Ancestry Only Shows Shared Matches of 20 cM and Greater – What That Means & Why It Matters

Recently, I’ve noticed an uptick in confused people who’ve taken Ancestry’s DNA test.

They are using shared matches, which is a great tool and exactly what they should be doing, but they become confused when no shared matches appear with some specific people.

This is especially perplexing when they know through information sharing or because they manage multiple DNA kits that those two people who both match them actually do share DNA and match each other, meaning they “should” appear on a shared match list. Or worse, yet, conflicting match information is displayed, with one person showing the shared match, but the other person reciprocally does not.

What gives?

That’s exactly what this article addresses. It’s not quite as simple as it sounds, but it’s certainly easier once you understand.

What Are Matches and Shared Matches?

Matches occur when two people match each other. From your perspective as a DNA tester, matches are people who have taken DNA tests and appear on your match list because you share some level of DNA equal to or greater than the match threshold of the vendor in question.

At Ancestry, that minimum matching threshold is 8 cM (centimorgans) of matching DNA.

Individual matches are always one-to-one. Your match list is a list of people who all match you.

So, you match person 1, and you match person 2, individually.

Your matches may or may not also match each other. If they do match each other in addition to matching you, that’s a shared match which is a hint as to a potential common ancestor between all three people.

Shared matches are a list of people who match you PLUS any one other match on your list. In other words, shared matches are three-way matches.

In the diagram above, you can see that you match Match 1 and you also match Match 2. In this case, Match 1 and Match 2 also match each other, so all three of you match each other, but not necessarily on the same segment. Therefore, you’re all three shared matches, as shown in the center of the three circles.

Viewing Shared Matches

To view a list of people who match you and Match 1, you would request shared matches with Match 1 by clicking on “View Match” or “Learn More” on your match list, then on “Shared Matches” on the next screen.

The resulting shared match list consist of people who match you AND Match 1, both. It’s easy to make assumptions about why you have shared matches, but don’t.

Shared Matches are Hints

A shared match CAN mean:

  • That all three people share a common ancestral line.
  • You share a common ancestor with Match 1 and Match 2, but Match 1 and 2 match each other because they share an entirely different ancestor.
  • You match Match 1 because you share DNA from Ancestor A and you match Match 2 because you share DNA from Ancestor B. Match 1 and 2 match each other either because they share one or both of those common ancestors.
  • Match 1 and Match 2 might match because Match 1 and Match 2 share an ancestor that isn’t related to you.
  • That one (or more) of the matches is identical by chance, meaning the DNA combined from two parents in a random way that just happens to match with someone else.

Shared matches are great hints to be sifted for relevance. The operative word here is hint.

What If We Don’t Have Shared Matches?

Conversely, NOT having a shared match doesn’t mean you don’t share a common ancestor.

Sorry about the triple negative. Let me say that another way, because this is important.

Even though you and someone else aren’t on a shared match list, you might still share DNA and you may share a common ancestor, whether you share their DNA or not.

Ancestry’s shared matches work differently than shared matches at other vendors. Before we discuss that, let’s talk about why shared matches are important.

Why Do Shared Matches Matter Anyway?

Matches and shared matches are how genealogists perform two critically important functions:

  • Verifying “known” ancestors. Sometimes paper trails aren’t accurate and certainly, neither are trees.
  • Identifying unknown ancestors. Looking for common families among shared DNA matches is a HUGE hint when tracking down those pesky unknown ancestors.

I wrote about shared matches, here, when Ancestry purged segments under 8 cM, but I think the message about the limitations of shared matches and how the process actually works deserves its own article, especially for new users. Shared matches and segment cM numbers can be quite confusing, but they don’t need to be.

I wrote an article titled DNA Beginnings: Matching at Ancestry and What It Means that includes lots of useful information.

Ok, now let’s look specifically at using shared matches and why sometimes shared matches just don’t seem to make sense.

Matches

By far, the majority of your matches at any vendor will be more distant matches. That’s because you have thousands of distant relatives, most of whom you don’t know (yet).

You’ll only have a few closer relatives.

At Ancestry, I have 102,000+ total matches, of which more than 97,000 are distant matches. Based on these numbers, keep in mind that about 95.74% of my matches are distant, meaning 20 cM or below, and yours probably are too. You’ll need that number later.

Note that 20 cM is Ancestry’s threshold between close matches and distant matches.

That’s about exactly where you’d expect, on average, to see a 20 cM match – generally at or further back than 4th cousins. 20 cM is roughly the 4th to 6th cousin level.

Of course, you won’t match most of your 5th cousins at all, yet you’ll match some with more than 20 cM. That’s just the roll of the genetic dice.

Closer ancestors (meaning closer matches) is also the area of genealogy where much of the lower-hanging fruit has been plucked.

In my case, the closest unknown ancestor in my tree occurs at the 6th generation level and I have 5 or 6 missing sixth-generation ancestors – all females with no surnames. Two have no names at all.

Click to enlarge any image

How Much DNA Do Cousins Share?

One of my priorities as a genealogist is to identify those unknown people, which is why matches, and shared matching at that level are critical for me.

Ancestry tells me that this 20 cM match is likely my 4th-6th cousin.

At DNAPainter, in the Shared cM Tool, you can enter the total cM number of a match, which is the total amount of DNA that you share after Ancestry’s Timber algorithm has been applied. The range of relationship probabilities for 20 cM is shown below.

For a total match of 20 cM with another individual, several relationships ranging between half 3C2R/3C3R and 8th cousins are the most probable relationships at 58%.

For the record, this is total cM, which does not necessarily mean one segment. Ancestry reports the number of segments, but Ancestry does not show you the segment locations, nor do they have a chromosome browser. Without a chromosome browser, you have no way of determining whether or not you match with shared matches on the same segment(s). In other words, there is no triangulation at Ancestry, meaning confirmation of a specific shared DNA segment descended from a common ancestor. You can find triangulation resources, here.

Close Matches

The best way to figure out how you are related to closer matches (assuming you don’t already know them and Ancestry has not found a common ancestor) is using shared matches. Hopefully, you will share matches with people you do know or with whom you’ve already identified your common ancestor.

One of my relatively close DNA matches at Ancestry is Lonnie. I don’t know Lonnie, but it looks like I should because he’s probably a 1st or 2nd cousin. We share 357 cM of DNA over 20 segments.

I thought I knew all of my 1st and 2nd cousins. Let’s see if I can figure out how I’m related to Lonnie.

By clicking on Lonnie’s name on my match list, then on Shared Matches, I can determine that Lonnie and I connect through my Estes and Vannoy lines based on who we both match, which means that our common ancestor is either my paternal grandfather or my great-grandparents, Lazarus Estes and Elizabeth Vannoy.

You can see the notes I’ve made about these matches I share with Lonnie.

Viewing Lonnie’s unlinked tree verifies the ancestral line that shared matches suggest. An unlinked tree means that Lonnie has not linked his DNA test to himself in his tree. Since Ancestry doesn’t know who he is in the tree, they can’t find a common ancestor for me and Lonnie. However, I can by viewing his tree.

Our common ancestor is Lazarus Estes and his wife, Elizabeth Vannoy. Therefore, Lonnie is my 2nd cousin.

That wasn’t difficult, in part because I had already worked on the genealogy of our common matches and Lonnie had a small unlinked tree where I could confirm our common ancestor.

Now let’s move to more distant, not-so-easy matches.

Distant Matches

I’ve spent a lot of time over the years identifying common ancestors with my matches.

When I make that connection, whether or not Ancestry has been able to identify our common ancestor, I make notes about common ancestors and anything else that seems relevant. Notes very conveniently show on my match list so I don’t need to open each match to see how we are related.

Ancestry does identify potential common ancestors using ThruLines. Note the word potential. Ancestry compares the trees of you and your matches searching for common ancestors and suggests connections. It’s up to you to verify. ThruLines are hints, not gospel. Additionally, you may have multiple ancestral links to your matches. Ancestry can only work with the fact that you have a DNA match with someone AND the user-provided trees of your matches.

Ancestry’s ThruLines only reach back a maximum of 7 generations to suggest common ancestors. At 7 generations distance, you’d be a 5th cousin to a descendant who is also 7 generations downstream from that ancestor.

The information from DNAPainter, who utilizes the Shared CM Project compiled data shows that the most likely amount of shared DNA for 5th cousins, is, you’ve guessed it – 20 cM.

Jacob Dobkins is my 7th generation ancestor. I have ThruLines for him and his wife, but not for their parents who are one generation too distant for ThruLines. I’d LOVE to see Ancestry extend ThruLines another 2 or 3 generations.

ThruLines matches me with people who descend from Jacob through his other children. Other children are important because the only ancestors you share with those people are (presumably) that ancestral couple.

Matches with Jacob’s descendants range from 8 cM (the smallest amount Ancestry reports) to 32 cM.

Here’s an example.

Ancestry displays some shared matches with all of your matches, regardless of the size of your match to that person. However, Ancestry ONLY shows shared matches to a third person if you share more than 20 cM of DNA with that third person.

For example, I match KO with 8 cM of DNA. Ancestry shows my shared matches with KO, below.

I only have 3 shared matches with KO. I only match KO at 8 cM, but I match our shared matches at 39, 31 and 21 cM, respectively.

Ancestry does NOT show shared matches below 20 cM, so it’s unknown how many additional shared matches KO and I actually have if shared matches less than 20 cM were displayed.

Perspective is Critical

Whether you see a shared match or not is sometimes a matter of perspective, meaning which of two people you request shared matches with.

In this case, I requested shared matches with KO. I only share 8 cM of DNA with KO, but that doesn’t matter. The amount of DNA you share with the person you’re requesting shared matches with is irrelevant.

Ancestry’s Shared Matches with KO include Ker

I will see shared matches with KO to anyone we mutually share as matches above 20 cM, including Ker.

If I request shared matches with Ker, with whom I share 39 cM of DNA, I will see all of our mutual matches at 20 cM (or greater) of DNA. However, that does NOT include KO because I only share 8 cM of DNA with KO.

This restriction applies regardless of how much DNA KO and Ker share, which is an unknown to me of course.

Ancestry’s Shared Matches with Ker does NOT include KO

Nothing has changed between these matches, yet KO does not appear on my shared matches list with Ker when I request shared matches with Ker.

I still share 8 cM with KO and 39 cM with Ker. KO and Ker still both match each other. The only difference is that Ker shows up on my shared match list with KO because I share more than 20 cM with Ker. However, when I request a match list with Ker, KO does NOT appear because I only share 8 cM with KO.

This is the source of the confusion and often, why people disagree about shared matches. It’s kind of a “now you see it, now you don’t” situation.

If a person shows as a shared match depends on:

  1. Whether the third person actually does share DNA with the tester and the person they’ve asked for shared matches with
  2. Whether the third person shares 20 cM DNA or more with the tester, the person requesting the shared match list with one of their matches

Whether someone appears on a shared match list can literally be a matter of perspective unless the match and the shared matches all match the tester at 20 cM or larger.

Another Example

Let’s look at a larger match to a descendant of the same ancestor.

I share exactly 20 cM with Joyce, my 5C1R.

Viewing my shared matches with Joyce, I match 50 other people that she matches as well.

I only share 25 cM of DNA with the smallest match with Joyce. Apparently, there are no matches with Joyce with whom I share between 20 and 25 cM of DNA.

Bottom Line

Here’s the bottom line.

Ancestry NEVER shows any shared matches below 20 cM from the perspective of the tester, meaning people who match you and someone else, both.

If you recall our earlier math, that means that approximately 95.74% of my shared matches aren’t shown.

This puts shared matches in a different perspective because now I realize just how many matches I’m not seeing.

Why is This Confusing?

If you aren’t aware of this shared match limitation, and that a majority of your shared matches are actually below 20 cM, you may interpret shared match results to mean you actually DON’T share specific matches with that other person. That isn’t necessarily true, as we saw above with KO and Ker.

Furthermore, let’s say you manage your DNA kit plus 3 more, A, B and C. Because you manage all 4 kits, that means you can see the results for all 4 people.

  • A – 10 cM
  • B – 20 cM
  • C – 40 cM

From the perspective of YOUR kit, you will see some shared matches FOR all of those matches.

What you won’t see is shared matches if you don’t match the shared match (third person) at 20 cM or greater.

Always remember, shared match information at Ancestry is ALWAYS from the perspective of your DNA kit combined with the person with whom you request the match.

I’ve put this information in a grid because that’s how I make sense of things like this.

Here are your matches. When you click on shared matches with person A who you match at 10 cM, you’ll see both person B and person C as shared matches since you match both of those people at 20 cM or larger. You WILL see 20 cM shared matches, but you will not see 19 cM shared matches.

When you request shared matches for A, you will see both B and C.

When you request shared matches with kits B and C, you will not see A because you only match them at 10 cM.

However, from the perspective of DNA kits A, B and C, shared matches look different.

Let’s look at shared matches from the perspective of Kits A, B and C.

Kit A matches you, Kit B and C, but can only see Kit B as a shared match because matches with you and Kit C are under 20 cM.

Kit B doesn’t match C at all, so they clearly won’t have shared matches. However, they do match you and Kit A, both at 20 cM and over, so Kit B will see you as a shared match with Kit A, and Kit A as a shared match with you.

Kit C doesn’t match Kit B, so no shared matches with that person at all. Kit C does match you and Kit A. However, when Kit C clicks on shared matches for you, Kit A doesn’t show up because they only match Kit A on 9 cM. When Kit C clicks on Kit A for shared matches, you ARE listed as a shared match because you share 40 cM of DNA with Kit C.

There’s no way to discern whether two of your matches match each other unless they show as a match in the shared match tool. You can’t tell if their absence on the shared match list means they actually don’t match, or their shared match absence is because they match you at less than 20 cM.

Whew, that was a mouthful.

You may need to refer back to this from time to time if you’re confused by your shared matches at Ancestry.

If you need to remember rules, remember this.

  1. You can obtain shared matches with yourself plus any match, regardless of how much or how little DNA you share with that one match. Prove this to yourself by finding a match under 20 cM, like my 8 cM match, and viewing your shared matches.
  2. No one will show on a shared match list with another person unless they match you at 20 cM or greater. Prove this to yourself by viewing the smallest shared match with anyone.

Strategy

The takeaway of this is if you have a larger (20 cM or over) and smaller match (under 20 cM), always request shared matches from the perspective of the smaller match because the smaller match won’t show up as a shared match on any shared match list.

The only way you can see shared matches that includes people under 20 cM is to request to view shared matches with individual people who match you below 20 cM. 

In my case, I will never see KO on any shared match list because I only match KO at 8 cM. However, I can request my shared matches with KO in which case I’ll see all 20 cM or greater shared matches with KO.

Alternatives

Every vendor provides a shared match feature, and each functions differently.

In the chart below, I’ve provided basic shared match information for each vendor.

If you’re interested in uploading your DNA file from Ancestry or another vendor, I’ve provided upload/download step-by-step instructions for each vendor, here.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

East Coast Genetic Genealogy Conference – Registration is Open!

Did you know that the East Coast Genetic Genealogy Conference (ECGGC, affectionally known as “eggs”) is taking place on April 23 and 24? If you haven’t heard of this conference before, that’s because this is its inaugural year.

ECCGC was initially scheduled to be held in Maryland, in person, but the uptick in Covid over the winter forced a go, no-go decision at a time when a virtual live-streamed conference assured everyone’s safety.

I’m excited about speaking, especially my opening keynote, “DNA – Past, Present and Future.” I’ll reflect a little, talk about the current state-of-affairs and then discuss what the future may hold. Just think what we will be able to do in the next decade, or two, based on how far we’ve come in the past 22 years.

Of course, the very best aspect of this two-day conference is that it’s entirely focused on genetic genealogy which makes it the PERFECT venue for Mitochondrial DNA Academy. More about that in a minute.

Speakers

The 23 speakers read like a who’s who in the genetic genealogy space. You can read about each speaker, here.

Schedule and Sessions

If you look at the sessions and schedule, here, you’ll notice that there are 37 sessions offered over two days. Simple math tells you that you can’t possibly attend all of those in two days – even if you stayed up all night.

The great news is that for all attendees, the sessions will be recorded and available to watch after the actual conference itself is over.

Mitochondrial DNA Academy – You’re Invited

I want to personally invite you to attend Mitochondrial DNA Academy, presented by Dr. Miguel Vilar, Dr. Paul Maier, and me.

Mitochondrial DNA is an incredibly misunderstood tool for genealogy. It seems that anytime someone mentions mitochondrial DNA on social media and asks if they should purchase a test, a cacophony of “buy an autosomal test instead” resounds, without even asking the purpose of the test in question, or what the person hopes to learn.

Understanding mitochondrial DNA itself, how it’s used, what to expect, and how to utilize the results for genealogy is key to making an informed decision.

For those of us who do work extensively with mitochondrial DNA, there’s still much to learn. Attending both Paul Maier and Miguel Vilar’s portions of the Academy is guaranteed to provide even experienced genetic genealogists with fascinating, detailed information. There’s something for everyone and a unique learning opportunity.

If you want to understand the science behind mitochondrial DNA, how it works, different types of mutations, extra and missing mutations, frequency, haplogroup formation, migration, populations, phylogenetic trees as well as how to tie all of this up in a bundle to use successfully for genetic genealogy – Mitochondrial DNA Academy is for you.

You may have noticed that the three of us constitute three-quarters of the Million Mito Project team, so you just might get an update on that project as well!

Register for the Conference

You can register, here, for $150 which provides access to both conference days and all of the recorded sessions after.

Sponsors

I want to say a big thank you to the ECGGC sponsors, DNAGedcom, Borland Genetics, MyHeritage, FamilyTreeDNA and mitoYDNA.org whose generous sponsorships offset the cost of the conference for attendees.

See you at the conference!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches DNA Monkey Wrenches https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

How to Find RootsTech 2022 Sessions + Other Info You Need to Know

Tomorrow, Thursday, March 3rd is the beginning of RootsTech 2022 which is completely free and entirely virtual this year.

You’ll find a bouquet of speakers from around the world providing sessions in many languages. An auto-translate feature is available through YouTube as well.

I hope you’ve already signed up for RootsTech. If not, here are instructions.

The opening presentation by Steve Rockwood will take place on the “Main Stage, here,” at 10 AM EST.

The Expo Hall opens at the same time, and class sessions begin as well.

The navigation bar is at the top of your page.

New Options

Like last year, RootsTech is offering 15-20 minute sessions, with a few sessions being offered as a series which means there are either two, or three, 15-20 minute sessions that are intended to be viewed serially.

Additionally, some presentations, including several of mine, are live this year. Fingers crossed that Zoom doesn’t act up and technology gremlins don’t attend RootsTech too.

Session Availability

Classes, presentations or sessions, however you refer to them, will be offered for three full days and will be available for some time after as well.

How long they will be available depends on the source of the class/session/presentation. If the presentation is given by a vendor, the vendor’s booths and content won’t be available for as long as sessions presented by individuals.

I don’t know how long keynotes will be available either.

I do know that the RootsTech team told the speakers that their intention is for the sessions to remain online for three years unless they are no longer relevant for some reason.

I’ll explain how to find different classes and create a playlist in a minute. There are a few workarounds that will be very beneficial and several places you’ll want to look to be sure you find everything – including the Expo Hall.

Expo Hall

The Expo Hall, meaning vendor booths, organizations, and supporters will also open at 10 AM EST on Thursday, March 3rd and they will remain open through Saturday, March 5th, closing at 7 PM EST. This is the time that the booth is “staffed.” You can of course stop by anytime. The content in each booth may be available for longer and was last year.

Don’t overlook vendor booths thinking you can only find items for sale there. That’s not the case at all. Many if not most vendors and organizations will also have presentations and other resources available for you there too. What better source to find out about that organization’s tools and how to use them successfully than from the horse’s mouth, or booth, in this case.

Speaker’s Bookstore

There will be a Speaker’s Bookstore this year, and no, you cannot purchase a speaker in the store. You can, however, purchase things the speaker might have to sell, like books or services or whatever is relevant to their specialty. The Speaker’s Bookstore will be found in the Expo Hall.

This is a great way to support the speakers, plus, don’t forget to “like” sessions you enjoy.

Sessions

There are several ways to navigate the RootsTech website, and not all types of sessions are in the same place, so I want to be sure you know how to find everything and how to create a playlist for yourself. Furthermore, RootsTech is still trying to iron out some last-minute issues, so I’ve detailed ways I’ve found to deal with challenges.

Please also note that last year’s 2021 sessions are still available as well. Here’s a comprehensive list of 2021 DNA sessions that I created for your convenience, with links to the session recordings.

Live Sessions Calendar

To view all of the live sessions, including several roundtables, in one place, go to the Calendar, here.

You’ll notice that there are three days, and three groups of presentations, with 9 total sets of live sessions for you to choose from. Some sessions are scheduled “very late” in the US, but remember that late here is early someplace else and vice versa. RootsTech has a worldwide audience.

Be sure to review each group and make your selections.

In order to add a session to your playlist, click on the little “+” sign. It’s OK if you select multiple events for the same timeslot. You’ll just have to choose between them later, or watch some as recordings. All live sessions are being recorded. I don’t know how soon they will be available for viewing.

The PlayList can also serve as a “to do” list for after RootsTech as well. Just uncheck the ones you’ve already seen.

I like to watch live sessions because the speakers often provide time-sensitive information. You may also have the opportunity to ask chat questions of live presenters.

Session Search

Let’s say you’re interested in viewing presentations of a specific speaker.

Click to enlarge any image

Click on “Sessions,” and you’ll see the search box. Type the name of the speaker or any keyword into the search box. Be aware that the search/filter function is one of the aspects that the RootsTech team is still diligently working on. We’ll be discussing different ways to find things so you can be positive you’ve found what’s relevant for you.

Session Filters

On the left side, you see a list of filters. You can use these filters alone, in groups, or in conjunction with the search feature.

I suggest viewing each drop down and experimenting a bit, especially combinations.

I typed the word “dna” in the search box, selected the DNA category under Topic, plus selected only 2022 and I see a total of 151 DNA sessions. That’s a smorgasbord!!!!

Adding 2021 for both years shows a total of 278 sessions.

You could add language or other filters as well.

Series Filter

The “Series Episode” filter under “Content Type” isn’t showing all of the sessions that are a series of 2 or 3 contiguous sessions. My series sessions aren’t showing yet (as of this writing,) but some series sessions are. I hope this will be fixed soon.

Doggone Pesky Bugs

The searches and filters aren’t working consistently correctly right now. I only mention this because you may not see everything available for individual speakers, vendors or categories, so try various avenues, meaning search and filter in multiple ways to be sure you’re seeing everything relevant.

Creating a virtual event to serve over a million attendees is a daunting task, and the team really is working hard to resolve issues.

Add to the PlayList

When you add a session to your playlist, the “+” becomes an “X”.

I definitely want to hear what Paul Maier has to say about the Million Mito Project! You can read more about the Million Mito Project here and here.

Using Your PlayList

Your PlayList can be viewed at the top under the menu.

Your sessions will be listed in chronological order, generally with the day and time displayed, but not always. Hmmm…

I noticed that the first session showing, “The Million Mito Project” by Paul Maier doesn’t display a date or time, so I clicked to view the session. It is scheduled for 8 PM on March 2nd, before the conference actually opens, so be sure to check the session times. I’ll check back later today to be sure this is accurate.

I heartily recommend putting this session on your PlayList.

As a Million Mito team member, I might or might or might not be writing a short article soon on this very topic! 😊

Innovators Portal

Take a look at the Innovators Portal where you’ll find several “incognito sessions.”

I haven’t found all of these sessions listed elsewhere, and several are quite interesting.

This is a great place to see what vendors are doing.

Y DNA age estimates – OMG finally! I’m adding this one to my PlayList for sure!!!

You can also view your PlayList by clicking on the little “play” shortcut arrow.

My Sessions

I want to be sure you can find and view my sessions.

I have 4 sessions this year, two of which are actually a series of three sessions each. If you’re counting, yes, that means I’ve created a total of 8 sessions. If you’re thinking, “she’s nuts,” you’d be right. I’ll likely never do this again. It’s just so easy to get inspired, but then the weeks of work comes later.

If you’d like to view my autosomal DNA session from 2021, DNA Triangulation: What, Why and How, click here.

My 2021 session, Revealing Your Mother’s Ancestors and Where They Came From lives in the RootsTech DNA Learning Center, and you can watch it here.

I’m very pleased to offer four sessions in 2022 that I’ve listed in schedule order, below.

DNA for Native American Ancestryclick here to add to PlayList and view.

Thursday, March 3rd – 10 AM EST

I’ll be talking about the contents of DNA for Native American Genealogy, my new book. I wrote this book to help people identify their Native American ancestors, or put those rumors to rest.

There is a myriad of ways to approach this challenge, beginning with your family history, then using several genetic tools. The book covers methodology, geography, ethnicity results, Y DNA, mitochondrial DNA, autosomal DNA, your cousins as gold nuggets, third-party tools, identifying that elusive Native ancestor, and more.

This session is recorded, so you can watch it anytime after the conference opens.

Native American DNA – Ancient and Contemporary Mapsclick here to add to PlayList and view.

Thursday, March 3rd – 2 PM EST LIVE

One of my very favorite parts of writing the book was working with ancient DNA which informs our understanding of where specific groups of people lived, where they migrated – and where their descendants are found today.

Whether you’re interested in Native American heritage, history, anthropology or you’re a map junkie – join me because we are going to have a GREAT time.

Associating Autosomal DNA Segments With Ancestorsclick here to add to PlayList and view.

Friday, March 4th – 10 AM LIVE, Series

This session is a series of three 20-minute sessions that you can view by simply signing in to the first session. Each individual session will have a short Q&A following the session before moving on to the next one. This series will be recorded live so that the individual sessions can be viewed later, either together or separately.

I discuss why segments are important to genealogy, how to find ancestral segments at each major DNA testing vendor, plus GEDmatch, and identifying which ancestor(s) those segments descend from. You might be surprised to learn that I utilize Ancestry in this process too, even though they don’t have a chromosome browser.

After figuring out how to associate your DNA segments with specific ancestors, there’s so much more you can do! I hope you’ll join me for this next session too!

What Can I DO With Ancestral DNA Segments?click here to add to PlayList and view.

Friday March 4th – 2 PM LIVE, Series

This session is a series of three 20-minute sessions that you can view by simply signing in to the first session. Each session will have a short Q&A following the session before moving on to the next one. This live series will be recorded so that the individual sessions can be viewed later, either together or separately.

In this series, I review the more advanced tools at the DNA testing vendors, plus third-party tools like Genetic Affairs, DNAPainter and GEDmatch.

The great thing is that this painter’s pallet of tools has automated what we had been doing manually for several years – and every vendor and tool has something unique to offer genealogists.

Your Turn

Now it’s time to create your PlayList of sessions and make your RootsTech viewing plan. Hope to “see” you there!

Earlier RootsTech 2022 Articles

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

AutoKinship at GEDmatch by Genetic Affairs

Genetic Affairs has created a new version of AutoKinship at GEDmatch. The new AutoKinship report adds new features, allows for more kits to be included in the analysis, and integrates multiple reports together:

  • AutoCluster – the autoclusters we all know and love
  • AutoSegment – clusters based on segments
  • AutoTree – reconstructed tree based on GEDCOM files of you and your matches, even if you don’t have a tree
  • AutoKinship – the original AutoKinship report provided genetic trees. The new AutoKinship report includes AutoTree, combines both, and adds features called AutoKinship Tree. (Trust me on this one – you’ll see in a minute!)
  • Matches
    • Common Ancestors with your ancestors
    • Common Ancestors between matches, even if they don’t match your tree
    • Common Locations

Maybe the best news is that some reports provide automatic triangulation because, at GEDmatch, it’s possible to not only see how you match multiple people, but also if those people match each other on that same segment. Of course, triangulation requires three-way matching in addition to the identification of common ancestors which is part of what AutoKinship provides, in multiple ways.

Let’s step through the included reports and features one at a time, using my clusters as an example.

Order Your Report

As a Tier 1 GEDmatch customer, sign in, select AutoKinship and order your report.

Note that there are now two clustering settings, the default setting and one that will provide more dense clusters. The last setting is the default setting for AutoKinship, since it has been shown to produce better AutoKinship results.

You can also select the number of kits to consider. Since this tool is free with a GEDmatch Tier 1 subscription, you can start small and rerun if you wish, as often as you wish.

Currently, a maximum of 500 matches can be included, but that will be increased to 1000 in the future. Your top 500 matches will be included that fall within the cM matching parameters specified.

I’m leaving this at the maximum 400 cM threshold, so every match below that is included. I generally leave this default threshold because otherwise my closest matches will be in a huge number of clusters which may cause processing issues.

For a special use case where you will want to increase the cM threshold, see the Special Use Cases section near the end of this article.

You can select a low number of matches, like 25 or 50 which is particularly useful if you want to examine the closest matches of a kit without a tree.

Keep in mind that there is currently a maximum processing time of 10 minutes allowed per report. This means that if you have large clusters, which are the last ones processed, you may not have AutoKinship results for those clusters.

This also means that if you select a high cM threshold and include all 500 allowable matches, you will receive the report but the AutoKinship results may not be complete.

When finished, your report will be delivered to you as a download link with an attached zipped file which you will need to save someplace where you can find it.

Unzip

If you’re a PC user, you’ll need to unzip or extract the files before you can use the files. You’ll see the zipper on the file.

If you don’t extract the contents, you can click on the file to open which will display a list of the files, so it looks like the files are extracted, but they aren’t.

You can see that the file is still zipped.

You can click on the html file which will display the AutoCluster correctly too, but when you click on any other link within that file, you’ll receive this error message if the file is still zipped.

If this happens to you, it means the file is still zipped. Close the files you have open, right click on the yellow zipped file folder and “extract all.”

Then click on the HTML link again and everything should work.

Ok, on to the fun part – the tools.

Tools

I’ve written about most of these tools individually before, except for the new combinations of course. I’ve put all of the Genetic Affairs Tools, Instructions and Resources in one article that you can find here.

I recommend that you take a look to be sure you’re using each tool to its greatest advantage.

AutoCluster

Click on the html file and watch your AutoCluster fly into place. I always, always love this part.

The first thing I noticed about my AutoCluster at GEDmatch is that it’s HUGE! I have a total of 144 clusters and that’s just amazing!

Information about the cluster file, including the number of matches, maximum and minimum cM used for the report, and minimum cluster size appears beneath your cluster chart.

22 people met the criteria but didn’t have other matches that did, so they are listed for my review, but not included in the cluster chart.

At first glance, the clusters look small, but don’t despair, they really aren’t.

My clusters only look small because the tool was VERY successful, and I have many matches in my clusters. The chart has to be scaled to be able to display on a computer monitor.

New Layout

Genetic Affairs has introduced a new layout for the various included tools.

Each section opens to provide a brief description of the tool and what is occurring. This new tool includes four previous tools plus a new one, AutoCluster Tree, as follows:

AutoCluster

AutoCluster first organizes your DNA matches into shared match clusters that likely represent branches of your family. Everyone in a cluster will likely be on the same ancestral line, although the MRCA between any of the matches and between you and any match may vary. The generational level of the clusters may vary as well. One may be your paternal grandmother’s branch, another may be your paternal grandfather’s father’s branch.

AutoSegment

AutoSegment organizes your matches based on triangulating segments. AutoSegment employs the positional information of segments (chromosome and start and stop position) to identify overlapping segments in order to link DNA matches. In addition, triangulated data is used to collaborate these links. Using the user defined minimum overlap of a DNA segment we perform a clustering of overlapping DNA segments to identify segment clusters. The overlap is calculated in centimorgans using human genetic recombination maps. Another aspect of overlapping segments is the fact that some regions of our genome seem to have more matches as compared to the other regions. These so-called pile-up areas can influence the clustering. The removal of known pile-up regions based on the paper of Li et al 2014 is optional and is not performed for this analysis However, a pileup report is provided that allows you to examine your genome for pileup regions.

AutoTree

By comparing the tree of the tested person and the trees from the members of a certain cluster, we can identify ancestors that are common amongst those trees. First, we collect the surnames that are present in the trees and create a network using the similarity between surnames. Next, we perform a clustering on this network to identify clusters of similar surnames. A similar clustering is performed based on a network using the first names of members of each surname cluster. Our last clustering uses the birth and death years of members of a cluster to find similar persons. As a consequence, initially large clusters (based on the surnames) are divided up into smaller clusters using the first name and birth/death year clustering.

AutoKinship

AutoKinship automatically predicts family trees based on the amount of DNA your DNA matches share with you and each other. Note that AutoKinship does not require any known genealogical trees from your DNA matches. Instead, AutoKinship looks at the predicted relationships between your DNA matches, and calculates many different paths you could all be related to each other. The probabilities used by this AutoKinship analysis are based on simulated data for GEDmatch matches and are kindly provided by Brit Nicholson (methodology described here). Based on the shared cM data between shared matches, we create different trees based on the putative relationships. We then use the probabilities to test every scenario which are then ranked.

AutoKinship Tree

Predicted trees from the AutoTree analysis are based on genealogical trees shared by the DNA matches and, if available, shared by the tested person. The relationships between DNA matches based on their common ancestors as provided AutoTree are used to perform an AutoKinship analysis and are overlayed on the predicted AutoKinship tree.

AutoKinship Tree is New

AutoKinship Tree is the new feature that combines the features of both AutoTree and AutoKinship. You receive:

  • Common ancestors between you and your matches
  • Trees of people who don’t share your common ancestors but share ancestors with each other
  • Combined with relationship predictions and
  • A segment analysis

Of course, the relative success of the tree tools depends upon how many people have uploaded GEDCOM files.

Big hint, if you haven’t uploaded your family tree, do so now. If you are an adoptee or searching for a parent and don’t know who your ancestors are, AutoKinship Tree does its best without your tree information, and you will still benefit from the trees of others combined with predicted relationships based on DNA.

It’s easier to show you than to tell you, so let’s step through my results one section at a time.

I’m going to be using cluster 5 which has 32 members and cluster 136 which has 8 members. Ironically, cluster 136 is a much more useful cluster, with 8 good matches, than cluster 5 which includes 32 people.

Results of the AutoKinship Analyses

As you scroll down your results, you’ll see a grid beneath the Explanation area.

It’s easy to see which cluster received results for each tool. My cluster 5 has results in each category, along with surnames. (Notice that you can search for surnames which displays only the clusters that contain that surname.)

I can click on each icon to see what’s there waiting for me.

Additionally, you can click at the top on the blue middle “here” for an overview of all common ancestors. Who can resist that, right?

Click on the ancestor’s name or the tree link to view more information.

You can also view common locations too by clicking on the blue “here” at far right. A location, all by itself, is a HUGE hint.

Clicking on the tree link shows you the tree of the tester with ancestors at that location. I had several others from North Carolina, generally, and other locations specifically. Let’s take a look at a few examples.

Common Ancestor Clusters

Click on the first blue link to view all common ancestors.

Common Ancestor Clusters summarize all of the clusters by ancestor. In other words, if any of your matches have ancestors in common in their tree, they are listed here.

These clusters include NOT just the people who share ancestors in a tree with you, but who also share known ancestors with each other BUT NOT YOU. That may be incredibly important when you are trying to identify your ancestors – as in brick walls. Your ancestors may be their ancestors too, or your common segments might lead to your common ancestors if you complete their tree.

There are other important hints too.

In my case, above, Jacob Lentz is my known ancestor.

However, Sarah Barron is not my ancestor, nor is John Vincent Dodson. They are the descendants of my Dodson ancestor though. I recognized that surname and those people. In other instances, recognizing a common geography may be your clue for figuring out how you connect.

In the cluster column at left, you can see the cluster number in which these people are found.

Common Locations Table

Clicking on the second link provides a Common Location Table

Some locations are general, like a state, and others are town, county or even village names. Whatever people have included in their GEDCOM files that can be connected.

Looking at this first entry, I recognize some of the ancestral surnames of Karen’s ancestors. The fact that we are found in the same cluster and share DNA indicates a common ancestor someplace.

Check for this same person in additional locations, then, look at their tree.

Ok, back to the AutoKinship Analysis Table and Cluster 136.

Cluster 136

I’m going to use Cluster 136 as an example because this cluster has generated great reports using all of the tools, indicated by the icon under each column heading. Some clusters won’t have enough information for everything so the tools generate as much as possible.

Scrolling down to Cluster 136 in the AutoCluster Information report, just beneath the list of clusters, I can see my 8 matches in that cluster.

Of course, I can click on the links for specific information, or contact them via email. At the end of this article in the “Tell Me Everything” section, I’ll provide a way to retrieve as much information as possible about any one match. For now, let’s move to the AutoTree.

Cluster 136 AutoTree

Clicking on the icon under AutoTree shows me how two of the matches in this cluster are related to each other and myself.

Note that the centimorgan badges listed refer to the number of cM that I share with each of these people, not how much they share with each other.

Click on any of the people to see additional information.

When I click on J Lentz m F Moselman, a popup box shows me how this couple is related to me and my matches.

Of course, you can also view the Y DNA or mitochondrial DNA haplogroups if the testers have provided that information when they set up their GEDmatch profile information.

Just click on the little icons.

If the testers have not provided that information, you can always check at FamilyTreeDNA or 23andMe, if they have tested at either of those vendors, to view their haplogroup information.

Today, GEDmatch kit numbers are assigned randomly, but in the early days, before Genesis, the leading letter of A meant AncestryDNA, F or T for FamilyTreeDNA, M for 23andMe and H for MyHeritage. If the kit number is something else, perform a one-to-one or a one-to-many report which will display the source of their DNA file.

The small number, 136 in this case, beside the cM number indicates the cluster or clusters that these people are members of. Some people are members of multiple clusters

Let’s see what’s next.

Cluster 136 Common Ancestors

Clicking on the Ancestors icon provides a report that shows all of the Ancestor Clusters in cluster 136.

The difference between this ancestor chart and the larger chart is that this only shows ancestors for cluster 136, while the larger chart shows ancestors for the entire AutoCluster report.

Cluster 136 Locations

All of the locations shown are included in trees of people who cluster together in cluster 136. Of course, this does NOT mean that these locations are all relevant to cluster 136. However, finding my own tree listed might provide an important clue.

Using the location tool, I discover 5 separate location clusters. This location cluster includes me with each tester’s ancestors who are found in Montgomery County, Ohio.

The difference between this chart for cluster 136 only and the larger location chart is that every location in this chart is relevant for people who all cluster together meaning we all share some ancestral line.

Viewing the trees of other people in the cluster may suggest ancestors or locations that are essential for breaking down brick walls.

Cluster 136 AutoKinship

Clicking on the anchor in the AutoKinship column provides a genetically reconstructed tree based on how closely each of the people match me, and each other. Clearly, in order to be able to provide this prediction, information about how your matches also match each other, or don’t, is required.

Again, the cM amount shown is the cM match with me, not with each other. However, if you click on a match, a popup will be shown that shows the shared cM between that person and the other matches as well as the relationship prediction between them in this tree

So, Bill matches David with a total of 354.3 cM and they are positioned as first cousins once removed in this tree. The probability of the match being a 1C1R (first cousin once removed) is 64.9%, meaning of course that other relationships are possible.

Note that Bill and David ALSO share a segment with me in autosegment cluster 185, on chromosome 3.

It’s important to note that while 136 is the autocluster number, meaning that colored block on the report, WITHIN clusters, autosegment clusters are formed and numbered. 

Each autosegment cluster receives its own number and the numbers are for the entire report. You will have more autosegment clusters than autoclusters, because at least some of the colorful autoclusters will contain more than one segment cluster.

Remember, autoclusters are those colorful boxes of matches that fly into place. Autosegment clusters are the matching triangulated clusters on chromosomes and they are represented by the blue bars, shown below.

AutoCluster 136 contains 5 different autosegment clusters, but Bill is only included in one of those autosegment clusters.

You’ll notice that there are some people, like Robin at the bottom, who do match some other people in the cluster, but either not enough people, or not enough overlapping DNA to be included as an autocluster member.

The small colored chromosomes with numbers, boxed in red, indicate the chromosome on which this person matches me.

If you click on that chromosome icon, you’ll see a popup detailing everyone who matches me on that segment.

Note that in some cases a member of a segment cluster, like Robin, did not make it in the AutoCluster cluster. You can spot these occurrences by scrolling down and looking at the cluster column which will then be empty for that particular match.

Reconstructed AutoKinship Trees in Most Likely Order

Scrolling down the page, next we see that we have multiple possible trees to view. We are shown the most likely tree first.

Tree likelihood is constructed based on the combined probability of my matching cM to an individual plus their likely relationship to each other based on the amount of DNA they share with each other as well.

In my case, all of the first 8 trees are equally as likely to be accurate, based on autosomal genetic relationships only. The ninth tree is only very slightly less likely to be accurate.

The X chromosome is not utilized separately in this analysis, nor are Y or mitochondrial DNA haplogroups if provided.

DNA Relationship Matrix

Continuing to scroll down, we next see the DNA matrix that shows relationships for cluster 5 in a grid format. Click on “Download Relationship Matrix” to view in a spreadsheet.

Keep scrolling for the next view which is the Individual Segment Cluster Information

Individual Segment Cluster Information

Remember that we are still focused on only one cluster – in this case, cluster 136. Each cluster contains people who all match at least some subset of other people in the cluster. Some people will match each other and the tested person on the same chromosome segment, and some won’t. What we generally see within clusters are “subclusters” of people who match each other on different chromosomes and segments. Also, some matches from cluster 136 might match other people but those matches might not be a member of cluster 136.

In autocluster 136, I have 14 DNA segments that converge into 5 segment clusters with my matches. Here’s segment cluster 185 that consists of two people in addition to me. Note that for individuals to be included in these segment clusters at GEDmatch, they must triangulate with people in the same segment cluster.

From left to right, we see the following information:

  • AutoCluster number 136, shown below

  • Segment cluster 185. This is a segment cluster within autocluster 136.

  • Segment cluster 185 occurs on chromosome 3, between the designated start and stop locations.
  • The segment representation shows the overlapping portions of the two matches, to me. You can easily see that they overlap almost exactly with each other as well.
  • The SNP count is shown, followed by the name and cM count.

Cluster 136 AutoKinship Tree

The AutoKinship Tree column is different from the AutoKinship column in one fundamental way. The new AutoKinship Tree feature combines the genealogical AutoTree and the genetic AutoKinship output together in one report.

You can see that the “prior” genealogical tree information that one of my matches also descends from Jacob Lentz (and wife, if you click further) has now been included. The matches without trees have been reconstructed around the known genealogy based on how they match me and each other.

I was already aware of how I’m related to Bill, David, *C and *R, but I don’t know how I am related to these other people. Based on their kit identifier, I can go to the vendor where they tested and utilize tools there, and I can check to see if they have uploaded their DNA files elsewhere to discover additional records information or critical matches. Now at least I know where in the tree to search.

Cluster 136 AutoSegment

Clicking on AutoSegment provides you with segment information. Each cluster is painted on your chromosomes.

By hovering over the darkly colored segments, which are segment clusters, you can view who you match, although to view multiple matches, continue scrolling.

In the next section, you’ll see the two segment clusters contained wholly within cluster 136.

Following that is the same information for segment clusters partially linked to cluster 136, but not contained wholly within 136.

Bonus – Tell Me Everything – Individual Match Clusters

We’ve focused specifically on the AutoKinship tools, but if you’re interested in “everything” about one specific match, you can approach things from that perspective too. I often look at a cluster, then focus on individuals, beginning with those I can identify which focuses my search.

If you click on any person in your match list, you’ll receive a report focusing on that person in your autocluster.

Let’s use cousin Bill as an example. I know how he’s related to me.

You can choose to display your chosen cluster by:

  • Cluster
  • Number of shared matches
  • Shared cM with the tester
  • Name

I would suggest experimenting with all of the options and see which one displays information that is most useful to the question you’re trying to answer.

Beneath the cluster for Bill, you’ll see the relevant information about the cluster itself. Bill has cluster matches on two different chromosomes.

The AutoCluster Cluster member Information report shows you how much DNA each cluster member shares with the tested person, which is me, and with each other cluster member. It’s easy to see at a glance who Bill is most closely related to by the number of cMs shared.

Only one of Bill’s chromosomes, #3, is included in clusters, but this tells me immediately that this/these segments on chromosome 3 triangulate between me, Bill, and at least one other person.

Segments shown in orange (chromosome 22) match me, but are not included in a cluster.

Special Use Cases – Unknown People

For adoptees and people trying to figure out how they are related to closer relatives, especially those without a tree, this new combined AutoKinship tool is wonderful.

400 cM is the upper default limit when running the report, meaning that close family members will not be included because they would be included in many clusters. However, you can make a different selection. If you’re trying to determine how several closely related people intersect, select a high threshold to include everyone.

Select a lower number of matches, like 25 or 50.

In this example, ‘no limit” was selected as the upper total match threshold and 25 closest matches.

AutoKinship then constructs a genetic tree and tells you which trees are possible and most likely. If some people do have trees, that common ancestor information would be included as well.

Note that when matches occur over the 400 cM threshold, there will be too many common chromosome matches so the chromosome numbers are omitted. Just check the other reports.

This tool would have helped a great deal with a recent close match who didn’t know how they are related to my family.

You can see this methodology in action and judge its accuracy by reconstructing your own family, assuming some of your known family members have uploaded to GEDmatch. Try it out.

It’s a Lot!

I know there’s a lot here to absorb, but take your time and refer back to this article as needed.

This flexible new tool combines DNA matching, genealogy trees, genetic trees, locations, autoclusters, a chromosome browser, and triangulation. It took me a few passes and working with different clusters to understand and absorb the information that is being provided.

For people who don’t know who their parents or close relatives are, these tools are amazing. Not only can they determine who they are related to, and who is related to each other, but with the use of trees, they can view common ancestors which provides possible ancestors for them too.

For people painting their triangulated segments at DNAPainter, AutoKinship provides triangulation groups that can be automatically painted using the Cluster Auto Painter, here, plus helps to identify that common ancestor. You can read more about DNAPainter, here.

For people seeking to break down brick walls, AutoKinship Tree provides assistance by providing tree matching between your matches for common ancestors NOT IN YOUR TREE, but that ARE in theirs. Your brick walls are clearly not (yet) identified in your tree, although that’s our fervent hope, right?

Even if your matches’ trees don’t go far enough back, as a genealogist, you can extend those trees further to hopefully reveal a previously unknown common ancestor.

The Best Things You Can Do

Aside from DNA testing, the three best things you can do to help yourself, and your clusters are:

  • Upload your GEDCOM file, complete with locations, so you have readily available trees. Ask your matches to do so as well. Trees help you and others too.
  • Encourage people you match at Ancestry who provides no chromosome segment information or chromosome browser to upload a copy of their DNA files and tree.
  • Test your family members and cousins, and encourage them to upload their DNA and their trees. Offer to assist them. You can find step-by-step download/upload instructions here.

Have fun!

______________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA Shows Peter Johnson and Mary Polly Philips Are My Relatives, But Are They My Ancestors? – 52 Ancestors #350

One of the requests by several people for 2022 article topics revolved in some way around solving challenges and showing my work.

In this case, I’m going to show both my work and the work of a newly-discovered cousin, Greg Simkins.

Let’s start by reminding you of something I said last week in Darcus Johnson (c1750-c1835) Chain Carrier – Say What??.

Darcus is reported in many trees to be the daughter of Peter Johnson (Johnston, Johnstone) and his wife Mary Polly Phillips. Peter reportedly lived in Pennsylvania and died in Allegheny County, PA. However, I am FAR from convinced that this couple was Darcus’s parents.

The distance from Shenandoah County, VA to Allegheny Co., PA is prohibitive for courting.

The Shenandoah County records need to be thoroughly researched with various Johnson families reconstructed. I’m hoping that perhaps someone has already done that and a Johnson family was living not terribly far from Jacob Dobkins father, John Dobkins. That would be the place to start.

Greg, Peter Johnson’s descendant through son James reached out to me.

Hi Roberta, I read your essay today on Dorcas Johnson. I wanted to write to you because I am a descendant of Dorcas’s brother James and have DNA matches to support our connection.

Clearly, I was very interested, but I learned long ago not to get too excited.

Then, Greg kindly shared his tree and DNA results with me. He was also generous enough to allow me to incorporate his information into this article. So yes, this article is possible entirely thanks to Greg.

I was guardedly excited about Greg’s communication, but I wasn’t prepared for the HUGE shock about to follow!

Whoa!!!

Greg has done his homework and stayed after school.

First, he tracked the descendants of Peter through all of his children, to present, where possible, and added them into his trees at the genealogy vendors. The vendors can do much better work for you with as much ammunition as you can provide.

Second, he has doggedly tracked matches at MyHeritage, FamilyTreeDNA, Ancestry and GEDmatch that descend through Peter Johnson and Mary Polly Phillips’s children. By doggedly, I mean he has spent hundreds to thousands of hours by his estimation – and based on what I see, I would certainly agree. In doing so, he pushed his own line back from his great-great-grandmother, Elizabeth Johnson, three generations to Peter Johnson and Mary Polly Phillips – and proved its accuracy using DNA.

Altogether, Greg has identified almost 250 matches that descend from Peter Johnson and Mary Polly Phillips, and mapped those segments across his chromosomes.

Greg made notes for each match by entering the number of matching cMs into their profile names as a suffix in his tree. For example, “David Johnson 10cM” instead of “David Johnson Jr.” or Sr.  That way, it’s easy to quickly see who is a match and by how much. Brilliant! I’m adopting that strategy. It won’t affect what other people see, because no living people are shown in trees.

Of course, DNA is on top of traditional genealogical research that we are all familiar with that connects people via deeds, wills, and other records.

Additionally, Greg records research information for individuals as a word document or pdf file and attaches them as documents to the person’s profile in his tree. His tree is searchable and shareable, so this means those resources are available to other people too. We want other researchers to find us and our records for EXACTLY this reason.

One thing to note is that if you are using Ancestry and use the Notes function on profiles, the notes don’t show to people with whom you share your tree, but links, sources and attached documents do.

Greg has included both “Other Sources” and “Web Links” below.

Click images to enlarge

For example, if I click on Greg’s link to Historic Pittsburg, I see the land grant location for Peter Johnson. Wow, this was unexpected.

Ok, I love maps and I’m hooked. Notice the names of the neighbors too. You’ll see Applegate again. Also, note that Thomas Applegate sold his patent to Richard Johnson. Remember the FAN club – friends and neighbors.

Ok, back to DNA for now.

The Children

Ancestors with large families are the best for finding present-day DNA matches. Of course, that’s because there are more candidates. More descendants and that means more people who might test someplace. This is also why you want to be sure to have your DNA in all 4 major DNA vendors, FamilyTreeDNA, MyHeritage, Ancestry, and 23andMe, plus GEDmatch.

This is a portion of Greg’s tree that includes the children of Peter Johnson and Mary Polly Phillips. Note that two Johnson females married Dobkins men. I’ve always suspected that Margaret Johnson and Dorcas Johnson were sisters, but unless we could use mitochondrial DNA, or figure out who the parents of either Peter or Mary are, there’s no good way to prove it.

We’re gathering some very valuable evidence.

At Ancestry, Greg has 85 matches on his ThruLines for Peter Johnson and Mary Polly Phillips, respectively.

  • Of course, Greg has the most matches for his own line through Peter’s son James Johnson (1752-1826) who married Elizabeth Lindsay and died in Lawrence County, IL: 35 matches.
  • Next is Margaret Johnson (1780-1833) who married Evan Dobkins in Dunmore County, VA, brother of my ancestor, Jacob Dobkins. She probably died in Cocke County, TN: 25 matches. Dorcas named one of her children Margaret and Margaret may have named one of her children Dorcas.
  • Solomon Johnson (1765-1843) married Frances Warne and stayed in Allegheny County, PA: 8 matches. Notice one of Peter’s neighbors was a Warner family. Dorcas named one of her children Solomon, a fairly unusual name.
  • Mary Johnson (1770-1833) married Garrett Wall Applegate and died in Harrison County, IN: 7 matches. The Applegates were Peter Johnson’s neighbors and Garrett served in the Revolutionary War in the 8th VA Regiment. Clearly, some of these settlers came from or spent time in Virginia.
  • Dorcas Johnson (c1750-c1835) married Jacob Dobkins in Dunmore County, VA and died in Claiborne County, TN: 5 matches.
  • Peter Johnson (1753-1840) married Eleanor “Nellie” Peter and died in Jefferson County, KY: 4 matches.
  • Richard D. Johnson (1752-1818) married Hannah Dungan and Elizabeth Nash: 2 matches.

Unfortunately, since most of those matches are between 7 and 20 cM, and Ancestry does not display shared matches under 20 cM, we can’t use Ancestry’s comparison tool to see if these people also match each other. That’s VERY unfortunate and extremely frustrating.

Greg matches more people from this line at MyHeritage, GEDmatch and FamilyTreeDNA, and thankfully, those vendors all three provide segment information AND shared match information.

Cousins Are Critical

While Greg, unfortunately, does not match me, he does match several of my cousins whose tests I manage.

Two of those cousins both descend from Darcus Johnson through her daughter Jenny Dobkins, through her daughter Elizabeth Campbell, through her daughter Rutha Dodson, through her sons John Y. Estes and Lazarus Estes, respectively.

Another descends through Jenny Dobkins son, William Newton Campbell for another 5 generations. These individuals all match on a 17 cM segment of Chromosome 20.

Other known cousins match Greg on different chromosomes.

Looking at their shared matches at FamilyTreeDNA, we find more Dobkins, Dodson and Campbell cousins, some that were previously unknown to me. One of those cousins also descends through William Newton Campbell’s daughter for another 4 generations and matches on the same segment of chromosome 20.

DNAPainter

Emails have been flying back and forth between me and Greg, each one with some piece of information that one of us has found that we want to be sure the other has too. Having research buddies is wonderful!

Then, Greg sent a screenshot of a portion of his chromosome 20 from DNAPainter that includes the DNA of the cousins mentioned above. I didn’t realize Greg was using DNAPainter. It’s an understatement to say I’m thrilled because DNAPainter does the cross-vendor triangulation work automatically for you.

Just look at all of those matches that carry this Johnson/Phillips segment of chromosome 20. Holy chimloda.

Greg also sent his DNAPainter sharing link, and it turns out that this is only a partial list, with one of my cousins highlighted, dead center in the list of Peter Johnson’s and Mary Polly Phillip’s descendants. Greg has even more not shown.

Trying Not to Jump to Conclusions

I’m trying so hard NOT to jump to conclusions, but this is just SOOOO EXCITING!

Little doubt remains that indeed, Peter Johnson and Mary Polly Phillips are the parents of Dorcas Johnson who married Jacob Dobkins and also of Margaret Johnson who married Evan Dobkins. I’ve eliminated the possibility of other common ancestors, as much as possible, and verified that the descent is through multiple children. This particular segment on chromosome 20 reaches across multiple children’s lines.

I say little doubt remains, because some doubt does remain. It’s possible that perhaps Dorcas and her sister weren’t actually daughters of Peter Johnson, but maybe children of his brother? Peter was reported to have a brother James, a sheriff in Cumberland County, PA. but again, we lack proof. If Dorcas is Peter Johnson’s niece, her descendants would still be expected to match some of the descendants of Peter and his wife.

Also complicating matters is the fact that Greg also has a Campbell brick wall with a James Campbell born about 1790 who lived in Fayette County, PA, in the far northwest corner of the state. Therefore, DNA matches through Dorcas Johnson Dobkins’s daughters Jenny and Elizabeth who married Campbell brothers need to be verified through her children’s lines that do NOT descend through her daughters who married Campbell men.

Nagging Questions

I know, I’m being a spoilsport, but I still have questions that need answers.

For example, I still need to account for how the Johnson girls managed to get to Shenandoah County, VA (Dunmore County at that time) to meet the Dobkins boys, spend enough time there to court, and then marry Evan and Jacob nine months apart in 1775. Surely they were living there. Young women simply did not travel, especially not great distances, and marriages occurred in the bride’s home county. Yet, they married in Shenandoah County, VA, not in PA.

What About the Records?

We are by no means done. In fact, I’ve just begun. I have some catching up to do. Greg has focused on Peter Johnson and Mary Polly Phillips in Pennsylvania. I need to focus on Virginia.

Of course, the next challenge is actual records.

What exists and what doesn’t? FamilySearch provides a list for Dunmore County, here, and Shenandoah, here.

Was Peter Johnson ever in Dunmore County that became Shenandoah County, VA, and if so when and where? If not, how the heck did his two daughters marry the Dobkins boys in 1775? Was there another Johnson man in Dunmore during that time? Was it James?

Where was Peter Johnson in 1775 when Dorcas and Margaret were marrying? Can we positively account for him in Pennsylvania or elsewhere?

Some information has been published about Peter Johnson, but those critical years are unaccounted for.

It appears that the Virginia Archives has a copy of the 1774-1776 rent rolls for Dunmore County, but they aren’t online. That’s the best place to start. Fingers crossed for one Peter Johnson living right beside John Dobkins, Jacob’s father. Now THAT would convince me.

Stay tuned!

Note – If you’d like to view Greg’s tree at Ancestry, its name is “MyHeritage Tree Simkins” and you can find it by searching for Maude Gertrude Wilson born in 1876 in Logan County, Illinois, died January 27, 1950 in Ramsey County, Minnesota, and married Harry A. Simkins. Elizabeth Ann Johnson (1830-1874) is Maude’s grandmother.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

STRs and SNPs – Are STR Markers Still Useful for Y DNA?

Some time back, I wrote an article titled, STRs vs SNPs, Multiple DNA Personalities, which you can read, here. In that article, I explained the difference between STR and SNP markers.

Y DNA is extremely useful for men to track their direct paternal line via the Y chromosome that they inherited from their father. You can see how various types of DNA are inherited, here. By way of comparison, mitochondrial DNA (red) is inherited from your matrilineal line, and autosomal DNA (green) is inherited from all lines.

The Y chromosome, shown in blue above, is passed from father to son without mixing with the DNA of the mother, so it is in essence tracked intact for generations – with the exception of occasional mutations.

Two kinds of mutations make Y DNA genealogically useful. They are STRs, short tandem repeat markers and SNPs, single nucleotide polymorphisms, pronounced as “snips.” If you’re looking for in-depth information about Y DNA, I have provided a Y DNA resource guide here.

How is Y DNA Useful?

For Estes males, we have identified several genetic lineages using these markers that show us where testers fit into the tree of Estes males, which of course in turn fits into the larger tree of mankind.

In some cases, Y DNA is the only clue people have as to their genealogy. In other situations, these tests confirm and further refine both the genetic tree and genealogy.

Let’s look at how these two types of Y DNA markers work, separately and together at FamilyTreeDNA.

STR Markers, Results and Matching

Y DNA STR results are returned in panels when men take Y DNA tests.

Every man who takes a Y DNA test at FamilyTreeDNA receives STR results, shown above. How many marker results he receives depends on the level of the test he orders. In the past, 12, 25, 37, 67 and 111 marker tests were available to purchase individually. Men could also upgrade to higher level tests. 500 and 700 STR marker results are only available when the Big Y test has been purchased.

Today, men can order the entry level 37 Y DNA test or a 111 marker test individually. However, a minimum of 700 STR markers are included in the Big Y-700 test, in addition to SNP results, which we will talk about in a minute.

Matching is Key

However, the benefit isn’t in the STR markers themselves, but in matching to other men. The markers are just the tool used – but the more information you have, the better the result.

STR results are used to match all Y DNA testers against each other. Matches are shown at each marker level.

My Estes male cousin has tested at the Big Y 700 level. He is matched against all other men who have taken a Y DNA test. He can see who he matches at 12 through 111 markers separately. For each man that he matches, if they have taken the Big Y test, he can see how closely he matches at the 500 or 700 marker level too.

This Estes match to my Estes cousin, shown above, has tested at 111 markers, but has not taken the Big Y test, so he has no STR markers above 111. He mismatches my cousin with 1 STR marker difference at 111 markers. That’s pretty close.

Additionally, we can see that the match’s haplogroup has been estimated as R-M269 based on STR results. For a more specific haplogroup, either individual SNP markers must be tested, or an upgrade to the Big Y-700 test can be ordered. I don’t recommend individual SNP marker testing anymore because the Big Y gives you so much more for your money by scanning for all Y DNA mutations.

Big Y-700 and SNPs

The only way to obtain the most detailed Y DNA haplogroup is to take a Big Y test. The Big Y test scans the Y chromosome to search for SNP mutations. The Big Y test doesn’t test any one specific location, like STRs or individual SNP tests, but scans for all mutations – currently known and previously unknown. That’s the beauty. You don’t have to tell it what to look for. The Big Y test scans and looks for everything useful.

More than 200,000 men in the FamilyTreeDNA database have been SNP tested and more than 450,000 variants, or mutations, have been found in Big Y tests. The database grows every single day. Sometimes DNA matching is a waiting game, with your DNA available for matching 24X7. When your DNA is working for you, you just never know when that critical match will be forthcoming.

The Big Y test keeps giving over time, because new variants (mutations) are discovered and eventually named as haplogroups. Many new haplogroups are based on what can best be called family line mutations.

Initially, SNP results and haplogroups were so far up the tree that often, they weren’t genealogically relevant, but that’s NOT the case anymore.

Today, SNP results from the Big Y-700 test are sometimes MORE relevant and dependable than STR results.

Each man receives a very refined personal haplogroup, known colloquially as their terminal SNP, often FAR down the tree from the estimated haplogroup provided with STR testing alone.

After Big Y testing, my cousin is now haplogroup R-ZS3700 instead of R-M269. R-M269 was accurate as far as it went, but only the Big Y test can provide this level of detail which is quite useful.

The Block Tree Divides Lines for You

The Block Tree is provided for all Big Y testers.

Looking at the Block Tree for my cousin, you can see that he and several other primarily Estes men either share the same haplogroup or parent/child haplogroups.

My cousin in R-ZS3700, while R-BY490 is the parent haplogroup of R-ZS3700, and R-BY154784 is a child haplogroup of R-ZS3700.

R-M269 is more than 15 haplogroup branches upstream of my cousin’s R-ZS3700.

You can also easily see that Estes men fall onto different “twigs” of the tree, and those twigs are very genealogically significant. Each column above is a twig, representing a distinct genealogical lineage. Taking the Big Y test separates men into their ancestral branches which can be genealogically associated with specific men.

My cousin is R-ZS3700, along with one other man. Two more men form R-BY154784, a subgroup of R-ZS3700, which means they descend from a specific man who descends from Moses Estes. All of these men descend from R-BY490 and all of those men descend from R-BY482, the parent of R-BY490, as shown on the public haplotree, here.

Men who take the Big Y test ALSO receive separate SNP matching – meaning they have BOTH STR and SNP matching which provides testers with two separate tools to use.

Of course, the only men who will be shown as SNP matches are the men who have taken the Big Y test.

Ok, how is this information useful?

Project View

Looking at the Estes DNA project, you can see that two men who have joined the project carry haplogroup R-ZS3700. Several others descend from that same genealogical line according to their paper trail, and STR matches, but have not taken the Big Y-700 test.

As the project administrator, I’ve grouped these men by their known ancestor, and then, in some cases, I’ve used their terminal SNP to further group them. For example, one man, kit 491887, doesn’t know which Estes line he descends from, but I can confidently group him in Estes Group 4 based on his haplogroup of R-ZS3700.

I can also use STR matching and autosomal matching to further refine his match group if needed for the project. But guaranteed, he’ll need to use both of those additional tools to figure out who his Estes ancestors are.

He was absolutely thrilled to be grouped under Moses Estes, because at least now he has something to work his paper trail backwards towards.

Test Summary

Men who take STR tests alone, meaning 12-111 only, receive STR matching and an estimated haplogroup.

Men who take the Big Y test receive STR results and matches, PLUS the most refined haplogroup possible, many additional STR markers, separate SNP matches and block tree placement.

STR 12-111 Tests Only Big Y-700 Test
STR markers through 111 Yes, depending on test level purchased Yes
STR marker matching with other men Yes Yes
STR markers from 112-700 Only if the tester purchases a Big Y upgrade Yes
Estimated haplogroup Yes Haplogroup is fully tested, not estimated
Tested, most refined haplogroup Not without an upgrade to the Big Y-700 test Yes
SNP Matching No Yes
Block Tree No Yes

Genealogy

Recently, someone asked me how to use these tools separately and together. That’s a great question.

First, if there is a data conflict, SNP results are much more stable than STRs. STRs mutate much more often and sometimes back mutate to the original value which in essence looks like a mutation never happened. Furthermore, sometimes STR markers mutate to the same value independently, meaning that two men share the same mutation – making it look like they descend from the same line – but they don’t.

Before the Big Y tests were available, the only Y DNA tools we had were STR matches and individual SNP mutations. From time to time, one of the STR markers would mutate back to the original value which caused me, as a project administrator, to conclude that men without that specific line-marker mutation were not descended from that line, when in fact, that man’s line had experienced a back-mutation.

How do I know that? When the men involved both took the Big Y-700 test, they have a lineage defining haplogroup that proved that there had been a back-mutation in the STR data and the men in question were in fact from the line originally thought.

Thank goodness for the Big Y test.

STRs and SNPs Working in Tandem

Click any image to enlarge

Looking at the Estes project again, the R-ZS3700 SNP defines the Moses Estes (born 1711) line, a son of the immigrant, Abraham Estes. The men grouped together above are descendants of Moses’s great-grandson. You can see that if I were to use STR markers alone, I would have divided this group into two based on the values of the two bottom kits. However, both genealogy and SNP/haplogroups prove that indeed, the genealogy is accurate.

STR markers alone are inconclusive at best and potentially deceptive if we used only those markers without additional information.

However, we don’t always have the luxury of upgrading every man to the right and Big Y-700 test. Some testers are deceased, some don’t have enough DNA left and cannot submit a new swab, and some simply aren’t interesting.

When we don’t have the more refined Big Y test, the STR markers and matches are certainly valuable.

Furthermore, STR markers can sometimes provide lineages WITHIN haplogroups.

For example, let’s say that in the example above the two men at the bottom were a distinct line of men descended from one specific descendant of Moses Estes. If that were the case, then the STR markers would be very valuable within the R-ZS3700 haplogroup. Maybe I need to reevaluate their genealogy and see if there are any new clues available now that were not available before.

STRs Within Match Groups

Using a different example, I can’t group these Estes men any more closely based on their genealogy or SNP results.

Only two men in this group have taken a Big Y test – those with haplogroup R-BY490. Unfortunately, this haplogroup only confirms that these men descend from the Estes lineage that immigrated to America and that they are NOT from the Moses Estes line. That’s useful, but not enough.

Two other men have taken individual SNP tests, R-DF49 and R-L21 which are not useful in this context. They don’t reach far enough down the tree.

We need more information. Fortunately, we have some.

We have two clusters of STR markers. We can see that three men have a purple grouping of 24 at marker DYS390 (the header with STR marker names is not shown in the screen shot) and a grouping of men that share a mutation of 12 at marker DYS391.

It’s likely, but not a given, that the men clustered together at the bottom with the 12 value descend from the same Estes male common ancestor. The men at the top with a value of both 12 and 24 could belong to that same cluster, with an additional small cluster of 24 further delineating their ancestor – OR – the mutation to 12 at location DYS391 could have arisen independently in two separate lines.

It’s also possible that back-mutations have occurred in some of the other men. We just don’t know.

If I were to advise these men, I’d strongly suggest that they all upgrade to the Big Y-700 with the hope that at least some of them would have SNPs that define existing or new haplogroups that would positively sort their lines.

Then, within those haplogroup groups, I’d focus on STR groupings, genealogy and possibly, autosomal results.

Evaluate All Three, Separately and Together

We have three separate tools (plus autosomal) that need to be considered together as well as separately.

  1. The first, of course, is known genealogy. However, Y DNA testing works well even without genealogy.
  2. Big Y haplogroup information combined with the block tree should be evaluated to define genetic lineages.
  3. STR groupings need to be evaluated separately from and within haplogroups and allow us to add people to the SNP-defined groups of testers. Known genealogy is important when using STR markers.

As a bonus, if the men have also taken the Family Finder test, some men may match each other autosomally as well as Y DNA, if the connection is close enough in time. Of course, Y DNA matches reach much further back in time than autosomal matching because Y DNA is never divided or combined with any DNA from the other parent.

Confirm or Refute

Genealogy can be either confirmed or refuted by either STR or SNP tests, independently or together.

Looking again at the public Estes DNA project, you can see that the first person in that group provided his genealogy as descending from the same Moses Estes line as the other men. However, the STR mutations clearly show that indeed, his genealogy is incorrect for some reason. He does not match any of the other men descended from Moses’s grandson or the rest of the Estes lineage.

This man’s haplogroup is estimated as R-M269, but were he to take the Big Y test, he would assuredly not be R-ZS3700. In fact, his STR markers match two men who have taken the Big Y-700 test and those two men share an entirely different haplogroup, not in the Estes or related branches at all. If this man were to take the Big Y-700 test, he would likely match that haplogroup.

Both STRs and SNPs can disprove a lineage relationship. As I mentioned earlier, of the two, SNPs are more reliable. Often SNPs are required to conclusively divide a group of men descended from a common ancestor.

STRs may or may not be useful, or correct, either without SNP-defined haplogroups, or within those haplogroups.

However, STRs, even alone, are a tool that should not be ignored, especially when we don’t have SNP data or it’s not conclusive.p

A Different View

To literally look at this a different way, I prepared a pedigree type Y DNA haplogroup spreadsheet for the Estes Project at WikiTree. I’ve divided the information by ancestor and included haplogroups. You can view that spreadsheet, here, and you can then compare the colored groups with the Estes DNA Project at FamilyTreeDNA which are grouped by ancestral line.

This is only a small portion of that pedigree showing the Moses lineage. The image is large, but you can see the entire spreadsheet (as of August 2020) here.

Of note, R-BY490 defines the entire Abraham Estes line (green above). Within that line, other SNP lineages have been defined, including R-ZS3700 and R-BY154784.

However, many lines have additional STR motifs that define or suggest associations with specific genealogical ancestral lines, as you can see in the Estes FamilyTreeDNA project, here. I’ve included only a snippet above.

Bottom Line

To answer the original question – yes you can and should use STR and SNP markers both separately and together. If you don’t have enough SNP data, use STR matches along with genealogy information and Family Finder results to augment what you do have.

The more Y DNA information you have in hand, the better prepared you are to analyze and utilize that information for genealogical purposes.

Do you have genealogical questions that Y DNA could potentially solve? What are they and can you find someone to test?

___________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

AutoSegment Triangulation Cluster Tool at GEDmatch

Today, I’m reviewing the exciting new AutoSegment Triangulation Cluster Tool at GEDmatch. I love it because this automated tool can be as easy or complex as you want.

It’s easy because you just select your options, run it, and presto, you receive all kinds of useful results. It’s only complex if you want to understand the details of what’s really happening beneath the hood, or you have a complex problem to unravel. The great news is that this one tool does both.

I’ve taken a deep dive with this article so that you can use AutoSegment either way.

Evert-Jan “EJ” Blom, creator of Genetic Affairs has partnered with GEDmatch to provide AutoSegment for GEDmatch users. He has also taken the time to be sure I’ve presented things correctly in this article. Thanks, EJ!

My recommendation is to read this article by itself first to understand the possibilities and think about how you can utilize these results. Then, at GEDmatch, select the AutoSegment Report option and see what treasures await!

Genetic Affairs

Genetic Affairs offers a wide variety of clustering tools that help genealogists break down their brick walls by showing us, visually, how our matches match us and each other. I’ve written several articles about Genetic Affairs’ tools and how to use them, here.

Every DNA segment that we have originated someplace. First, from one of our parents, then from one of our 4 grandparents, and so forth, on up our tree. The further back in time we go, the smaller the segments from those more distant ancestors become, until we have none for a specific ancestor, or at least none over the matching threshold.

The keyword in that sentence is segment, because we can assign or attribute DNA segments to ancestors. When we find that we match someone else on that same segment inherited from the same parent, assuming the match is identical by descent and not identical by chance, we then know that somehow, we shared a common ancestor. Either an ancestor we’ve already identified, or one that remains a mystery.

Those segments can and will reveal ancestors and tell us how we are related to our matches.

That’s the good news. The bad news is that not every vendor provides segment information. For example, 23andMe, FamilyTreeDNA, and MyHeritage all do, but Ancestry does not.

For Ancestry testers, and people wishing to share segment information with Ancestry testers, all is not lost.

Everyone can download a copy of their raw DNA data file and upload those files to vendors who accept uploads, including FamilyTreeDNA, MyHeritage, and of course GEDmatch.

GEDmatch

GEDmatch does not offer DNA testing services, specializing instead in being the common matching denominator and providing advanced tools. GEDmatch recently received a facelift. If you don’t recognize the image above, you probably haven’t signed in to GEDmatch recently, so take a look. The AutoSegment tool is only available on the new version, not the Classic version.

Ancestry customers, as well as people testing elsewhere, can download their DNA files from the testing vendor and upload the files to GEDmatch, availing themselves of both the free and Tier 1 subscription tools.

I’ve written easy step-by-step download/upload instructions for each vendor, here.

At GEDmatch, matching plus a dozen tools are free, but the Tier 1 plan for $10 per month provides users with another 14 advanced tools, including AutoSegment.

To get started, click on the AutoSegment option.

AutoSegment at GEDmatch

You’ll see the GEDmatch AutoSegment selection menu.

You can easily run as many AutoSegment reports as you want, so I suggest starting with the default values to get the lay of the land. Then experiment with different options.

At GEDmatch, AutoSegment utilizes your top 3000 matches. What a huge, HUGE timesaver.

Just a couple of notes about options.

  • My go-to number of SNPs is 500 (or larger,) and I’m always somewhat wary of matches below that level because there is an increased likelihood of identical by chance segments when the required number of segment matching locations is smaller.
  • GEDmatch has to equalize DNA files produced by different vendors, including no-calls where certain areas don’t read. Therefore, there are blank spaces in some files where there is data in other vendors’ files. The “Prevent Hard Breaks” option allows GEDmatch to “heal” those files by allowing longer stretches of “missing” DNA to be considered a match if the DNA on both sides of that blank space matches.
  • “Remove Segments in Known Pile-Up Regions” is an option that instructs GEDmatch NOT to show segments in parts of the human genome that are known to have pile-up regions. I generally don’t select this option, because I want to see those matches and determine for myself if they are valid. We’ll look at a few comparative examples in the Pileup section of this article.

Fortunately, you can experiment with each of these settings one by one to see how they affect your matching. Even if you don’t normally subscribe to GEDmatch, you can subscribe for only one month to experiment with this and other Tier 1 tools.

Your AutoSegment results will be delivered via a download link.

Save and Extract

All Genetic Affairs cluster files are delivered in a zipped file.

You MUST DO TWO THINGS, or these files won’t work correctly.

  1. Save the zip file to your computer.
  2. Extract the files from the zip file. If you’re on a PC, right-click on the zip file and EXTRACT ALL. This extracts the files from the zipped file to be used individually.

If you click on a feature and receive an error message, it’s probably because you either didn’t save the file to your computer or didn’t extract the files.

The file name is very long, so if you try to add the file to a folder that is also buried a few levels deep on your system, you may encounter problems when extracting your file. Putting the file on your desktop so you can access it easily while working is a good idea.

Now, let’s get to the good stuff.

Your AutoSegment Cluster File

Click on the largest HTML file in the list of your extracted files. The HTML file uses the files in the clusters and matches folders, so you don’t need to open those individually.

It’s fun to watch your clusters fly into place. I love this part.

If your file is too large and your system is experiencing difficulty or your browser locks, just click on the smaller AutoSegment HTML file, at the bottom of the list, which is the same information minus the pretty cluster.

Word to the wise – don’t get excited and skip over the three explanatory sections just below your cluster. Yes, I did that and had to go back and read to make sense of what I was seeing.

At the bottom of this explanatory section is a report about Pileup Regions that I’ll discuss at the end of this article.

Excel

As a third viewing option, you can also open the AutoSegment Excel file to view the results in an excel grid.

You’ll notice a second sheet at the bottom of this spreadsheet page that says AutoSegment-segment-clusters. If you click on that tab, you’ll see that your clusters are arranged in chromosome and cluster order, in the same format as long-time genetic genealogist Jim Bartlett uses in his very helpful blog, segment-ology.

You’ll probably see a message at the top of the spreadsheet asking if you want to enable editing. In order for the start and end locations to calculate, you must enable editing. If the start and end locations are zeroes, look for the editing question.

Notice that the colors on this sheet are coordinated with the clusters on the first sheet.

EJ uses yellow rows as cluster dividers. The “Seg” column in the yellow row indicates the number of people in this cluster group, meaning before the next yellow divider row. “Chr” is the chromosome. “Segment TG” is the triangulation group number and “Side” is Jim Bartlett’s segment tracking calculation number.

Of course, the Centimorgans column is the cM size, and the number of matching SNPs is provided.

You can read about how Jim Bartlett tracks his segment clusters, here, which includes discussions of the columns and how they are used.

Looking at each person in the cluster groups by chromosome, *WS matches me and *Cou, the other person in the cluster beginning and ending at the start and end location on chromosome 1. In the match row (as compared with the yellow dividing row,) Column F, “Seg,” tells you the number of segments where *WA matches me, the tester.

A “*” before the match name at GEDmatch means a pseudonym or alias is being used.

In order to be included in the AutoSegment report, a match must triangulate with you and at least one other person on (at least) one of those segments. However, in the individual match reports, shown below, all matching segments are provided – including ones NOT in segment clusters.

Individual DNA Matches

In the HTML file, click on *WA.

You’ll see the three segments where *WA matches you, or me in this case. *WA triangulates with you and at least one other person on at least one of these segments or *WA would not be included in the GEDmatch AutoSegment report.

However, *WA may only triangulate on one segment and simply match you on the other two – or *WA may triangulate on more than one segment. You’ll have to look at the other sections of this report to make that determination.

Also, remember that this report only includes your top 3000 matches.

AutoSegment

All Genetic Affairs tools begin with an AutoCluster which is a grouping of people who all match you and some of whom match each other in each colored cluster.

AutoSegment at GEDmatch begins with an AutoCluster as well, but with one VERY IMPORTANT difference.

AutoSegment clusters at GEDmatch represent triangulation of three people, you and two other people, in AT LEAST ONE LOCATION. Please note that you and they may also match in other locations where three people don’t triangulate.

By matching versus triangulation, I’m referring to the little individual cells which show the intersection of two of your matches to each other.

Regular AutoCluster reports, meaning NOT AutoSegment clusters at GEDmatch, include overlapping segment matches between people, even if they aren’t on the same chromosome and/or don’t overlap entirely. A colored cell in AutoSegment at GEDmatch means triangulation, while a colored cell in other types of AutoCluser reports means match, but not necessarily triangulation.

Match information certainly IS useful genealogically, but those two matching people in that cell:

  • Could be matching on unrelated chromosomes.
  • Could be matching due to different ancestors.
  • Could be matching each other due to an ancestor you don’t have.
  • May or may not triangulate.

Two people who have a colored cell intersection in an AutoSegment Cluster at GEDmatch are different because these cells don’t represent JUST a match, they represent a TRIANGULATED match.

Triangulation tightens up these matches by assuring that all three people, you and the two other people in that cell, match each other on a sufficient overlapping segment (10 cM in this case) on the same chromosome which increases the probability that you do in fact share a common ancestor.

I wrote about the concept of triangulation in my article about triangulation at GEDmatch, but AutoSegment offers a HUGE shortcut where much of the work is done for you. If you’re not familiar with triangulation, it’s still a good idea to read that article, along with A Triangulation Checklist Born From the Question; “Why NOT use Close Relatives for Triangulation?”

Let’s take a look at my AutoSegment report from GEDmatch.

AutoSegment Clusters at GEDmatch

A total of 195 matches are clustered into a total of 32 colored clusters. I’m only showing a portion of the clusters, above.

I’ve blurred the names of my matches in my AutoSegment AutoCluster, of course, but each cell represents the intersection of two people who both match and triangulate with me and each other. If the two people match and triangulate with each other and others in the same cluster, they are colored the same as their cluster matches.

For example, all 18 of the people in the orange cluster match me and each other on one (or more) chromosome segments. They all triangulate with me and at least one other person, or they would not appear in a colored cell in this report. They triangulate with me and every other person with whom they have a colored cell.

If you mouse over a colored cell, you can see the identity of those two people at that intersection and who else they match in common. Please note that me plus the two people in any cell do triangulate. However, me plus two people in a different cell in the same cluster may triangulate on a different segment. Everyone matches in an intricate grid, but different segments on different chromosomes may be involved.

You can see in this example that my cousin, Deb matches Laurene and both Deb and Laurene match these other people on a significant amount of DNA in that same cluster.

What happens when people match others within a cluster, but also match people in other colored clusters too?

Multiple Cluster Matches = Grey Cells

The grey cells indicate people who match in multiple clusters, showing the match intersection outside their major or “home” cluster. When you see a grey cell, think “AND.” That person matches everyone in the colored cell to the left of that grey cell, AND anyone in a colored cell below grey cells too. Any of your matches could match you and any number of other people in other cells/clusters as well. It’s your lucky day!

Deb’s matches are all shown in row 4. She and I both match all of the orange cluster people as well as several others in other clusters, indicated by grey cells.

I’m showing Deb’s grey cell that indicates that she also matches people in cluster #5, the large brown cluster. When I mouse over that grey cell, it shows that Deb (orange cluster) and Daniel (brown cluster) both match a significant number of people in both clusters. That means these clusters are somehow connected.

Looking at the bigger picture, without mousing over any particular cell, you can see that a nontrivial number of people match between the first several clusters. Each of these people match strongly within their primary-colored cluster, but also match in at least one additional cluster. Some people will match people in multiple clusters, which is a HUGE benefit when trying to identify the source ancestor of a specific segment.

Let’s look at a few examples. Remember, all of these people match you, so the grid shows how they also match with each other.

#1 – In the orange cluster, the top 5 rows, meaning the first 5 people on the left side list match other orange cluster members, but they ALSO match people in the brown cluster, below. A grey cell is placed in the column of the person they also match in the brown cluster.

#2 – The two grey cells bracketed in the second example match someone in the small red cluster above, but one person also matches someone in the small purple cluster and the other person matches someone in the brown cluster.

#3 – The third example shows one person who matches a number of people in the brown cluster in addition to every person in the magenta cluster below.

#4 – This long, bracketed group shows several people who match everyone in the orange cluster, some of whom also match people in the green cluster, the red cluster, the brown cluster, and the magenta cluster. Clearly, these clusters are somehow related to each other.

Always look at the two names involved in an individual cell and work from there.

The goal, of course, is to identify and associate these clusters with ancestors, or more specifically, ancestral couples, pushing back in time, as we identify the common ancestors of individuals in the cluster.

For example, the largest orange cluster represents my paternal grandparents. The smaller clusters that have shared members with the large orange cluster represent ancestors in that lineage.

Identifying the MRCA, or most recent common ancestor with our matches in any cluster tells us where those common segments of DNA originated.

Chromosome Segments from Clusters

As you scroll down below your cluster, you’ll notice a section that describes how you can utilize these results at DNAPainter.

While GEDmatch can’t automatically determine which of your matches are maternal and paternal, you can import them, by colored cluster, to DNAPainter where you can identify clusters to ancestors and paint them on your maternal and paternal chromosomes. I’ve written about how to use DNAPainter here.

Let’s scroll to the next section in your AutoSegment file.

Chromosome Segment Statistics

The next section of your file shows “Chromosome segment statistics per AutoSegment cluster.”

I need to take a minute here to describe the difference between:

  1. Colored clusters on your AutoCluster diagram, shown below, and
  2. Chromosome segment clusters or groups within each colored AutoSegment cluster

Remember, colored clusters are people, and you can match different people on different, sometimes multiple, chromosomes. Two people whose intersecting cell is colored triangulate on SOME segment but may also match on other segments that don’t triangulate with each other and you.

According to my “Chromosome segment statistics” report, my large orange AutoSegment cluster #1, above, includes:

  • 67 segments from all my matches
  • On five chromosomes (3, 5, 7, 10, 17)
  • That cluster into 8 separate chromosome segment clusters or groups within the orange cluster #1

This is much easier to visualize, so let’s take a look.

Chromosome Segment Clusters

Click on any cluster # in your report, above, to see the chromosome painting for that cluster. I’m clicking on my AutoSegment cluster #1 on the “Chromosome segment statistics” report that will reveal all of the segments in orange cluster #1 painted on my chromosomes.

The brightly colored painted segments show the triangulated segment locations on each chromosome. You can easily see the 8 different segment clusters in cluster #1.

Interestingly, three separate groups or chromosome clusters occur on chromosome 5. We’ll see in a few minutes that the segments in the third cluster on chromosome 5 overlaps with part of cluster #5. (Don’t confuse cluster number shown with a # and chromosome number. They are just coincidentally both 5 in this case.)

The next tool helps me visualize each of these segment clusters individually. Just scroll down.

You can mouse over the segment to view additional information, but I prefer the next tool because I can easily see how the DNA of the people who are included in this segment overlap with each other.

This view shows the individual chromosome clusters, or groups, contained entirely within the orange cluster #1. (Please note that you can adjust the column widths side to side by positioning the cursor at the edge of the column header and dragging.)

Fortunately, I recognize one of these matches, Deb, and I know exactly how she and I are related, and which ancestor we share – my great-grandparents.

Because these segments are triangulated, I know immediately that every one of these people share that segment with Deb and me because they inherited that segment of DNA from some common ancestor shared by me and Deb both.

To be very clear, these people may not share our exact same ancestor. They may share an ancestor upstream from Deb and my common ancestor. Regardless, these people, Deb, and I all share a segment I can assign at this point to my great-grandparents because it either came from them for everyone, or from an upstream ancestor who contributed it to one of my great-grandparents, who contributed it to me and Deb both.

Segment Clusters Entirely Linked

Clusters #2 and #3 are small and have common matches with people in cluster #1 as indicated by the grey cells, so let’s take a look.

I’m clicking on AutoSegment green cluster #2 which only has two cluster members.

I can see that the common triangulated segment between these two people and me occurs on chromosome 3.

This segment on chromosome 3 is entirely contained in green cluster #2, meaning no members of other clusters triangulate on this segment with me and these two people.

This can be a bit confusing, so let’s take it logically step by step.

Remember that the two people who triangulate in green cluster #2 also match people in orange cluster #1? However, the people from orange cluster #1 are NOT shown as members of green cluster #2.

This could mean that although the two people in the green cluster #2 match a couple of people in the orange cluster, they did not match the others, or they did not triangulate. This can be because of the minimum segment overlap threshold that is imposed.

So although there is a link between the people in the clusters, it is NOT sufficient for the green people to be included in the orange cluster and since the two matches triangulate on another segment, they become a separate green cluster.

In reality, you don’t need to understand exactly why members do or don’t fall into the clusters they do, you just need to understand generally how clustering and triangulation works. In essence, trust the tool if people are NOT included in multiple clusters. Click on each person individually to see which chromosomes they match you on, even if they don’t triangulate with others on all of those segments. At this point, I often run one-to-one matches, or other matching tools, to see exactly how people match me and each other.

However, if they ARE included in multiple partly linked clusters, that can be a HUGE bonus.

Let’s look at red cluster #3.

Segment Clusters Partly Linked

You can see that Mark, one of the members of red cluster #3 shares two triangulated segments, one on chromosome 4, and one on chromosome 10.

Mark and Glenn are members of cluster #3, but Glenn is not a member of the segment cluster/group on chromosome 4, only Iona and Mark.

Scrolling down, I can view additional information about the cluster members and the two segments that are held within red cluster #3.

Unlike green cluster #2 whose segment cluster/group is entirely confined to green cluster #2, red cluster #3 has NO segments entirely confined to members of red cluster #3.

Cluster #3 has two members, Mark and Glen. Mark and Glen, along with Val who is a member of orange cluster #1 triangulate on chromosome 10. Remember, I said that chromosome 10 would be important in a minute when we were discussing orange cluster #1. Now you know why.

This segment of chromosome 10 triangulates in both orange cluster #1 AND red cluster #3.

However, Mark, who is a red cluster #3 member also triangulates with Iona and me on a segment of chromosome 4. This segment also appears in AutoSegment brown cluster #4 on chromosome 4.

Now, the great news is that I know my earliest known ancestors with Iona, which means that I can assign this segment to my paternal great-great-grandparents.

If I can identify a common ancestor with some of these other people, I may be able to push segments back further in time to an earlier ancestral couple.

Identifying Common Ancestors

Of course, review each cluster’s members to see if you recognize any of your cousins.

If you don’t know anyone, how do you identify a common ancestor? You can email the person, of course, but GEDmatch also facilitates uploading GEDCOM files which are trees.

In your primary AutoSegment file, keep scrolling to see who has trees.

AutoSegment Cluster Information

If you continue to scroll down in your original HTML file, you’ll see AutoSegment Cluster Information.

For each cluster, all members are listed. It’s easy to see which people have uploaded trees. You can click to view and can hopefully identify an ancestor or at least a surname.

Click on “tree” to view your match’s entry, then on Pedigree to see their tree.

If your matches don’t have a tree, I suggest emailing and sharing what you do know. For example, I can tell my matches in cluster #1 that I know this line descends from Lazarus Estes and Elizabeth Vannoy, their birth and death dates and location, and encourage my match to view my tree which I have uploaded to GEDmatch.

If you happen to have a lot of matches with trees, you can create a tag group and run the AutoTree analysis on this tag group to identify common ancestors automatically. AutoTree is an amazing tool that identifies common ancestors in the trees of your matches, even if they aren’t in your tree. I wrote about AutoTree, here.

Pileup Regions

Whether you select “Remove Segments in Known Pileup Regions” or not when you select the options to run AutoSegment, you’ll receive a report that you can access by a link in the Explanation of AutoSegment Analysis section. The link is buried at the bottom of those paragraphs that I said not to skip, and many people don’t even see it. I didn’t at first, but it’s most certainly worth reviewing.

What Are Pileup Regions?

First, let’s talk about what pileup regions are, and why we observe them.

Some regions of the human genome are known to be more similar than others, for various reasons.

In these regions, people are more likely to match other people simply because we’re human – not specifically because we share a common ancestor.

EJ utilizes a list of pileup regions, based on the Li et al 2014 paper.

You may match other people on these fairly small segments because humans, generally, are more similar in these regions.

Many of those segments are too small to be considered a match by themselves, although if you happen to match on an adjacent segment, the pileup region could extend your match to appear to be more significant than it is.

If you select the “remove pileup segments” option, and you overlap any pileup region with 4.00 cM or larger, the entire matching segment that includes that region will be removed from the report no matter how large the matching segment is in total.

Here’s an example where the pileup region of 5.04 cM is right in the middle of a matching segment to someone. This entire 15.04 cM segment will be removed.

If those end segments are both 10 cM each instead of 5 cM, the segment will still be removed.

However, if the segment overlap with the pileup region is 3.99 cM or smaller, none of the resulting segment will be removed, so long as the entire segment is over the matching threshold in the first place. In the example above, if the AutoSegment threshold was 7 or 8 cM, the entire segment would be retained. If the matching threshold was 9 or greater, the segment would not have been included because of the threshold.

Of course, eight regions in the pileup chart are large enough to match without any additional adjacent segments if the match threshold is 7 cM and the overlap is exact. If the match threshold is 10 cM, only two pileup regions will possibly match by themselves. However, because those two regions are so large, we are more likely to see multiple matches in those regions.

Having a match in a pileup region does NOT invalidate that match. I have many matches in pileup regions that are perfectly valid, often extending beyond that region and attributable to an identified common ancestor.

You may also have pileup regions, in the regions shown in the chart and elsewhere, because of other genealogical reasons, including:

  • Endogamy, where your ancestors descend from a small, intermarried population, either through all or some of your ancestors. The Jewish population is probably the most well-known example of large-scale endogamy over a very long time period.
  • Pedigree collapse, where you descend from the same ancestors in multiple ways in a genealogical timeframe. Endogamy can reach far back in time. With pedigree collapse, you know who your ancestors are and how you descend, but with endogamy, you don’t.
  • Because you descend from an over-represented or over-tested group, such as the Acadians who settled in Nova Scotia in the early 1600s, intermarried and remained relatively isolated until 1755 when they were expelled. Their numerous descendants have settled in many locations. Acadian descendants often have a huge number of Acadian matches.
  • Some combination of all three of the above reasons. Acadians are a combination of both endogamy and pedigree collapse and many of their descendants have tested.

In my case, I have proportionally more Acadian matches than I have other matches, especially given that my Dutch and some of my German lines have few matches because they are recent immigrants with few descendants in the US. This dichotomy makes the proportional difference even more evident and glaring.

I want to stress here that pileup regions are not necessarily bad. In fact, they may provide huge clues to why you match a particular group of people.

Pileup Regions and Genealogy

In 2016, when Ancestry removed matches that involved personal pileup regions, segments that they felt were “too-matchy,” many of my lost matches were either Acadian or Mennonite/Brethren. Both groups are endogamous and experience pedigree collapse.

Over time, as I’ve worked with my DNA matches, painting my segments at DNAPainter, which marks pileup regions, I’ve come to realize that I don’t have more matches on segments spanning standard pileup regions indicated in the Li paper, nor are those matches unreliable.

An unreliable match might be signaled by people who match on that segment but descend from different unrelated common ancestors to me. Each segment tracks to one maternal and one paternal ancestral source, so if we find individuals matching on the same segment who claim descent from different ancestral lines on the same side, that’s a flag that something’s wrong. (That “something” could also be genealogy or descending from multiple ancestors.)

Therefore, after analyzing my own matching patterns, I don’t select the option to remove pileup segments and I don’t discount them. However, this may not be the right selection for everyone. Just remember, you can run the report as many times as your want, so nothing ventured, nothing gained.

Regardless of whether you select the remove pileup segments option or not, the report contents are very interesting.

Pileup Regions in the Report

Let’s take a look at Pileups in the AutoSegment report.

  • If I don’t select the option of removing pileup region segments, I receive a report that shows all of my segments.
  • If I do select the option to remove pileup region segments, here’s what my report says.

Based on the “remove pileup region segments” option selected, all segments should be removed in the pileup regions documented in the Li article if the match overlap is 4.00 cM or larger.

I want to be very clear here. The match itself is NOT removed UNLESS the pileup segment that IS removed causes the person not to be a match anymore. If that person still matches and triangulates on another segment over your selected AutoSegment threshold, those segments will still show.

I was curious about which of my chromosomes have the most matches. That’s exactly what the Pileup Report tells us.

According to the Pileup Report, my chromosome with the highest number of people matching is chromosome 5. The Y (vertical) axis shows the number of people that match on that segment, and the X axis across the bottom shows the match location on the chromosome.

You’ll recall that chromosome 5 was the chromosome from large orange AutoSegment cluster #1 with three distinct segment matches, so this makes perfect sense.

Sure enough, when I view my DNAPainter results, that first pileup region from about location 5-45 are Brethren matches (from my maternal grandfather) and the one from about 48-95 are Acadian matches (from my maternal grandmother.) This too makes sense.

Please note that chromosome 5 has no general pileup regions annotated in the Li table, so no segments would have been removed.

Let’s look at another example where some segments would be removed.

Based on the chromosome table from the Li paper, chromosome 15 has nearly back-to-back pileup regions from about 20-30 with almost 20 cM of DNA combined.

Let’s see what my Pileup Segment Removal Report for chromosome 15 shows.

No segment matches in this region are reported because I selected remove pileup regions.

The only way to tell how many segment matches were removed in this region is to run the report and NOT select the remove pileup segments option. I did that as a basis for comparison.

You can see that about three segments were removed and apparently one of those segments extended further than the other two. It’s also interesting that even though this is designated as a pileup region, I had fewer matches in this region than on other portions of the chromosome.

If I want to see who those segments belong to, I can just view my chromosome 15 results in the AutoSegment-segment-clusters tab in the spreadsheet view which is arranged neatly in chromosome order.

The only way to tell if matches in pileup regions are genealogically valid and relevant is to work with each match or group of matches and determine if they make sense. Does the match extend beyond the pileup region start and end edge? If so, how much? Can you identify a common ancestor or ancestral line, and if so, do the people who triangulate in that segment cluster makes sense?

Of course, my genealogy and therefore my experience will be different than other people’s. Anyone who descends primarily from an endogamous population may be very grateful for the “remove pileups” option. One size does NOT fit all. Fortunately, we have options.

You can run these reports as many times as you want, so you may want to run identical reports and compare a report that removes segments that occur in pileup regions with one that does not.

What’s Next?

For AutoSegment at GEDmatch to work most optimally, you’ll need to do three things:

  • If you don’t have one already, upload a raw DNA file from one of the testing vendors. Instructions here.
  • Upload a GEDCOM file. This allows you to more successfully run tools like AutoTree because your ancestors are present, and it helps other people too. Perhaps they will identify your common ancestor and contact you. You can always email your matches and suggest that they view your GEDCOM file to look for common ancestors or explain what you found using AutoTree. Anyone who has taken the time to learn about GEDmatch and upload a file might well be interested enough to make the effort to upload their GEDCOM file.
  • Convince relatives to upload their DNA files too or offer to upload for them. In my case, triangulating with my cousins is invaluable in identifying which ancestors are represented by each cluster.

If you have not yet uploaded a GEDCOM file to GEDmatch, now’s a great time while you’re thinking about it. You can see how useful AutoClusters and AutoSegment are, so give yourself every advantage in identifying common matches.

If you have a tree at Ancestry, you can easily download a copy and upload to GEDmatch. I wrote step-by-step instructions, here. Of course, you can upload any GEDCOM file from another source including your own desktop computer software.

You never know, using AutoSegment and AutoTree, you may just find common ancestors BETWEEN your matches that you aren’t aware of that might, just might, help you break down YOUR brick walls and find previously unknown ancestors.

AutoSegment tells you THAT you triangulate and exactly where. Now it’s up to you to figure out why.

Give AutoSegment at GEDmatch a try.

————————————————————————————————————-

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

Books

Genealogy Research

DNA Beginnings: Matching at Ancestry and What It Means

This is the fourth in the series of “DNA Beginnings” articles. Previous articles you might enjoy include:

Why Is Matching Important?

For genealogists, DNA matching to other people is the key to verifying your ancestors, beginning with your parents and continuing up your tree. You can also meet new cousins who may have information, including photos, that you don’t.

Each of the four major vendors has benefits that the others don’t have. As we review matches at each vendor, we’ll discuss the plusses and minuses of each one and how to use their unique features to benefit your genealogy quest.

Let’s start with Ancestry.

Ancestry

The highest total number of people have tested their DNA with Ancestry, although I’m not certain that holds true for testers outside the US.

This means that you are likely to find at least some close matches at Ancestry. Every vendor has people in their database that no other vendor has though. I recommend testing at the 4 major vendors, including FamilyTreeDNA, MyHeritage, and 23andMe.

At Ancestry, Where Are My Matches?

You’ll find the list of people who match you under the “DNA”, then “DNA Matches” tabs at Ancestry.

Ancestry packs a lot of information into your match pages. Let’s take a look at what that means to you as a genealogist and how you can make it work for you.

Clcik to enlarge images

I’ll be discussing each one of these areas, below, so refer back. Let’s start with the basic page arrangement.

  • Features at the top apply to managing and working with all of your matches
  • Features under each match apply to that match only.

Pretty straightforward.

I’ll begin at the top and review each item, but first, let’s talk about testing your parents.

Test Your Parents

First, if you have either or both parents available to test, by all means, test both parents and not just at Ancestry. This is sage advice for all vendors.

Be aware that if one or both of your parents are not your biological parents, DNA testing will reveal that fact.

When your parent tests, matches that Ancestry can automatically attribute to that parent’s side of your family based on matching you and your parent, both, are noted as such.

While this is useful, especially since maternally and paternally assigned matches are your closest matches, Ancestry only automatically assigns about as many matches as fall into your close matches category. Someplace between half and 1% of your total matches. I sort of deflated like a balloon when I made that discovery. 

It’s still definitely worth testing your parents, though, because you will be able to view your matches to see if they match you and a parent both. Even if Ancestry doesn’t assign them maternally or paternally, you can certainly derive clues from who you match in common – and you can assign matches yourself.

We will talk about exactly how to do this in a bit!

Now, back to the function bar.

The Function Bar

The function bar beneath the ad promoting parental testing is your driver’s seat.

Click to enlarge images

You’ll find a variety of filters and functions like searching and sorting your matches. In other words, these are the actions you can take. Let’s start with the filters, on the left.

  • Unviewed – The “Unviewed” filter widget displays only matches you have not yet viewed. Unviewed matches are annotated with a blue dot. Because your matches are displayed in highest to lowest order, you’ll see your closest unviewed match first. I use this filter a lot because it means I don’t have to scroll through the matches I’ve already viewed and analyzed.

I have a “one initial touch” policy. When I initially view a match, I step through all the functions I can utilize to identify how that person is (potentially) related to me and I make notes.

The rest of these filters and functions are important steps in that analysis process.

Please notice that you can combine filters.

I’ve clicked both the “Unviewed” and the “Common Ancestors” filters, meaning BOTH of these filters are simultaneously functioning. If you just want one filter, be sure to “Reset Filters” before clicking a second filter button.

  • Common Ancestors – That infamous little green leaf. In this case, when viewing DNA matches, that green leaf is very important because it indicates that Ancestry has found a (potential) common ancestor between you and your match.

Clicking on the little green leaf shows you the most recent common ancestor(s) that Ancestry believes you share with that match based on:

  1. The fact that your DNA does match
  2. And that you have common ancestors either in your tree
  3. Or ancestors that can be linked to both of you through other people’s trees

Notice Ancestry’s careful wording about these potential ancestors. Megan “could be” my 5th cousin once removed. “Could be.” Ancestry isn’t using weasel words here, but trying to convey the fact that people’s genealogy, Megan’s, mine or other peoples’ can be wrong.

In other words, Ancestry has found a potential link between me and Megan, but it may not be valid. These connections use trees to suggest common ancestors and some trees are not reliable. It’s up to me (and you) to confirm that suggested ancestral path.

Clicking on “View Relationship” takes me to the Ancestry tool known as ThruLines which shows me how Megan and I may be related.

I have Stephen Miller in my tree, but not his son John J. Miller as indicated by the hashed boxes.

I can click on the Evaluate button to see what type of evidence and which trees Ancestry used to assign John J. Miller as the son of Stephen Miller. In other words, I can accumulate my own evidence to validate, verify, or refute the connection to Daniel Miller for me and Megan.

I wrote about ThruLines here and here.

  • Messaged – The “Messaged” filter button shows matches I’ve sent messages to through Ancestry’s messaging feature.

You can track your messages in the little envelope button by your name at upper right.

  • Notes – The “Notes” filter shows your matches and the notes you’ve made about that match. I use notes extensively so I don’t replow the same field.

In my case, I took a second test at Ancestry several years ago when they introduced a new chip to compare to the results of my original test. I noted that this is my V2 test in this example.

Normally my notes are genealogy-related, especially in cases where I’ve discovered more than one set of common ancestors through multiple lines. I record hints here, such as which of my closest relatives this person also matches. I also record our common ancestor when I identify who that is or even who it might be.

You can create a note by clicking on the match, then on “Add Note” near the top.

  • Trees – The “Trees” filter provides the ability to view matches who have only specific tree statuses.

Perhaps you only want to view only people with public, linked trees. Why are public, linked trees important?

Public trees can be seen and searched by your matches. Private trees cannot be seen by matches.

A public, linked tree means that your match has linked their DNA test to their own profile card in a public tree. The linking process tells Ancestry who “they are” in their tree and allows Ancestry to begin searching from that person up their tree to see if they can identify common ancestors with their matches. In other words, linking allows Ancestry’s tools to work for you and allows other people to view your position in your tree so that can see how you might share ancestors.

Some people don’t understand the linking process, so I normally take a look at unlinked trees too, especially if the person only has one tree.

Be sure your DNA test is linked to your tree by clicking on the little down arrow by your user name in the upper right-hand corner of the screen, then, click on “Your Profile,” then click on the settings gear beneath your name.

Then click on DNA:

You’ll see the tests that you own, so click on the little right arrow (>) to work with a specific test.

Finally, you’ll see the name on the test, the profile it’s connected to, and the name of the tree.

Not accurate or what you want? You can change it!

Ok, back to working with filters. Next, Shared DNA.

  • “Shared DNA” allows you to view only specific relationships of matches.

I use this tab mostly to see how many matches I have.

  • The “Groups” filter categorizes matches by the colored dot groups you establish. Matches can be assigned to single or multiple groups.

The good news is that you have 24 colored dot buttons that represent groups to work with. The bad news is that you have only 24 that you can assign.

Generally, I assign colored dots, and therefore matches, to a couple, not an individual. In some cases, especially with two marriages, I have assigned match buttons to a single ancestor. Of course, that means that one couple uses 2 colored buttons☹

After you’ve created your groups, you can assign a match to a group, or multiple groups, by clicking on your match.

“Add to group” is located right beside “Add note,” so I do both at the same time for each match.

I have one group called “Ancestor Identified” which is reserved for all ancestors who don’t have colored group dots assigned. I can tell which ancestor by reading the notes I’ve entered.

To view every match in a particular group, click on that group, then “apply” at the bottom.

The matches displayed will only be the 17 matches that I’ve assigned to the blue dot group – all descended from Antoine Lore (and his wife).

However, looking at who I match in common with these 17 people can lead me to more people descended from Antoine, his wife, or their ancestors.

  • Search – The “Search” function at far right allows you to search your matches in multiple ways, but not by the most important aspect of genealogy.

  1. You can search by the match’s name; first, last or Ancestry user name.
  2. You can search by surname in your matches’ trees. I sure hope you don’t have Jones.
  3. You can search by birth location in matches’ trees.
  4. You CANNOT search by ancestor. Say what???

Seriously.

Come on Ancestry…don’t make this intentionally difficult.

  • “Sort” allows you to sort your match list either by relationship (the default) or by date. I’d trade this for search by ancestor in a New York Minute.

We are finished with the filters and functions for managing your entire list, so let’s see what we can do with each individual match.

Match Information

We’ve already learned a lot about our matches just by using different filters, but there’s a lot more available.

You’ll need to click on various areas of the match to view specific or additional information.

Click on the predicted relationship, like 5th-8th cousin, to view how closely Ancestry,  thinks you are related based on the amount of DNA you share. If you click on the relationship, Ancestry displays the various relationship possibilities and how likely each one is.

Looks like there’s a bit of a disconnect, because while Ancestry predicts this relationship with 17 shared cM of DNA at 5th-8th cousin, their chart shows that variations of 3rd or 4th cousin are more likely. This is a great example of why you should always click on the predicted relationship and check for yourself.

Conversely, if you’re related to a match through multiple lines, or through one set of ancestors more than once, Ancestry may predict that you are related more closely than you actually are – because you may carry more of that ancestor’s DNA. Ancestry, nor any other vendor, has any way of knowing why you carry that amount of ancestral DNA.

Ancestry also shows you a little more information about how much DNA you share, and how many segments. Unfortunately, Ancestry does not provide a chromosome browser, so there isn’t any more you can do, at Ancestry, with this information – although you can certainly transfer your DNA to MyHeritage, FamilyTreeDNA, or GedMatch (a third-party tool) who all provide chromosome browsers.

Ancestry shows you the number of cMs, or centiMorgans of DNA you share. Think about a centiMorgan as a length measure, for practical purposes. Each vendor has their own matching threshold and a matching piece of DNA with another person must be larger than that bar. Ancestry’s minimum cM threshold is 8 cM, the highest of all the vendors.

This means that any match lower than 8 cM is not considered a match at Ancestry, but that same person might appear on your match list at another vendor whose match threshold is lower.

Ancestry also removes some of your matching DNA before considering matches. In areas where your DNA is “too matchy,” Ancestry removes some segments because they feel that DNA may be “older” and not genealogically relevant.

There’s a great deal of debate about this practice, and strong feelings abound. Some people feel this is justified because it helps reduce the large number of matches, especially for people who descend from highly endogamous populations.

Other people who have one endogamous line among many others find that many or most of their matches from that population were removed by Ancestry when they did one of their two purges. That’s what happened to my Acadian and many of my African American matches.

Regardless, Ancestry tells you for each match if they removed DNA segments using their Timber algorithm, and if so, how many.

Clearly, when viewing this match, 1 cM of removed DNA isn’t going to make much if any difference unless that 1cM was the difference between being a match and not matching. You can read Ancestry’s paper about how their matching works beneath the hood, here.

There are only two real differences that DNA removal makes at Ancestry:

  • Whether you match or not, meaning you’re either over or under that 8 cM bar.
  • Shared matches under 20 cM won’t show, so if you have 22 cM of shared DNA with someone and Ancestry removes 3, you won’t show as a shared match to people you match in common. And people you match in common, if they have less than 20 cM shared DNA won’t show to you either.

Since Ancestry doesn’t provide their customers with advanced tools to compare segments of DNA with their matches, other than the two circumstances above, the removal of some DNA doesn’t really matter.

That might be more than you wanted to know! However, if you find some matches confusing, especially if you know two people are both matching you and each other, but they don’t show as a shared match, this just might be why. We’ll talk about shared matches in a minute.

Do Your Recognize Your Matches?

Ancestry provides a way for you to assign relationships.

If you click on “Learn more,” you’ll view the match page that shows their tree, common ancestors with you, if identified, and more.

If you click “Yes,” you’ll be prompted for how you match.

Ancestry will ask if you know the specific relationship based on the probabilities of that relationship being accurate.

After you confirm, that individual will be assigned to that parental side of your family, or both, based on your selection.

Shared Matches

Shared matches are a way of viewing who you and one of your matches both match.

In other words, if you recognize other people you both match, that’s a HUGE clue as to how you and your match are related. However, it’s not an absolute, because you could match two people through entirely different lines, and they could match each other through another line not related to you. However, shared matching does provide hints, especially if your match matches several relatives you can identify who descend from the same ancestor or ancestral couple.

This match only has initials and a private unlinked tree. That means they aren’t linked to the proper place in their tree, and their tree is private so I can’t view it to evaluate for hints.

How can I possibly figure out how we are related?

Click on the match.

Clicking on Shared Matches shows me the people that T. F. and I both match.

Notice that T. F. and I match my 5 top matches on my mother’s side. Clearly, T. F. and I share common ancestors on my mother’s side.

Furthermore, based on my notes and the amount of DNA we share, our common ancestor is probably my great-grandparents.

This match was easy to unravel, but not all are. Lets’s look at a different shared match list.

In this example, all 4 people have unlinked trees. The smallest shared match is 20 cM –  because Ancestry doesn’t show smaller shared matches below 20 cM. Of course, there are probably a lot of smaller shared matches, but I can’t see them. In essence, this limits viewing your shared matches to the 4th-6th cousin range or closer.

Just be aware that you’re not seeing all of your shared matches, so don’t assume you are.

Summary

By reviewing each match at Ancestry using a methodical step-by-step approach, there’s a great deal of information to be gleaned.

Let’s summarize briefly:

  • Your matches listed first on your match list are your closest, and likely to be the most useful to you in terms of identifying maternal and paternal sides of your family for other matches.
  • Test either or both parents if possible
  • Link yourself and the DNA kits you manage to their proper place in your tree so that Ancestry can provide you with parental sides for your matches if your parents have tested. Ancestry uses linked trees for ThruLines tii.
  • Manually assign “sides” to matches if your parents aren’t available to test.
  • Use the filters or combinations. Don’t forget to reset.
  • Click on “Common Ancestors” to view potential common ancestors – matches exhibiting those green leaves. This is Ancestry’s strength.
  • From Common Ancestors, check ThruLines to view matches linked to a common ancestor.
  • Don’t neglect unlinked trees.
  • Assign dot colors to ancestral couples or a way that makes sense to you.
  • Assign matches by colored dot group.
  • Make notes that will help you remember details about the match and what you have and have not done with or learned about that match.
  • Search by location or surname or a combination of both.
  • Assign relationships, when known. At least assign maternally or paternally, or both if the match is related through both sides of your family. Hint – your full siblings, their children, and your children are related to both sides – your mother’s and father’s sides, both.
  • Click on your match’s profile to view additional information, including common ancestors and their tree. Scroll down to view common surnames, locations and ancestors from both people (you and your match) found in those locations.
  • View shared matches to see who else you and your match are both related to. Your shared matches may well hold the key to how you and an unknown match are related. Don’t forget that Ancestry only displays shared matches of 20 cM or larger.
  • If you’d like to utilize a chromosome browser for additional insights and to confirm specific common ancestors by shared segments of DNA, download a copy of your raw DNA data file and upload, free, to both FamilyTreeDNA and MyHeritage, here. They both provide chromosome browsers and advanced tools.

You can find step-by-step instructions for downloading from Ancestry and uploading elsewhere, here.

Join Me for More!

I’ll be publishing similar articles about working with matches at FamilyTreeDNA, MyHeritage and 23andMe soon.

If you haven’t tested at all of these vendors and would like to, just click on these links for more information or to order tests:

Subscribe to this Free Blog

Did you enjoy this article?

You can subscribe to receive my articles in your email for free at www.dnaexplain.com by entering your email address and clicking on the Follow button.

Follow DNAexplain on Facebook, here or follow me on Twitter, here. You can always forward any of my articles or links to friends.

____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

Books

  • com – Lots of wonderful genealogy research books

Genealogy Research

Free Webinar: 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA

I recorded 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA for Legacy Family Tree Webinars.

Webinars are free for the first week. After that, you’ll need a subscription.

If you subscribe to Legacy Family Tree, here, you’ll also receive the downloadable 24-page syllabus and you can watch any of the 1500+ webinars available at Legacy Family Tree Webinars anytime.

In 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA, I covered the following features and how to use them for your genealogy:

  • Ethnicity – why it works and why it sometimes doesn’t
  • Ethnicity – how it works
  • Your Chromosomes – Mom and Dad
  • Ethnicity at AncestryDNA, 23andMe, FamilyTreeDNA and MyHeritage DNA
  • Genetic Communities at AncestryDNA
  • Genetic Groups at MyHeritage DNA
  • Painted ethnicity segments at 23andMe and FamilyTreeDNA
  • Painting ethnicity segments at DNAPainter – and why you want to
  • Shared ethnicity segments with your matches at AncestryDNA, 23andMe, FamilyTreeDNA and MyHeritage DNA
  • Downloading matches and segment files
  • Techniques to pinpoint Native Ancestors in your tree
  • Y DNA, Native ancestors and haplogroups
  • Mitochondrial DNA, Native ancestors and haplogroups
  • Creating a plan to find your Native ancestor
  • Strategies for finding test candidates
  • Your Ancestor DNA Pedigree Chart
  • Success!!!

If you haven’t yet tested at or uploaded your DNA to both FamilyTreeDNA and MyHeritage, you can find upload/download instructions, here, so that you can take advantage of the unique tools at all vendors.

Hope you enjoy the webinar and find those elusive ancestors!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

Books

Genealogy Research