The Best of 2022

It’s that time of year where we look both backward and forward.

Thank you for your continued readership! Another year under our belts!

I always find it interesting to review the articles you found most interesting this past year.

In total, I published 97 articles in 2022, of which 56 were directly instructional about genetic genealogy. I say “directly instructional,” because, as you know, the 52 Ancestors series of articles are instructional too, but told through the lives of my ancestors. That leaves 41 articles that were either 52 Ancestors articles, or general in nature.

It has been quite a year.

2022 Highlights

In a way, writing these articles serves as a journal for the genetic genealogy community. I never realized that until I began scanning titles a year at a time.

Highlights of 2022 include:

Which articles were your favorites that were published in 2022, and why?

Your Favorites

Often, the topics I select for articles are directly related to your comments, questions and suggestions, especially if I haven’t covered the topic previously, or it needs to be featured again. Things change in this industry, often. That’s a good thing!

However, some articles become forever favorites. Current articles don’t have enough time to amass the number of views accumulated over years for articles published earlier, so recently published articles are often NOT found in the all-time favorites list.

Based on views, what are my readers’ favorites and what do they find most useful?

In the chart below, the 2022 ranking is not just the ranking of articles published in 2022, but the ranking of all articles based on 2022 views alone. Not surprisingly, six of the 15 favorite 2022 articles were published in 2022.

The All-Time Ranking is the ranking for those 2022 favorites IF they fell within the top 15 in the forever ranking, over the entire decade+ that this blog has existed.

Drum roll please!!!

Article Title Publication Date 2022 Ranking All-Time Ranking
Concepts – Calculating Ethnicity Percentages January 2017 1 2
Proving Native American Ancestry Using DNA December 2012 2 1
Ancestral DNA Percentages – How Much of Them in in You? June 2017 3 5
AutoKinship at GEDmatch by Genetic Affairs February 2022 4
442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match? Daily Updates Here September 2020 5
The Origins of Zana of Abkhazia July 2021 6
Full or Half Siblings April 2019 7 15
Ancestry Rearranged the Furniture January 2022 8
DNA from 459 Ancient British Isles Burials Reveals Relationships – Does Yours Match? February 2022 9
DNA Inherited from Grandparents and Great-Grandparents January 2020 10
Ancestry Only Shows Shared Matches of 20 cM and Greater – What That Means & Why It Matters May 2022 11
How Much Indian Do I Have in Me??? June 2015 12 8
Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links March 2022 13
FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages June 2022 14
Ancient Ireland’s Y and Mitochondrial DNA – Do You Match??? November 2020 15

2023 Suggestions

I have a few articles already in the works for 2023, including some surprises. I’ll unveil one very soon.

We will be starting out with:

  • Information about RootsTech where I’ll be giving at least 7 presentations, in person, and probably doing a book signing too. Yes, I know, 7 sessions – what was I thinking? I’ve just missed everyone so very much.
  • An article about how accurately Ancestry’s ThruLines predicts Potential Ancestors and a few ways to prove, or disprove, accuracy.
  • The continuation of the “In Search Of” series.

As always, I’m open for 2023 suggestions.

In the comments, let me know what topics you’d like to see.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

In Search of…How Am I Related to That Close Match?

My friend recently reached out to me for some help with a close match at Ancestry. Which vendor doesn’t matter – the process for figuring out who my friend is related to her match would be essentially the same at any vendor.

My friend has no idea who the match is, nor how they are related. That match has not replied, nor is any of her information recognizable, such as an account name or photo. She has no tree, so there are literally no clues provided by the match.

We need to turn to science and old-fashioned sleuthing.

This eighth article in the “In Search of…” series steps you through the process I’m stepping my friend through.

This process isn’t difficult, per se, but there are several logical, sequential steps. I strongly recommend you read through this (at least) once, then come back and work through the process if you’re trying to solve a similar mystery.

The “In Search of…” Series

Please note that I’ve written an entire series of “In Search of…” articles that will step you through the search process and help you understand how to unravel your results. If you’re new, reading these, in order, before proceeding, would be a good idea.

  • I introduced the “In Search of” series in the article, DNA: In Search of…New Series Launches.
  • In the second article, DNA: In Search of…What Do You Mean I’m Not Related to My Family? – and What Comes Next? we discussed the discovery that something was amiss when you don’t match a family member that you expect to match, then how to make sure a vial or upload mix-up didn’t happen. Next, I covered the basics of the four kinds of DNA tests you’ll be able to use to solve your mystery.
  • In the third article, In Search of…Vendor Features, Strengths, and Testing Strategies, we discussed testing goals and strategies, including testing with and uploading to multiple autosomal DNA vendors, Y DNA, and mitochondrial DNA testing. We reviewed the vendor’s strengths and the benefits of combining vendor information and resources.
  • In the fourth article, DNA: In Search of…Signs of Endogamy, we discussed the signs of endogamy and various ways to determine if you or your recent ancestors descend from an endogamous population.
  • In the fifth article, DNA: In Search of…Full and Half-Siblings we discussed how to determine if you have a sibling match, if they are a half or full sibling, and how to discern the difference.
  • In the sixth article, Connect Your DNA test, and Others, to Your Tree, I explained how to optimize your DNA tests in order to take advantage of the features offered by each our primary DNA testing vendors.
  • In the seventh article, How to Share DNA Results and Tree Access at Ancestry, I wrote step-by-step instructions for providing access to another person to allow them to view your DNA results, AND to share your tree – which are two different things. If you have a mystery match, and they are willing to allow you access, in essence “to drive,” you can just send them the link to this article that provides detailed instructions. Note that Ancestry has changed the user interface slightly with the rollout of their new “sides” matches, but I can’t provide the new interface screenshots yet because my account has not been upgraded.

Sarah – The Mystery Match

My friend, who I’ll be calling the Tester, matches Sarah (not her name) at 554 cM. At that close level, you don’t have to worry about segments being removed by Timber at Ancestry, so that is an actual cM match level. Timber only removes segments when the match is under 90 cM. Other vendors don’t remove cMs at all.

Ancestry shows the possible relationships at that level as follows:

Some of these relationships can be immediately dismissed in this situation. For example, the Tester knows that Sarah is not her grandchild or great-grandchild.

Our tester does not have any full siblings, or any known half-siblings, but like many genealogists, she is always open-minded. Both of her parents are living, and her father has already tested. Sarah does not match her father. So, this match is on her mother’s side.

It’s obvious that Sarah is not a full sibling, nor is she a half-sibling, based on the cM values, but she might be a child, or grandchild of a maternal half-sibling.

Let’s begin with observations and questions that will help our Tester determine how she and Sarah are related.

  1. It’s clear that IF this is a half-sibling descendant match, it’s on her mother’s side, because Sarah does not match our Tester’s father.
  2. The tester’s mother has six siblings, none of whom have tested directly, but three of whom have children or grandchildren who have tested.
  3. By viewing shared matches, Sarah matches known relatives of BOTH the maternal grandmother AND maternal grandfather of our tester, which means Sarah is NOT the product of an unknown half-sibling of her mother. Remember, Ancestry does not display shared matches of less than 20 cM. Other vendors do not restrict your shared matches.
  4. Ancestry does not provide mitochondrial DNA information, so that cannot be utilized, but could be utilized if this match was at FamilyTreeDNA, and partially utilized in an exclusionary manner if the match was at 23andMe.

DNAPainter

DNAPainter’s Shared cM Tool provides a nice visual display of possible relationships, so I entered the matching cM amount

The returned relationships are similar to Ancestry’s possible relationships.

The grid display shows the possible relationships. Relationships that fall outside of this probability range are muted.

The color shading is by generation, meaning dark grey is through great-great-grandparents, apricot is through great-grandparents, green is through grandparents, grey is through one or both parents, and blue are your own descendants.

Based on known factors, I put a red X in the boxes that can’t apply to Sarah and our Tester after evaluating each relationship. I bracketed the statistically most likely relationships in red, although I must loudly say, “do not ignore those other possibilities.”

Let’s step through the logic which will be different for everyone’s own situation, of course.

  • Age alone eliminates the great and half-great grandparents, aunts, and uncles. They are all deceased and would be well over 100 years old if they were living.
  • The green half relationships are eliminated because we know via shared matches that Sarah matches BOTH of the Tester’s maternal grandparent’s sides.
  • We know that Sarah is not a second cousin because second cousins match only ONE maternal grandparent’s ancestor’s descendants, and Sarah matches both of the tester’s maternal grandparents through their descendants. In other words, Sarah and our Tester both match people who descend from both of the Tester’s maternal grandmother AND grandfather’s lines, which, unless they are related, means Sarah’s closest common ancestor (MCRA – most recent common ancestor) with our Tester are either her maternal grandparents, or her mother.
  • Therefore, we know that Sarah cannot be any of the apricot-colored relationships because she matches BOTH of our Tester’s maternal grandparents. She would only be related through one of the Tester’s maternal grandparents to be related on the apricot level.
  • Sarah cannot be a full great-niece or nephew, or great or great-great niece or nephew because the Tester has no full siblings, confirmed by the fact that Sarah does not match the Tester’s father.
  • We know that Sarah is not the great-grandchild of the Tester, in part due to age, but the definitive scientific ax to that possibility is that Sarah does not match our Tester’s father. (Yes, our Tester does match her father at the appropriate level.)

We know that Sarah is somehow a descendant of BOTH of Tester’s maternal grandparents, so must be in either the green band of relationships, the grey half-relationships, or the blue direct relationships. All of these relationships would be descended from the Tester’s maternal grandparents (plural.)

We’ve eliminated the blue direct relationship because Sarah does not match the Tester’s father. This removes the possibility that the Tester’s children have an unknown great-grandchild, although in this case, age removes that possibility anyway.

This process-of-elimination leaves as possible relationships:

  • Grey band half niece/nephew and half great-niece/nephew, meaning that the Tester has an unknown half-sibling on their mother’s side whose child or grandchild has tested.
  • Green band first cousin which means that the tester descends from one of the Tester’s maternal aunts or uncles. Given that Sarah is not a known child of any of the Tester’s six aunts and uncles, that opens the possibility that her mother’s sibling has a previously unknown child. Three of the Tester’s mother’s siblings are females, and three are males.
  • Green band first cousin once removed is one generation further down the tree, meaning a child of a first cousin.

Using facts we know, we’ve already restricted the possible relationships to four.

Hypothesis and Shared Matches

In situations like this, I use a spreadsheet, create hypothesis scenarios and look for eliminators.

I worked with the Tester to assemble an easy spreadsheet with each of her mother’s siblings in a column, along with their year of birth. All names have been changed.

The hypothesis we are working with is that the Tester’s mother has a previously unknown child and that Sarah is that person’s child or grandchild.

Across the top of our spreadsheet, which you could also simply create as a chart, I’ve written the names of the maternal grandparents.

The Tester’s mother, Susie, is shown in the boxes that are colored red, and her siblings are listed in their birth order. Siblings who have anyone in their line who has tested are shown by colored boxes.

The Tester is shown in red beneath her mother, Susie, and a potential mystery half-sibling is shown beneath Susie.

This is importantthe relationships shown are FROM THE PERSPECTIVE OF THE TESTER.

This means, at far left, with the red arrow, these people at the top, meaning the mother’s siblings are the Tester’s aunts and uncles.

The next generation down are the Tester’s first cousins, followed by the next row, with 1C1R. The cell colors in that column correspond to the DNAPainter generation columns.

In the red “Mother” group, you’ll see that I’ve included that mystery half-sibling and beneath, the relationships that could exist at that same generation level. So, if the mystery half-sibling had a child, that person would be the half-niece/nephew of the Tester.

The cM value pointed to by the arrows, is the cM value at which the TESTER matches that person.

In this case, Ginger’s son, Jacob matches our Tester at 946 cM, which is exactly normal for a first cousin. Ginger’s son, Aaron, has not tested, but his daughter, Crystal, has and matches our Tester at 445 cM.

Three of the Tester’s aunts/uncles, John, Jim, and Elsie are not represented in this matrix, because no one from their line has yet tested. The Tester has contacted members of those families asking if they will accept a testing scholarship.

Analysis Grids

Some of the children of our Tester’s aunts/uncles have tested, and their matches to Sarah are shown in the bottom row in yellow, on the chart below.

Of course, obtaining Sarah’s matching cM information required the Tester to contact her aunts/uncles and cousins to ask them to look at their match to Sarah at Ancestry.

For each set of relationships with Sarah, I’ve prepared a mini-relationship grid below Sarah’s matches with one of the Tester’s aunts/uncles’ descendants.

  • If Sarah is related to the Tester through an unknown half-sibling, Sarah will match the tester more closely than she will match any of the children of the Tester’s aunts and uncles.
  • If Sarah descends through one of the Tester’s aunts’ or uncles’ lines, Sarah will match someone in those lines more closely than our Tester, but we may need to compensate for generations in our analysis.

I pasted the DNAPainter image in the spreadsheet in a convenient place to remind myself of which relationships are possible between our Tester and Sarah, then I created a small grid beneath the Tester’s match to Sarah, who is the yellow row.

Let me explain, beginning with our Tester’s match to Sarah.

Tester’s Match to Sarah

The Tester matches Sarah at 554 cM, which can potentially be a number of different relationships. I’ve listed the possible relationships with the most likely, at 87%, at the top. I have not listed any relationships we’ve positively eliminated, even though they would be scientifically possible.

I can’t do this for our Tester’s Uncle David, because the Tester has not yet heard back from David’s son, Gary, as to how many cMs he shares with Sarah.

Our tester’s aunts, Ginger and Barbara do have descendants who have tested, so let’s evaluate those relationships.

Ginger and Sarah

We know less about Ginger and Sarah than we do about our Tester and Sarah. However, many of the same relationship constraints remain constant.

  • For example, we know that Sarah matches both of Ginger’s grandparents, because Ginger is our tester’s aunt, Susie’s full sibling.
  • Our tester and all of the other family members who have tested match on both maternal grandparents’ sides.
  • Therefore, we also know that the 2C relationships won’t work either because Sarah matches both maternal grandparents.
  • Based on ages, it’s very unlikely that Sarah is a great-grandchild of Ginger’s children, in part, because I’m operating under the assumption that Sarah is old enough to purchase her own test, so not a child. Ancestry’s terms of service require testers to be 18 years of age to purchase or activate a DNA test. Also, Sarah’s test is not managed by someone else.
  • We don’t know about great-nieces and nephews though, because if one of Ginger’s sibling’s children had an unknown child, that person could be Sarah or Sarah’s parent.

Ginger’s son Jacob

Using the closest match in Ginger’s line, her son Jacob, we find the following possibilities using Jacob’s match to Sarah of 284cM.

The DNAPainter grid shows the more distant relationship clearly.

You can quickly determine that Sarah probably does not descend from Ginger’s line, but let’s add this to our spreadsheet for completeness.

You can see that the MOST likely relationship, of the possible relationships based on our known factors, is 1C2R, which is the least likely relationship between our Tester and Sarah. It’s important to note that our Tester and Jacob are in the same generation, so we don’t need to do any compensating for a generational difference.

Comparing those relationships, you can see that the least likely relationship between Sarah and Jacob is much more likely between Sarah and our Tester.

Therefore, we can rule out Ginger’s line as a candidate. Sarah is not a descendant of Ginger.

Let’s move on to Barbara’s line.

Barbara’s Daughter Cindy

This time, we’re going to do a bit of inferring because we do have a generational difference.

Barbara’s granddaughter, Mary, has tested and matches Sarah at 230 cM. While we know that Sarah probably wouldn’t match Mary’s mother, Cindy, at exactly double that, 460 cM, it would certainly be close.

So, for purposes of this comparison, I’m using 460 cM for Sarah to match Cindy.

That makes this comparison in the same generation as Ginger and our Tester to Sarah. We are comparing apples to apples and not apples to half an apple (an apple once removed, technically, but I digress.) 😊

You can see that this analysis is MUCH closer to the cM amounts and relationship possibilities of Sarah and our Tester.

Here are the possible relationships of Sarah and Cindy, with the most likely being boxed in red.

Where Are We?

Here is my completed spreadsheet, so far, less the two DNAPainter graphs for Ginger and Barbara’s lines.

To date, we’ve eliminated Ginger as Sarah’s ancestor.

Both Susie, the mother of our Tester, and Susie’s sister Barbara are still candidates to have an unknown child based on DNA, or one of their children possibly having an unknown child.

Of course, we still have one more sister, Elsie, and those three silent brothers sitting over there. It’s much easier for a male to have an unknown child than a female. By unknown, in this situation, I mean truly unknown, not hidden.

What’s Needed?

Of course, what we really need is tests from each of Susie’s siblings, but that’s not going to happen. What can we potentially do with what we have, how, and why?

Our Tester can refine these results in a number of ways.

  • Talk to living siblings or other family members and tactfully ask what they know about the four women during their reproductive years. Were they missing, off at school, visiting “aunts” in another location, separated from a spouse, etc.?
  • Check to see if Sarah shared her ethnicity results (View match, then click on “Ethnicity.”) If Sarah has a significant ethnicity that is impossible to confuse, this might be significant. For example, if Sarah is 50% Korean, and one of Susie’s brothers served in Korea, that makes him a prime candidate.
  • If possible, ask John, David, Jim, Ginger, Barbara, and Elsie to take DNA tests themselves. The best test is ALWAYS the oldest generation because their DNA is not yet divided in subsequent generations.
  • If that’s not possible, find a child or grandchild of Elsie, Jim, and John to test.
  • The Tester needs to find out how closely David’s son, Gary matches Sarah, then perform the same analysis that we stepped through above.
  • Ask Ginger’s son, Jacob to see if Sarah also shares matches with the closest family members of the known father of Ginger’s children. One of Ginger’s children could have had an unknown child. This is unlikely, based on what we’ve already determined about Sarah’s match level to Jacob, but it’s worth asking.
  • Ask Barbara’s granddaughter, Mary, to see if she and Sarah share matches with the closest family members of the known father of Barbara’s children. This scenario is much more likely.
  • If the answer is yes to either of the last two questions, we have identified which line Sarah descends from, because she can only descend from both Barbara AND the father of her children if Sarah descends from that couple.
  • If the answer is no, we’ve only eliminated full siblings to Ginger and Barbara’s children, not half-siblings.
  • If our Tester can make contact with Gary, ask him if he and Sarah share matches with David’s wife’s line. One of David’s children could have an unknown child.
  • If our Tester can actually make contact with Sarah, and if Sarah is willing and interested, our Tester can create a list of people to look for in her matches – for example, the spouses’ lines of all of Susie’s siblings. If Sarah matches NONE of the spouses’ lines, then one of Susie’s siblings (our Tester’s aunts/uncles,) or Susie’s mother, has an unknown child. However, if Sarah is a novice tester or genealogist, she might well be quite overwhelmed with understanding how to perform these searches. She may already be overwhelmed by discovering that she doesn’t match who she expected to match. Or, she may already know the answer to this question.
  • It would be easier if Sarah granted our Tester access to her DNA results to sort through all of these possibilities, but that’s not something I would expect a stranger to do, especially if this result is something Sarah wasn’t expecting.

I wrote instructions for providing access to DNA results in the article, How to Share DNA Results and Tree Access at Ancestry.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search of…Full and Half-Siblings

This is the fifth article in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to identify ancestors further back in time as well.

Please note that if a family member has tested and you do NOT see their results, ask them to verify that they have chosen to allow matching and for other people to view them in their match list. That process varies at different vendors.

You can also ask if they can see you in their results.

All Parties Need to Test

Searching for unknown siblings isn’t exactly searching, because to find them, they, themselves, or their descendant(s) must have taken a DNA test at the same vendor where you tested or uploaded a DNA file.

You may know through any variety of methods that they exist, or might exist, but if they don’t take a DNA test, you can’t find them using DNA. This might sound obvious, but I see people commenting and not realizing that the other sibling(s) must test too – and they may not have.

My first questions when someone comments in this vein are:

  1. Whether or not they are positive their sibling actually tested, meaning actually sent the test in to the vendor, and it was received by the testing company. You’d be surprised how many tests are living in permanent residence on someone’s countertop until it gets pushed into the drawer and forgotten about.
  2. If the person has confirmed that their sibling has results posted. They may have returned their test, but the results aren’t ready yet or there was a problem.
  3. AND that both people have authorized matching and sharing of results. Don’t hesitate to reach out to your vendor’s customer care if you need help with this.

Sibling Scenarios

The most common sibling scenarios are when one of two things happens:

  • A known sibling tests, only to discover that they don’t match you in the full sibling range, or not at all, when you expected they would
  • You discover a surprise match in the full or half-sibling range

Let’s talk about these scenarios and how to determine:

  • If someone is a sibling
  • If they are a full or half-sibling
  • If a half-sibling, if they descend from your mother or father

As with everything else genetic, we’ll be gathering and analyzing different pieces of evidence along the way.

Full and Half-Siblings

Just to make sure we are all on the same page:

  • A full sibling is someone who shares both parents with you.
  • A half-sibling is someone who shares one parent with you, but not the other parent.
  • A step-sibling is someone who shares no biological parents with you. This situation occurs when your parent marries their parent, after you are both born, and their parent becomes your step-parent. You share neither of your biological parents with a step-sibling, so you share no DNA and will not show up on each other’s match lists.
  • A three-quarters sibling is someone with whom you share one parent, but two siblings are the other parent. For example, you share the same mother, but one brother fathered you, and your father’s brother fathered your sibling. Yes, this can get very messy and is almost impossible for a non-professional to sort through, if even then. (This is not a solicitation. I do not take private clients.) We will not be addressing this situation specifically.

Caution

With any search for unknown relatives, you have no way of knowing what you will find.

In one’s mind, there are happy reunions, but you may experience something entirely different. Humans are human. Their stories are not always happy or rosy. They may have made mistakes they regret. Or they may have no regrets about anything.

Your sibling may not know about you or the situation under which you, or they, were born. Some women were victims of assault and violence, which is both humiliating and embarrassing. I wrote about difficult situations, here.

Your sibling or close family member may not be receptive to either you, your message, or even your existence. Just be prepared, because the seeking journey may not be pain-free for you or others, and may not culminate with or include happy reunions.

On the other hand, it may.

Please step back and ponder a bit about the journey you are about to undertake and the possible people that may be affected, and how. This box, once opened, cannot be closed again. Be sure you are prepared.

On the other hand, sometimes that box lid pops off, and the information simply falls in your lap one day when you open your match list, and you find yourself sitting there, in shock, staring at a match, trying to figure out what it all means.

Congratulations, You Have a Sibling!

This might not be exactly what runs through your mind when you see that you have a very close match that you weren’t expecting.

The first two things I recommend when making this sort of discovery, after a few deep breaths, a walk, and a cup of tea, are:

  • Viewing what the vendor says
  • Using the DNAPainter Shared cM Relationship Chart

Let’s start with DNAPainter.

DNAPainter

DNAPainter provides a relationship chart, here, based on the values from the Shared cM Project.

You can either enter a cM amount or a percentage of shared DNA. I prefer the cM amount, but it doesn’t really matter.

I’ll enter 2241 cM from a known half-sibling match. To enter a percent, click on the green “enter %.”

As you can see, statistically speaking, this person is slightly more likely to be a half-sibling than they are to be a full sibling. In reality, they could be either.

Looking at the chart below, DNAPainter highlights the possible relationships from the perspective of “Self.”

The average of all the self-reported relationships is shown, on top, so 2613 for a full sibling. The range is shown below, so 1613-3488 for a full sibling.

In this case, there are several possibilities for two people who share 2241 cM of DNA.

I happen to know that these two people are half-siblings, but if I didn’t, it would be impossible to tell from this information alone.

The cM range for full siblings is 1613-3488, and the cM range for half-siblings is 1160-2436.

  • The lower part of the matching range, from 1160-1613 cM is only found in half-siblings.
  • The portion of the range from 1613-2436 cM can be either half or full siblings.
  • The upper part of the range, from 2436-3488 cM is only found in full siblings.

If your results fall into the center portion of the range, you’re going to need to utilize other tools. Fortunately, we have several.

If you’ve discovered something unexpected, you’ll want to verify using these tools, regardless. Use every tool available. Ranges are not foolproof, and the upper and lower 10% of the responses were removed as outliers. You can read more about the shared cM Project, here and here.

Furthermore, people may be reporting some half-sibling relationships as full sibling relationships, because they don’t expect to be half-siblings, so the ranges may be somewhat “off.”

Relationship Probability Calculator

Third-party matching database, GEDmatch, provides a Relationship Probability Calculator tool that is based on statistical probability methods without compiled user input. Both tools are free, and while I haven’t compared every value, both seem to be reasonably accurate, although they do vary somewhat, especially at the outer ends of the ranges.

When dealing with sibling matches, if you are in all four databases, GEDmatch is a secondary resource, but I will include GEDmatch when they have a unique tool as well as in the summary table. Some of your matches may be willing to upload to GEDmatch if the vendor where you match doesn’t provide everything you need and GEDmatch has a supplemental offering.

Next, let’s look at what the vendors say about sibling matches.

Vendors

Each of the major vendors reports sibling relationships in a slightly different way.

Sibling Matches at Ancestry

Ancestry reports sibling relationships as Sister or Brother, but they don’t say half or full.

If you click on the cM portion of the link, you’ll see additional detail, below

Ancestry tells you that the possible relationships are 100% “Sibling.” The only way to discern the difference between full and half is by what’s next.

If the ONLY relationship shown is Sibling at 100%, that can be interpreted to mean this person is a full sibling, and that a half-sibling or other relationship is NOT a possibility.

Ancestry never stipulates full or half.

The following relationship is a half-sibling at Ancestry.

Ancestry identifies that possible range of relationships as “Close Family to First Cousin” because of the overlaps we saw in the DNAPainter chart.

Clicking through shows that there is a range of possible relationships, and Ancestry is 100% sure the relationship is one of those.

DNAPainter agrees with Ancestry except includes the full-sibling relationship as a possibility for 1826 cM.

Sibling Matches at 23andMe

23andMe does identify full versus half-siblings.

DNAPainter disagrees with 23andMe and claims that anyone who shares 46.2% of their DNA is a parent/child.

However, look at the fine print. 23andMe counts differently than any of the other vendors, and DNAPainter relies on the Shared cM Project, which relies on testers entering known relationship matching information. Therefore, at any other vendor, DNAPainter is probably exactly right.

Before we understand how 23andMe counts, we need to understand about half versus fully identical segments.

To determine half or full siblings, 23andMe compares two things:

  1. The amount of shared matching DNA between two people
  2. Fully Identical Regions (FIR) of DNA compared to Half Identical Regions (HIR) of DNA to determine if any of your DNA is fully identical, meaning some pieces of you and your sibling’s DNA is exactly the same on both your maternal and paternal chromosomes.

Here’s an example on any chromosome – I’ve randomly selected chromosome 12. Which chromosome doesn’t matter, except for the X, which is different.

Your match isn’t broken out by maternal and paternal sides. You would simply see, on the chromosome browser, that you and your sibling match at these locations, above.

In reality, though, you have two copies of each chromosome, one from Mom and one from Dad, and so does your sibling.

In this example, Mom’s chromosome is visualized on top, and Dad’s is on the bottom, below, but as a tester, you don’t know that. All you know is that you match your sibling on all of those blue areas, above.

However, what’s actually happening in this example is that you are matching your sibling on parts of your mother’s chromosome and parts of your father’s chromosome, shown above as green areas

23andMe looks at both copies of your chromosome, the one you inherited from Mom, on top, and Dad, on the bottom, to see if you match your sibling on BOTH your mother’s and your father’s chromosomes in that location.

I’ve boxed the green matching areas in purple where you match your sibling fully, on both parents’ chromosomes.

If you and your sibling share both parents, you will share significant amounts of the same DNA on both copies of the same chromosomes, meaning maternal and paternal. In other words, full siblings share some purple fully identical regions (FIR) of DNA with each other, while half-siblings do not (unless they are also otherwise related) because half-siblings only share one parent with each other. Their DNA can’t be fully identical because they have a different parent that contributed the other copy of their chromosome.

Total Shared DNA Fully Identical DNA from Both Parents
Full Siblings ~50% ~25%
Half Siblings ~25% 0
  • Full siblings are expected to share about 50% of the same DNA. In other words, their DNA will match at that location. That’s all the green boxed locations, above.
  • Full siblings are expected to share about 25% of the same DNA from BOTH parents at the same location on BOTH copies of their chromosomes. These are fully identical regions and are boxed in purple, above.

You’ll find fully identical segments about 25% of the time in full siblings, but you won’t find fully identical segments in half-siblings. Please note that there are exceptions for ¾ siblings and endogamous populations.

You can view each match at 23andMe to see if you have any completely identical regions, shown in dark purple in the top comparison of full siblings. Half siblings are shown in the second example, with less total matching DNA and no FIR or completely identical regions.

Please note that your matching amount of DNA will probably be higher at 23andMe than at other companies because:

  • 23andMe includes the X chromosome in the match totals
  • 23andMe counts fully identical matching regions twice. For full siblings, that’s an additional 25%

Therefore, a full sibling with an X match will have a higher total cM at 23andMe than the same siblings elsewhere because not only is the X added into the total, the FIR match region is added a second time too.

Fully Identical Regions (FIR) and Half Identical Regions (HIR) at GEDmatch

At GEDMatch, you can compare two people to each other, with an option to display the matching information and a painted graphic for each chromosome that includes FIR and HIR.

If you need to know if you and a match share fully identical regions and you haven’t tested at 23andMe, you can both upload your DNA data file to GEDmatch and use their One to One Autosomal DNA Comparison.

On the following page, simply enter both kit numbers and accept the defaults, making sure you have selected one of the graphics options.

While GEDmatch doesn’t specifically tell you whether someone is a full or half sibling, you can garner additional information about the relationship based on the graphic at GEDmatch.

GEDMatch shows both half and fully identical regions.

The above match is between two full siblings using a 7 cM threshold. The blue on the bottom bar indicates a match of 7 cM or larger. Black means no match.

The green regions in the top bar indicate places where these two people carry the same DNA on both copies of their chromosome 1. This means that both people inherited the same DNA from BOTH parents on the green segments.

In the yellow regions, the siblings inherited the same DNA from ONE parent, but different DNA in that region from the other parent. They do match each other, just on one of their chromosomes, not both.

Without a tool like this to differentiate between HIR and FIR, you can’t tell if you’re matching someone on one copy of your chromosome, or on both copies.

In the areas marked with red on top, which corresponds to the black on the bottom band, these two siblings don’t match each other because they inherited different DNA from both parents in that region. The yellow in that region is too scattered to be significant.

Full siblings generally share a significant amount of FIR, or fully identical regions of DNA – about 25%.

Half siblings will share NO significant amount of FIR, although some will be FIR on very small, scattered green segments simply by chance, as you can see in the example, below.

This half-sibling match shares no segments large enough to be a match (7 cM) in the black section. In the blue matching section, only a few small green fragments of DNA match fully, which, based on the rest of that matching segment, must be identical by chance or misreads. There are no significant contiguous segments of fully identical DNA.

When dealing with full or half-siblings, you’re not interested in small, scattered segments of fully identical regions, like those green snippets on chromosome 6, but in large contiguous sections of matching DNA like the chromosome 1 example.

GEDmatch can help when you match when a vendor does not provide FIR/HIR information, and you need additional assistance.

Next, let’s look at full and half-siblings at FamilyTreeDNA

Sibling Matches at FamilyTreeDNA

FamilyTreeDNA does identify full siblings.

Relationships other than full siblings are indicated by a range. The two individuals below are both half-sibling matches to the tester.

The full range when mousing over the relationship ranges is shown below.

DNAPainter agrees except also gives full siblings as an option for the two half-siblings.

FamilyTreeDNA also tells you if you have an X match and the size of your X match.

We will talk about X matching in a minute, which, when dealing with sibling identification, can turn out to be very important.

Sibling Matches at MyHeritage

MyHeritage indicates brother or sister for full siblings

MyHeritage provides other “Estimated relationships” for matches too small to be full siblings.

DNAPainter’s chart agrees with this classification, except adds additional relationship possibilities.

Be sure to review all of the information provided by each vendor for close relationships.

View Close Known Relationships

The next easiest step to take is to compare your full or half-sibling match to known close family members from your maternal and paternal sides, respectively. The closer the family members, the better.

It’s often not possible to determine if someone is a half sibling or a full sibling by centiMorgans (cMs) alone, especially if you’re searching for unknown family members.

Let’s start with the simplest situation first.

Let’s say both of your parents have tested, and of course, you match both of them as parents.

Your new “very close match” is in the sibling range.

The first thing to do at each vendor is to utilize that vendor’s shared matches tool and see whether your new match matches one parent, or both.

Here’s an example.

Close Relationships at FamilyTreeDNA

This person has a full sibling match, but let’s say they don’t know who this is and wants to see if their new sibling matches one or both of their parents.

Select the match by checking the box to the left of the match name, then click on the little two-person icon at far right, which shows “In Common” matches

You can see on the resulting shared match list that both of the tester’s parents are shown on the shared match list.

Now let’s make this a little more difficult.

No Parents, No Problem

Let’s say neither of your parents has tested.

If you know who your family is and can identify your matches, you can see if the sibling you match matches other close relatives on both or either side of your family.

You’ll want to view shared matches with your closest known match on both sides of your tree, beginning with the closest first. Aunts, uncles, first cousins, etc.

You will match all of your family members through second cousins, and 90% of your third cousins. You can view additional relationship percentages in the article, How Much of Them is in You?.

I recommend, for this matching purpose, to utilize 2nd cousins and closer. That way you know for sure if you don’t share them as a match with your sibling, it’s because the sibling is not related on that side of the family, not because they simply don’t share any DNA due to their distance.

In this example, you have three sibling matches. Based on your and their matches to the same known first and second cousins, you can see that:

  • Sibling 1 is your full sibling, because you both match the same maternal and paternal first and second cousins
  • Sibling 2 is your paternal half-sibling because you both match paternal second cousins and closer, but not maternal cousins.
  • Sibling 3 is your maternal half-sibling because you both match maternal second cousins and closer, but not paternal cousins.

Close Relationships at Ancestry

Neither of my parents have tested, but my first cousin on my mother’s side has. Let’s say I have a suspected sibling or half-sibling match, so I click on the match’s name, then on Shared Matches.

Sure enough, my new match also matches my first cousin that I’ve labeled as “on my mother’s side.”

If my new match in the sibling range also matches my second cousins or closer on my father’s side, the new match is a full sibling, not a half-sibling.

Close Relationships at MyHeritage

Comparing my closest match provided a real surprise. I wonder if I’ve found a half-sibling to my mother.

Now, THIS is interesting.

Hmmm. More research is needed, beginning with the age of my match. MyHeritage provides ages if the MyHeritage member authorizes that information to be shared.

Close Relationships at 23andMe

Under DNA Relatives, click on your suspected sibling match, then scroll down and select “Find Relatives in Common.”

The Relatives in Common list shows people that match both of you.

The first common match is very close and a similar relationship to my closest match on my father’s side. This would be expected of a sibling. I have no common matches with this match to anyone on my mother’s side, so they are only related on my father’s side. Therefore they are a paternal half-sibling, not a full sibling.

More Tools Are Available

Hopefully, by now, you’ve been able to determine if your mystery match is a sibling, and if so, if they are a half or full sibling, and through which parent.

We have some additional tools that are relevant and can be very informative in some circumstances. I suggest utilizing these tools, even if you think you know the answer.

In this type of situation, there’s no such thing as too much information.

X Matching

X matching, or lack thereof, may help you determine how you are related to someone.

There are two types of autosomal DNA. The X chromosome versus chromosomes 1-22. The X chromosome (number 23) has a unique inheritance path that distinguishes it from your other chromosomes.

The X chromosome inheritance path also differs between men and women.

Here’s my pedigree chart in fan form, highlighting the ancestors who may have contributed a portion of their X chromosome to me. In the closest generation, this shows that I inherited an X chromosome from both of my parents, and who in each of their lines could have contributed an X to them.

The white or uncolored positions, meaning ancestors, cannot contribute any portion of an X chromosome to me based on how the X chromosome is inherited.

You’ll notice that my father inherited none of his X chromosome from any of his paternal ancestors, so of course, I can’t inherit what he didn’t inherit. There are a very limited number of ancestors on my father’s side whom I can inherit any portion of an X chromosome from.

Men receive their Y chromosome from their fathers, so men ONLY receive an X chromosome from their mother.

Therefore, men MUST pass their mother’s X chromosome on to their female offspring because they don’t have any other copy of the X chromosome to pass on.

Men pass no X chromosome to sons.

We don’t need to worry about a full fan chart when dealing with siblings and half-siblings.

We only need to be concerned with the testers plus one generation (parents) when utilizing the X chromosome in sibling situations.

These two female Disney Princesses, above, are full siblings, and both inherited an X chromosome from BOTH their mother and father. However, their father only has one X (red) chromosome to give them, so the two females MUST match on the entire red X chromosome from their father.

Their mother has two X chromosomes, green and black, to contribute – one from each of her parents.

The full siblings, Melody, and Cinderella:

  • May have inherited some portion of the same green and black X chromosomes from their mother, so they are partial matches on their mother’s X chromosome.
  • May have inherited the exact same full X chromosome from their mother (both inherited the entire green or both inherited the entire black), so they match fully on their mother’s X chromosome.
  • May have inherited the opposite X from different maternal grandparents. One inherited the entire green X and one inherited the entire black X, so they don’t match on their mother’s X chromosome.

Now, let’s look at Cinderella, who matches Henry.

This female and male full sibling match can’t share an X chromosome on the father’s side, because the male’s father doesn’t contribute an X chromosome to him. The son, Henry, inherited a Y chromosome instead from his father, which is what made them males.

Therefore, if a male and female match on the X chromosome, it MUST be through HIS mother, but could be through either of her parents. In a sibling situation, an X match between a male and female always indicates the mother.

In the example above, the two people share both of their mother’s X chromosomes, so are definitely (at least) maternally related. They could be full siblings, but we can’t determine that by the X chromosome in this situation, with males.

However, if the male matches the female on HER father’s X chromosome, there a different message, example below.

You can see that the male is related to the female on her father’s side, where she inherited the entire magenta X chromosome. The male inherited a portion of the magenta X chromosome from his mother, so these two people do have an X match. However, he matches on his mother’s side, and she matches on her father’s side, so that’s clearly not the same parent.

  • These people CAN NOT be full siblings because they don’t match on HER mother’s side too, which would also be his mother’s side if they were full siblings.
  • They cannot be maternal half-siblings because their X DNA only matches on her father’s side, but they wouldn’t know that unless she knew which side was which based on share matches.
  • They cannot be paternal half-siblings because he does not have an X chromosome from his father.

They could, however, be uncle/aunt-niece/nephew or first cousins on his mother’s side and her father’s side. (Yes, you’re definitely going to have to read this again if you ever need male-female X matching.)

Now, let’s look at X chromosome matching between two males. It’s a lot less complicated and much more succinct.

Neither male has inherited an X chromosome from their father, so if two males DO match on the X, it MUST be through their mother. In terms of siblings, this would mean they share the same mother.

However, there is one slight twist. In the above example, you can see that the men inherited a different proportion of the green and black X chromosomes from their common mother. However, it is possible that the mother could contribute her entire green X chromosome to one son, Justin in this example, and her entire black X chromosome to Henry.

Therefore, even though Henry and Justin DO share a mother, their X chromosome would NOT match in this scenario. This is rare but does occasionally happen.

Based on the above examples, the X chromosome may be relevant in the identification of full or half siblings based on the sexes of the two people who otherwise match at a level indicating a full or half-sibling relationship.

Here’s a summary chart for sibling X matching.

X Match Female Male
Female Will match on shared father’s full X chromosome, mother’s X is the same rules as chromosomes 1-22 Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both of their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related.
Male Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both or their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related. Both males are related on their mother’s side – either full or half-siblings.

Here’s the information presented in a different way.

DOES match X summary:

  • If a male DOES match a female on the X, he IS related to her through HIS mother’s side, but could match her on her mother or father’s side. If their match is not through her mother, then they are not full siblings nor maternal half-siblings. They cannot match through his father, so they cannot be paternal half-siblings.
  • If a female DOES match a female on the X, they could be related on either side and could be full or half-siblings.
  • If a male DOES match a male on the X, they ARE both related through their mother. They may also be related on their father’s side, but the X does not inform us of that.

Does NOT match X summary:

  • If a male does NOT match a female on the X, they are NOT related through HIS mother and are neither full siblings nor maternal half-siblings. Since a male does not have an X chromosome from his father, they cannot be paternal half-siblings based on an X match.
  • If a male does NOT match a male, they do NOT share a mother.
  • If a female does NOT match another female on the X, they are NOT full siblings and are NOT half-siblings on their paternal side. Their father only has one X chromosome, and he would have given the same X to both daughters.

Of the four autosomal vendors, only 23andMe and FamilyTreeDNA report X chromosome results and matching, although the other two vendors, MyHeritage and Ancestry, include the X in their DNA download file so you can find X matches with those files at either FamilyTreeDNA or GEDMatch if your match has or will upload their file to either of those vendors. I wrote step-by-step detailed download/upload instructions, here.

X Matching at FamilyTreeDNA

In this example from FamilyTreeDNA, the female tester has discovered two half-sibling matches, both through her father. In the first scenario, she matches a female on the full X chromosome (181 cM). She and her half-sibling MUST share their father’s entire X chromosome because he only had one X, from his mother, to contribute to both of his daughters.

In the second match to a male half-sibling, our female tester shares NO X match because her father did not contribute an X chromosome to his son.

If we didn’t know which parents these half-sibling matches were through, we can infer from the X matching alone that the male is probably NOT through the mother.

Then by comparing shared matches with each sibling, Advanced Matches, or viewing the match Matrix, we can determine if the siblings match each other and are from the same or different sides of the family.

Under Additional Tests and Tools, Advanced Matching, FamilyTreeDNA provides an additional tool that can show only X matches combined with relationships.

Of course, you’ll need to view shared matches to see which people match the mother and/or match the father.

To see who matches each other, you’ll need to use the Matrix tool.

At FamilyTreeDNA, the Matrix, located under Autosomal DNA Results and Tools, allows you to select your matches to see if they also match each other. If you have known half-siblings, or close relatives, this is another way to view relationships.

Here’s an example using my father and two paternal half-siblings. We can see that the half-siblings also match each other, so they are (at least) half-siblings on the paternal side too.

If they also matched my mother, we would be full siblings, of course.

Next, let’s use Y DNA and mitochondrial DNA.

Y DNA and Mitochondrial DNA

In addition to autosomal DNA, we can utilize Y DNA and mitochondrial DNA (mtDNA) in some cases to identify siblings or to narrow or eliminate relationship possibilities.

Given that Y DNA and mitochondrial DNA both have distinctive inheritance paths, full and half-siblings will, or will not, match under various circumstances.

Y DNA

Y DNA is passed intact from father to son, meaning it’s not admixed with any of the mother’s DNA. Daughters do not inherit Y DNA from their father, so Y DNA is only useful for male-to-male comparisons.

Two types of Y DNA are used for genealogy, STR markers for matching, and haplogroups, and both are equally powerful in slightly different ways.

Y DNA at FamilyTreeDNA

Men can order either 37 or 111 STR marker tests, or the BIg Y which provides more than 700 markers and more. FamilyTreeDNA is the only one of the vendors to offer Y DNA testing that includes STR markers and matching between men.

Men who order these tests will be compared for matching on either 37, 111 or 700 STR markers in addition to SNP markers used for haplogroup identification and assignment.

Fathers will certainly match their sons, and paternal line brothers will match each other, but they will also match people more distantly related.

However, if two men are NOT either full or half siblings on the paternal side, they won’t match at 111 markers.

If two men DON’T match, especially at high marker levels, they likely aren’t siblings. The word “likely” is in there because, very occasionally, a large deletion occurs that prevents STR matching, especially at lower levels.

Additionally, men who take the 37 or 111 marker test also receive an estimated haplogroup at a high level for free, without any additional testing.

However, if men take the Big Y-700 test, they not only will (or won’t) match on up to 700 STR markers, they will also receive a VERY refined haplogroup via SNP marker testing that is often even more sensitive in terms of matching than STR markers. Between these two types of markers, Y DNA testing can place men very granularly in relation to other men.

Men can match in two ways on Y DNA, and the results are very enlightening.

If two men match on BOTH their most refined haplogroup (Big Y test) AND STR markers, they could certainly be siblings or father/son. They could also be related on the same line for another reason, such as known or unknown cousins or closer relationships like uncle/nephew. Of course, Y DNA, in addition to autosomal matching, is a powerful combination.

Conversely, if two men don’t have a similar or close haplogroup, they are not a father and son or paternal line siblings.

FamilyTreeDNA offers both inexpensive entry-level testing (37 and 111 markers) and highly refined advanced testing of most of the Y chromosome (Big Y-700), so haplogroup assignments can vary widely based on the test you take. This makes haplogroup matching and interpretation a bit more complex.

For example, haplogroups R-M269 and I-BY14000 are not related in thousands of years. One is haplogroup R, and one is haplogroup I – completely different branches of the Y DNA tree. These two men won’t match on STR markers or their haplogroup.

However, because FamilyTreeDNA provides over 50,000 different haplogroups, or tree branches, for Big Y testers, and they provide VERY granular matching, two father/son or sibling males who have BOTH tested at the Big Y-700 level will have either the exact same haplogroup, or at most, one branch difference on the tree if a mutation occurred between father and son.

If both men have NOT tested at the Big Y-700 level, their haplogroups will be on the same branch. For example, a man who has only taken a 37/111 marker STR test may be estimated at R-M269, which is certainly accurate as far as it goes.

His sibling who has taken a Big Y test will be many branches further downstream on the tree – but on the same large haplogroup R-M269 branch. It’s essential to pay attention to which tests a Y DNA match has taken when analyzing the match.

The beauty of the two kinds of tests is that even if one haplogroup is very general due to no Big Y test, their STR markers should still match. It’s just that sometimes this means that one hand is tied behind your back.

Y DNA matching alone can eliminate the possibility of a direct paternal line connection, but it cannot prove siblingship or paternity alone – not without additional information.

The Advanced Matching tool will provide a list of matches in all categories selected – in this case, both the 111 markers and the Family Finder test. You can see that one of these men is the father of the tester, and one is the full sibling.

You can view haplogroup assignments on the public Y DNA tree, here. I wrote about using the public tree, here.

In addition, recently, FamilyTreeDNA launched the new Y DNA Discover tool, which explains more about haplogroups, including their ages and other fun facts like migration paths along with notable and ancient connections. I wrote about using the Discover tool, here.

Y DNA at 23andMe

Testers receive a base haplogroup with their autosomal test. 23andMe tests a limited number of Y DNA SNP locations, but they don’t test many, and they don’t test STR markers, so there is no Y DNA matching and no refined haplogroups.

You can view the haplogroups of your matches. If your male sibling match does NOT share the same haplogroup, the two men are not paternal line siblings. If two men DO share the same haplogroup, they MIGHT be paternal siblings. They also might not.

Again, autosomal close matching plus haplogroup comparisons include or exclude paternal side siblings for males.

Paternal side siblings at 23andMe share the same haplogroup, but so do many other people. These two men could be siblings. The haplogroups don’t exclude that possibility. If the haplogroups were different, that would exclude being either full or paternal half-siblings.

Men can also compare their mitochondrial DNA to eliminate a maternal relationship.

These men are not full siblings or maternal half-siblings. We know, unquestionably, because their mitochondrial haplogroups don’t match.

23andMe also constructs a genetic tree, but often struggles with close relative placement, especially when half-relationships are involved. I do not recommend relying on the genetic tree in this circumstance.

Mitochondrial DNA

Mitochondrial DNA is passed from mothers to all of their children, but only females pass it on. If two people, males or females, don’t match on their mitochondrial DNA test, with a couple of possible exceptions, they are NOT full siblings, and they are NOT maternal half-siblings.

Mitochondrial DNA at 23andMe

23andMe provides limited, base mitochondrial haplogroups, but no matching. If two people don’t have the same haplogroup at 23andMe, they aren’t full or maternal siblings, as illustrated above.

Mitochondrial DNA at FamilyTreeDNA

FamilyTreeDNA provides both mitochondrial matching AND a much more refined haplogroup. The full sequence test (mtFull), the only version sold today, is essential for reliable comparisons.

Full siblings or maternal half-siblings will always share the same haplogroup, regardless of their sex.

Generally, a full sibling or maternal half-sibling match will match exactly at the full mitochondrial sequence (FMS) level with a genetic distance of zero, meaning fully matching and no mismatching mutations.

There are rare instances where maternal siblings or even mothers and children do not match exactly, meaning they have a genetic distance of greater than 0, because of a mutation called a heteroplasmy.

I wrote about heteroplasmies, here.

Like Y DNA, mitochondrial DNA cannot identify a sibling or parental relationship without additional evidence, but it can exclude one, and it can also provide much-needed evidence in conjunction with autosomal matching. The great news is that unlike Y DNA, everyone has mitochondrial DNA and it comes directly from their mother.

Once again, FamilyTreeDNA’s Advanced Matching tool provides a list of people who match you on both your mitochondrial DNA test and the Family Finder autosomal test, including transfers/uploads, and provides a relationship.

You can see that our tester matches both a full sibling and their mother. Of course, a parent/child match could mean that our tester is a female and one of her children, of either sex, has tested.

Below is an example of a parent-child match that has experienced a heteroplasmy.

Based on the comparison of both the mitochondrial DNA test, plus the autosomal Family Finder test, you can verify that this is a close family relationship.

You can also eliminate potential relationships based on the mitochondrial DNA inheritance path. The mitochondrial DNA of full siblings and maternal half-siblings will always match at the full sequence and haplogroup level, and paternal half-siblings will never match. If paternal half-siblings do match, it’s happenstance or because of a different reason.

Sibling Summary and Checklist

I’ve created a quick reference checklist for you to use when attempting to determine whether or not a match is a sibling, and, if so, whether they are half or full siblings. Of course, these tools are in addition to the DNAPainter Shared cM Tool and GEDmatch’s Relationship Predictor Calculator.

FamilyTreeDNA Ancestry 23andMe MyHeritage GEDmatch
Matching Yes Yes Yes Yes Yes
Shared Matches Yes – In Common With Yes – Shared Matches Yes – Relatives in Common Yes – Review DNA Match Yes – People who match both or 1 of 2 kits
Relationship Between Shared Matches No No No Yes, under shared match No
Matches Match Each Other* Yes, Matrix No Yes, under “View DNA details,” then, “compare with more relatives” Partly, through triangulation Yes, can match any kits
Full Siblings Yes Sibling, implies full Yes Brother, Sister, means full No
Half Siblings Sibling, Uncle/Aunt-Niece/Nephew, Grandparent-Grandchild Close Family – 1C Yes Half sibling, aunt/uncle-niece-nephew No
Fully Identical Regions (FIR) No No Yes No Yes
Half Identical Regions (HIR) No No Yes No Yes
X matching Yes No Yes No Yes
Unusual Reporting or Anomalies No No, Timber is not used on close relationships X match added into total, FIR added twice No Matching amount can vary from vendors
Y DNA Yes, STRs, refined haplogroups, matching No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Mitochondrial DNA Yes, full sequence, matching, refined haplogroup No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Combined Tools (Autosomal, X, Y, mtDNA) Yes No No No No

*Autoclusters through Genetic Affairs show cluster relationships of matches to the tester and to each other, but not all matches are included, including close matches. While this is a great tool, it’s not relevant for determining close and sibling relationships. See the article, AutoClustering by Genetic Affairs, here.

Additional Resources

Some of you may be wondering how endogamy affects sibling numbers.

Endogamy makes almost everything a little more complex. I wrote about endogamy and various ways to determine if you have an endogamous heritage, here.

Please note that half-siblings with high cM matches also fall into the range of full siblings (1613-3488), with or without endogamy. This may be, but is not always, especially pronounced in endogamous groups.

As another resource, I wrote an earlier article, Full or Half Siblings, here, that includes some different examples.

Strategy

You have a lot of quills in your quiver now, and I wish you the best if you’re trying to unravel a siblingship mystery.

You may not know who your biological family is, or maybe your sibling doesn’t know who their family is, but perhaps your close relatives know who their family is and can help. Remember, the situation that has revealed itself may be a shock to everyone involved.

Above all, be kind and take things slow. If your unexpected sibling match becomes frightened or overwhelmed, they may simply check out and either delete their DNA results altogether or block you. They may have that reaction before you have a chance to do anything.

Because of that possibility, I recommend performing your analysis quickly, along with taking relevant screenshots before reaching out so you will at least have that much information to work with, just in case things go belly up.

When you’re ready to make contact, I suggest beginning by sending a friendly, short, message saying that you’ve noticed that you have a close match (don’t say sibling) and asking what they know about their family genealogy – maybe ask who their grandparents are or if they have family living in the area where you live. I recommend including a little bit of information about yourself, such as where you were born and are from.

I also refrain from using the word adoption (or similar) in the beginning or giving too much detailed information, because it sometimes frightens people, especially if they know or discover that there’s a painful or embarrassing family situation.

And, please, never, ever assume the worst of anyone or their motives. They may be sitting at their keyboard with the same shocked look on their face as you – especially if they have, or had, no idea. They may need space and time to reach a place of acceptance. There’s just nothing more emotionally boat-capsizing in your life than discovering intimate and personal details about your parents, one or both, especially if that discovery is disappointing and image-altering.

Or, conversely, your sibling may have been hoping and waiting just for you!

Take a deep breath and let me know how it goes!

Please feel free to share this article with anyone who could benefit.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

In Search of…Vendor Features, Strengths, and Testing Strategies

This is the third in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied to ancestors further back in time too.

In this article, we are going to discuss your goals and why testing or uploading to multiple vendors is advantageous – even if you could potentially solve the initial mystery at one vendor. Of course, the vendor you test with first might not be the vendor where the mystery will be solved, and data from multiple vendors might just be the combination you need.

Testing Strategy – You Might Get Lucky

I recommended in the first article that you go ahead and test at the different vendors.

Some people asked why, and specifically, why you wouldn’t just test at one vendor with the largest database first, then proceed to the others if you needed to.

That’s a great question, and I want to discuss the pros and cons in this article more specifically.

Clearly, that is one strategy, but the approach you select might differ based on a variety of considerations:

  • You may only be interested in obtaining the name of the person you are seeking – or – you may be interested in finding out as much as possible.
  • You may find that your best match at one company is decidedly unhelpful, and may even block you or your efforts, while someone elsewhere may be exactly the opposite.
  • Solving your mystery may be difficult and painful at one vendor, but the answer may be infinitely easier at a different vendor where the answer may literally be waiting.
  • There may not be enough, or the right information, or matches, at any one vendor, but the puzzle may be solvable by combining information from multiple vendors and tests. Every little bit helps.
  • You may have a sense of urgency, especially if you hope to meet the person and you’re searching for parents, siblings or grandparents who may be aging.
  • You may be cost-sensitive and cannot afford more than one test at a time. Fortunately, our upload strategy helps with that too. Also, watch for vendor sales or bundles.

From the time you order your DNA test, it will be about 6-8 weeks, give or take a week or two in either direction, before you receive results.

When those results arrive, you might get lucky, and the answer you seek is immediately evident with no additional work and just waiting for you at the first testing company.

If that’s the case, you got lucky and hit the jackpot. If you’re searching for both parents, that means you still have one parent to go.

Unidentified grandparents can be a little more difficult, because there are four of them to sort between.

If you discover a sibling or half-sibling, you still need to figure out who your common parent is. Sometimes X, Y, and mitochondrial DNA provides an immediate answer and is invaluable in these situations.

It’s more likely that you’ll find a group of somewhat more distant relatives. You may be able to figure out who your common grandparents or great-grandparents are, but not your parent(s) initially. Often, the closer generation or two is actually the most difficult because you’re dealing with contemporary records which are not publicly available, fewer descendants, and the topic may be very uncomfortable for some people. It’s also complicated because you’re often not dealing with “full” relationships, but “half,” as in half-sibling, half-niece, half-1C, etc.

You may spend a substantial amount of time trying to solve this puzzle at the first vendor before ordering your next test.

That second test will also take about 6-8 weeks, give or take. I recommend that you order the first two autosomal tests, now.

Order Your First Two Autosomal Tests

The two testing companies with the largest autosomal databases for comparison, Ancestry, and 23andMe, DO NOT accept DNA file uploads from other companies, so you’ll need to test with each individually.

Fortunately, you CAN transfer your autosomal DNA tests to both MyHeritage and FamilyTreeDNA, for free.

You will have different matches at each company. Some people will be far more responsive and helpful than others.

I recommend that you go ahead and order both the Ancestry and 23andMe tests initially, then upload the first one that comes back with results to both FamilyTreeDNA and MyHeritage. Complete, step-by-step download/upload instructions can be found here.

You can also upload your DNA file to a fifth company, Living DNA, but they are significantly smaller and heavily focused on England and Great Britain. However, if that’s where you’re searching, this might be where you find important matches.

You can also upload to GEDMatch, a popular third-party database, but since you’re going to be in the databases of the four major testing companies, there is little to be gained at GEDMatch in terms of people who have not tested at one of the major companies. Do NOT upload to GEDMatch INSTEAD of testing or uploading to the four major sites, as GEDMatch only has a small fraction of the testers in each of the vendor databases.

What GEDMatch does offer is a chromosome browser – something that Ancestry does NOT offer, along with other clustering tools which you may find useful. I recommend GEDMatch in addition to the others, if needed or desired.

Ordering Y and Mitochondrial DNA Tests

We reviewed the basics of the different kinds of DNA, here.

Some people have asked why, if autosomal DNA shows relatives on all of your lines, would one would want to order specific tests that focus on just one line?

It just so happens that the two lines that Y and mitochondrial DNA test ARE the two lines you’re seeking – direct maternal – your mother (and her mother), and direct paternal, your father (and his father.)

These two tests are different kinds of DNA tests, testing a different type of DNA, and provide very focused information, and matches, not available from autosomal DNA tests.

For men, Y DNA can reveal your father’s surname, which can be an invaluable clue in narrowing paternal candidates. Knowing that my brother’s Y DNA matched several men with the surname of Priest made me jump for joy when he matched a woman of that same last name at another vendor.

Here’s a quote from one of the members of a Y DNA project where I’m the volunteer administrator:

“Thank you for your help understanding and using all 4 kinds of my DNA results. By piecing the parts together, I identified my father. Specifically, without Y DNA testing, and the Big Y test, I would not have figured out my parental connection, and then that my paternal line had been assigned to the wrong family. STR testing gave me the correct surname, but the Big Y test showed me exactly where I fit, and disproved that other line. I’m now in touch with my father, and we both know who our relatives are – two things that would have never happened otherwise.”

If you fall into the category of, “I want to know everything I can now,” then order both Y and mitochondrial DNA tests initially, along with those two autosomal tests.

You will need to order Y (males only) and mitochondrial DNA tests separately from the autosomal Family Finder test, although you should order on the same account as your Family Finder test at FamilyTreeDNA.

If you take the Family Finder autosomal test at FamilyTreeDNA or upload your autosomal results from another vendor, you can simply select to add the Y and mitochondrial DNA tests to your account, and they will send you a swab kit.

Conversely, you can order either a Y or mitochondrial DNA test, and then add a Family Finder or upload a DNA file if you’ve already taken an autosomal DNA test to that account too. Note – these might not be current prices – check here for sales.

You will want all 3 of your tests on the same account so that you can use the Advanced Matches feature.

Using Advanced Matches, you’ll be able to view people who match you on combinations of multiple kinds of tests.

For example, if you’re a male, you can see if your Y DNA matches also match you on the Family Finder autosomal test, and if so, how closely?

Here’s an example.

In this case, I requested matches to men with 111 markers who also match the tester on the Family Finder test. I discovered both a father and a full sibling, plus a few more distant matches. There were ten total combined matches to work with, but I’ve only shown five for illustration purposes.

This information is worth its weight in gold.

Is the Big Y Test Worth It?

People ask if the Big Y test is really worth the extra money.

The answer is, “it depends.”

If all you’re looking for are matching surnames, then the answer is probably no. A 37 or 111 marker test will probably suffice. Eventually, you’ll probably want to do the Big Y, though.

If you’re looking for exact placement on the tree, with an estimated distance to other men who have taken that test, then the answer is, “absolutely.” I wish the Big Y test had been available back when I was hunting for my brother’s biological family.

The Big Y test provides a VERY specific haplogroup and places you very accurately in your location on the Y DNA tree, along with other men of your line, assuming they have tested. You may find the surname, as well as being placed within a generation or a few of current in that family line.

Additionally, the Discover page provides estimates of how far in the past you share a common ancestor with other people that share the same haplogroup. This can be a HUGE boon to a male trying to figure out his surname line and how closely in time he’s related to his matches.

Big Y NPE Examples

Y DNA SNP mutations tested with the Big Y test accrue a mutation about every generation, or so. Sometimes we see mutations in every generation.

Here’s an example from my Campbell line. Haplogroups are listed in the top three rows.

I created this spreadsheet, but FamilyTreeDNA provides a block tree for Big Y testers. I’ve added the genealogy of the testers, with the various Big Y testers at the bottom and common ancestors above, in bold.

We have two red NPE lines showing. The MacFarlane tester matches M. Campbell VERY closely, and two Clark males match W. Campbell and other Campbells quite closely. We utilized autosomal plus the Y results to determine where the unknown parentage events occurred. Today, if you’re a Clark or MacFarlane male, or a male by any other surname who was fathered by a Y chromosome Campbell male (by any surname), you’ll know exactly where you fit in this group of testers on your direct paternal line.

Y DNA is important because men often match other men with the same surname, which is a HUGE clue, especially in combination with autosomal DNA results. I say “often,” because it’s possible that no one in your line has tested, or that your father’s surname is not his biological surname either.

Y and mitochondrial DNA matches can be HUGELY beneficial pieces of information either by confirming a close autosomal relationship on that line, or eliminating the possibility.

Lineage-Specific Population Information

In addition to matching other people, both Y and mitochondrial DNA tests provide you with lineage-specific population or “ethnicity” information for this specific line which helps you focus your research.

For example, if you view the Y DNA Haplogroup Origins shown for this tester, you’ll discover that these matches are Jewish.

The tester might not be Jewish on any other genealogical line, but they definitely have Jewish ancestry on their Y DNA, paternal, line.

The same holds true for mitochondrial DNA as well. The main difference with mitochondrial DNA is that the surname changes with each generation, haplogroups today (pre-Million Mito) are less specific, and fewer people have been tested.

Y and Mitochondrial DNA Benefits

Knowing your Y and mitochondrial DNA haplogroups not only arm you with information about yourself, they provide you with matching tools and an avenue to include or exclude people as your direct line paternal or maternal ancestors.

Your Y and mitochondrial DNA can also provide CRITICALLY IMPORTANT information about whether that direct line ancestor belonged to an endogamous population, and where they came from.

For example, both Jewish and Native populations are endogamous populations, meaning highly intermarried for many generations into the past.

Knowing that helps you adjust your autosomal relationship analysis.

Why Order Multiple Tests Initially Instead of Waiting?

If you’ve been adding elapsed time, two autosomal tests (Ancestry and 23andMe), two uploads (to FamilyTreeDNA and MyHeritage,) a Y DNA test, and a mitochondrial DNA test, if all purchased serially, one following the other, means you’ll be waiting approximately 6-8 months.

Do you want to wait 6-8 months for all of your results? Can you afford to?

Part of this answer has to do with what, exactly, you’re seeking, and how patient you are.

Only you can answer that question.

A Name or Information?

Are you seeking the name or identity of a person, or are you seeking information about that person?

Most people don’t just want to put a name to the person they are seeking – they want to learn about them and the rest of the family that door opens.

You will have different matches at each company. Even after you identify the person you seek, the people you match may have trees you can view, with family photos and other important information. (Remember, you can’t see living people in trees.) Your matches may have first-person information about your relative and may know them if they are living, or have known them.

Furthermore, you may have the opportunity to meet that person. Time delayed may not be able to be recovered or regained.

One cousin that I assisted discovered that his father had died just six weeks before he broke through that wall and made the connection.

Working with data from all vendors simultaneously will allow you to combine that data and utilize it together. Using your “best” matches at each company, augmented by X, Y, and/or mitochondrial DNA, can make MUCH shorter work of this search.

Your closest autosomal matches are the most important and insightful. In this series, I will be working with the top 15 autosomal results at each vendor, at least initially. This approach provides me with the best chance of meaningful close relationship discoveries.

Data and Vendor Results Integration

Here’s a table of my two closest maternal and paternal matches at the four major vendors. I can assign these to maternal or paternal sides, because I know the identity of my parents, and I know some of these people. If an adoptee was doing this, the top 4 could all be from one parent, which is why we work with the top 15 or so matches.

Vendor Closest Maternal Closest Paternal Comments
Ancestry 1C, 1C1R Half-1C, 2C I recognized both of the maternal and neither of the paternal.
23andMe 2C, 2C 1C1R, half-gr-niece Recognized both maternal, one paternal
MyHeritage Mother uploaded, 1C Half-niece, half-1C Recognized both maternal, one paternal
FamilyTreeDNA Mother tested, 1C1R Parent/child, half-gr-niece uploaded Recognized all 4

To be clear, I tested my mother’s mitochondrial DNA before she passed away, but because FamilyTreeDNA archives DNA samples for 25 years, as the owner/manager of her DNA kit, I was able to order the Family Finder test after she had passed away. Her tests are invaluable today.

Then, years later, I uploaded her results to MyHeritage.

If I was an adopted child searching for my mother, I would find her results in both databases today. She’ll never be at either 23andMe or Ancestry because she passed away before she could test there and they don’t accept uploads.

Looking at the other vendors, my half-niece at MyHeritage is my paternal half-sibling’s daughter. My half-sibling is deceased, so this is as close as I’ll ever get to matching her.

At 23andMe, the half-great-niece is my half-siblings grandchild.

It’s interesting that I have no matches to descendants of my other half-sibling, who is also deceased. Maybe I should ask if any of his children or grandchildren have tested. Hmmmm…..

You can see that I stand a MUCH BETTER chance of figuring out close relatives using the combined closest matches of all four databases instead of the top matches from just one database. It doesn’t matter if the database is large if the right person or people didn’t test there.

Combine Resources

I’ll be providing analysis methodologies for working with results from all of the vendors together, just in case your answer is not immediately obvious. Taking multiple DNA tests facilitates using all of these tools immediately, not months later. Solving the puzzle sooner means you may not miss valuable opportunities.

You may also discover that the door slams shut with some people, or they may not respond to your queries, but another match may be unbelievably helpful. Don’t limit your possibilities.

Let’s take a look at the strengths of each vendor.

Vendor Strengths and Things to Know

Every vendor has product strengths and idiosyncracies that the others do not. All vendors provide matches and shared matches. Each vendor provides ethnicity tools which certainly can be useful, but the features differ and will be covered elsewhere.

  • AncestryAncestry has the largest autosomal database and includes ThruLines, but no Y or mitochondrial DNA testing, no clusters, no chromosome browser, no triangulation, and no X chromosome matching or reporting. Ancestry provides genealogical records, advanced tools, and full tree access to your matches’ trees with an Ancestry subscription. Ancestry does not allow downloading your match list or segment match information, but the other vendors do.
  • 23andMe 23andMe has the second largest database. They provide triangulation and genetic trees that include your closest matches. Many people test at 23andMe for health and wellness information, so 23andMe has people in their database who are not specifically interested in genealogy and probably won’t have tested elsewhere, but may be invaluable to your search. 23andMe provides Y and mtDNA high-level haplogroups only, but no matching or other haplogroup information. If you purchase a new test or have a V5 ancestry+health current test, you can expand your matches from a limit of 1500 to about 5000 with an annual membership. For seeking close relatives, you don’t need those features, but you may want them for genealogy. 23andMe is the only vendor that limits their customers’ matches.
  • MyHeritageMyHeritage has the third largest database that includes lots of European testers. MyHeritage provides triangulation, Theories of Family Relativity, and an integrated cluster tool* but does not report X matches and does not offer Y or mitochondrial DNA testing. MyHeritage accepts autosomal DNA file uploads from other testing companies for free and provides access to advanced DNA features for a one-time unlock fee. MyHeritage includes genealogical records and full feature access to advanced DNA tools with a Complete Subscription. (Free 15 days trial subscription, here.)
  • FamilyTreeDNA Family Finder (autosomal)FamilyTreeDNA is the oldest DNA testing company, meaning their database includes people who initially tested 20+ years ago and have since passed away. This, in essence, gets you one generation further back in time, with the possibility of stronger matches. Their Family Matching feature buckets and triangulates your matches, assigning them to your maternal or paternal sides if you link known matches to their proper place in your tree, even if your parents have not tested. FamilyTreeDNA accepts uploads from other testing companies for free and provides advanced DNA features for a one time unlock fee.
  • FamilyTreeDNAFamilyTreeDNA is the only company that offers both Y and mitochondrial DNA testing products that include matching, integration with autosomal test results, and other tools. These two tests are lineage-specific and don’t have to be sorted from your other ancestral lines.

I wrote about using Y DNA results, here.

I wrote about using mitochondrial DNA results, here.

*Third parties such as Genetic Affairs provide clustering tools for both 23andMe and FamilyTreeDNA. Clustering is integrated at MyHeritage. Ancestry does not provide a tool for nor allow third-party clustering. If the answer you seek isn’t immediately evident, Genetic Affairs clustering tools group people together who are related to each other, and you, and create both genetic and genealogical trees based on shared matches. You can read more about their tools, here.

Fish in all the Ponds and Use All the Bait Possible

Here’s the testing and upload strategy I recommend, based on the above discussion and considerations. The bottom line is this – if you want as much information as possible, as quickly as possible, order the four tests in red initially. Then transfer the first autosomal test results you receive to the two companies identified in blue. Optionally, GEDMatch may have tools you want to work with, but they aren’t a testing company.

What When Ancestry 23andMe MyHeritage FamilyTreeDNA
Order autosomal Initially X X    
Order Y 111 or Big-Y DNA test if male Initially       X
Order mitochondrial DNA test Initially if desired       X
Upload free autosomal When Ancestry or 23andMe results are available     X X
Unlock Advanced Tools When you upload     $29 $19
Optional GEDMatch free upload If desired, can subscribe for advanced tools

When you upload an autosomal DNA file to a vendor site, only upload one file per site, per tester. Otherwise, multiple tests simply glom up everyone’s match list with multiple matches to the same person.

Multiple vendor sites will hopefully provide multiple close matches, which increase your opportunity to discover INFORMATION about your family, not just the identity of the person you seek.

Or maybe you prefer to wait and order these DNA tests serially, waiting until one set of results is back and you’re finished working with them before ordering the next one. If so, that means you’re a MUCH more patient person than me. 😊

Our next article in this series will be about endogamy, how to know if it applies to you, and what that means to your search.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches DNA Monkey Wrenches https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

2021 Favorite Articles

It’s that time of the year again when we welcome the next year.

2021 was markedly different than anything that came before. (Is that ever an understatement!)

Maybe you had more time for genealogy and spent time researching!

So, what did we read in 2021? Which of my blog articles were the most popular?

In reverse order, beginning with number 10, we have:

This timeless article published in 2015 explains how to calculate the amount of any specific heritage you carry based on your ancestors.

Just something fun that’s like your regular pedigree chart, except color coded locations instead of ancestors. Here’s mine

The Autosegment Triangulation Cluster Tool is a brand new tool introduced in October 2021. Created by Genetic Affairs for GEDmatch, this tool combines autoclusters and triangulation.

Many people don’t realize that we actually don’t inherit exactly 25% of our DNA from each grandparent, nor why.

This enlightening article co-authored with statistician Philip Gammon explains how this works, and why it affects all of your matches.

Who doesn’t love learning about ancient DNA and the messages it conveys. Does your Y or mitochondrial DNA match any of these burials? Take a look. You might be surprised.

How can you tell if you are full or half siblings with another person? You might think this is a really straightforward question with an easy answer, but it isn’t. And trust me, if you EVER find yourself in a position of needing to know, you really need to know urgently.

Using simple match, it’s easy to figure how much of your ancestor’s DNA you “should” have, but that’s now how inheritance actually works. This article explains why and shows different inheritance scenarios.

That 28 day timer has expired, but the article can still be useful in terms of educating yourself. This should also be read in conjunction with Ancestry Retreats, by Judy Russell.

If I had a dollar for every time I’ve heard someone say that their ethnicity percentages were “wrong,” I’d be a rich woman, living in a villa in sun-drenched Tuscany😊

This extremely popular article has either been first or second every year since it was published. Ethnicity is both exciting and perplexing.

As genealogists, the first thing we need to do is to calculate what, according to our genealogy, we would expect those percentages to be. Of course, we also need to factor in the fact that we don’t inherit exactly the same amount of DNA from each grandparent. I explain how I calculated my “expected” percentages of ethnicity based on my known tree. That’s the best place to start.

Please note that I am no longer updating the vendor comparison charts in the article. Some vendors no longer release updates to the entire database at the same time, and some “tweak” results periodically without making an announcement. You’ll need to compare your own results at the different vendors at the same point in time to avoid comparing apples and oranges.

The #1 Article for 2021 is…

  1. Proving Native American Ancestry Using DNA

This article has either been first (7 times) or second (twice) for 9 years running. Now you know why I chose this topic for my new book, DNA for Native American Genealogy.

If you’re searching for your Native American ancestry, I’ve provided step-by-step instructions, both with and without some percentage of Native showing in your autosomal DNA percentages.

Make 2022 a Great Year!

Here’s wishing you the best in 2022. I hope your brick walls cave. What are you doing to help that along? Do you have a strategy in mind?

__________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here. You can also subscribe to receive emails when I publish articles by clicking the “Follow” button at www.DNAexplain.com.

You’re always welcome to forward articles or links to friends.

Help Out, Please

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Most Popular Articles of 2020

We all know that 2020 was a year like no other, right? So, what were we reading this year as we spent more time at home?

According to my blog stats, these are the ten most popular articles of 2020.

2020 Rank Blog Article Name Publication Date/Comment
1 Concepts – Calculating Ethnicity Percentages Jan 11, 2017
2 Proving Native American Ancestry Using DNA December 18, 2012
3 Ancestry to Remove DNA Matches Soon – Preservation Strategies with Detailed Instructions Now obsolete article – July 16, 2020
4 Ancestral DNA Percentages – How Much of Them is in You? June 27, 2017
5 Full or Half Siblings? April 3, 2019
6 442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match? September 18, 2020
7 Migration Pedigree Chart March 25, 2016
8 DNA Inherited from Grandparents and Great-Grandparents January 14, 2020
9 Optimizing Your Tree at Ancestry for More Hints and DNA ThruLines February 22, 2020
10 Phylogenetic Tree of Novel Coronavirus (hCoV-19) Covid-19 March 12, 2020

Half of these articles were published this year, and half are older.

One article is now obsolete. The Ancestry purge has already happened, so there’s nothing to be done now.

Let’s take a look at the rest and what messages might be held in these popular selections.

Ethnicity

I’m not the least bit surprised by ethnicity being the most popular topic, nor that Concepts – Calculating Ethnicity Percentages is the most popular article. Not only is ethnicity a perennially favorite, but all four major vendors introduced something new this year.

By the way, my perennial caveat still applies – ethnicity is only an estimate😊

While Genetic Groups isn’t actually ethnicity, per se, it’s a layer on top of ethnicity that provides you with locations where your ancestors might have been from and migrated to, based on genetic clusters. Clusters are defined by the locations of ancestors of other people within that genetic cluster.

There’s actually good news at 23andMe. Since this article was published in October, 23andMe has indeed updated the V3 and V4 kits with new ethnicity updates. 23andMe had originally stated they weren’t going to do that, clearly in the hope that people would pay to retest by purchasing the V5 Health + Ancestry test. I’m so glad to see their reversal.

Viewing the older V2 kits, the “updated” date at the bottom of their Ancestry Composition page says they were updated on December 9th or 10th, but I don’t see a difference and they don’t have the “updated” icon like the V3 and V4 kits do.

23andMe made another reversal too and also restored the original matches. They had reduced the number of matches to 1500 for non-Health+Ancestry testers who don’t also subscribe. If you wanted between 1500 and 5000 matches, you had to retest and subscribe for $29 per year. (It’s worth noting that I have over 5000 matches at all of the other vendors.)

To date, 23andMe has restored previous matches and also restored some but not all of the search functionality that they had removed.

What isn’t clear is whether 23andMe will continue to add to this number of matches until the tester reaches the earlier limit of 2000, or whether they have simply restored the previous matches, but the match total will not increase unless you have a subscription.

Consumer feedback works – so thanks to everyone who provided feedback to 23andMe.

Native American Ancestry

The article, Proving Native American Ancestry Using DNA, written 8 years ago, only 5 months after launching this blog, has been in the top 10 every year since I’ve been counting.

I created a Native American reference and resource page too, which you can find here.

I’ll also be publishing some new articles after the first of the year which I promise you’ll find VERY INTERESTING. Something to look forward to.

Understanding Autosomal DNA

2020 has seen more people delving into genealogy + DNA testing which means they need to understand both the results and the concepts underlying their results.

Whooohooo – more people in the pool. Jump on in – the water’s fine!

The articles Ancestral DNA Percentages – How Much of Them is in You? and DNA Inherited from Grandparents and Great-Grandparents both explain how DNA is passed from your ancestors to you.

These are great basic articles if you’re looking to help someone new, and so is First Steps When Your DNA Results are Ready – Sticking Your Toe in the Genealogy Water.

I always look forward to the end of January because there will be lots of matches from holiday gifts being posted. Feel free to forward any of these articles to your new matches. It’s always fun helping new people because you just never know when they might be able to help you.

Surprises

With more and more people testing, more and more people are receiving “surprises” in their results. Need to figure out the difference between full and half-siblings? Then Full or Half Siblings? is the article for you.

Trying to discern other relationships? My favorite tool is the Shared cM Project tool at DNAPainter, here.

Vikings

Who doesn’t want to know if they are related to the ancient Vikings??? You can make that discovery in the article, 442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match?. Not only is this just plain fun, but I snuck in a little education too.

Of course, you’ll need to have your Y DNA or mitochondrial DNA results, which you can easily order, here. If you’re unsure and would like to read a short article about the different kinds of DNA and how they can help you, 4 Kinds of DNA for Genetic Genealogy is perfect.

Do you think your DNA isn’t Viking because your ancestors aren’t from Scandinavia? Guess again!

Those Vikings didn’t stay home, and they didn’t restrict their escapades to the British Isles either.

This drawing depicts Viking ships besieging Paris in the year 845. Vikings voyaged into Russia and as far as the Mediterranean.

Have a child studying at home? This might be an interesting topic!

Migration Pedigree Chart

Another just plain fun idea is the Migration Pedigree Chart.

I created this migration pedigree chart in a spreadsheet, but you can also create a pedigree chart in genealogy software with whatever “names” you want. This will also help you figure out the estimated percentages of ethnicity you might reasonably expect.

Another idea for helping kids learn at home and they might accidentally learn about figuring percentages in the process.

ThruLines

ThruLines is the Ancestry tool that assists DNA testers with trees connect the dots to common ancestors with their matches. There are ways to optimize your tree to improve your connections, both in terms of accuracy and the number of Thrulines that form.

Optimizing Your Tree at Ancestry for More Hints and DNA ThruLines provides step by step instructions, which reminds me – I need to write a similar article for MyHeritage’s Theories of Family Relativity. I keep meaning to…

Covid

You know, it wouldn’t be 2020 if I didn’t HAVE to mention that word.

I’m glad to know that people were and hopefully still are educating themselves about Covid. Phylogenetic Tree of Novel Coronavirus (hCoV-19) Covid-19 reflected early information about the novel virus and our first efforts to sequence the DNA. Of course, as expected, just like any other organism, mutations have occurred since then.

Goodness knows, we are all tired of Covid and the resulting safety protocols. Keep on keeping on. We need you on the other side.

Stay home, mask up when you must leave, stay away from other people outside your family that you live with, wash your hands, and get vaccinated as soon as you can.

And until we can all see each other in person again, hopefully, sooner than later, keep on doing genealogy.

Locked in the Library

Be careful what you ask for.

Remember that dream where you’re locked in a library? Remember saying you don’t have enough time for genealogy?

Well, now you are and now you do.

The library is your desk with your computer or maybe your laptop on a picnic table in the yard.

DNA results, matches, and research tools are the books and you’re officially locked in for at least a few more weeks. Free articles like these are your guide.

Hmmm, pandemic isolation doesn’t sound so bad now, does it??

We’ll just rename it “genealogy library lock-in.”

Happy New Year!

What can you discover?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Genetic Affairs: AutoPedigree Combines AutoTree with WATO to Identify Your Potential Tree Locations

July 2020 Update: Please note that Ancestry issues a cease-and-desist order against Genetic Affairs, and this tool no longer works at Ancestry. The great news is that it still works at the other vendors, and you can ask Ancestry matches to transfer, which is free.

If you’re an adoptee or searching for an unknown parent or ancestor, AutoPedigree is just what you’ve been waiting for.

By now, we’re all familiar with Genetic Affairs who launched in 2018 with their signature autocluster tool. AutoCluster groups your matches into clusters by who your matches match with each other, in addition to you.

browser autocluster

A year later, in December 2019, Genetic Affairs introduced AutoTree, automated tree reconstruction based on your matches trees at Ancestry and Family Finder at Family Tree DNA, even if you don’t have a tree.

Now, Genetic Affairs has introduced AutoPedigree, a combination of the AutoTree reconstruction technology combined with WATO, What Are the Odds, as seen here at DNAPainter. WATO is a statistical probability technique developed by the DNAGeek that allows users to review possible positions in a tree for where they best fit.

Here’s the progressive functionality of how the three Genetic Affairs tools, combined, function:

  • AutoCluster groups people based on if they match you and each other
  • AutoTree finds common ancestors for trees from each cluster
  • Next, AutoTree finds the trees of all matches combined, including from trees of your DNA matches not in clusters
  • AutoPedigree checks to see if a common ancestor tree meets the minimum requirement which is (at least) 3 matches of greater to or equal to 30-40 cM. If yes, an AutoPedigree with hypotheses is created based on the common ancestor of the matching people.
  • Combined AutoPedigrees then reviews all AutoTrees and AutoPedigrees that have common ancestors and combine them into larger trees.

Let’s look at examples, beginning with DNAPainter who first implemented a form of WATO.

DNA Painter

Let’s say you’re trying to figure out how you’re related to a group of people who descend from a specific ancestral couple. This is particularly useful for someone seeking unknown parents or other unknown relationships.

DNA tools are always from the perspective of the tester, the person whose kit is being utilized.

At DNAPainter, you manually create the pedigree chart beginning with a common couple and creating branches to all of their descendants that you match.

This example at DNAPainter shows the matches with their cM amounts in yellow boxes.

xAutoPedigree DNAPainter WATO2

The tester doesn’t know where they fit in this pedigree chart, so they add other known lines and create hypothesis placeholder possibilities in light blue.

In other words, if you’re searching for your mother and you were born in 1970, you know that your mother was likely born between 1925 (if she was 45 when she gave birth to you) and 1955 (if she was 15 when she gave birth to you.) Therefore, in the family you create, you’d search for parents who could have given birth to children during those years and create hypothetical children in those tree locations.

The WATO tool then utilizes the combination of expected cMs at that position to create scores for each hypothesis position based on how closely or distantly you match other members of that extended family.

The Shared cM Project, created and recently updated by Blaine Bettinger is used as the foundation for the expected centimorgan (cM) ranges of each relationship. DNAPainter has automated the possible relationships for any given matching cM amount, here.

In the graphic above, you can see that the best hypothesis is #2 with a score of 1, followed by #4 and #5 with scores of 3 each. Hypothesis 1 has a score of 63.8979 and hypothesis 3 has a score of 383.

You’ll need to scroll to the bottom to determine which of the various hypothesis are the more likely.

Autopedigree DNAPainter calculated probability

Using DNAPainter’s WATO implementation requires you to create the pedigree tree to test the hypothesis. The benefit of this is that you can construct the actual pedigree as known based on genealogical research. The down-side, of course, is that you have to do the research to current in each line to be able to create the pedigree accurately, and that’s a long and sometimes difficult manual process.

Genetic Affairs and WATO

Genetic Affairs takes a different approach to WATO. Genetic Affairs removes the need for hand entry by scanning your matches at Ancestry and Family Tree DNA, automatically creating pedigrees based on your matches’ trees. In addition, Genetic Affairs automatically creates multiple hypotheses. You may need to utilize both approaches, meaning Genetic Affairs and DNAPainter, depending on who has tested, tree completeness at the vendors, and other factors.

The great news is that you can import the Genetic Affairs reconstructed trees into DNAPainter’s WATO tool instead of creating the pedigrees from scratch. Of course, Genetic Affairs can only use the trees someone has entered. You, on the other hand, can create a more complete tree at DNAPainter.

Combining the two tools leverages the unique and best features of both.

Genetic Affairs AutoPedigree Options

Recently, Genetic Affairs released AutoPedigree, their new tool that utilizes the reconstructed AutoTrees+WATO to place the tester in the most likely region or locations in the reconstructed tree.

Let’s take a look at an example. I’m using my own kit to see what kind of results and hypotheses exist for where I fit in the tree reconstructed from my matches and their trees.

If you actually do have a tree, the AutoTree portion will simply be counted as an equal tree to everyone else’s trees, but AutoPedigree will ignore your tree, creating hypotheses as if it doesn’t exist. That’s great for adoptees who may have hypothetical trees in progress, because that tree is disregarded.

First, sign on to your account at Genetic Affairs and select the AutoPedigree option for either Ancestry or Family Tree DNA which reconstructs trees and generates hypotheses automatically. For AutoPedigree construction, you cannot combine the results from Ancestry and FamilyTreeDNA like you can when reconstructing trees alone. You’ll need to do an AutoPedigree run for each vendor. The good news is that while Ancestry has more testers and matches, FamilyTreeDNA has many testers stretching back 20 years or so in the past who passed away before testing became available at Ancestry. Often, their testers reach back a generation or two further. You can easily transfer Ancestry (and other) results to Family Tree DNA for free to obtain more matches – step-by-step instructions here.

At Genetic Affairs, you should also consider including half-relations, especially if you are dealing with an unknown parent situation. Selecting half-relationships generates very large trees, so you might want to do the first run without, then a second run with half relationships selected.

AutoPedigree options

Results

I ran the program and opened the resulting email with the zip file. Saving that file automatically unzips for me, displaying the following 5 files and folders.

Autopedigree cluster

Clicking on the AutoCluster HTML link reveals the now-familiar clusters, shown below.

Autopedigree clusters

I have a total of 26 clusters, only partially shown above. My first peach cluster and my 9th blue cluster are huge.

Autopedigree 26 clusters

That’s great news because it means that I have a lot to work with.

autopedigree folder

Next, you’ll want to click to open your AutoPedigree folder.

For each cluster, you’ll have a corresponding AutoPedigree file if an AutoPedigree can be generated from the trees of the people in that cluster.

My first cluster is simply too large to show successfully in blog format, so I’m selecting a smaller cluster, #21, shown below with the red arrow, with only 6 members. Why so small, you ask? In part, because I want to illustrate the fact that you really don’t need a lot of matches for the AutoPedigree tool to be useful.

Autopedigree multiple clusters

Note also that this entire group of clusters (blue through brown) has members in more than one cluster, indicated by the grey cells that mean someone is a member of at least 2 clusters. That tells me that I need to include the information from those clusters too in my analysis. Fortunately, Genetic Affairs realizes that and provides a combined AutoPedigree tool for that as well, which we will cover later in the article. Just note for now that the blue through brown clusters seem to be related to cluster 21.

Let’s look at cluster 21.

autopedigree cluster 21

In the AutoPedigree folder, you’ll see cluster files when there are trees available to create pedigrees for individual clusters. If you’re lucky, you’ll find 2 files for some clusters.

autopedigree ancestors

At the top of each cluster AutoPedigree file, Genetic Affairs shows you the home couple of the descendant group shown in the matches and their corresponding trees.

Autopedigree WATO chart

Image 1 – click to enlarge

I don’t expect you to be able to read everything in the above pedigree chart, just note the matches and arrows.

You can see three of my cousins who match, labeled with “Ancestry.” You also see branches that generate a viable hypothesis. When generating AutoPedigrees, Genetic Affairs truncates any branches that cannot result in a viable hypothesis for placing the tester in a viable location on the tree, so you may not see all matches.

Autopedigree hyp 1

Image 2 – click to enlarge

On the top branch, you’ll see hyp-1-child1 which is the first hypothesis, with the first child. Their child is hyp-2- child2, and their child is hyp-3-child3. The tester (me, in this case) cannot be the persons shown with red flags, called badges, based on how I match other people and other tree information such as birth and death dates.

Think of a stoplight, red=no, green are your best bets and the rest are yellow, meaning maybe. AutoPedigree makes no decisions, only shows you options, and calculated mathematically how probable each location is to be correct.

Remember, these “children,” meaning hypothesis 1-child 1 may or may not have actually existed. These relationships are hypothetical showing you that IF these people existed, where the tester could appear on the tree.

We know that I don’t fit on the branch above hypothesis 1, because I only match the descendant of Adam Lentz at 44.2 cM which is statistically too low for me to also inhabit that branch.

I’ve included half relationships, so we see hyp-7-child1-half too, which is a half-sibling.

The rankings for hypotheses 1, 2, and 7 all have red badges, meaning not possible, so they have a score of 0. Hypothesis 3 and 8 are possible, with a ranking of 16, respectively.

autopedigree my location

Image 3 – click to enlarge

Looking now at the next segment of the tree, you see that based on how I match my Deatsman and Hartman cousins, I can potentially fit in any portion of the tree with green badges (in the red boxes) or yellow badges.

You can also see where I actually fit in the tree. HOWEVER, that placement is from AutoTree, the tree reconstruction portion, based on the fact that I have a tree (or someone has a tree with me in it). My own tree is ignored for hypothesis generation for the AutoPedigree hypothesis generation portion.

Had my first cousins once removed through my grandfather John Ferverda’s brother, Roscoe, tested AND HAD A TREE, there would have been no question where I fit based on how I match them.

autopedigree cousins

As it turns out they did test, but provided no tree meaning that Genetic Affairs had no tree to work with.

Remember that I mentioned that my first cluster was huge. Many more matches mean that Genetic Affairs has more to work with. From that cluster, here’s an example of a hypothesis being accurate.

autopedigree correct

Image 4 – click to enlarge

You can see the hypothetical line beneath my own line, with hypothesis 104, 105, 106, 107, 108. The AutoTree portion of my tree is shown above, with my father and grandparents and my name in the green block. The AutoPedigree portion ignores my own tree, therefore generating the hypothesis that’s where I could fit with a rank of 2. And yes, that’s exactly where I fit in the tree.

In this case, there were some hypotheses ranked at 1, but they were incorrect, so be sure to evaluate all good (green) options, then yellow, in that order.

Genetic Affairs cannot work with 23andMe results for AutoPedigree because 23andMe doesn’t provide or support trees on their site. AutoClusters are integrated at MyHeritage, but not the AutoTree or AutoPedigree functions, and they cannot be run separately.

That leaves Family Tree DNA and Ancestry.

Combined AutoPedigree

After evaluating each of the AutoPedigrees generated for each cluster for which an AutoPedigree can be generated, click on the various cluster combined autopedigrees.

autopedigree combined

You can see that for cluster 1, I have 7 separate AutoPedigrees based on common ancestors that were different. I have 3 AutoPedigrees also for cluster 9, and 2 AutoPedigrees for 15, 21, and 24.

I have no AutoPedigrees for clusters 2, 3, 5, 6, 7, 8, 14, 17, 18, and 22.

Moving to the combined clusters, the numbers of which are NOT correlated to the clusters themselves, Genetic Affairs has searched trees and combined ancestors in various clusters together when common ancestors were found.

Autopedigree multiple clusters

Remember that I asked you to note that the above blue through brown clusters seem to have commonality between the clusters based on grey cell matches who are found in multiple groups? In fact, these people do share common ancestors, with a large combined AutoPedigree being generated from those multiple clusters.

I know you can’t read the tree in the image that follows. I’m only including it so you’ll see the scale of that portion of my tree that can be reconstructed from my matches with hypotheses of where I fit.

autopedigree huge

Image 5 – click to enlarge

These larger combined pedigrees are very useful to tie the clusters together and understand how you match numerous people who descend from the same larger ancestral group, further back in time.

Integration with DNAPainter

autopedigree wato file

Each AutoPedigree file and combined cluster AutoPedigree file in the AutoPedigree folder is provided in WATO format, allowing you to import them into DNAPainter’s WATO tool.

autopedigree dnapainter import

You can manually flesh out the trees based on actual genealogy in WATO at DNAPainter, manually add matches from GEDmatch, 23andMe or MyHeritage or matches from vendors where your matches trees may not exist but you know how your match connects to you.

Your AutoTree Ancestors

But wait, there’s more.

autopedigree ancestors folder

If you click on the Ancestors folder, you’ll see 5 options for tree generations 3-7.

autopedigree ancestor generations

My three-generation auto-generated reconstructed tree looks like this:

autopedigree my tree

Selecting the 5th generation level displays Jacob Lentz and Frederica Ruhle, the couple shown in the AutoCluster 21 and AutoPedigree examples earlier. The color-coding indicates the source of the ancestors in that position.

Autopedigree expanded tree

click to enlarge

You will also note that Genetic Affairs indicates how many matches I have that share this common ancestor along with which clusters to view for matches relevant to specific ancestors. How cool is this?!!

Remember that you can also import the genetic match information for each AutoTree cluster found at Family Tree DNA into DNAPainter to paint those matches on your chromosomes using DNAPainter’s Cluster Auto Painter.

If you run AutoCluster for matches at 23andMe, MyHeritage, or FamilyTreeDNA, all vendors who provide segment information, you can also import that cluster segment information into DNAPainter for chromosome painting.

However, from that list of vendors, you can only generate AutoTrees and AutoPedigrees at Family Tree DNA. Given this, it’s in your best interest for your matches to test at or upload their DNA (plus tree) to Family Tree DNA who supports trees AND provides segment information, both, and where you can run AutoTree and AutoPedigree.

Have you painted your clusters or generated AutoTrees? If you’re an adoptee or looking for an unknown parent or grandparent, the new AutoPedigree function is exactly what you need.

Documentation

Genetic Affairs provides complete instructions for AutoPedigree in this newsletter, along with a user manual here, and the Facebook Genetic Affairs User Group can be found here.

I wrote the introductory article, AutoClustering by Genetic Affairs, here, and Genetic Affairs Reconstructs Trees from Genetic Clusters – Even Without Your Tree or Common Ancestors, here. You can read about DNAPainter, here.

Transfer your DNA file, for free, from Ancestry to Family Tree DNA or MyHeritage, by following the easy instructions, here.

Have fun! Your ancestors are waiting.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

 

Top 10 All-Time Favorite DNA Articles

Top 10

I’ve been writing about DNA is every shape and form for approaching 8 years now, offering more than 1200 free (key word seachable) articles.

First, thank you for being loyal subscribers or finding my articles and using them to boost your genealogy research with the power of DNA.

You may not know this, but many of my articles stem from questions that blog readers ask, plus my own genealogical research stumbling-blocks, of course.

DNAeXplain articles have accumulated literally millions and millions of page views, generating more than 38,000 approved comments. Yes, I read and approve (or not) every single comment. No, I do not have “staff” to assist. Staff consists of some very helpful felines who would approve any comment with the word catnip😊

More than twice that number of comments were relegated to spam. That’s exactly why I approve each one personally.

Old Faithful

Looking at your favorites, I’ve discovered that some of these articles have incredible staying power, meaning that people access them again and again. Given their popularity and usefulness, please feel free to share by linking or forwarding to your friends and genealogy groups.

Subscribe for FREE

Don’t forget, you can subscribe for free by clicking on the little grey “follow” box on the upper right hand side of the blog margin.

Top 10 subscribe

Just enter your e-mail address and click on follow. I don’t sell or share your e-mail, ever. I’ve never done a mass e-mailing either – so I’ll not be spamming you😊

You will receive each and every article, about 2 per week, in a nice handy e-mail, or RSS feed if you prefer.

Your Favorites

You didn’t realize it, but every time you click, you’re voting.

So, which articles are reader favorites? Remember that older articles have had more time to accumulate views.

I’ve noted the all-time ranking along with the 2019 ranking.

Starting with number 10, you chose:

  • Number 10 all-time, did not place in top 10 in 2019: Ethnicity Testing – A Conundrum – Published in 2016 – How ethnicity testing works – and why sometimes it doesn’t work like people expect it will.

Ethnicity results from DNA testing. Fascinating. Intriguing. Frustrating. Exciting. Fun. Challenging. Mysterious. Enlightening. And sometimes wrong. These descriptions all fit. Welcome to your personal conundrum! The riddle of you! If you’d like to understand why your ethnicity results might not have … Continue reading →

  • Number 9 all time and number 4 in 2019: How Much Indian Do I Have in Me? – Published in 2015 – This article explains how to convert that family story into an expected percentage.

I can’t believe how often I receive this question. Here’s today’s version from Patrick. “My mother had 1/8 Indian and my grandmother on my father’s side was 3/4, and my grandfather on my father’s side had 2/3. How much would … Continue reading →

  • Number 8 all-time, did not place in top 10 in 2019: 4 Kinds of DNA for Genetic Genealogy – Published in 2012 – Short, basic and THE article I refer people to most often to understand DNA for genealogy.

Let’s talk about the different “kinds” of DNA and how they can be used for genetic genealogy. It used to be simple. When this “industry” first started, in the year 2000, you could test two kinds of DNA and it was … Continue reading →

Yep, there’s a gene for these traits, and more. The same gene, named EDAR (short for Ectodysplasin receptor EDARV370A), it turns out, also confers more sweat glands and distinctive teeth and is found in the majority of East Asian people. This is one … Continue reading →

  • Number 6 all-time, did not place in top 10 in 2019: What is a Haplogroup? – Published in 2013 – One of the first questions people ask about Y and mitochondrial DNA is about haplogroups.

Sometimes we’ve been doing genetic genealogy for so long we forget what it’s like to be new. I’m reminded, sometimes humorously, by some of the questions I receive. When I do DNA Reports for clients, each person receives a form to … Continue reading

  • Number 5 all-time and number 10 in 2019: X Marks the Spot – Published in 2012 – This article explains how to use the X chromosome for genealogy and its unique inheritance path.

When using autosomal DNA, the X chromosome is a powerful tool with special inheritance properties. Many people think that mitochondrial DNA is the same as the X chromosome. It’s not. Mitochondrial DNA is inherited maternally, only. This means that mothers … Continue reading →

  • Number 4 all-time, did not place in top 10 in 2019: Ethnicity Results – True or Not? – Published in 2013 – Are your ethnicity results accurate? How can you know, and why might your percentages reflect something different than you expect?

I can’t even begin to tell you how many questions I receive that go something like this: “I received my ethnicity results from XYZ. I’m confused. The results don’t seem to align with my research and I don’t know what … Continue reading →

  • Number 3 all-time and number 1 in 2019: Concepts – Calculating Ethnicity Percentages – Published in 2017 – With the huge number of ethnicity testers, it’s no surprise that the most popular article discussed how those percentages are calculated.

There has been a lot of discussion about ethnicity percentages within the genetic genealogy community recently, probably because of the number of people who have recently purchased DNA tests to discover “who they are.” Testers want to know specifically if ethnicity percentages are right … Continue reading →

  • Number 2 all-time, did not place in top 10 in 2019: Which DNA Test is Best? – Published in 2017 – A comprehensive review of the tests and major vendors in the genetic genealogy testing space. The answer is that your testing goals determine which test is best. This article aligns goals with tests.

If you’re reading this article, congratulations. You’re a savvy shopper and you’re doing some research before purchasing a DNA test. You’ve come to the right place. The most common question I receive is asking which test is best to purchase. There is … Continue reading →

Every day, I receive e-mails very similar to this one. “My family has always said that we were part Native American.  I want to prove this so that I can receive help with money for college.” The reasons vary, and … Continue reading →

2019 Only

Five articles ranked in the top 10 in 2019 that aren’t in the top all-time 10 articles. Two were just published in 2019.

  • Number 8 for 2019: Migration Pedigree Chart – Published in 2016 – This fun article illustrates how to create a pedigree charting focused on the locations of your ancestors.

Paul Hawthorne started a bit of a phenomenon, whether he meant to or not, earlier this week on Facebook, when he created a migration map of his own ancestors using Excel to reflect his pedigree chart. You can view … Continue reading →

Just as they promised, and right on schedule, Family Tree DNA today announced X chromosome matching. They have fully integrated X matching into their autosomal Family Finder product matching. This will be rolling live today. Happy New Year from Family … Continue reading →

  • Number 6 for 2019: Full or Half Siblings – Published in April 2019 – Want to know how to determine the difference between full and half siblings? This is it.

Many people are receiving unexpected sibling matches. Every day on social media, “surprises” are being reported so often that they are no longer surprising – unless of course you’re the people directly involved and then it’s very personal, life-altering and you’re … Continue reading →

Ancestry’s new tool, ThruLines has some good features and a lot of potential, but right now, there are a crop of ‘gators in the swimmin’ hole – just waiting for the unwary. Here’s help to safely navigate the waters and … Continue reading →

One of the most common questions I receive, especially in light of the interest in ethnicity testing, is how much of an ancestor’s DNA someone “should” share. The chart above shows how much of a particular generation of ancestors’ DNA … Continue reading →

In Summary

Taking a look at a summary chart is interesting. From my perspective, I never expected the “Thick Hair, Small Boobs” article to be so popular.

“Which DNA Test is Best?” ranked #2 all time, but not in the 2019 top 10. I wonder if that is a function of the market softening a bit, or of fewer people researching before purchasing.

I was surprised that 5 of the top 10 all-time were not in the top 10 of 2019.

Conversely, I’m equally as surprised that 3 of the older 2019 articles not in the all-time top 10.

I’m very glad these older articles continue to be useful, and I do update them periodically, especially if I notice they are accessed often.

Article All-time Top 10 2019 Top 10
Ethnicity Testing – A Conundrum 10 0
How Much Indian Do I Have in Me? 9 4
4 Kinds of DNA for Genetic Genealogy 8 0
Thick Hair, Small Boobs, Shovel Shaped Teeth, and More 7 9
What is a Haplogroup? 6 0
X Marks the Spot 5 10
Ethnicity Results – True or Not? 4 0
Concepts – Calculating Ethnicity Percentages 3 1
Which DNA Test is Best? 2 0
Proving Native American Ancestry Using DNA 1 2
Migration Pedigree Chart 0 8
X Chromosome Matching at Family Tree DNA 0 7
Full or Half Siblings Published in 2019 6
Ancestry’s ThruLines Dissected: How to Use and Not get Bit by the ‘Gators Published in 2019 5
Ancestral DNA Percentages – How Much of Them is in You? 0 3

What Would You Like to See in 2020?

Given that your questions are often my inspiration, what articles would you like to see in 2020?

Are there topics you’d like to see covered? (Sorry, I don’t know the name of your great-great-grandfather’s goat.)

Burning questions you’d like to have answered? (No, I don’t know why there is air.)

Something you’ve been wishing for? (Except maybe for the 1890 census.)

Leave a comment and let me know. (Seriously😊)

I’m looking forward to a wonderful 2020 and hope you’ll come along!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

DNAPainter Instructions and Resources

DNAPainter garden

DNAPainter is one of my favorite tools because DNAPainter, just as its name implies, facilitates users painting their matches’ segments on their various chromosomes. It’s genetic art and your ancestors provide the paint!

People use DNAPainter in different ways for various purposes. I utilize DNAPainter to paint matches with whom I’ve identified a common ancestor and therefore know the historical “identity” of the ancestors who contributed that segment.

Those colors in the graphic above are segments identified to different ancestors through DNA matching.

DNAPainter includes:

  • The ability to paint or map your chromosomes with your matching segments as well as your ethnicity segments
  • The ability to upload or create trees and mark individuals you’ve confirmed as your genetic ancestors
  • A number of tools including the Shared cM Tool to show ranges of relationships based on your match level and WATO (what are the odds) tool to statistically predict or estimate various positions in a family based on relationships to other known family members

A Repository

I’ve created this article as a quick-reference instructional repository for the articles I’ve written about DNAPainter. As I write more articles, I’ll add them here as well.

  • The Chromosome Sudoku article introduced DNAPainter and how to use the tool. This is a step-by-step guide for beginners.

DNA Painter – Chromosome Sudoku for Genetic Genealogy Addicts

  • Where do you find those matches to paint? At the vendors such as Family Tree DNA, MyHeritage, 23andMe and GedMatch, of course. The Mining Vendor Matches article explains how.

DNAPainter – Mining Vendor Matches to Paint Your Chromosomes

  • Touring the Chromosome Garden explains how to interpret the results of DNAPainter, and how automatic triangulation just “happens” as you paint. I also discuss ethnicity painting and how to handle questionable ancestors.

DNA Painter – Touring the Chromosome Garden

  • You can prove or disprove a half-sibling relationship using DNAPainter – for you and also for other people in your tree.

Proving or Disproving a Half Sibling Relationship Using DNAPainter

  • Not long after Dana Leeds introduced The Leeds Method of clustering matches into 4 groups representing your 4 grandparents, I adapted her method to DNAPainter.

DNAPainter: Painting the Leeds Method Matches

  • Ethnicity painting is a wonderful tool to help identify Native American or minority ancestry segments by utilizing your estimated ethnicity segments. Minority in this context means minority to you.

Native American and Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments

  • Creating a tree or uploading a GEDCOM file provides you with Ancestral Trees where you can indicate which people in your tree are genetically confirmed as your ancestors.

DNAPainter: Ancestral Trees

  • Of course, the key to DNA painting is to have as many matches and segments as possible identified to specific ancestors. In order to do that, you need to have your DNA working for you at as many vendors as possible that provide you with matching and a chromosome browser. Ancestry does not have a browser or provide specific paintable segment information, but the other major vendors do, and you can transfer Ancestry results elsewhere.

DNAPainter: Painting “Bucketed” Family Tree DNA Maternal and Paternal Family Finder Matches in One Fell Swoop

  • Family Tree DNA offers the wonderful feature of assigning your matches to either a maternal or paternal bucket if you connect 4th cousins or closer on your tree. Until now, there was no way to paint that information at DNAPainter en masse, only manually one at a time. DNAPainter’s new tool facilitates a mass painting of phased, parentally bucketed matches to the appropriate chromosome – meaning that triangulation groups are automatically formed!

Triangulation in Action at DNAPainter

  • DNAPainter provides the ability to triangulate “automatically” when you paint your segments as long as you know which side, maternal or paternal, the match originates. Looking at the common ancestors of your matches on a specific segments tracks that segment back in time to its origins. Painting matches from all vendors who provide segment information facilitates once single repository for walking your DNA information back in time.

Paint Your Way Up Your Tree with MyHeritage, AutoClusters and DNAPainter – Free Webtember Webinar

  • This webinar is available through Legacy Family Tree Webinars, which you can join, here, and discusses literally how to paint your way back in time using DNAPainter with information from MyHeritage’s tools including SmartMatches, Theories of Family Relativity, and AutoClusters. Discover which ancestors your DNA came from.

DNA Transfers

Some vendors don’t require you to test at their company and allow transfers into their systems from other vendors. Those vendors do charge a small fee to unlock their advanced features, but not as much as testing there.

Ancestry and 23andMe DO NOT allow transfers of DNA from other vendors INTO their systems, but they do allow you to download your raw DNA file to transfer TO other vendors.

Family Tree DNA, MyHeritage and GedMatch all 3 accept files uploaded FROM other vendors. Family Tree DNA and MyHeritage also allow you to download your raw data file to transfer TO other vendors.

These articles provide step-by-step instructions how to download your results from the various vendors and how to upload to that vendor, when possible.

Here are some suggestions about DNA testing and a transfer strategy:

Paint and have fun!!!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research