Y-DNA Haplogroup O – When and How Did It Get to the Americas?

Y-DNA Haplogroup O has been found in male testers descended from a Native American ancestor, or in Native American tribes in the Americas – but sometimes things are more complex than they seem. The story of when and how haplogroup O arrived in the Americas is fascinating – and not at all what you might think.

Introduction

The concept of Native American heritage and indigenous people can be confusing. For example, European Y-DNA haplogroup R is found among some Native American men. Those men may be tribal members based on their mother’s line, or their haplogroup R European Y-DNA may have been introduced either through adoption practices or traders after the arrival of Europeans.

There is unquestionable genetic evidence that the origin of Haplogroup R in the Americas was through colonization, with no evidence of pre-contact indigenous origins.

Y-DNA testing and matching, specifically the Big Y-700 test, with its ability to date the formation of haplogroups very granularly, has successfully identified the genesis of Y-DNA haplogroups and their movement through time.

We’ve spent years trying to unravel several instances of Native American Y-DNA Haplogroup O and their origins. Native American, in this context, means that men with haplogroup O are confirmed to be Native American at some point in documented records. This could include early records, such as court or probate records, or present-day members of tribes. There is no question that these men are recognized as Native American in post-contact records or are tribal members, or their descendants.

What has not been clear is how and when haplogroup O entered the Native American population of these various lineages, groups, or tribes. In other words, are they indigenous? Were they here from the earliest times, before the arrival of colonists, similar to Y-DNA haplogroups C and Q?

This topic has been of great interest for several years, and we have been waiting for additional information to elucidate the matter, which could manifest in several ways:

  1. Ancient pre-contact DNA samples of haplogroup O in the Americas, but none have been found.
  2. Current haplogroup O testers in Native American peoples across the North and South American continents, forming a connecting trail genetically, geographically, and linearly through time. This has not occurred.
  3. Big-Y DNA matches within the Americas between Haplogroup O Native American lines unrelated in a genealogical timeframe whose haplogroup formation pre-dates European contact. This has not occurred.
  4. Big-Y DNA matches between Haplogroup O men whose haplogroups were formed in the Americas after the Beringian migration and expansion that scientists agree occurred at least 12-16K years ago, and possibly began earlier. Earlier human lineages, if they existed, may not have survived. A later Inuit and Na-Dené speaker circumpolar migration occurred 4-7K years ago. This has not occurred.
  5. Big-Y DNA matches with men whose most recent common ancestor haplogroup formation dates connect them with continental populations in other locations, outside of North and South America. This would preclude their presence in the Americas after the migrations that populated the Americas. This has occurred.

The Beringian migration took place across a now-submerged land bridge connecting the Chutkin Peninsula in Russia across the Bering Strait with the Seward Peninsula in Alaska.

By Erika Tamm et al – Tamm E, Kivisild T, Reidla M, Metspalu M, Smith DG, et al. (2007) Beringian Standstill and Spread of Native American Founders. PLoS ONE 2(9): e829. doi:10.1371/journal.pone.0000829. Also available from PubMed Central., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=16975303

Haplogroup O is clearly Native American in some instances, meaning that it occurs in men who are members of or descend from specific Native American tribes or peoples. One man, James Revels, is confirmed in court records as early as 1656. However, ancestors of James Revels fall into category #5, as their upstream parental haplogroup is found in the Pacific islands outside the Americas after the migration period.

Based on available evidence, the introduction of haplogroup O appears to be post-contact. Therefore, haplogroup O is not indigenous to the Americans in the same sense as haplogroups Q and C that are found widespread throughout the Americas in current testers who are tribal members, descendants of tribal members, and pre-contact ancient DNA as mapped in the book, DNA for Native American Genealogy.

Ancient DNA

Haplogroup C is found in both North and South America today, as are these ancient DNA locations.

Haplogroup Q is more prevalent than Haplogroup C, and ancient DNA remains are found throughout North and South America before colonization.

No ancient DNA for Haplogroup O has been discovered in the Americas. We do find contemporary haplogroup O testers in regional clusters, which we will analyze individually.

Let’s take a look at what we have learned recently.

Wesley Revels’ Lineage

Wesley Revels was the initial Y-DNA tester whose results identified Haplogroup O as Native American, proven by a court record. That documentation was critical, and we are very grateful to Wesley for sharing both his information and results.

Wesley’s ancestor, James Revels, was Native American, born about 1656 and bound to European planter, Edward Revell. James was proven in court to be an Accomack “Indian boy” from “Matomkin,” age 11 in 1667. James was bound, not enslaved, until age 24, at which time he was to be freed and receive corn and clothes.

James had died by 1681 when he was named several times in the Accomack County records as both “James, an Indian” and “James Revell, Indian,” in reference to his estate. James lived near Edward Revell, his greatest creditor and, therefore, administrator of his estate, and interacted with other Indian people near Great Matompkin Neck. Marie Rundquist did an excellent job of documenting that here. Additional information about the Revels family and Matomkin region can be found here.

The location where Edward Revell lived, Manokin Hundred, was on the water directly adjacent the Great Matomkin (now Folly Creek) and Little Matomkin Creeks, inside the Metomkin Inlet. The very early date tells us that James Revels’s paternal ancestor was in the colonies by 1656 and probably born about 1636, or perhaps earlier.

Lewis and Revels men are later associated with the Lumbee Tribe, now found in Robeson and neighboring counties in North Carolina. The Lewis line descends from the Revels lineage, as documented by Marie and Wesley. Other men from this line have tested and match on lower-level STR markers, but have not taken the much more granular and informative Big-Y test.

Until recently, the men who matched Wesley Revels closely on the Big-Y test were connected with the Revels line and/or the Lumbee.

Wesley has a 37-marker STR match to a man with a different surname who had not tested beyond that level, in addition to several 12-marker STR matches to men from various locations. Men who provided known ancestral or current locations include one from Bahrain, two from the Philippines, and three from China. Those men have not taken the Big-Y, and their haplogroups are all predicted from STR results to O-M175 which was formed in Asia about 31,000 years ago.

12-marker matches can reach thousands of years back in time. Unless the matches share ancestors and match at higher levels, 12-marker matches are only useful for geographic history, if that. The Big Y-700 test refines haplogroup results and ages from 10s of thousands of years to (generally) within a genealogically relevant timeframe, often within a couple hundred years.

One of Wesley’s STR matches, Mr. Luo, has taken a Big Y-700 test. Mr. Luo descends directly from Indonesia in the current generation and is haplogroup O-CTS716, originating about 244 BCE, or 2244-ish years ago. Mr. Luo does not match Wesley on the Big-Y test, meaning that Wesley and Mr. Luo have 30 or more SNP differences in their Big-Y results, which equates to about 1,500 years. The common ancestor of Wesley Revels and Mr. Luo existed more than 1,500 years ago in Indonesia. It’s evident that Mr. Luo is not Native American, but his location is relevant in a broader analysis.

There is no question that Wesley’s ancestor, James Revels, was Native American based on the court evidence. There is also no question that the Revels’ paternal lineage was not in the Americas with the Native American migration group 12-16K years ago.

The remaining question is how and when James Revels’ haplogroup O ancestor came to be found on the Atlantic seaboard in the early/mid 1600s, only a few years after the founding of Jamestown.

The results of other Haplogroup O men may help answer this question.

Mr. Lynn

Another haplogroup O man, Mr. Lynn, matches Wesley on STR markers, but not on the Big-Y test.

Mr. Lynn identified his Y-DNA line as Native American, although he did not post detailed genealogy. More specifically, we don’t know if Mr. Lynn identified that he was Native on his paternal line because he matches Wesley, or if the Native history information was passed down within his family, or from genealogical research. Mr. Lynn could also have meant generally that he was Native, or that he was Native “on Dad’s side,” not specifically his direct patrilineal Y-line.

Based on Mr. Lynn’s stated Earliest Known Ancestor (EKA) and additional genealogical research performed, his ancestor was John Wesley Lynn (born approximately 1861, died 1945), whose father was Victor Lynn. John’s death certificate, census, and his family photos on Ancestry indicate that he was African American. According to his death certificate, his father, Victor Lynn, was born in Chatham Co., NC, just west of Durham.

Family members are found in Baldwin Township, shown above.

I did not locate the family in either the 1860 or 1870 census. In 1860, the only Lynn/Linn family in Chatham County was 50-year-old Mary Linn and 17-year-old Jane, living with her, presumably a daughter. Both are listed as “mulatto” (historical term) with the occupation of “domestic.” They may or may not be related to John Wesley Lynn.

In 1870, the only Linn/Lynn in Chatham County is John, black, age 12 or 13 (so born in 1857 or 1858), farm labor, living with a white family. This is probably not John Wesley Lynn given that he is found with his mother in 1880 and the ages don’t match.

In 1880. I find Mary Lynn in Chatham County, age 48, single, black, with daughter Eliza Anne, 20, mulatto, sons John Wesley, 14 so born about 1866, and Charles 12, both black. Additionally, she is living with her nieces and nephews, Cephus, black, 12, Lizzie, 7, mulatto, Malcom, 4, mulatto, William H, 3, mulatto (I think, written over,) and John age 4, mulatto. The children aged 12 and above are farm labor.

In 1880, I also find Jack Lynn, age 28, black, married with 3 children, living beside William Lynn, 25, also married, but with no children.

Trying to find the family in 1870 by using first name searches only, I find no black Mary in 1870 or a mulatto Mary with a child named Jack or any person named Cephus by any surname. I don’t find Jack or any Lynn/Linn family in Chatham County.

The 1890 census does not exist.

In the 1900 census, I find Wesley Lynn in Chatham County, born in January of 1863, age 37, single, a boarder working on the farm of John Harris who lives beside Jack Lynn, age 43, born in April of 1857. Both Lynn men are black. I would assume some connection, given their ages, possibly or probably brothers.

In 1940, John Wesley Lynn, age 74, negro (historical term), is living beside Victor Lynn, age 37, most likely his son.

I could not find Victor Lynn, John Wesley Lynn’s father in any census, so he was likely deceased before 1880 but after 1867, given that Mary’s son Charles Lynn was born in 1868, assuming Mary’s children had the same father. The fact that Mary was listed as single, not married nor widowed suggests enslavement, given that enslaved people were prohibited from legally marrying.

About the only other assumption we can make about Victor Sr. is that he was probably born about 1832 or earlier, probably in Chatham County, NC based on John Wesley’s death certificate, and he was likely enslaved.

Subclades of Haplogroup O

Both the Revels and Lynn men are subclades of haplogroup O and both claim Native heritage – Wesley based on the Revels genealogy and court documents, and Mr. Lynn based on the Native category he selected to represent his earliest known paternal ancestor at FamilyTreeDNA.

Both men have joined various projects, including the American Indian Project, which provides Marie and me, along with our other project co-administrators, the ability to work with and view both of their results at the level they have selected.

How Closely Related Are These Haplogroup O Men?

How closely related are these two men?

By Viajes_de_colon.svg: Phirosiberiaderivative work: Phirosiberia (talk) – Viajes_de_colon.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8849049

  • Do the haplogroups of the Revels men and Mr. Lynn converge in a common ancestor in a timeframe BEFORE colonialization, meaning before Columbus “discovered” the Caribbean islands when colonization and the slave trade both began?
  • Do the haplogroups converge on North or South American soil or elsewhere?
  • Is there anything in the haplogroup and Time Tree information that precludes haplogroup O from being Native prior to the era of colonization?
  • Is there anything that confirms that a haplogroup O male or males were among the groups of indigenous people that settled the Americas sometime between 12 and 26 thousand years ago? Or even a later panArctic or circumpolar migration wave?

Haplogroup O is well known in East Asia, Indonesia, and the South Pacific.

Another potential source of haplogroup O is via Madagascar and the slave trade.

The Malagasy Roots Project has several haplogroup O individuals, including the Lynn and Revels men, who may have joined to see if they have matches. We don’t know why the various haplogroup O men in the project joined. Other haplogroup O men in the project may or may not have proven Malagasay heritage.

Information provided by the project administrators is as follows:

The people of Madagascar have a fascinating history embedded in their DNA. 17 known slave ships came from Madagascar to North America during the Transatlantic Slave Trade. As a result, we find Malagasy DNA in the African American descendants of enslaved people, often of Southeast Asian origin. One of the goals of this project is to discover the Malagasy roots of African Americans and connect them with their cousins from Madagascar. Please join us in this fascinating endeavor. mtDNA Haplogroups of interest include: B4a1a1b – the “Malagasy Motif”, M23, M7c3c, F3b1, R9 and others Y-DNA Haplogroups include: O1a2 – M50, O2a1 – M95/M88, O3a2c – P164 and others

Resources:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987306/  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199379/  http://mbe.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=19535740  http://www.biomedcentral.com/1471-2156/15/77  http://www.biomedcentral.com/1471-2164/10/605

The Malagasy group only has one other man who is haplogroup O and took the Big-Y test, producing haplogroup O-FTC77008. Of course, we don’t know if he has confirmed Madagascar ancestry, and his haplogroup is quite distant from both Revels and Lynn in terms of when his haplogroup was formed.

Viewing the Malagasy Project’s Group Time Tree, above, the common ancestor between those three men lived about 28K BCE, or 30,000 years ago.

Haplogroup O Project Group Time Tree

The Haplogroup O Project Time Tree provides a better representation of haplogroup O in general given that it has a much wider range of samples.

On this tree, I’ve labeled the haplogroup formation dates, along with the Revels/Lewis line which descends from O-FT45548. This haplogroup includes one additional group member whose surname is locked, as he hasn’t given publication permission. The haplogroup formation date of 1766 occurs approximately 85 years after James Revel’s birth, so is attributable to some, but not all of his descendants. At least one descendant falls into the older Haplogroup O-BY60500.

The common ancestor of all three, meaning Revels, Lewis, and the man whose name is locked and does not know his genealogy, is haplogroup O-BY60500, born about 1741.

Their ancestral haplogroup before that, O-FT11768, is much older.

Two Filipino results are shown on and descending from the parent branch of O-FT11768, formed about 3183 BCE, or about 5183 years ago. This tells us that the ancestors of all these men were in the same place, most likely the Philippines, at that time.

3183 BCE (5180 years ago) is well after the Native American migration into the Americas.

Discover Time Tree

Obviously, not every tester joins a project, so now I’m switching to the Discover Time Tree which includes all Y-DNA haplogroup branches. Their common haplogroup, O-FT11768, has many branches, not all of which are shown below. I’m summarized unseen branch locations at bottom left.

Expanding the Time Tree further to view all of the descendant haplogroups of O-FT11768, we see that this was a major branch with many South Pacific results, including the branch of O-FT22410, bracketed in red, which has three members.

One is Mr. Lynn whose feather indicates Native American as his EKA country selection, one is a man whose ancestor is from Singapore, and one is an unknown individual who did not enter his ancestor’s country of origin.

Geography

Wesley’s STR match list, which can reflect matches further back in time than the Big-Y test, includes islands near Singapore. This geography aligns with what is known about haplogroup O.

The distance between this Asian region and continental America, 9000+ miles distant by air, is remarkable and clearly only navigable at that time by ship, meaning ships with experienced crew, able to navigate long distances with supplies and water.

We know that in 760 CE, about 1240 years ago, Mr. Lynn’s haplogroup O-F24410 was formed someplace in the South Pacific – probably in Malaysia or a nearby island. This region, including the Philippines, is home to many haplogroup O men. The majority of haplogroup O is found in Asia, the South Pacific, and Diaspora regions.

We know that Hawaii was populated by Polynesian people about 1600 years ago, prior to the age of colonization. Hawaii is almost 7000 miles from Singapore.

Here’s the challenge. How did these haplogroup O men get from the South Pacific to Virginia? Mr. Lynn and the Singapore tester share a common ancestor about 1240 years ago, or 760 CE.

There is no known or theorized Native American settlement wave across Beringia as late as 760 CE. We know that the parent haplogroup was someplace near Singapore in approximately 760 CE.

Two Filipino men and the Revels’ ancestors were in the same location in the Pacific Islands 5180 years ago. How did they arrive on the Eastern Shore in Virginia, found in the Native population, either in or before 1656 when James Revels was born?

What happened in the 3500 years between those dates that might explain how James Revel’s ancestor made that journey?

Academic Papers

In recent years, there has been discussion of possible shoreline migration routes along the Russian coast, Island hopping along Alaska, Canada, and what is now the US, known as the Kelp Highway or Coastal Migration Route – but that has yet to be proven.

Even if that is the case, and it’s certainly a possibility, how did this particular group of men get from the Pacific across the continent to the Atlantic shore in such a short time, leaving no telltale signs along the way? The Coastal Migration Theory hypothesis states that this migration occurred from 12-16 thousand years ago, and then expanded inland over the next 3-5K years. They could not have expanded eastward until the glaciers receded. Regardless, the parent haplogroup and associated ancestors are still found in the Philippines and South Pacific 5000 years ago – after that migration and expansion had already occurred.

The conclusion of the paper is that there is no strong evidence for a Pacific shoreline migration. Regardless, that’s still thousands of years before the time range we’re observing.

We know that the Lynn ancestor was with men from Indonesia in 760 CE, and the Revels ancestor was with men from the Pacific Islands, probably the Philippines, 5180 years ago. They couldn’t have been in two places at the same time, so the ancestors of Revels and Lynn were not in the Americas then.

A 2020 paper shows that remains from Easter Island (Rapa Nui) show Native American DNA, and suggests that initial contact occurred between the two cultures about 1200 CE, or about 800 years ago, but there is not yet any pre-contact or post-contact ancient Y-DNA found in the Americas that shows Polynesian DNA. Furthermore, the hypothesis is that the DNA found on Easter Island came from the Americas, not vice versa. The jury is still out, but this does show that trans-Pacific contact between the two cultures was taking place 800 years ago, at least two hundred years pre-European contact.

Australasian migration to South America is also suggested by one set of remains found in Brazil dating from more than 9000 years ago, but there have been no other remains found indicating this heritage, either in Brazil, or elsewhere in the Americas.

Based on the Time Tree dates of the Haplogroup O testers in our samples, we know they were in the Islands of Southeast Asia after this time period. Additionally, there are no Australia/New Zealand matches.

The Spanish

The Spanish established an early trade route between Manila and Acapulco beginning in 1565. Consequently, east Asian men left their genetic signature in Mexico, as described in this paper.

Historians estimate that 40-129K immigrants arrived from Manilla to colonial Mexico between 1565 and 1815, with most being enslaved upon arrival. Approximately one-third of the population in Manilla was already enslaved. Unfortunately, this paper focused only on autosomal genome-wide results and did not include either Y-DNA, nor mitochondrial. However, the paper quantifies the high degree of trade, and indicates that the Philippines and other Asian population haplotypes are still prevalent in the Mexican population.

In 2016, Dr. Miguel Vilar, the lead scientist with the National Geographic Genographic project lectured in Guam about the surprising Native American DNA found in the Guam population and nearby islands. He kindly provided this link to an article about the event.

Guam was colonized by Spain. In the image from the Boxer Codex, above, the local Chamorro people greet the Manila Galleon in the Ladrones Islands, as the Marianas were called by the Spanish, about 1590.

Native Hawaiians descend from Polynesian ancestors who arrived in the islands about 400 CE, or about 1600 years ago. Captain Cook, began the age of European contact in Hawaii in 1778.

Five Possibilities

There are five possible origins of haplogroup O in the Americas.

  • Traditional migration across Beringia with the known migrations, estimated to have occurred about 12-16K years ago.
  • A Kelp Highway Coastal Migration which may have occurred about 12-16K years ago and dispersed over the next 3-5K years.
  • Circumpolar migration – specifically Inuit and Na-Dene speakers, about 4-6K years ago.
  • Post-contact incorporation from the Pacific Islands resulting from shipping trade on colonial era ships sometime after 1565.
  • Post-contact incorporation from Madagascar resulting from the importation of humans who may or may not have been enslaved upon arrival.

Do we have any additional evidence?

Other Haplogroup O DNA

From my book, DNA for Native American Genealogy:

Testers in haplogroup O-BY60500 and subclade O-FT45548 have proven Native American heritage.

We have multiple confirmed men from a common ancestor who is proven to be an enslaved Accomack “Indian boy,” James Revell, born in 1656, “belonging to the Motomkin” village, according to the Accomack County, Virginia court records. These men tested as members of haplogroup O-F3288 initially, after taking the Big Y-500 test. However, upgrading to the Big Y-700 produced more granular results and branches reflecting mutations that occurred since their progenitor was born in 1656.

Unfortunately, other than known descendants, these men have few close Y-DNA or Big Y-700 matches.

Without additional men testing from different unrelated lines, or ancient haplogroup O being discovered, we cannot confirm that this haplogroup O male’s ancestor was not introduced into the Matomkin Tribe in some way post-contact. Today, one descendant from this line is a member of the Lumbee Tribe.

However, that isn’t the end of the haplogroup O story.

The Genographic Project data shows one Haplogroup O Tlingit tribal member from Taku, Alaska, along with several testers from Mexico that indicate their paternal line is indigenous. Some people from Texas identify their paternal line as Hispanic.

Another individual indicates they were born on the Fountain Indian Reserve, in British Columbia and speaks the St’at’imcets language, an interior branch of Coastal Salish.

Haplogroup O has been identified as Native American in other locations as well.

Much of the information about Haplogroup O testers was courtesy of the Genographic Project, meaning we can’t contact those people to request upgraded tests, and we can’t obtain additional information in addition to what they provided when they tested. As an affiliate researcher, I’m very grateful to the National Geographic Society’s Genographic project for providing collaborative data.

When the book was published, the Discover Time Tree had not yet been released. We have additional information available today, including the dates of haplogroup formation.

FamilyTreeDNA Haplotree and Discover

The FamilyTreeDNA Haplotree (not to be confused with the Discover Time Tree) shows 10 people at the O-M175 level in Mexico, 10 people in the US report Native American heritage, 2 in Jamaica, and one each in Peru, Panama, and Cuba. There’s also one tester from Madagascar.

Altogether, this gives us about 35 haplogroup O males in the Americas, several with Native heritage.

Please note that I’ve omitted Hawaii in this analysis and included only North and South America. The one individual selecting Native Hawaiian (Kanaka Maoli) is in haplogroup O-M133.

Let’s look at our three distinct clusters.

Cluster 1 – Pacific Northwest – Alaska and Canada

We have a cluster of three individuals along the Pacific Coast in Alaska and Canada who have self-identified as Native, provided a tribal affiliation, and, in some cases, the spoken language.

How might haplogroup O have arrived in or near Vancouver, Washington? We know that James Cook “discovered” Hawaii in 1778, naming it the Sandwich Islands. By 1787, a female Hawaiian died en route to the Pacific Northwest, and the following year, a male arrived. Hawaii had become a provisioning stop, and the Spanish took Hawaiians onto ships as replacement workers.

Hawaiian seamen, whalers, and laborers began intermarrying with the Native people along the West Coast as early as 1811. Their presence expanded from Oregon to Alaska. Migration and intermarriage along the Pacific coast began slowly, but turned into a steady stream 30 years later when we have confirmed recruitment and migration of Hawaiian people

In 1839, John Sutter recruited a small group of 10 Hawaiians to travel with him to the then-Mexican colony of Alta, California.

By the mid-1800s, hundreds of Hawaiians lived in Canada and California. In 1847, it was reported that 10% of San Francisco’s residents were Hawaiian. Some of those people integrated with the Native American people, particularly the Miwok and Maidu. The village of Verona, California was tri-lingual: Hawaiian, a Native language, and English, and is today the Sacramento-Verona Tribe.

This article provides a history of the British Company who administered Fort Vancouver, near Vancouver, Washington, that included French-Canadians, Native Americans and Hawaiians. In 1845, 119 Hawaiians were employed at the fort. One of the 119, Opunuia, had signed on as an “engagé,” meaning some type of hired hand or employee, with the Hudson Bay Company for three years, after which he would be free to return home to Honolulu or establish himself in the Oregon Country. He married a woman from the Cascade Tribe.

The descendants of the Hawaiian men and Native women were considered tribal members. In most tribes, children took the tribal status and affiliation of the mother.

The Taku and Sitka, Alaska men on the map are Tlingit, and the man from British Columbia is from the Fountain Indian Reserve.

Hawaiian recruitment is the most likely scenario by which haplogroup O arrived in the tribes of the Pacific Northwest. In that sense, haplogroup O is indeed Native American but not indigenous to that region. The origins of haplogorup O in the Pacific Northwest are likely found in Hawaii, where it is indigenous, and before that, Polynesia – not due to a Beringian crossing.

Cluster 2 – Mexico

We find a particularly interesting small cluster of 4 haplogroup O individuals in interior Mexico.

In the 1500s, Spain established a trade route between Mexico and Manilla in the Philippines.

In 1564, four ships left Mexico to cross the Pacific to claim Guam and the Philippines for King Philip II of Spain. The spice trade, back and forth between Mexico and the Philippines began the following year and continued for the next 250.

Landings occurred along the California coast and the western Mexican coastline. The majority of the galleon crews were Malaysian and Filipino who were paid less than the Spanish sailors. Slaves, including people from the Marianas were part of the lucrative cargo.

One individual in Texas reports haplogroup O and indicates their paternal ancestors were Hispanic/Native from Mexico. A haplogroup O cluster claiming Native heritage is found near Zacatecas, Fresnillo and San Luis Potosi in central Mexico. Additionally, mitochondrial haplogroup F, also Asian, is found there as well. Acapulco is the lime green pin.

An additional haplogroup O tester with Native heritage is found in Lima, Peru.

Haplogroup O men are found in Panama, Jamaica and Cuba, but do not indicate the heritage of their paternal ancestral line. None of these men have taken Big-Y tests, and some may well have arrived on the slave ships from Madagascar, especially in the Caribbean. This source attributes some enslaved people in Jamaica to Hawaiian voyages.

I strongly suspect that the Mexican/Peru grouping in close proximity to the Pacific coastline is the result of the Manilla-Mexico 250-year trade route. The Spanish also plied those waters regularly. Big Y testing of those men would help flesh-out their stories – when and how haplogroup O arrived in the local population.

Cluster 3 – East Coast

At first glance, the East Coast grouping of men with a genetic affinity to the people of the Philippines and Indonesia seems more difficult to explain, but perhaps not.

On the East Coast, we have confirmed reports of whalers near Nantucket as early as 1765 utilizing crewmen from Hawaii, known then as the Sandwich Islands, Tahiti, and the Cape Verde Islands off of Africa. A thorough review of early literature might well reveal additional information about early connections with the Sandwich Islands, and in particular, sailors, crew, or enslaved people.

The Spanish and French were the first to colonize the Philippines by the late 1500s. They had discovered the Solomon Islands, Melanesia, and other Polynesian Islands, and by the early 1600s, the Dutch were involved as well.

The Encyclopedia Britanica further reports that Vasco Balboa first sailed into the Pacific in 1513 and seven years later, Ferdinand Magellan rounded the tip of South America. The Spanish followed, establishing a galley trade between Manila, in the Philippines and Acapulco in western Mexico.

While I found nothing specific stating that the earliest voyages brought men from the Philippines and Oceania back to their European home ports with them, we know that early European captains on exploratory voyages took Native people from the east coast of the Americas on their return journey, so there’s nothing to preclude them from doing the same from the Pacific. The early explorers stayed for months among the Oceanic Native peoples. If they were short on sailors for their return voyage, Polynesian men filled the void.

We know that the Spanish took slaves as part of their trade. We know that the ships in the Pacific took sailors from the islands. If the men themselves didn’t stay in the locations they visited, it’s certainly within the realm of possibility that they fathered children with local, Native women. Furthermore, given that the slave trade was lucrative, it’s also possible that some Pacific Island slaves were taken not as crew but with the intention of being sold into bondage. Other men may have escaped the ships and hidden among the Native Tribes along the eastern seaboard.

Fishing in Newfoundland and exploration in what would become the US was occurring by 1500, so it’s certainly possible that some of the indigenous people from Indonesia and the Philippines were either stranded, sold to enslavers, escaped, or chose to join the Native people along the coastline in North America. Ships had to stop to resupply rations and take on fresh water.

We know that by the mid-1600s, James Revels, whose father carried haplogroup O, had been born on the Atlantic coast of Virginia or Maryland, probably on the Delmarva Peninsula, short for Delaware, Maryland, Virginia, where the Accomac people lived.

There are other instances of haplogroup O found along the east coast.

On the eastern portion of the haplogroup O map from the book, DNA for Native American Genealogy, we find the following locations:

  • Hillburn, NY – man identified as “Native American Black.”
  • Chichester County, PA – Genographic tester identified the location of his earliest known ancestor – included here because O is not typically found in the states.
  • Accomack County, VA – Delmarva peninsula – James Revels lineage
  • Robeson County, NC – Lewis and Revels surname associated with the Lumbee
  • Chatham County, NC – Lynn ancestor’s earliest known location
  • Greene County, NC – enslaved Blount ancestor’s EKA in 1849

The genesis of Mr. Blount’s enslaved ancestor is unclear. Fortunately, he took a Big Y-700 test.

Mr. Blount’s only Big-Y match is to a man from the United Arab Emirates (UAE), but the haplogroup history includes Thailand, which is the likely source of both his and his UAE matches’ ancestors at some point in time. Their common ancestor was in Thailand in 336 CE, almost 1700 years ago.

All surrounding branches of haplogroup O on the Time Tree have Asian testers, except for the one UAE gentleman.

The Blount Haplogroup O-FTC77008 does not connect with the common ancestral haplogroup of Lynn and Revels, so these lineages are only related someplace in Oceana prior to O-F265, or more about  30,000 years ago. Their only commonality other than their Asian origins is that they arrived on the East Coast of the Americas.

We know that the Spanish were exploring the Atlantic coastline in the 1500s and were attempting to establish colonies. In 1566, a Spanish expedition reached the Delmarva Peninsula. This spit of land was contested and changed hands several times, belonging variously to the Spanish, Dutch, and British by 1664.

Furthermore, we also know that the ships were utilizing slave labor. One of the Spanish ships wrecked in the waters off North Carolina near Hatteras or Roanoke Island before the Lost Colony was abandoned on Roanoke Island in 1587. The Croatan Indians reported that in memorable history, several men, some of whom were reported to be slaves, had survived the wreck and “disappeared” into the hinterlands – clearly running for their lives.

These men, if they survived, would have been incorporated into the Native population as there were no other settlements at the time. Variations of this scenario may have played out many times.

James Revels’ ancestor could have arrived on any ship, beginning with exploration and colonization in the early 1500s through the mid-1650s.

By the time the chief bound the Indian boy who was given the English name James to Edward Revell, James’s Oceanic paternal ancestor could have been 4, 5 or 6 generations in the past – or could have been his father.

The Accomack was a small tribe, loosely affiliated with the Powhatan Confederacy along the Eastern Shore. By 1700, their population had declined by approximately 90% due to disease. A subgroup, the Gingaskins, intermarried with African Americans living nearby. After Nat Turner’s slave rebellion of 1831, they were expelled from their homelands.

The swamps near Lumberton in Robeson County, NC, became a safe haven for many mixed-race Native, African, and European people. The swamps protected them, and they existed, more or less undisturbed, for decades. Revels and Lewis descendants are both found there.

Many Native Americans were permanently enslaved alongside African people – and within a generation or so, their descendants knew they were Native and African, but lost track of which ancestors descended from which groups. Life was extremely difficult back then. Generations were short, and enslaved people were moved from place to place and sold indiscriminately, severing their family ties entirely, including heritage stories.

Returning to the Discover Time Tree Maps

Wesley Revels has STR matches with several men from Indonesia, China, and the Philippines. It would be very helpful if those men would upgrade to the Big Y-700 so that we can more fully complete the haplogroup O branches of the Time Tree.

The common Revels/Lewis ancestor, accompanied by two descendant men on different genetic branches from the Philippines, was born about 5180 years ago. There is no evidence to suggest Haplogroup O-FT11768 was born anyplace other than in the Philippines.

How did the descendant haplogroups of O-FT45548 (Revels, Lewis, and an unnamed man) and O-F22410 (Lynn) arrive in Virginia or anyplace along the Atlantic seaboard?

Hawaii wasn’t settled until about 1600 years ago. We know Hawaiians integrated with the Pacific Coast Native tribes in the 1800s, but James Revels was in Virginia in 1656..

We know that the Spanish established a mid-1500s trade route between Manila and Acapulco, leaving their genetic signature in western Mexico.

None of these events fit the narrative for the Revels or the Lynn paternal ancestor.

Furthermore, the Revels and Lynn lines do not connect on North American soil, as both descend from the same parent haplogroup, O-FT11768, 5180 years ago in the Philippines. This location and history suggest a connection with the Spanish galleon trade era. The haplogroup formation clearly predates that trade, which means those men were still in the Philippines, not already living on the American continents. Therefore, the descendants of the haplogroup O-FT11768 arrived in Virginia and North Carolina sometime after that haplogroup formation 5100 years ago.

The Lynn ancestor connects with a man from Singapore in 760 CE, or just 1240 years ago. A descendant of haplogroup O-F22410 arrived in North Carolina sometime later.

It does not appear, at least not on the surface, that there is a connection through Madagascar, although we can’t rule that out without additional testers. If the connection is through Madagascar, then their ancestors were likely transported from Indonesia to Madagascar, then as enslaved people from Madagascar to the Atlantic colonies to be sold. However, James Revels was not enslaved. He was clearly Native and bound to a European plantation owner, who did, in fact, free him as agreed and subsequently loaned him money.

Based on the dates involved, and when we know they were in Oceania, an arrival along the west coast, followed by a quick migration across the country to a peninsula of land in the Atlantic, is probably the least likely scenario. There is also no historical or ancient haplogroup O DNA found anyplace between the west and east coasts, nor in the Inuit or Na-Dene speakers. The Navajo, who speak the Na-Dené language, migrated to the Southwest US around 1400 CE, but haplogroup O has not been found among Na-Dené speakers.

It’s a long way from Singapore and the Philippines to Madagascar, so while the coastal migration scenario is not impossible, it’s also not probable, especially given what we know about the Spanish Pacific trade that existed profitably for 250 years.

However, one haplogroup O subgroup arrived in the UAE by some methodology after 336 CE.

It’s entirely possible, indeed probable, that haplogroup O arrived in the Americas for various reasons, on different paths, in different timeframes.

Haplogroup O was found in people in the Americas after colonization had begun. There has been no ancient Haplogroup O DNA discovered, and there’s evidence indicating that these instances of haplogroup O could not have arrived in any of the known Beringia migrations nor the theorized Coastal or Kelp migration. We know the East Coast Cluster is not a result of the West Coast 19th-century migration because James Revels was in court one hundred and fifty years before the Hawaiians were living among the Native people along the Pacific coastline.

There’s nothing to indicate that the Mexican group that likely arrived beginning in the mid-1500s for the next 250 years as a result of the Indonesian trade route migrated to the east coast, or vice versa. That’s also highly unlikely.

The most likely scenario is that Mr. Lynn’s, Mr. Blount’s, and James Revels’ ancestors were brought on trade ships, either as sailors or enslaved men. They may not have stayed, simply visited. They may each have arrived in a completely different scenario, meaning Mr. Blount’s ancestors could have been enslaved arrivals from Madagascar, Mr. Lynn’s from Indonesia, and Mr. Revel’s as a crew member on a Spanish ship. We simply don’t know.

James Revels’ descendants were Native through his mother’s tribe, as confirmed in the 1667 court records. However, the Revels and Lynn lineages weren’t Native as a result of their paternal haplogroup O ancestors crossing Beringia into the Americas with Native American haplogroups Q and C. Instead, the Lynn and Revels migration story is quite different. Their ancestors arrived by ship. The journey was long, perilous, and far more unique than we could have imagined, taking them halfway around the world by water.

Timeline

There’s a lot of information to digest, so I’ve compiled a timeline incorporating both genetic and historical information for easy reference.

  • 30,000 years ago (28,000 BCE) – haplogroup O-F265, common Asian ancestor  of Mr. Blount, the Revels/Lewis group, Mr. Lynn, and an unknown Big-Y tester in the Malagasy group project
  • 12,000-16,000 years ago – Indigenous Americans arrived across now-submerged Beringia
  • 12,000-16,000 years ago – possible Coastal Migration route may have facilitated a secondary source of indigenous arrival along the Pacific coastline of the Americas
  • 4000-7000 years ago – circumpolar migration arrival of Inuit and Na-Dené speakers found in the Arctic polar region and the Navajo in the Southwest who migrated from Alaska/Canada about 1400 CE
  • 5180 years ago (3180 BCE) – haplogroup O-FT11768, the common ancestor of Mr. Lynn and the Revels/Lewis group with many subgroups in the Philippines, Hawaii, Singapore, Brunei, China, Sumatra, and Thailand
  • 2244 years ago (244 BCE) – haplogroup O-CTS716, the common ancestor of Wesley Revels and Mr. Luo from Indonesia
  • The year 336 CE, 1684 years ago – haplogroup O-FTC77008, the common ancestor of Mr. Blount, UAE tester and a man from Thailand
  • 400 CE, 1600 years ago  –  Hawaii populated by Polynesian people
  • 760 CE, 1240 years ago – haplogroup O-F22410, common ancestor of Mr. Lynn with a Singapore man
  • 1492 CE, 528 years ago – Columbus begins his voyages to the “New World,” arriving in the Caribbean
  • By 1504 CE – European fishing began off of Newfoundland
  • 1565 – Spain claimed Guam and the Philippines
  • 1565 – Spanish trade between Manilla and Acapulco begins and continues for 250 years, until 1815, using crews of men from Guam, the Philippines, and enslaved people from the Marianas.
  • 1565 – St. Augustine (Florida) was founded by the Spanish as a base for trade and conquest along the eastern seaboard
  • 1566 – A Spanish expedition reached the Delmarva peninsula intending to establish a colony, but bad weather thwarted that attempt.
  • 1585-1587 – voyages of discovery by the English and the Lost Colony on Roanoke Island, North Carolina
  • 1603 – English first explored the Delmarva Peninsula, home to the Accomac people, now Accomack County, VA, where James Revels’s court record was found in 1667
  • 1607 – Jamestown, Virginia, founded by the English
  • 1608 – Colonists first arrived on the Delmarva Peninsula and allied with Debedeavon, whom they called the “laughing King” of the Accomac people. At that time, the Accomac had 80 warriors. Debedeavon was a close friend to the colonists and saved them from a massacre in 1622. He died in 1657.
  • 1620 – The Mayflower arrived near present-day Provincetown, Massachusetts
  • 1631-1638 – Dutch West India Company established a colony on the Delmarva Peninsula, but after conflicts, it was destroyed by Native Americans in 1638. The Swede’s colony followed, and the region was under Dutch and Swedish control until it shifted to British control in 1664
  • 1656 – Birth of James Revels, confirmed in a 1667 court record stating that he was an Accomack “Indian boy” from “Matomkin,” judged to be age 11, bound to Edward Revell. This location is on the Delmarva Peninsula.
  • 1741 CE –  Haplogroup O-BY60500 formation date that includes all of the Revels and Lewis testers who descend from James Revels born in 1656
  • 1765 – Whalers near Nantucket using crewmen from Hawaii (Sandwich Islands), Tahiti, and the Cape Verde Islands off of Africa
  • 1766 CE – Formation date for haplogroup O-FT45548, child haplogroup of O-BY60500, for some of the Lewis and Revels men who all descend from James Revels born in 1656
  • 1778 – Captain Cook makes contact with Hawaiian people
  • 1787 – The first male arrived in the Pacific Northwest from Hawaii
  • 1811 – Hawaiian seamen begin intermarrying with Native American females along the Pacific shore, eventually expanding their presence from Oregon to Alaska
  • 1839 – John Suter recruits Hawaiian men to travel with him to California
  • 1845 – Hawaiians employed by Fort Vancouver, with some marrying Native American women

Conclusions

It’s without question that James Revels was Native American very early in the settlement of the Delmarva Peninsula, now Accomack County, Virginia, but his common ancestor with Filipino men 5100 years ago precludes his direct paternal ancestor’s presence in the Americas at that time. In other words, his Revel male ancestor did not arrive in the Beringian indigenous migration 12,000-16,000 years ago. His ancestor likely arrived post-contact, based on a combination of both historical and genetic evidence.

Haplogroup O is not found in the Arctic Inuit nor the Na-Dene speakers, precluding a connection with either group, and has never been found in ancient DNA in the Americas.

Haplogroup O in the Revels lineage is most likely connected with the Spanish galleon trade with the Philippines and the early Spanish attempts to colonize the Americas.

The source of Haplogroup O in the Pacific Northwest group is likely found in the recruitment of Hawaiian men in the early/mid-1800s.

The Mexican Haplogroup O group likely originated with the Manilla/Mexico Spanish galleon trade.

The source of the Blount Haplogroup O remains uncertain, other than to say it originated in Thailand thousands of years ago and is also found in the UAE. The common Blount, UAE, and Thailand ancestor’s haplogroup dates to 336 CE, so they were all likely in or near Thailand at that date, about 1687 years ago.

What’s Next?

Science continuously evolves, revealing new details as we learn more, often clarifying or shifting our knowledge. Before the Discover tool provided haplogroup ages based on tests from men around the world, we didn’t have the necessary haplogroup origin and age data to understand the genesis of haplogroup O in the Americas. Now, we do, but there is invariably more to learn.

New evidence is always welcome and builds our knowledge base. Haplogroup O ancient DNA findings would be especially relevant and could further refine what we know, depending on the location, dates of the remains, who they match, and historical context.

Additional Big Y-700 tests of haplogroup O men, especially those with known genealogy or ancestor location, including Madagascar, would be very beneficial and allow the haplogroup formation dates to be further refined.

If you are a male with haplogroup O, please consider upgrading to the Big Y-700 test, here.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Globetrekker – A New Feature for Big Y Customers From FamilyTreeDNA

FamilyTreeDNA recently released Globetrekker, a great new feature for Big Y customers as part of the Discover tools. You can read about the Discover tools, here.

What Is Globetrekker?

Globetrekker is a new mapping feature that maps your Y-DNA ancestral migration path from Y-Adam in Africa born about 200,000 years ago to where your direct paternal ancestors are found most recently based on:

  • The earliest known ancestor (EKA) locations of you, your matches and other testers
  • Ancient DNA samples
  • Various geographic criteria including elevation, migration corridors, sea levels, and glaciers.

This data-driven model also includes sea levels over time and some climate factors, such as glaciation. Clearly, our ancestors needed access to clean water, food and an environment where they weren’t going to freeze to death. If they had to choose between migrating along a lower level coastal region, or heading straight across the high mountains into the unknown, it’s more likely that they took the lower elevation coastal route with assured food.

Globetrekker displays the “most likely” corridors for you to review.

While you only see your Y-DNA line initially, the map includes 48,000 migration paths for all haplogroups spread across each continent. If you’ve taken the Big Y test, you can view any of the haplogroups in Discover.

And, there’s an integrated tree browser, too.

You can read FamilyTreeDNA’s blog article, written by Goran Runfeldt, head of R&D, here.

Please Note

  • Everyone must sign into their own account to use the new Globetrekker tool. To use the rest of the Discover features, everyone can use the public version of the tool, but Globetrekker is for Big Y customers only, which is why you need to sign in. You’ll also receive more information in other categories, such as Notable and Ancient Connections, if you access Discover through your account. The free public version is limited.
  • If you’re a project administrator and you normally view your project members’ results through your project (with member-granted authorization, of course) you can’t do that yet with Globetrekker.
  • This means that every tester has to sign on using their own kit number and password. FamilyTreeDNA is working on Group Administrator access, so don’t despair if you normally depend on your volunteer administrator to handle things for you and explain. It’s coming.
  • The migration map includes only pre-Columbian migrations. In other words, if your EKA is not Native American and is brick-walled in the US, you won’t see it on the map. You’ll see your closest haplogroup location before about 1500.
  • These routes will change over time with additional testers whose results will shift and refine the paths.

Best Thing You Can Do

The best things you can do, aside from taking (or upgrading to) a Big Y-700 test are:

  • Complete your earliest known ancestor (EKA) information.
  • Be SURE to include a country AND a location of origin because that’s the data Globetrekker draws from.
  • If your cousins test too, you may be assigned a new, more refined haplogroup, so recruit people. If you don’t know anyone specific, looking at your STR matches is a good resource to find candidates.

Adding Your EKA

To add your EKA and their geographic location, sign in to your account and click on your name, which will display a menu.

Select Account Settings.

Select Genealogy, then Earliest Known Ancestors, then complete the information, including Country, which assigns the flag, among other things. Click on update location to complete or change this location.

Search or place the pin in the correct location. Then click Save.

There are three very important pieces of EKA information that need to be completed to reap all the benefits of the Matches Map, Discover, the Time Tree, the Group Time Tree that includes ancestors, and Globetrekker.

  1. EKA Name and birth/death date
  2. Country of Origin field using the dropdown (Please note Native American entries for proven Native ancestors/haplogroups)
  3. Ancestral Location for specific locations for the Matches Map

While you’re here, enter your direct matrilineal ancestor’s information too – that’s your mother’s mother’s mother’s line, which you’ll need for mitochondrial DNA..

Then, click the orange Save button at the bottom of the page.

Your map location will also appear on your STR Matches Map. You may find relevant matches there, even if they haven’t taken the Big Y test.

There’s immense power in collaboration.

I often reach out to STR panel (12-111 markers) matches and men with the same or similar surnames, asking if they will consider upgrading to the Big Y, sometimes providing testing scholarships. The only way to obtain the most refined haplogroup possible and the most accurate migration path is for multiple people in the same lineage to test AND complete the location information.

Now that we’ve completed our housekeeping, let’s look at Globetrekker.

Globetrekker Quick Test Drive

I’ll be writing about Globetrekker results in detail soon, but for right now, let’s just take a quick spin.

Click on any image to enlarge

Sign in to your account and click on the Discover Haplogroup Reports under Y-DNA Results and Tools.

You’ll see your Haplogroup Story, of course, and on the left side, you’ll see the Globetrekker link. Click on Globetrekker.

It Takes Two to Tango

Please note the introduction at the top of the Globetrekker page, and don’t get drawn into the beautiful map without reading this part first, along with the Release Announcement, Caveats, and Survey. Please take the survey after you’ve used Globetrekker.

Click on image to enlarge

  • In order to RECEIVE a detailed haplogroup, it takes at least two people with the variant (mutation) that is then named and becomes the same haplogroup. This is why we recommend that men ask a cousin from the same paternal line to test, or even a father/brother/uncle.
  • To MAP the location of a haplogroup on Globetrekker, it takes at least two people with the same haplogroup who have selected a location. Looking at my cousin’s results, I had already entered his EKA and location, but apparently his Big Y matches have not, so there are not two men with R-ZS3700 who have locations specified. I need to contact his matches.

Be sure to enter all of your EKA info. If your cousins have tested, they need to enter their information as well.

  • Globetrekker cannot use results for the mapping function without locations.
  • Globetrekker cannot use non-Native American haplogroups that are recorded with a location in the Americas. Globetrekker does provide Native American mapping in North and South America when the haplogroup is Native and a location is provided.
  • Globetrekker CAN utilize coordinates in the Americas, but a country of origin in Europe or elsewhere pre-Columbus. Globetrekker defaults to the country of origin. Please make sure this information is accurate and not just a guess or oral history.

Locations or at least countries need to be as accurate as possible. If there are only two men with a specific haplogroup, for example, and one enters England and the other enters France, Globetrekker tries to plot the location of that haplogroup someplace in the middle. In this circumstance, probably neither person is happy – both complaining about inaccuracy. Yet another reason why it’s a good thing to help your fellow genealogists.

Therefore, if you notice that you have a Big Y match on either your Big Y match list, or your STR (12-111 panel) matches, and they don’t have an EKA and country listed, with a location displayed on the matches map, PLEASE email them and ask nicely if they will add that info. You can send them a link to this article to explain why providing that information is critically important for them AND the people they match, just like your information is crucial to them. Without location data, Globetrekker paths can’t be calculated correctly, and sometimes not at all. The more data, the greater the accuracy.

After you enter your EKA information and after Big Y results are back, it will be a week or so before Discover and Globetrekker are up to date. Discover is updated weekly, and if a new haplogroup is added, Globetrekker will be up to date the following week.

Drum Roll Please…..

Here it is. The new highly refined Globetrekker migration map. It’s a beauty!

Your end-of-line haplogroup, or the closest one that can be calculated, will be shown in orange. In this case, it’s R-BY490 (circa 1650 CE) because the location of R-ZS3700 (circa 1700 CE) can’t be calculated.

On the map, you can see the various haplogroups that are upstream of haplogroup R-BY490, meaning parent haplogroups.

The path from Y-Adam in Africa is mapped, with the color changing to represent the birth of each major haplogroup in the migration path.

For example, I clicked on the pin for haplogroup CF, which expanded that haplogroup to CF-P143 and showed information about how the haplogroup pin was located on the map – plus the age and sea level difference at the time.

Scroll down on the map until you see the play button. Clicking on that button animates the migration path, beginning with Y-Adam, then progressing to the most current pre-Columbian migration.

In this case, I paused the video at the formation of haplogroup R1.

Notice the glaciation that both forms and recedes. Clearly, your ancestors weren’t living there during glaciation, but humans moved into those areas after the glaciers thawed and retreated.

You may be surprised at the path your ancient ancestors took, so I encourage you to spend some time with this map, reviewing the approximate path and your parental haplogroups with an open mind.

A legend is located in the far right upper corner to help explain the map details, including Ocean Currents and the various sea level colors.

Notice Doggerland, in dark green, which was a land mass when some haplogroups arrived in what is now the British Isles. Doggerland flooded sometime between 6500 and 6200 BCE, or about 8500 years ago, so it’s sea today. In other coastal locations, some previous land areas are covered by water today. Note the Baltic above, for example. Truthfully, that explains a lot. I knew about Doggerland but not about many of the other coastal regions around the world.

Pay close attention to what’s happening on the map. I noticed that my red pin for the current haplogroup is found in Deal, England, but so is an earlier haplogroup, so the later pin obscures the earlier pin. I enlarged the map and paused the video at 1400 CE so the red pin doesn’t form yet, then clicked on haplogroup R-Z290 that arrived from across the English Channel.

The R-Z290 pin location tells me that my Estes male ancestors arrived from continental Europe around 4650 years ago. My assumption (there’s that word again) had been that the original Estes ancestors arrived, then stayed right in Deal, a coastal village very near Dover, the closest point to the European mainland. According to Globetrekker, that wasn’t at all what happened.

I was initially somewhat skeptical, but then looking at all of the upstream haplogroups, I realized that those 17 haplogroups upstream of R-BY490 had to get into the other parts of the British Isles somehow – and my ancestor clearly descends from those men.

Could my ancestors have crossed back over to the European mainland at some point, then recrossed into Deal? Yes, of course, but without any genetic or other evidence, that’s speculation ONLY, with nothing at all to support it. In other words, that speculation would be based on what I believed all these years and nothing more.

The data-driven genetic scientific evidence tells us that our Estes ancestor arrived in what is today England about 4500 years ago. As you can see, there are a total of 17 points in England that have been reliably placed, not just one or two that might be open to speculation. Additionally, we have ancient DNA evidence.

Notice the functions at the top of the map. Turn on Ancient Connections. You’ll see the little shovels appear when their timeframe and location are relevant to the map migration, then disappear when it isn’t.

Pause the map again, and click on the shovel to display relevant information about the archaeology dig that produced Y-DNA results of sufficient quality to be included. Those ancient samples often anchor haplogroups in a known place at a specific time.

While you’re enjoying different views, try the other options at the top of the Globetrekker map.

Integrated Tree Browser

Scroll down beneath the map to view the integrated tree browser.

This is VERY cool because the tree browser moves in tandem with the map above.

You can see that the migration map shows R-BY487, and on the timeline below, R-BY487 is showing at the top, along with the downstream haplogroups.

R-BY482 (circa 1500 CE), R-BY490 (circa 1650 CE), and R-ZS3700 (circa 1700 CE) are all Estes surname haplogroups. Prior to that, R-BY487 (circa 750 CE) has no associated surname. Surnames hadn’t been adopted yet, but we know approximately where they were living just the same. We can now reference the appropriate historical period in England to determine what was happening when they lived there.

Why the Big Y?

The Big Y test does five things extremely well:

  1. Scans millions of locations on the Y chromosome looking for mutations that, when compared with other Big Y testers, places men conclusively on their branch, and sometimes on their twig and leaf of the Y-DNA haplotree. Men carrying previously undiscovered mutations from the same line establish a newly named haplogroup.
  2. Unambiguously matches testers with men who descend from a common ancestor. SNPs, the mutations measured in the Big Y test are not subject to back-mutations and other occasional instabilities that plague the STR markers in the 12-111 panel tests.
  3. Provides matching to both STR and SNP markers, allowing genealogical connections to men who have taken either type of test. Some people who have taken STR tests have either chosen not to upgrade (yet) or may have passed away. With the Big Y test, those legacy tests, some of which are more than 20 years old, are still useful.
  4. Provides an estimated date of when the common ancestor lived.
  5. Reaches reliably back in time, before the age of surnames, allowing testers to peer into the past based on a combination of genetics and history.

In other words, the Big Y test provides the best of both worlds, genealogy for close surname matches and anthropology for ancient matching and migration.

Lots to Explore

Globetrekker results are available to men who took either the Big Y-500 or the Big Y-700. Those who took the Big Y-500 can upgrade for significantly more refinement and potentially new haplogroups. Men who have not yet tested, or who just ordered one of the STR panels can upgrade to learn about your matches, your haplogroup, and the migration path through history your ancestor trod to arrive where your EKA lived.

I’m looking forward to reviewing all of the kits I manage that have taken the Big Y test. Let me know what you think about your Globetrekker results, and be sure to complete the survey and let FamilyTreeDNA know too.

If you’d like to learn more about your Big Y results, be sure to check out both Discover and Globetrekker. Discover is public, but Big Y testers will receive more information. Globetrekker is for Big Y customers only.

Remember, both will change as more people test and new results come in, so check back often.

The FamilyTreeDNA Big Y Facebook Group

A few weeks ago, FamilyTreeDNA introduced their FamilyTreeDNA Big Y Group on Facebook. As of today, just shy of 8000 people have joined. You do have to agree to follow the rules, but you don’t need to have taken a Big Y test. Lots of people join to learn, including many women who manage Y-DNA tests for family members or people who just want to understand more about one of the three types of tests for genetic genealogy.

You’re welcome to join too, here.

The Summer Sale

Several people have asked when the Big Y or the upgrades would be on sale. The summer sale runs from August 1-31, and all Y-DNA tests and upgrades are included, here.

If you’ve already taken one of the STR panel tests, or the Big Y-500, the Big Y-700 is less expensive when you upgrade. Just sign in to your account and click on the orange Add Ons and Upgrades button at the top right of your page, then on “Upgrades.”

Click here to purchase or upgrade.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

So, You Want to Become a Professional Genetic Genealogist

I get asked quite often about what is required to become a professional genetic genealogist.

That’s actually two separate questions.

  • What is required to become a professional genealogist?
  • Then, what is required to specialize as a genetic genealogist?

What It’s Not

Before we have this discussion, I need to make sure that you understand that I’m NOT talking about forensics, meaning IGG, or investigative genetic genealogy in this article.

  • This is NOT forensics (IGG)
  • This is also not a specialty in finding missing parents for adoptees and others searching for unknown parents.

Both IGG and adoption searches utilize the same methodology, a subset of genetic genealogy. I wrote about that in Identifying Unknown Parents and Individuals Using DNA Matching.

The difference between genetic genealogy more broadly and IGG is:

  • What you’re searching for
  • The perspective
  • The methods utilized.

Essentially, the functional difference is that genealogists know who they are and have some information about their ancestors. For example, they know who their parents are and probably at least their grandparents. Genealogists are using both DNA testing and traditional genealogical paper trail research methods to focus and make discoveries going backwards in time.

Both IGG and unknown parent research uses DNA and (sometimes some) paper trail genealogy to find ways to connect the closest matches to the DNA tester (or DNA sample) together to each other to identify either living or recently living people. For example, two people who are are first cousins to the tester should both have the same grandparents if they are related to the tester through the same parent.

If two people who are related to the tester as first cousins do not share the same grandparent(s), then they are related to the tester through different parents of the tester.

The commonality is that DNA testing and some types of records are used for:

  • IGG where you’re searching for the identity of the tester or DNA sample
  • Unknown parent(s) searches where you are searching for the identity of the parent(s)
  • Genetic genealogy

However, the search methodology is different for IGG and unknown parents than for genealogy.

With IGG and unknown parent searches, you’re looking for your closest matches, then attempting to connect them together to identify either currently living or recently living people.

This article focuses specifically on genealogy and genetic genealogy, meaning looking backwards in time to identify ancestors.

I wrote about the techniques used for both IGG and parental searching in the article, Identifying Unknown Parents and Individuals Using DNA Matching.

What Do Genealogists Do?

Genealogy is the study of family history and the descent of a person or a family. Genealogists use a variety of sources and methods to discover and show the ancestry of their subjects and in doing so, create the family trees that are familiar to all of us.

Genealogists use different sources and methods to find and show the descent and kinship of their subjects.

Traditional sources include but are not limited to the following record types:

  • Vital records (birth, marriage, and death certificates)
  • Census
  • Military
  • Immigration
  • Land and tax records
  • Wills and probate
  • Church records
  • Newspapers
  • Obituaries
  • Published and online books
  • Oral histories
  • Genealogy databases
  • And more

Of course, today the four types of DNA can be added to that list.

A professional genealogist needs to know how and where to find these types of records in the target area, any unique cultural or regional factors affecting those records, and how to interpret them both individually and together.

For example, in a deed record in colonial Virginia, why would, or wouldn’t a female release her dower right? What is dower right, and why is it important? How might that record, or lack thereof, affect future probate for that woman/couple? In what type of historical or court record book might one look for these types of records?

Genealogists also need to know how to weigh different types of information in terms of potential accuracy and how to interpret primary and secondary sources.

Primary sources are those that were created at or near the time of an event by someone who was present at the event or who had first-hand knowledge of it. Examples of primary sources include birth certificates, marriage licenses, and census records, although census records are far more likely to be inaccurate or incomplete than a birth certificate or marriage record. Genealogists need to understand why, and where to look for corroboration. Primary sources are considered to be most accurate.

Secondary sources are those that were created later by someone who did not have first-hand knowledge of the event. Examples of secondary sources include family histories and genealogies, published biographies, and sometimes, newspaper articles.

The genealogists “go to” source for understanding and interpreting evidence is Evidence Explained by Elizabeth Shown Mills, available here.

Of course, DNA understanding and analysis needs to be added to this list and has become an important resource in genealogy. Additionally, genetic genealogy has become a specialty within the broader field of genealogy, as has IGG.

Put another way, a genealogist should have expertise and a specialty in some area. Maybe Italian records, or Native American genealogy, or New England records, in addition to the basic skills. At one time, a genealogist didn’t necessarily HAVE TO have expertise in genetic genealogy as well, but that has changed in the past few years. A professional genealogist should MINIMALLY understand the basics of genetic genealogy and when/how it can be useful. They may or may not have ready access to a genetic genealogist within the company where they work.

Being an independent genealogist, unless you specialize only in a specific area, like Dutch genealogy, is much more challenging because you’ll need to be proficient in BOTH Dutch genealogy AND genetic genealogy. It’s tough keeping up with one specialty, let alone two, although in this case, Yvette does an amazing job. However, her primary specialty is Dutch genealogy, and genetic genealogy is the booster rocket when appropriate. Genetic genealogy is not always needed for traditional genealogy, which is why genetic genealogy is a specialty skill.

In addition to all that, you also need to be proficient and comfortable with technology and a good communicator. Walking on water is also helpful:)

Job Description

So, what does the job description for a genealogist look like?

I reached out to Legacy Tree Genealogists because they are one of the largest, if not the largest genealogy research company, and they partner with 23andMe, FamilyTreeDNA, and MyHeritage. Legacy Tree has specialists in many regions and languages, in addition to six genetic genealogists on staff.

Fortunately, they have a job listing posted right now, here, with an excellent description of what is expected.

If you’re interested or wish to sign up for notifications, click here.

Understanding that this job description won’t be posted forever, I reached out to the owner, Jessica Dalley Taylor, and asked if she would send me a sample description to include in this article.

Here you go, courtesy of Jessica:

About You

It’s not easy to make each client’s experience the very best it can possibly be, and it means we can only hire an exceptional genealogist for this position. You will be a great fit if:

    • You are fluent in English and can explain your genealogy discoveries in a way that clients connect with and understand
    • You have taken at least one genetic genealogy test or administered the test of a relative
    • You have introductory genetic genealogy abilities
    • You have at least intermediate traditional genealogical research experience in any geographic locality
    • You are familiar with the repositories of the areas for which you claim expertise and have worked with them to obtain documents
    • You are passionate about genealogy and are a creative problem solver
    • You are great at working independently and hitting deadlines (please don’t overlook this line about deadlines)
    • You are comfortable with Microsoft Office suite
    • You’re familiar with genealogical technology such as pedigree software
    • You have a quiet place to work without distractions, a computer, and great internet
    • You have a strong desire to work as a professional genetic genealogist

Even better if:

    • You have a basic understanding of genetic inheritance and its application to genealogy
    • You have beginning experience with interpretation and use of genetic genealogy test results
    • You have intermediate-level genetic genealogy abilities

What you’ll be doing at Legacy Tree:

    • You’ll be learning how to use genetic testing in identifying family
    • You’ll be learning how to create high-quality research reports
    • You’ll be reading and formatting reports by professional researchers
    • You’ll be assisting with researching and writing genealogy reports
    • You’ll be performing genetic genealogy analysis under the direction of professional mentors
    • You’ll be developing advanced-level genetic genealogy skills and abilities
    • With your input, you’ll do other things as opportunities and needs arise

Please note that Legacy Tree offers both traditional genealogy services, combined with genetic genealogy, along with adoption and unknown parent searches.

As a measure of fundamental basic genetic genealogy skills, you should be able to create and teach a class like First Steps When Your DNA Results Are Ready – Sticking Your Toe in the Genealogy Water.

You should also be able to read and fully comprehend the articles on this blog, as well as explain the content to others. A very wise person once told me that if you can’t explain or teach a topic, you don’t understand it.

As luck would have it, Ancestry also posted a job opening for a genealogist as I was finishing this article. Here’s part of the job requirements.

Contractor or Employee

Please note that many companies have shifted their primary hiring strategy to utilizing contractors for not more than half time, especially now that working remotely has become the norm.

This may or may not be good news for you.

It allows the company to avoid paying benefits like insurance, vacation, leave, and retirement programs which reduces their costs. You may not need these benefits, and it may represent an opportunity for you. For others who need those benefits, it’s a deal-breaker.

Contracting may provide the ability to work part-time, but contracting probably means you need to have business management skills not required when you work for someone else. Let’s just say that I make quarterly estimated tax payments and my annual CPA bill is in the $2,000 range.

Compensation

Pay, either as an employee or contractor for a company, is a sticky wicket in this field.

First, there’s a consumer mindset, although not universal, that genealogy “should be” free. In part, this is due to search angels and a history of well-intentioned people making things free. I’m one of them – guilty as charged – this blog is free. My hourly work, however, when I accepted clients (which I DO NOT now,) was not free.

However, that “should be free” mindset makes it difficult to shift to a “pay to play” mentality when people can go on social media and get what they want for free.

Professional services are not and should not be free.

Professionals should be able to earn a respectable living. The full-time Ancestry job, posted above, with those credentials, nets out to $21.63 per hour for a 40-hour week, with a graduate degree preferred. For comparison, google other jobs and professions.

If you doubt for one second whether professional services should or should not be free, especially ones that require a bachelor’s degree or master’s, just think about what your CPA would do if you asked them to do your taxes because they have the ability, for free. Same for a doctor, lawyer, or any other professional.

People are often shocked at the rates paid to employees versus the rates charged to prospective customers. This discussion has recently gotten spicy on social media, so I’m not going to comment other than to say that when I did take private clients, which I DO NOT ANYMORE, I found it much more beneficial to operate independently than to work for a company.

However, I also had a readily recognizable specialty and an avenue to reach potential clients.

I also already had a business structure set up, and a CPA, and perhaps more important than either of those – I had medical insurance already in place.

The need for benefits is what drives many people to work for companies, which I fully understand. It’s also a big factor in why there are more female genealogists than male genealogists. Married women in the US are eligible to be covered by their spouse’s insurance, assuming the spouse has insurance through their employer.

My very strong recommendation to you is to weigh all of the factors and NEVER to find yourself without medical insurance or coverage.

If you’re going to be “self-employed,” set up a company. If you’re going to set up a company, do it properly, understand the tax ramifications of the various types of corporations and engage a competent CPA to shepherd you through the process from day 1 through taxes. They are worth every penny.

Look at various jobs in the market, review at the associated pay, get a quote for genealogy services of the type you would be providing from the various companies – and decide if this profession is really for you.

I don’t mean to be a wet blanket, just a realist.

Training and Certification

Now for the good news and the bad news.

  • There is professional training for genealogy
  • There are certifications for genealogy
  • There is no “one place” for either
  • There is no certification for genetic genealogy
  • There’s a LOT of misunderstanding and misinformation about genetic genealogy
  • Genetic genealogy changes often

You need to view your education for genealogy/genetic genealogy in the same way you’d view obtaining a college degree – plus continuing education to maintain your education and skills at a current and functional level.

And yes, all of that costs money. If you decide to work for a company, be sure to ask if continuing ed is on their dime and time, or yours.

Genealogy Training

The Board for Certification of Genealogists, BCG, allows graduates to append CG, for Certified Genealogist after their name. BCG is focused on certification of skills and is not a training platform, although they do provide some webinars, etc. It’s not a college curriculum though. Certification is the “end game” for many. Candidates must submit a portfolio for evaluation, complete in a specific timeframe, and must reapply every five years to maintain their certification.

Not all genealogists are certified by BCG, and BCG only lists references of BCG members.

In the field of Genetic Genealogy, that can be problematic because many competent and well-known people are not BCG certified. BCG does not have a genetic genealogy certification.

Lack of BCG certification does not mean that someone is not qualified, and BCG certification certainly does NOT mean or imply that the individual is competent in genetic genealogy, which has more and more become a part of almost every genealogical puzzle. If not for initial discovery, for confirmation.

There are many avenues for genealogical training, including, but not limited to:

  • Brigham Young University Family History Degree
  • NGS Home Study Course
  • Salt Lake Institute of Genealogy (SLIG)
  • Genealogical Research Institute of Pittsburgh (GRIP)
  • Boston University Certificate program
  • Genealogical Institute on Federal Records (Gen-Fed)
  • Institute of Genealogy and Historical Research (IGHR)
  • University of Strathclyde
  • University of Dundee
  • Major Conferences, including RootsTech and NGS, among others
  • Specialty conferences such as the International Conference on Jewish Genealogy (IAJGS)
  • Online conferences and conference proceedings such as Rootstech who maintains a free library of their virtual and recorded conference sessions.
  • Legacy Family Tree Webinars
  • Videos produced by major genealogy companies such as MyHeritage, FamilyTreeDNA and Ancestry, often available through their website, Youtube or both
  • Blogs and learning/help centers of the major genealogy companies

Genetic Genealogy Training

Genetic genealogy training is more challenging because there is no specific program, curriculum, or certification.

Many genetic genealogists obtained their experience as a part of genealogy over 15 or 20 years and have focused on the genetic aspect of genealogy. Several of us had a scientific background that meshed well with this field and is part of why we discovered that our passion is here.

Before I provide this resource list, I need to emphatically state that probably 95% of answers that I see provided on social media platforms in response to questions asked by people are either entirely incorrect, partially incorrect in a way that makes me want to say, “well, not exactly,” or are incomplete in a way that makes a significant difference.

I chose and choose to focus on creating educational tools and making explanations available for everyone, in one place, not one question at a time.

I began publishing my blog in 2012 as an educational tool and I’m dumbstruck by how many people just want a yes or no answer instead of learning. If one doesn’t take the time to learn, they have no idea if the answers they receive are valid, or if there’s more to the story that they are missing.

Social media can mislead you badly if you don’t have the ability to discern between accurate answers, partially accurate answers, and incorrect answers. Furthermore, opinions differ widely on some topics.

Unfortunately, because there is no genetic genealogy credentialling, there is also no “post-nominal letters,” such as CG for certified genealogist. Therefore, a novice has absolutely no idea how to discern between an expert and another overly helpful novice who is unintentionally providing incorrect or partial information.

Many of us who at one time reliably answered questions have simply gotten burned out at the same question being asked over and over, and no longer regularly engage. Burnout is real. Another issue is that askers often don’t provide enough, or accurate, information, so a significant amount of time is spent in clarifying the information around a question. Furthermore, your CPA, lawyer, and physician don’t answer questions online for free, and neither do most people who are busy earning a living in this field.

DNA educational opportunities, some of which are contained within larger conference agendas, include:

There are other blogs, of course, some of which were launched by well-known genetic genealogists but are no longer maintained. Blogging is quite time-consuming.

I’ve covered all kinds of genetic genealogy topics in my blog articles. They are a good source of information, education and hands-on training. I attempt to publish two articles weekly, and there are over 1600 available for your enjoyment.

In addition to the initial learning period, you’ll need to make time to stay engaged and maintain your genealogy and genetic genealogy skills.

Apprenticeship

In addition to training, I think you’d need at least a year interning or working at a junior learning level, minimum. Think of it as your genealogy residency.

  • You could choose to work for a vendor in their help center.
  • You could choose to work for a genealogy company. I’ve mentioned the largest ones, but there are others as well.
  • You could choose to work on your own case studies and those of your friends and family, but if you do, be aware that you won’t have anyone reviewing your work. If you make a mistake or should have approached something differently, and you’re working alone, there’s no one to tell you.
  • You could work as a search angel for others. I have mixed emotions about this, in part due to the lack of review and oversight. But also, in part because “free search angels” perpetuate the idea that genealogy “should be” free.

If you want to work in IGG, after training, an internship under an established mentor is ABSOLUTELY ESSENTIAL for a minimum of 100 or so successful closures.

Genealogists and genetic genealogists have the ethical responsibility to NOT MAKE MISTAKES when working on other people’s family. You need to know what you know, what you don’t know, when to get help, from where and with whom.

Networking Opportunity

A Facebook group named “Genealogy Jobs” has been established to discuss opportunities and all of the topics surrounding this subject.

There’s a Genealogy Career Day event on April 22nd where you can interact with professionals including authors, freelance genealogists, certified genealogists, business owners, and an investigative genetic genealogist. Take a look at the topics. If you’re considering whether or not you want to go pro, you’ll be interested. You can sign up here.

The sessions will be uploaded to their YouTube channel, here, after the event.

I hope you’ve found this article useful and helps you decide if this profession is for you. If so, create a plan and execute.

If you decide you do want to go pro, I wish you the best and welcome you to the fast-paced world of professional genealogy or its specialty, genetic genealogy.

____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNAExplain Blog to be Preserved for Future Generations in the Library of Congress

Yes, indeed, this is definitely a red-letter event!!!

Not only is having my blog archived in the Library of Congress an incredible honor, but it solves a long-standing problem. Let’s start at the beginning.

In the Beginning…

I started this blog, www.dna-explained.com, also www.dnaexplain.com, for three primary reasons:

  • To educate the public, specifically genetic genealogists, about effectively using DNA for genealogy.
  • To share my own and other relevant vendor and non-vendor research and advancements in the field.
  • To provide a timeline and cumulative progressive history of this emerging field, recorded as it occurred. Essentially an industry diary.

My first blog article was published in July of 2012. The direct-to-consumer genetics industry was about 12 years old at that time. Today, the industry is roughly 23 years old and my blog is approaching its 11th anniversary. I’ve covered nearly half of the life of the genetic genealogy industry.

I recently crossed the threshold of 1600 published articles which equates to about 2.5 articles each week. Those articles total over 4 million words, or more than 15,000 pages of text, plus 20,000 images. That’s about half the size of the Encyclopedia Brittanica. That level of writing and publishing is almost a full-time job, alone, without anything else. Yet, I need to perform the research and do the work to create the content of each article. Not to mention the rest of my activities that pay the bills.

Anyone who writes, specifically, those who write to publish regularly, such as a blog, know that blogging isn’t exactly easy and requires an incredible amount of investmented time. The majority of blogs are abandoned shortly after creation. I fully understand why. You have to love both the process of writing and the subject – and be willing to contribute. Not to mention monitoring and approving the more than 50,000 comments and such.

As you know, this blog is free. I don’t charge for a subscription. I don’t accept paid content, guest articles or write articles for pay. I do have affiliate links at the bottom, but consider those cumulative purchases equivalent to buying me a cup of coffee. (Thank you to those who purchase through those links.)

There is some recurring financial investment in blogging too, but the biggest commitment, by far, is time. Hours and days that can’t be spent elsewhere, like on genealogy, for example – which leads me to my 52 Ancestors articles.

52 Ancestors

Of those slightly more than 1600 articles, 465 are in my 52 Ancestors series. I’m “blaming,” or crediting, Amy Johnson Crow for this, because in January of 2014, she challenged genealogists to write something about one ancestor a week and share or publish it someplace, somehow. I really liked that idea, and came to discover that focusing on one ancestor at a time, not a couple, and not their parents or children, allowed me to live with them for a bit and view their life through their eyes alone. So many times we know very little about our ancestor’s lives, and even less about the women. Interweaving Y-DNA and mitochondrial DNA results and matches, relationships and the history of what was happening around them provides an invaluable tool to connect with their lives.

I wasn’t sure I could maintain that one article per week pace, but I wanted to try. The 52 Ancestors challenge was just for one year, right? I could stop anytime, right? But how would I share? I didn’t really think any of you would be interested in MY ancestors, so I very nearly didn’t publish these stories on my blog. I’m INCREDIBLY glad that I did, because I use both genealogy and genetic tools at multiple vendors to confirm those ancestors, to find and identify their descendants, and to break though next-generation brick walls. Plus, I’ve discovered innumerable wonderful cousins!

Having committed, I jumped into 52 Ancestors with both feet and immediately addressed a very long-standing mystery about my father’s missing son. What I didn’t expect to happen was for you, my readers, to help solve it, but you did!!! Two weeks later, Lee was identified, had a name and a history! Wow we were off and running at breakneck speed. To this day, the 52 Ancestors articles remain some of my favorites, along with the process of bringing those ancestors back to life, even if just through words.

Sometimes I don’t write about ancestors specifically, but memorable events in our lifetimes that we’ve shared, like the 1969 moon landing, Y2K and more recently, the anniversary of the space shuttle Challenger explosion. Don’t you wish someone had written or journaled about contemporary milestones in our ancestor’s lives? What I wouldn’t give for that!

Preservation and Perpetuity

One of the reasons I write about my ancestors and genetic genealogy more broadly is because I very much want to share with other researchers, now and in the future.

In some cases, I’m the contributor, but often others contribute invaluable information to me. I firmly believe that a rising tide lifts all ships.

My goal is twofold:

  • To educate others and share methodologies so they can find and confirm their ancestors.
  • To complete the painting of my ancestor’s lives, or as much as I can in my lifetime.

Both of these are foundations upon which others can build.

A few years ago, I began to be concerned with preservation in perpetuity. How might I preserve those stories and the rest of my blog? I realize that in time, the technical aspects of my blog articles will be dated, but the educational basics remain firm. Better research methodologies will be developed. New information, both paper trail and genetic, will, hopefully, be unearthed about my ancestors, but I want the information I’ve provided to remain accessible over time.

I’ve been a technologist long enough to know that nothing is forever. Web sites disappear every day. The Internet Archive is wonderful, but it too may go poof, not to mention that you need to know the website url to access the archived website.

I reached out to WordPress, my blogging platform a few years ago. I asked if I could pay in advance for a “permanent” website, but they said that after payment stopped for the domain name and my subscription for the “non-free” platform, that my articles would revert to a free WordPress site “forever.” That means the url would change. Of course, none of the original links would work, and its value would be much dimished given that the articles would not appear in search engines. Furthermore, “forever” in technology days could be very short indeed.

Resources like FamilySearch aren’t meant for publications like my blog, and neither is WikiTree, especially “someday” after the blog link is no longer valid. I’ve posted links to articles on my blog on the ancestors’ profiles at WikiTree and in my personal trees at MyHeritage and Ancestry, but once the link is gone, effectively, so is the information.

I could copy the articles to word/pdf documents and attach those files to the trees, but we really don’t know what will and will not have longevity in today’s technical genealogical environment. Plus, I don’t want my articles behind a paywall anyplace, especially since I’ve made them available for free.

However, the Library of Congress has now solved that quandary for me and I’m both elated and honored.

The Invitation  

In the crazy days leading up to RootsTech, a gem of an email landed in my inbox. It was supposedly the Library of Congress (LOC) requesting to archive this blog and make this website available for all perpetuity as part of a collection of historically and culturally significant websites designated for preservation.

That’s quite a compliment.

I wasn’t quite sure I believed it. In fact, I was pretty sure that I didn’t.

Of course, the first thing I thought was that these were really brilliant scammers.

I contacted the LOC and discovered that this email was, indeed, genuine. I was both shocked and humbled.

To Whom It May Concern:

The United States Library of Congress requests permission to include your website in the Local History and Genealogy Web Archive, which is part of a larger collection of historically and culturally significant websites that have been designated for preservation. The following URL has been selected for archiving: https://dna-explained.com/.

The Library hopes that you share its vision of preserving digital content and making it available to current and future generations of researchers. As the internet has become an increasingly important and influential part of our lives, we believe the historical record would be incomplete if websites like yours are not preserved and made a part of it. We also believe that expanding access to the Library’s collections is one of the best ways we can increase opportunities for education and scholarship around the world. Please provide the Library with permission to archive your website and provide public access to archived versions of your website by filling out the form available here: <link redacted.>

With your permission, the Library of Congress or its agent will engage in the collection of content from your website at regular intervals over time. In order to properly archive the above URL, we may archive other portions of the website and public content that your page links to on third party sites such as social media platforms. In addition to the aforementioned collection, archived content from your website may be added to other relevant collections in the future. This content would be available to researchers only at Library facilities or by special arrangement, unless you additionally grant the Library permission for the content to become more broadly available through hosting on the Library’s public website, which would be done no sooner than one year after it was collected. For more information on the web archiving process, please read our frequently asked questions.

We encourage you to learn more about the Library’s Web Archiving program and explore our collections to see examples of how we archive websites. If you have any questions, comments, or recommendations concerning the archiving of your website, please email the Library’s Web Archiving Team at webcapture@loc.gov.

Thank you.

Library of Congress Web Archiving Team

It would be an understatement to say I was incredibly excited. There were no balloons or jubilant noisemakers though, and the cats were unimpressed as I clicked and agreed for my collective body of work to succeed me “forever.” Who knew milestones like this were so quiet, with only me winking to Mom and Dad who I’m positive were watching and silently cheering!

Here’s the confirmation of my acceptance.

So, in another hundred years, just like I can search for, say, Estes photos from a century or more ago at the Library of Congress, people living four or five generations in the future will be able to search for and read about the very early days of genetic genealogy and find those ancestor stories. They will also be able to learn something about the time in which we live today.

I can stop worrying about more than a decade’s worth of work disappearing after I join my ancestors, hopefully to obtain the answers that have eluded me here.

I’m incredibly, incredibly humbled and grateful to the Library of Congress for this amazing opportunity to contribute to our collective heritage. Thanks to each and every one of you for joining me on our journey into the history books.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

The Best of 2022

It’s that time of year where we look both backward and forward.

Thank you for your continued readership! Another year under our belts!

I always find it interesting to review the articles you found most interesting this past year.

In total, I published 97 articles in 2022, of which 56 were directly instructional about genetic genealogy. I say “directly instructional,” because, as you know, the 52 Ancestors series of articles are instructional too, but told through the lives of my ancestors. That leaves 41 articles that were either 52 Ancestors articles, or general in nature.

It has been quite a year.

2022 Highlights

In a way, writing these articles serves as a journal for the genetic genealogy community. I never realized that until I began scanning titles a year at a time.

Highlights of 2022 include:

Which articles were your favorites that were published in 2022, and why?

Your Favorites

Often, the topics I select for articles are directly related to your comments, questions and suggestions, especially if I haven’t covered the topic previously, or it needs to be featured again. Things change in this industry, often. That’s a good thing!

However, some articles become forever favorites. Current articles don’t have enough time to amass the number of views accumulated over years for articles published earlier, so recently published articles are often NOT found in the all-time favorites list.

Based on views, what are my readers’ favorites and what do they find most useful?

In the chart below, the 2022 ranking is not just the ranking of articles published in 2022, but the ranking of all articles based on 2022 views alone. Not surprisingly, six of the 15 favorite 2022 articles were published in 2022.

The All-Time Ranking is the ranking for those 2022 favorites IF they fell within the top 15 in the forever ranking, over the entire decade+ that this blog has existed.

Drum roll please!!!

Article Title Publication Date 2022 Ranking All-Time Ranking
Concepts – Calculating Ethnicity Percentages January 2017 1 2
Proving Native American Ancestry Using DNA December 2012 2 1
Ancestral DNA Percentages – How Much of Them in in You? June 2017 3 5
AutoKinship at GEDmatch by Genetic Affairs February 2022 4
442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match? Daily Updates Here September 2020 5
The Origins of Zana of Abkhazia July 2021 6
Full or Half Siblings April 2019 7 15
Ancestry Rearranged the Furniture January 2022 8
DNA from 459 Ancient British Isles Burials Reveals Relationships – Does Yours Match? February 2022 9
DNA Inherited from Grandparents and Great-Grandparents January 2020 10
Ancestry Only Shows Shared Matches of 20 cM and Greater – What That Means & Why It Matters May 2022 11
How Much Indian Do I Have in Me??? June 2015 12 8
Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links March 2022 13
FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages June 2022 14
Ancient Ireland’s Y and Mitochondrial DNA – Do You Match??? November 2020 15

2023 Suggestions

I have a few articles already in the works for 2023, including some surprises. I’ll unveil one very soon.

We will be starting out with:

  • Information about RootsTech where I’ll be giving at least 7 presentations, in person, and probably doing a book signing too. Yes, I know, 7 sessions – what was I thinking? I’ve just missed everyone so very much.
  • An article about how accurately Ancestry’s ThruLines predicts Potential Ancestors and a few ways to prove, or disprove, accuracy.
  • The continuation of the “In Search Of” series.

As always, I’m open for 2023 suggestions.

In the comments, let me know what topics you’d like to see.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

“Nature scientific reports” 2022 Editor’s Choice Collection – We Made It!!!!

You’ll excuse me while I jump for joy and do a happy dance. You might say I’m over the moon, pardon the pun. There’s nothing to lift your spirits quite like a pleasant surprise!I

In June, when our article, African mitochondrial haplogroup L7: a 100,000-year-old maternal human lineage discovered through reassessment and new sequencing was published, you may or may not have noticed that the journal name was “nature, scientific reports.” No, they don’t capitalize the words in the journal’s title.

I know I didn’t mention how difficult is it to get published in this particular journal, so you’ll just have to trust me about how many grey hairs I can attribute to that process.

Taking that into account, imagine my surprise today when I discovered our paper in the Editor’s Choice collection for 2022. That’s not only amazing, it was entirely unexpected. Ironically, they didn’t notify the authors, so we found out quite by accident.

“Congratulations!!!”

“For what?”

“Editor’s Choice”

“Editor’s Choice for what? Where?”

“Nature scientific reports – the Editor’s Choice articles for 2022. Your L7 paper. It’s there in Ancient DNA.”

“WHAT?????”

I had to look right away, of course, never mind that I was standing in line at the bank at the time. I hope they didn’t notice the strange woman giving out a little yelp and accompanying leap. Ok, maybe it was a tiny leap, more like a happy hop, but it still counts.

Here, you can look too!

I was dumbstruck. Truth be told, I didn’t even realize there WAS a yearly Editor’s Choice collection. My bad. I probably shouldn’t admit that😊

The editor’s intro mentions that Svante Pääbo won the Nobel Prize in Physiology or Medicine this year for his work over the past several years on sequencing the genomes of extinct hominins, founding the field of paleogenetics.

Excuse my fan-girl exuberance, but it has truly been a banner year for genetics. I can’t help but be incredibly geeked! I had to read the announcement two or three times to be sure I was seeing what I was seeing.

Our paper was selected as one of 5 in the Mitogenomics section of the ancient DNA category and has accumulated just over 9700+ views which is actually amazing for a scientific paper. So, thank you everyone who read it. I’m glad we made the paper “open access,” which means free.

I wrote about our discovery, here and we published a video, here, but our paper is slightly different than the ancient DNA of the other papers in that category. The other papers utilize DNA extracted from ancient remains, but the “ancient DNA” of haplogroup L7, reaching back 100,000 years, was discovered in living people, with the exception of one 16,000-year-old ancient sample from Malawi that had initially been misclassified as L5, but has since been moved to L7.

That’s super-exciting because we know that this hen’s-teeth rare lineage still exists in a few people. Maybe you’re one of them. Maybe you carry a different but equally-as-rare mitochondrial lineage – your mother’s direct maternal line.

I hope you’ll test your mitochondrial DNA, here, to see what secrets are waiting for you.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search of…Full and Half-Siblings

This is the fifth article in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to identify ancestors further back in time as well.

Please note that if a family member has tested and you do NOT see their results, ask them to verify that they have chosen to allow matching and for other people to view them in their match list. That process varies at different vendors.

You can also ask if they can see you in their results.

All Parties Need to Test

Searching for unknown siblings isn’t exactly searching, because to find them, they, themselves, or their descendant(s) must have taken a DNA test at the same vendor where you tested or uploaded a DNA file.

You may know through any variety of methods that they exist, or might exist, but if they don’t take a DNA test, you can’t find them using DNA. This might sound obvious, but I see people commenting and not realizing that the other sibling(s) must test too – and they may not have.

My first questions when someone comments in this vein are:

  1. Whether or not they are positive their sibling actually tested, meaning actually sent the test in to the vendor, and it was received by the testing company. You’d be surprised how many tests are living in permanent residence on someone’s countertop until it gets pushed into the drawer and forgotten about.
  2. If the person has confirmed that their sibling has results posted. They may have returned their test, but the results aren’t ready yet or there was a problem.
  3. AND that both people have authorized matching and sharing of results. Don’t hesitate to reach out to your vendor’s customer care if you need help with this.

Sibling Scenarios

The most common sibling scenarios are when one of two things happens:

  • A known sibling tests, only to discover that they don’t match you in the full sibling range, or not at all, when you expected they would
  • You discover a surprise match in the full or half-sibling range

Let’s talk about these scenarios and how to determine:

  • If someone is a sibling
  • If they are a full or half-sibling
  • If a half-sibling, if they descend from your mother or father

As with everything else genetic, we’ll be gathering and analyzing different pieces of evidence along the way.

Full and Half-Siblings

Just to make sure we are all on the same page:

  • A full sibling is someone who shares both parents with you.
  • A half-sibling is someone who shares one parent with you, but not the other parent.
  • A step-sibling is someone who shares no biological parents with you. This situation occurs when your parent marries their parent, after you are both born, and their parent becomes your step-parent. You share neither of your biological parents with a step-sibling, so you share no DNA and will not show up on each other’s match lists.
  • A three-quarters sibling is someone with whom you share one parent, but two siblings are the other parent. For example, you share the same mother, but one brother fathered you, and your father’s brother fathered your sibling. Yes, this can get very messy and is almost impossible for a non-professional to sort through, if even then. (This is not a solicitation. I do not take private clients.) We will not be addressing this situation specifically.

Caution

With any search for unknown relatives, you have no way of knowing what you will find.

In one’s mind, there are happy reunions, but you may experience something entirely different. Humans are human. Their stories are not always happy or rosy. They may have made mistakes they regret. Or they may have no regrets about anything.

Your sibling may not know about you or the situation under which you, or they, were born. Some women were victims of assault and violence, which is both humiliating and embarrassing. I wrote about difficult situations, here.

Your sibling or close family member may not be receptive to either you, your message, or even your existence. Just be prepared, because the seeking journey may not be pain-free for you or others, and may not culminate with or include happy reunions.

On the other hand, it may.

Please step back and ponder a bit about the journey you are about to undertake and the possible people that may be affected, and how. This box, once opened, cannot be closed again. Be sure you are prepared.

On the other hand, sometimes that box lid pops off, and the information simply falls in your lap one day when you open your match list, and you find yourself sitting there, in shock, staring at a match, trying to figure out what it all means.

Congratulations, You Have a Sibling!

This might not be exactly what runs through your mind when you see that you have a very close match that you weren’t expecting.

The first two things I recommend when making this sort of discovery, after a few deep breaths, a walk, and a cup of tea, are:

  • Viewing what the vendor says
  • Using the DNAPainter Shared cM Relationship Chart

Let’s start with DNAPainter.

DNAPainter

DNAPainter provides a relationship chart, here, based on the values from the Shared cM Project.

You can either enter a cM amount or a percentage of shared DNA. I prefer the cM amount, but it doesn’t really matter.

I’ll enter 2241 cM from a known half-sibling match. To enter a percent, click on the green “enter %.”

As you can see, statistically speaking, this person is slightly more likely to be a half-sibling than they are to be a full sibling. In reality, they could be either.

Looking at the chart below, DNAPainter highlights the possible relationships from the perspective of “Self.”

The average of all the self-reported relationships is shown, on top, so 2613 for a full sibling. The range is shown below, so 1613-3488 for a full sibling.

In this case, there are several possibilities for two people who share 2241 cM of DNA.

I happen to know that these two people are half-siblings, but if I didn’t, it would be impossible to tell from this information alone.

The cM range for full siblings is 1613-3488, and the cM range for half-siblings is 1160-2436.

  • The lower part of the matching range, from 1160-1613 cM is only found in half-siblings.
  • The portion of the range from 1613-2436 cM can be either half or full siblings.
  • The upper part of the range, from 2436-3488 cM is only found in full siblings.

If your results fall into the center portion of the range, you’re going to need to utilize other tools. Fortunately, we have several.

If you’ve discovered something unexpected, you’ll want to verify using these tools, regardless. Use every tool available. Ranges are not foolproof, and the upper and lower 10% of the responses were removed as outliers. You can read more about the shared cM Project, here and here.

Furthermore, people may be reporting some half-sibling relationships as full sibling relationships, because they don’t expect to be half-siblings, so the ranges may be somewhat “off.”

Relationship Probability Calculator

Third-party matching database, GEDmatch, provides a Relationship Probability Calculator tool that is based on statistical probability methods without compiled user input. Both tools are free, and while I haven’t compared every value, both seem to be reasonably accurate, although they do vary somewhat, especially at the outer ends of the ranges.

When dealing with sibling matches, if you are in all four databases, GEDmatch is a secondary resource, but I will include GEDmatch when they have a unique tool as well as in the summary table. Some of your matches may be willing to upload to GEDmatch if the vendor where you match doesn’t provide everything you need and GEDmatch has a supplemental offering.

Next, let’s look at what the vendors say about sibling matches.

Vendors

Each of the major vendors reports sibling relationships in a slightly different way.

Sibling Matches at Ancestry

Ancestry reports sibling relationships as Sister or Brother, but they don’t say half or full.

If you click on the cM portion of the link, you’ll see additional detail, below

Ancestry tells you that the possible relationships are 100% “Sibling.” The only way to discern the difference between full and half is by what’s next.

If the ONLY relationship shown is Sibling at 100%, that can be interpreted to mean this person is a full sibling, and that a half-sibling or other relationship is NOT a possibility.

Ancestry never stipulates full or half.

The following relationship is a half-sibling at Ancestry.

Ancestry identifies that possible range of relationships as “Close Family to First Cousin” because of the overlaps we saw in the DNAPainter chart.

Clicking through shows that there is a range of possible relationships, and Ancestry is 100% sure the relationship is one of those.

DNAPainter agrees with Ancestry except includes the full-sibling relationship as a possibility for 1826 cM.

Sibling Matches at 23andMe

23andMe does identify full versus half-siblings.

DNAPainter disagrees with 23andMe and claims that anyone who shares 46.2% of their DNA is a parent/child.

However, look at the fine print. 23andMe counts differently than any of the other vendors, and DNAPainter relies on the Shared cM Project, which relies on testers entering known relationship matching information. Therefore, at any other vendor, DNAPainter is probably exactly right.

Before we understand how 23andMe counts, we need to understand about half versus fully identical segments.

To determine half or full siblings, 23andMe compares two things:

  1. The amount of shared matching DNA between two people
  2. Fully Identical Regions (FIR) of DNA compared to Half Identical Regions (HIR) of DNA to determine if any of your DNA is fully identical, meaning some pieces of you and your sibling’s DNA is exactly the same on both your maternal and paternal chromosomes.

Here’s an example on any chromosome – I’ve randomly selected chromosome 12. Which chromosome doesn’t matter, except for the X, which is different.

Your match isn’t broken out by maternal and paternal sides. You would simply see, on the chromosome browser, that you and your sibling match at these locations, above.

In reality, though, you have two copies of each chromosome, one from Mom and one from Dad, and so does your sibling.

In this example, Mom’s chromosome is visualized on top, and Dad’s is on the bottom, below, but as a tester, you don’t know that. All you know is that you match your sibling on all of those blue areas, above.

However, what’s actually happening in this example is that you are matching your sibling on parts of your mother’s chromosome and parts of your father’s chromosome, shown above as green areas

23andMe looks at both copies of your chromosome, the one you inherited from Mom, on top, and Dad, on the bottom, to see if you match your sibling on BOTH your mother’s and your father’s chromosomes in that location.

I’ve boxed the green matching areas in purple where you match your sibling fully, on both parents’ chromosomes.

If you and your sibling share both parents, you will share significant amounts of the same DNA on both copies of the same chromosomes, meaning maternal and paternal. In other words, full siblings share some purple fully identical regions (FIR) of DNA with each other, while half-siblings do not (unless they are also otherwise related) because half-siblings only share one parent with each other. Their DNA can’t be fully identical because they have a different parent that contributed the other copy of their chromosome.

Total Shared DNA Fully Identical DNA from Both Parents
Full Siblings ~50% ~25%
Half Siblings ~25% 0
  • Full siblings are expected to share about 50% of the same DNA. In other words, their DNA will match at that location. That’s all the green boxed locations, above.
  • Full siblings are expected to share about 25% of the same DNA from BOTH parents at the same location on BOTH copies of their chromosomes. These are fully identical regions and are boxed in purple, above.

You’ll find fully identical segments about 25% of the time in full siblings, but you won’t find fully identical segments in half-siblings. Please note that there are exceptions for ¾ siblings and endogamous populations.

You can view each match at 23andMe to see if you have any completely identical regions, shown in dark purple in the top comparison of full siblings. Half siblings are shown in the second example, with less total matching DNA and no FIR or completely identical regions.

Please note that your matching amount of DNA will probably be higher at 23andMe than at other companies because:

  • 23andMe includes the X chromosome in the match totals
  • 23andMe counts fully identical matching regions twice. For full siblings, that’s an additional 25%

Therefore, a full sibling with an X match will have a higher total cM at 23andMe than the same siblings elsewhere because not only is the X added into the total, the FIR match region is added a second time too.

Fully Identical Regions (FIR) and Half Identical Regions (HIR) at GEDmatch

At GEDMatch, you can compare two people to each other, with an option to display the matching information and a painted graphic for each chromosome that includes FIR and HIR.

If you need to know if you and a match share fully identical regions and you haven’t tested at 23andMe, you can both upload your DNA data file to GEDmatch and use their One to One Autosomal DNA Comparison.

On the following page, simply enter both kit numbers and accept the defaults, making sure you have selected one of the graphics options.

While GEDmatch doesn’t specifically tell you whether someone is a full or half sibling, you can garner additional information about the relationship based on the graphic at GEDmatch.

GEDMatch shows both half and fully identical regions.

The above match is between two full siblings using a 7 cM threshold. The blue on the bottom bar indicates a match of 7 cM or larger. Black means no match.

The green regions in the top bar indicate places where these two people carry the same DNA on both copies of their chromosome 1. This means that both people inherited the same DNA from BOTH parents on the green segments.

In the yellow regions, the siblings inherited the same DNA from ONE parent, but different DNA in that region from the other parent. They do match each other, just on one of their chromosomes, not both.

Without a tool like this to differentiate between HIR and FIR, you can’t tell if you’re matching someone on one copy of your chromosome, or on both copies.

In the areas marked with red on top, which corresponds to the black on the bottom band, these two siblings don’t match each other because they inherited different DNA from both parents in that region. The yellow in that region is too scattered to be significant.

Full siblings generally share a significant amount of FIR, or fully identical regions of DNA – about 25%.

Half siblings will share NO significant amount of FIR, although some will be FIR on very small, scattered green segments simply by chance, as you can see in the example, below.

This half-sibling match shares no segments large enough to be a match (7 cM) in the black section. In the blue matching section, only a few small green fragments of DNA match fully, which, based on the rest of that matching segment, must be identical by chance or misreads. There are no significant contiguous segments of fully identical DNA.

When dealing with full or half-siblings, you’re not interested in small, scattered segments of fully identical regions, like those green snippets on chromosome 6, but in large contiguous sections of matching DNA like the chromosome 1 example.

GEDmatch can help when you match when a vendor does not provide FIR/HIR information, and you need additional assistance.

Next, let’s look at full and half-siblings at FamilyTreeDNA

Sibling Matches at FamilyTreeDNA

FamilyTreeDNA does identify full siblings.

Relationships other than full siblings are indicated by a range. The two individuals below are both half-sibling matches to the tester.

The full range when mousing over the relationship ranges is shown below.

DNAPainter agrees except also gives full siblings as an option for the two half-siblings.

FamilyTreeDNA also tells you if you have an X match and the size of your X match.

We will talk about X matching in a minute, which, when dealing with sibling identification, can turn out to be very important.

Sibling Matches at MyHeritage

MyHeritage indicates brother or sister for full siblings

MyHeritage provides other “Estimated relationships” for matches too small to be full siblings.

DNAPainter’s chart agrees with this classification, except adds additional relationship possibilities.

Be sure to review all of the information provided by each vendor for close relationships.

View Close Known Relationships

The next easiest step to take is to compare your full or half-sibling match to known close family members from your maternal and paternal sides, respectively. The closer the family members, the better.

It’s often not possible to determine if someone is a half sibling or a full sibling by centiMorgans (cMs) alone, especially if you’re searching for unknown family members.

Let’s start with the simplest situation first.

Let’s say both of your parents have tested, and of course, you match both of them as parents.

Your new “very close match” is in the sibling range.

The first thing to do at each vendor is to utilize that vendor’s shared matches tool and see whether your new match matches one parent, or both.

Here’s an example.

Close Relationships at FamilyTreeDNA

This person has a full sibling match, but let’s say they don’t know who this is and wants to see if their new sibling matches one or both of their parents.

Select the match by checking the box to the left of the match name, then click on the little two-person icon at far right, which shows “In Common” matches

You can see on the resulting shared match list that both of the tester’s parents are shown on the shared match list.

Now let’s make this a little more difficult.

No Parents, No Problem

Let’s say neither of your parents has tested.

If you know who your family is and can identify your matches, you can see if the sibling you match matches other close relatives on both or either side of your family.

You’ll want to view shared matches with your closest known match on both sides of your tree, beginning with the closest first. Aunts, uncles, first cousins, etc.

You will match all of your family members through second cousins, and 90% of your third cousins. You can view additional relationship percentages in the article, How Much of Them is in You?.

I recommend, for this matching purpose, to utilize 2nd cousins and closer. That way you know for sure if you don’t share them as a match with your sibling, it’s because the sibling is not related on that side of the family, not because they simply don’t share any DNA due to their distance.

In this example, you have three sibling matches. Based on your and their matches to the same known first and second cousins, you can see that:

  • Sibling 1 is your full sibling, because you both match the same maternal and paternal first and second cousins
  • Sibling 2 is your paternal half-sibling because you both match paternal second cousins and closer, but not maternal cousins.
  • Sibling 3 is your maternal half-sibling because you both match maternal second cousins and closer, but not paternal cousins.

Close Relationships at Ancestry

Neither of my parents have tested, but my first cousin on my mother’s side has. Let’s say I have a suspected sibling or half-sibling match, so I click on the match’s name, then on Shared Matches.

Sure enough, my new match also matches my first cousin that I’ve labeled as “on my mother’s side.”

If my new match in the sibling range also matches my second cousins or closer on my father’s side, the new match is a full sibling, not a half-sibling.

Close Relationships at MyHeritage

Comparing my closest match provided a real surprise. I wonder if I’ve found a half-sibling to my mother.

Now, THIS is interesting.

Hmmm. More research is needed, beginning with the age of my match. MyHeritage provides ages if the MyHeritage member authorizes that information to be shared.

Close Relationships at 23andMe

Under DNA Relatives, click on your suspected sibling match, then scroll down and select “Find Relatives in Common.”

The Relatives in Common list shows people that match both of you.

The first common match is very close and a similar relationship to my closest match on my father’s side. This would be expected of a sibling. I have no common matches with this match to anyone on my mother’s side, so they are only related on my father’s side. Therefore they are a paternal half-sibling, not a full sibling.

More Tools Are Available

Hopefully, by now, you’ve been able to determine if your mystery match is a sibling, and if so, if they are a half or full sibling, and through which parent.

We have some additional tools that are relevant and can be very informative in some circumstances. I suggest utilizing these tools, even if you think you know the answer.

In this type of situation, there’s no such thing as too much information.

X Matching

X matching, or lack thereof, may help you determine how you are related to someone.

There are two types of autosomal DNA. The X chromosome versus chromosomes 1-22. The X chromosome (number 23) has a unique inheritance path that distinguishes it from your other chromosomes.

The X chromosome inheritance path also differs between men and women.

Here’s my pedigree chart in fan form, highlighting the ancestors who may have contributed a portion of their X chromosome to me. In the closest generation, this shows that I inherited an X chromosome from both of my parents, and who in each of their lines could have contributed an X to them.

The white or uncolored positions, meaning ancestors, cannot contribute any portion of an X chromosome to me based on how the X chromosome is inherited.

You’ll notice that my father inherited none of his X chromosome from any of his paternal ancestors, so of course, I can’t inherit what he didn’t inherit. There are a very limited number of ancestors on my father’s side whom I can inherit any portion of an X chromosome from.

Men receive their Y chromosome from their fathers, so men ONLY receive an X chromosome from their mother.

Therefore, men MUST pass their mother’s X chromosome on to their female offspring because they don’t have any other copy of the X chromosome to pass on.

Men pass no X chromosome to sons.

We don’t need to worry about a full fan chart when dealing with siblings and half-siblings.

We only need to be concerned with the testers plus one generation (parents) when utilizing the X chromosome in sibling situations.

These two female Disney Princesses, above, are full siblings, and both inherited an X chromosome from BOTH their mother and father. However, their father only has one X (red) chromosome to give them, so the two females MUST match on the entire red X chromosome from their father.

Their mother has two X chromosomes, green and black, to contribute – one from each of her parents.

The full siblings, Melody, and Cinderella:

  • May have inherited some portion of the same green and black X chromosomes from their mother, so they are partial matches on their mother’s X chromosome.
  • May have inherited the exact same full X chromosome from their mother (both inherited the entire green or both inherited the entire black), so they match fully on their mother’s X chromosome.
  • May have inherited the opposite X from different maternal grandparents. One inherited the entire green X and one inherited the entire black X, so they don’t match on their mother’s X chromosome.

Now, let’s look at Cinderella, who matches Henry.

This female and male full sibling match can’t share an X chromosome on the father’s side, because the male’s father doesn’t contribute an X chromosome to him. The son, Henry, inherited a Y chromosome instead from his father, which is what made them males.

Therefore, if a male and female match on the X chromosome, it MUST be through HIS mother, but could be through either of her parents. In a sibling situation, an X match between a male and female always indicates the mother.

In the example above, the two people share both of their mother’s X chromosomes, so are definitely (at least) maternally related. They could be full siblings, but we can’t determine that by the X chromosome in this situation, with males.

However, if the male matches the female on HER father’s X chromosome, there a different message, example below.

You can see that the male is related to the female on her father’s side, where she inherited the entire magenta X chromosome. The male inherited a portion of the magenta X chromosome from his mother, so these two people do have an X match. However, he matches on his mother’s side, and she matches on her father’s side, so that’s clearly not the same parent.

  • These people CAN NOT be full siblings because they don’t match on HER mother’s side too, which would also be his mother’s side if they were full siblings.
  • They cannot be maternal half-siblings because their X DNA only matches on her father’s side, but they wouldn’t know that unless she knew which side was which based on share matches.
  • They cannot be paternal half-siblings because he does not have an X chromosome from his father.

They could, however, be uncle/aunt-niece/nephew or first cousins on his mother’s side and her father’s side. (Yes, you’re definitely going to have to read this again if you ever need male-female X matching.)

Now, let’s look at X chromosome matching between two males. It’s a lot less complicated and much more succinct.

Neither male has inherited an X chromosome from their father, so if two males DO match on the X, it MUST be through their mother. In terms of siblings, this would mean they share the same mother.

However, there is one slight twist. In the above example, you can see that the men inherited a different proportion of the green and black X chromosomes from their common mother. However, it is possible that the mother could contribute her entire green X chromosome to one son, Justin in this example, and her entire black X chromosome to Henry.

Therefore, even though Henry and Justin DO share a mother, their X chromosome would NOT match in this scenario. This is rare but does occasionally happen.

Based on the above examples, the X chromosome may be relevant in the identification of full or half siblings based on the sexes of the two people who otherwise match at a level indicating a full or half-sibling relationship.

Here’s a summary chart for sibling X matching.

X Match Female Male
Female Will match on shared father’s full X chromosome, mother’s X is the same rules as chromosomes 1-22 Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both of their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related.
Male Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both or their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related. Both males are related on their mother’s side – either full or half-siblings.

Here’s the information presented in a different way.

DOES match X summary:

  • If a male DOES match a female on the X, he IS related to her through HIS mother’s side, but could match her on her mother or father’s side. If their match is not through her mother, then they are not full siblings nor maternal half-siblings. They cannot match through his father, so they cannot be paternal half-siblings.
  • If a female DOES match a female on the X, they could be related on either side and could be full or half-siblings.
  • If a male DOES match a male on the X, they ARE both related through their mother. They may also be related on their father’s side, but the X does not inform us of that.

Does NOT match X summary:

  • If a male does NOT match a female on the X, they are NOT related through HIS mother and are neither full siblings nor maternal half-siblings. Since a male does not have an X chromosome from his father, they cannot be paternal half-siblings based on an X match.
  • If a male does NOT match a male, they do NOT share a mother.
  • If a female does NOT match another female on the X, they are NOT full siblings and are NOT half-siblings on their paternal side. Their father only has one X chromosome, and he would have given the same X to both daughters.

Of the four autosomal vendors, only 23andMe and FamilyTreeDNA report X chromosome results and matching, although the other two vendors, MyHeritage and Ancestry, include the X in their DNA download file so you can find X matches with those files at either FamilyTreeDNA or GEDMatch if your match has or will upload their file to either of those vendors. I wrote step-by-step detailed download/upload instructions, here.

X Matching at FamilyTreeDNA

In this example from FamilyTreeDNA, the female tester has discovered two half-sibling matches, both through her father. In the first scenario, she matches a female on the full X chromosome (181 cM). She and her half-sibling MUST share their father’s entire X chromosome because he only had one X, from his mother, to contribute to both of his daughters.

In the second match to a male half-sibling, our female tester shares NO X match because her father did not contribute an X chromosome to his son.

If we didn’t know which parents these half-sibling matches were through, we can infer from the X matching alone that the male is probably NOT through the mother.

Then by comparing shared matches with each sibling, Advanced Matches, or viewing the match Matrix, we can determine if the siblings match each other and are from the same or different sides of the family.

Under Additional Tests and Tools, Advanced Matching, FamilyTreeDNA provides an additional tool that can show only X matches combined with relationships.

Of course, you’ll need to view shared matches to see which people match the mother and/or match the father.

To see who matches each other, you’ll need to use the Matrix tool.

At FamilyTreeDNA, the Matrix, located under Autosomal DNA Results and Tools, allows you to select your matches to see if they also match each other. If you have known half-siblings, or close relatives, this is another way to view relationships.

Here’s an example using my father and two paternal half-siblings. We can see that the half-siblings also match each other, so they are (at least) half-siblings on the paternal side too.

If they also matched my mother, we would be full siblings, of course.

Next, let’s use Y DNA and mitochondrial DNA.

Y DNA and Mitochondrial DNA

In addition to autosomal DNA, we can utilize Y DNA and mitochondrial DNA (mtDNA) in some cases to identify siblings or to narrow or eliminate relationship possibilities.

Given that Y DNA and mitochondrial DNA both have distinctive inheritance paths, full and half-siblings will, or will not, match under various circumstances.

Y DNA

Y DNA is passed intact from father to son, meaning it’s not admixed with any of the mother’s DNA. Daughters do not inherit Y DNA from their father, so Y DNA is only useful for male-to-male comparisons.

Two types of Y DNA are used for genealogy, STR markers for matching, and haplogroups, and both are equally powerful in slightly different ways.

Y DNA at FamilyTreeDNA

Men can order either 37 or 111 STR marker tests, or the BIg Y which provides more than 700 markers and more. FamilyTreeDNA is the only one of the vendors to offer Y DNA testing that includes STR markers and matching between men.

Men who order these tests will be compared for matching on either 37, 111 or 700 STR markers in addition to SNP markers used for haplogroup identification and assignment.

Fathers will certainly match their sons, and paternal line brothers will match each other, but they will also match people more distantly related.

However, if two men are NOT either full or half siblings on the paternal side, they won’t match at 111 markers.

If two men DON’T match, especially at high marker levels, they likely aren’t siblings. The word “likely” is in there because, very occasionally, a large deletion occurs that prevents STR matching, especially at lower levels.

Additionally, men who take the 37 or 111 marker test also receive an estimated haplogroup at a high level for free, without any additional testing.

However, if men take the Big Y-700 test, they not only will (or won’t) match on up to 700 STR markers, they will also receive a VERY refined haplogroup via SNP marker testing that is often even more sensitive in terms of matching than STR markers. Between these two types of markers, Y DNA testing can place men very granularly in relation to other men.

Men can match in two ways on Y DNA, and the results are very enlightening.

If two men match on BOTH their most refined haplogroup (Big Y test) AND STR markers, they could certainly be siblings or father/son. They could also be related on the same line for another reason, such as known or unknown cousins or closer relationships like uncle/nephew. Of course, Y DNA, in addition to autosomal matching, is a powerful combination.

Conversely, if two men don’t have a similar or close haplogroup, they are not a father and son or paternal line siblings.

FamilyTreeDNA offers both inexpensive entry-level testing (37 and 111 markers) and highly refined advanced testing of most of the Y chromosome (Big Y-700), so haplogroup assignments can vary widely based on the test you take. This makes haplogroup matching and interpretation a bit more complex.

For example, haplogroups R-M269 and I-BY14000 are not related in thousands of years. One is haplogroup R, and one is haplogroup I – completely different branches of the Y DNA tree. These two men won’t match on STR markers or their haplogroup.

However, because FamilyTreeDNA provides over 50,000 different haplogroups, or tree branches, for Big Y testers, and they provide VERY granular matching, two father/son or sibling males who have BOTH tested at the Big Y-700 level will have either the exact same haplogroup, or at most, one branch difference on the tree if a mutation occurred between father and son.

If both men have NOT tested at the Big Y-700 level, their haplogroups will be on the same branch. For example, a man who has only taken a 37/111 marker STR test may be estimated at R-M269, which is certainly accurate as far as it goes.

His sibling who has taken a Big Y test will be many branches further downstream on the tree – but on the same large haplogroup R-M269 branch. It’s essential to pay attention to which tests a Y DNA match has taken when analyzing the match.

The beauty of the two kinds of tests is that even if one haplogroup is very general due to no Big Y test, their STR markers should still match. It’s just that sometimes this means that one hand is tied behind your back.

Y DNA matching alone can eliminate the possibility of a direct paternal line connection, but it cannot prove siblingship or paternity alone – not without additional information.

The Advanced Matching tool will provide a list of matches in all categories selected – in this case, both the 111 markers and the Family Finder test. You can see that one of these men is the father of the tester, and one is the full sibling.

You can view haplogroup assignments on the public Y DNA tree, here. I wrote about using the public tree, here.

In addition, recently, FamilyTreeDNA launched the new Y DNA Discover tool, which explains more about haplogroups, including their ages and other fun facts like migration paths along with notable and ancient connections. I wrote about using the Discover tool, here.

Y DNA at 23andMe

Testers receive a base haplogroup with their autosomal test. 23andMe tests a limited number of Y DNA SNP locations, but they don’t test many, and they don’t test STR markers, so there is no Y DNA matching and no refined haplogroups.

You can view the haplogroups of your matches. If your male sibling match does NOT share the same haplogroup, the two men are not paternal line siblings. If two men DO share the same haplogroup, they MIGHT be paternal siblings. They also might not.

Again, autosomal close matching plus haplogroup comparisons include or exclude paternal side siblings for males.

Paternal side siblings at 23andMe share the same haplogroup, but so do many other people. These two men could be siblings. The haplogroups don’t exclude that possibility. If the haplogroups were different, that would exclude being either full or paternal half-siblings.

Men can also compare their mitochondrial DNA to eliminate a maternal relationship.

These men are not full siblings or maternal half-siblings. We know, unquestionably, because their mitochondrial haplogroups don’t match.

23andMe also constructs a genetic tree, but often struggles with close relative placement, especially when half-relationships are involved. I do not recommend relying on the genetic tree in this circumstance.

Mitochondrial DNA

Mitochondrial DNA is passed from mothers to all of their children, but only females pass it on. If two people, males or females, don’t match on their mitochondrial DNA test, with a couple of possible exceptions, they are NOT full siblings, and they are NOT maternal half-siblings.

Mitochondrial DNA at 23andMe

23andMe provides limited, base mitochondrial haplogroups, but no matching. If two people don’t have the same haplogroup at 23andMe, they aren’t full or maternal siblings, as illustrated above.

Mitochondrial DNA at FamilyTreeDNA

FamilyTreeDNA provides both mitochondrial matching AND a much more refined haplogroup. The full sequence test (mtFull), the only version sold today, is essential for reliable comparisons.

Full siblings or maternal half-siblings will always share the same haplogroup, regardless of their sex.

Generally, a full sibling or maternal half-sibling match will match exactly at the full mitochondrial sequence (FMS) level with a genetic distance of zero, meaning fully matching and no mismatching mutations.

There are rare instances where maternal siblings or even mothers and children do not match exactly, meaning they have a genetic distance of greater than 0, because of a mutation called a heteroplasmy.

I wrote about heteroplasmies, here.

Like Y DNA, mitochondrial DNA cannot identify a sibling or parental relationship without additional evidence, but it can exclude one, and it can also provide much-needed evidence in conjunction with autosomal matching. The great news is that unlike Y DNA, everyone has mitochondrial DNA and it comes directly from their mother.

Once again, FamilyTreeDNA’s Advanced Matching tool provides a list of people who match you on both your mitochondrial DNA test and the Family Finder autosomal test, including transfers/uploads, and provides a relationship.

You can see that our tester matches both a full sibling and their mother. Of course, a parent/child match could mean that our tester is a female and one of her children, of either sex, has tested.

Below is an example of a parent-child match that has experienced a heteroplasmy.

Based on the comparison of both the mitochondrial DNA test, plus the autosomal Family Finder test, you can verify that this is a close family relationship.

You can also eliminate potential relationships based on the mitochondrial DNA inheritance path. The mitochondrial DNA of full siblings and maternal half-siblings will always match at the full sequence and haplogroup level, and paternal half-siblings will never match. If paternal half-siblings do match, it’s happenstance or because of a different reason.

Sibling Summary and Checklist

I’ve created a quick reference checklist for you to use when attempting to determine whether or not a match is a sibling, and, if so, whether they are half or full siblings. Of course, these tools are in addition to the DNAPainter Shared cM Tool and GEDmatch’s Relationship Predictor Calculator.

FamilyTreeDNA Ancestry 23andMe MyHeritage GEDmatch
Matching Yes Yes Yes Yes Yes
Shared Matches Yes – In Common With Yes – Shared Matches Yes – Relatives in Common Yes – Review DNA Match Yes – People who match both or 1 of 2 kits
Relationship Between Shared Matches No No No Yes, under shared match No
Matches Match Each Other* Yes, Matrix No Yes, under “View DNA details,” then, “compare with more relatives” Partly, through triangulation Yes, can match any kits
Full Siblings Yes Sibling, implies full Yes Brother, Sister, means full No
Half Siblings Sibling, Uncle/Aunt-Niece/Nephew, Grandparent-Grandchild Close Family – 1C Yes Half sibling, aunt/uncle-niece-nephew No
Fully Identical Regions (FIR) No No Yes No Yes
Half Identical Regions (HIR) No No Yes No Yes
X matching Yes No Yes No Yes
Unusual Reporting or Anomalies No No, Timber is not used on close relationships X match added into total, FIR added twice No Matching amount can vary from vendors
Y DNA Yes, STRs, refined haplogroups, matching No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Mitochondrial DNA Yes, full sequence, matching, refined haplogroup No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Combined Tools (Autosomal, X, Y, mtDNA) Yes No No No No

*Autoclusters through Genetic Affairs show cluster relationships of matches to the tester and to each other, but not all matches are included, including close matches. While this is a great tool, it’s not relevant for determining close and sibling relationships. See the article, AutoClustering by Genetic Affairs, here.

Additional Resources

Some of you may be wondering how endogamy affects sibling numbers.

Endogamy makes almost everything a little more complex. I wrote about endogamy and various ways to determine if you have an endogamous heritage, here.

Please note that half-siblings with high cM matches also fall into the range of full siblings (1613-3488), with or without endogamy. This may be, but is not always, especially pronounced in endogamous groups.

As another resource, I wrote an earlier article, Full or Half Siblings, here, that includes some different examples.

Strategy

You have a lot of quills in your quiver now, and I wish you the best if you’re trying to unravel a siblingship mystery.

You may not know who your biological family is, or maybe your sibling doesn’t know who their family is, but perhaps your close relatives know who their family is and can help. Remember, the situation that has revealed itself may be a shock to everyone involved.

Above all, be kind and take things slow. If your unexpected sibling match becomes frightened or overwhelmed, they may simply check out and either delete their DNA results altogether or block you. They may have that reaction before you have a chance to do anything.

Because of that possibility, I recommend performing your analysis quickly, along with taking relevant screenshots before reaching out so you will at least have that much information to work with, just in case things go belly up.

When you’re ready to make contact, I suggest beginning by sending a friendly, short, message saying that you’ve noticed that you have a close match (don’t say sibling) and asking what they know about their family genealogy – maybe ask who their grandparents are or if they have family living in the area where you live. I recommend including a little bit of information about yourself, such as where you were born and are from.

I also refrain from using the word adoption (or similar) in the beginning or giving too much detailed information, because it sometimes frightens people, especially if they know or discover that there’s a painful or embarrassing family situation.

And, please, never, ever assume the worst of anyone or their motives. They may be sitting at their keyboard with the same shocked look on their face as you – especially if they have, or had, no idea. They may need space and time to reach a place of acceptance. There’s just nothing more emotionally boat-capsizing in your life than discovering intimate and personal details about your parents, one or both, especially if that discovery is disappointing and image-altering.

Or, conversely, your sibling may have been hoping and waiting just for you!

Take a deep breath and let me know how it goes!

Please feel free to share this article with anyone who could benefit.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA DISCOVER™ Launches – Including Y DNA Haplogroup Ages

FamilyTreeDNA just released an amazing new group of public Y DNA tools.

Yes, a group of tools – not just one.

The new Discover tools, which you can access here, aren’t just for people who have tested at FamilyTreeDNA . You don’t need an account and it’s free for everyone. All you need is a Y DNA haplogroup – from any source.

I’m going to introduce each tool briefly because you’re going to want to run right over and try Discover for yourself. In fact, you might follow along with this article.

Y DNA Haplogroup Aging

The new Discover page provides seven beta tools, including Y DNA haplogroup aging.

Haplogroup aging is THE single most requested feature – and it’s here!

Discover also scales for mobile devices.

Free Beta Tool

Beta means that FamilyTreeDNA is seeking your feedback to determine which of these tools will be incorporated into their regular product, so expect a survey.

If you’d like changes or something additional, please let FamilyTreeDNA know via the survey, their support line, email or Chat function.

OK, let’s get started!

Enter Your Haplogroup

Enter your Y DNA haplogroup, or the haplogroup you’re interested in viewing.

If you’re a male who has tested with FamilyTreeDNA , sign on to your home page and locate your haplogroup badge at the lower right corner.

If you’re a female, you may be able to test a male relative or find a haplogroup relevant to your genealogy by visiting your surname group project page to locate the haplogroup for your ancestor.

I’ll use one of my genealogy lines as an example.

In this case, several Y DNA testers appear under my ancestor, James Crumley, in the Crumley DNA project.

Within this group of testers, we have two different Big Y haplogroups, and several estimated haplogroups from testers who have not upgraded to the Big Y.

If you’re a male who has tested at either 23andMe or LivingDNA, you can enter your Y DNA haplogroup from that source as well. Those vendors provide high-level haplogroups.

The great thing about the new Discover tool is that no matter what haplogroup you enter, there’s something for you to enjoy.

I’m going to use haplogroup I-FT272214, the haplogroup of my ancestor, James Crumley, confirmed through multiple descendants. His son John’s descendants carry haplogroup I-BY165368 in addition to I-FT272214, which is why there are two detailed haplogroups displayed for this grouping within the Crumley haplogroup project, in addition to the less-refined I-M223.

Getting Started

When you click on Discover, you’ll be asked to register briefly, agree to terms, and provide your email address.

Click “View my report” and your haplogroup report will appear.

Y DNA Haplogroup Report

For any haplogroup you enter, you’ll receive a haplogroup report that includes 7 separate pages, shown by tabs at the top of your report.

Click any image to enlarge

The first page you’ll see is the Haplogroup Report.

On the first page, you’ll find Haplogroup aging. The TMRCA (time to most recent common ancestor) is provided, plus more!

The report says that haplogroup I-FT272214 was “born,” meaning the mutation that defines this haplogroup, occurred about 300 years ago, plus or minus 150 years.

James Crumley was born about 1710. We know his sons carry haplogroup I-FT272214, but we don’t know when that mutation occurred because we don’t have upstream testers. We don’t know who his parents were.

Three hundred years before the birth of our Crumley tester would be about 1670, so roughly James Crumley’s father’s generation, which makes sense.

James’ son John’s descendants have an additional mutation, so that makes sense too. SNP mutations are known to occur approximately every 80 years, on average. Of course, you know what average means…may not fit any specific situation exactly.

The next upstream haplogroup is I-BY100549 which occurred roughly 500 years ago, plus or minus 150 years. (Hint – if you want to view a haplogroup report for this upstream haplogroup, just click on the haplogroup name.)

There are 5 SNP confirmed descendants of haplogroup I-FT272214 claiming origins in England, all of whom are in the Crumley DNA project.

Haplogroup descendants mean this haplogroup and any other haplogroups formed on the tree beneath this haplogroup.

Share

If you scroll down a bit, you can see the share button on each page. If you think this is fun, you can share through a variety of social media resources, email, or copy the link.

Sharing is a good way to get family members and others interested in both genealogy and genetic genealogy. Light the spark!

I’m going to be sharing with collaborative family genealogy groups on Facebook and Twitter. I can also share with people who may not be genealogists, but who will think these findings are interesting.

If you keep scrolling under the share button or click on “Discover More” you can order Y DNA tests if you’re a biological male and haven’t already taken one. The more refined your haplogroup, the more relevant your information will be on the Discover page as well as on your personal page.

Scrolling even further down provides information about methods and sources.

Country Frequency

The next tab is Country Frequency showing the locations where testers with this haplogroup indicate that their earliest known ancestors are found.

The Crumley haplogroup has only 5 people, which is less than 1% of the people with ancestors from England.

However, taking a look at haplogroup R-M222 with many more testers, we see something a bit different.

Ireland is where R-M222 is found most frequently. 17% of the men who report their ancestors are from Ireland belong to haplogroup R-M222.

Note that this percentage also includes haplogroups downstream of haplogroup R-M222.

Mousing over any other location provides that same information for that area as well.

Seeing where the ancestors of your haplogroup matches are from can be extremely informative. The more refined your haplogroup, the more useful these tools will be for you. Big Y testers will benefit the most.

Notable Connections

On the next page, you’ll discover which notable people have haplogroups either close to you…or maybe quite distant.

Your first Notable Connection will be the one closest to your haplogroup that FamilyTreeDNA was able to identify in their database. In some cases, the individual has tested, but in many cases, descendants of a common ancestor tested.

In this case, Bill Gates is our closest notable person. Our common haplogroup, meaning the intersection of Bill Gates’s haplogroup and my Crumley cousin’s haplogroup is I-L1195. The SNP mutation that defines haplogroup I-L1145 occurred about 4600 years ago. Both my Crumley cousin and Bill Gates descend from that man.

If you’re curious and want to learn more about your common haplogroup, remember, you can enter that haplogroup into the Discover tool. Kind of like genetic time travel. But let’s finish this one first.

Remember that CE means current era, or the number of years since the year “zero,” which doesn’t technically exist but functions as the beginning of the current era. Bill Gates was born in 1955 CE

BCE means “before current era,” meaning the number of years before the year “zero.” So 2600 BCE is approximately 4600 years ago.

Click through each dot for a fun look at who you’re “related to” and how distantly.

This tool is just for fun and reinforces the fact that at some level, we’re all related to each other.

Maybe you’re aware of more notables that could be added to the Discover pages.

Migration Map

The next tab provides brand spanking new migration maps that show the exodus of the various haplogroups out of Africa, through the Middle East, and in this case, into Europe.

Additionally, the little shovel icons show the ancient DNA sites that date to the haplogroup age for the haplogroup shown on the map, or younger. In our case, that’s haplogroup I-M223 (red arrow) that was formed about 16,000 years ago in Europe, near the red circle, at left. These haplogroup ancient sites (shovels) would all date to 16,000 years ago or younger, meaning they lived between 16,000 years ago and now.

Click to enlarge

By clicking on a shovel icon, more information is provided. It’s very interesting that I-L1145, the common haplogroup with Bill Gates is found in ancient DNA in Cardiff, Wales.

This is getting VERY interesting. Let’s look at the rest of the Ancient Connections.

Ancient Connections

Our closest Ancient Connection in time is Gen Scot 24 (so name in an academic paper) who lived in the Western Isles of Scotland.

These ancient connections are more likely cousins than direct ancestors, but of course, we can’t say for sure. We do know that the first man to develop haplogroup I-L126, about 2500 years ago, is an ancestor to both Gen Scot 24 and our Crumley ancestor.

Gen Scot 24 has been dated to 1445-1268 BCE which is about 3400 years ago, which could actually be older than the haplogroup age. Remember that both dating types are ranges, carbon dating is not 100% accurate, and ancient DNA can be difficult to sequence. Haplogroup ages are refined as more branches are discovered and the tree grows.

The convergence of these different technologies in a way that allows us to view the past in the context of our ancestors is truly amazing.

All of our Crumley cousin’s ancient relatives are found in Ireland or Scotland with the exception of the one found in Wales. I think, between this information and the haplogroup formation dates, it’s safe to say that our Crumley ancestors have been in either Scotland or Ireland for the past 4600 years, at least. And someone took a side trip to Wales, probably settled and died there.

Of course, now I need to research what was happening in Ireland and Scotland 4600 years ago because I know my ancestors were involved.

Suggested Projects

I’m EXTREMELY pleased to see suggested projects for this haplogroup based on which projects haplogroup members have joined.

You can click on any of the panels to read more about the project. Remember that not everyone joins a project because of their Y DNA line. Many projects accept people who are autosomally related or descend from the family through the mitochondrial line, the direct mother’s line.

Still, seeing the Crumley surname project would be a great “hint” all by itself if I didn’t already have that information.

Scientific Details

The Scientific Details page actually has three tabs.

The first tab is Age Estimate.

The Age Estimate tab provides more information about the haplogroup age or TMRCA (Time to Most Recent Common Ancestor) calculations. For haplogroup I-FT272214, the most likely creation date, meaning when the SNP occurred, is about 1709, which just happens to align well with the birth of James Crumley about 1710.

However, anyplace in the dark blue band would fall within a 68% confidence interval (CI). That would put the most likely years that the haplogroup-defining SNP mutation took place between 1634 and 1773. At the lower end of the frequency spectrum, there’s a 99% likelihood that the common ancestor was born between 1451 and 1874. That means we’re 99% certain that the haplogroup defining SNP occurred between those dates. The broader the date range, the more certain we can be that the results fall into that range.

The next page, Variants, provides the “normal” or ancestral variant and the derived or mutated variant or SNP (Single Nucleotide Polymorphism) in the position that defines haplogroup I-FT272214.

The third tab displays FamilyTreeDNA‘s public Y DNA Tree with this haplogroup highlighted. On the tree, we can see this haplogroup, downstream haplogroups as well as upstream, along with their country flags.

Your Personal Page

If you have already taken a DNA test at FamilyTreeDNA, you can find the new Discover tool conveniently located under “Additional Tests and Tools.”

If you are a male and haven’t yet tested, then you’ll want to order a Y DNA test or upgrade to the Big Y for the most refined haplogroup possible.

Big Y tests and testers are why the Y DNA tree now has more than 50,000 branches and 460,000 variants. Testing fuels growth and growth fuels new tools and possibilities for genealogists.

What Do You Think?

Do you like these tools?

What have you learned? Have you shared this with your family members? What did they have to say? Maybe we can get Uncle Charley interested after all!

Let me know how you’re using these tools and how they are helping you interpret your Y DNA results and assist your genealogy.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches Katherine Borges https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA Keynote, RootsTech Wrap + Special Show Pricing Still Available

Am I ever whipped. My two live Sessions that were actually a series of three classes each took place on Friday. Yes, that means I presented 6 sessions on Friday, complete with a couple of Zoom gremlins, of course. It’s the nature of the time we live in.

RootsTech tried something new that they’ve never done before. The Zoom class sessions were restricted to 500 attendees each. RootsTech was concerned about disappointed attendees when the room was full and they couldn’t get in, so we live-streamed three of my sessions to Facebook in addition to the 500 Zoom seats.

As of this evening, 6,800 of you have viewed the Facebook video, “Associating Autosomal DNA Segments With Ancestors.” I’m stunned, and touched. Thank you, thank you. Here’s the Facebook link, and here’s the RootsTech YouTube link.

My afternoon sessions, “What Can I DO With Ancestral DNA Segments?” can be viewed here at RootsTech or here on YouTube.

I must admit, I’m really, REALLY looking forward to being together again because RootsTech without the socializing and in-person Expo Hall just isn’t the same. Still, be sure to take a virtual walk through the Expo Hall, here. There’s lots of content in the vendors” booths and it will remain available for all of 2022, until the beginning of RootsTech 2023..

Between prep for my classes and presenting, I didn’t have a lot of time to watch other sessions, but I was able to catch the FamilyTreeDNA keynote and their 2022 Product Sneak Peek. Both were quite worthwhile.

However, I just realized that FamilyTreeDNA’s special show pricing promo codes are still valid for the next two days.

 Special Prices Are Still Available

Every single test that FamilyTreeDNA offers, including UPGRADES, is on sale right now by using special RootsTech promo codes. These prices are good for two more days, through March 7th, so if you want to purchase a Y DNA test, mitochondrial, or Family Finder autosomal test, or upgrade, click here to see the prices only available at RootsTech (and to you through my blog.) It’s not too late, but it will be soon.

To order, click here to sign on or place your order.

FamilyTreeDNA’s Keynote

FamilyTreeDNA’s keynote was titled FamilyTreeDNA: 22 Years of Breaking Down Brick Walls.

I really enjoyed this session, in part because I’ve been a part of the genetic genealogy revolution and evolution from the beginning. Not only that, but I know every single person they interviewed for this video, and have for years. If you’ve been participating in genetic genealogy for some time, you’ll know many of these people too. For a minute, it was almost as good as visiting in person.

I’m going to share a few highlights from the session, but I’m also going to include information NOT in the video. I was one of the early project administrators, so I’ve been along for the ride for just a few months shy of 22 years.

FamilyTreeDNA was the first US company to enter the DNA testing space, the first to offer Y DNA testing, and the only one of the early companies that remains viable today. FamilyTreeDNA was the result of Bennett Greenspan’s dream – but initially, he was only dreaming small. Just like any other genealogist – he was dreaming about breaking down a brick wall which he explains in the video.

I’m so VERY grateful that Bennett had that dream, and persisted, because it means that now millions of us can do the same – and will into the future.

Bennett tells this better than anyone else, along with his partner, Max Blankfeld.

“Some people were fascinated,” Bennett said.

Yep, that’s for sure! I certainly was.

“Among the first genetic genealogists in the world.”

“Frontier of the genetic genealogy revolution.”

Indeed, we were and still are. Today’s genetic genealogy industry wouldn’t even exist were it not for FamilyTreeDNA and their early testers.

I love Max Blankfeld’s story of their first office, and you will too.

This IS the quintessential story of entrepreneurship.

In 2004, when FamilyTreeDNA was only four years old, they hosted the very first annual international project administrator’s conference. At that time, it was believed that the only people that would be interested in learning at that level and would attend a DNA conference would be project administrators who were managing surname and regional projects. How times have changed! This week at RootsTech, we probably had more people viewing DNA sessions than people that had tested altogether in 2004. I purchased kit number 30,087 on December 28, 2004, and kit 50,000 a year later on New Year’s Eve right at midnight!

In April 2005, Nat Geo partnered with FamilyTreeDNA and founded the Genographic Project which was scheduled to last for 5 years. They were hoping to attract 100,000 people who would be willing to test their DNA to discover their roots – and along with that – our human roots. The Genographic Project would run for an incredible 15 years.

In 2005 when the second Project Administrator’s conference was held at the National Geographic Society headquarters in Washington DC, I don’t think any of us realized the historic nature of the moment we were participating in.

I remember walking from my hotel, ironically named “Helix,” to that iconic building. I had spent my childhood reading those yellow magazines at school and dreaming of far-away places. As an adult, I had been a life-long subscriber. Never, in my wildest dreams did I imagine ever visiting Nat Geo and walking the marble Explorer’s Hall with the portraits of the founders and early explorers hanging above and keeping a watchful eye on us. We would not disappoint them.

That 100,000 participation goal was quickly reached, within weeks, and surpassed, leading us all to walk the road towards the building that housed the Explorer’s Hall, Explorers’ in Residence, and so much more.

We were all explorers, pioneers, adventurers seeking to use the DNA from our ancestors in the past to identify who they were. Using futuristic technology tools like a mirror to look backward into the dim recesses of the past.

The archaeology being unearthed and studied was no longer at the ends of the earth but within our own bodies. The final frontier. Reaching out to explore meant reaching inward, and backward in time, using the most progressive technology of the day.

Most of the administrators in attendance, all volunteers, were on a first-name basis with each other and also with Max, Bennett, and the scientists.

Here, Bennett with a member of the science team from the University of Arizona describes future research goals. Every year FamilyTreeDNA has improved its products in numerous ways.

Today, that small startup business has its own ground-breaking state-of-the-art lab. More than 10,000 DNA projects are still administered by passionate volunteer administrators who focus on what they seek – such as the history of their surname or a specific haplogroup. Their world-class lab allows FamilyTreeDNA to focus on research and science in addition to DNA processing. The lab allows constant improvement so their three types of genetic genealogy products, Y, mitochondrial and autosomal DNA.

Those three types of tests combine to provide genealogical insights and solutions. The more the science improves, the more solutions can and will be found.

If you watch the video, you’ll see 6 people who have solved particularly difficult and thorny problems. We are all long-time project administrators, all participate on a daily basis in this field and community – and all have an undying love for both genealogy and genetic genealogy.

You’ll recognize most of these people, including yours truly.

  • I talk about my mother’s heritage, unveiled through mitochondrial DNA.
  • Rob Warthen speaks about receiving a random phone call from another genealogist as his introduction to genetic genealogy. Later, he purchased a DNA test for his girlfriend, an adoptee, for Christmas and sweetened the deal by offering to “go where you’re from” for vacation. He didn’t realize why she was moved to tears – that test revealed the first piece of information she had ever known about her history. DNA changed her and Rob’s life. He eventually identified her birth parents – and went on to found both DNAAdoption.org and DNAGedcom.
  • Richard Hill was adopted and began his search in his 30s, but it would be DNA that ended his search. His moving story is told in his book, Finding Family: My Search for Roots and the Secrets in My DNA.
  • Mags Gaulden, professional genealogist and founder of Grandma’s Genes and MitoYDNA.org tells about her 91-year-old adopted client who had given up all hope of discovering her roots. Back in the 1950s, there was literally nothing in her client’s adoption file. She was reconciled to the fact that “I would never know who I was.” Mags simply could not accept that and 2 years later, Mags found her parents’ names.

  • Lara Diamond’s family was decimated during the holocaust. Lara’s family thought everyone in her grandfather’s family had been killed, but in 2013, autosomal DNA testing let her to her grandfather’s aunt who was not killed in the holocaust as everyone thought. The aunt and first cousin were living in Detroit. Lara went from almost no family to a family reunion, shown above. She says she finally met “people who look like me.”
  • Katherine Borges founded ISOGG.org, the International Society of Genetic Genealogy in 2005, following the first genetic genealogy conference in late 2004 where she realized that the genealogy community desperately needed education – beginning with DNA terms. I remember her jokingly standing in the hallway saying that she understood three words, “a, and and the.” While that’s cute today, it was real at that time because DNA was a foreign language, technology, and concept to genealogy. In fact, for years we were banned from discussing the topic on RootsWeb. The consummate genetic genealogist, Katherine carries DNA kits in her purse, even to Scotland!

Bennett says that he’s excited about the future, for the next generation of molecular scientific achievements. It was Bennett that greenlit the Million Mito project. Bennett’s challenge as a genetic genealogy/business owner was to advance the science that led to products while making enough money to be able to continue advancing the science. It was a fine line, but Max and Bennett navigated those waters quite well.

Apparently, Max, Bennett, and the FamilyTreeDNA customers weren’t the only people who believe that.

In January 2021, myDNA acquired and merged with FamilyTreeDNA. Max and Bennett remain involved as board members.

Dr.Lior Rauchberger, CEO of myDNA which includes FamilyTreeDNA

Dr. Lior Rauchberger, the CEO of the merged enterprise believes in the power of genetics, including genetic genealogy, and is continuing to make investments in FamilyTreeDNA products – including new features. There have already been improvements in 2021 and in the presentation by Katy Rowe, the Product Manager for the FamilyTreeDNA products, she explains what is coming this year.

I hope you enjoyed this retrospective on the past 22 years and are looking forward to crossing new frontiers, and breaking down those brick walls, in the coming decades.

Sneak Peek at FamilyTreeDNA – New Features and Upcoming Releases

You can watch Katy Rowe’s Sneak Peek video about what’s coming, here.

Of course, while other companies need to split their focus between traditional genealogy research records and DNA, FamilyTreeDNA does not. Their only focus is genetics. They plan to make advances in every aspect of their products.

FamilyTreeDNA announced a new Help Center which you can access, here. I found lots of short videos and other helpful items. I had no idea it existed.

In 2021, customers began being able to order a combined Family Finder and myDNA test to provide insights into genealogy along with health and wellness

Wellness includes nutrition and fitness insights.

Existing customers either are or will be able to order the myDNA upgrade to their existing test. The ability to upgrade is being rolled out by groups. I haven’t had my turn yet, but when I do, I’ll test and let you know what I think. Trust me, I’m not terribly interested in how many squats I can do anymore, because I already know that number is zero, but I am very interested in nutrition and diet. I’d like to stay healthy enough to research my ancestors for a long time to come.

FamilyTreeDNA announced that over 72,000 men have taken the Big Y test which has resulted in the Y DNA tree of mankind surpassing 50,000 branches.

This is utterly amazing when you consider how far we’ve come since 2002. This also means that a very high number of men, paired with at least one other man, actually form a new branch on the Y haplotree.

The “age” of tester’s Y DNA haplogroups is now often within the 500-year range – clearly genealogical in nature. Furthermore, many leaf-tip haplogroups as defined by the Big Y SNPs are much closer than that and can differentiate between branches of a known family. The Big Y-700 is now the go-to test for Y DNA and genealogy.

Of course, all these new branches necessitate new maps and haplogroup information. These will be released shortly and will provide users with the ability to see the paths together, which is the view you see here, or track individual lines. The same is true for mitochondrial DNA as well.

Y DNA tree branch ages will be forthcoming soon too. I think this is the #1 most requested feature.

On the Mitochondrial DNA side of the house, the Million Mito project has led to a significant rewrite of the MitoTree. As you know, I’m a Million Mito team member.

Here’s Dr. Paul Maier’s branch, for example. You can see that in the current version of the Phylotree, there is one blue branch and lots of “child” branches beneath that. Of course, when we’re measuring the tree from “Eve,” the end tip leaf branches look small, but it’s there that our genealogy resides.

In the new version, yet to be released, there is much more granularity in the branches of U5a2b2a.

To put this another way, in today’s tree, haplogroup U5a2b2a is about 5,000 years old, but the newly defined branches bring the formation of Paul’s (new) haplogroup into the range of about 500 years. Similar in nature to the Y DNA tree and significantly more useful for genealogical purposes. If you have not taken a mitochondrial DNA full sequence test, please order one now. Maybe your DNA will help define a new branch on the tree plus reveal new information about your genealogy.

Stay tuned on this one. You know the Million Mito Project is near and dear to my heart.

2022 will also see much-needed improvements in the tree structure and user experience, as well as the matches pages.

There are a lot of exciting things on FamilyTreeDNA’s plate and I’m excited to see these new features and functions roll out over the next few months.

Just the Beginning

The three days of RootsTech 2022 may be over, but the content isn’t.

In fact, it’s just the beginning of being able to access valuable information at your convenience. The vendor booths will remain in the Expo Hall until RootsTech 2023, so for a full year, plus the individual instructor’s sessions will remain available for three years.

In a few days, after I take a break, I’ll publish a full list of DNA sessions, along with links for your convenience.

Thank You Shout Outs

I want to say a HUGE thank you to RootsTech for hosting the conference and making it free. I specifically want to express my gratitude to the many, many people working diligently behind the scenes during the last year, and frantically during the past three days.

Another huge thank you to the speakers and vendors whose efforts provide the content for the conference.

And special thanks to you for loving genealogy, taking your time to watch and learn, and for reading this blog.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research