Concepts: Inheritance

Inheritance.

What is it?

How does it work?

I’m not talking about possessions – but about the DNA that you receive from your parents, and their parents.

The reason that genetic genealogy works is because of inheritance. You inherit DNA from your parents in a known and predictable fashion.

Fortunately, we have more than one kind of DNA to use for genealogy.

Types of DNA

Females have 3 types of DNA and males have 4. These different types of DNA are inherited in various ways and serve different genealogical purposes.

Males Females
Y DNA Yes No
Mitochondrial DNA Yes Yes
Autosomal DNA Yes Yes
X Chromosome Yes, their mother’s only Yes, from both parents

Different Inheritance Paths

Different types of DNA are inherited from different ancestors, down different ancestral paths.

Inheritance Paths

The inheritance path for Y DNA is father to son and is inherited by the brother, in this example, from his direct male ancestors shown by the blue arrow. The sister does not have a Y chromosome.

The inheritance path for the red mitochondrial DNA for both the brother and sister is from the direct matrilineal ancestors, only, shown by the red arrow.

Autosomal DNA is inherited from all ancestral lines on both the father’s and mother’s side of your tree, as illustrated by the broken green arrow.

The X chromosome has a slightly different inheritance path, depending on whether you are a male or female.

Let’s take a look at each type of inheritance, how it works, along with when and where it’s useful for genealogy.

Autosomal DNA

Autosomal DNA testing is the most common. It’s the DNA that you inherit from both of your parents through all ancestral lines back in time several generations. Autosomal DNA results in matches at the major testing companies such as FamilyTreeDNA, MyHeritage, Ancestry, and 23andMe where testers view trees or other hints, hoping to determine a common ancestor.

How does autosomal DNA work?

22 autosomes

Every person has two each of 22 chromosomes, shown above, meaning one copy is contributed by your mother and one copy by your father. Paired together, they form the two-sided shape we are familiar with.

For each pair of chromosomes, you receive one from your father, shown with a blue arrow under chromosome 1, and one from your mother, shown in red. In you, these are randomly combined, so you can’t readily tell which piece comes from which parent. Therein lies the challenge for genealogy.

This inheritance pattern is the same for all chromosomes, except for the 23rd pair of chromosomes, at bottom right, which determined the sex of the child.

The 23rd chromosome pair is inherited differently for males and females. One copy is the Y chromosome, shown in blue, and one copy is the X, shown in red. If you receive a Y chromosome from your father, you’re a male. If you receive an X from your father, you’re a female.

Autosomal Inheritance

First, let’s talk about how chromosomes 1-22 are inherited, omitting chromosome 23, beginning with grandparents.

Inheritance son daughter

Every person inherits precisely half of each of their parents’ autosomal DNA. For example, you will receive one copy of your mother’s chromosome 1. Your mother’s chromosome 1 is a combination of her mother’s and father’s chromosome 1. Therefore, you’ll receive ABOUT 25% of each of your grandparents’ chromosome 1.

Inheritance son daughter difference

In reality, you will probably receive a different amount of your grandparent’s DNA, not exactly 25%, because your mother or father will probably contribute slightly more (or less) of the DNA of one of their parents than the other to their offspring.

Which pieces of DNA you inherit from your parents is random, and we don’t know how the human body selects which portions are and are not inherited, other than we know that large pieces are inherited together.

Therefore, the son and daughter won’t inherit the exact same segments of the grandparents’ DNA. They will likely share some of the same segments, but not all the same segments.

Inheritance maternal autosomalYou’ll notice that each parent carries more of each color DNA than they pass on to their own children, so different children receive different pieces of their parents’ DNA, and varying percentages of their grandparents’ DNA.

I wrote about a 4 Generation Inheritance Study, here.

Perspective

Keep in mind that you will only inherit half of the DNA that each of your parents carries.

Looking at a chromosome browser, you match your parents on all of YOUR chromosomes.

Inheritance parental autosomal

For example, this is me compared to my father. I match my father on either his mother’s side, or his father’s side, on every single location on MY chromosomes. But I don’t match ALL of my father’s DNA, because I only received half of what he has.

From your parents’ perspective, you only have half of their DNA.

Let’s look at an illustration.

Inheritance mom dad

Here is an example of one of your father’s pairs of chromosomes 1-22. It doesn’t matter which chromosome, the concepts are the same.

He inherited the blue chromosome from his father and the pink chromosome from his mother.

Your father contributed half of his DNA to you, but that half is comprised of part of his father’s chromosome, and part of his mother’s chromosome, randomly selected in chunks referred to as segments.

Inheritance mom dad segments

Your father’s chromosomes are shown in the upper portion of the graphic, and your chromosome that you inherited from you father is shown below.

On your copy of your father’s chromosome, I’ve darkened the dark blue and dark pink segments that you inherited from him. You did not receive the light blue and light pink segments. Those segments of DNA are lost to your line, but one of your siblings might have inherited some of those pieces.

Inheritance mom dad both segments

Now, I’ve added the DNA that you inherited from your Mom into the mixture. You can see that you inherited the dark green from your Mom’s father and the dark peach from your Mom’s mother.

Inheritance grandparents dna

These colored segments reflect the DNA that you inherited from your 4 grandparents on this chromosome.

I often see questions from people wondering how they match someone from their mother’s side and someone else from their father’s side – on the same segment.

Understanding that you have a copy of the same chromosome from your mother and one from your father clearly shows how this happens.

Inheritance match 1 2

You carry a chromosome from each parent, so you will match different people on the same segment. One match is to the chromosome copy from Mom, and one match is to Dad’s DNA.

Inheritance 4 gen

Here is the full 4 generation inheritance showing Match 1 matching a segment from your Dad’s father and Match 2 matching a segment from your Mom’s father.

Your Parents Will Have More Matches Than You Do

From your parents’ perspective, you will only match (roughly) half of the DNA with other people that they will match. On your Dad’s side, on segment 1, you won’t match anyone pink because you didn’t inherit your paternal grandmother’s copy of segment 1, nor did you inherit your maternal grandmother’s segment 1 either. However, your parents will each have matches on those segments of DNA that you didn’t inherit from them.

From your perspective, one or the other of your parents will match ALL of the people you match – just like we see in Match 1 and Match 2.

Matching you plus either of your parents, on the same segment, is exactly how we determine whether a match is valid, meaning identical by descent, or invalid, meaning identical by chance. I wrote about that in the article, Concepts: Identical by…Descent, State, Population and Chance.

Inheritance on chromosomes 1-22 works in this fashion. So does the X chromosome, fundamentally, but the X chromosome has a unique inheritance pattern.

X Chromosome

The X chromosome is inherited differently for males as compared to females. This is because the 23rd pair of chromosomes determines a child’s sex.

If the child is a female, the child inherits an X from both parents. Inheritance works the same way as chromosomes 1-22, conceptually, but the inheritance path on her father’s side is different.

If the child is a male, the father contributes a Y chromosome, but no X, so the only X chromosome a male has is his mother’s X chromosome.

Males inherit X chromosomes differently than females, so a valid X match can only descend from certain ancestors on your tree.

inheritance x fan

This is my fan chart showing the X chromosome inheritance path, generated by using Charting Companion. My father’s paternal side of his chart is entirely blank – because he only received his X chromosome from his mother.

You’ll notice that the X chromosome can only descend from any male though his mother – the effect being a sort of checkerboard inheritance pattern. Only the pink and blue people potentially contributed all or portions of X chromosomes to me.

This can actually be very useful for genealogy, because several potential ancestors are immediately eliminated. I cannot have any X chromosome segment from the white boxes with no color.

The X Chromsome in Action

Here’s an X example of how inheritance works.

Inheritance X

The son inherits his entire X chromosome from his mother. She may give him all of her father’s or mother’s X, or parts of both. It’s not uncommon to find an entire X chromosome inherited. The son inherits no X from his father, because he inherits the Y chromosome instead.

Inheritance X daughter

The daughter inherits her father’s X chromosome, which is the identical X chromosome that her father inherited from his mother. The father doesn’t have any other X to contribute to his daughter, so like her father, she inherits no portion of an X chromosome from her paternal grandfather.

The daughter also received segments of her mother’s X that her mother inherited maternally and paternally. As with the son, the daughter can receive an entire X chromosome from either her maternal grandmother or maternal grandfather.

This next illustration ONLY pertains to chromosome 23, the X and Y chromosomes.

Inheritance x y

You can see in this combined graphic that the Y is only inherited by sons from one direct line, and the father’s X is only inherited by his daughter.

X chromosome results are included with autosomal results at both Family Tree DNA and 23andMe, but are not provided at MyHeritage. Ancestry, unfortunately, does not provide segment information of any kind, for the X or chromosomes 1-22. You can, however, transfer the DNA files to Family Tree DNA where you can view your X matches.

Note that X matches need to be larger than regular autosomal matches to be equally as useful due to lower SNP density. I use 10-15 cM as a minimum threshold for consideration, equivalent to about 7 cM for autosomal matches. In other words, roughly double the rule of thumb for segment size matching validity.

Autosomal Education

My blog is full of autosomal educational articles and is fully keyword searchable, but here are two introductory articles that include information from the four major vendors:

When to Purchase Autosomal DNA Tests

Literally, anytime you want to work on genealogy to connect with cousins, prove ancestors or break through brick walls.

  • Purchase tests for yourself and your siblings if both parents aren’t living
  • Purchase tests for both parents
  • Purchase tests for all grandparents
  • Purchase tests for siblings of your parents or your grandparents – they have DNA your parents (and you) didn’t inherit
  • Test all older generation family members
  • If the family member is deceased, test their offspring
  • Purchase tests for estimates of your ethnicity or ancestral origins

Y DNA

Y DNA is only inherited by males from males. The Y chromosome is what makes a male, male. Men inherit the Y chromosome intact from their father, with no contribution from the mother or any female, which is why men’s Y DNA matches that of their father and is not diluted in each generation.

Inheritance y mtdna

If there are no adoptions in the line, known or otherwise, the Y DNA will match men from the same Y DNA line with only small differences for many generations. Eventually, small changes known as mutations accrue. After many accumulated mutations taking several hundred years, men no longer match on special markers called Short Tandem Repeats (STR). STR markers generally match within the past 500-800 years, but further back in time, they accrue too many mutations to be considered a genealogical-era match.

Family Tree DNA sells this test in 67 and 111 marker panels, along with a product called the Big Y-700.

The Big Y-700 is the best-of-class of Y DNA tests and includes at least 700 STR markers along with SNPs which are also useful genealogically plus reach further back in time to create a more complete picture.

The Big Y-700 test scans the entire useful portion of the Y chromosome, about 15 million base pairs, as compared to 67 or 111 STR locations.

67 and 111 Marker Panel Customers Receive:

  • STR marker matches
  • Haplogroup estimate
  • Ancestral Origins
  • Matches Map showing locations of the earliest known ancestors of matches
  • Haplogroup Origins
  • Migration Maps
  • STR marker results
  • Haplotree and SNPs
  • SNP map

Y, mitochondrial and autosomal DNA customers all receive options for Advanced Matching.

Big Y-700 customers receive, in addition to the above:

  • All of the SNP markers in the known phylotree shown publicly, here
  • A refined, definitive haplogroup
  • Their place on the Block Tree, along with their matches
  • New or unknown private SNPs that might lead to a new haplogroup, or genetic clan, assignment
  • 700+ STR markers
  • Matching on both the STR markers and SNP markers, separately

Y DNA Education

I wrote several articles about understanding and using Y DNA:

When to Purchase Y DNA Tests

The Y DNA test is for males who wish to learn more about their paternal line and match against other men to determine or verify their genealogical lineage.

Women cannot test directly, but they can purchase the Y DNA test for men such as fathers, brothers, and uncles.

If you are purchasing for someone else, I recommend purchasing the Big Y-700 initially.

Why purchase the Big Y-700, when you can purchase a lower level test for less money? Because if you ever want to upgrade, and you likely will, you have to contact the tester and obtain their permission to upgrade their test. They may be ill, disinterested, or deceased, and you may not be able to upgrade their test at that time, so strike while the iron is hot.

The Big Y-700 provides testers, by far, the most Y DNA data to work (and fish) with.

Mitochondrial DNA

Inheritance mito

Mitochondrial DNA is passed from mothers to both sexes of their children, but only females pass it on.

In your tree, you and your siblings all inherit your mother’s mitochondrial DNA. She inherited it from her mother, and your grandmother from her mother, and so forth.

Mitochondrial DNA testers at FamilyTreeDNA receive:

  • A definitive haplogroup, thought of as a genetic clan
  • Matching
  • Matches Map showing locations of the earliest know ancestors of matches
  • Personalized mtDNA Journey video
  • Mutations
  • Haplogroup origins
  • Ancestral origins
  • Migration maps
  • Advanced matching

Of course, Y, mitochondrial and autosomal DNA testers can join various projects.

Mitochondrial DNA Education

I created a Mitochondrial DNA page with a comprehensive list of educational articles and resources.

When to Purchase Mitochondrial DNA Tests

Mitochondrial DNA can be valuable in terms of matching as well as breaking down brick walls for women ancestors with no surnames. You can also use targeted testing to prove, or disprove, relationship theories.

Furthermore, your mitochondrial DNA haplogroup, like Y DNA haplogroups, provides information about where your ancestors came from by identifying the part of the world where they have the most matches.

You’ll want to purchase the mtFull sequence test provided by Family Tree DNA. Earlier tests, such as the mtPlus, can be upgraded. The full sequence test tests all 16,569 locations on the mitochondria and provides testers with the highest level matching as well as their most refined haplogroup.

The full sequence test is only sold by Family Tree DNA and provides matching along with various tools. You’ll also be contributing to science by building the mitochondrial haplotree of womankind through the Million Mito Project.

Combined Resources for Genealogists

You may need to reach out to family members to obtain Y and mitochondrial DNA for your various genealogical lines.

For example, the daughter in the tree below, a genealogist, can personally take an autosomal test along with a mitochondrial test for her matrilineal line, but she cannot test for Y DNA, nor can she obtain her paternal grandmother’s mitochondrial DNA directly by testing herself.

Hearts represent mitochondrial DNA, and stars, Y DNA.

Inheritance combined

However, our genealogist’s brother, father or grandfather can test for her father’s (blue star) Y DNA.

Her father or any of his siblings can test for her paternal grandmother’s (hot pink heart) mitochondrial DNA, which provides information not available from any other tester in this tree, except for the paternal grandmother herself.

Our genealogist’s paternal grandfather, and his siblings, can test for his mother’s (yellow heart) mitochondrial DNA.

Our genealogist’s maternal grandfather can test for his (green star) Y DNA and (red heart) mitochondrial DNA.

And of course, it goes without saying that every single generation upstream of the daughter, our genealogist, should all take autosomal DNA tests.

So, with several candidates, who can and should test for what?

Person Y DNA Mitochondrial Autosomal
Daughter No Y – can’t test Yes, her pink mother’s Yes – Test
Son Yes – blue Y Yes, his pink mother’s Yes – Test
Father Yes – blue Y Yes – his magenta mother’s Yes – Test
Paternal Grandfather Yes – blue Y – Best to Test Yes, his yellow mother’s – Test Yes – Test
Mother No Y – can’t test Yes, her pink mother’s Yes – Test
Maternal Grandmother No Y – can’t test Yes, her pink mother’s – Best to Test Yes – Test
Maternal Grandfather Yes – green Y – Test Yes, his red mother’s – Test Yes – Test

The best person/people to test for each of the various lines and types of DNA is shown bolded above…assuming that all people are living. Of course, if they aren’t, then test anyone else in the tree who carries that particular DNA – and don’t forget to consider aunts and uncles, or their children, as candidates.

If one person takes the Y and/or mitochondrial DNA test to represent a specific line, you don’t need another person to take the same test for that line. The only possible exception would be to confirm a specific Y DNA result matches a lineage as expected.

Looking at our three-generation example, you’ll be able to obtain a total of two Y DNA lines, three mitochondrial DNA lines, and 8 autosomal results, helping you to understand and piece together your family line.

You might ask, given that the parents and grandparents have all autosomally tested in this example, if our genealogist really needs to test her brother, and the answer is probably not – at least not today.

However, in cases like this, I do test the sibling, simply because I can learn and it may encourage their interest or preserve their DNA for their children who might someday be interested. We also don’t know what kind of advances the future holds.

If the parents aren’t both available, then you’ll want to test as many of your (and their) siblings as possible to attempt to recover as much of the parents’ DNA, (and matches) as possible.

Your family members’ DNA is just as valuable to your research as your own.

Increase Your Odds

Don’t let any of your inherited DNA go unused.

You can increase your odds of having autosomal matches by making sure you are in all 4 major vendor databases.

Both FamilyTreeDNA and MyHeritage accept transfers from 23andMe and Ancestry, who don’t accept transfers. Transferring and matching is free, and their unlock fees, $19 at FamilyTreeDNA, and $29 at MyHeritage, respectively, to unlock their advanced tools are both less expensive than retesting.

You’ll find easy-to-follow step-by-step transfer instructions to and from the vendors in the article DNA File Upload-Download and Transfer Instructions to and from DNA Testing Companies.

Order

You can order any of the tests mentioned above by clicking on these links:

Autosomal:

Transfers

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Y DNA: Step-by-Step Big Y Analysis

Many males take the Big Y-700 test offered by FamilyTreeDNA, so named because testers receive the most granular haplogroup SNP results in addition to 700+ included STR marker results. If you’re not familiar with those terms, you might enjoy the article, STRs vs SNPs, Multiple DNA Personalities.

The Big Y test gives testers the best of both, along with contributing to the building of the Y phylotree. You can read about the additions to the Y tree via the Big Y, plus how it helped my own Estes project, here.

Some men order this test of their own volition, some at the request of a family member, and some in response to project administrators who are studying a specific topic – like a particular surname.

The Big Y-700 test is the most complete Y DNA test offered, testing millions of locations on the Y chromosome to reveal mutations, some unique and never before discovered, many of which are useful to genealogists. The Big Y-700 includes the traditional Y DNA STR marker testing along with SNP results that define haplogroups. Translated, both types of test results are compared to other men for genealogy, which is the primary goal of DNA testing.

Being a female, I often recruit males in my family surname lines and sponsor testing. My McNiel line, historic haplogroup R-M222, has been particularly frustrating both genealogically as well as genetically after hitting a brick wall in the 1700s. My McNeill cousin agreed to take a Big Y test, and this analysis walks through the process of understanding what those results are revealing.

After my McNeill cousin’s Big Y results came back from the lab, I spent a significant amount of time turning over every leaf to extract as much information as possible, both from the Big Y-700 DNA test itself and as part of a broader set of intertwined genetic information and genealogical evidence.

I invite you along on this journey as I explain the questions we hoped to answer and then evaluate Big Y DNA results along with other information to shed light on those quandaries.

I will warn you, this article is long because it’s a step-by-step instruction manual for you to follow when interpreting your own Big Y results. I’d suggest you simply read this article the first time to get a feel for the landscape, before working through the process with your own results. There’s so much available that most people leave laying on the table because they don’t understand how to extract the full potential of these test results.

If you’d like to read more about the Big Y-700 test, the FamilyTreeDNA white paper is here, and I wrote about the Big Y-700 when it was introduced, here.

You can read an overview of Y DNA, here, and Y DNA: The Dictionary of DNA, here.

Ok, get yourself a cuppa joe, settle in, and let’s go!

George and Thomas McNiel – Who Were They?

George and Thomas McNiel appear together in Spotsylvania County, Virginia records. Y DNA results, in combination with early records, suggest that these two men were brothers.

I wrote about discovering that Thomas McNeil’s descendant had taken a Y DNA test and matched George’s descendants, here, and about my ancestor George McNiel, here.

McNiel family history in Wilkes County, NC, recorded in a letter written in 1898 by George McNiel’s grandson tells us that George McNiel, born about 1720, came from Scotland with his two brothers, John and Thomas. Elsewhere, it was reported that the McNiel brothers sailed from Glasgow, Scotland and that George had been educated at the University of Edinburgh for the Presbyterian ministry but had a change of religious conviction during the voyage. As a result, a theological tiff developed that split the brothers.

George, eventually, if not immediately, became a Baptist preacher. His origins remain uncertain.

The brothers reportedly arrived about 1750 in Maryland, although I have no confirmation. By 1754, Thomas McNeil appeared in the Spotsylvania County, VA records with a male being apprenticed to him as a tailor. In 1757, in Spotsylvania County, the first record of George McNeil showed James Pey being apprenticed to learn the occupation of tailor.

If George and Thomas were indeed tailors, that’s not generally a country occupation and would imply that they both apprenticed as such when they were growing up, wherever that was.

Thomas McNeil is recorded in one Spotsylvania deed as being from King and Queen County, VA. If this is the case, and George and Thomas McNiel lived in King and Queen, at least for a time, this would explain the lack of early records, as King and Queen is a thrice-burned county. If there was a third brother, John, I find no record of him.

My now-deceased cousin, George McNiel, initially tested for the McNiel Y DNA and also functioned for decades as the family historian. George, along with his wife, inventoried the many cemeteries of Wilkes County, NC.

George believed through oral history that the family descended from the McNiel’s of Barra.

McNiel Big Y Kisumul

George had this lovely framed print of Kisimul Castle, seat of the McNiel Clan on the Isle of Barra, proudly displayed on his wall.

That myth was dispelled with the initial DNA testing when our line did not match the Barra line, as can be seen in the MacNeil DNA project, much to George’s disappointment. As George himself said, the McNiel history is both mysterious and contradictory. Amen to that, George!

McNiel Big Y Niall 9 Hostages

However, in place of that history, we were instead awarded the Niall of the 9 Hostages badge, created many years ago based on a 12 marker STR result profile. Additionally, the McNiel DNA was assigned to haplogroup R-M222. Of course, today’s that’s a far upstream haplogroup, but 15+ years ago, we had only a fraction of the testing or knowledge that we do today.

The name McNeil, McNiel, or however you spell it, resembles Niall, so on the surface, this made at least some sense. George was encouraged by the new information, even though he still grieved the loss of Kisimul Castle.

Of course, this also caused us to wonder about the story stating our line had originated in Scotland because Niall of the 9 Hostages lived in Ireland.

Niall of the 9 Hostages

Niall of the 9 Hostages was reportedly a High King of Ireland sometime between the 6th and 10th centuries. However, actual historical records place him living someplace in the mid-late 300s to early 400s, with his death reported in different sources as occurring before 382 and alternatively about 411. The Annals of the Four Masters dates his reign to 379-405, and Foras Feasa ar Eirinn says from 368-395. Activities of his sons are reported between 379 and 405.

In other words, Niall lived in Ireland about 1500-1600 years ago, give or take.

Migration

Generally, migration was primarily from Scotland to Ireland, not the reverse, at least as far as we know in recorded history. Many Scottish families settled in the Ulster Plantation beginning in 1606 in what is now Northern Ireland. The Scots-Irish immigration to the states had begun by 1718. Many Protestant Scottish families immigrated from Ireland carrying the traditional “Mc” names and Presbyterian religion, clearly indicating their Scottish heritage. The Irish were traditionally Catholic. George could have been one of these immigrants.

We have unresolved conflicts between the following pieces of McNeil history:

  • Descended from McNeil’s of Barra – disproved through original Y DNA testing.
  • Immigrated from Glasgow, Scotland, and schooled in the Presbyterian religion in Edinburgh.
  • Descended from the Ui Neill dynasty, an Irish royal family dominating the northern half of Ireland from the 6th to 10th centuries.

Of course, it’s possible that our McNiel/McNeil line could have been descended from the Ui Neill dynasty AND also lived in Scotland before immigrating.

It’s also possible that they immigrated from Ireland, not Scotland.

And finally, it’s possible that the McNeil surname and M222 descent are not related and those two things are independent and happenstance.

A New Y DNA Tester

Since cousin George is, sadly, deceased, we needed a new male Y DNA tester to represent our McNiel line. Fortunately, one such cousin graciously agreed to take the Big Y-700 test so that we might, hopefully, answer numerous questions:

  • Does the McNiel line have a unique haplogroup, and if so, what does it tell us?
  • Does our McNiel line descend from Ireland or Scotland?
  • Where are our closest geographic clusters?
  • What can we tell by tracing our haplogroup back in time?
  • Do any other men match the McNiel haplogroup, and what do we know about their history?
  • Does the Y DNA align with any specific clans, clan history, or prehistory contributing to clans?

With DNA, you don’t know what you don’t know until you test.

Welcome – New Haplogroup

I was excited to see my McNeill cousin’s results arrive. He had graciously allowed me access, so I eagerly took a look.

He had been assigned to haplogroup R-BY18350.

McNiel Big Y branch

Initially, I saw that indeed, six men matched my McNeill cousin, assigned to the same haplogroup. Those surnames were:

  • Scott
  • McCollum
  • Glass
  • McMichael
  • Murphy
  • Campbell

Notice that I said, “were.” That’s right, because shortly after the results were returned, based on markers called private variants, Family Tree DNA assigned a new haplogroup to my McNeill cousin.

Drum roll please!!!

Haplogroup R-BY18332

McNiel Big Y BY18332

Additionally, my cousin’s Big Y test resulted in several branches being split, shown on the Block Tree below.

McNIel Big Y block tree

How cool is this!

This Block Tree graphic shows, visually, that our McNiel line is closest to McCollum and Campbell testers, and is a brother clade to those branches showing to the left and right of our new R-BY18332. It’s worth noting that BY25938 is an equivalent SNP to BY18332, at least today. In the future, perhaps another tester will test, allowing those two branches to be further subdivided.

Furthermore, after the new branches were added, Cousin McNeill has no more Private Variants, which are unnamed SNPs. There were all utilized in naming additional tree branches!

I wrote about the Big Y Block Tree here.

Niall (Or Whoever) Was Prolific

The first thing that became immediately obvious was how successful our progenitor was.

McNiel Big Y M222 project

click to enlarge

In the MacNeil DNA project, 38 men with various surname spellings descend from M222. There are more in the database who haven’t joined the MacNeil project.

Whoever originally carried SNP R-M222, someplace between 2400 and 5900 years ago, according to the block tree, either had many sons who had sons, or his descendants did. One thing is for sure, his line certainly is in no jeopardy of dying out today.

The Haplogroup R-M222 DNA Project, which studies this particular haplogroup, reads like a who’s who of Irish surnames.

Big Y Match Results

Big Y matches must have no more than 30 SNP differences total, including private variants and named SNPs combined. Named SNPs function as haplogroup names. In other words, Cousin McNeill’s terminal SNP, meaning the SNP furthest down on the tree, R-BY18332, is also his haplogroup name.

Private variants are mutations that have occurred in the line being tested, but not yet in other lines. Occurrences of private variants in multiple testers allow the Private Variant to be named and placed on the haplotree.

Of course, Family Tree DNA offers two types of Y DNA testing, STR testing which is the traditional 12, 25, 37, 67 and 111 marker testing panels, and the Big Y-700 test which provides testers with:

  • All 111 STR markers used for matching and comparison
  • Another 589+ STR markers only available through the Big Y test increasing the total STR markers tested from 111 to minimally 700
  • A scan of the Y chromosome, looking for new and known SNPs and STR mutations

Of course, these tests keep on giving, both with matching and in the case of the Big Y – continued haplogroup discovery and refinement in the future as more testers test. The Big Y is an investment as a test that keeps on giving, not just a one-time purchase.

I wrote about the Big Y-700 when it was introduced here and a bit later here.

Let’s see what the results tell us. We’ll start by taking a look at the matches, the first place that most testers begin.

Mcniel Big Y STR menu

Regular Y DNA STR matching shows the results for the STR results through 111 markers. The Big Y section, below, provides results for the Big Y SNPs, Big Y matches and additional STR results above 111 markers.

McNiel Big Y menu

Let’s take a look.

STR and SNP Testing

Of Cousin McNeil’s matches, 2 Big Y testers and several STR testers carry some variant of the Neal, Neel, McNiel, McNeil, O’Neil, etc. surnames by many spellings.

While STR matching is focused primarily on a genealogical timeframe, meaning current to roughly 500-800 years in the past, SNP testing reaches much further back in time.

  • STR matching reaches approximately 500-800 years.
  • Big Y matching reaches approximately 1500 years.
  • SNPs and haplogroups reach back infinitely, and can be tracked historically beyond the genealogical timeframe, shedding light on our ancestors’ migration paths, helping to answer the age-old question of “where did we come from.”

These STR and Big Y time estimates are based on a maximum number of mutations for testers to be considered matches paired with known genealogy.

Big Y results consider two men a match if they have 30 or fewer total SNP differences. Using NGS (next generation sequencing) scan technology, the targeted regions of the Y chromosome are scanned multiple times, although not all regions are equally useful.

Individually tested SNPs are still occasionally available in some cases, but individual SNP testing has generally been eclipsed by the greatly more efficient enriched technology utilized with Big Y testing.

Think of SNP testing as walking up to a specific location and taking a look, while NGS scan technology is a drone flying over the entire region 30-50 times looking multiple times to be sure they see the more distant target accurately.

Multiple scans acquiring the same read in the same location, shown below in the Big Y browser tool by the pink mutations at the red arrow, confirm that NGS sequencing is quite reliable.

McNiel Big Y browser

These two types of tests, STR panels 12-111 and the SNP-based Big Y, are meant to be utilized in combination with each other.

STR markers tend to mutate faster and are less reliable, experiencing frustrating back mutations. SNPs very rarely experience this level of instability. Some regions of the Y chromosome are messier or more complicated than others, causing problems with interpreting reads reliably.

For purposes of clarity, the string of pink A reads above is “not messy,” and “A” is very clearly a mutation because all ~39 scanned reads report the same value of “A,” and according to the legend, all of those scans are high quality. Multiple combined reads of A and G, for example, in the same location, would be tough to call accurately and would be considered unreliable.

You can see examples of a few scattered pink misreads, above.

The two different kinds of tests produce results for overlapping timeframes – with STR mutations generally sifting through closer relationships and SNPs reaching back further in time.

Many more men have taken the Y DNA STR tests over the last 20 years. The Big Y tests have only been available for the past handful of years.

STR testing produces the following matches for my McNiel cousin:

STR Level STR Matches STR Matches Who Took the Big Y % STR Who Took Big Y STR Matches Who Also Match on the Big Y
12 5988 796 13 52
25 6660 725 11 57
37 878 94 11 12
67 1225 252 21 23
111 4 2 50 1

Typically, one would expect that all STR matches that took the Big Y would match on the Big Y, since STR results suggest relationships closer in time, but that’s not the case.

  • Many STR testers who have taken the Big Y seem to be just slightly too distant to be considered a Big Y match using SNPs, which flies in the face of conventional wisdom.
  • However, this could easily be a function of the fact that STRs mutate both backward and forwards and may have simply “happened” to have mutated to a common value – which suggests a closer relationship than actually exists.
  • It could also be that the SNP matching threshold needs to be raised since the enhanced and enriched Big Y-700 technology now finds more mutations than the older Big Y-500. I would like to see SNP matching expanded to 40 from 30 because it seems that clan connections may be being missed. Thirty may have been a great threshold before the more sensitive Big Y-700 test revealed more mutations, which means that people hit that 30 threshold before they did with previous tests.
  • Between the combination of STRs and SNPs mutating at the same time, some Big Y matches are pushed just out of range.

In a nutshell, the correlation I expected to find in terms of matching between STR and Big Y testing is not what I found. Let’s take a look at what we discovered.

It’s worth noting that the analysis is easier if you are working together with at least your closest matches or have access via projects to at least some of their results. You can see common STR values to 111 in projects, such as surname projects. Project administrators can view more if project members have allowed access.

Unexpected Discoveries and Gotchas

While I did expect STR matches to also match on the Big Y, I don’t expect the Big Y matches to necessarily match on the STR tests. After all, the Big Y is testing for more deep-rooted history.

Only one of the McNiel Big Y matches also matches at all levels of STR testing. That’s not surprising since Big Y matching reaches further back in time than STR testing, and indeed, not all STR testers have taken a Big Y test.

Of my McNeill cousin’s closest Big Y matches, we find the following relative to STR matching.

Surname Ancestral Location Big Y Variant/SNP Difference STR Match Level
Scott 1565 in Buccleuch, Selkirkshire, Scotland 20 12, 25, 37, 67
McCollum Not listed 21 67 only
Glass 1618 in Banbridge, County Down, Ireland 23 12, 25, 67
McMichael 1720 County Antrim, Ireland 28 67 only
Murphy Not listed 29 12, 25, 37, 67
Campbell Scotland 30 12, 25, 37, 67, 111

It’s ironic that the man who matches on all STR levels has the most variants, 30 – so many that with 1 more, he would not have been considered a Big Y match at all.

Only the Campbell man matches on all STR panels. Unfortunately, this Campbell male does not match the Clan Campbell line, so that momentary clan connection theory is immediately put to rest.

Block Tree Matches – What They Do, and Don’t, Mean

Note that a Carnes male, the other person who matches my McNeill cousin at 111 STR markers and has taken a Big Y test does not match at the Big Y level. His haplogroup BY69003 is located several branches up the tree, with our common ancestor, R-S588, having lived about 2000 years ago. Interestingly, we do match other R-S588 men.

This is an example where the total number of SNP mutations is greater than 30 for these 2 men (McNeill and Carnes), but not for my McNeill cousin compared with other men on the same S588 branch.

McNiel Big Y BY69003

By searching for Carnes on the block tree, I can view my cousin’s match to Mr. Carnes, even though they don’t match on the Big Y. STR matches who have taken the Big Y test, even if they don’t match at the Big Y level, are shown on the Block Tree on their branch.

By clicking on the haplogroup name, R-BY69003, above, I can then see three categories of information about the matches at that haplogroup level, below.

McNiel Big Y STR differences

click to enlarge

By selecting “Matches,” I can see results under the column, “Big Y.” This does NOT mean that the tester matches either Mr. Carnes or Mr. Riker on the Big Y, but is telling me that there are 14 differences out of 615 STR markers above 111 markers for Mr. Carnes, and 8 of 389 for Mr. Riker.

In other words, this Big Y column is providing STR information, not indicating a Big Y match. You can’t tell one way or another if someone shown on the Block Tree is shown there because they are a Big Y match or because they are an STR match that shares the same haplogroup.

As a cautionary note, your STR matches that have taken the Big Y ARE shown on the block tree, which is a good thing. Just don’t assume that means they are Big Y matches.

The 30 SNP threshold precludes some matches.

My research indicates that the people who match on STRs and carry the same haplogroup, but don’t match at the Big Y level, are every bit as relevant as those who do match on the Big Y.

McNIel Big Y block tree menu

If you’re not vigilant when viewing the block tree, you’ll make the assumption that you match all of the people showing on the Block Tree on the Big Y test since Block Tree appears under the Big Y tools. You have to check Big Y matches specifically to see if you match people shown on the Block Tree. You don’t necessarily match all of them on the Big Y test, and vice versa, of course.

You match Block Tree inhabitants either:

  • On the Big Y, but not the STR panels
  • On the Big Y AND at least one level of STRs between 12 and 111, inclusive
  • On STRs to someone who has taken the Big Y test, but whom you do not match on the Big Y test

Big Y-500 or Big Y-700?

McNiel Big Y STR differences

click to enlarge

Looking at the number of STR markers on the matches page of the Block Tree for BY69003, above, or on the STR Matches page is the only way to determine whether or not your match took the Big Y-700 or the Big Y-500 test.

If you add 111 to the Big Y SNP number of 615 for Mr. Carnes, the total equals 726, which is more than 700, so you know he took the Big Y-700.

If you add 111 to 389 for Mr. Riker, you get 500, which is less than 700, so you know that he took the Big Y-500 and not the Big Y-700.

There are still a very small number of men in the database who did not upgrade to 111 when they ordered their original Big Y test, but generally, this calculation methodology will work. Today, all Big Y tests are upgraded to 111 markers if they have not already tested at that level.

Why does Big Y-500 vs Big Y-700 matter? The enriched chemistry behind the testing technology improved significantly with the Big Y-700 test, enhancing Y-DNA results. I was an avowed skeptic until I saw the results myself after upgrading men in the Estes DNA project. In other words, if Big Y-500 testers upgrade, they will probably have more SNPs in common.

You may want to contact your closest Big Y-500 matches and ask if they will consider upgrading to the Big Y-700 test. For example, if we had close McNiel or similar surname matches, I would do exactly that.

Matching Both the Big Y and STRs – No Single Source

There is no single place or option to view whether or not you match someone BOTH on the Big Y AND STR markers. You can see both match categories individually, of course, but not together.

You can determine if your STR matches took the Big Y, below, and their haplogroup, which is quite useful, but you can’t tell if you match them at the Big Y level on this page.

McNiel Big Y STR match Big Y

click to enlarge

Selecting “Display Only Matches With Big Y” means displaying matches to men who took the Big Y test, not necessarily men you match on the Big Y. Mr. Conley, in the example above, does not match my McNeill cousin on the Big Y but does match him at 12 and 25 STR markers.

I hope FTDNA will add three display options:

  • Select only men that match on the Big Y in the STR panel
  • Add an option for Big Y on the advanced matches page
  • Indicate men who also match on STRs on the Big Y match page

It was cumbersome and frustrating to have to view all of the matches multiple times to compile various pieces of information in a separate spreadsheet.

No Big Y Match Download

There is also no option to download your Big Y matches. With a few matches, this doesn’t matter, but with 119 matches, or more, it does. As more people test, everyone will have more matches. That’s what we all want!

What you can do, however, is to download your STR matches from your match page at levels 12-111 individually, then combine them into one spreadsheet. (It would be nice to be able to download them all at once.)

McNiel Big Y csv

You can then add your Big Y matches manually to the STR spreadsheet, or you can simply create a separate Big Y spreadsheet. That’s what I chose to do after downloading my cousin’s 14,737 rows of STR matches. I told you that R-M222 was prolific! I wasn’t kidding.

This high number of STR matches also perfectly illustrates why the Big Y SNP results were so critical in establishing the backbone relationship structure. Using the two tools together is indispensable.

An additional benefit to downloading STR results is that you can sort the STR spreadsheet columns in surname order. This facilitates easily spotting all spelling variations of McNiel, including words like Niel, Neal and such that might be relevant but that you might not notice otherwise.

Creating a Big Y Spreadsheet

My McNiel cousin has 119 Big Y-700 matches.

I built a spreadsheet with the following columns facilitating sorting in a number of ways, with definitions as follows:

McNiel Big Y spreadsheet

click to enlarge

  • First Name
  • Last Name – You will want to search matches on your personal page at Family Tree DNA by this surname later, so be sure if there is a hyphenated name to enter it completely.
  • Haplogroup – You’ll want to sort by this field.
  • Convergent – A field you’ll complete when doing your analysis. Convergence is the common haplogroup in the tree shared by you and your match. In the case of the green matches above, which are color-coded on my spreadsheet to indicate the closest matches with my McNiel cousin, the convergent haplogroup is BY18350.
  • Common Tree Gen – This column is the generations on the Block Tree shown to this common haplogroup. In the example above, it’s between 9 and 14 SNP generations. I’ll show you where to gather this information.
  • Geographic Location – Can be garnered from 4 sources. No color in that cell indicates that this information came from the Earliest Known Ancestor (EKA) field in the STR matches. Blue indicates that I opened the tree and pulled the location information from that source. Orange means that someone else by the same surname whom the tester also Y DNA matches shows this location. I am very cautious when assigning orange, and it’s risky because it may not be accurate. A fourth source is to use Ancestry, MyHeritage, or another genealogical resource to identify a location if an individual provides genealogical information but no location in the EKA field. Utilizing genealogy databases is only possible if enough information is provided to make a unique identification. John Smith 1700-1750 won’t do it, but Seamus McDougal (1750-1810) married to Nelly Anderson might just work.
  • STR Match – Tells me if the Big Y match also matches on STR markers, and if so, which ones. Only the first 111 markers are used for matching. No STR match generally means the match is further back in time, but there are no hard and fast rules.
  • Big Y Match – My original goal was to combine this information with the STR match spreadsheet. If you don’t wish to combine the two, then you don’t need this column.
  • Tree – An easy way for me to keep track of which matches do and do not have a tree. Please upload or create a tree.

You can also add a spreadsheet column for comments or contact information.

McNiel Big Y profile

You will also want to click your match’s name to display their profile card, paying particular attention to the “About Me” information where people sometimes enter genealogical information. Also, scan the Ancestral Surnames where the match may enter a location for a specific surname.

Private Variants

I added additional spreadsheet columns, not shown above, for Private Variant analysis. That level of analysis is beyond what most people are interested in doing, so I’m only briefly discussing this aspect. You may want to read along, so you at least understand what you are looking at.

Clicking on Private Variants in your Big Y Results shows your variants, or mutations, that are unnamed as SNPs. When they are named, they become SNPs and are placed on the haplotree.

The reference or “normal” state for the DNA allele at that location is shown as the “Reference,” and “Genotype” is the result of the tester. Reference results are not shown for each tester, because the majority are the same. Only mutations are shown.

McNiel Big Y private variants

There are 5 Private Variants, total, for my cousin. I’ve obscured the actual variant numbers and instead typed in 111111 and 222222 for the first two as examples.

McNiel Big Y nonmatching variants

In our example, there are 6 Big Y matches, with matches one and five having the non-matching variants shown above.

Non-matching variants mean that the match, Mr. Scott, in example 1, does NOT match the tester (my cousin) on those variants.

  • If the tester (you) has no mutation, you won’t have a Private Variant shown on your Private Variant page.
  • If the tester does have a Private Variant shown, and that variant shows ON their matches list of non-matching variants, it means the match does NOT match the tester, and either has the normal reference value or a different mutation. Explained another way, if you have a mutation, and that variant is listed on your match list of Non-Matching Variants, your match does NOT match you and does NOT have the same mutation.
  • If the match does NOT have the Private Variant on their list, that means the match DOES match the tester, and they both have the same mutation, making this Private Variant a candidate to be named as a new SNP.
  • If you don’t have a Private Variant listed, but it shows in the Non-Matching Variants of your match, that means you have the reference or normal value, and they have a mutation.

In example #1, above, the tester has a mutation at variant 111111, and 111111 is shown as a Non-Matching Variant to Mr. Scott, so Mr. Scott does NOT match the tester. Mr. Scott also does NOT match the tester at locations 222222 and 444444.

In example #5, 111111 is NOT shown on the Non-Matching Variant list, so Mr. Treacy DOES match the tester.

I have a terrible time wrapping my head around the double negatives, so it’s critical that I make charts.

On the chart below, I’ve listed the tester’s private variants in an individual column each, so 111111, 222222, etc.

For each match, I’ve copy and pasted their Non-Matching Variants in a column to the right of the tester’s variants, in the lavender region. In this example, I’ve typed the example variants into separate columns for each tester so you can see the difference. Remember, a non-matching variant means they do NOT match the tester’s mutation.

McNiel private variants spreadsheet

On my normal spreadsheet where the non-matching variants don’t have individuals columns, I then search for the first variant, 111111. If the variant does appear in the list, it means that match #1 does NOT have the mutation, so I DON’T put an X in the box for match #1 under 111111.

In the example above, the only match that does NOT have 111111 on their list of Non-Matching Variants is #5, so an X IS placed in that corresponding cell. I’ve highlighted that column in yellow to indicate this is a candidate for a new SNP.

You can see that no one else has the variant, 222222, so it truly is totally private. It’s not highlighted in yellow because it’s not a candidate to be a new SNP.

Everyone shares mutation 333333, so it’s a great candidate to become a new SNP, as is 555555.

Match #6 shares the mutation at 444444, but no one else does.

This is a manual illustration of an automated process that occurs at Family Tree DNA. After Big Y matches are returned, automated software creates private variant lists of potential new haplogroups that are then reviewed internally where SNPs are evaluated, named, and placed on the tree if appropriate.

If you follow this process and discover matches, you probably don’t need to do anything, as the automated review process will likely catch up within a few days to weeks.

Big Y Matches

In the case of the McNiel line, it was exciting to discover several private variants, mutations that were not yet named SNPs, found in several matches that were candidates to be named as SNPs and placed on the Y haplotree.

Sure enough, a few days later, my McNeill cousin had a new haplogroup assignment.

Most people have at least one Private Variant, locations in which they do NOT match another tester. When several people have these same mutations, and they are high-quality reads, the Private Variant qualifies to be added to the haplotree as a SNP, a task performed at FamilyTreeDNA by Michael Sager.

If you ever have the opportunity to hear Michael speak, please do so. You can watch Michael’s presentation at Genetic Genealogy Ireland (GGI) titled “The Tree of Mankind,” on YouTube, here, compliments of Maurice Gleeson who coordinates GGI. Maurice has also written about the Gleeson Y DNA project analysis, here.

As a result of Cousin McNeill’s test, six new SNPs have been added to the Y haplotree, the tree of mankind. You can see our new haplogroup for our branch, BY18332, with an equivalent SNP, BY25938, along with three sibling branches to the left and right on the tree.

McNiel Big Y block tree 4 branch

Big Y testing not only answers genealogical questions, it advances science by building out the tree of mankind too.

The surname of the men who share the same haplogroup, R-BY18332, meaning the named SNP furthest down the tree, are McCollum and Campbell. Not what I expected. I expected to find a McNeil who does match on at least some STR markers. This is exactly why the Big Y is so critical to define the tree structure, then use STR matches to flesh it out.

Taking the Big Y-700 test provided granularity between 6 matches, shown above, who were all initially assigned to the same branch of the tree, BY18350, but were subsequently divided into 4 separate branches. My McNiel cousin is no longer equally as distant from all 6 men. We now know that our McNiel line is genetically closer on the Y chromosome to Campbell and McCollum and further distant from Murphy, Scott, McMichael, and Glass.

Not All SNP Matches are STR Matches

Not all SNP matches are also STR matches. Some relationships are too far back in time. However, in this case, while each person on the BY18350 branches matches at some STR level, only the Campbell individual matches at all STR levels.

Remember that variants (mutations) are accumulating down both respective branches of the tree at the same time, meaning one per roughly every 100 years (if 100 is the average number we want to use) for both testers. A total of 30 variants or mutations difference, an average of 15 on each branch of the tree (McNiel and their match) would suggest a common ancestor about 1500 years ago, so each Big Y match should have a common ancestor 1500 years ago or closer. At least on average, in theory.

The Big Y test match threshold is 30 variants, so if there were any more mismatches with the Campbell male, they would not have been a Big Y match, even though they have the exact same haplogroup.

Having the same haplogroup means that their terminal SNP is identical, the SNP furthest down the tree today, at least until someone matches one of them on their Private Variants (if any remain unnamed) and a new terminal SNP is assigned to one or both of them.

Mutations, and when they happen, are truly a roll of the dice. This is why viewing all of your Big Y Block Tree matches is critical, even if they don’t show on your Big Y match list. One more variant and Campbell would have not been shown as a match, yet he is actually quite close, on the same branch, and matches on all STR panels as well.

SNPs Establish the Backbone Structure

I always view the block tree first to provide a branching tree structure, then incorporate STR matches into the equation. Both can equally as important to genealogy, but haplogroup assignment is the most accurate tool, regardless of whether the two individuals match on the Big Y test, especially if the haplogroups are relatively close.

Let’s work with the Block Tree.

The Block Tree

McNIel Big Y block tree menu

Clicking on the link to the Block Tree in the Big Y results immediately displays the tester’s branch on the tree, below.

McNiel Big Y block tree descent

click to enlarge

On the left side are SNP generation markers. Keep in mind that approximate SNP generations are marked every 5 generations. The most recent generations are based on the number of private variants that have not yet been assigned as branches on the tree. It’s possible that when they are assigned that they will be placed upstream someplace, meaning that placement will reduce the number of early branches and perhaps increase the number of older branches.

The common haplogroup of all of the branches shown here with the upper red arrow is R-BY3344, about 15 SNP generations ago. If you’re using 100 years per SNP generation, that’s about 1500 years. If you’re using 80 years, then 1200 years ago. Some people use even fewer years for calculations.

If some of the private variants in the closer branches disappear, then the common ancestral branch may shift to closer in time.

This tree will always be approximate because some branches can never be detected. They have disappeared entirely over time when no males exist to reproduce.

Conversely, subclades have been born since a common ancestor clade whose descendants haven’t yet tested. As more people test, more clades will be discovered.

Therefore, most recent common ancestor (MRCA) haplogroup ages can only be estimated, based on who has tested and what we know today. The tree branches also vary depending on whether testers have taken the Big Y-500 or the more sensitive Big Y-700, which detects more variants. The Y haplotree is a combination of both.

Big Y-500 results will not be as granular and potentially do not position test-takers as far down the tree as Big Y-700 results would if they upgraded. You’ll need to factor that into your analysis if you’re drawing genealogical conclusions based on these results, especially close results.

You’ll note that the direct path of descent is shown above with arrows from BY3344 through the first blue box with 5 equivalent SNPS, to the next white box, our branch, with two equivalent SNPs. Our McNeil ancestor, the McCollum tester, and the Campell tester have no unresolved private variants between them, which suggests they are probably closer in time than 10 generations back. You can see that the SNP generations are pushed “up” by the neighbor variants.

Because of the fact that private variants don’t occur on a clock cycle and occur in individual lines at an unsteady rate, we must use averages.

That means that when we look further “up” the tree, clicking generation by generation on the up arrow above BY3344, the SNP generations on the left side “adjust” based on what is beneath, and unseen at that level.

The Block Tree Adjusts

Note, in the example above, BY3344 is at SNP generation 15.

Next, I clicked one generation upstream, to R-S668.

McNiel Big Y block tree S668

click to enlarge

You can see that S668 is about 21 SNP generations upstream, and now BY3344 is listed as 20 generations, not 15. You can see our branch, BY3344, but you can no longer see subclades or our matches below that branch in this view.

You can, however, see two matches that descend through S668, brother branches to BY3344, red arrows at far right.

Clicking on the up arrow one more time shows us haplogroup S673, below, and the child branches. The three child branches on which the tester has matches are shown with red arrows.

McNiel Big Y S673

click to enlarge

You’ll immediately notice that now S668 is shown at 19 SNP generations, not 20, and S673 is shown at 20. This SNP generation difference between views is a function of dealing with aggregated and averaged private variants on combined lines and causes the SNP generations to shift. This is also why I always say “about.”

As you continue to click up the tree, the shifting SNP generations continue, reminding us that we can’t truly see back in time. We can only achieve approximations, but those approximations improve as more people test, and more SNPs are named and placed in their proper places on the phylotree.

I love the Block Tree, although I wish I could see further side-to-side, allowing me to view all of the matches on one expanded tree so I can easily see their relationships to the tester, and each other.

Countries and Origins

In addition to displaying shared averaged autosomal origins of testers on a particular branch, if they have taken the Family Finder test and opted-in to sharing origins (ethnicity) results, you can also view the countries indicated by testers on that branch along with downstream branches of the tree.

McNiel Big Y countries

click to enlarge

For example, the Countries tab for S673 is shown above. I can see matches on this branch with no downstream haplogroup currently assigned, as well as cumulative results from downstream branches.

Still, I need to be able to view this information in a more linear format.

The Block Tree and spreadsheet information beautifully augment the haplotree, so let’s take a look.

The Haplotree

On your Y DNA results page, click on the “Haplotree and SNPs” link.

McNIel Big Y haplotree menu

click to enlarge

The Y haplotree will be displayed in pedigree style, quite familiar to genealogists. The SNP legend will be shown at the top of the display. In some cases, “presumed positive” results occur where coverage is lacking, back mutations or read errors are encountered. Presumed positive is based on positive SNPs further down the tree. In other words, that yellow SNP below must read positive or downstream ones wouldn’t.

McNIel Big Y pedigree descent

click to enlarge

The tester’s branch is shown with the grey bar. To the right of the haplogroup-defining SNP are listed the branch and equivalent SNP names. At far right, we see the total equivalent SNPs along with three dots that display the Country Report. I wish the haplotree also showed my matches, or at least my matching surnames, allowing me to click through. It doesn’t, so I have to return to the Big Y page or STR Matches page, or both.

I’ve starred each branch through which my McNiell cousin descends. Sibling branches are shown in grey. As you’ll recall from the Block Tree, we do have matches on those sibling branches, shown side by side with our branch.

The small numbers to the right of the haplogroup names indicate the number of downstream branches. BY18350 has three, all displayed. But looking upstream a bit, we see that DF97 has 135 downstream branches. We also have matches on several of those branches. To show those branches, simply click on the haplogroup.

The challenge for me, with 119 McNeill matches, is that I want to see a combination of the block tree, my spreadsheet information, and the haplotree. The block tree shows the names, my spreadsheet tells me on which branches to look for those matches. Many aren’t easily visible on the block tree because they are downstream on sibling branches.

Here’s where you can find and view different pieces of information.

Data and Sources STR Matches Page Big Y Matches Page Block Tree Haplogroups & SNPs Page
STR matches Yes No, but would like to see who matches at which STR levels If they have taken Big Y test, but doesn’t mean they match on Big Y matching No
SNP matches *1 Shows if STR match has common haplogroup, but not if tester matches on Big Y No, but would like to see who matches at which STR level Big Y matches and STR matches that aren’t Big Y matches are both shown No, but need this feature – see combined haplotree/ block tree
Other Haplogroup Branch Residents Yes, both estimated and tested No, use block tree or click through to profile card, would like to see haplogroup listed for Big Y matches Yes, both Big Y and STR tested, not estimated. Cannot tell if person is Big Y match or STR match, or both. No individuals, but would like that as part of countries report, see combined haplotree/block tree
Fully Expanded Phylotree No No Would like ability to see all branches with whom any Big Y or STR match resides at one time, even if it requires scrolling Yes, but no match information. Matches report could be added like on Block Tree.
Averaged Ethnicities if Have FF Test No No Yes, by haplogroup branch No
Countries Matches map STR only No, need Big Y matches map Yes Yes
Earliest Known Ancestor Yes No, but can click through to profile card No No
Customer Trees Yes No, need this link No No
Profile Card Yes, click through Yes, click through Yes, click through No match info on this page
Downloadable data By STR panel only, would like complete download with 1 click, also if Big Y or FF match Not available at all No No
Path to common haplogroup No No, but would like to see matches haplogroup and convergent haplogroup displayed No, would like the path to convergent haplogroup displayed as an option No, see combined match-block -haplotree in next section

*1 – the best way to see the haplogroup of a Big Y match is to click on their name to view their profile card since haplogroup is not displayed on the Big Y match page. If you happen to also match on STRs, their haplogroup is shown there as well. You can also search for their name using the block tree search function to view their haplogroup.

Necessity being the mother of invention, I created a combined match/block tree/haplotree.

And I really, REALLY hope Family Tree DNA implements something like this because, trust me, this was NOT fun! However, now that it’s done, it is extremely useful. With fewer matches, it should be a breeze.

Here are the steps to create the combined reference tree.

Combo Match/Block/Haplotree

I used Snagit to grab screenshots of the various portions of the haplotree and typed the surnames of the matches in the location of our common convergent haplogroup, taken from the spreadsheet. I also added the SNP generations in red for that haplogroup, at far left, to get some idea of when that common ancestor occurred.

McNIel Big Y combo tree

click to enlarge

This is, in essence, the end-goal of this exercise. There are a few steps to gather data.

Following the path of two matches (the tester and a specific match) you can find their common haplogroup. If your match is shown on the block tree in the same view with your branch, it’s easy to see your common convergent parent haplogroup. If you can’t see the common haplogroup, it’s takes a few extra steps by clicking up the block tree, as illustrated in an earlier section.

We need the ability to click on a match and have a tree display showing both paths to the common haplogroup.

McNiel Big Y convergent

I simulated this functionality in a spreadsheet with my McNiel cousin, a Riley match, and an Ocain match whose terminal SNP is the convergent SNP (M222) between Riley and McNiel. Of course, I’d also like to be able to click to see everyone on one chart on their appropriate branches.

Combining this information onto the haplotree, in the first image, below, M222, 4 men match my McNeill cousin – 2 who show M222 as their terminal SNP, and 2 downstream of M222 on a divergent branch that isn’t our direct branch. In other words, M222 is the convergence point for all 4 men plus my McNeill cousin.

McNiel Big Y M222 haplotree

click to enlarge

In the graphic below, you can see that M222 has a very large number of equivalent SNPs, which will likely become downstream haplogroups at some point in the future. However, today, these equivalent SNPs push M222 from 25 generations to 59. We’ll discuss how this meshes with known history in a minute.

McNiel Big Y M222 block tree

click to enlarge

Two men, Ocain and Ransom, who have both taken the Big Y, whose terminal SNP is M222, match my McNiel cousin. If their common ancestor was actually 59 generations in the past, it’s very, very unlikely that they would match at all given the 30 mutation threshold.

On my reconstructed Match/Block/Haplotree, I included the estimated SNP generations as well. We are starting with the most distant haplogroups and working our way forward in time with the graphics, below.

Make no mistake, there are thousands more men who descend from M222 that have tested, but all of those men except 4 have more than 30 mutations total, so they are not shown as Big Y matches, and they are not shown individually on the Block Tree because they neither match on the Big Y or STR tests. However, there is a way to view information for non-matching men who test positive for M222.

McNiel Big Y M222 countries

click to enlarge

Looking at the Block Tree for M222, many STR match men took a SNP test only to confirm M222, so they would be shown positive for the M222 SNP on STR results and, therefore, in the detailed view of M222 on the Block tree.

Haplogroup information about men who took the M222 test and whom the tester doesn’t match at all are shown here as well in the country and branch totals for R-M222. Their names aren’t displayed because they don’t match the tester on either type of Y DNA test.

Back to constructing my combined tree, I’ve left S658 in both images, above and below, as an overlap placeholder, as we move further down, or towards current, on the haplotree.

McNiel Big Y combo tree center

click to enlarge

Note that BY18350, above, is also an overlap connecting below.

You’ll recall that as a result of the Big Y test, BY18350 was split and now has three child branches plus one person whose terminal SNP is BY18350. All of the men shown below were on one branch until Big Y results revealed that BY18350 needed to be split, with multiple new haplogroups added to the tree.

McNiel Big Y combo tree current

click to enlarge

Using this combination of tools, it’s straightforward for me to see now that our McNiel line is closest to the Campbell tester from Scotland according to the Big Y test + STRs.

Equal according to the Big Y test, but slightly more distant, according to STR matching, is McCollum. The next closest would be sibling branches. Then in the parent group of the other three, BY18350, we find Glass from Scotland.

In BY18350 and subgroups, we find several Scotland locations and one Northern Ireland, which was likely from Scotland initially, given the surname and Ulster Plantation era.

The next upstream parent haplogroup is BY3344, which looks to be weighted towards ancestors from Scotland, shown on the country card, below.

McNiel Big Y BY3344

click to enlarge

This suggests that the origins of the McNiel line was, perhaps, in Scotland, but it doesn’t tell us whether or not George and presumably, Thomas, immigrated from Ireland or Scotland.

This combined tree, with SNPs, surnames from Big Y matches, along with Country information, allows me to see who is really more closely related and who is further away.

What I didn’t do, and probably should, is to add in all of the STR matches who have taken the Big Y test, shown on their convergent branch – but that’s just beyond the scope of time I’m willing to invest, at least for now, given that hundreds of STR matches have taken the Big Y test, and the work of building the combined tree is all manual today.

For those reading this article without access to the Y phylogenetic tree, there’s a public version of the Y and mitochondrial phylotrees available, here.

What About Those McNiels?

No other known McNiel descendants from either Thomas or George have taken the Big Y test, so I didn’t expect any to match, but I am interested in other men by similar surnames. Does ANY other McNiel have a Big Y match?

As it turns out, there are two, plus one STR match who took a Big Y test, but is not a Big Y match.

However, as you can see on the combined match/block/haplotree, above, the closest other Big Y-matching McNeil male is found at about 19 SNP generations, or roughly 1900 years ago. Even if you remove some of the variants in the lower generations that are based on an average number of individual variants, you’re still about 1200 years in the past. It’s extremely doubtful that any surname would survive in both lines from the year 800 or so.

That McNeil tester’s ancestor was born in 1747 in Tranent, Scotland.

The second Big Y-matching person is an O’Neil, a few branches further up in the tree.

The convergent SNP of the two branches, meaning O’Neil and McNeill are at approximately the 21 generation level. The O’Neil man’s Neill ancestor is found in 1843 in Cookestown, County Tyrone, Ireland.

McNiel Big Y convergent McNeil lines

I created a spreadsheet showing convergent lines:

  • The McNeill man with haplogroup A4697 (ancestor Tranent, Scotland) is clearly closest genetically.
  • O’Neill BY91591, who is brother clades with Neel and Neal, all Irish, is another Big Y match.
  • The McNeill man with haplogroup FT91182 is an STR match, but not a Big Y match.

The convergent haplogroup of all of these men is DF105 at about the 22 SNP generation marker.

STRs

Let’s turn back to STR tests, with results that produce matches closer in time.

Searching my STR download spreadsheet for similar surnames, I discovered several surname matches, mining the Earliest Known Ancestor information, profiles and trees produced data as follows:

Ancestor STR Match Level Location
George Charles Neil 12, 25, match on Big Y A4697 1747-1814 Tranent, Scotland
Hugh McNeil 25 (tested at 67) Born 1800 Country Antrim, Northern Ireland
Duncan McNeill 12 (tested at 111) Married 1789, Argyllshire, Scotland
William McNeill 12, 25 (tested at 37) Blackbraes, Stirlingshire, Scotland
William McNiel 25 (tested at 67) Born 1832 Scotland
Patrick McNiel 25 (tested at 111) Trien East, County Roscommon, Ireland
Daniel McNeill 25 (tested at 67) Born 1764 Londonderry, Northern Ireland
McNeil 12 (tested at 67) 1800 Ireland
McNeill (2 matches) 25 (tested Big Y-  SNP FT91182) 1810, Antrim, Northern Ireland
Neal 25 – (tested Big Y, SNP BY146184) Antrim, Northern Ireland
Neel (2 matches) 67 (tested at 111, and Big Y) 1750 Ireland, Northern Ireland

Our best clue that includes a Big Y and STR match is a descendant of George Charles Neil born in Tranent, Scotland, in 1747.

Perhaps our second-best clue comes in the form of a 111 marker match to a descendant of one Thomas McNeil who appears in records as early as 1753 and died in 1761 In Rombout Precinct, Dutchess County, NY where his son John was born. This line and another match at a lower level both reportedly track back to early New Hampshire in the 1600s.

The MacNeil DNA Project tells us the following:

Participant 106370 descends from Isaiah McNeil b. 14 May 1786 Schaghticoke, Rensselaer Co. NY and d. 28 Aug 1855 Poughkeepsie, Dutchess Co., NY, who married Alida VanSchoonhoven.

Isaiah’s parents were John McNeal, baptized 21 Jun 1761 Rombout, Dutchess Co., NY, d. 15 Feb 1820 Stillwater, Saratoga Co., NY and Helena Van De Bogart.

John’s parents were Thomas McNeal, b.c. 1725, d. 14 Aug 1761 NY and Rachel Haff.

Thomas’s parents were John McNeal Jr., b. around 1700, d. 1762 Wallkill, Orange Co., NY (now Ulster Co. formed 1683) and Martha Borland.

John’s parents were John McNeal Sr. and ? From. It appears that John Sr. and his family were this participant’s first generation of Americans.

Searching this line on Ancestry, I discovered additional information that, if accurate, may be relevant. This lineage, if correct, and it may not be, possibly reaching back to Edinburgh, Scotland. While the information gathered from Ancestry trees is certainly not compelling in and of itself, it provides a place to begin research.

Unfortunately, based on matches shown on the MacNeil DNA Project public page, STR marker mutations for kits 30279, B78471 and 417040 when compared to others don’t aid in clustering or indicating which men might be related to this group more closely than others using line-marker mutations.

Matches Map

Let’s take a look at what the STR Matches Map tells us.

McNiel Big Y matches map menu

This 67 marker Matches Map shows the locations of the earliest known ancestors of STR matches who have entered location information.

McNiel Big Y matches mapMcNiel Big Y matches map legend

My McNeill cousin’s closest matches are scattered with no clear cluster pattern.

Unfortunately, there is no corresponding map for Big Y matches.

SNP Map

The SNP map provided under the Y DNA results allows testers to view the locations where specific haplogroups are found.

McNiel Big Y SNP map

The SNP map marks an area where at least two or more people have claimed their most distant known ancestor to be. The cluster size is the maximum amount of miles between people that is allowed in order for a marker indicating a cluster at a location to appear. So for example, the sample size is at least 2 people who have tested, and listed their most distant known ancestor, the cluster is the radius those two people can be found in. So, if you have 10 red dots, that means in 1000 miles there are 10 clusters of at least two people for that particular SNP. Note that these locations do NOT include people who have tested positive for downstream locations, although it does include people who have taken individual SNP tests.

Working my way from the McNiel haplogroup backward in time on the SNP map, neither BY18332 nor BY18350 have enough people who’ve tested, or they didn’t provide a location.

Moving to the next haplogroup up the tree, two clusters are formed for BY3344, shown below.

McNIel Big Y BY3344 map

S668, below.

McNiel Big Y S668 map

It’s interesting that one cluster includes Glasgow.

S673, below.

McNiel Big Y S673 map

DF85, below:

McNiel Big Y DF85 map

DF105 below:

McNiel BIg Y DF105 map

M222, below:

McNiel Big Y M222 map

For R-M222, I’ve cropped the locations beyond Ireland and Scotland. Clearly, RM222 is the most prevalent in Ireland, followed by Scotland. Wherever M222 originated, it has saturated Ireland and spread widely in Scotland as well.

R-M222

R-M222, the SNP initially thought to indicate Niall of the 9 Hostages, occurred roughly 25-59 SNP generations in the past. If this age is even remotely accurate, averaging by 80 years per generation often utilized for Big Y results, produces an age of 2000 – 4720 years. I find it extremely difficult to believe any semblance of a surname survived that long. Even if you reduce the time in the past to the historical narrative, roughly the year 400, 1600 years, I still have a difficult time believing the McNiel surname is a result of being a descendant of Niall of the 9 Hostages directly, although oral history does have staying power, especially in a clan setting where clan membership confers an advantage.

Surname or not, clearly, our line along with the others whom we match on the Big Y do descend from a prolific common ancestor. It’s very unlikely that the mutation occurred in Niall’s generation, and much more likely that other men carried M222 and shared a common ancestor with Niall at some point in the distant past.

McNiel Conclusion – Is There One?

If I had two McNiel wishes, they would be:

  • Finding records someplace in Virginia that connect George and presumably brothers Thomas and John to their parents.
  • A McNiel male from wherever our McNiel line originated becoming inspired to Y DNA test. Finding a male from the homeland might point the way to records in which I could potentially find baptismal records for George about 1720 and Thomas about 1724, along with possibly John, if he existed.

I remain hopeful for a McNiel from Edinburgh, or perhaps Glasgow.

I feel reasonably confident that our line originated genetically in Scotland. That likely precludes Niall of the 9 Hostages as a direct ancestor, but perhaps not. Certainly, one of his descendants could have crossed the channel to Scotland. Or, perhaps, our common ancestor is further back in time. Based on the maps, it’s clear that M222 saturates Ireland and is found widely in Scotland as well.

A great deal depends on the actual age of M222 and where it originated. Certainly, Niall had ancestors too, and the Ui Neill dynasty reaches further back, genetically, than their recorded history in Ireland. Given the density of M222 and spread, it’s very likely that M222 did, in fact, originate in Ireland or, alternatively, very early in Scotland and proliferated in Ireland.

If the Ui Neill dynasty was represented in the persona of the High King, Niall of the 9 Hostages, 1600 years ago, his M222 ancestors were clearly inhabiting Ireland earlier.

We may not be descended from Niall personally, but we are assuredly related to him, sharing a common ancestor sometime back in the prehistory of Ireland and Scotland. That man would sire most of the Irish men today and clearly, many Scots as well.

Our ancestors, whoever they were, were indeed in Ireland millennia ago. R-M222, our ancestor, was the ancestor of the Ui Neill dynasty and of our own Reverend George McNiel.

Our ancestors may have been at Knowth and New Grange, and yes, perhaps even at Tara.

Tara Niall mound in sun

Someplace in the mists of history, one man made a different choice, perhaps paddling across the channel, never to return, resulting in M222 descendants being found in Scotland. His descendants include our McNeil ancestors, who still slumber someplace, awaiting discovery.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Big Y News and Stats + Sale

I must admit – this past January when FamilyTreeDNA announced the Big Y-700, an upgrade from the Big Y-500 product, I was skeptical. I wondered how much benefit testers would really see – but I was game to purchase a couple upgrades – and I did. Then, when the results came back, I purchased more!

I’m very pleased to announce that I’m no longer skeptical. I’m a believer.

The Big Y-700 has produced amazing results – and now FamilyTreeDNA has decoupled the price of the BAM file in addition to announcing substantial sale prices for their Thanksgiving Sale.

I’m going to discuss sale pricing for products other than the Big Y in a separate article because I’d like to focus on the progress that has been made on the phylogenetic tree (and in my own family history) as a result of the Big Y-700 this year.

Big Y Pricing Structure Change

FamilyTreeDNA recently anounced some product structure changes.

The Big Y-700 price has been permanently dropped by $100 by decoupling the BAM file download from the price of the test itself. This accomplishes multiple things:

  • The majority of testers don’t want or need the BAM file, so the price of the test has been dropped by $100 permanently in order to be able to price the Big Y-700 more attractively to encourage more testers. That’s good for all of us!!!
  • For people who ordered the Big Y-700 since November 1, 2019 (when the sale prices began) who do want the BAM file, they can purchase the BAM file separately through the “Add Ons and Upgrades” page, via the “Upgrades” tab for $100 after their test results are returned. There will also be a link on the Big Y-700 results page. The total net price for those testers is exactly the same, but it represents a $100 permanent price drop for everyone else.
  • This BAM file decoupling reduces the initial cost of the Big Y-700 test itself, and everyone still has the option of purchasing the BAM file later, which will make the Big Y-700 test more affordable. Additionally, it allows the tester who wants the BAM file to divide the purchase into two pieces, which will help as well.
  • The current sale price for the Big Y-700 for the tester who has taken NO PREVIOUS Y DNA testing is now just $399, formerly $649. That’s an amazing price drop, about 40%, in the 9 months since the Big Y-700 was introduced!
  • Upgrade pricing is available too, further down in this article.
  • If you order an upgrade from any earlier Big Y to the Big Y-700, you receive an upgraded BAM file because you already paid for the BAM file when you ordered your initial Big Y test.
  • The VCF file is still available for download at no additional cost with any Big Y test.
  • There is no change in the BAM file availability for current customers. Everyone who ordered before November 1, 2019 will be able to download their BAM file as always.

The above changes are permanent, except for the sale price.

2019 has been a Banner Year

I know how successful the Big Y-700 has been for kits and projects that I manage, but how successful has it been overall, in a scientific sense?

I asked FamilyTreeDNA for some stats about the number of SNPs discovered and the number of branches added to the Y phylotree.

Drum roll please…

Branches Added This Year Total Tree Branches Variants Added to Tree This Year Total Variants Added to Tree
2018 6,259 17,958 60,468 132.634
2019 4,394 22.352 32,193 164,827

The tests completed in 2019 are only representative for 10 months, through October, and not the entire year.

Haplotree Branches

Not every SNP discovered results in a new branch being added to the haplotree, but many do. This chart shows the number of actual branches added in 2018 and 2019 to date.

Big Y 700 haplotree branches.png

These stats, provided by FamilyTreeDNA, show the totals in the bottom row, which is a cumulative branch number total, not a monthly total. At the end of October 2019, the total number of individual branches were 22,352.

Big Y 700 haplotree branches small.png

This chart, above, shows some of the smaller haplogroups.

Big Y 700 haplotree branches large.png

This chart shows the larger haplogroups, including massive haplogroup R.

Haplotree Variants

The number of variants listed below is the number of SNPs that have been discovered, named and placed on the tree. You’ll notice that these numbers are a lot larger than the number of branches, above. That’s because roughly 168,000 of these are equivalent SNPs, meaning they don’t further branch the tree – at least not yet. These 168K variants are the candidates to be new branches as more people test and the tree can be further split.

Big Y 700 variants.png

These numbers also don’t include Private Variants, meaning SNPs that have not yet been named.

If you see Private Variants listed in your Big Y results, when enough people have tested positive for the same variant, and it makes sense, the variants will be given a SNP name and placed on the tree.

Big Y 700 variants small.png

The smaller haplogroups variants again, above, followed by the larger, below.

Big Y 700 variants large.png

Upgrades from the Big Y, or Big Y-500 to Big Y-700

Based on what I see in projects, roughly one third of the Big Y and Big Y-500 tests have upgraded to the Big Y-700.

For my Estes line, I wondered how much value the Big Y-700 upgrade would convey, if any, but I’m extremely glad I upgraded several kits. As a result of the Big Y-700, we’ve further divided the sons of Abraham, born in 1747. This granularity wasn’t accomplished by STR testing and wasn’t accomplished by the Big Y or Big Y-500 testing alone – although all of these together are building blocks. I’m ECSTATIC since it’s my own ancestral line that has the new lineage defining SNP.

Big Y 700 Estes.png

Every Estes man descended from Robert born in 1555 has R-BY482.

The sons of the immigrant, Abraham, through his father, Silvester, all have BY490, but the descendants of Silvester’s brother, Robert, do not.

Moses, son of Abraham has ZS3700, but the rest of Abraham’s sons don’t.

Then, someplace in the line of kit 831469, between Moses born in 1711 and the present-day tester, we find a new SNP, BY154784.

Big Y 700 Estes block tree.png

Looking at the block tree, we see the various SNPs that are entirely Estes, except for one gentleman who does not carry the Estes surname. I wrote about the Block Tree, here.

Without Big Y testing, none of these SNPs would have been found, meaning we could never have split these lines genealogically.

Every kit I’ve reviewed carries SNPs that the Big Y-700 has been able to discern that weren’t discovered previously.

Every. Single. One.

Now, even someone who hasn’t tested Y DNA before can get the whole enchilada – meaning 700+ STRs, testing for all previously discovered SNPs, and new branch defining SNPs, like my Estes men – for $399.

If a new Estes tester takes this test, without knowing anything about his genealogy, I can tell him a great deal about where to look for his lineage in the Estes tree.

Reduced Prices

FamilyTreeDNA has made purchasing the Big Y-700 outright, or upgrading, EXTREMELY attractive.

Test Price
Big Y-700 purchase with no previous Y DNA test

 

$399
Y-12 upgrade to Big Y-700 $359
Y-25 upgrade to Big Y-700 $349
Y-37 upgrade to Big Y-700 $319
Y-67 upgrade to Big Y-700 $259
Y-111 upgrade to Big Y-700 $229
Big Y or Big Y-500 upgrade to Big Y-700 $189

Note that the upgrades include all of the STR markers as yet untested. For example, the 12-marker to Big Y-700 includes all of the STRs between 25 and 111, in addition to the Big Y-700 itself. The Big Y-700 includes:

  • All of the already discovered SNPs, called Named Variants, extending your haplogroup all the way to the leaf at the end of your branch
  • Personal and previously undiscovered SNPs called Private Variants
  • All of the untested STR markers inclusive through 111 markers
  • A minimum of a total of 700 STR markers, including markers above 111 that are only available through Big Y-700 testing

With the refinements in the Big Y test over the past few years, and months, the Big Y is increasingly important to genealogy – equally or more so than traditional STR testing. In part, because SNPs are not prone to back mutations, and are therefore more stable than STR markers. Taken together, STRs and SNPs are extremely informative, helping to break down ancestral brick walls for people whose genealogy may not reach far back in time – and even those who do.

If you are a male and have not Y DNA tested, there’s never been a better opportunity. If you are a female, find a male on a brick wall line and sponsor a scholarship.

Click here to order or upgrade!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Mitochondrial DNA Resources – Everything You Need to Know

Mitochondrial DNA Resources

Recently, I wrote a multi-part series about mitochondrial DNA – start to finish – everything you need to know.

I’ve assembled several articles in one place, and I’ll add any new articles here as well.

Please feel free to share this resource or any of the links to individual articles with friends, genealogy groups or on social media.

What the Difference Between Mitochondrial and Other Types of DNA?

Mitochondrial DNA is inherited directly from your matrilineal line, only, meaning your mother’s mother’s mother’s mother – on up your family tree until you run out of direct line mothers that you’ve identified. The great news is even if you don’t know the identities of those people in your tree, you carry their mitochondrial DNA which can help identify them.

Here’s a short article about the different kinds of DNA that can be used for genealogy.

Why Mitochondrial DNA?

Let’s start out with why someone might want to test their mitochondrial DNA.

After you purchase a DNA test, swab, return the kit and when the lab finishes processing your test, you’ll receive your results on your personal page at FamilyTreeDNA, the only company that tests mitochondrial DNA at the full sequence level and provides matching with tens of thousands of other testers.

What About Those Results?

People want to understand how to use all of the different information provided to testers. These articles provide a step-by-step primer.

Mitochondrial DNA personal page update

Sign in to your Family Tree DNA account and use these articles as a guideline to step through your results on your personal page.

We begin with an overview. What is mitochondrial DNA, how it is inherited and why is it useful for genealogy?

Next, we look at your results and decode what all the numbers mean. It’s easy, really!

Our ancestors lived in clans, and our mitochondrial DNA has its own versions of clans too – called haplogroups. Your full haplogroup can be very informative.

Sometimes there’s more than meets the eye. Here are my own tips and techniques for more than doubling the usefulness of your matches.

You’ll want to wring every possible advantage out of your tests, so be sure to join relevant projects and use them to their fullest extent.

Do you know how to utilize advanced matching? It’s a very powerful tool. If not, you will after these articles.

Mitochondrial DNA Information for Everyone

FamilyTreeDNA maintains an extensive public mitochondrial DNA tree, complete with countries of origin for all branches. You don’t need to have tested to enjoy the public tree.

However, if you have tested, take a look to see where the earliest known ancestors of your haplogroup matches are located based on the country flags.

Mitochondrial resources haplotree

These are mine. Where are yours?

What Can Mitochondrial DNA Do for You?

Some people mistakenly think that mitochondrial DNA isn’t useful for genealogy. I’m here to testify that it’s not only useful, it’s amazing! Here are three stories from my own genealogy about how I’ve used mitochondrial DNA to learn more about my ancestors and in some cases, break right through brick walls.

It’s not only your own mitochondrial DNA that’s important, but other family members too.

My cousin tested her mitochondrial DNA to discover that her direct matrilineal ancestor was Native American, much to her surprise. The great news is that her ancestor is my ancestor too!

Searching for Native American Ancestors?

If you’re searching for Native American or particular ancestors, mitochondrial DNA can tell you specifically if your mitochondrial DNA, or that of your ancestors (if you test a direct matrilineal descendant,) is Native, African, European, Jewish or Asian. Furthermore, your matches provide clues as to what country your ancestor might be from and sometimes which regions too.

Did you know that people from different parts of the world have distinctive haplogroups?

You can discover your ancestors’ origins through their mitochondrial DNA.

You can even utilize autosomal segment information to track back in time to the ancestor you seek. Then you can obtain that ancestor’s mitochondrial DNA by selectively testing their descendants or finding people who have already tested that descend from that ancestor. Here’s how.

You never know what you’re going to discover when you test your mitochondrial DNA. I discovered that although my earliest known matrilineal ancestor is found in Germany, her ancestors were from Scandinavia. My cousin discovered that our common ancestor is Mi’kmaq.

What secrets will your mitochondrial DNA reveal?

You can test or upgrade your mitochondrial DNA by clicking here.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Whole Genome Sequencing – Is It Ready for Prime Time?

Dante Labs is offering a whole genomes test for $199 this week as an early Black Friday special.

Please note that just as I was getting ready to push the publish button on this article, Veritas Genetics also jumped on the whole sequencing bandwagon for $199 for the first 1000 testers Nov. 19 and 20th. In this article, I discuss the Dante Labs test. I have NOT reviewed Veritas, their test nor terms, so the same cautions discussed below apply to them and any other company offering whole genome sequencing. The Veritas link is here.

Update – Veritas provides the VCF file for an additional $99, but does not provide FASTQ or BAM files, per their Tweet to me.

I have no affiliation with either company.

$199 (US) is actually a great price for a whole genome test, but before you click and purchase, there are some things you need to know about whole genome sequencing (WGS) and what it can and can’t do for you. Or maybe better stated, what you’ll have to do with your own results before you can utilize the information for genealogical purposes.

The four questions you need to ask yourself are:

  • Why do you want to consider whole genome testing?
  • What question(s) are you trying to answer?
  • What information do you seek?
  • What is your testing goal?

I’m going to say this once now, and I’ll say it again at the end of the article.

Whole genome sequencing tests are NOT A REPLACEMENT FOR GENEALOGICAL DNA TESTS for mitochondrial, Y or autosomal testing. Whole genome sequencing is not a genealogy magic bullet.

There are both pros and cons of this type of purchase, as with most everything. Whole genome tests are for the most experienced and technically savvy genetic genealogists who understand both working with genetics and this field well, who have already taken the vendors’ genealogy tests and are already in the Y, mitochondrial and autosomal comparison data bases.

If that’s you or you’re interested in medical information, you might want to consider a whole genome test.

Let’s start with some basics.

What Is Whole Genome Sequencing?

Whole Genome Sequencing will sequence most of your genome. Keep in mind that humans are more than 99% identical, so the only portions that you’ll care about either medically or genealogically are the portions that differ or tend to mutate. Comparing regions where you match everyone else tells you exactly nothing at all.

Exome Sequencing – A Subset of Whole Genome

Exome sequencing, a subset of whole genome sequencing is utilized for medical testing. The Exome is the region identified as the portions most likely to mutate and that hold medically relevant information. You can read about the benefits and challenges of exome testing here.

I have had my Exome sequenced twice, once at Helix and once at Genos, now owned by NantOmics. Currently, NantOmics does not have a customer sign-in and has acquired my DNA sequence as part of the absorption of Genos. I’ll be writing about that separately. There is always some level of consumer risk in dealing with a startup.

Helix sequences your Exome (plus) so that you can order a variety of DNA based or personally themed products from their marketplace, although I’m not convinced about the utility of even the legitimacy of some of the available tests, such as the “Wine Explorer.”

On the other hand, the world-class The National Geographic Society’s Genographic Project now utilizes Helix for their testing, as does Spencer Well’s company, Insitome.

You can also pay to download your Exome sequence data separately for $499.

Autosomal Testing for Genealogy

Both whole genome and Exome testing are autosomal testing, meaning that they test chromosomes 1-22 (as opposed to Y and mitochondrial DNA) but the number of autosomal locations varies vastly between the various types of tests.

The locations selected by the genealogy testing companies are a subset of both the whole genome and the Exome. The different vendors that compare your DNA for genealogy generally utilize between 600,000 and 900,000 chip-specific locations that they have selected as being inclined to mutate – meaning that we can obtain genealogically relevant information from those mutations.

Some vendors (for example, 23andMe and Ancestry) also include some medical SNPs (single nucleotide polymorphisms) on their chips, as both have formed medical research alliances with various companies.

Whole genome and Exome sequencing includes these same locations, BUT, the whole genome providers don’t compare the files to other testers nor reduce the files to the locations useful for genealogical comparisons. In other words, they don’t create upload files for you.

The following chart is not to scale, but is meant to convey the concept that the Exome is a subset of the whole genome, and the autosomal vendors’ selected SNPs, although not the same between the companies, are all subsets of the Exome and full genome.

I have not had my whole genome sequenced because I have seen no purpose for doing so, outside of curiosity.

This is NOT to imply that you shouldn’t. However, here are some things to think about.

Whole Genome Sequencing Questions

Coverage – Medical grade coverage is considered to be 30X, meaning an average of 30 scans of every targeted location in your genome. Some will have more and some will have less. This means that your DNA is scanned thirty different times to minimize errors. If a read error happens once or twice, it’s unlikely that the same error will happen several more times. You can read about coverage here and here.

Genomics Education Programme [CC BY 2.0 (https://creativecommons.org/licenses/by/2.

Here’s an example where the read length of Read 1 is 18, and the depth of the location shown in light blue is 4, meaning 4 actual reads were obtained. If the goal was 30X, then this result would be very poor. If the goal was 4X then this location is a high quality result for a 4X read.

In the above example, if the reference value, meaning the value at the light blue location for most people is T, then 4 instances of a T means you don’t have a mutation. On the other hand, if T is not the reference value, then 4 instances of T means that a mutation has occurred in that location.

Dante Labs coverage information is provided from their webpage as follows:

Other vendors coverage values will differ, but you should always know what you are purchasing.

Ownership – Who owns your data? What happens to your DNA itself (the sample) and results (the files) under normal circumstances and if the company is sold. Typically, the assets of the company, meaning your information, are included during any acquisition.

Does the company “share, lease or sell” your information as an additional revenue stream with other entities? If so, do they ask your permission each and every time? Do they perform internal medical research and then sell the results? What, if anything, is your DNA going to be used for other than the purpose for which you purchased the test? What control do you exercise over that usage?

Read the terms and conditions carefully for every vendor before purchasing.

File Delivery – Three types of files are generated during a whole genome test.

The VCF (Variant Call Format) which details your locations that are different from the reference file. A reference file is the “normal” value for humans.

A FASTQ file which includes the nucleotide sequence along with a corresponding quality score. Mutations in a messy area or that are not consistent may not be “real” and are considered false positives.

The BAM (Binary Alignment Map) file is used for Y DNA SNP alignment. The output from a BAM file is displayed in Family Tree DNA’s Big Y browser for their customers. Are these files delivered to you? If so, how? Family Tree DNA delivers their Big Y DNA BAM files as free downloads.

Typically whole genome data is too large for a download, so it is sent on a disc drive to you. Dante provides this disc for BAM and FASTQ files for 59 Euro ($69 US) plus shipping. VCF files are available free, but if you’re going to order this product, it would be a shame not to receive everything available.

Version – Discoveries are still being made to the human genome. If you thought we’re all done with that, we’re not. As new regions are mapped successfully, the addresses for the rest change, and a new genomic map is created. Think of this as street addresses and a new cluster of houses is now inserted between existing houses. All of the houses are periodically renumbered.

Today, typically results are delivered in either of two versions: hg19(GRVH37) or hg38(GRCH38). What happens when the next hg (human genome) version is released?

When you test with a vendor who uses your data for comparison as a part of a product they offer, they must realign your data so that the comparison will work for all of their customers (think Family Tree DNA and GedMatch, for example), but a vendor who only offers the testing service has no motivation to realign your output file for you. You only pay for sequencing, not for any after-the-fact services.

Platform – Multiple sequencing platforms are available, and not all platforms are entirely compatible with other competing platforms. For example, the Illumina platform and chips may or may not be compatible with the Affymetrix platform (now Thermo Fisher) and chips. Ask about chip compatibility if you have a specific usage in mind before you purchase.

Location – Where is your DNA actually being sequenced? Are you comfortable having your DNA sent to that geographic location for processing? I’m personally fine with anyplace in either the US, Canada or most of Europe, but other locations maybe not so much. I’d have to evaluate the privacy policies, applicable laws, non-citizen recourse and track record of those countries.

Last but perhaps most important, what do you want to DO with this file/information?

Utilization

What you receive from whole genome sequencing is files. What are you going to do with those files? How can you use them? What is your purpose or goal? How technically skilled are you, and how well do you understand what needs to be done to utilize those files?

A Specific Medical Question

If you have a particular question about a specific medical location, Dante allows you to ask the question as soon as you purchase, but you must know what question to ask as they note below.

You can click on their link to view their report on genetic diseases, but keep in mind, this is the disease you specifically ask about. You will very likely NOT be able to interpret this report without a genetic counselor or physician specializing in this field.

Take a look at both sample reports, here.

Health and Wellness in General

The Dante Labs Health and Wellness Report appears to be a collaborative effort with Sequencing.com and also appears to be included in the purchase price.

I uploaded both my Exome and my autosomal DNA results from the various testing companies (23andMe V3 and V4, Ancestry V1 and V2, Family Tree DNA, LivingDNA, DNA.Land) to Promethease for evaluation and there was very little difference between the health-related information returned based on my Exome data and the autosomal testing vendors. The difference is, of course, that the Exome coverage is much deeper (and therefore more reliable) because that test is a medical test, not a consumer genealogy test and more locations are covered. Whole genome testing would be more complete.

I wrote about Promethease here and here. Promethease does accept VCF files from various vendors who provide whole genome testing.

None of these tests are designed or meant for medical interpretation by non-professionals.

Medical Testing

If you plan to test with the idea that should your physician need a genetics test, you’re already ahead of the curve, don’t be so sure. It’s likely that your physician will want a genetics test using the latest technology, from their own lab, where they understand the quality measures in place as well as how the data is presented to them. They are unlikely to accept a test from any other source. I know, because I’ve already had this experience.

Genealogical Comparisons

The power of DNA testing for genealogy is comparing your data to others. Testing in isolation is not useful.

Mitochondrial DNA – I can’t tell for sure based on the sample reports, but it appears that you receive your full sequence haplogroup and probably your mutations as well from Dante. They don’t say which version of mitochondrial DNA they utilize.

However, without the ability to compare to other testers in a database, what genealogical benefit can you derive from this information?

Furthermore, mitochondrial DNA also has “versions,” and converting from an older to a newer version is anything but trivial. Haplogroups are renamed and branches sawed from one part of the mitochondrial haplotree and grafted onto another. A testing (only) vendor that does not provide comparisons has absolutely no reason to update your results and can’t be expected to do so. V17 is the current build, released in February 2016, with the earlier version history here.

Family Tree DNA is the only vendor who tests your full sequence mitochondrial DNA, compares it to other testers and updates your results when a new version is released. You can read more about this process, here and how to work with mtDNA results here.

Y DNA – Dante Labs provides BAM files, but other whole genome sequencers may not. Check before you purchase if you are interested in Y DNA. Again, you’ll need to be able to analyze the results and submit them for comparison. If you are not capable of doing that, you’ll need to pay a third party like either YFull or FGS (Full Genome Sequencing) or take the Big Y test at Family Tree DNA who has the largest Y Database worldwide and compares results.

Typically whole genome testers are looking for Y DNA SNPs, not STR values in BAM files. STR (short tandem repeat) values are the results that you receive when you purchase the 37, 67 or 111 tests at Family Tree DNA, as compared to the Big Y test which provides you with SNPs in order to resolve your haplogroup at the most granular level possible. You can read about the difference between SNPs and STRs here.

As with SNP data, you’ll need outside assistance to extract your STR information from the whole genome sequence information, none of which will be able to be compared with the testers in the Family Tree DNA data base. There is also an issue of copy-count standardization between vendors.

You can read about how to work with STR results and matches here and Big Y results here.

Autosomal DNA – None of the major providers that accept transfers (MyHeritage, Family Tree DNA, GedMatch) accept whole genome files. You would need to find a methodology of reducing the files from the whole genome to the autosomal SNPs accepted by the various vendors. If the vendors adopt the digital signature technology recently proposed in this paper by Yaniv Erlich et al to prevent “spoofed files,” modified files won’t be accepted by vendors.

Summary

Whole genome testing, in general, will and won’t provide you with the following:

Desired Feature Whole Genome Testing
Mitochondrial DNA Presumed full haplogroup and mutations provided, but no ability for comparison to other testers. Upload to Family Tree DNA, the only vendor doing comparisons not available.
Y DNA Presume Y chromosome mostly covered, but limited ability for comparison to other testers for either SNPs or STRs. Must utilize either YFull or FGS for SNP/STR analysis. Upload to Family Tree DNA, the vendor with the largest data base not available when testing elsewhere.
Autosomal DNA for genealogy Presume all SNPs covered, but file output needs to be reduced to SNPs offered/processed by vendors accepting transfers (Family Tree DNA, MyHeritage, GedMatch) and converted to their file formats. Modified files may not be accepted in the future.
Medical (consumer interest) Accuracy is a factor of targeted coverage rate and depth of actual reads. Whole genome vendors may or may not provide any analysis or reports. Dante does but for limited number of conditions. Promethease accepts VCF files from vendors and provides more.
Medical (physician accepted) Physician is likely to order a medical genetics test through their own institution. Physicians may not be willing to risk a misdiagnosis due to a factor outside of their control such as an incompatible human genome version.
Files VCF, FASTQ and BAM may or may not be included with results, and may or may not be free.
Coverage Coverage and depth may or may not be adequate. Multiple extractions (from multiple samples) may or may not be included with the initial purchase (if needed) or may be limited. Ask.
Updates Vendors who offer sequencing as a part of a products that include comparison to other testers will update your results version to the current reference version, such as hg38 and mitochondrial V17. Others do not, nor can they be expected to provide that service.
Version Inquire as to the human genome (hg) version or versions available to you, and which version(s) are acceptable to the third party vendors you wish to utilize. When the next version of the human genome is released, your file will no longer be compatible because WGS vendors are offering sequencing only, not results comparisons to databases for genealogy.
Ownership/Usage Who owns your sample? What will it be utilized for, other than the service you ordered, by whom and for what purposes? Will you we able to authorize or decline each usage?
Location Where geographically is your DNA actually being sequenced and stored? What happens to your actual DNA sample itself and the resulting files? This may not be the location where you return your swab kit.

The Question – Will I Order?

The bottom line is that if you are a genealogist, seeking genetic information for genealogical purposes, you’re much better off to test with the standard and well know genealogy vendors who offer compatibility and comparisons to other testers.

If you are a pioneer in this field, have the technical ability required to make use of a whole genome test and are willing to push the envelope, then perhaps whole genome sequencing is for you.

I am considering ordering the Dante Labs whole genome test out of simple curiosity and to upload to Promethease to determine if the whole genome test provides me with something potentially medically relevant (positive or negative) that autosomal and Exome testing did not.

I’m truly undecided. Somehow, I’m having trouble parting with the $199 plus $69 (hard drive delivery by request when ordering) plus shipping for this limited functionality. If I was a novice genetic genealogist or was not a technology expert, I would definitely NOT order this test for the reasons mentioned above.

A whole genome test is not in any way a genealogical replacement for a full sequence mitochondrial test, a Y STR test, a Y SNP test or an autosomal test along with respective comparison(s) in the data bases of vendors who don’t allow uploads for these various functions.

The simple fact that 30X whole genome testing is available for $199 plus $69 plus shipping is amazing, given that 15 years ago that same test cost 2.7 billion dollars. However, it’s still not the magic bullet for genealogy – at least, not yet.

Today, the necessary integration simply doesn’t exist. You pay the genealogy vendors not just for the basic sequencing, but for the additional matching and maintenance of their data bases, not to mention the upgrading of your sequence as needed over time.

If I had to choose between spending the money for the WGS test or taking the genealogy tests, hands down, I’d take the genealogy tests because of the comparisons available. Comparison and collaboration is absolutely crucial for genealogy. A raw data file buys me nothing genealogically.

If I had not previously taken an Exome test, I would order this test in order to obtain the free Dante Health and Wellness Report which provides limited reporting and to upload my raw data file to Promethease. The price is certainly right.

However, keep in mind that once you view health information, you cannot un-see it, so be sure you do really want to know.

What do you plan to do? Are you going to order a whole genome test?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Sex in the Garden

Now that I have your attention…

Few of you know that I’m a gardener. In fact, I also write an inspirational blog titled Victory Garden Day by Day, which combines garden photography with motivational sayings.

Ok, so truth be told, I’m mainly a weeder, but that’s how gardening works. When you start your garden, you see visions of lush, beautiful flowerscapes in your mind. Beautiful flowers in an array of colors blooming everyplace, stretching into the distance as far as you can see, or at least to the property line.

A few years later, you’re a slave to weeds and there’s no way out. Trust me on this one.

One of my friends refers to me as a “weed terrorist” because I walk around every single day and watch herd over those pesky weeds – seeking them out wherever they may be hiding. She knows about weed terrorism personally because she is too. All gardeners will be smiling about now. You know who you are!

Today, on my daily rounds, I found something extremely interesting in the garden – a Hibiscus plant with an extra petal in the middle where part of the stamen should be.

Discovery is a wonderful thing!

Here’s a front and side view.

Not being a plant biologist, I knew this was a mutation, but I didn’t know the specifics.

Being “cute,” I posted this to my Facebook page and said, “Hey look, a mutation.” What else would you expect from a DNA junkie?

I gotta tell you, I love the Facebook community. My friend, Leah LaPerle Larkin (thednageek), who, we discovered is also my cousin through my Acadian lines (thank you DNA matching), has a Ph.D in biology with a focus on phylogenetics and chimed in. Turns out, she knew what kind of a mutation occurred. She directed me to the Wikipedia page titled, ABC model of flower development, which provides some great graphics.

What you’re seeing is a mutation, in action, in the flowers sex organs. Seriously!

As it turns out, there are three types of genes involved in plant sexual development, allowing them to reproduce, as shown above.

A diagram illustrating the ABC model in Arabidopsis. Class A genes (blue) affect sepals and petals, class B genes (yellow) affect petals and stamens, class C genes (red) affect stamens and carpels. In two specific whorls of the floral meristem, each class of organ identity genes is switched on.

Like humans, a plant needs all of their sexual organs to reproduce. Yes, we call them flowers and leaves, but they are not a matter of beauty to a plant, but the very foundation of plant reproduction. In order to reproduce, all of the plants parts need to be present and in working order.

By Laura Aškelovičiūtė – Student work dedicated to Wikipedia, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36730565

According to wiki:

A diagram illustrating the ABC model. Class A genes affect sepals and petals, class B genes affect petals and stamens, class C genes affect stamens and carpels. In two specific whorls of the floral meristem, each class of organ identity genes is switched on.

Further in the article, under analysis of mutants, we note that “some organs develop in a location where others should develop.” This is called a homeotic mutation.

  • Mutations in type C genes, these mutations affect the reproductive verticils, namely the stamen and the carpels. The A. thaliana mutant of this type is called AGAMOUS, it possesses a phenotype containing petals instead of stamen and sepals instead of carpels.

There you go, petals instead of stamen.

So now you know about plant reproduction, aka sex in the garden, and mutations.

And you thought gardening was boring!

You also know what exciting lives Leah and I live on Saturday night.

You just never know what a font of knowledge your cousins that you meet through genetic genealogy are going to turn out to be. Thanks again Leah.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research