Longobards Ancient DNA from Pannonia and Italy – What Does Their DNA Tell Us? Are You Related?

The Longobards, Lombards, also known as the Long-beards – who were they? Where did they come from? And when?

Perhaps more important – are you related to these ancient people?

In the paper, Understanding 6th-century barbarian social organizatoin and migration through paleogenomics, by Amorim et al, the authors tell us in the abstract:

Despite centuries of research, much about the barbarian migrations that took place between the fourth and sixth centuries in Europe remains hotly debated. To better understand this key era that marks the dawn of modern European societies, we obtained ancient genomic DNA from 63 samples from two cemeteries (from Hungary and Northern Italy) that have been previously associated with the Longobards, a barbarian people that ruled large parts of Italy for over 200 years after invading from Pannonia in 568 CE. Our dense cemetery-based sampling revealed that each cemetery was primarily organized around one large pedigree, suggesting that biological relationships played an important role in these early medieval societies. Moreover, we identified genetic structure in each cemetery involving at least two groups with different ancestry that were very distinct in terms of their funerary customs. Finally, our data are consistent with the proposed long-distance migration from Pannonia to Northern Italy.

Both the Germans and French have descriptions of this time of upheaval in their history. Völkerwanderung in German and Les invasions barbares in French refer to the various waves of invasions by Goths, Franks, Anglo-Saxons, Vandals, and Huns. All of these groups left a genetic imprint, a story told without admixture by their Y and mitochondrial DNA.

click to enlarge

The authors provide this map of Pannonia, the Longobards kingdom, and the two cemeteries with burial locations.

One of their findings is that the burials are organized around biological kinship. Perhaps they weren’t so terribly different from us today.

Much as genealogists do, the authors created a pedigree chart – the only difference being that their chart is genetically constructed and lacks names, other than sample ID.

One man is buried with a horse, and one of his relatives, a female, is not buried in a family unit but in a half-ring of female graves.

The data suggests that the cemetery in Pannonia, Szolad, shown in burgundy on the map, may have been a “single-generation” cemetery, in use for only a limited time as the migration continued westward. Collegno, in contrast, seems to have been used for multiple generations, with the burials radiating outward over time from the progenitor individual.

Because the entire cemetery was analyzed, it’s possible to identify those individuals with northern or northeastern European ancestry, east of the Rhine and north of the Danube, and to differentiate from southern European ancestry in the Lombard cemetery – in addition to reassembling their family pedigrees. The story is told, not just by one individual’s DNA, but how the group is related to each other, and their individual and group origins.

For anyone with roots in Germany, Hungary, or the eastern portion of Europe, you know that this region has been embroiled in upheaval and warfare seemingly as long as there have been people to fight over who lived in and controlled these lands.

Are You Related?

Goran Rundfeldt’s R&D group at Family Tree DNA reanalyzed the Y DNA samples from this paper and has been kind enough to provide a summary of the results. Michael Sager has utilized them to branch the Y DNA tree – in a dozen places.

Mitochondrial DNA haplogroups have been included where available from the authors, but have not been reanalyzed.

Note the comments added by FTDNA during analysis.

Many new branches were formed. I included step-by-step instructions, here, so you can see if your Y DNA results match either the new branch or any of these samples upstream.

If you’re a male and you haven’t yet tested your Y DNA or you would like to upgrade to the Big Y-700 to obtain your most detailed haplogroup, you can do either by clicking here. My husband’s family is from Hungary and I just upgraded his Y DNA test to the Big Y-700. I want to know where his ancestors came from.

And yes, this first sample really is rare haplogroup T. Each sample is linked to the Family Tree DNA public tree. We find haplogroups G and E as well as the more common R and I. Some ancient samples match contemporary testers from France (2), the UK, England, Morocco, Denmark (5), and Italy. Fascinating!

Sample: CL23
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: T-BY45363
mtDNA: H

Sample: CL30
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-P312
mtDNA: I1b

Sample: CL31
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: G-FGC693
FTDNA Comment: Authors warn of possible contamination. Y chromosome looks good – and there is support for splitting this branch. However, because of the contamination warning – we will not act on this split until more data is available.
mtDNA: H18

Sample: CL38
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: E-BY3880
mtDNA: X2

Sample: CL49
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-CTS6889

Sample: CL53
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-FGC24138
mtDNA: H11a

Sample: CL57
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-BY48364
mtDNA: H24a

Sample: CL63
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: I-FT104588
mtDNA: H

Sample: CL84
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-U198
mtDNA: H1t

Sample: CL92
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: H

Sample: CL93
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: J2b1a

Sample: CL94
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-DF99
mtDNA: K1c1

Sample: CL97
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-L23

Sample: CL110
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-L754

Sample: CL121
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-BY70163
FTDNA Comment: Shares 2 SNPs with a man from France. Forms a new branch down of R-BY70163 (Z2103). New branch = R-BY197053
mtDNA: T2b

Sample: CL145
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-S22519
mtDNA: T2b

Sample: CL146
Location: Collegno, Piedmont, Italy
Age: Longobard 6th Century
Y-DNA: R-A8472
mtDNA: T2b3

Sample: SZ1
Location: Szólád, Somogy County, Hungary
Study Information: The skeletal remains from an individual dating to the Bronze Age 10 m north of the cemetery.
Age: Bronze Age
Y-DNA: R-Y20746
mtDNA: J1b

Sample: SZ2
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-Z338
FTDNA Comment: Shares 5 SNPs with a man from the UK. Forms a new branch down of R-Z338 (U106). New branch = R-BY176786
mtDNA: T1a1

Sample: SZ3
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-BY3605
mtDNA: H18

Sample: SZ4
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-ZP200
FTDNA Comment: Splits R-ZP200 (U106). Derived (positive) for 2 SNPs and ancestral (negative) for 19 SNPs. New path = R-Y98441>R-ZP200
mtDNA: H1c9

Sample: SZ5
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-BY3194
FTDNA Comment: Splits R-BY3194 (DF27). Derived for 19 SNPs, ancestral for 9 SNPs. New path = R-BY3195>R-BY3194
mtDNA: J2b1

Sample: SZ6
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-P214

Sample: SZ7
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: T2e

Sample: SZ11
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-FGC13492
FTDNA Comment: Shares 1 SNP with a man from Italy. Forms a new branch down of R-FGC13492 (U106). New branch = R-BY138397
mtDNA: K2a3a

Sample: SZ12
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: W6

Sample: SZ13
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 422-541 cal CE
Y-DNA: I-S8104
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: N1b1b1

Sample: SZ14
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-CTS616
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: I3

Sample: SZ15
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-YP986
mtDNA: H1c1

Sample: SZ16
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-U106
mtDNA: U4b1b

Sample: SZ18
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: E-BY6865
FTDNA Comment: Shares 1 SNP with a man from Morocco. Forms a new branch down of E-BY6865. New branch = E-FT198679
mtDNA: H13a1a2

Sample: SZ22
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-Y6876
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: N1b1b1

Sample: SZ23
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-S10271
mtDNA: H13a1a2

Sample: SZ24
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: I-ZS3
FTDNA Comment: SZ13, SZ7 and SZ12 share 2 SNPs with a man from Denmark, forming a branch down of I-S8104 (M223). New branch = I-FT45324. Note that SZ22 and SZ24 (and even SZ14) fall on the same path to I-S8104 but lack coverage for intermediate branches.
mtDNA: U4b

Sample: SZ27B
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 412-538 cal CE
Y-DNA: R-FGC4166
FTDNA Comment: Shares 1 SNP with a man from France. Forms a new branch down of R-FGC4166 (U152). New branch = R-FT190624
mtDNA: N1a1a1a1

Sample: SZ36
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: T-Y15712
mtDNA: U4c2a

Sample: SZ37
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 430-577 cal CE
Y-DNA: R-P312
mtDNA: H66a

Sample: SZ42
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century
Y-DNA: R-P312
mtDNA: K2a6

Sample: SZ43
Location: Szólád, Somogy County, Hungary
Age: Longobard 6th Century 435-604 cal CE
Y-DNA: I-BY138
mtDNA: H1e

Sample: SZ45
Location: Szólád, Somogy County, Hungary
Study Information: ADMIXTURE analysis showed SZ45 to possess a unique ancestry profile.
Age: Longobard 6th Century
Y-DNA: I-FGC21819
FTDNA Comment: Shares 2 SNPs with a man from England forms a new branch down of FGC21819. New branch = I-FGC21810
mtDNA: J1c

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Mitochondrial DNA Facebook Group Launches

Mitochondrial DNA has so much untapped potential!

Until now, there hasn’t been an online resource where one could go to find information about and specifically discuss mitochondrial DNA. Even more distressing, in many groups, when the topic of mitochondrial DNA arises, misinformation abounds, discouraging would-be testers.

New Group!

I’m very pleased to announce the new Facebook group, Mitochondrial DNA, here, founded by the National Geographic Society Genographic Project’s lead scientist, Dr. Miguel Vilar. As you know, the Genographic Project’s public participation phase has ended, but the scientific research for those who opted-in for science continues and Miguel is leading the way.

Miguel shares a lifelong passion for mitochondrial DNA, inherited by both males and females from their direct matrilineal line.

Different colored stars represent different Y DNA lines. Different colored hearts represent different mtDNA lines. The paternal and maternal grandfathers carry the mtDNA of their mothers, not shown here.

Mitochondrial DNA informs you about your mother’s mother’s mother’s line – the pink hearts above – both genealogically and historically. In other words, you can break down brick walls in your genealogy and understand the genesis of your matrilineal line before the advent of surnames. We can better answer the question, “where did I come from,” or more succinctly, where did our mother’s direct line come from.

In addition to Miguel, you’ll find other experts in the group, including members of the Million Mito Project, which I wrote about here.

  • Goran Rundfeldt heads the R&D team at FamilyTreeDNA.
  • Paul Maier is a population geneticist and member of the research team at FamilyTreeDNA. He specialized in toad and frog mtDNA in grad school and is now working on the new mitochondrial tree, for humans 😊, among other projects.
  • I’ve always been very interested in mitochondrial DNA, was a member of the Genographic Project design team and the first Genographic affiliate researcher. You can reference my Mitochondrial DNA resource page, here, which includes articles and step-by-step instructions for how to utilize mtDNA results.

Aside from the Million Mito research team, other Mitochondrial DNA group members with a special interest in mitochondrial DNA include:

As I scan down the list of members, I see several more highly qualified people.

Come On Over

Come on over and take a look for yourself to see what kinds of subjects are being discussed. Browse, ask a question, and contribute.

Send other people who have questions, are seeking advice, or are interested in what mitochondrial DNA can do for them.

Do you have a matrilineal brick wall you’d like to see fall? The first step is to test your mitochondrial DNA, preferably at the full sequence level to obtain as much information as possible. The more people who test, the better our chances of making meaningful connections.

Your mitochondrial DNA is a gift directly from your matrilineal ancestors. See what they have to say!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Mitochondrial DNA: Part 2 – What Do Those Numbers Mean?

This is the second part in a series about mitochondrial DNA. The first article can be found here:

When people receive their results, generally the first thing they look at is matches, and the second thing is the actual results, found under the Mutations tab.

Mitochondrial personal page mutations.png

We’re going to leave working with matches until after we discuss what the numbers on the Mutations page actually mean.

Fair warning – if you’re not interested in the “science stuff,” then this article probably isn’t for you. We’re going to talk about the different kinds of mutations and how they affect your results and matching. I promise to make the science fun and understandable.

However, it’s only fair to tell you that you don’t need to understand the nitty-gritty to make use of your results in some capacity. We will be covering how to use every tab on your mitochondrial DNA page, above, in future articles – but you may want to arm yourself with this information so you understand why tools, and matching, work the way they do. All matches and mismatches are not created equal!

The next article in the series will be “Mitochondrial DNA: Part 3 – Haplogroups Unraveled” in which we’ll discuss how haplogroups are assigned, the differences between vendors, and how haplogroup results can be utilized for genealogy.

If you have your full sequence mitochondrial results from Family Tree DNA, it would be a good idea to sign on now, or to print out your results page so you can refer to your results while reading this article.

Results

I’m using my own results in these examples.

When you click on the “Results” icon on your personal page, above, this is what you’ll see.

Mitochondrial mutations

You can click to enlarge this image.

After you read the information about your haplogroup origin, your eyes will drift down to the numbers below, where they will stop, panic spreading throughout your body.

Never fear – your decoder ring is right here.

Where Did Those Numbers Come From?

The numbers you are seeing are the locations in your mitochondrial DNA where a mutation has occurred. Mutations, in this sense, are not bad things, so don’t let that word frighten you. In fact, mutations are what enables genetic genealogy to work.

Most of the 16,569 locations never change. Only the locations that have experienced a mutation are shown. Locations not listed have not experienced a mutation.

The number shown is the location, or address, in the mitochondrial DNA where a mutation has occurred.

However, there is more than one way to view your results.

Two Tabs – rCRS and RSRS

Mitochondrial RSRS

Click to enlarge this image.

You’ll notice that there are two tabs at the top of the page. RSRS values are showing initially.

rCRS and RSRS are abbreviations for “revised Cambridge Reference Sequence” and “Reconstructed Sapiens Reference Sequence.”

The CRS, Cambridge Reference Sequence was the reference model invented in 1981, at Cambridge University, when the first full sequencing of mitochondrial DNA was completed. Everyone has been compared to that anonymous individual ever since.

The problem is that the reference individual was a member of haplogroup H, not a haplogroup further back in time, closer to Mitochondrial Eve. Mitochondrial Eve was not the first woman to live, but the first woman to have a line of continuous descendants to present. You can read more about the concept of Mitochondrial Eve, here and about rCRS/RSRS here.

Using a haplogroup H person for a reference is kind of like comparing everyone to the middle of a book – the part that came later is no problem, but how do you correctly classify the changes that preceded the mutations that produced haplogroup H?

Think of mitochondrial DNA as a kind of biological timeline.

Mitochondrial Eve to rCRS.png

In this concept example, you can see that Mitochondrial Eve lived long ago and mutations, Xs, that formed haplogroups accrued until haplogroup H was born, and additional mutations continued to accrue over thousands of years.

Mitochondrial Eve to H and J.png

Haplogroup J, a different haplogroup, was born from one of mitochondrial Eve’s descendants with a string of their own mutations.

The exact same process occurred with every other haplogroup.

You can see a bare-bones tree in the image below, with H and J under different branches of R, at the bottom.

Mitochondrial bare bones tree.png

Using the rCRS model, the descendants of haplogroup J born today are being compared to the rCRS reference person who is a descendant of haplogroup H.

In reality, everyone should be being compared directly to Mitochondrial Eve, or at least someone much closer to the root of the mitochondrial phylotree than haplogroup H. However, when the CRS and then the revised CRS (rCRS) was created, scientists didn’t know as much as they do today.

In 2012, Dr. Doron Behar et al rewrote the mitochondrial DNA phylotree in the paper A “Copernican” Reassessment of the Human Mitochondrial DNA Tree from its Root by discerning what mitochondrial Eve’s DNA looked like by tracking the mutations backwards in time.

Then, the scientists redrew the tree and compared everyone to Mitochondrial Eve at the base of the tree. The RSRS view shows those mutations, which is why I have more mutations in the RSRS model than in the rCRS model where I’m compared with the haplogroup H person who is closer in time than Mitochondrial Eve. In other words, mutations that were considered “normal” for haplogroup J because haplogroup H carried them, are not considered mutations by both haplogroup J and H because they are both being compared to Mitochondrial Eve.

Today, some papers and individuals utilize the CRS version, and others utilize the RSRS version. People don’t adapt very well or quickly to change. Complicating this further, the older papers, published before 2012, would continue to reference rCRS values, so maintaining the rCRS in addition to the RSRS seemed prudent.

You can see the actual mtDNA haplotree here and I wrote about how to use it here.

Let’s look at the differences in the displays and why each is useful.

The Cambridge Reference Sequence

My rCRS results look a little different than the RSRS results.

Mitochondrial RSRS

Click to enlarge this image.

I have more mutations showing on the RSRS page, above, than in the rCRS page below, including only the information above the second row of black headers.

Mitochondrial rCRS page

Click to enlarge.

That’s because my RSRS results are being compared to Mitochondrial Eve, much further back in time. Compared to Mitochondrial Eve, I have a lot more mutations than I have being compared to a haplogroup H individual.

Let’s look at the most common example. Do you see my mutation at location 16519C?

Mitochondrial 16519.png

In essence, the rCRS person carried this mutation, which meant that it became “normal” and anyone who didn’t have the mutation shows with a mutation at this location.

Therefore, today, you’re very likely to have a mutation at location 16519C in the rCRS model.

In the RSRS results below, you can see that 16519C is missing from the HVR1 differences.

Mitochondrial DNA RSRS mutations.png

You can see that the other two mutations at locations 16069 and 16126 are still present, but so are several others not present in the rCRS model. This means that the mutations at locations 16129, 16187, 16189, 16223, 16230, 16278 and 16311 are all present in the rCRS model as “normal” so they weren’t reported in my results as mutations.

However, when compared to Mitochondrial Eve, the CRS individual AND me would both be reported with these mutations, because we are both being compared to Mitochondrial Eve.

Another difference is that at the bottom of the rCRS page you can see a list of mutations and their normal CRS value, along with your result.

Mitochondrial HVR1 rCRS mutations.png

For location 16069, the normal CRS value is C and your value is T.

Why don’t we have this handy chart for the RSRS?

We don’t need it, because the value of 16069C in the RSRS model is written with the normal letter preceding the location, and the mutated value after.

Mitochondrial nucleotides.png

You might have noticed that you see 4 different letters scattered through your results. Why is that?

Letters

The letters stand for the nucleotide bases that comprise DNA, as follows:

  • T – Thymine
  • A – Adenine
  • C – Cytosine
  • G – Guanine

Looking at location 16069, above, we see that C is the normal value and T is the mutated value.

Let’s look at different kinds of mutations.

Transitions, Transversions and Reversions

DNA is normally paired in a particular way, Ts with As and Cs with Gs. You can read more about how that works here.

Sometimes the T-As and C-Gs flip positions, so T-C, for example. These are known as transitions. A mutation with a capital letter at the end of the location is a transition.

For example, C14352T indicates that the normal value in this location is C, but it has mutated to T. This is a transition and T will be capitalized. The first letter is always capitalized.

If you notice that one of your trailing letters in your RSRS results is a small letter instead of a capital, that means the mutation is a transversion instead of a transition. For example, C14352a.

Mitochondrial DNA transitions and transversions.png

You can read more about transitions and transversions here and here.

When looking at your RSRS results, your letter before the allele number is the normal state and the trailing noncapital letter is the transversion. With C14352a, C is the normal state, but the mutation caused the change to a, which is a small letter to indicate that it is a transversion.

Original Value

Typical Transition Pairing (large trailing letter)

Unusual Transversion Pairing (small trailing letter)

T

C a or g

A

G

c or t

C

T

a or g

G A

c or t

An exclamation mark (!) at the end of a labeled position denotes a reversion to the ancestral or original state. This means that the location used to have a mutation, but it has reverted back to the “normal” state. Why does this matter? Because DNA is a timeline and you need to know the mutation history to fully understand the timeline.

The number of exclamation marks stands for the number of sequential reversions in the given position from the RSRS (e.g., C152T, T152C!, and C152T!!).

Mitochondrial DNA reversions.png

This means that the original nucleotide at that location was C, it changed to T, then back to C, then back to T again, indicated by the double reversion-!!. Yes, a double reversion is very, very rare.

Insertions

Mitochondrial DNA insertions.png

Many people have mutations that appear with a decimal point. I have an insertion at location 315. The decimal point indicates that an insertion has occurred, and in this case, an extra nucleotide, a C, was inserted. Think of this as DNA cutting in line between two people with assigned parking spaces – locations 315 and 316. There’s no room for the cutter, so it’s labeled 315.1 plus the letter for the nucleotide that was inserted.

Sometimes you will see another insertion at the same location which would be noted at 315.2C or 315.2A if a different nucleotide was inserted.

Complex insertions are shown as 315.XC which means that there was an insertion of multiple nucleotides, C, in this case, of unknown length. So the number of Cs would be more than 1, but the number was not measurable so the unknown “X” was used.

Some locations, such as 309 and 315 are so unstable, mutating so often, that they are not included in matching.

Deletions

Deletions occur when a piece of DNA is forever removed. Once deleted, DNA cannot regenerate at that position.

A deletion is indicated by either a “d” or a “-“ such as 522d or 522-.

Deletions at locations 522 and 523 are so common that they aren’t utilized in matching either.

Extra and Missing Mutations

On the RSRS tab, you’ll notice extra and missing mutations. These are mutations that vary from those normally found in people who carry your haplogroup. Missing and extra mutations are your own personal DNA filter that allow you to have genealogically meaningful matches.

Mitochondrial DNA extra and missing mutations.png

Extra mutations are mutations that you have, but most people in your haplogroup don’t.

Missing mutations are mutations that most people have, and you don’t.

Heteroplasmies

A heteroplasmy is quite interesting because it’s really a mutation in progress.

What this means is that you have two versions of the DNA sequence showing in your mitochondrial DNA at that location. At a specific location, you show both of two separate nucleotides. Amounts detected of a second nucleotide over 20% are considered a heteroplasmy. Amounts below 20% are ignored. Generally, within a few generations, the mutation will resolve in one direction or the other – although I have seen some heteroplasmies that seem to be persistent for several generations.

Heteroplasmies are indicated in your results by a different letter at the end of the location, so for example, C16069Y where the Y would indicate that a heteroplasmy had been detected.

The letter after the location has a specific meaning; in this case, Y means that both a C and a T were found, per the chart below.

Mitochondrial DNA heteroplasmy.png

Heteroplasmy Matching

Technically, using the example of C16069Y, where Y tells us that both C and T was found, this location should match against anyone carrying the following values:

  • C (original value)
  • T (mutated value)
  • Y (letter indicating a heteroplasmy)

However, currently at Family Tree DNA, the heteroplasmy only counts as a match to the Y (specific heteroplasmy indicator) and the CRS value or C, but not the mutated value of T.

Genetic Distance

The difference in matching locations is called the genetic distance. I wrote about genetic distance in the article, Concepts – Genetic Distance which has lots of examples.

When you have unusual results, they can produce unexpected consequences. For example, if a heteroplasmy is found in the HVR 1 or 2 region, and a woman’s child doesn’t have a heteroplasmy, but does have the mutated value – the two individuals, mother and child, won’t be shown as a match at the HVR1/2 level because only exact matches are shown as matches at that level.

That can be pretty disconcerting.

If you notice something unusual in your results, and you match someone exactly, you know that they have the same anomaly. If you don’t match the person exactly, you might want to ask them if they have the same unusual result.

If you expect to match someone, and don’t, it doesn’t hurt to begin discussions by asking about their haplogroup. While they might be hesitant to share their exact results values with you, sharing their haplogroup shouldn’t be problematic. If you don’t share at least the same base haplogroup, you don’t need to talk further. You’re not related in a genealogically relevant timeframe on your matrilineal line.

If you do share the same haplogroup, then additional discussion is probably warranted about your differences in results. I generally ask about the unusual “extra and missing” mutations, beginning with “how many do you have?” and discussing from there.

Summary

I know there’s a lot to grasp here. Many people don’t really want to learn the details any more than I want to change my car’s oil.

I understand that completely which is why I provide both Quick Consults and Personalized DNA Reports for those who want information either quickly or as a report for either Y or mitochondrial DNA. Quick Consults allow up to an hour to answer a specific question, and Personalized DNA Reports provide you with a written document of 70-100 pages that explains your results and what they mean to you.

You can also call, e-mail or e-chat with the support department at Family Tree DNA which is free.

Next Article – Haplogroups

Your haplogroup, which we’ll discuss in the next article, can eliminate people as being related to you in the past hundreds to thousands of years, but you need the information held in all of your 16,569 locations to perform granular genealogical matching and to obtain all of the available information. In order to obtain all 16,569 locations, you need to order the mtFull Sequence test at Family Tree DNA.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research