including:

  • Step-by-step guides about how to utilize Y DNA for your genealogy
  • Educational articles and links to the latest webinars
  • Articles about the science behind Y DNA
  • Ancient DNA
  • Success stories

Please feel free to share this resource or any of the links to individual articles with friends, genealogy groups, or on social media.

If you haven’t already taken a Y DNA test, and you’re a male (only males have a Y chromosome,) you can order one here. If you also purchase the Family Finder, autosomal test, those results can be used to search together.

What is Y DNA?

Y DNA is passed directly from fathers to their sons, as illustrated by the blue arrow, above. Daughters do not inherit the Y chromosome. The Y chromosome is what makes males, male.

Every son receives a Y chromosome from his father, who received it from his father, and so forth, on up the direct patrilineal line.

Comparatively, mitochondrial DNA, the pink arrow, is received by both sexes of children from the mother through the direct matrilineal line.

Autosomal DNA, the green arrow, is a combination of randomly inherited DNA from many ancestors that is inherited by both sexes of children from both parents. This article explains a bit more.

Y DNA has Unique Properties

The Y chromosome is never admixed with DNA from the mother, so the Y chromosome that the son receives is identical to the father’s Y chromosome except for occasional minor mutations that take place every few generations.

This lack of mixture with the mother’s DNA plus the occasional mutation is what makes the Y chromosome similar enough to match against other men from the same ancestors for hundreds or thousands of years back in time, and different enough to be useful for genealogy. The mutations can be tracked within extended families.

In western cultures, the Y chromosome path of inheritance is usually the same as the surname, which means that the Y chromosome is uniquely positioned to identify the direct biological patrilineal lineage of males.

Two different types of Y DNA tests can be ordered that work together to refine Y DNA results and connect testers to other men with common ancestors.

FamilyTreeDNA provides STR tests with their 37, 67 and 111 marker test panels, and comprehensive STR plus SNP testing with their Big Y-700 test.

click to enlarge

STR markers are used for genealogy matching, while SNP markers work with STR markers to refine genealogy further, plus provide a detailed haplogroup.

Think of a haplogroup as a genetic clan that tells you which genetic family group you belong to – both today and historically, before the advent of surnames.

This article, What is a Haplogroup? explains the basic concept of how haplogroups are determined.

In addition to the Y DNA test itself, Family Tree DNA provides matching to other testers in their database plus a group of comprehensive tools, shown on the dashboard above, to help testers utilize their results to their fullest potential.

You can order or upgrade a Y DNA test, here. If you also purchase the Family Finder, autosomal test, those results can be used to search together.

Step-by-Step – Using Your Y DNA Results

Let’s take a look at all of the features, functions, and tools that are available on your FamilyTreeDNA personal page.

What do those words mean? Here you go!

Come along while I step through evaluating Big Y test results.

Big Y Testing and Results

Why would you want to take a Big Y test and how can it help you?

While the Big Y-500 has been superseded by the Big Y-700 test today, you will still be interested in some of the underlying technology. STR matching still works the same way.

The Big Y-500 provided more than 500 STR markers and the Big Y-700 provides more than 700 – both significantly more than the 111 panel. The only way to receive these additional markers is by purchasing the Big Y test.

I have to tell you – I was skeptical when the Big Y-700 was introduced as the next step above the Big Y-500. I almost didn’t upgrade any kits – but I’m so very glad that I did. I’m not skeptical anymore.

This Y DNA tree rocks. A new visual format with your matches listed on their branches. Take a look!

Educational Articles

I’ve been writing about DNA for years and have selected several articles that you may find useful.

What kinds of information are available if you take a Y DNA test, and how can you use it for genealogy?

What if your father isn’t available to take a DNA test? How can you determine who else to test that will reveal your father’s Y DNA information?

Family Tree DNA shows the difference in the number of mutations between two men as “genetic distance.” Learn what that means and how it’s figured in this article.

Of course, there were changes right after I published the original Genetic Distance article. The only guarantees in life are death, taxes, and that something will change immediately after you publish.

Sometimes when we take DNA tests, or others do, we discover the unexpected. That’s always a possibility. Here’s the story of my brother who wasn’t my biological brother. If you’d like to read more about Dave’s story, type “Dear Dave” into the search box on my blog. Read the articles in publication order, and not without a box of Kleenex.

Often, what surprise matches mean is that you need to dig further.

The words paternal and patrilineal aren’t the same thing. Paternal refers to the paternal half of your family, where patrilineal is the direct father to father line.

Just because you don’t have any surname matches doesn’t necessarily mean it’s because of what you’re thinking.

Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) aren’t the same thing and are used differently in genealogy.

Piecing together your ancestor’s Y DNA from descendants.

Haplogroups are something like our pedigree charts.

What does it mean when you have a zero for a marker value?

There’s more than one way to break down that brick wall. Here’s how I figured out which of 4 sons was my ancestor.

Just because you match the right line autosomally doesn’t mean it’s because you descend from the male child you think is your ancestor. Females gave their surnames to children born outside of a legal marriage which can lead to massive confusion. This is absolutely why you need to test the Y DNA of every single ancestral line.

When the direct patrilineal line isn’t the line you’re expecting.

You can now tell by looking at the flags on the haplotree where other people’s ancestral lines on your branch are from. This is especially useful if you’ve taken the Big Y test and can tell you if you’re hunting in the right location.

If you’re just now testing or tested in 2018 or after, you don’t need to read this article unless you’re interested in the improvements to the Big Y test over the years.

2019 was a banner year for discovery. 2020 was even more so, keeping up an amazing pace. I need to write a 2020 update article.

What is a terminal SNP? Hint – it’s not fatal😊

How the TIP calculator works and how to best interpret the results. Note that this tool is due for an update that incorporates more markers and SNP results too.

You can view the location of the Y DNA and mitochondrial DNA ancestors of people whose ethnicity you match.

Tools and Techniques

This free public tree is amazing, showing locations of each haplogroup and totals by haplogroup and country, including downstream branches.

Need to search for and find Y DNA candidates when you don’t know anyone from that line? Here’s how.

Yes, it’s still possible to resolve this issue using autosomal DNA. Non-matching Y DNA isn’t the end of the road, just a fork.

Science Meets Genealogy – Including Ancient DNA

Haplogroup C was an unexpected find in the Americas and reaches into South America.

Haplogroup C is found in several North American tribes.

Haplogroup C is found as far east as Nova Scotia.

Test by test, we made progress.

New testers, new branches. The research continues.

The discovery of haplogroup A00 was truly amazing when it occurred – the base of the phylotree in Africa.

The press release about the discovery of haplogroup A00.

In 2018, a living branch of A00 was discovered in Africa, and in 2020, an ancient DNA branch.

Did you know that haplogroups weren’t always known by their SNP names?

This brought the total of SNPs discovered by Family Tree DNA in mid-2018 to 153,000. I should contact the Research Center to see how many they have named at the end of 2020.

An academic paper split ancient haplogroup D, but then the phylogenetic research team at FamilyTreeDNA split it twice more! This might not sound exciting until you realize this redefines what we know about early man, in Africa and as he emerged from Africa.

Ancient DNA splits haplogroup P after analyzing the remains of two Jehai people from West Malaysia.

For years I doubted Kennewick Man’s DNA would ever be sequenced, but it finally was. Kennewick Man’s mitochondrial DNA haplogroup is X2a and his Y DNA was confirmed to Q-M3 in 2015.

Compare your own DNA to Vikings!

Twenty-seven Icelandic Viking skeletons tell a very interesting story.

Irish ancestors? Check your DNA and see if you match.

Ancestors from Hungary or Italy? Take a look. These remains have matches to people in various places throughout Europe.

The Y DNA story is no place near finished. Dr. Miguel Vilar, former Lead Scientist for National Geographic’s Genographic Project provides additional analysis and adds a theory.

Webinars

Y DNA Webinar at Legacy Family Tree Webinars – a 90-minute webinar for those who prefer watching to learn! It’s not free, but you can subscribe here.

Success Stories and Genealogy Discoveries

Almost everyone has their own Y DNA story of discovery. Because the Y DNA follows the surname line, Y DNA testing often helps push those lines back a generation, or two, or four. When STR markers fail to be enough, we can turn to the Big Y-700 test which provides SNP markers down to the very tip of the leaves in the Y DNA tree. Often, but not always, family-defining SNP branches will occur which are much more stable and reliable than STR mutations – although SNPs and STRs should be used together.

Methodologies to find ancestral lines to test, or maybe descendants who have already tested.

DNA testing reveals an unexpected mystery several hundred years old.

When I write each of my “52 Ancestor” stories, I include genetic information, for the ancestor and their descendants, when I can. Jacob was special because, in addition to being able to identify his autosomal DNA, his Y DNA matches the ancient DNA of the Yamnaya people. You can read about his Y DNA story in Jakob Lenz (1748-1821), Vinedresser.

Please feel free to add your success stories in the comments.

What About You?

You never know what you’re going to discover when you test your Y DNA. If you’re a female, you’ll need to find a male that descends from the line you want to test via all males to take the Y DNA test on your behalf. Of course, if you want to test your father’s line, your father, or a brother through that father, or your uncle, your father’s brother, would be good candidates.

What will you be able to discover? Who will the earliest known ancestor with that same surname be among your matches? Will you be able to break down a long-standing brick wall? You’ll never know if you don’t test.

You can click here to upgrade an existing test or order a Y DNA test.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Holiday DNA Sales Have Started Early

Wow – the sales started early this year! I understand that Black Friday has morphed into the month of November. I’m good with that!

I’m not really surprised because many people are spending more time at home and let’s face it, genealogy is a great at-home activity. I’m glad the sales are starting earlier and running longer because it encourages more people to become engaged.

Genealogy can even help you produce holiday gifts for others in a myriad of ways. Not just purchasing DNA kits for yourself and family members but creating stories or giving them a book you’ve created with photos of grandma and grandpa’s life, perchance.

Of course, DNA is a HUGE part of genealogy. Even if you’re not going to be able to see Uncle Joe this Thanksgiving, you can certainly have a fun Zoom session and document him swabbing or spitting for his DNA test! Make memories, one way or another

Let’s see what the vendors are offering. Then, be sure to read to the end for a surprise.

FamilyTreeDNA – Early Bird Holiday Sale

click to enlarge

FamilyTreeDNA has more products to offer than any of the other vendors with autosomal, Y DNA and mitochondrial DNA tests, each offering something unique.

Y DNA focuses only on your direct patrilineal (surname) line if you are a male. Mitochondrial DNA follows your matrilineal (mother’s mother’s mother’s) line for both sexes. The Family Finder autosomal test traces all ancestral lines. You can read a quick article about these different tests and how they work in this article:

The Family Finder test uses matches to known family members like parents, aunts, uncles and cousins to assign other matches who match both you and your family member to either maternal or paternal sides of your tree.

You can also use Genetic Affairs AutoCluster, AutoTree and AutoPedigree tools at FamilyTreeDNA to get even more mileage out of your DNA tests.

If you were an early tester with Y and mitochondrial DNA, you can upgrade now to a more robust test to receive more granular results.

click to enlarge

Have you noticed the ancient DNA articles I’ve been writing recently?

Your most refined haplogroup revealed only in the Big Y-700 or mitochondrial mtFull Sequence test allows you to compare your haplogroup with ancient samples most effectively. I promise you, there will be more articles upcoming! These are just pure joy, connecting back in time.

The FamilyTreeDNA sale ends November 24th. Please click here to order or upgrade.

MyHeritage

MyHeritageDNA includes lots of features that other vendors don’t have, such as integrated AutoClusters and Theories of Family Relativity (TOFR) which connects you and your matches through a network of common records and trees. TOFR is surprisingly accurate, either pointing the way to or identifying common ancestors.

I wrote about how to use these and other included tools to unravel your genealogy in this recent article, with a free companion webinar:

Additionally, MyHeritage has a strong focus in Europe that includes lots of European testers – perfect for people whose ancestors are emigrants from another country.

MyHeritageDNA is on sale now for $49, a $30 savings, plus free shipping if you purchase two or more kits. Please click here to order.

This sale ends November 25th.

Ancestry

Best known for their large database, AncestryDNA offers ThruLines which takes advantage of their database size to suggest common ancestors for you and your matches based on multiple trees. I wrote about ThruLines in this article:

The AncestryDNA test is on sale now for $59, a $40 savings, with free US shipping. Please click here to order.

Sale ends November 23rd.

23andMe

23andMe is best known in the genealogy community for the accuracy of their Ancestry Composition, known as ethnicity results, which they paint on your chromosomes.

23andMe also creates a “genetic tree” between you and your closest matches based on who does and who does not match each other, and how they match each other. I wrote about genetic trees and subsequently, how they solved one mystery in these two articles.

While the genetic tree technology isn’t perfected yet, it’s certainly the direction of the future and can provide insight into how you and others are related and where to look for them in your actual genealogy tree.

The 23andMe Ancestry only test is available for a 10% reduction in price at $88.95. Please click here to order.

Of course, 23andMe also offers a health product that includes the ancestry product.

The 23andMe Health + Ancestry test is available for $99, a saving of 50%. Please click here to order.

These sale prices end November 26th.

Surprise!!!

I have an early holiday gift for you too.

Beginning later this week, I’m publishing the first article in a new interactive series aptly named…drum roll…“DNA Tidbits.”

Indeed, there is fruit-of-the-vine to be harvested and that’s exactly what we are going to do – in small steps! Tidbits.

Just like everything else on this blog, it’s completely free of course and we are going to have lots of FUN!

Let me give you a hint – you’ll probably want to have test results at all of these companies because the Tidbits will be bouncing around a bit – so if you need to buy something, please click on the links below.

Thank you and I can’t wait to get started!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

23andMe Genetic Tree Provides Critical Clue to Solve 137-Year-Old Disappearance Mystery

DNA can convey messages from the great beyond – from times past and people that died long before we were born.

I had the most surprising experience this week. It began with receiving an email with the sender name of my long-time research buddy, cousin Garmon Estes.

It’s all the more surprising because not only did Garmon never own a computer, despite my ceaseless encouragement, he passed over in 2013 at the age of 85. So, imagine my shock to open my email to see a message from Garmon. Queue up spooky music😊

As it turned out, Garmon’s nephew is also Garmon. I had communicated with the family off and on over the years since the death of Garmon the elder. Garmon, the younger, had written to tell me that the second “great brick wall” that haunted his Uncle Garmon had fallen – and how that happened, thanks to DNA.

Garmon, the Elder

Estes Garmon

Garmon Estes, the elder

I first met Garmon the elder, via letter, back in the 1970s or maybe early 80s. He was an experienced genealogist and I was beginning.

At that time, Garmon had been chasing the identity of the father of our common ancestor, John R. Estes, for decades, and I was just embarking on what would become a lifelong adventure, or perhaps it could better be called an obsession.

John R. Estes had moved from some unknown location to Claiborne County, Tennessee with his wife and family about 1820. That’s pretty much all we knew at that time. Garmon had spent decades before the age of online records researching every John Estes he could find. I can’t even begin to tell you how many John Esteses existed that needed to be eliminated as candidates.

Garmon lived in California, far from Tennessee. I lived in Indiana, then Michigan – significantly closer. He began caring for his ill spouse, and I began traveling to dusty courthouses, sometimes reading musty books page by yellowed page, extracting everything Estes. Garmon worked from his local Family History Center when he could and wrote letters.

Between our joint sleuthing and many theories that we both composed and subsequently shot down, we narrowed John R. Estes’s location of origin to Halifax County, Virginia. However, there were multiple John Esteses living there at the same time, about the same age, none using middle initials reliably, and some not at all. How inconsiderate!

I began perusing every possible record. I had eliminated some Johns as candidates, most often because they clearly remained in the community after our John had moved to Claiborne County. Late one night, in our local family history center, I found that fateful clue – John R. Estes noted as (S.G.) short for “son of George,” on just one tax list. All it takes is that one gold-nugget record.

It was after 10 PM when I left the Family History Center and even later when I got home. I debated whether I should call Garmon or not, but I decided that indeed, he would want to know immediately, even if I did call at an inconvenient time or wake him up.

The discovery of John’s father, of course, opened the door for much more research, and it solved one of Garmon’s two brick walls that had haunted his genealogy life.

He never solved the second one, but it wasn’t for lack of trying.

What Happened to Willis Alexander Garmon Estes?

Willis Alexander Garmon Estes was born on December 21, 1854, in Lenoir, Roane County, TN. His nickname was Willie.

Willie married Martha Lee Mathis in 1874 and they had 4 children beginning with the first child born the next year in Roane County. Sometime between 1875 and the birth of the second child in 1877, they migrated to Greenwood, Wise County, Texas where their next two children were born in 1877 and 1881.

Martha was pregnant for their fourth child in 1883 when something very strange happened. Willie disappeared, and I do mean literally and completely. Just poof, gone.

Not sure what to do, Martha’s father, who lived in Missouri, went to Texas to retrieve his pregnant daughter and her children and took her and the children home to Missouri where their last child was born that September.

Willie was only 28 when he vanished. The family, of course, had many stories about what happened. Texas at that time was pretty much the “wild west” and the stories about Willie reflected exactly that.

Texas was sometimes the refuge of outlaws and shady characters. One story revealed that Willie had shot a man back in Tennessee and the family fled to Louisiana, then Texas. Of course, that doesn’t tell us why he disappeared in Texas, but it opens the door to speculation and casts doubt on his character, perhaps.

Another story was that he was shot by Indians.

A third story stated that Willie settled in Indian Territory north of the Red River, now Oklahoma, and that he had an altercation with an Indian over the supposed theft of firewood, although who was accusing who was unclear. Willie shot the Indian, then had to flee for his life, leaving his pregnant wife and children as a posse of Indian Police surrounded his house. Willie supposedly promised Martha that he would return, but never did. It was reported that he was shot in Mexico, but no further details emerged.

Aren’t these just maddeningly vague???

Yet another story was that Willie headed for the goldfields of California, struck it rich, and was murdered on the way back home. The details varied, but one version had him murdered by a traveling companion on the trail. Another had him becoming ill and dying in a hospital in St. Louis where his wife went to search for him, to no avail. That might explain why she went back to Missouri, Garmon postulated. And yet a third version was some hybrid of the two where “someone” tried to find Willie’s family for years to reveal what had happened, and where, but was never successful. Of course, how did the family know about this if the mystery person was unable to find the family? But I digress.

Garmon desperately wanted to solve that mystery. He wanted closure.

I didn’t realize that the genealogy bug had bitten Garmon’s nephew too, but it clearly has. Garmon would be so proud.

With Garmon the younger’s permission, I’m publishing “the rest of the story,” Connecting the Dots, as written by Garmon the younger, with a few technical interjections from me involving DNA from time to time.

Connecting the Dots

In 2015, My dad Richard Estes, my brother Corey Estes, and I took a trip to Texas and Oklahoma to see if we could find out more about Willis Alexander Garmon Estes’ disappearance.

Estes greenwood

We visited Greenwood, Texas and nearby Decatur where we looked at historical records at the Wise County Clerk Office. We also went up to Oklahoma City to see the state archives and to Tishomingo to look at any records that might be available.

Estes Oklahoma history.png

Interestingly enough, we did not find any clues as to the disappearance of Willis Alexander Garmon Estes. There were no newspaper articles or criminal records concerning any incidents with Willis Alexander Garmon Estes. The only new information that we found was a couple of land deeds showing that Willis Alexander Garmon Estes’ brother Fielding had bought and sold land in Wise County during the time that Willis Alexander Garmon Estes was living in Greenwood.

We left empty-handed on our trip but our curiosity remained strong and we began talking to each other about going on another trip to Tennessee to speak with Estes family members in Loudon County to see if they might know something about Willis Alexander Garmon’s disappearance.

DNA Testing

In December of 2018, my wife, children, and I had our DNA tested using the service 23andMe. We received test results within a month of sending in saliva samples. The results did not reveal anything unusual.

Fast forward to October 2019. 23andMe introduced a new Family Tree feature that automatically creates a family tree based on the DNA results that you share with relatives in 23andMe. This was a fascinating feature and I noticed that all of my family members were automatically placed into the correct position on the family tree without me having to do anything.

[Roberta’s note – this is not always the case, so don’t necessarily expect the same level of accuracy. The tree is a wonderful innovative feature, just treat family placement as hints and not facts.]

Every few weeks as more and more people had their DNA tested on 23andMe, new relatives were added to the family tree.

In February 2020, I noticed something interesting under the location of Willis Alexander Garmon Estes on the family tree. A woman by the name of Edna appeared as a descendent of Willis Alexander Garmon Estes. The first thing I did was to try and get in contact with her on 23andMe. No luck. Next, I thought maybe she was the descendent of one of Willis Alexander Garmon’s sons (James, John, or George). However, after researching the descendants of each of those lines, Edna’s name did not appear.

The next step I took was to look up as many Ednas by that last name on ancestry.com as I could find and trace their ancestry back to see where it led.

There were two Ednas by that last name in the United States whose age matched the one on 23andMe. I traced both of their ancestry lines back to the 1800’s. Neither one had Willis Alexander Garmon Estes as an ancestor.

Breakthrough

During the middle of March 2020, when I was quarantined at home from work due to the COVID-19 virus, I took another look at Edna’s family lines. I noticed there was a gentleman by the name of James Henry Houston mentioned as an ancestor.

The interesting thing about James was that he was born on the same day, same year, and in the same county as Willis Alexander Garmon Estes. James Henry Houston was born on December 26, 1854 in Loudon County, Tennessee. This seemed like possibly more than a coincidence, so I dived into the data a little bit more.

I looked at federal census records to find out more about James Henry Houston’s past. Strangely there were no official records of him until May 12, 1889 when he married Allie Ona Taylor in Erath, Texas. Normally, if someone is born in 1854, they would show up in one of the federal census records of 1860, 1870, or 1880. James Henry Houston does not show up in any official federal census records until 1900.

According to ancestry records, James Henry Houston married Allie Ona Taylor in 1889 and resided in the Hood County region of Texas until 1910. During this time, he raised 8 children with his wife Allie.

In 1920, the federal census placed him and Allie in Whitehall, Montana. The last federal census he appears in is 1930. He lived in Pomona, California where he died in 1933 at the age of 78.

At this point, I thought it was highly likely that James Henry Houston and Willis Alexander Garmon Estes were the same person. If my hunch was correct then a photo of James Henry Houston would most likely show a resemblance to his son, my great grandfather John Alexander Estes.

Estes James Henry Houston

The photos above show a remarkable similarity in the eyes, nose, mouth, and facial structure between the two men. To me, the photo and historical evidence is enough to conclude that Willis Alexander Garmon Estes is James Henry Houston.

Garmon’s Concluding Thoughts

As I reflect on the fact that Willis Alexander Garmon Estes renamed himself James Henry Houston and moved from Wise County down to Hood County, Texas – approximately 60 miles distance to marry and raise a new family, many more questions come to mind.

What exactly happened to cause Willis Alexander Garmon Estes to leave his wife and children behind? Was it simply a marital dispute or did it involve a criminal offense and running from the law as was mentioned in the family lore?

Did my great grandfather know that his father lived in Pomona in 1930, which was only 6 miles away from where he was living in Rancho Cucamonga? Were there other family members that knew what happened but promised not to tell anyone else? We may never know.

Finally, I want to add one more piece to the story that I found fascinating. On ancestry.com, many of the family trees for James Henry Houston state that the mother and father of James Henry Houston was Jennie Bray and Henry Houston. No information is given for their birthdates or where they came from. The mother and father of Willis Alexander Garmon Estes was Jennie McVey and William Estes. The names Jennie Bray and Jennie McVey are very similar. In order to hide his true identity, James Henry Houston would have to make up a surname for his father since he called himself Houston, not Estes. Willis Alexander Garmon Estes had a brother named John Houston Estes. This might explain why James Henry Houston chose to use the surname Houston rather than another name.

Congratulations Garmon

I know this made Garmon the elder puff up with pride for Garmon the younger’s sleuthing skills and leap for joy at the solve. Garmon, the elder, had two main genealogy goals throughout his entire life. One was solved while he was living, but it took another generation to solve this one.

Great job, Garmon!

About the 23andMe Genetic Tree

23andMe is the only vendor to construct a “trial balloon” genetic tree based only on how the tester matches people and how they do, or don’t, match each other. This occurs with no input from testers in the form of genealogical trees of identifying how people are related to the tester.

Family Tree DNA has Phased Family Matching, MyHeritage has Theories of Family Relativity, and Ancestry has ThruLines which all do some sort of DNA+tree+relationship connectivity, but since 23andMe does not support user-created or uploaded trees, anything they produce has to be using DNA alone.

On one hand, it’s frustrating for genealogists, but on the other hand, there is sometimes a benefit to a different “all genetic” approach.

Of course, the only information that 23andMe has to utilize unless your parents have tested is how closely you match your matches and how closely your matches match each other. This allows 23andMe to place your matches at least in a “neighborhood” on your tree, at least approximately accurate, unless your parents are related to each other and that shared DNA causes things to get dicey quickly.

I wrote about 23andMe’s new relationship triangulation tree when it was first introduced in September 2019, nearly a year ago, here. The launch was rocky for a number of reasons, and if you’ve done genealogy for a long time, your research goals are likely to be further back in time than this 4 generation relationship tree will reveal.

23andMe tree

Click to enlarge

This is what my relationship tree looked like at the time the function was launched. You’ll note that 23andMe places relationships back in time 4 generations, to your great-great-grandparents, meaning that you might have 3rd or even 4th cousins showing up on your genetic tree.

I initially had a total of 18 people placed on my tree, with 3 being close family, 4 being accurate, 4 unknown, 1 uncertain and 6, or one third, inaccurate.

Keep in mind that 23andMe doesn’t make any provision to accommodate or take into account half-relationships, like half-brother or half-sister, either currently or historically. Therefore, descendant placement predictions can be “off” because half-siblings only carry the DNA from one common parent, instead of two, making those relationships appear more distant than they really are.

In Garmon’s case, his great-great-grandfather is the ancestor who was MIA, so the genetic tree has the potential to work well for this purpose.

Estes 23andme tree today

click to enlarge

Today, my tree looks somewhat different, with only 14 people displayed instead of 18, and 6 waiting in the wings to see if I can help 23andMe figure out how and where to place them.

Since the initial launch, customers have been given the opportunity to add their ancestors’ names to their nodes. This works just fine so long as nobody married more than once and had children from both marriages.

Estes Willie Alexander today

click to enlarge

 

Here’s a closer image of the left-hand side of my tree where I’ve super-imposed the location of Willis Alexander Garmon Estes and Edna, as they are related to Garmon the Younger, at bottom right. Ignore the other names – I only utilized my own tree for an example tree structure.

One more generation and it’s unlikely that 23andMe would have made the connection between Edna and Garmon the younger.

Not only does this illustrate the perfect reason to test the oldest generations in your family, but also never to ignore an unknown match that seems to be within the past 3 or 4 generations. You never know what mysteries you might unravel.

Four generations actually reaches back in time quite substantially. In my case, my great-great-grandparents were born in 1805, 1810, 1812, 1813, 1815, 1816, 1818 (2), 1820, 1822, 1827, 1829, 1830, 1832, 1841 and 1848.

If you have mysteries within your closest 4 generations to unravel, the genetic tree at 23andMe might provide valuable clues, but only if you’re willing to do the requisite work to figure out HOW these people match you.

You can’t transfer your DNA file TO 23andMe, so if you want to have your results in the 23andMe database, you’ll need to test there.

Acknowledgments: Thank you to Garmon Estes, the younger, for generously sharing this story and allowing publication. My heart was warmed to see your generational research trip.

Thank you to Garmon Estes, the elder, for being my research partner for so many years. You can finally RIP now, although somehow I suspect you already have these answers.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research