Concepts – Calculating Ethnicity Percentages

There has been a lot of discussion about ethnicity percentages within the genetic genealogy community recently, probably because of the number of people who have recently purchased DNA tests to discover “who they are.”

Testers want to know specifically if ethnicity percentages are right or wrong, and what those percentages should be. The next question, of course, is which vendor is the most accurate.

Up front, let me say that “your mileage may vary.” The vendor that is the most accurate for my German ancestry may not be the same vendor that is the most accurate for the British Isles or Native American. The vendor that is the most accurate overall for me may not be the most accurate for you. And the vendor that is the most accurate for me today, may no longer be the most accurate when another vendor upgrades their software tomorrow. There is no universal “most accurate.”

But then again, how does one judge “most accurate?” Is it just a feeling, or based on your preconceived idea of your ethnicity? Is it based on the results of one particular ethnicity, or something else?

As a genealogist, you have a very powerful tool to use to figure out the percentages that your ethnicity SHOULD BE. You don’t have to rely totally on any vendor. What is that tool? Your genealogy research!

I’d like to walk you through the process of determining what your own ethnicity percentages should be, or at least should be close to, barring any surprises.

By surprises, in this case, we’re assuming that all 64 of your GGGG-grandparents really ARE your GGGG-grandparents, or at least haven’t been proven otherwise. Even if one or two aren’t, that really only affects your results by 1.56% each. In the greater scheme of things, that’s trivial unless it’s that minority ancestor you’re desperately seeking.

A Little Math

First, let’s do a little very basic math. I promise, just a little. And it really is easy. In fact, I’ll just do it for you!

You have 64 great-great-great-great-grandparents.

Generation # You Have Who Approximate Percentage of Their DNA That You Have Today
1 You 100%
1 2 Parents 50%
2 4 Grandparents 25%
3 8 Great-grandparents 12.5%
4 16 Great-great-grandparents 6.25%
5 32 Great-great-great-grandparents 3.12%
6 64 Great-great-great-great-grandparents 1.56%

Each of those GGGG-grandparents contributed 1.56% of your DNA, roughly.

Why 1.56%?

Because 100% of your DNA divided by 64 GGGG-grandparents equals 1.56% of each of those GGGG-grandparents. That means you have roughly 1.56% of each of those GGGG-grandparents running in your veins.

OK, but why “roughly?”

We all know that we inherit 50% of each of our parents’ DNA.

So that means we receive half of the DNA of each ancestor that each parent received, right?

Well, um…no, not exactly.

Ancestral DNA isn’t divided exactly in half, by the “one for you and one for me” methodology. In fact, DNA is inherited in chunks, and often you receive all of a chunk of DNA from that parent, or none of it. Seldom do you receive exactly half of a chunk, or ancestral segment – but half is the AVERAGE.

Because we can’t tell exactly how much of any ancestor’s DNA we actually do receive, we have to use the average number, knowing full well we could have more than our 1.56% allocation of that particular ancestor’s DNA, or none that is discernable at current testing thresholds.

Furthermore, if that 1.56% is our elusive Native ancestor, but current technology can’t identify that ancestor’s DNA as Native, then our Native heritage melds into another category. That ancestor is still there, but we just can’t “see” them today.

So, the best we can do is to use the 1.56% number and know that it’s close. In other words, you’re not going to find that you carry 25% of a particular ancestor’s DNA that you’re supposed to carry 1.56% for. But you might have 3%, half of a percent, or none.

Your Pedigree Chart

To calculate your expected ethnicity percentages, you’ll want to work with a pedigree chart showing your 64 GGGG-grandparents. If you haven’t identified all 64 of your GGGG-grandparents – that’s alright – we can accommodate that. Work with what you do have – but accuracy about the ancestors you have identified is important.

I use RootsMagic, and in the RootsMagic software, I can display all 64 GGGG-grandparents by selecting all 4 of my grandparents one at a time.

In the first screen, below, my paternal grandfather is blue and my 16 GGGG-grandparents that are his ancestors are showing to the far right.  Please note that you can click on any of the images to enlarge.

ethnicity-pedigree

Next, my paternal grandmother

ethnicity-pedigree-1

Next, my maternal grandmother.

ethnicity-pedigree-2

And finally, my maternal grandfather.

ethnicity-pedigre-3

These displays are what you will work from to create your ethnicity table or chart.

Your Ethnicity Table

I simply displayed each of these 16 GGGG-grandparents and completed the following grid. I used a spreadsheet, but you can use a table or simply do this on a tablet of paper. Technology not required.

You’ll want 5 columns, as shown below.

  • Number 1-64, to make sure you don’t omit anyone
  • Name
  • Birth Location
  • 1.56% Source – meaning where in the world did the 1.56% of the DNA you received from them come from? This may not be the same as their birth location. For example an Irish man born in Virginia counts as an Irish man.
  • Ancestry – meaning if you don’t know positively where that ancestor is from, what do you know about them? For example, you might know that their father was German, but uncertain about the mother’s nationality.

My ethnicity table is shown below.

ethnicity-table

In some cases, I had to make decisions.

For example, I know that Daniel Miller’s father was a German immigrant, documented and proven. The family did not speak English. They were Brethren, a German religious sect that intermarried with other Brethren.  Marriage outside the church meant dismissal – so your children would not have been Brethren. Therefore, it would be extremely unlikely, based on both the language barrier and the Brethren religious customs for Daniel’s mother, Magdalena, to be anything other than German – plus, their children were Brethren..

We know that most people married people within their own group – partly because that is who they were exposed to, but also based on cultural norms and pressures. When it comes to immigrants and language, you married someone you could communicate with.

Filling in blanks another way, a local German man was likely the father of Eva Barbara Haering’s illegitmate child, born to Eva Barbara in her home village in Germany.

Obviously, there were exceptions, but they were just that, the exception. You’ll have to evaluate each of your 64 GGGG-grandparents individually.

Calculating Percentages

Next, we’re going to group locations together.

For example, I had a total of one plus that was British Isles. Three and a half, plus, that were Scottish. Nine and a half that were Dutch.

ethnicity-summary

You can’t do anything with the “plus” designation, but you can multiply by everything else.

So, for Scottish, 3 and a half (3.5) times 1.56% equals 5.46% total Scottish DNA. Follow this same procedure for every category you’re showing.

Do the same for “uncertain.”

Incorporating History

In my case, because all of my uncertain lines are on my father’s colonial side, and I do know locations and something about their spouses and/or the population found in the areas where each ancestor is located, I am making an “educated speculation” that these individuals are from the British Isles. These families didn’t speak German, or French, or have French or German, Dutch or Scandinavian surnames. People married others like themselves, in their communities and churches.

I want to be very clear about this. It’s not a SWAG (serious wild-a** guess), it’s educated speculation based on the history I do know.

I would suggest that there is a difference between “uncertain” and “unknown origin.” Unknown origin connotates that there is some evidence that the individual is NOT from the same background as their spouse, or they are from a highly mixed region, but we don’t know.

In my case, this leaves a total of 2 and a half that are of unknown origin, based on the other “half” that isn’t known of some lineages. For example, I know there are other Native lines and at least one African line, but I don’t know what percentage of which ancestor how far back. I can’t pinpoint the exact generation in which that lineage was “full” and not admixed.

I have multiple Native lines in my mother’s side in the Acadian population, but they are further back than 6 generations and the population is endogamous – so those ancestors sometimes appear more than once and in multiple Acadian lines – meaning I probably carry more of their DNA than I otherwise would. These situations are difficult to calculate mathematically, so just keep them in mind.

Given the circumstances based on what I do know, the 3.9% unknown origin is probably about right, and in this case, the unknown origin is likely at least part Native and/or African and probably some of each.

ethnicity-summary-2

The Testing Companies

It’s very difficult to compare apples to apples between testing companies, because they display and calculate ethnicity categories differently.

For example, Family Tree DNA’s regions are fairly succinct, with some overlap between regions, shown below.

ethnicity-ftdna-map

Some of Ancestry’s regions overlap by almost 100%, meaning that any area in a region could actually be a part of another region.

ethnicity-ancestry-map-2

For example look at the United Kingdom and Ireland. The United Kingdom region overlaps significantly into Europe.

ethnicity-ancestry-map

Here’s the Great Britain region close up, below, which is shown differently from the map above. The Great Britain region actually overlaps almost the entire western half of Europe.

ethnicity-ancestry-great-britain

That’s called hedging your bets, or maybe it’s simply the nature of ethnicity. Granted, the overlaps are a methodology for the vendor not to be “wrong,” but people and populations did and do migrate, and the British Isles was somewhat of a destination location.

This Germanic Tribes map, also from Ancestry’s Great Britain section, illustrates why ethnicity calculations are so difficult, especially in Europe and the British Isles.

ethnicity-invaders

Invaders and migrating groups brought their DNA.  Even if the invaders eventually left, their DNA often became resident in the host population.

The 23andMe map, below, is less detailed in terms of viewing how regions overlap.

ethnicity-23andme-map

The Genographic project breaks ethnicity down into 9 world regions which they indicate reflect both recent influences and ancient genetics dating from 500 to 10,000 years ago. I fall into 3 regions, shown by the shadowy Circles on the map, below.

ethnicity-geno-map-2

The following explanation is provided by the Genographic Project for how they calculate and explain the various regions, based on early European history.

ethnicity-geno-regions

Let’s look at how the vendors divide ethnicity and see what kind of comparisons we can make utilizing the ethnicity table we created that represents our known genealogy.

Family Tree DNA

MyOrigins results at Family Tree DNA show my ethnicity as:

ethnicity-ftdna-percents

I’ve reworked my ethnicity totals format to accommodate the vendor regions, creating the Ethnicity Totals Table, below. The “Genealogy %” column is the expected percentage based on my genealogy calculations. I have kept the “British Isles Inferred” percentage separate since it is the most speculative.

ethnicity-ftdna-table

I grouped the regions so that we can obtain a somewhat apples-to-apples comparison between vendor results, although that is clearly challenging based on the different vendor interpretations of the various regions.

Note the Scandinavian, which could potentially be a Viking remnant, but there would have had to be a whole boatload of Vikings, pardon the pun, or Viking is deeply inbedded in several population groups.

Ancestry

Ancestry reports my ethnicity as:

ethnicity-ancestry-amounts

Ancestry introduces Italy and Greece, which is news to me. However, if you remember, Ancestry’s Great Britain ethnicity circle reaches all the way down to include the top of Italy.

ethnicity-ancestry-table

Of all my expected genealogy regions, the most definitive are my Dutch, French and German. Many are recent immigrants from my mother’s side, removing any ambiguity about where they came from. There is very little speculation in this group, with the exception of one illegitimate German birth and two inferred German mothers.

23andMe

23andMe allows customers to change their ethnicity view along a range from speculative to conservative.

ethnicity-23andme-levels

Generally, genealogists utilize the speculative view, which provides the greatest regional variety and breakdown. The conservative view, in general, simply rolls the detail into larger regions and assigns a higher percentage to unknown.

I am showing the speculative view, below.

ethnicity-23andme-amounts

Adding the 23andMe column to my Ethnicity Totals Table, we show the following.

ethnicity-23andme-table-2

Genographic Project 2.0

I also tested through the Genographic project. Their results are much more general in nature.

ethnicity-geno-amounts

The Genographic Project results do not fit well with the others in terms of categorization. In order to include the Genographic ethnicity numbers, I’ve had to add the totals for several of the other groups together, in the gray bands below.

ethnicity-geno-table-2

Genographic Project results are the least like the others, and the most difficult to quantify relative to expected amounts of genealogy. Genealogically, they are certainly the least useful, although genealogy is not and never has been the Genographic focus.

I initially omitted this test from this article, but decided to include it for general interest. These four tests clearly illustrate the wide spectrum of results that a consumer can expect to receive relative to ethnicity.

What’s the Point?

Are you looking at the range of my expected ethnicity versus my ethnicity estimates from the these four entities and asking yourself, “what’s the point?”

That IS the point. These are all proprietary estimates for the same person – and look at the differences – especially compared to what we do know about my genealogy.

This exercise demonstrates how widely estimates can vary when compared against a relatively solid genealogy, especially on my mother’s side – and against other vendors. Not everyone has the benefit of having worked on their genealogy as long as I have. And no, in case you’re wondering, the genealogy is not wrong. Where there is doubt, I have reflected that in my expected ethnicity.

Here are the points I’d like to make about ethnicity estimates.

  • Ethnicity estimates are interesting and alluring.
  • Ethnicity estimates are highly entertaining.
  • Don’t marry them. They’re not dependable.
  • Create and utilize your ethnicity chart based on your known, proven genealogy which will provide a compass for unknown genealogy. For example, my German and Dutch lines are proven unquestionably, which means those percentages are firm and should match up relatively well to vendor ethnicity estimates for those regions.
  • Take all ethnicity estimates with a grain of salt.
  • Sometimes the shaker of salt.
  • Sometimes the entire lick of salt.
  • Ethnicity estimates make great cocktail party conversation.
  • If the results don’t make sense based on your known genealogical percentages, especially if your genealogy is well-researched and documented, understand the possibilities of why and when a healthy dose of skepticism is prudent. For example, if your DNA from a particular region exceeds the total of both of your parents for that region, something is amiss someplace – which is NOT to suggest that you are not your parents’ child.  If you’re not the child of one or both parents, assuming they have DNA tested, you won’t need ethnicity results to prove or even suggest that.
  • Ethnicity estimates are not facts beyond very high percentages, 25% and above. At that level, the ethnicity does exist, but the percentage may be in error.
  • Ethnicity estimates are generally accurate to the continent level, although not always at low levels. Note weasel word, “generally.”
  • We should all enjoy the results and utilize these estimates for their hints and clues.  For example, if you are an adoptee and you are 25% African, it’s likely that one of your grandparents was Africa, or two of your grandparents were roughly half African, or all four of your grandparents were one-fourth African.  Hints and clues, not gospel and not cast in concrete. Maybe cast in warm Jello.
  • Ethnicity estimates showing larger percentages probably hold a pearl of truth, but how big the pearl and the quality of the pearl is open for debate. The size and value of the pearl is directly related to the size of the percentage and the reference populations.
  • Unexpected results are perplexing. In the case of my unknown 8% to 12% Scandinavian – the Vikings may be to blame, or the reference populations, which are current populations, not historical populations – or some of each. My Scandinavian amounts translate into between 5 and 8 of my GGGG-grandparents being fully Scandinavian – and that’s extremely unlikely in the middle of Virginia in the 1700s.
  • There can be fairly large slices of completely unexplained ethnicity. For example, Scandinavia at 8-12% and even more perplexing, Italy and Greece. All I can say is that there must have been an awful lot of Vikings buried in the DNA of those other populations. But enough to aggregate, cumulatively, to between a great-grandparent at 12.5% and a great-great-grandparent at 6.25%? I’m not convinced. However, all three vendors found some Scandinavian – so something is afoot. Did they all use the same reference population data for Scandinavian? For the time being, the Scandinavian results remain a mystery.
  • There is no way to tell what is real and what is not. Meaning, do I really have some ancient Italian/Greek and more recent Scandinavian, or is this deep ancestry or a reference population issue? And can the lack of my proven Native and African ancestry be attributed to the same?
  • Proven ancestors beyond 6 generations, meaning Native lineages, disappear while undocumentable and tenuous ancestors beyond 6 generations appear – apparently, en masse. In my case, kind of like a naughty Scandinavian ancestral flash mob, taunting and tormenting me. Who are those people??? Are they real?
  • If the known/proven ethnicity percentages from Germany, Netherlands and France can be highly erroneous, what does that imply about the rest of the results? Especially within Europe? The accuracy issue is especially pronounced looking at the wide ranges of British Isles between vendors, versus my expected percentage, which is even higher, although the inferred British Isles could be partly erroneous – but not on this magnitude. Apparently part of by British Isles ancestry is being categorized as either or both Scandinavian or European.
  • Conversely, these estimates can and do miss positively genealogically proven minority ethnicity. By minority, I mean minority to the tester. In my case, African and Native that is proven in multiple lines – and not just by paper genealogy, but by Y and mtDNA haplogroups as well.
  • Vendors’ products and their estimates will change with time as this field matures and reference populations improve.
  • Some results may reflect the ancient history of the entire population, as indicated by the Genographic Project. In other words, if the entire German population is 30% Mediterranean, then your ancestors who descend from that population can be expected to be 30% Mediterranean too. Except I don’t show enough Mediterranean ancestry to be 30% of my German DNA, which would be about 8% – at least not as reported by any vendor other than the Genographic Project.
  • Not all vendors display below 1% where traces of minority admixture are sometimes found. If it’s hard to tell if 8-12% Scandinavian is real, it’s almost impossible to tell whether less than 1% of anything is real.  Having said that, I’d still like to see my trace amounts, especially at a continental level which tends to be more reliable, given that is where both my Native and African are found.
  • If the reason my Native and African ancestors aren’t showing is because their DNA was not passed on in subsequent generations, causing their DNA to effectively “wash out,” why didn’t that happen to Scandinavian?
  • Ethnicity estimates can never disprove that an ancestor a few generations back was or was not any particular ethnicity. (However, Y and mitochondrial DNA testing can.)
  • Absence of evidence is not evidence of absence, except in very recent generations – like 2 (grandparents at 25%), maybe 3 generations (great-grandparents at 12.5%).
  • Continental level estimates above 10-12 percent can probably be relied upon to suggest that the particular continental level ethnicity is present, but the percentage may not be accurate. Note the weasel wording here – “probably” – it’s here on purpose. Refer to Scandinavia, above – although that’s regional, not continental, but it’s a great example. My proven Native/African is nearly elusive and my mystery Scandinavian/Greek/Italian is present in far greater percentages than it should be, based upon proven genealogy.
  • Vendors, all vendors, struggle to separate ethnicity regions within continents, in particular, within Europe.
  • Don’t take your ethnicity results too seriously and don’t be trading in your lederhosen for kilts, or vice versa – especially not based on intra-continental results.
  • Don’t change your perception of who you are based on current ethnicity tests. Otherwise you’re going to feel like a chameleon if you test at multiple vendors.
  • Ethnicity estimates are not a short cut to or a replacement for discovering who you are based on sound genealogical research.
  • No vendor, NOT ANY VENDOR, can identify your Native American tribe. If they say or imply they can, RUN, with your money. Native DNA is more alike than different. Just because a vendor compares you to an individual from a particular tribe, and part of your DNA matches, does NOT mean your ancestors were members of or affiliated with that tribe. These three major vendors plus the Genographic Project don’t try to pull any of those shenanigans, but others do.
  • Genetic genealogy and specifically, ethnicity, is still a new field, a frontier.
  • Ethnicity estimates are not yet a mature technology as is aptly illustrated by the differences between vendors.
  • Ethnicity estimates are that. ESTIMATES.

If you like to learn more about ethnicity estimates and how they are calculated, you might want to read this article, Ethnicity Testing, A Conundrum.

Summary

This information is NOT a criticism of the vendors. Instead, this is a cautionary tale about correctly setting expectations for consumers who want to understand and interpret their results – and about how to use your own genealogy research to do so.

Not a day passes that I don’t receive very specific questions about the interpretation of ethnicity estimates. People want to know why their results are not what they expected, or why they have more of a particular geographic region listed than their two parents combined. Great questions!

This phenomenon is only going to increase with the popularity of DNA testing and the number of people who test to discover their identity as a result of highly visible ad campaigns.

So let me be very clear. No one can provide a specific interpretation. All we can do is explain how ethnicity estimates work – and that these results are estimates created utilizing different reference populations and proprietary software by each vendor.

Whether the results match each other or customer expectations, or not, these vendors are legitimate, as are the GedMatch ethnicity tools. Other vendors may be less so, and some are outright unethical, looking to exploit the unwary consumer, especially those looking for Native American heritage. If you’re interested in how to tell the difference between legitimate genetic information and a company utilizing pseudo-genetics to part you from your money, click here for a lecture by Dr. Jennifer Raff, especially about minutes 48-50.

Buyer beware, both in terms of purchasing DNA testing for ethnicity purposes to discover “who you are” and when internalizing and interpreting results.

The science just isn’t there yet for answers at the level most people seek.

My advice, in a nutshell: Stay with legitimate vendors. Enjoy your ethnicity results, but don’t take them too seriously without corroborating traditional genealogical evidence!

Mitochondrial DNA Haplogroup Y

Pam, a lady with very interesting mitochondrial DNA, recently asked me about mitochondrial haplogroup Y1, and if it had ever been found in the Native American population. The answer, as best I knew, was a resounding “no.”

Pam told me that she had only found about 15 people who were of that haplogroup and most of them are East Asian. Her most distant matrilineal ancestor is from Slovakia as is her full sequence exact match at Family tree DNA. A more distant match’s most distant ancestor was born in Istanbul, but immigrated there from someplace in Europe, possibly the Ukraine or Slovakia. A third match’s immediate family was from the Ukraine near Belarus from the 1880s.

The migration map provided by Family Tree DNA tells us the following about haplogroup Y:

ftdna-mtdna-y

Given that this haplogroup is primarily eastern Asian, Pam wondered if there was any possibility that this was a “sleeper” haplogroup and had been found in the Native American population since the most recent papers had been published.

Good question. Let’s take a look.

The History of Mitochondrial Haplogroup Y

Haplogroup Y evolved from haplogroup N9 that evolved from haplogroup N that evolved from haplogroup L3, which was African.

  • L3
  • N
  • N9
  • Y
  • Y1

As a National Geographic Genographic Affiliate Researcher, I decided to take a look at what information the Genographic Project might reveal about mtDNA haplogroup Y. For starters, the Genographic project provides a nice compact tree in their research database.

nat-geo-mtdna-y

I created a chart combining the subgroups of haplogroup Y, the age of each group, the standard deviation for each subgroup, the defining mutations as provided by the Genographic project (Phylotree Version 16) and the oldest maternal birth locations for haplogroup Y subgroup participants in the Genographic Project. The age should be read as “most likely 24,576 but the range would be from 17,493-31,659 years ago.” I would simply say that haplogroup Y was born about 25,000 years ago. If you think of a bell shaped curve, 24,576 would be the top of the bell and the tails, which are increasingly less likely would extend 7,083 years in both directions.

Haplogroup Age per Dr. Doron Behar Standard Deviation (+-) RSRS Defining Mutations (Genographic V 16) Genographic Oldest Maternal Birth Locations Other
Y 24,576 7,083 G8392A, A10398G!, T14178C, A14693G, T16126C, T16223C, T16231C China (2)
Y1 14,689 5,264 T146C!, G3834A, (C16266T) Slovakia, Czech, Poland, China, Korea (2)
Y1a 7,467 5526 A7933G, T16189C! None
Y1b 9,222 4,967 A10097G, C15460T

 

None
Y1b1 G15221A Russia, Korea
Y1b1a C9278T none
Y2 7,279 2,894 T482C, G5147A, T6941C, F7859A, A14914G, A15244G, T16311C! Simonstown, Western Cape, South Africa “coloured”
Y2a 4,929 2,789 T12161C Philippines
Y2a1 2.488 2,658 T11299C Philippines (8), Sumatra Indonesia, Spain, Malaysia, China, Ireland
Y2a1a C2856T, G13135A none
Y2b 1,741 3,454 C338T none

Unfortunately, there is no mitochondrial haplogroup Y project at Family Tree DNA, so I can’t do any comparisons there.

This article at WikiPedia provides a chart of where mtDNA haplogroup Y has been found in academic studies, along with the following verbiage:

Haplogroup Y has been found with high frequency in many indigenous populations who live around the Sea of Okhotsk, including approximately 66% of Nivkhs, approximately 38% of Ulchs, approximately 21% of Negidals, and approximately 20% of Ainus. It is also fairly common among indigenous peoples of the Kamchatka Peninsula (Koryaks, Itelmens) and Maritime Southeast Asia.

The distribution of haplogroup Y in populations of the Malay Archipelago contrasts starkly with the absence or extreme rarity of this haplogroup in populations of continental Southeast Asia in a manner reminiscent of haplogroup E. However, the frequency of haplogroup Y fades more smoothly away from its maximum around the Sea of Okhotsk in Northeast Asia, being found in approximately 2% of Koreans and in South Siberian and Central Asian populations with an average frequency of 1%.

Its subclade Y2 has been observed in 40% (176/440) of a large pool of samples from Nias in western Indonesia, ranging from a low of 25% (3/12) among the Zalukhu subpopulation to a high of 52% (11/21) among the Ho subpopulation.

Summary

Given that the Native people migrated from far eastern Asia, in Siberia, sometime between 12,000 and 15,000 years ago, we can see that Y1a, for example, is too young to be among that group – given that this haplogroup was born in Asia only around 7,500 years ago. However, it could be possible to find Y1 or Y or even a subgroup of Y not found in Asia or Europe in the Americas, but alas, to date, that has not materialized, nor have any pre-contact burials been found in the Americas that include mitochondrial haplogroup Y or of any subgroup.

How did haplogroup Y, an East Asian haplogroup, come to be found in eastern Europe?  Probably the same way my Lentz male Y DNA came to be found in Germany, as well as within the Yamnaya ancient remains found north of the Black Sea in Russia from some 3,500 years ago.  We can very probably thank the repeated invasions of what is now Europe from what is now Asia for bringing many of the haplogroups found in present day Eastern Europe – including Y1.  This map of the Genghis Kahn empire and troop movements in the 1200s might provide clues.

genghis khan map

By derivative work: Bkkbrad (talk)Gengis_Khan_empire-fr.svg: historicair 17:01, 8 October 2007 (UTC) – Gengis_Khan_empire-fr.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4534962

Acknowledgements

I would like to thank:

Beware The Sale of Your DNA – Just Because You Can Upload Doesn’t Mean You Should

You know something is coming of age when you begin to see knockoffs, opportunists – or ads on late night TV. As soon as someone figures out they can make money from something, rest assured, they will.

In the past few weeks, we’re beginning to see additional “opportunities” for places to upload your DNA files. Each of them has something to “give” you in return.  You can view this as genuine, or you can view this as bait – or maybe some of each.

So far, each of them also seems to have an agenda that is NOT serving us or our DNA – but serving only or primarily them. I’m not saying this is good or bad – that depends on your perspective – but I am saying that we need to be quite aware of a variety of factors before we participate or upload our autosomal DNA results.

Some sites are more straightforward than others.

I have already covered the fact that both 23andMe and Ancestry sell your DNA to whomever for whatever they see fit.

Truthfully, I always knew that 23andMe was focused on health, but I mistakenly presumed it was on the study of diseases like Parkinson’s. My mother was diagnosed with Parkinson’s, so I had a personal stake in that game.  When their very first patent was for “designer babies,” I felt shell-shocked, stupid, naïve, duped and taken advantage of. I had willingly opted-in and contributed my information with the idea that I was contributing to Parkinson’s research, while in reality, my DNA may have been used in the designer baby patent research.  I have no way of knowing and I had no idea that’s the type of research they were doing.

Parkinson’s yes, designer babies no.  It’s a personal decision, but once your DNA is being utilized or sold, it can be used for anything and you have no control whatsoever.  While I was perfectly willing to participate in surveys and have my DNA utilized for a cure for diseases, in particular Parkinson’s, I was not and am not willing for my DNA to be utilized for things like designer babies so the wealthy can select blue eyed, blonde haired children carrying the genes most likely to allow them to become athletes or cheerleaders.

And once the DNA cat is out of the bag, so to speak, there is no putting it back in. In some cases, you can opt out of identified data, but you can’t opt out of what has already been used, and in many cases, you can’t opt out of having your anonymized data sold.

So, let me give you an example of just how much protection anonymizing your data will give you.

Anonymized Data

Let’s say that someone in one of those unknown firms wants to know who I am. All they have to do is drop my results into GedMatch and my name is right there, along with my e-mail.

Have a fake name at Gedmatch? Well, think for a minute of the adoption search groups and how they identify people, sometimes very quickly and easily by their matches.  Everyday.

Not to mention, my children (and my parents, were they living) are very clearly identifiable utilizing my DNA. So while my DNA is mine, and legally belongs to me, it’s not entirely ONLY mine.

The promise of anonymized data by stripping out your identifying information has become somewhat of a hollow promise today. In a recent example, a cholesterol study volunteer recognized “herself” in a published paper, but was not notified of the results. In an earlier paper, several Y DNA volunteers were identified as well. Ironically, Dr. Erlich, now having formed DNA.Land and soliciting DNA uploads was involved with this unmasking.

Knowing what I know today, I would NEVER have tested at 23andMe and I would have to think very long and hard about Ancestry. The hook that Ancestry has, of course, is all of those DNA plus matching trees.  Is having my anonymized DNA sold worth that?  I don’t really know.  For me, it’s too late for an Ancestry decision, because I’ve already tested there and you cannot opt out of having your anonymized data sold.

I already had an Ancestry subscription, but some testers don’t realize they have to have at least a minimum level subscription to receive all of the benefits of testing at Ancestry. That could certainly be a rude awakening – and unexpected when they purchased the test.  The $49 DNA base subscription is not available on Ancestry’s website either – you have to know about it and call support to purchase that level.  I’m sure most people simply purchase the normal subscription or do without.

One thing is for sure, our DNA is worth a lot of money to both research and Big Pharm, and apparently worth a lot of effort as well, given how many people are attempting to capture our DNA for sale.

In the past few weeks, there have been several new sites that have come online relative to autosomal DNA uploading and testing.

But before we talk about those, I’d like to take a moment for education.

The Sanger Survey

Sanger survey

I’d like to suggest that you take a few minutes to view the videos associated with the Sanger Institute DNA survey here. I think the videos do a good job of explaining at least some of the issues facing people about the usage of their DNA.  Of course, you have to take their survey to see the videos at each step – but it’s good food for thought and they do allow you to make comments.

So, please, take a few minutes for this survey before proceeding.

Genes and US

One of the first “sidebar” companies to appear in September 2014 was at the site   http://www.genesand.us/ which is now nonfunctional.

I took screen shots at that time, since I was going to write an article about what seemed quite interesting.

Genesandus

It was a free service that offered to “find the best genes that you can give to your child.” You had to test at 23andMe, then upload both you and your partner’s raw DNA files and they would provide you with results.

I did just that, and the screen shot below shows the partial results. There were several pages.

Genesandus1

At the end of this section was a question asking if I wanted to “speak to a doctor about any of these benefits.” I didn’t, but I did want to know if gene selection was actual possible and being implemented.  I found the site’s contact information.  I sent this e-mail, which was never answered.

genesandus2

So let me ask you…where is my and my husband’s DNA today? I uploaded it.  Who has it?  Was this just a ploy to obtain our DNA files?  And for what purpose?  Who were these people anyway?  They are gone without a trace today.

DNA.Land

More recently, in the fall of 2015, DNA.Land came upon the scene.

As of today, 22,000+ people have uploaded their autosomal DNA files.

dna.land

What does DNA.Land offer the genealogist?

A different organization’s view of your ethnicity as well as relative matching to others who upload.

The quality and reliability of these enticements offered by companies in exchange for our DNA files may vary widely. For example, when DNA.Land launched, their matching routine didn’t find immediate family members.  No product should ever be launched in an alpha state, which calls into question the quality of the rest of their products and research.  That matching problem has reportedly been fixed.

The second enticement they offer is an ethnicity tool.

I can’t show you my example, because I have not uploaded my DNA to DNA.Land.   However, a genetic genealogy colleague conducted an interesting experiment.

TL Dixon uploaded four DNA files in late April 2016. He tested twice at 23andMe, both tests being the v3 version, and twice at Ancestry, in 2012 and 2014, and uploaded all 4 files to DNA.Land to see what the results would be, comparatively.

TL 23andMe test 1

23andMe v3 test 1

TL 23andme test 2

23andMe v3 test 2

TL Ancestry test 1 2014

Ancestry test from 2014

TL Ancestry test 2 2012

Ancestry test from 2012

We all know that ethnicity testing as a whole is not terribly reliable, but is the most reliable on the continent level, meaning Africa vs Europe vs Asia vs Native American. Given that these raw data files are from the same testing companies, on the same chip platform, for the same person, the Ancestry 2012 and 2014 ethnicity results from DNA.Land are quite different from each other relative to African vs Eurasian DNA, and also from the 23andMe results – even at the continent level.  Said another way, both 23andme results and the Ancestry 2014 results are very similar, with the Ancestry 2012 test, shown last, being the outlier.

Thanks to TL Dixon for both his multiple testing and sharing his results. According to TL’s known family history, the two 23andMe and the Ancestry 2014 kits are closest to accurate.  Just as an aside, TL, surprised by the differing results, utilized David Pike’s utilities to compare the two Ancestry files to see if one had a problem, and they were both very similar, so the difference does not appear to be in the Ancestry kits themselves – so the difference has to be at DNA.Land.

So, what I’m saying is that DNA.Land’s enticement of a different company’s view of ethnicity, even after several months, and even at the continent level, still needs work. This along with the original matching issue calls into question the quality of some of the enticements that are being used to attract DNA donors.  We should consider this not only at this site, but at others that provide enticement or “free” services or goodies as well.  Uploaders beware!

While the non-profit status of DNA.Land along with their verbiage leads people to believe that their work is entirely charitable, it is not, as reflected in this sentence from their consent information.

I understand that the research in this study may lead to new products, research tools, or inventions that have financial value. By accepting the terms of this consent, I understand that I will not be able to share in the profits from future commercialization of products developed from this study.

At least they are transparent about this, assuming you actually read all of the information provided on the site – which you should do with every site.

My Heritage Adds DNA Matching

This past week, My Heritage, a company headquartered in Israel, announced that it has added autosomal DNA matching. Some people think this is great, and others not so much.

MyHeritage

My Heritage, like Ancestry, is a subscription site. I happen to already be a member, so I was initially pretty excited about this, especially when I saw this in their blog.

Your DNA data will be kept private and secure on MyHeritage.

Our service will then match you to other people who share DNA with you: your relatives through a common ancestor. You will be able to review your matches’ family trees (excluding living people), and filter your matches by common surnames or geographies to focus on more relevant matches.

And also:

Who has access to the DNA data?

Only you do. Nobody else can see it, and nobody can even know that it was uploaded. Only the uploader can see the data, and you can delete it at any time. Users who are matched with your DNA will not have access to your DNA or your email address, but will be able to get in touch with you via MyHeritage.

I was thinking this might be a great opportunity, perhaps similar to the Ancestry trees, although they don’t say anything about tree matching.

However, their Terms of Service are not available to view unless you pretend to start an upload of your DNA (thanks for this tip Ann Turner) and then the “Terms of Service” and “Consent Agreement” links become available to view. They should be available for everyone BEFORE you start your upload.

On the MyHeritage main site, you’ll see DNA matching at the top. I’m a member, so, if you’re not a member, your “main site” may look different.

MyHeritage1

Click on “learn more” on the DNA Matching tab.

MyHeritage2

Step two shows you two boxes saying you have read the DNA Terms of Use and Consent Agreement. Don’t just click through these – read them.  Not just at this vendor, at all vendors.

In the required DNA Terms of Use we find this in the 5th paragraph:

By submitting DNA Results to the Website, you grant MyHeritage a perpetual, royalty-free, world-wide, transferable license to use your DNA Results, and any DNA Results you submit for any person from whom you obtained legal authorization as described in this Agreement, and to use, host, sublicense and distribute the resulting analysis to the extent and in the form or context we deem appropriate on or through any media or medium and with any technology or devices now known or hereafter developed or discovered.

And this in item 7:

c. We may transfer, lease, rent, sell, share and/or or otherwise distribute de-identified information to third parties for any purpose, including without limitation, internal business purposes. Whenever we transfer, lease, rent, sell, share and/or or otherwise distribute your information to third parties, this information will be aggregated and personal identifiers (such as names, birth dates, etc.) will be removed.

In the optional Informed Consent agreement, we find this:

The Project collects, preserves and analyzes genealogical lineage, historical records, surveys, genetic information, and other records (collectively, “Research Information“) provided by users in order to conduct research studies to better understand, among other things, human evolution and migration, population genetics, regional health issues, ethnographic diversity and boundaries, genealogy and the history of the human species. Researchers hope that the Project will be an invaluable tool for a wide range of scholars and researchers interested in genealogy, anthropology, evolution, languages, cultures, medicine, and other topics and that the Project may benefit future generations. Discoveries made as a result of the Project may be used in the study of genealogy, anthropology, population genetics, population health issues, cultures, trends (for example, to identify health risks or spread of certain diseases), and other related topics. If we or a third party wants to conduct a study (1) on topics unrelated to the Project, or (2) using Research Information beyond what is described in this Informed Consent, we will re-contact you to seek your specific approval. In addition, we may contact you to ask you to complete a questionnaire or to ask you if you are willing to be interviewed about the Project or other matters.

  1. What are the costs and will I receive compensation? MyHeritage will not charge participants any fees in order to be part of the Project. There will be no financial compensation paid to Project participants. The data you share with us for the Project may benefit researchers and others in the future. If any commercial product is developed as a result of the Project or its outcomes, there will be no financial benefit to you.

You can’t see the terms of use or consent agreement unless you are in the process of uploading your DNA and in addition, it appears that your DNA data is automatically available in anonymized fashion to third parties. The terms of service and informed consent data above does not seem to correlate with the marketing information which states that “nobody else” can see your data.

The other thing that’s NOT obvious, is that you don’t HAVE to click the box on the Consent Agreement, but you do HAVE to click the box on the DNA Terms of Use.

If you are not alright with the entirety of the DNA Terms of Use, which is required, do not upload your DNA file to My Heritage.  If you are not alright with the Consent Agreement, don’t click the box.  Judy Russel wrote an detailed article about the terms here.

Uploading your DNA to MyHeritage is free today, but may be a pay service later. It is unclear whether a subscription is required today, or will be in the future.  However, at one time one could upload a family tree of up to 250 people to MyHeritage for free through 23andMe.  Larger files were accepted, but were only free for a certain time period and now the person whose tree was larger than 250 people and who did not subscribe is locked out of their account.  They can’t delete their larger-than-250 person tree unless they purchase a subscription.  It’s unclear what the future holds for DNA uploads, trees and subscriptions as well.

I have not uploaded my DNA to MyHeritage either, based on 7c. It would appear that even if you don’t give consent for additional “research information” to be collected and provided, they can still sell your anonymized DNA.

WeGene

WeGene

Very recently, a new company, WeGene at http://www.wegene.com has begun DNA testing focused on the Chinese marketplace.

Their website it in Chinese, but Google translates it, at least nominally, as does Chrome.

WeGene1

WeGene2

It does not appear that WeGene does matching between their customers, or if they do, I’ve missed it in the translations.

You can, however, upload at least 23andMe files to WeGene. I can’t tell about Family Tree DNA and Ancestry files.  Unless you have direct and fairly recent Chinese ancestry, I don’t know what the benefit would be.

Their privacy and security, such as it is, is at this link, although obviously autotranslated. Some people seem to have found other verbiage as well.  Navigating their site, written in Chinese, is very difficult and the accuracy of the autotranslation is questionable, at best.

Their autosomal DNA file is obviously available for download, because GedMatch now accepts these files.

I am certainly not uploading my DNA to WeGene, for numerous reasons.

Vendor Summary

This vendor summary was more difficult to put together than I thought it would be – in part because I am not a new user at either Ancestry or 23andMe and obviously can’t see what a new user would see on any of my accounts. Furthermore, Ancestry in particular has several documents that refer back and forth to each other, and let’s just say they are written more for the legal mind than the typical consumer.

vendor summary

* – Both 23andMe and Ancestry appear to utilize all clients DNA for anonymized distribution, but not for identified distribution without an individual opt-in.

*1 – According to the 23andMe Privacy Policy, although you can opt in to the higher level of research testing where your identity is not removed, you cannot opt out of the anonymized level of DNA sharing/sale. Please review current 23andMe documentation before making a decision.

*2 – Can Opt in or Opt out.

*3 – Can opt out of non-anonymized sales, but not anonymized sales. Please verify utilizing the current Ancestry documents before making a decision.

*4 – DNA.land indicates that you can withdraw consent, but does not say anything about deleting your DNA file.

*5 – DNA.Land states in their consent agreement that they will not provide identified DNA information without first contacting you.

*6 – At 23andMe, deleting DNA from data base closes account.

*7 – Automatically opted in for anonymized sales/sharing, but must opt in for identified DNA sharing.

*8 – 23andMe has been and continues to experience significant difficulties and at this point are not considered a viable genetic genealogy option by many, or stated another way, they would be the last choice of the main three testing companies.

*9 – All legal action must be brought in Tel Aviv, Israel, individually, and not as a class action suit, according to item 9 in the DNA Terms of Use document.

*10 – Website in Chinese, information through an automated English translator, so the information provided here is necessarily incomplete and may not be entirely accurate.

Please note that any or all of these factors are subject to change over time and the vendors’ documents should be consulting and read thoroughly at the time any decision is being made.

Please note that at some vendors there are many different documents that cross-reference each other. They are confusing and should all be read before any decision is made.

And of course, some vendors’ websites aren’t even in English.

Points to Consider

While these companies are the ones that have come to the forefront in the past few months, there will assuredly be more as this industry develops. Here are a list of things for you to think about and points to consider that may help you make your decision about whether you want to either test or upload your autosomal DNA with any particular company.  After all, your autosomal DNA file does contain that obviously much-sought-after medical information.

First, always read every document on a vendor site that says anything like “Terms of Use,” “Security and Privacy” or “Terms of Service” or “Informed Consent.” Many times the fine print is spread throughout several documents that reference each other.  If their policy does not say specifically, do NOT assume.

Also be aware that the verbiage of most companies says they can change their rules of engagement at any time without notification.

Here are the questions you may want to consider as you read these documents.

  • Does the company or organization sell or share your data?
  • Is the data that is sold or shared anonymized or nonanonymized, understanding that really no one is truly anonymous anymore?
  • Who do they sell your data to?
  • For what purpose?
  • Do you have the opportunity to authorize your DNA’s involvement per study?
  • If you do not live in the same country as the company with whom you are doing business, what recourse do you have to enforce any agreement?
  • How do you feel about your DNA being in the hands of either organizations or companies you don’t know for purposes you don’t know?
  • Are you asked up front if you want to participate?
  • Can you opt out of your DNA being shared or sold entirely from the beginning?
  • Can you opt out of your DNA being shared or sold entirely at any time if you have initially opted in?
  • Do you receive the opportunity to opt in, or are you automatically opted in?
  • If you are automatically opted in, do you get the opportunity, right then, to opt out, or only if you happen to discover the situation? And if you can opt out immediately, are you only able to opt out of non-anonymized data or can you opt out entirely?
  • Is the company up front and transparent about what they are doing with your DNA or do you have to dig to unearth the truth?
  • If you already tested, and gave up rights, were you aware that you did so, and do you understand if or how you can rescind that inadvertent authorization?
  • Do you have to dig for the terms of service and are they as represented in the marketing literature?
  • Do you feel like you are giving truly informed consent and understand what can and will happened to your DNA, and what your options are if you change your mind, and how to exercise those options? Are you comfortable with those options and the approach of the company towards DNA sale as a whole? Were they forthright?
  • For companies like MyHeritage and Ancestry, are their other unknown “gotchas” like a subscription being required in addition to testing or uploading to obtain the full benefits of the test or upload?
  • What happens to your DNA if the company no longer exists or goes out of business? For two examples, look at the Sorenson and Ancestry Y and mtDNA DNA results. This is certainly not what any consumer or tester expected. Not to mention, I’m left wondering where my DNA submitted to genesandus is today.
  • Who owns the company?  What are their names?  Where can you find them?  What is the address of the company?  What does google have to say about the owners or management?  Linked-In?  Facebook?  If there is absolutely no history, that’s probably as damning as a bad history.  No one can exist today in a professional capacity and have no history.  Just saying.
  • Is the company acting in any way that would cause you not to trust them, their motives or agenda?  As my mother used to say, the best predictor of future behavior is past behavior.

Near and Dear to My Heart

I have family members who work in the medical field in various capacities. I also have family members who have or have had genetically heritable conditions and like everyone else, I would love to see those diseases cured.  My reticence to donate my DNA to whomever for whatever is not a result of being heartless.  It’s a function of wanting to be in control of who profits with/from my DNA and that of my family.

Let me share a personal story with you.

My brother died of cancer in 2012. He went for chemo treatments every two weeks, and before he could have his chemo treatment, he had to have bloodwork to assure that his system was able to handle the next dose of chemo.

If his white cell count was below a certain threshold, a shot of a drug called Neulasta was available to him to stimulate his body to increase the white blood cells. The shots were $8000 a piece.  And no, that is not a typo.  $8000!  His insurance did not cover the shots, because as far as they were concerned, he could just wait until his white cell numbers increased of their own accord and have the chemo then.  Of course, delaying the chemo decreased his chances of survival.

Over the course of his chemo, he had to have three of these $8000 shots. Fortunately, he did have the money to pay, although he did have to reschedule his appointment because he was required to bring a cashier’s check with the full payment in advance before the clinic would administer the shot.  After that, he simply carried an $8000 cashier’s check to each appointment, just in case.

I do not for one minute believe that those shots COST $8000 to manufacture, but I do believe that the pharmaceutical industry could, would and does CHARGE $8000 to desperate patients in order to continue the chemo that is their only hope of life. For those whose insurance pays, it’s entirely irrelevant. For those whose insurance does not pay, it’s a matter of life and death.  And yes, I’m equally as angry with the insurance company, but they aren’t the ones asking for me to do donate my DNA.

So, as for my DNA, no Big Pharm company will ever get their hands on it if there is ANYTHING I can do about it – although it’s probably too late now since I have tested with both 23andMe and Ancestry, who do not allow you to opt out entirely. I wish I had known before I tested.  At least I would have been giving informed consent, which was not the case.

Consequently, I want to know who is doing what with my DNA, so that I have the option of participating or not – and I want to know up front – and I don’t want it hidden in fine print with the company hoping I’ll just “click through” and never read the documentation. I don’t want it to be intentionally or unintentionally confusing, and I want unquestionable full disclosure – ahead of time.  Is that too much to ask?

My brother had the money for the shots, and he died anyway, but can you imagine being the family of someone who did not have $24,000?

And if you think for one minute that Big Pharm won’t do that, consider Turing Pharmaceuticals CEO Martin Shkreli, dubbed “the most hated man in America” in September 2015 for gouging patients dependent on a drug used for HIV and cancer treatment by raising the price from $13.50 per pill to $750 for the same pill, a 5,556% increase – because he could.

Medical research to cure disease I’m supportive of in terms of DNA donation, but not designer babies and not Big Pharm – and today there seems to be no way to separate the bad from the good or to determine who our DNA is being sold to for what purpose. Worse yet, some medical research is funded by Big Pharm, so it’s hard to determine which medical research is independent and which is not.

The companies selling our DNA and Big Pharm are the only people who stand to benefit financially from that arrangement – and they stand to benefit substantially from our contributions by encouraging us to “help science.” We’ll never know if a study our donated DNA was used for produced a new drug – and if it’s one we can’t afford, you can bet the pharmaceutical industry and manufacturers care not one whit that we were one of the people who donated our DNA so they could develop the drug we can’t afford.  If any industry should not be soliciting free DNA donations for research, Big Pharm is that industry with their jaw-dropping profits.

So, How Much is Our DNA Worth Anyway?

I don’t know, directly, but we can get some idea from the deal that 23andMe struck with pharmaceutical company Genentech, the US unit of Swiss drug company, Roche, in January 2015, as reported by Forbes.

Quoting now, directly from the Forbes article:

According to sources close to the deal, 23andMe is receiving an upfront payment from Genentech of $10 million, with further milestones of as much as $50 million. The deal is the first of ten 23andMe says it has signed with large pharmaceutical and biotech companies.

Such deals, which make use of the database created by customers who have bought 23andMe’s DNA test kits and donated their genetic and health data for research, could be a far more significant opportunity than 23andMe’s primary business of selling the DNA kits to consumers. Since it was founded in 2006, 23andMe has collected data from 800,000 customers and it sells its tests for $99 each. That means this single deal with one large drug company could generate almost as much revenue as doubling 23andMe’s customer base.

The article further says that the drug company was particularly interested in the 12,000 Parkinson’s patients and 1,300 of their parents and siblings who had provided family information. Ten million divided by 13,300 means Genentech were willing to pay $750 for each person’s DNA, out the door.  So the tester paid $99 or upwards, depending on when they tested – $1000 before September 2008 when the test dropped to $399, to 23andMe and then 23andMe made another $750 per kit from the tester’s donated DNA results.

And that’s before the additional $50 million and the other deals 23andMe and the other DNA-sellers have struck with Big Pharm. So yes indeed, our DNA is worth a lot.

It’s no wonder so many people are trying to trying to find a way to entice us to donate our results so they can sell them. In fact, it’s a wonder, and a testament to their integrity, that there is ANY company with access to our DNA results that isn’t selling them.  In fact, there are only two companies, plus the Genographic Project.

Who Doesn’t Share or Sell Your Autosomal DNA?

Of the major companies, organizations and sites, the only three, as best I can tell, that do not share or sell your autosomal DNA (or reserve the right to do so) and specifically state that they do not are National Geographic’s Genographic Project , Family Tree DNA and GedMatch.

Of those three, Family Tree DNA, a subsidiary of Gene by Gene is the only testing company and says the following:

Gene by Gene collects, processes, stores and shares your Personal Information in a responsible, transparent and secure environment that fosters our customers’ trust and confidence. To that end, Gene by Gene respects your privacy and will not sell or rent your Personal Information without your consent.

National Geographic utilizes Family Tree DNA for testing, and the worst thing I could find in their privacy policy is that they will share:

  • with other selected third parties so that they may send you promotional materials about goods and services that they offer. You have the opportunity to opt out of our sharing information about you as described below in the section entitled “Your Choices”;
  • in accordance with your consent.

Nothing problematic here.

Your Genographic DNA file is only uploadable to Family Tree DNA and Nat Geo does not accept uploaded data from other vendors.

GedMatch, which allows users to upload their raw data files from the major testing companies for comparison says the following:

It is our policy to never provide your genealogy, DNA information, or email address to 3rd parties, except as noted above.

Please refer to the entire documents from these organizations for details.

Serious genealogists have probably already uploaded to GedMatch and tested at or uploaded to Family Tree DNA as well, so people are unlikely to find new matches at new sites that aren’t already in one of these two places.

To Be Clear

I just want to make sure there is no confusion about which type of companies we’ve been referencing, and who is excluded, and why. The only companies or organizations this article applies to are those who have access to your raw data autosomal DNA file.  Those would be either the companies who test your autosomal DNA (National Geographic, Family Tree DNA, Ancestry and 23andMe in the US and WeGenes in China), or if you download your raw data file from those companies and upload it to another company, organization or location, as discussed in this article.  The companies and organizations discussed may not be the only firms or organizations to which you can upload your autosomal DNA file today, and assuredly, there will be more in the future.

The line in the sand is that autosomal DNA file. Not your Y DNA, not your mitochondrial DNA, not your match list – just that raw data file – that’s what contains your DNA information that the medical and pharmaceutical industry seeks and is willing to pay handsomely to obtain.

There are other companies and organizations that offer helpful tools for autosomal DNA analysis and tree integration, but you do NOT upload your raw data file to those sites. Those sites would include sites like www.dnagedcom.com and www.wikitree.com. I want to be sure no one confuses sites that do NOT upload or solicit the upload of your raw autosomal DNA files with those that do.  I have not discussed these sites that do not upload your autosomal DNA files because they are not relevant to this discussion.

This article does not pertain to sites that do not utilize or have access to your autosomal raw data file – only those that do.

Summary

As the number of DNA testing consumers rises, the number of potential targets for DNA sales into the medical/pharmaceutical field rises equally, as does the number of targets for scammers.

Along with that, I increasingly feel like my ancestors and the data available through my DNA about my ancestors, specifically ethnicity since everyone seems to be looking for a better answer, is being used as bait to obtain my DNA for companies with a hidden, or less than obvious, agenda – that being to obtain my DNA for subsequent sale.

I greatly appreciate the Genographic Project, Family Tree DNA and GedMatch, the organizations who either test or accept autosomal file uploads do not sell my DNA, and I hope that they are not forced into that position economically in order to survive. It’s quite obvious that there is significant money to be made from the sale of massive amounts of DNA to the medical and pharmaceutical communities.  They alone have resisted that temptation and stayed true to the cause of the study of indigenous cultures and population genetics in the case of Nat Geo, and genetic genealogy, and only genetic genealogy in the case of Family Tree DNA and GedMatch.

In other words, just because you can doesn’t mean you should.

Frankly, I believe selling our data is fundamentally wrong unless that information is abundantly clear, as in truly informed consent as defined by the Office for Human Research Protections, in advance of purchasing (or uploading) the test, and not simply a required “click through box” that says you read something. I would be much more likely to participate in anything that was straightforward rather than something that was hidden or not straightforward, like perhaps the company or organization was hoping we wouldn’t notice, or we would automatically click the box without reading further, thinking we have no other option.

The notice needs to say something on the order of, “I understand that my DNA is going to be sold, may be used for profit making ventures, and I cannot opt out if I order this DNA test,” if that is the case. That is truly informed consent – not a check box that says “I have read the Consent Document.”

Yes, the companies that sell DNA testing and our DNA results would probably receive far fewer orders, but those who would order would be truly informed and giving informed consent. Today, in the large majority of cases, I don’t believe that’s happening.

We need to be aware as consumers and make informed decisions. I’m not telling you whether you should or should not utilize these various companies and sites, or whether you should or should not participate in contributing your DNA to research, or at which level, if at all. That is a personal decision we all have to make.

But I will tell you that I think you need to educate yourself and be aware of these trends and issues in the industry so you can make a truly informed decision each and every time you consider sharing your DNA. And you should know that in some cases, your DNA is being sold and there is absolutely nothing you can do about if it you utilize the services of that company.

Above all, read all of the fine print.

Let me say that again, channeling my best Judy Russell voice.

ALWAYS, READ ALL OF THE FINE PRINT!!!

ALWAYS.
READ.
ALL.
OF.
THE.
FINE.
PRINT.

Unfortunately, things are not always as they seem on the surface.

If you see a click-through box, a red neon danger light should now start flashing in your brain and refuse to allow you to click on that box until you’ve done what? Read all the fine print.

There really is no such thing as a free lunch – so be judiciously suspicious.

I will leave you with the same thought relative to testing companies and upload opportunities that I said about companies selling our data. Just because you can doesn’t mean you should.

I think early in this game we all got excited and presumed the best about the motives of companies and organizations, like I did with both 23andMe and genesandus, but now we know better – and that there may be more to the story than initially meets the eye.

And besides that, we all know that presume is the first cousin to assume…and well, we all know where this is going.  And by the way, that’s exactly how I feel about genesandus who disappeared with my and my husband’s DNA.  I wasn’t nearly suspicious or judicious enough then…but I am now.

Genographic Project Publications 2015

Nat Geo logoAt the 2015 Family Tree DNA Conference, Dr. Miguel Vilar was kind enough to offer to send me the list of papers published to date as a result of the Genographic Project.  He mentioned that there are 5 additional papers in the final stages of publication, so the total for the end of 2015 will be 60 papers.  Quite an accomplishment!

Below are the titles and references plus short descriptions of the major findings.  Thank you Dr. Vilar and National Geographic.

2007

  1. Behar, D. M., Rosset, S., Blue-Smith, J., Balanovsky, O., Tzur, S., Comas, D., Mitchell, R. J., Quintana-Murci, L., Tyler-Smith, C., Wells, R. S., and The Genographic Consortium. 2007. The Genographic Project public participation mitochondrial DNA database. PLoS Genetics 3: 1083-1095.
  • This paper establishes Genographic’s database as the new standard mtDNA data repository and reports a new “Nearest Neighbor” statistical method for improved haplogroup classification, presenting learned experience from the public part of the project. It also makes publicly available a portion of the Genographic database, a process that will continue throughout project duration. This technical paper has been crucial in establishing the project’s importance in the scientific community.

2008

  1. Gan, R. J., Pan, S. L., Mustavich, L. F., Qin, Z. D., Cai, X. Y., Qian, J., Liu, C. W., Peng, J. H., Li, S. L., Xu, J. S., Jin, L., Li, H., and The Genographic Consortium. 2008. Pinghua population as an exception of Han Chinese’s coherent genetic structure. Journal of Human Genetics 53: 303-313.
  • The Han Chinese are the largest ethnic group in the world with more than 1.3 billion people, comprising 19 percent of the world population. Chinese is the language spoken by this ethnic group, which can be classified into 10 major dialects. This paper focuses on studying the genetic structure of the people speaking one of these dialects, the Pinghua people. When the genetic structure of Pinghua people was compared to the rest of the Han Chinese populations, it was observed that Pinghua populations did not directly descend from Han Chinese, who originated in the north, but from other southern populations. Thus, from a genetic point of view, the Pinghua populations represent an exception to the rest of Han Chinese populations. These results can be explained if ancestral populations of Pinghua people were not replaced by Han Chinese population, but if they assimilated the Han Chinese language and culture.
  1. Zalloua, P. A., Xue, Y., Khalife, J., Makhoul, N., Debiane, L., Platt, D. E., Royyuru, A. K., Herrera, R. J., Soria Hernanz, D. F., Blue-Smith, J., Wells, R. S., Comas, D., Bertranpetit, J., Tyler-Smith, C., and The Genographic Consortium. 2008. Y-chromosomal diversity in Lebanon is structured by recent historical events. American Journal of Human Genetics 82: 873-882.
  • Lebanon is a small country in the Middle East inhabited by almost 4 million people from a wide variety of ethnicities and religions. The results of this paper indicate that male genetic variation within Lebanon is strongly structured by religion. This unusual situation can be accounted for by two major known historical migrations into Lebanon. The Islamic expansion from the Arabian Peninsula beginning in the 7th century introduced genetic lineages typical of the Arabian peninsula into Lebanese Muslims, while the crusader activity in the 11th-13th centuries introduced Western European lineages into Lebanese Christians.
  1. Behar, D. M., Villems, R., Soodyall, H., Blue-Smith, J., Pereira, L., Metspalu, E., Scozzari, R., Makkan, H., Tzur, S., Comas, D., Bertranpetit, J., Quintana-Murci, L., Tyler-Smith, C., Wells, R. S., Rosset, S., and The Genographic Consortium. 2008. The dawn of human matrilineal diversity. American Journal of Human Genetics 82: 1130-1140.
  • African genetic diversity is unlike that found anywhere else in the world. This paper seeks to make sense of some of the most fundamental questions surrounding our earliest ancestors on the continent. Where specifically did we originate in Africa? Was it from a single group or the result of many? When do we first see African lineages appear outside of Africa? About 350 novel mitochondrial whole-genome sequences were included — doubling the existing published dataset — and the paper presented a new tree of African mtDNA diversity, reporting many novel African lineages for the first time. This paper provides an age estimate for the earliest split of humans in East Africa as one group headed south and was subsequently isolated. It explains that all humans came from a single population that split into two groups, shows that more than 99 percent of all living humans descend from one of these two groups, and suggests historical reasons for why genetic mixture did not exist between these ancient populations. It also presents evidence for the emergence of these early lineages into the Middle East and the origins of the two major non-African groups, M and N, respectively. The paper received considerable media attention — approximately 275 articles — including substantial pieces in the Economist and on CNN/BBC online.
  1. Behar, D. M., Blue-Smith, J., Soria-Hernanz, D. F., Tzur, S., Hadid, Y., Bormans, C., Moen, A., Tyler-Smith, C., Quintana-Murci, L., Wells, R. S., and The Genographic Consortium. 2008. A novel 154-bp deletion in the human mitochondrial DNA control region in healthy individuals. Human Mutation 29: 1387-1391.
  • This paper describes a novel deletion of 154 base pairs within the control region of the human mitochondrial genome that was originally identified in an anonymous Japanese public participant. It was demonstrated that this deletion is a heritable character since it was transmitted from the participant’s mother to her two sons. This is the first time that such a large deletion located in this specific portion of the control region has been observed to not have negative effects in the health of the carriers. The identification of this large heritable deletion in healthy individuals challenges the current view of the control region as playing a crucial role in the replication and regulation of the mitochondrial genome. It is anticipated that this finding will lead to further research on the reported samples in an attempt to increase our understanding of the role of specific sequences within the control region for mtDNA replication. Finally, this paper illustrates the importance of creating a large database of human genetic variation in order to discover rare genetic variants that otherwise would remain unidentified. The discovery of such rare mtDNA haplotypes will be important to identifying the relative power of adaptive and non-adaptive forces acting on the evolution of the mtDNA genome.
  1. Parida, L., Melé, M., Calafell, F., Bertranpetit, J., and The Genographic Consortium. 2008. Estimating the ancestral recombinations graph (ARG) as compatible networks of SNP patterns. Journal of Computational Biology 15: 1133-1153.
  • Traditionally the nonrecombinant, maternally inherited (mtDNA) and paternally inherited (Y chromosome) genomes have been widely used for phylogenetic and evolutionary studies in humans. However, these two genomes only represent 1 percent of the total genetic variation within an individual, and sampling just these two loci is inadequate to reconstruct with any precision the time-depth and pattern of human evolution. The scope of this paper is to elaborate on a mathematical algorithm that includes recombination patterns among human populations. This approach will allow us to use the rest of the recombining genome to reconstruct more accurately the patterns of human migration.
  1. Rossett, S., Wells, R. S., Soria-Hernanz, D. F., Tyler-Smith, C., Royyuru, A. K., Behar, D. M., and The Genographic Consortium. 2008. Maximum-likelihood estimation of site-specific mutation rates in human mitochondrial DNA from partial phylogenetic classification. Genetics 180: 1511-1524.
  • This paper presents novel algorithms to estimate how frequently each base pair of the hypervariable region of the mtDNA changes. Implementations of these algorithms will help to better investigate functionality in the mtDNA and improve current classification of mtDNA haplogroups.
  1. Zalloua, P. A., Platt, D. E., El Sibai, M., Khalife, J., Makhoul, N., Haber, M., Xue, Y., Izaabel, H., Bosch, E., Adams, S. M., Arroyo, E., López-Parra, A. M., Aler, M., Picornell, A., Ramon, M., Jobling, M. A., Comas, D., Bertranpetit, J., Wells, R. S., Tyler-Smith, C., and The Genographic Consortium. 2008. Identifying genetic traces of historical expansions: Phoenician footprints in the Mediterranean. American Journal of Human Genetics 83: 633-642.
  • The Phoenicians gave the world the alphabet and a love of the color purple, and this study shows that they left some of their genes as well. The paper shows that as many as one in 17 men in the Mediterranean basin may have a Phoenician as a direct male-line ancestor, using a novel analytical method for detecting the subtle genetic impact of historical population migrations. Its first application has been to reveal the genetic legacy of the Phoenicians, an intriguing and mysterious first-millennium B.C. trading empire. From their base in present-day Lebanon, the Phoenicians expanded by sea throughout the Mediterranean, founding colonies as far as Spain and North Africa, where their most powerful city, Carthage, was located. The world’s first “global capitalists,” the Phoenicians controlled trade throughout the Mediterranean basin for nearly a thousand years until their conquest by Rome in the 2nd century B.C. Over the ensuing centuries, much of what was known about this enigmatic people was lost or destroyed. This paper received substantial international and domestic press coverage, including an article in The New York Times.

2009

  1. Parida, L., Javed, A., Melé, M., Calafell, F., Bertranpetit, J., and The Genographic Consortium. 2009. Minimizing recombinations in consensus networks for phylogeographic studies. BMC Bioinformatics 10: Article S72.
  • This paper implements a new mathematical model to identify recombination spots in human populations to infer ancient recombination and population-specific recombination on a portion of the X chromosome. The results support the widely accepted out-of-Africa model of human dispersal, and the recombination patterns were capable of detecting both continental and population differences. This is the first characterization of human populations based on recombination patterns.
  1. El-Sibai, M., Platt, D. E., Haber, M., Xue, Y., Youhanna, S. C., Wells, R. S., Izaabel, H., Sanyoura, M. F., Harmanani, H., Ashrafian Bonab, M., Behbehani, J., Hashwa, F., Tyler-Smith, C., Zalloua, P. A., and The Genographic Consortium. 2009. Geographical structure of the Y-chromosomal genetic landscape of the Levant: A coastal-inland contrast. Annals of Human Genetics 73: 568-581.
  • This paper examines the male-specific phylogeography of the Levant and its surroundings. The Levant lies in the eastern Mediterranean region, south of the mountains of south Turkey and north of the Sinai Peninsula. It was found that the Levantine populations cluster together when considered against a broad Middle-East and North African background. However, within Lebanon there is a coastal-inland (east-west) pattern in the diversity and frequency of several Y haplogroups. This pattern is likely to have arisen from differential migrations, with different lineages introduced from the east and west.

2010

  1. Haak, W., Balanovsky, O., Sanchez, J. J., Koshel, S., Zaporozhchenko, V., Adler, C. J., Der Sarkissian, C. S. I., Brandt, G., Schwarz, C., Nicklisch, N., Dresely, V., Fritsch, B., Balanovska, E., Villems, R., Meller, H., Alt, K. W., Cooper, A., and The Genographic Consortium. 2010. Ancient DNA from European Early Neolithic farmers reveals their Near Eastern affinities. PLoS Biology 8: Article e1000536.
  • The nature and speed of the Neolithic transition in Europe is a matter of continuing debate. In this paper, new genetic analyses based on ancient human remains from the earliest farming culture in Central Europe known as the Linear Pottery Culture (5,500-4,900 years ago) indicate a shared genetic maternal affinity with modern-day Near East and Anatolia, and therefore they likely came from the Middle East. However, these lineages from the earliest agriculturalists were also distinct from the current genetic lineages observed in European populations, indicating that major demographic events continued in Europe during the Neolithic. These results point out the importance of using ancient DNA to better understand past demographic events.
  1. Melé, M., Javed, A., Pybus, M., Calafell, F., Parida, L., Bertranpetit, J., and The Genographic Consortium. 2010. A new method to reconstruct recombination events at a genomic scale. PLoS Computational Biology 6: Article e1001010.
  • A chromosomal recombination event creates a junction between two parental sequences. These recombinant sequences are transmitted to subsequent generations, and recombination is one of the main forces molding human genetic diversity. However, the information about genetic relationships among populations given by these events is usually overlooked due to the analytical difficulty of identifying the history of recombination events. This paper validates and calibrates the IRiS software for inferring the history of recombination events, allowing the creation of novel recombinational “markers” known as recotypes, which can be analyzed in a similar way to standard mutational markers.
  1. Qin, Z., Yang, Y., Kang, L., Yan, S., Cho, K., Cai, X., Lu, Y., Zheng, H., Zhu, D., Fei, D., Li, S., Jin, L., Li, H., and The Genographic Consortium. 2010. A mitochondrial revelation of early human migrations to the Tibetan Plateau before and after the Last Glacial Maximum. American Journal of Physical Anthropology 143: 555-569.
  • The Tibetan Plateau was long considered one of the last areas to be populated by modern humans. Recent archaeological, linguistic and genetic findings have challenged this view. In this paper, maternal lineages of 562 individuals from nine different regions within Tibet have been analyzed to further investigate the timing and routes of entry of humans into the plateau. The maternal diversity in Tibet primarily reflects northern East Asian ancestry, likely reflecting a population expansion from this region into the plateau prior to the Last Glacial Maximum (LGM) ~18,000 years ago. In addition, the highest diversity was concentrated in the southern part of the plateau, indicating that this region probably acted as a population refugium during the LGM and the source of a post-LGM expansion within the plateau.
  1. Zhadanov, S. I., Dulik, M. C., Markley, M., Jennings, G. W., Gaieski, J. B., Elias, G., Schurr, T. G., and The Genographic Project Consortium. 2010. Genetic heritage and native identity of the Seaconke Wampanoag tribe of Massachusetts. American Journal of Physical Anthropology 142: 579-589.
  • The biological ancestry of the Seaconke Wampanoag tribe, a group of Native American clans in southern Massachusetts, reflects the genetic consequences of epidemics and conflicts during the 16th century that decimated their population, reducing them from an estimated 12,000 individuals at the beginning of the century to less than 400 at the end. The majority of the paternal and maternal lineages in present-day Seaconke Wampanoag, however, belong to West Eurasian and African lineages, revealing the extensive interactions with people from different ancestries that settled the region during the past four centuries.

2011

  1. Adler, C. J., Haak, W., Donlon, D., Cooper, A., and The Genographic Consortium. 2011. Survival and recovery of DNA from ancient teeth and bones. Journal of Archaeological Science 38: 956-964.
  • The recovery of genetic material from ancient human remains depends on the sampling methods used as well as the environment where the human material was preserved. The results presented in this study quantify the damage caused to ancient DNA by various methods of sampling teeth and bones. The negative impact is minimized if very low drill speeds are used during DNA extraction, increasing both the quantity and quality of material recovered. In addition, the mtDNA content of tooth cementum was five times higher than other commonly used methods, making this component the best place to sample ancient DNA. These conclusions will help to guide future sampling of DNA from ancient material.
  1. Haber, M., Platt, D. E., Badro, D. A., Xue, Y., El-Sibai, M., Ashrafian Bonab, M., Youhanna, S. C., Saade, S., Soria-Hernanz, D. F., Royyuru, A., Wells, R. S., Tyler-Smith, C., Zalloua, P. A., and The Genographic Consortium. 2011. Influences of history, geography, and religion on genetic structure: The Maronites in Lebanon. European Journal of Human Genetics 19: 334-340.
  • Cultural patterns frequently leave genetic traces. The aim of this study was to explore the genetic signature of the establishment of religious communities in a region where some of the most influential world religions originated, using the Y chromosome as an informative male-lineage marker. The analysis shows that the religions in Lebanon were adopted within already distinguishable communities. Differentiation appears to have begun before the establishment of Islam and Christianity, dating to the Phoenician period, and isolation continued during the period of Persian domination. Religious affiliation served to reinforce the genetic signatures of pre-existing population differentiation.
  1. Martínez-Cruz, B., Ziegle, J., Sanz, P., Sotelo, G., Anglada, R., Plaza, S., Comas, D., and The Genographic Consortium. 2011. Multiplex single-nucleotide polymorphism typing of the human Y chromosome using TaqMan probes. Investigative Genetics 2: Article 13.
  • This paper presents a robust and accurate Y-chromosome multiplex assay that can genotype in a single reaction 121 markers distinguishing most of the haplogroups and subhaplogroups observed in European populations. The assay was >99 percent accurate in assigning haplogroups, minimizing sample handling errors that can occur with several independent TaqMan reactions.
  1. Jota, M. S., Lacerda, D. R., Sandoval, J. R., Vieira, P. P. R., Santos-Lopes, S. S., Bisso-Machado, R., Paixão-Cortes, V. R., Revollo, S., Paz-y-Miño, C., Fujita, R., Salzano, F. M., Bonatto, S. L., Bortolini, M. C., Tyler-Smith, C., Santos, F. R., and The Genographic Consortium. 2011. A new subhaplogroup of Native American Y-chromosomes from the Andes. American Journal of Physical Anthropology (published online Sept. 13, 2011.)
  • Almost all Y chromosomes in South America fall into a single haplogroup, Q1a3a. This paper presents a new single nucleotide polymorphism (SNP) in the Q1a3a lineage that is specific to Andean populations, allowing more accurate inferences of the population history of this region. This novel marker is estimated to be ~5,000 years old, consistent with an ancient settlement of the Andean highlands.
  1. Yan, S., Wang, C. C., Li, H., Li, S. L., Jin, L., and The Genographic Consortium. 2011. An updated tree of Y-chromosome Haplogroup O and revised phylogenetic positions of mutations P164 and PK4. European Journal of Human Genetics 19: 1013-1015.
  • Y-chromosome Haplogroup O is the dominant Y-chromosome lineage in East Asians, carried by more than a quarter of all males on the world. This study revises the haplogroup O phylogeny, using several recently discovered markers. The newly generated tree for this haplogroup will lead to a more detailed understanding of the population history of East Asia.
  1. Yang, K., Zheng, H., Qin, Z., Lu, Y., Farina, S. E., Li, S., Jin, L., Li, D., Li, H., and The Genographic Consortium. 2011. Positive selection on mitochondrial M7 lineages among the Gelong people in Hainan. Journal of Human Genetics 56: 253-256.
  • The Gelong people migrated in the last 1,000 years from Guizhou province in southern China to Hainan island (the hottest province in China). The genetic structure of the Gelong people showed a clearly sex-biased pattern of admixture with the indigenous Hainan population (Hlai people), with 30.7 percent of the maternal lineages being of Hainan origin in contrast to 4.9 percent of the paternal lineages. This striking pattern is partially explained through the action of selection on the M7 Hainan autochthonous maternal lineages, leading to their expansion in the admixed population. This may be due to some selective advantage provided by the M7 lineages in the tropical Hainan climate. Future whole mtDNA genome sequencing of these M7 lineages may reveal their functional relevance and the mechanism involved in human adaptation to tropical climates.
  1. Balanovsky, O., Dibirova, K., Dybo, A., Mudrak, O., Frolova, S., Pocheshkhova, E., Haber, M., Platt, D., Schurr, T., Haak, W., Kuznetsova, M., Radzhabov, M., Balaganskaya, O., Druzhinina, E., Zakharova, T., Soria Hernanz, D. F., Zalloua, P., Koshel, S., Ruhlen, M., Renfrew, C., Wells, R. S., Tyler-Smith, C., Balanovska, E., and The Genographic Consortium. 2011. Parallel evolution of genes and languages in the Caucasus region. Molecular Biology and Evolution 28: 2905-2920.
  • The Caucasus region harbors some of the highest linguistic diversity on Earth, leading to the moniker “The Mountain of Languages.” To investigate the forces that may have molded Caucasian linguistic patterns, the Genographic team studied Y-chromosome variation in 1,525 men from 14 populations in the Caucasus. The Y-chromosome lineages found in the Caucasus originated in the Near East and were introduced to the Caucasus in the late Upper Paleolithic or early Neolithic periods. This initial settlement was followed by a high degree of population isolation due to the mountainous terrain. Comparisons between the genetic and linguistic trees showed a striking correspondence between the topology and divergence times for the two, revealing a parallel evolution of genes and languages in the Caucasus in the past few millennia. This high degree of correspondence between genetic and linguistic patterns has not been seen in other regions of the world.
  1. Gaieski, J. B., Owings, A. C., Vilar, M. G., Dulik, M. C., Gaieski, D. F., Gittelman, R. M., Lindo, J., Gau, L., Schurr, T. G., and The Genographic Consortium. 2011. Genetic ancestry and indigenous heritage in a Native American descendant community in Bermuda. American Journal of Physical Anthropology 146: 392-405.
  • Bermuda is an isolated group of islands in the middle of the Atlantic settled during the 17th century by Western Europeans along with African and Native American slaves. The pattern of Y-chromosome and mitochondrial DNA diversity was studied in 111 members of a “native” community on St. David’s Island. Two-thirds of the paternal lineages are of European origin, while two-thirds of the mitochondrial DNA lineages are African. In contrast to other English-speaking communities in the Americas, however, the majority of St. David’s maternal lineages appear to derive from central and southern Africa, regions that historically were controlled by Portuguese slave traders. It is likely that the English settlers of Bermuda obtained slaves from these Portuguese sources. Despite genealogical records and oral traditions indicating significant arrivals of Native Americans as labor force, the proportion of Native American lineages was less than 2 percent on both the paternal and maternal sides. This study gives new insights into the complex history of colonization and migration in the Caribbean.
  1. Cai, X., Qin, Z., Wen, B., Xu, S., Wang, Y., Lu, Y., Wei, L., Wang, C., Li, S., Huang, X., Jin, L., Li, H., and The Genographic Consortium. 2011. Human Migration through bottlenecks from Southeast Asia into East Asia during Last Glacial Maximum revealed by Y chromosomes. PLoS ONE 6: e24282. doi:10.1371/journal.pone.0024282
  • The number and timing of the initial migrations to East Asia remain unresolved. This paper studied the Y-chromosome diversity in Mon-Khmer (MK)- and Hmong-Mien (HM)-speaking populations who are believed to be the source populations of other East Asians. The pattern of diversity for the O3a3b-M7 and O3a3c1-M117 lineages among MK, HM and other East Asian populations suggests an early unidirectional diffusion from Southeast Asia northward into East Asia around the time of the Last Glacial Maximum (~18,000 years ago). The ancestral population sizes of these first colonizers are believed to have gone through drastic reductions due to the barriers imposed by the geographic conditions (mountains and jungle) and the colder climate at the time of the migration. This “serial bottleneck” effect has left a distinctive genetic pattern in the present-day populations of East Asia, revealing their past demographic history.
  1. Melé, M., Javed, A., Pybus, M., Zalloua, P., Haber, M., Comas, D., Netea, M. G., Balanovsky, O., Balanovska, E., Jin, L., Yang, Y., Pitchappan, R. M., Arunkumar, G., Parida, L., Calafell, F., Bertranpetit, J., and The Genographic Consortium. 2011. Recombination gives a new insight in the effective population size and the history of the Old World human populations. Molecular Biology and Evolution (published online Sept. 1, 2011.) doi:10.1093/molbev/msr213
  • The IRiS method (described in paper 12) was used to assess the patterns of recombination on the X chromosome in 30 populations from Africa, Europe and Asia. The results suggest that the ancestors of non-African populations first left Africa in a single coastal migration across the Bad-el-Mandeb strait rather than through the Sinai Peninsula. The method allowed the team to estimate that sub-Saharan ancestral population sizes were four times greater than those in populations outside of Africa, while Indian ancestral sizes were the greatest among Eurasians. These results suggest that Indian populations played a major role in the expansions of modern humans to the rest of the world.
  1. Javed, A., Melé, M., Pybus, M., Zalloua, P., Haber, M., Comas, D., Netea, M. G., Balanovsky, O., Balanovska, E., Jin, l., Yang, Y., Arunkumar, G., Pitchappan, R., Bertranpetit, J., Calafell, F., Parida, L., and The Genographic Consortium. 2011. Recombination networks as genetic markers in a human variation study of the Old World. Human Genetics (first published online Oct. 18, 2011.)
  • An expanded analysis of the recombination dataset published in abbreviated form in paper 24, analyzing three additional populations. The conclusions outlined in paper 24 are bolstered through the more thorough presentation of the results.

2012

  1. Behar DM, Harmant C, Manry J, van Oven M, Haak W, Martinez-Cruz B, Salaberria J, Oyharçabal B, Bauduer F, Comas D, Quintana-Murci L; Genographic Consortium. 2012. The Basque paradigm: genetic evidence of a maternal continuity in the Franco-Cantabrian region since pre-Neolithic times. American Journal of Human Genetics 9;90(3):486-93.
  • This study focus on the maternal genetic diversity of Basques, the last European population to have kept a pre-Indo European language, to increase knowledge of the origins of the Basque people and, more generally, on the role of the Franco-Cantabrian refuge in the post-glacial repopulation of Europe. The maternal ancestry of 908 Basque and non-Basque individuals from the Great Basque Country and adjacent regions were studied plus 420 complete mtDNA genomes within haplogroup H. The results identified six mtDNAhaplogroups autochthonous to the Franco-Cantabrian region and, more specifically, to Basque-speaking populations. Further, expansion of these haplogroups were estimated at ~4,000 ybp  with a separation from the general European gene pool to have happened  ~8,000 ybp predating the Indo-European arrival to the region. Thus, the results clearly support the hypothesis of a partial genetic continuity of contemporary Basques with the indigenous Paleolithic settlers of their homeland.
  1. Martínez-Cruz B, Harmant C, Platt DE, Haak W, Manry J, Ramos-Luis E, Soria-Hernanz DF, Bauduer F, Salaberria J, Oyharçabal B, Quintana-Murci L, Comas D; the Genographic Consortium. Evidence of pre-Roman tribal genetic structure in Basques from uniparentally inherited markers. Molecular Biology and Evolution (published online March 12, 2012) doi: 10.1093/molbev/mss091.
  • Basques have received considerable attention from anthropologists, geneticists and linguists during the last century due to the singularity of their language and to other cultural and biological characteristics. Despite the multidisciplinary efforts performed to address the questions of the origin, uniqueness and heterogeneity of Basques, the genetic studies performed up to now have suffered from a weak study-design where populations are not analyzed in an adequate geographic and population context. To address the former questions and to overcome these design limitations, uniparental genomes (Y chromosome and mitochondrial DNA) of ~900 individuals from 18 populations were analyzed, including those where Basque is currently spoken and surrounding populations where Basque might have been spoken in historical times. Results situate Basques within the western European genetic landscape, although with less external influences than other Iberians and French populations. In addition, the genetic heterogeneity and structure observed in the Basque region results from pre-Roman tribal structure related to geography and is linked to the increased complexity of emerging societies during the Bronze Age. The rough overlap of tribal and current dialect limits supports the notion that the environmental diversity in the region has played a recurrent role in cultural differentiation and ethnogenesis at different time periods.
  1. Kang, L., Lu, Y., Wang, C., Hu, K., Chen, F., Liu, K., Li, S., Jin, L., Li, H., and The Genographic Consortium. 2012. Y-chromosome O3 Haplogroup diversity in Sino-Tibetan populations reveals two migration routes into the Eastern Himalayas. Annals of Human Genetics 76: 92–99.
  • This paper further explores the question of how Himalayas was populated by studying the genetic diversity of the paternal lineages of two ethnic groups from the eastern Himalayas: the Luoba and Deng. These two Sino-Tibetan speaking groups exhibited a distinct genetic composition indicating different genetic origins. The paternal diversity of the Louba people indicates past gene flow from Tibetans as well as from western and north Eurasian people. In contrast, Deng exhibited lineages similar to most of Sino-Tibetans from the east. The overall lowest diversity observed in the eastern Himalayas suggests that this area was the end point of two migratory routes of Sino-Tibetans from north China around 2,000-3,000 years ago. These date estimates also agrees with the historical records.
  1. Lu, Y., Wang, C., Qin, Z., Wen, B., Farina, S. E., Jin, L., Li, H., and The Genographic Consortium. 2012. Mitochondrial origin of the matrilocal Mosuo people in China. Mitochondrial DNA 23: 13–19
  • The Mosuo people currently live around the Lugu Lake on the border of the Yunan and Sichuan provinces of China and they are the last matrilocal population in the main land of the country. To investigate the maternal history of this ethnic group, partial genetic sequences of the mitochondria (a maternally inherited genome) were studied among Mosuo people and other larger surrounding ethnic groups. Groups with matrilocal traditions are expected to exhibited a lower mitochondrial genetic diversity because the movement of these genomes are reduced since woman remain within families after marriage. However, the results presented here did not reflect these expectations indicating that Mouso may have started practicing matrilocality long time ago, at least after the Paleolithic Age. In contrast to previous studies that showed a clear relationship between Mouso and Naxi people based on just mtDNA haplogroup frequencies, the network analyses presented here indicated clear clusters of individual sequences between Mouso and Pumi lineages. The genetic resemblance between these two group are concordant with other evidences from cultural and language studies. These results indicate that simply comparing haplogroups frequencies among ethnic groups may lead to erroneous conclusions and analyses comparing mtDNA sequences are better suitable for exploring genetic relationship among ethnic groups.
  1. Haber M, Platt DE, Ashrafian Bonab M, Youhanna SC, Soria-Hernanz DF, Martínez-Cruz B, Douaihy B, Ghassibe-Sabbagh M, Rafatpanah H, Ghanbari M, Whale J, Balanovsky O, Wells RS, Comas D, Tyler-Smith C, Zalloua PA; The Genographic Consortium. 2012. Afghanistan’s Ethnic Groups Share a Y-Chromosomal Heritage Structured by Historical Events. PLoS ONE 7(3): e34288. doi:10.1371/journal.pone.0034288
  • This study focus on how Afghanistan’s ethnic groups relate to each others and with other populations from neighboring countries. The results presented indicated that major genetic differences among Afghanistan’s ethnic groups are relatively recent. The different modern ethnic groups share a genetic heritage probably formed during the Neolithic in the founding of the early farming communities. However, differentiation among the ethnic groups likely started during the Bronze Age driven by the establishment of the first civilizations. Later migrations and invasions to the region, gave the Afghans a unique genetic diversity in Central Asia.
  1. Schurr, T. G., Dulik, M. C., Owings, A. C., Zhadanov, S. I., Gaieski, J. B., Vilar, M. G., Ramos, J., Moss, M. B., Natkong, F. and The Genographic Consortium. 2012. Clan, language, and migration history has shaped genetic diversity in Haida and Tlingit populations from Southeast Alaska. American Journal of Physical Anthropology. (published online May 1, 2012) doi: 10.1002/ajpa.22068.
  • This manuscript gives new insights about the genetics of the linguistically distinctive Haida and Tlingit tribes of Southeast Alaska. More espcifically, this paper study the role that Southeast Alaska may have played in the early colonization of the Americas; the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. The analysis indicates that, while sharing a ‘northern’ genetic profile, the Haida and the Tlingit are genetically distinctive from each other.  In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north.  The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity.  These results yield new details about the histories of the Haida and Tlingit tribes in this region.
  1. Dulik, M. C., Owings, A. C., Zhadanov, S. I., Gaieski, J. B., Vilar, M. G., Schurr, T. G., and The Genographic Consortium. 2012. Y-chromosome analysis of native North Americans reveals new paternal lineages and genetic differentiation between Eskimo-Aleut and Dene speaking populations. Accepted for publication in April in PNAS.
  • The genetic origins of the linguistically diverse Native Americans and when they reached the Americas are questions that have been explored during the last several decades. This study provides new information to these questions by increasing the number of populations sampled and the genetic resolution used in the analyses Here, it is tested whether there is any correlation between genetic diversity from paternally inherited Y-chromosomes and native populations speaking the two distinctive linguistic families: Eskimo-Aleut and Na-Dene. The results indicate that the Y chromosome genetic diversity among the first Native American was greater than previously shown in other publications. In addition, the Eskimo-Aleut and Na-Dene speaking populations showed clear genetic differences between then.  The disparities in language, culture and genetic diversity between these two populations likely reflect the outcome of two migrations that happened after the initial settlement of people into the Americas.
  1. Martinez-Cruz B, Ioana M, Calafell F, Arauna LR, Sanz P, Ionescu R, Boengiu S, Kalaydjieva L, Pamjav H, Makukh H, Plantiga T, van der Meer JWM, Comas D, Netea M, The Genographic Consortium. 2012. Y-chromosome analysis in individuals bearing the Basarab name of the first dynasty of Wallachian kings. PLoS ONE 7(7): e41803
  • The most famous Transylvanian prince is Vlad III from the Basarab royal dynasty, also commonly known as Dracula. The ethnic origins of the Basarab is intensively debated among historians and it is unclear of whether they are descendants of the Cuman people (an admixed Turkic people that reached Romania from the East in the 11th century) or of Vlach people (local Romanians). This paper investigated the Y chromosome of 29 Romanian men carrying the surname Basarab and in order to identify their genetic origin the data was compared with four Romanian and other surrounding populations. Different Y-chromosome haplogroups were found within the individuals bearing the Basarab name, indicating that not all these individuals can be direct biological descendants of the Basarab dynasty. In addition, all these haplogroups are common in Romania and other Central and Eastern European populations. The Basarab group exhibited closer genetic distances with other Romanian populations. These results together with the absence of Eastern Asian paternal lineages in the Basarab men can be interpreted as a lack of evidence for a Cuman origin of this royal dynasty, although it cannot be positively ruled out. As a final conclusion, it seems that the Basarab dynasty was successful in spreading its name beyond the spread of its genes.
  1. Rebala K, Martínez-Cruz B, Tönjes A, Kovacs P, Stumvoll M, Lindner I, Büttner A, Wichmann H-E, Siváková D, Soták M, Quintana-Murci L, Szczerkowska Z, Comas D, The Genographic Consortium. 2012. Contemporary paternal genetic landscape of Polish and German populations: from early medieval Slavic expansion to post-World War II resettlements. European Journal of Human Genetics 21(4): 415-422
  • One of the most outstanding phenomena in the Y-chromosomal diversity in Europe concerns the sharp genetic border identified between the ethnically /linguistically defined Slavic (from Poland) and German populations (from Germany). The Polish paternal lineages also reveal great degree of homogeneity in spite of a relatively large geographic area seized by the Polish state. Two main explanations have been proposed to explain the phenomena: (i) Massive human resettlements during and shortly after the World War II, and (ii) an early medieval Slavic migrations that displayed previous genetic heterogeneity. In order to answer these questions, 1,156 individuals from several Slavic and German populations were analyzed, including Polish pre-war regional populations and an autochthonous Slavic population from Germany. This study demonstrates for the first time that the Polish paternal lineages were unevenly distributed within the country before the forced resettlements of millions of people during and shortly after the WWII. Finally, the coalescence analyses support hypothesis that the early medieval Slavic expansion in Europe was a demographic event rather than solely a linguistic spread of the Slavic language.
  1. Arunkumar G, Soria-Hernanz DF, Kavitha VJ, Arun VS, Syama A, Ashokan KS, Gandhirajan KT, Vijayakumar K, Narayanan M, Jayalakshmi M, Ziegle JS, Royyuru AK, Parida L, Wells RS, Renfrew C, Schurr TG, Smith CT, Platt DE, Pitchappan R; Genographic Consortium. 2012. Population differentiation of southern Indian male lineages correlates with agricultural expansions predating the caste system. PLoS ONE. 7(11): e50269
  • Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system. This study investigates the origin of the caste system by genotyping 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) populations from the Dravidian-speaking Tamil Nadu state in the southernmost part of India. 81% of Y chromosome were autochthonous Indian haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10-30 Kya). Results show a strong evidence for genetic structure, and coalescent analyses suggest that the stratification was established 4-6 thousand years ago, with little admixture took place during the last several millennia. The overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation are best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India.

2013

  1. Badro DA, Douaihy B, Haber M, Youhanna SC, Salloum A, Ghassibe-Sabbagh M, Johnsrud B, Khazen G, Matisoo-Smith E, Soria-Hernanz DF, Wells RS, Tyler-Smith C, Platt DE, Zalloua PA, The Genographic Consortium. 2013. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of Modern Middle Eastern populations with European and African populations. PLoS ONE 8(1):e54616
  • The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. In addition, post LGM expansions into the region and subsequent population movements have created a striking genetic mosaic in the region. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated. Lebanon’s mtDNA showed a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by Y-haplogroups J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe, as indicated by the mtDNA data. Lastly, while each population shows evidence of historic expansions that now define the Middle East, Africa, and Europe, most Middle Eastern populations show distinctive mtDNA and Y-haplogroup characteristics that suggest long standing settlements with relatively little impact from other populations.
  1. WANG, C.-C., YAN, S., QIN, Z.-D., LU, Y., DING, Q.-L., WEI, L.-H., LI, S.-L., YANG, Y.-J., JIN, L., LI, H. and the Genographic Consortium. 2013. Late Neolithic expansion of ancient Chinese revealed by Y chromosome haplogroup O3a1c-002611. Journal of Systematics and Evolution, 51: 280–286.
  • Y chromosome haplogroup O3-M122 is the most prevalent haplogroup in East Asia, and provides an ideal tool for dissecting primary dispersals of the East Asians. In this study, we identified 508 individuals with haplogroup O3a1c-002611 out of 7801 males from 117 East and Southeast Asian populations, typed at two newly discovered downstream Y-SNP markers and ten commonly used Y-STRs. STR diversity shows a general south-to-north decline, which is consistent with the prehistorically northward migration of the other O3-M122 lineages. The northward migration of haplogroup O3a1c-002611 started about 13 thousand years ago (KYA). The expansions of subclades F11 and F238 in ancient Han Chinese began about 5-7 KYA immediately after the separation between the ancestors of the Han Chinese and Tibeto-Burman.
  1. DENG, Q.-Y., WANG, C.-C., WANG, X.-Q., WANG, L.-X., WANG, Z.-Y., WU, W.-J., LI, H. and the Genographic Consortium. 2013. Genetic affinity between the Kam-Sui speaking Chadong and Mulam people. Journal of Systematics and Evolution, 51: 263–270
  • The origins of Kam-Sui speaking Chadong and Mulam people have been controversial subjects in ethnic history studies and other related fields. Here, we studied Y chromosome (40 informative SNPs and 17 STRs in a non-recombining region) and mtDNA (hypervariable segment I and coding region single nucleotide polymorphisms) diversities in 50 Chadong and 93 Mulam individuals. The Y chromosome and mtDNA haplogroup components and network analyses indicated that both Chadong and Mulam originated from the admixture between surrounding populations and the indigenous Kam-Sui populations. The newly found Chadong is more closely related to Mulam than to Maonan, especially in the maternal lineages.
  1. LI, D.-N., WANG, C.-C., YANG, K., QIN, Z.-D., LU, Y., LIN, X.-J., LI, H. and the Genographic Consortium. 2013. Substitution of Hainan indigenous genetic lineage in the Utsat people, exiles of the Champa kingdom. Journal of Systematics and Evolution, 51: 287–294
  • The Utsat people do not belong to one of the recognized ethnic groups in Hainan, China. In the present study, we typed paternal Y chromosome and maternal mitochondrial (mt) DNA markers in 102 Utsat people to gain a better understanding of the genetic history of this population. High frequencies of the Y chromosome haplogroup O1a*-M119 and mtDNA lineages D4, F2a, F1b, F1a1, B5a, M8a, M*, D5, and B4a exhibit a pattern similar to that seen in neighboring indigenous populations. Cluster analyses (principal component analyses and networks) of the Utsat, Cham, and other ethnic groups in East Asia indicate that the Utsat are much closer to the Hainan indigenous ethnic groups than to the Cham and other mainland southeast Asian populations. These findings suggest that the origins of the Utsat likely involved massive assimilation of indigenous ethnic groups. During the assimilation process, the language of Utsat has been structurally changed to a tonal language; however, their Islamic beliefs may have helped to keep their culture and self-identification.
  1. Der Sarkissian C, Balanovsky O, Brandt G, Khartanovich V, Buzhilova A, Koshel S, Zaporozhchenko V, Gronenborn D, Moiseyev V, Kolpakov E, Shumkin V, Alt KW, Balanovska E, Cooper A, Haak W, The Genographic Consortium. 2013. Ancient DNA reveals prehistoric gene-flow from Siberia in the complex human population history of North East Europe. PLoS Genetics 9(2): e1003296
  • Archaeological, anthropological, and genetic research of Northeastern European populations have revealed a series of influences from Western and Eastern Eurasia. While genetic data from modern-day populations is commonly used to make inferences about origins and past migrations, ancient DNA provides a powerful tool by giving a snapshot of the past genetic diversity. This study generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three Mesolithic and the Early Metal Age (7,500 and 3,500 years ago) sites in northwest Russia. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroup U (U2e, U4, U5a), commonly observed in hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested genetic influx from central/eastern Siberia. This genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami suggests a strong influence of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrated how ancient DNA can improve our understanding of human population movements across Eurasia.
  1. Brotherton P, Haak W, Templeton J, Brandt G, Soubrier J, Jane Adler C, Richards SM, Sarkissian CD, Ganslmeier R, Friederich S, Dresely V, van Oven M, Kenyon R, Van der Hoek MB, Korlach J, Luong K, Ho SY, Quintana-Murci L, Behar DM, Meller H, Alt KW, Cooper A, The Genographic Consortium. 2013. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nature Communications 4:1764
  • Haplogroup H dominates present-day Western European mitochondrial DNA variability (>40%), yet was less common (~19%) among Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. This project investigated maternal population history of modern Europeans by sequencing 39 complete haplogroup H mitochondrial genomes from ancient remains; and comparing this ‘real-time’ genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Results revealed that the current diversity and distribution of haplogroup H were largely established by the Mid Neolithic (~4000 BC), but with substantial genetic contributions from later pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Newly dated haplogroup H genomes enabled the reconstruction of the evolutionary history of the haplogroup, and revealed a mutation rate 45% higher than previous estimates.
  1. LI, D.-N., WANG, C.-C., LU, Y., QIN, Z.-D., YANG, K., LIN, X.-J., LI, H. and the Genographic Consortium. 2013. Three phases for the early peopling of Hainan Island viewed from mitochondrial DNA. Journal of Systematics and Evolution, 51: 671–680
  • Hainan, an island linking mainland East Asia and Southeast Asia, lay in one of the routes of early migration to East Asia. Here, we have analyzed mitochondrial DNA control-region and coding-region sequence variations in 566 Hlai individuals from all five subgroups, Ha, Gei, Zwn, Moifau, and Jiamao. Our results suggest three phases for the peopling of Hainan. The first phase represents the initial settlement of the island as part of the African dispersal approximately 50 000 years ago. The second phase reflects colonization events from mainland Asia before the Last Glacial Maximum, which was recorded by wide distributed lineages, such as F*, B4a, and D4a.The third phase reflects population expansions under lineages F1b, M7b, and R9b after the Last Glacial Maximum and Neolithic migrations in and out of Hainan Island. Selection also started to play a role during the last phase.
  1. Elhaik E, Greenspan E, Staats S, Krahn T, Tyler-Smith C, Xue Y, Tofanelli S, Francalacci P, Cucca F, Pagani L, Jin L, Li H, Schurr TG, Greenspan B, Spencer Wells R, The Genographic Consortium. 2013. The GenoChip: a new tool for genetic anthropology. Genome Biology & Evolution 5(5): 1021-1031
  • The Genographic Project is an international effort aimed at charting human migratory history. The first phase of the project was focused on haploid DNA markers (Y-chromosome and mtDNA), while the current phase focuses on markers from across the entire genome using the newly created GenoChip. GenoChip was designed to enable higher resolution research into outstanding questions in genetic anthropology. It includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and it was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was also carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs with no health, medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and human population genetics.
  1. Boattini A, Martinez-Cruz B, Sarno S, Harmant C, Useli A, Sanz P, Yang-Yao D, Manry J, Ciani G, Luiselli D, Quintana-Murci L, Comas D, Pettener D; The Genographic Consortium. 2013. Uniparental markers in Italy reveal a sex-biased genetic structure and different historical strata. PLoS ONE 8(5): e65441
  • Italy played an important role in the history of human settlements and movements of Southern Europe and the Mediterranean. Populated since Paleolithic times, the complexity of human movements during the Neolithic, the Metal Ages and the most recent history of the two last millennia, shaped the pattern of the modern Italian genetic structure. With the aim of disentangling this pattern, this project analyzed the haploid markers in ∼900 individuals from across the Italian peninsula, Sardinia and Sicily. Results show a sex-biased pattern, indicating different demographic histories for males and females. Besides the genetic outlier position of Sardinians, a North West-South East Y-chromosome structure appeared through continental Italy, likely a result of historical and demographic events. In contrast, mitochondrial (maternal) diversity is distributed homogeneously in accordance with older pre-historic events, as was the presence of an Italian Refugium during the last glacial period in Europe.
  1. Sandoval JR, Lacerda DR, Jota MS, Salazar-Granara A, Vieira PP, Acosta O, Cuellar C, Revollo S, Fujita R, Santos FR, The Genographic Consortium. 2013. The genetic history of indigenous populations of the Peruvian and Bolivian Altiplano: the legacy of the Uros. PLoS ONE 8(9): e73006
  • Since pre-Columbian times, different cultures established themselves around the Titicaca and Poopo Lakes. Yet by the time of Spanish colonization, the Inca Empire and the Aymara and Quechua languages were dominant in the region. This study focused on the pre-Columbian history of the Altiplano populations, particularly the Uros, which claim to be directly descend from the first settlers of the Andes. Results indicate that the Uros populations stand out among others in the Altiplano, while appearing more closely related to the Aymara and Quechua from Lake Titicaca and surrounding regions, than to the Amazon Arawaks. Moreover, the Uros populations from Peru and Bolivia are genetically differentiated from each other, indicating a high heterogeneity in this ethnic group. Lastly, the results support the distinctive ancestry for the Uros populations of Peru and Bolivia, likely derived from ancient Andean lineages, but further complicated by a partial replacement during more recent farming expansion, and the establishment of complex civilizations in the Andes, such as the Inca.
  1. Brandt G, Haak W, Adler CJ, Roth C, Szécsényi-Nagy A, Karimnia S, Möller-Rieker S, Meller H, Ganslmeier R, Friederich S, Dresley V, Nicklish N, Pickrell JK, Siroko F, Reich D, Cooper A, Alt KW, The Genographic Consortium 2013. Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity. Science 342, no.6155: 257-261.
  • Genographic project scientists, in collaboration with archeologists from Germany, successfully sequenced and analyzed DNA from 364 individuals that lived in Central Europe between 5,500 and 1,500 BC. What they found was that the shift in the frequency of DNA lineages closely matched the changes and appearances of new Central European cultures across time. In other words, the people who lived in Central Europe 7,000 years ago had different DNA lineages than those that lived there 5,000 years ago, and again different to those that lived 3,500 years ago. Central Europe was dynamic place during the Bronze age, and the genetic composition of the people that lived there demonstrates that. Ultimately, Central Europe is a melting pot of genetic lineages from different prehistoric cultures that lived there at different periods of time, each new one partially replacing the one before it.

2014

  1. Clarke AC, Prost S, Stanton JL, W, White TJ, Kaplan ME, Matisoo-Smith EA, and The Genographic Consortium. 2014. From cheek swabs to consensus sequences: an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes. BMC Genomics 15:68
  • Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources.
  1. Elhaik E, Tatarinova T, Chebotarev D, Piras, IS, Calo CM, De Montis A, Atzori M, Marini M, Tofanelli S, Francalacci P, et al. 2014. Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications 5:3513
  • Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing.
  1. Sarkissian C, Brotherton P, Balanovsky O, Templeton JEL, Llamas B, Soubrier J, Moiseyev V, Khartanovich V, Cooper A, Haak W, The Genographic Consortium. (2014) Mitochondrial Genome Sequencing in Mesolithic North East Europe Unearths a New Sub-Clade within the Broadly Distributed Human Haplogroup C1. PLoS ONE 9(2): e87612. doi:10.1371/journal.pone.0087612
  • The human mitochondrial haplogroup C1 has a broad global distribution but is extremely rare in Europe today. Recent ancient DNA evidence has demonstrated its presence in European Mesolithic individuals. Three individuals from the 7,500 year old Mesolithic site of Yuzhnyy Oleni Ostrov, Western Russia, could be assigned to haplogroup C1 based on mitochondrial hypervariable region I sequences. In order to obtain high-resolution data and shed light on the origin of this European Mesolithic C1 haplotype, we target-enriched and sequenced the complete mitochondrial genome of one Yuzhnyy Oleni Ostrov C1 individual. The updated phylogeny of C1 haplogroups indicated that the Yuzhnyy Oleni Ostrov haplotype represents a new distinct clade, provisionally coined “C1f”. No haplotype closely related to the C1f sequence could be found in the large current database of ancient and present-day mitochondrial genomes. Hence, we have discovered past human mitochondrial diversity that has not been observed in modern-day populations so far.
  1. Vilar, M. G., Melendez, C., Sanders, A. B., Walia, A., Gaieski, J. B., Owings, A. C., Schurr, T. G. and The Genographic Consortium (2014) Genetic diversity in Puerto Rico and its implications for the peopling of the Island and the West Indies. Am. J. Phys. Anthropol., 155: 352–368
  • Puerto Ricans are genetic descendants of pre-Columbian peoples, as well as peoples of European and African descent through 500 years of migration to the island. To infer these patterns of pre-Columbian and historic peopling of the Caribbean, we characterized genetic diversity in 326 individuals from the southeastern region of Puerto Rico and the island municipality of Vieques. We sequenced the mitochondrial DNA (mtDNA) control region of all of the samples and the complete mitogenomes of 12 of them to infer their putative place of origin. In addition, we genotyped 121 male samples for 25 Y-chromosome single nucleotide polymorphism and 17 STR loci. Approximately 60% of the participants had indigenous mtDNA haplotypes (mostly from haplogroups A2 and C1), while 25% had African and 15% European haplotypes. None of the male participants had indigenous Y-chromosomes, with 85% of them instead being European/Mediterranean and 15% sub-Saharan African in origin. These results attest to the distinct, yet equally complex, pasts for the male and female ancestors of modern day Puerto Ricans.

2015

  1. Kushniarevich A, Utevska O, Chuhryaeva M, Agdzhoyan A, Dibirova K, Uktveryte I et al. (2015) Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data. PLoS ONE 10(9): e0135820
  • Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: ‘central-east European’ for West and East Slavs, and ‘south-east European’ for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people
  1. ArunKumar, GaneshPrasad, Tatiana V. Tatarinova, Jeff Duty, Debra Rollo, Adhikarla Syama, Varatharajan Santhakumari Arun, Valampuri John Kavitha et al (2015) Genome-wide signatures of male-mediated migration shaping the Indian gene pool.” Journal of human genetics. Accepted online May 21, 2105
  • Multiple questions relating to contributions of cultural and demographical factors in the process of human geographical dispersal remain largely unanswered. India, a land of early human settlement and the resulting diversity is a good place to look for some of the answers. In this study, we explored the genetic structure of India using a diverse panel of 78 males genotyped using the GenoChip. Their genome-wide single-nucleotide polymorphism (SNP) diversity was examined in the context of various covariates that influence Indian gene pool. Admixture analysis of genome-wide SNP data showed high proportion of the Southwest Asian component in all of the Indian samples. Hierarchical clustering based on admixture proportions revealed seven distinct clusters correlating to geographical and linguistic affiliations. Convex hull overlay of Y-chromosomal haplogroups on the genome-wide SNP principal component analysis brought out distinct non-overlapping polygons of F*-M89, H*-M69, L1-M27, O2a-M95 and O3a3c1-M117, suggesting a male-mediated migration and expansion of the Indian gene pool. Lack of similar correlation with mitochondrial DNA clades indicated a shared genetic ancestry of females. We suggest that ancient male-mediated migratory events and settlement in various regional niches led to the present day scenario and peopling of India.
  1. Arunkumar, GaneshPrasad, Lan‐Hai Wei, Valampuri John Kavitha, Adhikarla Syama, Varatharajan Santhakumari Arun, Surendra Sathua, Raghunath Sahoo et al. (2015) A late Neolithic expansion of Y chromosomal haplogroup O2a1‐M95 from east to west. Journal of Systematics and Evolution (2015). Accepted online March 31, 2015
  • The origin and dispersal of Y-Chromosomal haplogroup O2a1-M95, distributed across the Austro Asiatic speaking belt of East and South Asia, are yet to be fully understood. Various studies have suggested either an East Indian or Southeast Asian origin of O2a1-M95. We addressed the issue of antiquity and dispersal of O2a1-M95 by sampling 8748 men from India, Laos, and China and compared them to 3307 samples from other intervening regions taken from the literature. Analyses of haplogroup frequency and Y-STR data on a total 2413 O2a1-M95 chromosomes revealed that the Laos samples possessed the highest frequencies of O2a1-M95 (74% with >0.5) and its ancestral haplogroups (O2*-P31, O*-M175) as well as a higher proportion of samples with 14STR-median haplotype (17 samples in 14 populations), deep coalescence time (5.7 ± 0.3 Kya) and consorted O2a1-M95 expansion evidenced from STR evolution. All these suggested Laos to carry a deep antiquity of O2a1-M95 among the study regions. A serial decrease in expansion time from east to west: 5.7 ± 0.3 Kya in Laos, 5.2 ± 0.6 in Northeast India, and 4.3 ± 0.2 in East India, suggested a late Neolithic east to west spread of the lineage O2a1-M95 from Laos.
  1. Martínez-Cruz, Begoña, Isabel Mendizabal, Christine Harmant, Rosario de Pablo, Mihai Ioana, Dora Angelicheva, Anastasia Kouvatsi et al. (2015) Origins, admixture and founder lineages in European Roma. European Journal of Human Genetics. Accepted online September 16, 2015
  • The Roma, also known as ‘Gypsies’, represent the largest and the most widespread ethnic minority of Europe. We performed a high-resolution study of the uniparental genomes of 753 Roma and 984 non-Roma hosting European individuals. Roma groups show lower genetic diversity and high heterogeneity compared with non-Roma samples as a result of lower effective population size and extensive drift, consistent with a series of bottlenecks during their diaspora. We found a set of founder lineages, present in the Roma and virtually absent in the non-Roma, for the maternal (H7, J1b3, J1c1, M18, M35b, M5a1, U3, and X2d) and paternal (I-P259, J-M92, and J-M67) genomes. This lineage classification allows us to identify extensive gene flow from non-Roma to Roma groups, whereas the opposite pattern, although not negligible, is substantially lower (up to 6.3%). Finally, the exact haplotype matching analysis of both uniparental lineages consistently points to a Northwestern origin of the proto-Roma population within the Indian subcontinent.
  1. Jada Benn Torres, Miguel G. Vilar, Gabriel Torres, Jill B. Gaieski, Ricardo Bharath Hernandez, Zoila E. Browne, Marlon Stevenson, Wendell Walters, Theodore G. Schurr, and The Genographic Consortium (2015) Genetic Diversity in the Lesser Antilles and Its Implications for the Settlement of the Caribbean Basin. PLoS One. Accepted for publication October 1, 2015
  • Historical discourses about the Caribbean often chronicle West African and European influence to the general neglect of indigenous people’s contributions to the contemporary region. Consequently, demographic histories of Caribbean people prior to and after European contact are not well understood.  Although archeological evidence suggests that the Lesser Antilles were populated in a series of northward and eastern migratory waves, many questions remain regarding the relationship of the Caribbean migrants to other indigenous people of South and Central America and changes to the demography of indigenous communities post-European contact.  To explore these issues, we analyzed mitochondrial DNA and Y-chromosome diversityin 12 unrelated individuals from the First Peoples Community in Arima, Trinidad, and 43 unrelated Garifuna individuals residing in St. Vincent.  In this community-sanctioned research, we detected maternal indigenous ancestry in 42% of the participants, with the remainder having haplotypes indicative of African and South Asian maternal ancestry.  Analysis of Y-chromosome variation revealed paternal indigenous American ancestry indicated by the presence of haplogroup Q-M3 in 28% of the male participants from both communities, with the remainder possessing either African or European haplogroups.  This finding is the first report of indigenous American paternal ancestry among indigenous populations in this region of the Caribbean.  Overall, this study illustrates the role of the region’s first peoples in shaping the genetic diversity seen in contemporary Caribbean populations.

Ethnicity Testing and Results

I have written repeatedly about ethnicity results as part of the autosomal test offerings of the major DNA testing companies, but I still receive lots of questions about which ethnicity test is best, which is the most accurate, etc.  Take a look at “Ethnicity Percentages – Second Generation Report Card” for a detailed analysis and comparison.

First, let’s clarify which testing companies we are talking about.  They are:

Let’s make this answer unmistakable.

  1. Some of the companies are somewhat better than others relative to ethnicity – but not a lot.
  2. These tests are reasonably reliable when it comes to a continent level test – meaning African, European, Asian and sometimes, Native American.
  3. These tests are great at detecting ancestry over 25% – but if you know who your grandparents are – you already have that information.
  4. The usefulness of these tests for accurately providing ethnicity information diminishes as the percentage of that minority admixture declines.  Said another way – as your percentage of a particular ethnicity decreases, so does the testing companies’ ability to find it.
  5. Intra-continental results, meaning within Europe, for example, are speculative, at best.  Do not expect them to align with your known genealogy.  They likely won’t – and if they do at one vendor – they won’t at others.  Which one is “right”?  Who knows – maybe all of them when you consider population movement, migration and assimilation.
  6. As the vendors add to and improve their data bases, reference populations and analysis tools, your results change. I discussed how vendors determine your ethnicity percentages in the article, “Determining Ethnicity Percentages.”
  7. Sometimes unexpected results, especially continent level results, are a factor of ancient population mixing and migrations, not recent admixture – and it’s impossible to tell the difference. For example, the Celts, from the Germanic area of Europe also settled in the British Isles. Attila the Hun and his army, from Asia, invaded and settled in what is today, Germany, as well as other parts of Eastern Europe.
  8. Ethnicity tests are unreliable in consistently detecting minority admixture. Minority in this context means a small amount, generally less than 5%.  It does not refer to any specific ethnicity. Having said that, there are very few reference data base entries for Native American populations.  Most are from from Canada and South America.

In the context of ethnicity, what does unreliable mean?

Unreliable means that the results are not consistent and often not reproducible across platforms, especially in terms of minority admixture.  For example, a German/Hungarian family member shows Native American admixture at low percentages, around 3%, at some, but not all, vendors.  His European family history does not reflect Native heritage and in fact, precludes it.  However, his results likely reflect Native American from a common underlying ancestral population, the Yamnaya, between the Asian people who settled Hungary and parts of Germany and also contributed to the Native American population.

Unreliable can also mean that different vendors, measuring different parts of your DNA, can assign results to different regions.  For example, if you carry Celtic ancestry, would you be surprised to see Germanic results and think they are “wrong?”  Speaking of Celts, they didn’t just stay put in one region within Europe either.  And who were the Celts and where did they ‘come from’ before they were Celts.  All of this current and ancient admixture is carried in your DNA.  Teasing it out and the meaning it carries is the challenge.

Unreliable may also mean that the tests often do not reflect what is “known” in terms of family history.  I put the word “known” in quotes here, because oral history does not constitute “known” and it’s certainly not proof.  For the most part, documented genealogy does constitute “known” but you can never “know” about an undocumented adoption, also referred to as a “nonparental event” or NPE.  Yes, that’s when one or both parents are not who you think they are based on traditional information.  With the advent of DNA testing, NPEs can, in some instances, be discovered.

So, the end result is that you receive very interesting information about your genetic history that often does not correlate with what you expected – and you are left scratching your head.

However, in some cases, if you’re looking for something specific – like a small amount of Native American or African ancestry, you, indeed, can confirm it through your DNA – and can confirm your family history.  One thing is for sure, if you don’t test, you will never know.

Minority Admixture

Let’s take a look at how ethnicity estimates work relative to minority admixture.

In terms of minority admixture, I’m referring to admixture that is several generations back in your tree.  It’s often revealed in oral history, but unproven, and people turn to genetic genealogy to prove those stories.

In my case, I have several documented Native American lines and a few that are not documented.  All of these results are too far back in time, the 1600s and 1700s, to realistically be “found” in autosomal admixture tests consistently.  I also have a small amount of African admixture.  I know which line this comes from, but I don’t know which ancestor, exactly.  I have worked through these small percentages systematically and documented the process in the series titled, “The Autosomal Me.”  This is not an easy or quick process – and if quick and easy is the type of answer you’re seeking – then working further, beyond what the testing companies give you, with small amounts of admixture, is probably not for you.

Let’s look at what you can expect in terms of inheritance admixture.  You receive 50% of your DNA from each parent, and so forth, until eventually you receive very little DNA (or none) from your ancestors from many generations back in your tree.

Ethnicity DNA table

Let’s put this in perspective.  The first US census was taken in 1790, so your ancestors born in 1770 should be included in the 1790 census, probably as a child, and in following censuses as an adult.  You carry less than 1% of this ancestor’s DNA.

The first detailed census listing all family members was taken in 1850, so most of your ancestors that contributed more than 1% of your DNA would be found on that or subsequent detailed census forms.

These are often not the “mysterious” ancestors that we seek.  These ancestors, whose DNA we receive in amounts over 1%, are the ones we can more easily track through traditional means.

The reason the column of DNA percentages is labeled “approximate” is because, other than your parents, you don’t receive exactly half of your ancestor’s DNA.  DNA is not divided exactly in half and passed on to subsequence generations, except for what you receive from your parents.  Therefore, you can have more or less of any one ancestor’s individual DNA that would be predicted by the chart, above.  Eventually, as you continue to move further out in your tree, you may carry none of a specific ancestor’s DNA or it is in such small pieces that it is not detected by autosomal DNA testing.

The Vendors

At least two of the three major vendors have made changes of some sort this year in their calculations or underlying data bases.  Generally, they don’t tell us, and we discover the change by noticing a difference when we look at our results.

Historically, Ancestry has been the worst, with widely diverging estimates, especially within continents.  However, their current version is picking up both my Native and African.  However, with their history of inconsistency and wildly inaccurate results, it’s hard to have much confidence, even when the current results seem more reasonable and in line with other vendors.  I’ve adopted a reserved “wait and see” position with Ancestry relative to ethnicity.

Family Tree DNA’s Family Finder product is in the middle with consistent results, but they don’t report less than 1% admixture which is often where those distant ancestors’ minority ethnicity would be found, if at all.  However, Family Tree DNA does provide Y and mitochondrial mapping comparisons, and ethnicity comparisons to your matches that are not provided by other vendors.

Ethnicity DNA matches

In this view, you can see the matching ethnicity percentages for those whom you match autosomally.

23andMe is currently best in terms of minority ethnicity detection, in part, because they report amounts less than 1%, have a speculative view, which is preferred by most genetic genealogists and because they paint your ethnicity on your chromosomes, shown below.  You can see that both chromosome 1 and 2 show Native segments.

Ethnicity 23andMe chromosome

So, looking at minority admixture only – let’s take a look at today’s vendor results as compared to the same vendors in May 2014.

Ethnicity 2014-2015 compare

The Rest of the Story

Keep in mind, we’re only discussing ethnicity here – and there is a lot more to autosomal DNA testing than ethnicity – for example – matching to cousins, tools, such as a chromosome browser (or lack thereof), trees, ease of use and ability to contact your matches.  Please see “Autosomal DNA 2015 – Which Test is the Best?”  Unless ethnicity is absolutely the ONLY reason you are DNA testing, then you need to consider the rest of the story.

And speaking of the rest of the story, National Geographic has been pretty much omitted from this discussion because they have just announced a new upgrade, “Geno 2.0: Next Generation,” to their offering, which promises to be a better biogeographical tool.  I hope so – as National Geographic is in a unique position to evaluate populations with their focus on sample collection from what is left of unique and sometimes isolated populations.  We don’t have much information on the new product yet, and of course, no results because the new test won’t be released until in September, 2015.  So the jury is out on this one.  Stay tuned.

GedMatch – Not A Vendor, But a Great Toolbox

Finally, most people who are interested in ethnicity test at one (or all) of the companies, utilize the rest of the tools offered by that company, then download their results to www.gedmatch.com, a donation based site, and make use of the numerous contributed admixture tools there.

Ethnicity GedMatch

GedMatch offers lots of options and several tools that provide a wide range of focus.  For example, some tools are specifically written for European, African, Asian or even comparison against ancient DNA results.

Ethnicity ancient admixture

Conclusion

So what is the net-net of this discussion?

  1. There is a lot more to autosomal DNA testing than just ethnicity – so take everything into consideration.
  2. Ethnicity determination is still an infant and emerging field – with all vendors making relatively regular updates and changes. You cannot take minority results to the bank without additional and confirming research, often outside of genetic genealogy. However, mitochondrial or Y DNA testing, available only through Family Tree DNA, can positively confirm Native or minority ancestry in the lines available for testing. You can create a DNA Pedigree Chart to help identify or eliminate Native lines.
  3. If the ancestors you seek are more than a few generations removed, you may not carry enough of their ethnic DNA to be identified.
  4. Your “100% Cherokee” ancestor was likely already admixed – and so their descendants may carry even less Native DNA than anticipated.
  5. You cannot prove a negative using autosomal DNA (but you can with both Y and mitochondrial DNA). In other words, a negative autosomal ethnicity result alone, meaning no Native heritage, does NOT mean your ancestors were not Native. It MIGHT mean they weren’t Native. It also might mean that they were either very admixed or the Native ancestry is too far back in your tree to be found with today’s technology. Again, mitochondrial and Y DNA testing provide confirmed ancestry identification for the lines they represent. Y is the male paternal (surname) line and mitochondrial is the matrilineal line of both males and females – the mother’s, mother’s, mother’s line, on up the tree until you run out of mothers.
  6. It is very unlikely that you will be able to find your tribe, although it is occasionally possible. If a company says they can do this, take that claim with a very big grain of salt. Your internal neon warning sign should be flashing about now.
  7. If you’re considering purchasing an ethnicity test from a company other than the four I mentioned – well, just don’t.  Many use very obsolete technology and oversell what they can reliably provide.  They don’t have any better reference populations available to them than the major companies and Nat Geo, and let’s just say there are ways to “suggest” people are Native when they aren’t. Here are two examples of accidental ways people think they are Native or related – so just imagine what kind of damage could be done by a company that was intentionally providing “marginal” or misleading information to people who don’t have the experience to know that because they “match” someone who has a Native ancestor doesn’t mean they share that same Native ancestor – or any connection to that tribe. So, stay with the known companies if you’re going to engage in ethnicity testing. We may not like everything about the products offered by these companies, but we know and understand them.

My Recommendation

By all means, test.

Test with all three companies, 23andMe, Family Tree DNA and Ancestry – then download your results from either Family Tree DNA or Ancestry (who test more markers than 23andMe) to GedMatch and utilize their ethnicity tools.  When I’m looking for minority admixture, I tend to look for consistent trends – not just at results from any one vendor or source.

If you have already tested at Ancestry, or you tested at 23andMe on the V3 chip, prior to December 2013, you can download your raw data file to Family Tree DNA and pay just $39.  Family Tree DNA will process your raw data within a couple days and you will then see your myOrigins ethnicity results as interpreted by their software.  Of course, that’s in addition to having access to Family Tree DNA’s other autosomal features, functions and tools.  The transfer price of $39 is significantly less expensive than retesting.

Just understand that what you receive from these companies in terms of ethnicity is reflective of both contemporary and ancient admixture – from all of your ancestral lines.  This field is in its infancy – your results will change from time to time as we learn – and the only part of ethnicity that is cast in concrete is probably your majority ancestry which you can likely discern by looking in the mirror.  The rest – well – it’s a mystery and an adventure.  Welcome aboard to the miraculous mysterious journey of you, as viewed through the DNA of your ancestors!

2014 Top Genetic Genealogy Happenings – A Baker’s Dozen +1

It’s that time again, to look over the year that has just passed and take stock of what has happened in the genetic genealogy world.  I wrote a review in both 2012 and 2013 as well.  Looking back, these momentous happenings seem quite “old hat” now.  For example, both www.GedMatch.com and www.DNAGedcom.com, once new, have become indispensable tools that we take for granted.  Please keep in mind that both of these tools (as well as others in the Tools section, below) depend on contributions, although GedMatch now has a tier 1 subscription offering for $10 per month as well.

So what was the big news in 2014?

Beyond the Tipping Point

Genetic genealogy has gone over the tipping point.  Genetic genealogy is now, unquestionably, mainstream and lots of people are taking part.  From the best I can figure, there are now approaching or have surpassed three million tests or test records, although certainly some of those are duplicates.

  • 500,000+ at 23andMe
  • 700,000+ at Ancestry
  • 700,000+ at Genographic

The organizations above represent “one-test” companies.  Family Tree DNA provides various kinds of genetic genealogy tests to the community and they have over 380,000 individuals with more than 700,000 test records.

In addition to the above mentioned mainstream firms, there are other companies that provide niche testing, often in addition to Family Tree DNA Y results.

In addition, there is what I would refer to as a secondary market for testing as well which certainly attracts people who are not necessarily genetic genealogists but who happen across their corporate information and decide the test looks interesting.  There is no way of knowing how many of those tests exist.

Additionally, there is still the Sorenson data base with Y and mtDNA tests which reportedly exceeded their 100,000 goal.

Spencer Wells spoke about the “viral spread threshold” in his talk in Houston at the International Genetic Genealogy Conference in October and terms 2013 as the year of infection.  I would certainly agree.

spencer near term

Autosomal Now the New Normal

Another change in the landscape is that now, autosomal DNA has become the “normal” test.  The big attraction to autosomal testing is that anyone can play and you get lots of matches.  Earlier in the year, one of my cousins was very disappointed in her brother’s Y DNA test because he only had a few matches, and couldn’t understand why anyone would test the Y instead of autosomal where you get lots and lots of matches.  Of course, she didn’t understand the difference in the tests or the goals of the tests – but I think as more and more people enter the playground – percentagewise – fewer and fewer do understand the differences.

Case in point is that someone contacted me about DNA and genealogy.  I asked them which tests they had taken and where and their answer was “the regular one.”  With a little more probing, I discovered that they took Ancestry’s autosomal test and had no clue there were any other types of tests available, what they could tell him about his ancestors or genetic history or that there were other vendors and pools to swim in as well.

A few years ago, we not only had to explain about DNA tests, but why the Y and mtDNA is important.  Today, we’ve come full circle in a sense – because now we don’t have to explain about DNA testing for genealogy in general but we still have to explain about those “unknown” tests, the Y and mtDNA.  One person recently asked me, “oh, are those new?”

Ancient DNA

This year has seen many ancient DNA specimens analyzed and sequenced at the full genomic level.

The year began with a paper titled, “When Populations Collide” which revealed that contemporary Europeans carry between 1-4% of Neanderthal DNA most often associated with hair and skin color, or keratin.  Africans, on the other hand, carry none or very little Neanderthal DNA.

https://dna-explained.com/2014/01/30/neanderthal-genome-further-defined-in-contemporary-eurasians/

A month later, a monumental paper was published that detailed the results of sequencing a 12,500 Clovis child, subsequently named Anzick or referred to as the Anzick Clovis child, in Montana.  That child is closely related to Native American people of today.

https://dna-explained.com/2014/02/13/clovis-people-are-native-americans-and-from-asia-not-europe/

In June, another paper emerged where the authors had analyzed 8000 year old bones from the Fertile Crescent that shed light on the Neolithic area before the expansion from the Fertile Crescent into Europe.  These would be the farmers that assimilated with or replaced the hunter-gatherers already living in Europe.

https://dna-explained.com/2014/06/09/dna-analysis-of-8000-year-old-bones-allows-peek-into-the-neolithic/

Svante Paabo is the scientist who first sequenced the Neanderthal genome.  Here is a neanderthal mangreat interview and speech.  This man is so interesting.  If you have not read his book, “Neanderthal Man, In Search of Lost Genomes,” I strongly recommend it.

https://dna-explained.com/2014/07/22/finding-your-inner-neanderthal-with-evolutionary-geneticist-svante-paabo/

In the fall, yet another paper was released that contained extremely interesting information about the peopling and migration of humans across Europe and Asia.  This was just before Michael Hammer’s presentation at the Family Tree DNA conference, so I covered the paper along with Michael’s information about European ancestral populations in one article.  The take away messages from this are two-fold.  First, there was a previously undefined “ghost population” called Ancient North Eurasian (ANE) that is found in the northern portion of Asia that contributed to both Asian populations, including those that would become the Native Americans and European populations as well.  Secondarily, the people we thought were in Europe early may not have been, based on the ancient DNA remains we have to date.  Of course, that may change when more ancient DNA is fully sequenced which seems to be happening at an ever-increasing rate.

https://dna-explained.com/2014/10/21/peopling-of-europe-2014-identifying-the-ghost-population/

Lazaridis tree

Ancient DNA Available for Citizen Scientists

If I were to give a Citizen Scientist of the Year award, this year’s award would go unquestionably to Felix Chandrakumar for his work with the ancient genome files and making them accessible to the genetic genealogy world.  Felix obtained the full genome files from the scientists involved in full genome analysis of ancient remains, reduced the files to the SNPs utilized by the autosomal testing companies in the genetic genealogy community, and has made them available at GedMatch.

https://dna-explained.com/2014/09/22/utilizing-ancient-dna-at-gedmatch/

If this topic is of interest to you, I encourage you to visit his blog and read his many posts over the past several months.

https://plus.google.com/+FelixChandrakumar/posts

The availability of these ancient results set off a sea of comparisons.  Many people with Native heritage matched Anzick’s file at some level, and many who are heavily Native American, particularly from Central and South America where there is less admixture match Anzick at what would statistically be considered within a genealogical timeframe.  Clearly, this isn’t possible, but it does speak to how endogamous populations affect DNA, even across thousands of years.

https://dna-explained.com/2014/09/23/analyzing-the-native-american-clovis-anzick-ancient-results/

Because Anzick is matching so heavily with the Mexican, Central and South American populations, it gives us the opportunity to extract mitochondrial DNA haplogroups from the matches that either are or may be Native, if they have not been recorded before.

https://dna-explained.com/2014/09/23/analyzing-the-native-american-clovis-anzick-ancient-results/

Needless to say, the matches of these ancient kits with contemporary people has left many people questioning how to interpret the results.  The answer is that we don’t really know yet, but there is a lot of study as well as speculation occurring.  In the citizen science community, this is how forward progress is made…eventually.

https://dna-explained.com/2014/09/25/ancient-dna-matches-what-do-they-mean/

https://dna-explained.com/2014/09/30/ancient-dna-matching-a-cautionary-tale/

More ancient DNA samples for comparison:

https://dna-explained.com/2014/10/04/more-ancient-dna-samples-for-comparison/

A Siberian sample that also matches the Malta Child whose remains were analyzed in late 2013.

https://dna-explained.com/2014/11/12/kostenki14-a-new-ancient-siberian-dna-sample/

Felix has prepared a list of kits that he has processed, along with their GedMatch numbers and other relevant information, like gender, haplogroup(s), age and location of sample.

http://www.y-str.org/p/ancient-dna.html

Furthermore, in a collaborative effort with Family Tree DNA, Felix formed an Ancient DNA project and uploaded the ancient autosomal files.  This is the first time that consumers can match with Ancient kits within the vendor’s data bases.

https://www.familytreedna.com/public/Ancient_DNA

Recently, GedMatch added a composite Archaic DNA Match comparison tool where your kit number is compared against all of the ancient DNA kits available.  The output is a heat map showing which samples you match most closely.

gedmatch ancient heat map

Indeed, it has been a banner year for ancient DNA and making additional discoveries about DNA and our ancestors.  Thank you Felix.

Haplogroup Definition

That SNP tsunami that we discussed last year…well, it made landfall this year and it has been storming all year long…in a good way.  At least, ultimately, it will be a good thing.  If you asked the haplogroup administrators today about that, they would probably be too tired to answer – as they’ve been quite overwhelmed with results.

The Big Y testing has been fantastically successful.  This is not from a Family Tree DNA perspective, but from a genetic genealogy perspective.  Branches have been being added to and sawed off of the haplotree on a daily basis.  This forced the renaming of the haplogroups from the old traditional R1b1a2 to R-M269 in 2012.  While there was some whimpering then, it would be nothing like the outright wailing now that would be occurring as haplogroup named reached 20 or so digits.

Alice Fairhurst discussed the SNP tsunami at the DNA Conference in Houston in October and I’m sure that the pace hasn’t slowed any between now and then.  According to Alice, in early 2014, there were 4115 individual SNPs on the ISOGG Tree, and as of the conference, there were 14,238 SNPs, with the 2014 addition total at that time standing at 10,213.  That is over 1000 per month or about 35 per day, every day.

Yes, indeed, that is the definition of a tsunami.  Every one of those additions requires one of a number of volunteers, generally haplogroup project administrators to evaluate the various Big Y results, the SNPs and novel variants included, where they need to be inserted in the tree and if branches need to be rearranged.  In some cases, naming request for previously unknown SNPs also need to be submitted.  This is all done behind the scenes and it’s not trivial.

The project I’m closest to is the R1b L-21 project because my Estes males fall into that group.  We’ve tested several, and I’ll be writing an article as soon as the final test is back.

The tree has grown unbelievably in this past year just within the L21 group.  This project includes over 700 individuals who have taken the Big Y test and shared their results which has defined about 440 branches of the L21 tree.  Currently there are almost 800 kits available if you count the ones on order and the 20 or so from another vendor.

Here is the L21 tree in January of 2014

L21 Jan 2014 crop

Compare this with today’s tree, below.

L21 dec 2014

Michael Walsh, Richard Stevens, David Stedman need to be commended for their incredible work in the R-L21 project.  Other administrators are doing equivalent work in other haplogroup projects as well.  I big thank you to everyone.  We’d be lost without you!

One of the results of this onslaught of information is that there have been fewer and fewer academic papers about haplogroups in the past few years.  In essence, by the time a paper can make it through the peer review cycle and into publication, the data in the paper is often already outdated relative to the Y chromosome.  Recently a new paper was released about haplogroup C3*.  While the data is quite valid, the authors didn’t utilize the new SNP naming nomenclature.  Before writing about the topic, I had to translate into SNPese.  Fortunately, C3* has been relatively stable.

https://dna-explained.com/2014/12/23/haplogroup-c3-previously-believed-east-asian-haplogroup-is-proven-native-american/

10th Annual International Conference on Genetic Genealogy

The Family Tree DNA International Conference on Genetic Genealogy for project administrators is always wonderful, but this year was special because it was the 10th annual.  And yes, it was my 10th year attending as well.  In all these years, I had never had a photo with both Max and Bennett.  Everyone is always so busy at the conferences.  Getting any 3 people, especially those two, in the same place at the same time takes something just short of a miracle.

roberta, max and bennett

Ten years ago, it was the first genetic genealogy conference ever held, and was the only place to obtain genetic genealogy education outside of the rootsweb genealogy DNA list, which is still in existence today.  Family Tree DNA always has a nice blend of sessions.  I always particularly appreciate the scientific sessions because those topics generally aren’t covered elsewhere.

https://dna-explained.com/2014/10/11/tenth-annual-family-tree-dna-conference-opening-reception/

https://dna-explained.com/2014/10/12/tenth-annual-family-tree-dna-conference-day-2/

https://dna-explained.com/2014/10/13/tenth-annual-family-tree-dna-conference-day-3/

https://dna-explained.com/2014/10/15/tenth-annual-family-tree-dna-conference-wrapup/

Jennifer Zinck wrote great recaps of each session and the ISOGG meeting.

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy/

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-isogg-meeting/

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-sunday/

I thank Family Tree DNA for sponsoring all 10 conferences and continuing the tradition.  It’s really an amazing feat when you consider that 15 years ago, this industry didn’t exist at all and wouldn’t exist today if not for Max and Bennett.

Education

Two educational venues offered classes for genetic genealogists and have made their presentations available either for free or very reasonably.  One of the problems with genetic genealogy is that the field is so fast moving that last year’s session, unless it’s the very basics, is probably out of date today.  That’s the good news and the bad news.

https://dna-explained.com/2014/11/12/genetic-genealogy-ireland-2014-presentations 

https://dna-explained.com/2014/09/26/educational-videos-from-international-genetic-genealogy-conference-now-available/

In addition, three books have been released in 2014.emily book

In January, Emily Aulicino released Genetic Genealogy, The Basics and Beyond.

richard hill book

In October, Richard Hill released “Guide to DNA Testing: How to Identify Ancestors, Confirm Relationships and Measure Ethnicity through DNA Testing.”

david dowell book

Most recently, David Dowell’s new book, NextGen Genealogy: The DNA Connection was released right after Thanksgiving.

 

Ancestor Reconstruction – Raising the Dead

This seems to be the year that genetic genealogists are beginning to reconstruct their ancestors (on paper, not in the flesh) based on the DNA that the ancestors passed on to various descendants.  Those segments are “gathered up” and reassembled in a virtual ancestor.

I utilized Kitty Cooper’s tool to do just that.

https://dna-explained.com/2014/10/03/ancestor-reconstruction/

henry bolton probablyI know it doesn’t look like much yet but this is what I’ve been able to gather of Henry Bolton, my great-great-great-grandfather.

Kitty did it herself too.

http://blog.kittycooper.com/2014/08/mapping-an-ancestral-couple-a-backwards-use-of-my-segment-mapper/

http://blog.kittycooper.com/2014/09/segment-mapper-tool-improvements-another-wold-dna-map/

Ancestry.com wrote a paper about the fact that they have figured out how to do this as well in a research environment.

http://corporate.ancestry.com/press/press-releases/2014/12/ancestrydna-reconstructs-partial-genome-of-person-living-200-years-ago/

http://www.thegeneticgenealogist.com/2014/12/16/ancestrydna-recreates-portions-genome-david-speegle-two-wives/

GedMatch has created a tool called, appropriately, Lazarus that does the same thing, gathers up the DNA of your ancestor from their descendants and reassembles it into a DNA kit.

Blaine Bettinger has been working with and writing about his experiences with Lazarus.

http://www.thegeneticgenealogist.com/2014/10/20/finally-gedmatch-announces-monetization-strategy-way-raise-dead/

http://www.thegeneticgenealogist.com/2014/12/09/recreating-grandmothers-genome-part-1/

http://www.thegeneticgenealogist.com/2014/12/14/recreating-grandmothers-genome-part-2/

Tools

Speaking of tools, we have some new tools that have been introduced this year as well.

Genome Mate is a desktop tool used to organize data collected by researching DNA comparsions and aids in identifying common ancestors.  I have not used this tool, but there are others who are quite satisfied.  It does require Microsoft Silverlight be installed on your desktop.

The Autosomal DNA Segment Analyzer is available through www.dnagedcom.com and is a tool that I have used and found very helpful.  It assists you by visually grouping your matches, by chromosome, and who you match in common with.

adsa cluster 1

Charting Companion from Progeny Software, another tool I use, allows you to colorize and print or create pdf files that includes X chromosome groupings.  This greatly facilitates seeing how the X is passed through your ancestors to you and your parents.

x fan

WikiTree is a free resource for genealogists to be able to sort through relationships involving pedigree charts.  In November, they announced Relationship Finder.

Probably the best example I can show of how WikiTree has utilized DNA is using the results of King Richard III.

wiki richard

By clicking on the DNA icon, you see the following:

wiki richard 2

And then Richard’s Y, mitochondrial and X chromosome paths.

wiki richard 3

Since Richard had no descendants, to see how descendants work, click on his mother, Cecily of York’s DNA descendants and you’re shown up to 10 generations.

wiki richard 4

While this isn’t terribly useful for Cecily of York who lived and died in the 1400s, it would be incredibly useful for finding mitochondrial descendants of my ancestor born in 1802 in Virginia.  I’d love to prove she is the daughter of a specific set of parents by comparing her DNA with that of a proven daughter of those parents!  Maybe I’ll see if I can find her parents at WikiTree.

Kitty Cooper’s blog talks about additional tools.  I have used Kitty’s Chromosome mapping tools as discussed in ancestor reconstruction.

Felix Chandrakumar has created a number of fun tools as well.  Take a look.  I have not used most of these tools, but there are several I’ll be playing with shortly.

Exits and Entrances

With very little fanfare, deCODEme discontinued their consumer testing and reminded people to download their date before year end.

https://dna-explained.com/2014/09/30/decodeme-consumer-tests-discontinued/

I find this unfortunate because at one time, deCODEme seemed like a company full of promise for genetic genealogy.  They failed to take the rope and run.

On a sad note, Lucas Martin who founded DNA Tribes unexpectedly passed away in the fall.  DNA Tribes has been a long-time player in the ethnicity field of genetic genealogy.  I have often wondered if Lucas Martin was a pseudonym, as very little information about Lucas was available, even from Lucas himself.  Neither did I find an obituary.  Regardless, it’s sad to see someone with whom the community has worked for years pass away.  The website says that they expect to resume offering services in January 2015. I would be cautious about ordering until the structure of the new company is understood.

http://www.dnatribes.com/

In the last month, a new offering has become available that may be trying to piggyback on the name and feel of DNA Tribes, but I’m very hesitant to provide a link until it can be determined if this is legitimate or bogus.  If it’s legitimate, I’ll be writing about it in the future.

However, the big news exit was Ancestry’s exit from the Y and mtDNA testing arena.  We suspected this would happen when they stopped selling kits, but we NEVER expected that they would destroy the existing data bases, especially since they maintain the Sorenson data base as part of their agreement when they obtained the Sorenson data.

https://dna-explained.com/2014/10/02/ancestry-destroys-irreplaceable-dna-database/

The community is still hopeful that Ancestry may reverse that decision.

Ancestry – The Chromosome Browser War and DNA Circles

There has been an ongoing battle between Ancestry and the more seasoned or “hard-core” genetic genealogists for some time – actually for a long time.

The current and most long-standing issue is the lack of a chromosome browser, or any similar tools, that will allow genealogists to actually compare and confirm that their DNA match is genuine.  Ancestry maintains that we don’t need it, wouldn’t know how to use it, and that they have privacy concerns.

Other than their sessions and presentations, they had remained very quiet about this and not addressed it to the community as a whole, simply saying that they were building something better, a better mousetrap.

In the fall, Ancestry invited a small group of bloggers and educators to visit with them in an all-day meeting, which came to be called DNA Day.

https://dna-explained.com/2014/10/08/dna-day-with-ancestry/

In retrospect, I think that Ancestry perceived that they were going to have a huge public relations issue on their hands when they introduced their new feature called DNA Circles and in the process, people would lose approximately 80% of their current matches.  I think they were hopeful that if they could educate, or convince us, of the utility of their new phasing techniques and resulting DNA Circles feature that it would ease the pain of people’s loss in matches.

I am grateful that they reached out to the community.  Some very useful dialogue did occur between all participants.  However, to date, nothing more has happened nor have we received any additional updates after the release of Circles.

Time will tell.

https://dna-explained.com/2014/11/18/in-anticipation-of-ancestrys-better-mousetrap/

https://dna-explained.com/2014/11/19/ancestrys-better-mousetrap-dna-circles/

DNA Circles 12-29-2014

DNA Circles, while interesting and somewhat useful, is certainly NOT a replacement for a chromosome browser, nor is it a better mousetrap.

https://dna-explained.com/2014/11/30/chromosome-browser-war/

In fact, the first thing you have to do when you find a DNA Circle that you have not verified utilizing raw data and/or chromosome browser tools from either 23andMe, Family Tree DNA or Gedmatch, is to talk your matches into transferring their DNA to Family Tree DNA or download to Gedmatch, or both.

https://dna-explained.com/2014/11/27/sarah-hickerson-c1752-lost-ancestor-found-52-ancestors-48/

I might add that the great irony of finding the Hickerson DNA Circle that led me to confirm that ancestry utilizing both Family Tree DNA and GedMatch is that today, when I checked at Ancestry, the Hickerson DNA Circle is no longer listed.  So, I guess I’ve been somehow pruned from the circle.  I wonder if that is the same as being voted off of the island.  So, word to the wise…check your circles often…they change and not always in the upwards direction.

The Seamy Side – Lies, Snake Oil Salesmen and Bullys

Unfortunately a seamy side, an underbelly that’s rather ugly has developed in and around the genetic genealogy industry.  I guess this was to be expected with the rapid acceptance and increasing popularity of DNA testing, but it’s still very unfortunate.

Some of this I expected, but I didn’t expect it to be so…well…blatant.

I don’t watch late night TV, but I’m sure there are now DNA diets and DNA dating and just about anything else that could be sold with the allure of DNA attached to the title.

I googled to see if this was true, and it is, although I’m not about to click on any of those links.

google dna dating

google dna diet

Unfortunately, within the ever-growing genetic genealogy community a rather large rift has developed over the past couple of years.  Obviously everyone can’t get along, but this goes beyond that.  When someone disagrees, a group actively “stalks” the person, trying to cost them their employment, saying hate filled and untrue things and even going so far as to create a Facebook page titled “Against<personname>.”  That page has now been removed, but the fact that a group in the community found it acceptable to create something like that, and their friends joined, is remarkable, to say the least.  That was accompanied by death threats.

Bullying behavior like this does not make others feel particularly safe in expressing their opinions either and is not conducive to free and open discussion. As one of the law enforcement officers said, relative to the events, “This is not about genealogy.  I don’t know what it is about, yet, probably money, but it’s not about genealogy.”

Another phenomenon is that DNA is now a hot topic and is obviously “selling.”  Just this week, this report was published, and it is, as best we can tell, entirely untrue.

http://worldnewsdailyreport.com/usa-archaeologists-discover-remains-of-first-british-settlers-in-north-america/

There were several tip offs, like the city (Lanford) and county (Laurens County) is not in the state where it is attributed (it’s in SC not NC), and the name of the institution is incorrect (Johns Hopkins, not John Hopkins).  Additionally, if you google the name of the magazine, you’ll see that they specialize in tabloid “faux reporting.”  It also reads a lot like the King Richard genuine press release.

http://urbanlegends.about.com/od/Fake-News/tp/A-Guide-to-Fake-News-Websites.01.htm

Earlier this year, there was a bogus institutional site created as well.

On one of the DNA forums that I frequent, people often post links to articles they find that are relevant to DNA.  There was an interesting article, which has now been removed, correlating DNA results with latitude and altitude.  I thought to myself, I’ve never heard of that…how interesting.   Here’s part of what the article said:

Researchers at Aberdeen College’s Havering Centre for Genetic Research have discovered an important connection between our DNA and where our ancestors used to live.

Tiny sequence variations in the human genome sometimes called Single Nucleotide Polymorphisms (SNPs) occur with varying frequency in our DNA.  These have been studied for decades to understand the major migrations of large human populations.  Now Aberdeen College’s Dr. Miko Laerton and a team of scientists have developed pioneering research that shows that these differences in our DNA also reveal a detailed map of where our own ancestors lived going back thousands of years.

Dr. Laerton explains:  “Certain DNA sequence variations have always been important signposts in our understanding of human evolution because their ages can be estimated.  We’ve known for years that they occur most frequently in certain regions [of DNA], and that some alleles are more common to certain geographic or ethnic groups, but we have never fully understood the underlying reasons.  What our team found is that the variations in an individual’s DNA correlate with the latitudes and altitudes where their ancestors were living at the time that those genetic variations occurred.  We’re still working towards a complete understanding, but the knowledge that sequence variations are connected to latitude and altitude is a huge breakthrough by itself because those are enough to pinpoint where our ancestors lived at critical moments in history.”

The story goes on, but at the bottom, the traditional link to the publication journal is found.

The full study by Dr. Laerton and her team was published in the September issue of the Journal of Genetic Science.

I thought to myself, that’s odd, I’ve never heard of any of these people or this journal, and then I clicked to find this.

Aberdeen College bogus site

About that time, Debbie Kennett, DNA watchdog of the UK, posted this:

April Fools Day appears to have arrived early! There is no such institution as Aberdeen College founded in 1394. The University of Aberdeen in Scotland was founded in 1495 and is divided into three colleges: http://www.abdn.ac.uk/about/colleges-schools-institutes/colleges-53.php

The picture on the masthead of the “Aberdeen College” website looks very much like a photo of Aberdeen University. This fake news item seems to be the only live page on the Aberdeen College website. If you click on any other links, including the link to the so-called “Journal of Genetic Science”, you get a message that the website is experienced “unusually high traffic”. There appears to be no such journal anyway.

We also realized that Dr. Laerton, reversed, is “not real.”

I still have no idea why someone would invest the time and effort into the fake website emulating the University of Aberdeen, but I’m absolutely positive that their motives were not beneficial to any of us.

What is the take-away of all of this?  Be aware, very aware, skeptical and vigilant.  Stick with the mainstream vendors unless you realize you’re experimenting.

King Richard

King Richard III

The much anticipated and long-awaited DNA results on the remains of King Richard III became available with a very unexpected twist.  While the science team feels that they have positively identified the remains as those of Richard, the Y DNA of Richard and another group of men supposed to have been descended from a common ancestor with Richard carry DNA that does not match.

https://dna-explained.com/2014/12/09/henry-iii-king-of-england-fox-in-the-henhouse-52-ancestors-49/

https://dna-explained.com/2014/12/05/mitochondrial-dna-mutation-rates-and-common-ancestors/

Debbie Kennett wrote a great summary article.

http://cruwys.blogspot.com/2014/12/richard-iii-and-use-of-dna-as-evidence.html

More Alike than Different

One of the life lessons that genetic genealogy has held for me is that we are more closely related that we ever knew, to more people than we ever expected, and we are far more alike than different.  A recent paper recently published by 23andMe scientists documents that people’s ethnicity reflect the historic events that took place in the part of the country where their ancestors lived, such as slavery, the Trail of Tears and immigration from various worldwide locations.

23andMe European African map

From the 23andMe blog:

The study leverages samples of unprecedented size and precise estimates of ancestry to reveal the rate of ancestry mixing among American populations, and where it has occurred geographically:

  • All three groups – African Americans, European Americans and Latinos – have ancestry from Africa, Europe and the Americas.
  • Approximately 3.5 percent of European Americans have 1 percent or more African ancestry. Many of these European Americans who describe themselves as “white” may be unaware of their African ancestry since the African ancestor may be 5-10 generations in the past.
  • European Americans with African ancestry are found at much higher frequencies in southern states than in other parts of the US.

The ancestry proportions point to the different regional impacts of slavery, immigration, migration and colonization within the United States:

  • The highest levels of African ancestry among self-reported African Americans are found in southern states, especially South Carolina and Georgia.
  • One in every 20 African Americans carries Native American ancestry.
  • More than 14 percent of African Americans from Oklahoma carry at least 2 percent Native American ancestry, likely reflecting the Trail of Tears migration following the Indian Removal Act of 1830.
  • Among self-reported Latinos in the US, those from states in the southwest, especially from states bordering Mexico, have the highest levels of Native American ancestry.

http://news.sciencemag.org/biology/2014/12/genetic-study-reveals-surprising-ancestry-many-americans?utm_campaign=email-news-weekly&utm_source=eloqua

23andMe provides a very nice summary of the graphics in the article at this link:

http://blog.23andme.com/wp-content/uploads/2014/10/Bryc_ASHG2014_textboxes.pdf

The academic article can be found here:

http://www.cell.com/ajhg/home

2015

So what does 2015 hold? I don’t know, but I can’t wait to find out. Hopefully, it holds more ancestors, whether discovered through plain old paper research, cousin DNA testing or virtually raised from the dead!

What would my wish list look like?

  • More ancient genomes sequenced, including ones from North and South America.
  • Ancestor reconstruction on a large scale.
  • The haplotree becoming fleshed out and stable.
  • Big Y sequencing combined with STR panels for enhanced genealogical research.
  • Improved ethnicity reporting.
  • Mitochondrial DNA search by ancestor for descendants who have tested.
  • More tools, always more tools….
  • More time to use the tools!

Here’s wishing you an ancestor filled 2015!

 

Tenth Annual Family Tree DNA Conference Wrapup

baber summary

This slide, by Robert Baber, pretty well sums up our group obsession and what we focus on every year at the Family Tree DNA administrator’s conference in Houston, Texas.

Getting to Houston, this year, was a whole lot easier than getting out of Houston. They had storms yesterday and many of us spent the entire day becoming intimately familiar with the airport.  Jennifer Zinck, of Ancestor Central, is still there today and doesn’t have a flight until late.

And this is how my day ended, after I finally got out of Houston and into my home airport. This isn’t at the airport, by the way.  Everything was fine there, but I made the apparent error of stopping at a Starbucks on the way home.  This is the parking lot outside an hour or so later.  What can I say?  At least I had my coffee, and AAA rocks, as did the tow truck driver and my daughter for getting out of bed to come and rescue me!!!  Hmmm, I think maybe things have gone full circle.  I remember when I used to go and rescue her:)

jeep tow

So far, today hasn’t improved any, so let’s talk about something much more pleasant…the conference itself.

Resources

One of the reasons I mentioned Jennifer Zinck, aside from the fact that she’s still stuck in the airport, is because she did a great job actually covering the conference as it happened. Since I had some time yesterday to visit with her since our gates weren’t terribly far apart, I asked her how she got that done.  I took notes too, and photos, but she turned out a prodigious amount of work in a very short time.  While I took a lightweight MacBook Air, she took her regular PC that she is used to typing on, and she literally transcribed as the sessions were occurring.  She just added her photos later, and since she was working on a platform that she was familiar with, she could crop and make the other adjustments you never see but we perform behind the scenes before publishing a photo.

On the other hand, I struggled with a keyboard that works differently and is a different size than I’m used to as well as not being familiar with the photo tools to reduce the size of pictures, so I just took rough notes and wrote the balance later.  Having familiar tools make such a difference.  I think I’ll carry my laptop from now on, even though it is much heavier.  Kudos to Jennifer!

I was initially going to summarize each session, but since Jen did such a good job, I’m posting her links. No need to recreate a wheel that doesn’t need to be recreated.

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy/

ISOGG, the International Society of Genetic Genealogy is not affiliated with Family Tree DNA or any testing company, but Family Tree DNA is generous enough to allow an ISOGG meeting on Sunday before the first conference session.

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-isogg-meeting/

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-sunday/

You can find my conference postings here:

https://dna-explained.com/2014/10/11/tenth-annual-family-tree-dna-conference-opening-reception/

https://dna-explained.com/2014/10/12/tenth-annual-family-tree-dna-conference-day-2/

https://dna-explained.com/2014/10/13/tenth-annual-family-tree-dna-conference-day-3/

Several people were also posting on a twitter feed as well.

https://twitter.com/search?q=%23FTDNA2014&src=tyah

Those of you where are members of the ISOGG Yahoo group for project administrators can view photos posted by Katherine Borges in that group and there are also some postings on the Facebook ISOGG group as well.

Now that you have the links for the summaries, what I’d like to do is to discuss some of the aspects I found the most interesting.

The Mix

When I attended my first conference 10 years ago, I somehow thought that for the most part, the same group of people would be at the conferences every year. Some were, and in fact, a handful of the 160+ people attending this conference have attended all 10 conferences.  I know of two others for certain, but there were maybe another 3 or so who stood up when Bennett asked for everyone who had been present at all 10 conferences to stand.

Doug Mumma, the very first project administrator was with us this weekend, and still going strong. Now, if Doug and I could just figure out how we’re related…

Some of the original conference group has passed on to the other side where I’m firmly convinced that one of your rewards is that you get to see all of those dead ends of your tree. If we’re lucky, we get to meet them as well and ask all of those questions we have on this side.  We remember our friends fondly, and their departure sadly, but they enriched us while they were here and their memories make us smile.  I’m thinking specifically of Kenny Hedgepath and Leon Little as I write this, but there have been others as well.

The definition of a community is that people come and go, births, deaths and moves.

This year, about half of the attendees had never attended a conference before. I was very pleased to see this turn of events – because in order to survive, we do need new people who are as crazy as we are…er….I mean as dedicated as we are.

isogg reception

ISOGG traditionally hosts a potluck reception on Saturday evening. Lots of putting names with faces going on here.

Collaboration

I asked people about their favorite part of the conference or their favorite session. I was surprised at the number of people who said lunches and dinners.  Trust me, the food wasn’t that wonderful, so I asked them to elaborate.  In essence, the most valuable aspect of the conference was working with and talking to other administrators.

bar talk

It’s not like we don’t talk online, but there is somehow a difference between online communications and having a group discussion, or a one-on-one discussion. Laptops were out and in use everyplace, along with iPads and other tools.  It was so much fun to walk by tables and hear snippets of conversations like “the mutation at location 309.1….” and “null marker at 425” and “I ordered a kit for my great uncle…..”

I agree, as well. I had pre-arranged two dinners before arriving in order to talk with people with whom I share specific interests.  At lunches, I either tried to sit with someone I specifically needed to talk to, or I tried to meet someone new.

I also asked people about their specific goals for the next year. Some people had a particular goal in mind, such as a specific brick wall that needs focus.  Some, given that we are administrators, had wider-ranging project based goals, like Big Y testing certain family groups, and a surprising number had the goal of better utilizing the autosomal results.

Perhaps that’s why there were two autosomal sessions, an introduction by Jim Bartlett and then Tim Janzen’s more advanced session.

Autosomal DNA Results

jim bartlett

Note the cool double helix light fixture behind the speakers.

tim janzen

Tim specifically mentioned two misconceptions which I run across constantly.

Misconception 1 – A common surname means that’s how you match.  Just because you find a common surname doesn’t mean that’s your DNA match.  This belief is particularly prevalent in the group of people who test at Ancestry.com.

Misconception 2 – Your common ancestor has to be within the past 6 generations.  Not true, many matches can be 6-10th cousins because there are so many descendants of those early ancestors, even as many as 15 generations back.

Tim also mentioned that endogamous relationships are a tough problem with no easy answer. Polynesians, Ashkenazi Jews, Low German Mennonites, Acadians, Amish, and island populations.  Do I ever agree with him!  I have Brethren, Mennonite and Acadian in the same parent’s line.

Tim has been working with the Mennonite DNA project now for many years.

Tim included a great resource slide.

tim slide1

Tim has graciously made his entire presentation available for download.

tim slide2

There are probably a dozen or so of us that are actively mapping our ancestors, and a huge backlog of people who would like to. As Tim pointed out with one of his slides, this is not an easy task nor is it for the people who simply want to receive “an answer.”

tim slide3

I will also add that we “mappers” are working with and actively encouraging Family Tree DNA to develop tools so that the mapping is less spreadsheet manual work and more automated, because it certainly can be.

Upload GEDCOM Files

If you haven’t already, upload your GEDCOM to Family Tree DNA.  This is becoming an essential part of autosomal matching.  Furthermore, Family Tree DNA will utilize this file to construct your surname list and that will help immensely determining common surnames and your common ancestor with your Family Finder matches.  If you have sponsored tests for cousins, then upload a GEDCOM file for them or at least construct a basic tree on their Family Tree DNA page.

Ethics

Family Tree DNA always tries to provide a speaker about ethics, and the only speakers I’ve ever felt understood anything about what we want to do are Judy Russell and Blaine Bettinger.  I was glad to see Blaine presenting this year.

blaine bettinger

The essence of Blaine’s speech is that ethics isn’t about law. Law is cut and dried.  Ethics isn’t, and there are no ethics police.

Sometimes our decisions are colored necessarily by right and wrong.  Sometimes those decisions are more about the difference between a better and a worse way.

As a community, we want to reduce negative press coverage and increase positive coverage. We want to be proactive, not reactive.

Blaine stresses that while informed consent is crucial, that DNA doesn’t reveal secrets that aren’t also revealed by other genealogical forms of research. DNA often reveals more recent secrets, such as adoptions and NPEs, so it’s possibly more sensitive.

Two things need to govern our behavior. First, we need to do only things that we would be comfortable seeing above the fold in the New York Times.  Second, understand that we can’t make promises about topics like anonymity or about the absence of medical information, because we don’t know what we don’t know.

The SNP Tsunami

One of my concerns has been and remains the huge number of new SNPs that have been discovered over the past year or so with the Big Y by Family Tree DNA and  corresponding tests from other vendors.

When I say concern, I’m thrilled about this new technology and the advances it is allowing us to make as a community to discover and define the evolution of haplogroups. My concern is that the amount of data is overwhelming.  However, we are working through that, thanks to the hours and hours of volunteer work by haplogroup administrators and others.

Alice Fairhurst, who volunteers to maintain the ISOGG haplotree, mentioned that she has added over 10,000 SNPs to the Y tree this year alone, bringing the total to over 14,000. Those SNPs are fully vetted and placed.  There are many more in process and yet more still being discovered.  On the first page of the Y SNP tree, the list of SNP sources and other critical information, such as the criteria for a SNP to be listed, is provided.

isogg tree3

isogg snps

isogg snps 2014

So, if you’re waiting for that next haplotree poster, give it up because there isn’t a printing press that big, unless you want wallpaper.

isogg new development 2014

These slides are from Alice’s presentation. The ISOGG tree provides an invaluable resource for not only the genetic genealogy community, but also researchers world-wide.

As one example of how the SNP tsunami has affected the Y tree, Alice provided the following summary of R-U106, one of the two major branches of haplogroup R.

From the ISOGG 2006 Y tree, this was the entire haplogroup R Y tree. You can see U106 near the bottom with 3 sub-branches.  While this probably makes you chuckle today, remember that 2006 was only 8 years ago and that this tree didn’t change much for several years.

2006 entire tree

2007 was the same.

2008 u106 tree

2008 shows 5 subclades and one of the subclades had 2 subclades.

2009 u106 tree

2009 showed a total of 12 sub-branches and 2010 added one more.

2011 however, showed a large change. U106 in 2011 had 44 subgroups total and became too large to show on one screen shot.  2012 shows 99 subclades, if I counted accurately.  The 2014 U106 tree is shown below.

before big y

after big y

u106 now

u106 now2

There’s another slide too, but I didn’t manage to get the picture.  You get the idea though…

As you can imagine, for Family Tree DNA, trying to keep up with all of the haplogroups, not just one subgroup like U106 is a gargantuan task that is constantly changing, like hourly. Their Y tree is currently the National Geographic tree, and while they would like to update it, I’m sure, the definition of “current tree” is in a constant state of flux.  Literally, Mike Walsh, one of the admins in the R-L21 group uploads a new tree spreadsheet several times every day.

In order to deal attempt to deal with this, and to encourage people who don’t want to do a Big Y discovery type test, but do want to ferret out their location on their assigned portion of the tree, Family Tree DNA is reintroducing the Backbone tests.

They are starting with M222, also known as the Niall of the 9 Hostages haplogroup which is their beta for the new product and new process. You can see the provisional tree and results in the two slides they provided, below.  I apologize for the quality, but it was the best I could do.

M222

m222 pie

Haplogroup administrators are going to be heavily involved in this process. Family Tree DNA is putting SNP panels together that will help further define the tree and where various SNPs that have been recently discovered, and continue to be discovered, will fall on the tree.

As Big Y tests arrive, haplogroup project administrators typically assemble a spreadsheet of the SNPS and provisionally where they fall on the tree, based on the Big Y results.

What Bennett asked is for the admins to work with Family Tree DNA to assemble a testing panel based on those results. The goal is for the cost to be between $1.50 and $2 (US) for each SNP in the panel, which will reduce the one-off SNP testing and provide a much more complete and productive result at a far reduced price as compared to the current $29 or $39 per individual SNP.

If you are a haplogroup administrator, get in touch with Family Tree DNA to discuss your desired backbone panels. New panels, when it’s your turn, will take about 2 weeks to develop.

Keep in mind that the following SNPs, according to Bennett, are not optimal for panels:

  • Palindromic regions
  • Often mutating regions designated as .1, .2, etc.
  • SNPs in STRs

Nir Leibovich, the Chief Business Officer, also addressed the future and the Big Y to some extent in his presentation.

nir leibovich

ftdna future 2014

Utilizing the Big Y for Genealogy

In my case, during the last sale, I ordered several Big Y tests for my Estes family line because I have several genealogically documented lines from the original Estes family in Kent, England through our common ancestor, Robert Estes born in 1555 and his wife Anne Woodward. The participants also agreed to extend their markers to 111 markers as well.  When the results are back, we’ll be able to compare them on a full STR marker set, and also their SNPs.  Hopefully, they will match on their known SNPs and there will be some new novel variants that will be able to suffice as line marker mutations.

We need more BIG Y tests of these types of genealogically confirmed trees that have different sons’ lines from a distant common ancestor to test descendant lines. This will help immensely to determine the actual, not imputed, SNP mutation rate and allow us to extrapolate the ages of haplogroups more accurately.  Of course, it also goes without saying that it helps to flesh out the trees.

I personally expect the next couple of years will be major years of discovery. Yes, the SNP tsumani has hit land, but it’s far from over.

Research and Development

David Mittleman, Chief Scientific Officer, mentioned that Family Tree DNA now has their own R&D division where they are focused on how to best analyze data. They have been collaborating with other scientists.  A haplogroup G1 paper will be published shortly which states that SNP mutation rates equate to Sanger data.

FTDNA wants to get Big Y data into the public domain. They have set up consent for this to be done by uploading into NCBI.  Initially they sent a survey to a few people that  sampled the interest level.  Those who were interested received a release document.  If you are interested in allowing FTDNA to utilize your DNA for research, be it mitochondrial, Y or autosomal, please send them an e-mail stating such.

Don’t Forget About Y Genealogy Research

It’s very easy for us to get excited about the research and discovery aspect of DNA – and the new SNPs and extending haplotrees back in time as far as possible, but sometimes I get concerned that we are forgetting about the reason we began doing genetic genealogy in the first place.

Robert Baber’s presentation discussed the process of how to reconstruct a tree utilizing both genealogy and DNA results. It’s important to remember that the reason most of our participants test is to find their ancestors, not, primarily, to participate in the scientific process.

Robert baber

edward baber

Robert has succeeded in reconstructing 110 or 111 markers of the oldest known Baber ancestor, shown above. I wrote about how to do this in my article titled, Triangulation for Y DNA.

Not only does this allow us to compare everyone with the ancestor’s DNA, it also provides us with a tool to fit individuals who don’t know specific genealogical line into the tree relatively accurately. When I say relatively, the accuracy is based on line marker mutations that have, or haven’t, happened within that particular family.

Jim illustrated how to do this as well, and his methodology is available at the link on his slide, below.

baber method

I had to laugh. I’ve often wondered what our ancestors would think of us today.  Robert said that that 11 generations after Edward Baber died, he flew over church where Edward was buried and wondered what Edward would have thought about what we know and do today – cars, airplanes, DNA, radio, TV etc..  If someone looked in a crystal ball and told Edward what the future held 11 generations later, he would have thought that they were stark raving mad.

Eleven generations from my birth is roughly the year 2280. I’m betting we won’t be trying to figure out who our ancestors were through this type of DNA analysis then.  This is only a tiny stepping stone to an unknown world, as different to us as our world is to Edward Baber and all of our ancestors who lived in a time where we know their names but their lives and culture are entirely foreign to ours.

Publications

When the Journal of Genetic Genealogy was active, I, along with other citizen scientists published regularly.  The benefit of the journal was that it was peer reviewed and that assured some level of accuracy and because of that, credibility, and it was viewed by the scientific community as such.  My co-authored works published in JOGG as well as others have been cited by experts in the academic community.  It other words, it was a very valuable journal.  Sadly, it has fallen by the wayside and nothing has been published since 2011.  A new editor was recruited, but given their academic load, they have not stepped up to the plate.  For the record, I am still hopeful for a resurrection, but in the mean time, another opportunity has become available for genetic genealogists.

Brad Larkin has founded the Surname DNA Journal, which, like JOGG, is free to both authors and subscribers. In case you weren’t aware, most academic journal’s aren’t.  While this isn’t a large burden for a university, fees ranging from just over $1000 to $5000 are beyond the budget of genetic genealogists.  Just think of how many DNA tests one could purchase with that money.

brad larkin

surname dna journal

Brad has issued a call for papers. These papers will be peer reviewed, similarly to how they were reviewed for JOGG.

call for papers

Take a look at the articles published in this past year, since the founding of Surname DNA Journal.

The citizen science community needs an avenue to publish and share. Peer reviewed journals provide us with another level of credibility for our work. Sharing is clearly the lynchpin of genetic genealogy, as it is with traditional genealogy. Give some thought about what you might be able to contribute.

Brad Larkin solicited nominations prior to the conference and awarded a Genetic Genealogist of the Year award. This year’s award was dually presented to Ian Kennedy in Australia, who, unfortunately, was not present, and to CeCe Moore, who just happened to follow Brad’s presentation with her own.

Don’t Forget about Mitochondrial DNA Either

I believe that mitochondrial DNA the most underutilized DNA tool that we have, often because how to use mitochondrial DNA, and what it can tell you, is poorly understood. I wrote about this in an article titled, Mitochondrial, The Maligned DNA.

Given that I work with mitochondrial DNA daily when I’m preparing client’s Personalized DNA Reports (orderable from your personal page at Family Tree DNA or directly from my website), I know just how useful mitochondrial can be and see those examples regularly. Unfortunately, because these are client reports, I can’t write about them publicly.

CeCe Moore, however, isn’t constrained by this problem, because one of the ways she contributes to genetic genealogy is by working with the television community, in particular Genealogy Roadshow and the PBS series, Finding Your Roots. Now, I must admit, I was very surprised to see CeCe scheduled to speak about mitochondrial DNA, because the area of expertise where she is best known is autosomal DNA, especially in conjunction with adoptee research.

cece moore

cece mtdna

During the research for the production of these shows, CeCe has utilized mitochondrial DNA with multiple celebrities to provide information such as the ethnic identification of the ancestor who provided the mitochondrial DNA as Native American.

Autosomal DNA testing has a broad but shallow reach, across all of your lines, but just back a few generations.  Both Y and mitochondrial DNA have a very deep reach, but only on one specific line, which makes them excellent for identifying a common ancestor on that line, as well as the ethnicity of that individual.

I have seen other cases, where researchers connected the dots between people where no paper trail existed, but a relationship between women was suspected.

CeCe mentioned that currently there are only 44,000 full sequence results in the Family Tree DNA data base and and 185K total HVR1, HVR2 and full sequence tests. Y has half a million.  We need to increase the data base, which, of course increases matches and makes everyone happier.  If you haven’t tested your mitochondrial DNA to the full sequence level, this would be a great time!

There are several lessons on how to utilize mitochondrial DNA at this ISOGG link.

I’m very hopeful that CeCe’s presentation will be made available as I think her examples are quite powerful and will serve to inspire people.  Actually, since CeCe is in the “movie business,” perhaps a short video clip could be made available on the FTDNA website for anyone who hasn’t tested their mitochondrial DNA so they can see an example of why they should!

myOrigins

I would be fibbing to you if I told you I am happy with myOrigins. I don’t feel that it is as sensitive as other methods for picking up minority admixture, in particular, Native American, especially in small amounts.  Unfortunately, those small amounts are exactly what many people are looking for.

If someone has a great-great-great-great grandparent that is Native, they carry about 1%, more or less, of the Native ancestor’s DNA today. A 4X great grandparent puts their birth year in the range of 1800-1825 – or just before the Trail of Tears.  People whose colonial American families intermarried with Native families did so, generally, before the Trail of Tears.  By that time, many tribes were already culturally extinct and those east of the Mississippi that weren’t extinct were fighting for their lives, both literally and figuratively.

We really need the ability to develop the most sensitive testing to report even the smallest amounts of Native DNA and map those segments to our chromosomes so that we can determine who, and what line in our family, was Native.

I know that Family Tree DNA is looking to improve their products, and I provided this feedback to them. Many people test autosomally only for their ethnicity results and I surely would love to have those people’s results available as matches in the FTDNA data base.

Razib Khan has been working with Family Tree DNA on their myOrigins product and spoke about how the myOrigins data is obtained.

razib kahn

my origins pieces

Given that all humans are related, one way or another, far enough back in time, myOrigins has to be able to differentiate between groups that may not be terribly different. Furthermore, even groups that appear different today may not have been historically.  His own family, from India, has no oral history of coming from the East, but the genetic data clearly indicates that they did, along with a larger group, about 1000 years ago.  This may well be a result of the adage that history is written by the victors, or maybe whatever happened was simply too long ago or unremarkable to be recorded.

Razib mentioned that depending on the cluster and the reference samples, that these clusters and groups that we see on our myOrigins maps can range from 1000-10,000 years in age.

relatedness of clusters

The good news is that genetics is blind to any preconceived notions. The bad news is that the software has to fit your results to the best population, even though it may not be directly a fit.  Hopefully, as we have more and better reference populations, the results will improve as well.

my origin components

pca chart

Razib showed a PCA (principal components analysis) graph, above. These graphs chart reference populations in different quadrants.  Where the different populations overlap is where they share common historic ancestors.  As you can see, on this graph with these reference populations, there is a lot of overlap in some cases, and none in others.

Your personal results would then be plotted on top of the reference populations. The graph below shows me, as the white “target” on a PCA graph created by Doug McDonald.

my pca chart

The Changing Landscape

A topic discussed privately among the group, and primarily among the bloggers, is the changing landscape of genetic genealogy over the past year or so.  In many ways I think the bloggers are the canaries in the mine.

One thing that clearly happened is that the proverbial tipping point occurred, and we’re past it. DNA someplace along the line became mainstream.  Today, DNA is a household word.  At gatherings, at least someone has tested, and most people have heard about DNA testing for genealogy or at least consumer based DNA testing.

The good news in all of this is that more and more people are testing. The bad news is that they are typically less informed and are often impulse purchasers.  This gives us the opportunity for many more matches and to work with new people.  It also means there is a steep learning curve and those new testers often know little about their genealogy.  Those of us in the “public eye,” so to speak, have seen an exponential spike in questions and communications in the past several months.  Unfortunately, many of the new people don’t even attempt to help themselves before asking questions.

Sometimes opportunity comes with work clothes – for them and us both.

I was talking with Spencer about this at the reception and he told me I was stealing his presentation.  He didn’t seem too upset by this:)

spencer and me

I had to laugh, because this falls clearly into the “be careful what you wish for, you may get it” category. The Genographic project through National Geographic is clearly, very clearly, a critical component of the tipping point, and this was reflected in Spencer’s presentation.  Although I covered quite a bit of Spencer’s presentation in my day 2 summary, I want to close with Spencer here.  I also want to say that if you ever have the opportunity to hear Spencer speak, please do yourself the favor and be sure to take that opportunity.  Not only is he brilliant, he’s interesting, likeable and very approachable.  Of course, it probably doesn’t hurt that I’ve know him now for 9 years!  I’ve never thought to have my picture taken with Spencer before, but this time, one of my friends did me the favor.

I have to admit, I love talking to Spencer, and listening to him. He is the adventurer through whom we all live vicariously.  In the photo below, Spencer along with his crew, drove from London to Mongolia.  Not sure why he is standing on the top of the Land Rover, but I’m sure he will tell us in his upcoming book about that journey,

spencer on roof

I’m warning you all now, if I win the lottery, I’m going on the world tour that he hosts with National Geographic, and of course, you’ll all be coming with me via the blog!

Spencer talked about the consumer genomics market and where we are today.

spencer genomics

Spencer mentioned that genetic genealogy was a cottage industry originally. It was, and it was even smaller than that, if possible.  It actually was started by Bennett and his cell phone.  I managed to snap a picture of Bennett this weekend on the stage looking at his cell, and I thought to myself, “this is how it all started 14 years ago.”  Just look where we are today.  Thank you Michael Hammer for telling Bennett that you received “lots of phone calls from crazy genealogists like you.”

bennett first office

So, where exactly are we today?  In 2013, the industry crossed the millionth kit line.  The second millionth kit was sold in early summer 2014 and the third million will be sold in 2015.  No wonder we feel like a tidal wave has hit.  It has.

Why now?

DNA has become part of national consciousness.  Businesses advertise that “it’s in our DNA.”  People are now comfortable sharing via social media like facebook and twitter.  What DNA can do and show you, the secrets it can unlock is spreading by word of mouth.  Spencer termed this the “viral spread threshold” and we’ve crossed that invisible line in the sand.  He terms 2013 as the year of infection and based on my blog postings, subscriptions, hits, reach and the number of e-mails I receive, I would completely agree.  Hold on tight for the ride!

Spencer talked about predictions for near term future and said a 5 year plan is impossible and that an 18 month plan is more realistic. He predicts that we will continue to see exponential growth over the next several years.  He feels that genetic genealogy testing will be primary driver of growth because medical or health testing is subject to the clinical utility trap being experienced currently by 23andMe.  The Big 4 testing companies control 99% of consumer market in US (Ancestry, 23andMe, Family Tree DNA and National Geographic.)

Spencer sees a huge international market potential that is not currently being tapped. I do agree with him, but many in European countries are hesitant, and in some places, like France, DNA testing that might expose paternity is illegal.  When Europeans see DNA testing as a genealogical tool, he feels they will become more interested.  Most Europeans know where their ancestral village is, or they think they do, so it doesn’t have the draw for them that it does for some of us.

Ancestry testing (aka genetic genealogy as opposed to health testing) is now a mature industry with 100% growth rate.

Spencer also mentioned that while the Genographic data base is not open access, that affiliate researchers can send Nat Geo a proposal and thereby gain research access to the data base if their proposal is approved. This extends to citizen scientists as well.

spencer near term

Michael Hammer

You’ll notice that Michael Hammer’s presentation, “Ancient and Modern DNA Update, How Many Ancestral Populations for Europe,” is missing from this wrapup. It was absolutely outstanding, and fascinating, which is why I’m writing a separate article about his presentation in conjunction with some additional information.  So, stay tuned.

Testing, More Testing

It’s becoming quite obvious that the people who are doing the best with genetic genealogy are the ones who are testing the most family members, both close and distant. That provides them with a solid foundation for comparison and better ways to “drop matches” into the right ancestor box.  For example, if someone matches you and your mother’s sister, Aunt Margaret, especially if your mother is not available to test, that’s a very important hint that your match is likely from your mother’s line.

So, in essence, while initially we would advise people to test the oldest person in a generational line, now we’ve moved to the “test everyone” mentality.  Instead of a survey, now we need a census.  The exception might be that the “child” does not necessarily need to be tested because both parents have tested.  However, having said that, I would perhaps not make that child’s test a priority, but I would eventually test that child anyway.  Why?  Because that’s how we learn.  Let me give you an example.

I was sitting at lunch with David Pike. were discussing autosomal DNA generational transmission and inheritance.  He pulled out his iPad, passed it to me, and showed me a chromosome (not the X) that has been passed entirely intact from one generation to the next.  Had the child not been tested, we would never have known that.  Now, of course, if you’ll remember the 50% rule, by statistical prediction, the child should get half of the mother’s chromosome and half of the father’s, but that’s not how it worked.  So, because we don’t know what we don’t know, I’m now testing everyone I can find and convince in my family.  Unfortunately, my family is small.

Full genome testing is in the future, but we’re not ready yet. Several presenters mentioned full genome testing in some context.  Here’s the bottom line.  It’s not truly full genome testing today, only 95-96%.  The technology isn’t there yet, and we’re still learning.  In a couple of years, we will have the entire genome available for testing, and over time, the prices will fall.  Keep in mind that most of our genome is identical to that of all humans, and the autosomal tests today have been developed in order to measure what is different and therefore useful genealogially.  I don’t expect big breakthroughs due to full genome testing for genetic genealogy, although I could be wrong.  You can, however, count me in, because I’m a DNA junkie.  When the full genome test is below $1000, when we have comparison tools and when the coverage won’t necessitate doing a second or upgrade test a few years later, I’ll be there.

Thank you

I want to offer a heartfelt thank you to Max Blankfeld and Bennett Grenspan, founders of Family Tree DNA, shown with me in the photo below, for hosting and subsidizing the administrator’s conference – now for a decade. I look forward to seeing them, and all of the other attendees, next year.

I anticipate that this next decade will see many new discoveries resulting in tools that make our genealogy walls fall.  I can’t help but wonder what the article I’ll be writing on the 20th anniversary looking back at nearly a quarter century of genetic genealogy will say!

roberta, max and bennett