Genographic Project Participants: Last Chance to Preserve Your Results & Advance Science – Deadline June 30th

If you’re one of the one million+ public participants in the National Geographic Society’s Genographic Project, launched in 2005, you probably already know that testing has ceased and the website will be discontinued as of June 30th. Your results will no longer be available as of that date.

I wrote about the closing here and you can read what the Genographic project has to say about closing the public participation part of the project, here.

However, this doesn’t have to be the end of the DNA story.

You have great options for yourself and to continue the science. Your results can still be useful, however…

You MUST act before June 30th.

Please note that if you control the DNA of a deceased person who did not test elsewhere, this is literally your last chance to obtain any DNA results for them. If you transfer their DNA, you can upgrade and purchase additional tests at Family Tree DNA. If you don’t transfer, the opportunity to retrieve their DNA will be gone forever.

Three Steps + a Bonus

  1. Preserve Your Results – Sign in to the Genographic site and take screenshots, print, or download any data you wish to keep.
  2. Contribute to Science – Authorize the Genographic Project to utilize your results for ongoing scientific research, including The Million Mito Project
  3. Transfer Your Results – If you tested before November 2016, you can transfer your results to FamilyTreeDNA and order upgrades if a sample remains

Here are step-by-step instructions for completing all three.

First – Preserve Your Results

Sign on to your account at The Genographic Project. You’ll notice an option to print your results.

Geno profile

Scroll down and take one last look. Did you miss anything?

Your profile page includes the ability to download your raw genetic data.

Geno profile option

Your Account page, below, will look slightly different depending on the version of the test you took, but the download option is present for all versions of the test.

Geno download

The download file simply shows raw data values at specific positions and won’t be terribly useful to you.

Geno nucleotides

Generally, it’s the analysis of what these mutations mean, or matching to others for genealogy, that people seek.

At the very bottom of your results page, you’ll see the option to Contribute to Science.

Geno contribute

Click on “How You Can Help.”

Second – Contribute to Scientific Research

The best way to assure the legacy of the Genographic Project is to opt-in for science research.

You can learn more about what happens when you authorize your results for scientific research, here.

Geno contribute box

Checking the little box authorizes anonymized scientific research on your sample now and in the future. This assures that your results won’t be destroyed on June 30th and will continue to be available to scientists.

The Genographic Project celebrated its 15th birthday in April 2020. Genographic Project data, including over 80,000 local and indigenous participants from over 100 countries, in addition to contributed public participation samples, has been included in approximately 85 research papers worldwide. Collaborative research is still underway. There’s still so much to learn.

Dr. Miguel Vilar, the lead scientist for the Genographic Project, is a partner in The Million Mito Project. The anonymized mitochondrial results of people who have opted-in for science will be available to that project, and others, through Dr. Vilar. Please support rewriting the tree of womankind by opting-in for scientific research.

Those words, “in the future” are the key to making sure this critical opportunity to continue the science doesn’t die.

If you don’t want to scroll down your page, you can access the scientific contribution authorization page directly from your profile.

Geno profile 2

To contribute to science, Click on the “My Contribution to Science” tab.”

Geno profile contribute

You’ll see the following screen. Then, check the box and click on the yellow “Contribute to Science” button. You’ll then be prompted with a few questions about your maternal and paternal heritage.

Geno check box

Contributing your results to science helps further scientific research into mankind, but transferring your results to FamilyTreeDNA preserves the usefulness of your DNA results for you and facilitates upgrading your DNA to obtain even more information.

Transferring also allows you to participate fully in The Million Mito Project which requires a full sequence mitochondrial DNA sample.

Third – Transfer Your Results to FamilyTreeDNA

If you tested before November 2016 when the Genographic Project switched to Helix for processing, you can transfer your results easily to Family Tree DNA.

If you don’t remember when you tested, sign in to your account. It’s easy to tell if transferring is an option.

Geno transfer option

If you are eligible to transfer, you’ll see this transfer option when you sign in.

Just click on the “Transfer Your Results” button. If you don’t want to sign in to Genographic to do the transfer, just click on this transfer link directly.

Geno transfer FTDNA

You will then see this no-hassle transfer option on the Family Tree DNA web page. Because FamilyTreeDNA did the laboratory processing for the Genographic Project from its inception in 2005 until November 2016, all you need to do is enter your Genographic kit number and the transfer takes place automatically.

Please note that if you DON’T transfer NOW, the Genographic Project is requesting the destruction of all non-transferred kits after June 30th, per their website.

Geno destroy

As you might imagine, preserving the DNA of a deceased person is critical if they didn’t test elsewhere and you have the authority to manage their DNA.

In order to support The Million Mito Project, Family Tree DNA is emailing a coupon to all people who transfer, offering a discount to upgrade to a full sequence mitochondrial DNA test.

After you transfer to Family Tree DNA, be sure to enter your earliest known ancestor and upload a tree. Here’s my “Four Quick Tips” article about getting the most out of mitochondrial DNA result, but it’s sage advice for Y DNA as well.

Bonus – Upgrade Transferred Kits

If you transfer your Genographic results to FamilyTreeDNA, you can then utilize the DNA sample provided for your Genographic DNA test for additional testing

Different versions of the Genographic Project testing provided various types of results for your DNA. In some versions, testers received 12 Y STR markers or partial mitochondrial DNA results, and in other versions, partial haplogroups. You can only transfer what the Genographic provided, of course, but once transferred, you can order products and upgrades at Family Tree DNA, assuming a sample remains.

This is important, especially if you control the kit for a loved one who has now passed away. This may be your only opportunity to obtain their Y, mitochondrial, and/or autosomal DNA results. For example, my mother passed away before autosomal DNA testing was possible, but I’ve since upgraded her test at Family Tree DNA and was able to do so because her DNA was archived.

Support Science

Please support The Million Mito Project and other academic research by:

  • Choosing to contribute to science through the Genographic project and
  • By transferring your results to Family Tree DNA so that you can learn more and upgrade

Both options are totally free, and both equally important.

Time is of the essence. You must act before June 30th.

Don’t let this be goodbye, simply au revior – the legacy of your DNA can live on in another place, another way, another day.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Y DNA: Step-by-Step Big Y Analysis

Many males take the Big Y-700 test offered by FamilyTreeDNA, so named because testers receive the most granular haplogroup SNP results in addition to 700+ included STR marker results. If you’re not familiar with those terms, you might enjoy the article, STRs vs SNPs, Multiple DNA Personalities.

The Big Y test gives testers the best of both, along with contributing to the building of the Y phylotree. You can read about the additions to the Y tree via the Big Y, plus how it helped my own Estes project, here.

Some men order this test of their own volition, some at the request of a family member, and some in response to project administrators who are studying a specific topic – like a particular surname.

The Big Y-700 test is the most complete Y DNA test offered, testing millions of locations on the Y chromosome to reveal mutations, some unique and never before discovered, many of which are useful to genealogists. The Big Y-700 includes the traditional Y DNA STR marker testing along with SNP results that define haplogroups. Translated, both types of test results are compared to other men for genealogy, which is the primary goal of DNA testing.

Being a female, I often recruit males in my family surname lines and sponsor testing. My McNiel line, historic haplogroup R-M222, has been particularly frustrating both genealogically as well as genetically after hitting a brick wall in the 1700s. My McNeill cousin agreed to take a Big Y test, and this analysis walks through the process of understanding what those results are revealing.

After my McNeill cousin’s Big Y results came back from the lab, I spent a significant amount of time turning over every leaf to extract as much information as possible, both from the Big Y-700 DNA test itself and as part of a broader set of intertwined genetic information and genealogical evidence.

I invite you along on this journey as I explain the questions we hoped to answer and then evaluate Big Y DNA results along with other information to shed light on those quandaries.

I will warn you, this article is long because it’s a step-by-step instruction manual for you to follow when interpreting your own Big Y results. I’d suggest you simply read this article the first time to get a feel for the landscape, before working through the process with your own results. There’s so much available that most people leave laying on the table because they don’t understand how to extract the full potential of these test results.

If you’d like to read more about the Big Y-700 test, the FamilyTreeDNA white paper is here, and I wrote about the Big Y-700 when it was introduced, here.

You can read an overview of Y DNA, here, and Y DNA: The Dictionary of DNA, here.

Ok, get yourself a cuppa joe, settle in, and let’s go!

George and Thomas McNiel – Who Were They?

George and Thomas McNiel appear together in Spotsylvania County, Virginia records. Y DNA results, in combination with early records, suggest that these two men were brothers.

I wrote about discovering that Thomas McNeil’s descendant had taken a Y DNA test and matched George’s descendants, here, and about my ancestor George McNiel, here.

McNiel family history in Wilkes County, NC, recorded in a letter written in 1898 by George McNiel’s grandson tells us that George McNiel, born about 1720, came from Scotland with his two brothers, John and Thomas. Elsewhere, it was reported that the McNiel brothers sailed from Glasgow, Scotland and that George had been educated at the University of Edinburgh for the Presbyterian ministry but had a change of religious conviction during the voyage. As a result, a theological tiff developed that split the brothers.

George, eventually, if not immediately, became a Baptist preacher. His origins remain uncertain.

The brothers reportedly arrived about 1750 in Maryland, although I have no confirmation. By 1754, Thomas McNeil appeared in the Spotsylvania County, VA records with a male being apprenticed to him as a tailor. In 1757, in Spotsylvania County, the first record of George McNeil showed James Pey being apprenticed to learn the occupation of tailor.

If George and Thomas were indeed tailors, that’s not generally a country occupation and would imply that they both apprenticed as such when they were growing up, wherever that was.

Thomas McNeil is recorded in one Spotsylvania deed as being from King and Queen County, VA. If this is the case, and George and Thomas McNiel lived in King and Queen, at least for a time, this would explain the lack of early records, as King and Queen is a thrice-burned county. If there was a third brother, John, I find no record of him.

My now-deceased cousin, George McNiel, initially tested for the McNiel Y DNA and also functioned for decades as the family historian. George, along with his wife, inventoried the many cemeteries of Wilkes County, NC.

George believed through oral history that the family descended from the McNiel’s of Barra.

McNiel Big Y Kisumul

George had this lovely framed print of Kisimul Castle, seat of the McNiel Clan on the Isle of Barra, proudly displayed on his wall.

That myth was dispelled with the initial DNA testing when our line did not match the Barra line, as can be seen in the MacNeil DNA project, much to George’s disappointment. As George himself said, the McNiel history is both mysterious and contradictory. Amen to that, George!

McNiel Big Y Niall 9 Hostages

However, in place of that history, we were instead awarded the Niall of the 9 Hostages badge, created many years ago based on a 12 marker STR result profile. Additionally, the McNiel DNA was assigned to haplogroup R-M222. Of course, today’s that’s a far upstream haplogroup, but 15+ years ago, we had only a fraction of the testing or knowledge that we do today.

The name McNeil, McNiel, or however you spell it, resembles Niall, so on the surface, this made at least some sense. George was encouraged by the new information, even though he still grieved the loss of Kisimul Castle.

Of course, this also caused us to wonder about the story stating our line had originated in Scotland because Niall of the 9 Hostages lived in Ireland.

Niall of the 9 Hostages

Niall of the 9 Hostages was reportedly a High King of Ireland sometime between the 6th and 10th centuries. However, actual historical records place him living someplace in the mid-late 300s to early 400s, with his death reported in different sources as occurring before 382 and alternatively about 411. The Annals of the Four Masters dates his reign to 379-405, and Foras Feasa ar Eirinn says from 368-395. Activities of his sons are reported between 379 and 405.

In other words, Niall lived in Ireland about 1500-1600 years ago, give or take.

Migration

Generally, migration was primarily from Scotland to Ireland, not the reverse, at least as far as we know in recorded history. Many Scottish families settled in the Ulster Plantation beginning in 1606 in what is now Northern Ireland. The Scots-Irish immigration to the states had begun by 1718. Many Protestant Scottish families immigrated from Ireland carrying the traditional “Mc” names and Presbyterian religion, clearly indicating their Scottish heritage. The Irish were traditionally Catholic. George could have been one of these immigrants.

We have unresolved conflicts between the following pieces of McNeil history:

  • Descended from McNeil’s of Barra – disproved through original Y DNA testing.
  • Immigrated from Glasgow, Scotland, and schooled in the Presbyterian religion in Edinburgh.
  • Descended from the Ui Neill dynasty, an Irish royal family dominating the northern half of Ireland from the 6th to 10th centuries.

Of course, it’s possible that our McNiel/McNeil line could have been descended from the Ui Neill dynasty AND also lived in Scotland before immigrating.

It’s also possible that they immigrated from Ireland, not Scotland.

And finally, it’s possible that the McNeil surname and M222 descent are not related and those two things are independent and happenstance.

A New Y DNA Tester

Since cousin George is, sadly, deceased, we needed a new male Y DNA tester to represent our McNiel line. Fortunately, one such cousin graciously agreed to take the Big Y-700 test so that we might, hopefully, answer numerous questions:

  • Does the McNiel line have a unique haplogroup, and if so, what does it tell us?
  • Does our McNiel line descend from Ireland or Scotland?
  • Where are our closest geographic clusters?
  • What can we tell by tracing our haplogroup back in time?
  • Do any other men match the McNiel haplogroup, and what do we know about their history?
  • Does the Y DNA align with any specific clans, clan history, or prehistory contributing to clans?

With DNA, you don’t know what you don’t know until you test.

Welcome – New Haplogroup

I was excited to see my McNeill cousin’s results arrive. He had graciously allowed me access, so I eagerly took a look.

He had been assigned to haplogroup R-BY18350.

McNiel Big Y branch

Initially, I saw that indeed, six men matched my McNeill cousin, assigned to the same haplogroup. Those surnames were:

  • Scott
  • McCollum
  • Glass
  • McMichael
  • Murphy
  • Campbell

Notice that I said, “were.” That’s right, because shortly after the results were returned, based on markers called private variants, Family Tree DNA assigned a new haplogroup to my McNeill cousin.

Drum roll please!!!

Haplogroup R-BY18332

McNiel Big Y BY18332

Additionally, my cousin’s Big Y test resulted in several branches being split, shown on the Block Tree below.

McNIel Big Y block tree

How cool is this!

This Block Tree graphic shows, visually, that our McNiel line is closest to McCollum and Campbell testers, and is a brother clade to those branches showing to the left and right of our new R-BY18332. It’s worth noting that BY25938 is an equivalent SNP to BY18332, at least today. In the future, perhaps another tester will test, allowing those two branches to be further subdivided.

Furthermore, after the new branches were added, Cousin McNeill has no more Private Variants, which are unnamed SNPs. There were all utilized in naming additional tree branches!

I wrote about the Big Y Block Tree here.

Niall (Or Whoever) Was Prolific

The first thing that became immediately obvious was how successful our progenitor was.

McNiel Big Y M222 project

click to enlarge

In the MacNeil DNA project, 38 men with various surname spellings descend from M222. There are more in the database who haven’t joined the MacNeil project.

Whoever originally carried SNP R-M222, someplace between 2400 and 5900 years ago, according to the block tree, either had many sons who had sons, or his descendants did. One thing is for sure, his line certainly is in no jeopardy of dying out today.

The Haplogroup R-M222 DNA Project, which studies this particular haplogroup, reads like a who’s who of Irish surnames.

Big Y Match Results

Big Y matches must have no more than 30 SNP differences total, including private variants and named SNPs combined. Named SNPs function as haplogroup names. In other words, Cousin McNeill’s terminal SNP, meaning the SNP furthest down on the tree, R-BY18332, is also his haplogroup name.

Private variants are mutations that have occurred in the line being tested, but not yet in other lines. Occurrences of private variants in multiple testers allow the Private Variant to be named and placed on the haplotree.

Of course, Family Tree DNA offers two types of Y DNA testing, STR testing which is the traditional 12, 25, 37, 67 and 111 marker testing panels, and the Big Y-700 test which provides testers with:

  • All 111 STR markers used for matching and comparison
  • Another 589+ STR markers only available through the Big Y test increasing the total STR markers tested from 111 to minimally 700
  • A scan of the Y chromosome, looking for new and known SNPs and STR mutations

Of course, these tests keep on giving, both with matching and in the case of the Big Y – continued haplogroup discovery and refinement in the future as more testers test. The Big Y is an investment as a test that keeps on giving, not just a one-time purchase.

I wrote about the Big Y-700 when it was introduced here and a bit later here.

Let’s see what the results tell us. We’ll start by taking a look at the matches, the first place that most testers begin.

Mcniel Big Y STR menu

Regular Y DNA STR matching shows the results for the STR results through 111 markers. The Big Y section, below, provides results for the Big Y SNPs, Big Y matches and additional STR results above 111 markers.

McNiel Big Y menu

Let’s take a look.

STR and SNP Testing

Of Cousin McNeil’s matches, 2 Big Y testers and several STR testers carry some variant of the Neal, Neel, McNiel, McNeil, O’Neil, etc. surnames by many spellings.

While STR matching is focused primarily on a genealogical timeframe, meaning current to roughly 500-800 years in the past, SNP testing reaches much further back in time.

  • STR matching reaches approximately 500-800 years.
  • Big Y matching reaches approximately 1500 years.
  • SNPs and haplogroups reach back infinitely, and can be tracked historically beyond the genealogical timeframe, shedding light on our ancestors’ migration paths, helping to answer the age-old question of “where did we come from.”

These STR and Big Y time estimates are based on a maximum number of mutations for testers to be considered matches paired with known genealogy.

Big Y results consider two men a match if they have 30 or fewer total SNP differences. Using NGS (next generation sequencing) scan technology, the targeted regions of the Y chromosome are scanned multiple times, although not all regions are equally useful.

Individually tested SNPs are still occasionally available in some cases, but individual SNP testing has generally been eclipsed by the greatly more efficient enriched technology utilized with Big Y testing.

Think of SNP testing as walking up to a specific location and taking a look, while NGS scan technology is a drone flying over the entire region 30-50 times looking multiple times to be sure they see the more distant target accurately.

Multiple scans acquiring the same read in the same location, shown below in the Big Y browser tool by the pink mutations at the red arrow, confirm that NGS sequencing is quite reliable.

McNiel Big Y browser

These two types of tests, STR panels 12-111 and the SNP-based Big Y, are meant to be utilized in combination with each other.

STR markers tend to mutate faster and are less reliable, experiencing frustrating back mutations. SNPs very rarely experience this level of instability. Some regions of the Y chromosome are messier or more complicated than others, causing problems with interpreting reads reliably.

For purposes of clarity, the string of pink A reads above is “not messy,” and “A” is very clearly a mutation because all ~39 scanned reads report the same value of “A,” and according to the legend, all of those scans are high quality. Multiple combined reads of A and G, for example, in the same location, would be tough to call accurately and would be considered unreliable.

You can see examples of a few scattered pink misreads, above.

The two different kinds of tests produce results for overlapping timeframes – with STR mutations generally sifting through closer relationships and SNPs reaching back further in time.

Many more men have taken the Y DNA STR tests over the last 20 years. The Big Y tests have only been available for the past handful of years.

STR testing produces the following matches for my McNiel cousin:

STR Level STR Matches STR Matches Who Took the Big Y % STR Who Took Big Y STR Matches Who Also Match on the Big Y
12 5988 796 13 52
25 6660 725 11 57
37 878 94 11 12
67 1225 252 21 23
111 4 2 50 1

Typically, one would expect that all STR matches that took the Big Y would match on the Big Y, since STR results suggest relationships closer in time, but that’s not the case.

  • Many STR testers who have taken the Big Y seem to be just slightly too distant to be considered a Big Y match using SNPs, which flies in the face of conventional wisdom.
  • However, this could easily be a function of the fact that STRs mutate both backward and forwards and may have simply “happened” to have mutated to a common value – which suggests a closer relationship than actually exists.
  • It could also be that the SNP matching threshold needs to be raised since the enhanced and enriched Big Y-700 technology now finds more mutations than the older Big Y-500. I would like to see SNP matching expanded to 40 from 30 because it seems that clan connections may be being missed. Thirty may have been a great threshold before the more sensitive Big Y-700 test revealed more mutations, which means that people hit that 30 threshold before they did with previous tests.
  • Between the combination of STRs and SNPs mutating at the same time, some Big Y matches are pushed just out of range.

In a nutshell, the correlation I expected to find in terms of matching between STR and Big Y testing is not what I found. Let’s take a look at what we discovered.

It’s worth noting that the analysis is easier if you are working together with at least your closest matches or have access via projects to at least some of their results. You can see common STR values to 111 in projects, such as surname projects. Project administrators can view more if project members have allowed access.

Unexpected Discoveries and Gotchas

While I did expect STR matches to also match on the Big Y, I don’t expect the Big Y matches to necessarily match on the STR tests. After all, the Big Y is testing for more deep-rooted history.

Only one of the McNiel Big Y matches also matches at all levels of STR testing. That’s not surprising since Big Y matching reaches further back in time than STR testing, and indeed, not all STR testers have taken a Big Y test.

Of my McNeill cousin’s closest Big Y matches, we find the following relative to STR matching.

Surname Ancestral Location Big Y Variant/SNP Difference STR Match Level
Scott 1565 in Buccleuch, Selkirkshire, Scotland 20 12, 25, 37, 67
McCollum Not listed 21 67 only
Glass 1618 in Banbridge, County Down, Ireland 23 12, 25, 67
McMichael 1720 County Antrim, Ireland 28 67 only
Murphy Not listed 29 12, 25, 37, 67
Campbell Scotland 30 12, 25, 37, 67, 111

It’s ironic that the man who matches on all STR levels has the most variants, 30 – so many that with 1 more, he would not have been considered a Big Y match at all.

Only the Campbell man matches on all STR panels. Unfortunately, this Campbell male does not match the Clan Campbell line, so that momentary clan connection theory is immediately put to rest.

Block Tree Matches – What They Do, and Don’t, Mean

Note that a Carnes male, the other person who matches my McNeill cousin at 111 STR markers and has taken a Big Y test does not match at the Big Y level. His haplogroup BY69003 is located several branches up the tree, with our common ancestor, R-S588, having lived about 2000 years ago. Interestingly, we do match other R-S588 men.

This is an example where the total number of SNP mutations is greater than 30 for these 2 men (McNeill and Carnes), but not for my McNeill cousin compared with other men on the same S588 branch.

McNiel Big Y BY69003

By searching for Carnes on the block tree, I can view my cousin’s match to Mr. Carnes, even though they don’t match on the Big Y. STR matches who have taken the Big Y test, even if they don’t match at the Big Y level, are shown on the Block Tree on their branch.

By clicking on the haplogroup name, R-BY69003, above, I can then see three categories of information about the matches at that haplogroup level, below.

McNiel Big Y STR differences

click to enlarge

By selecting “Matches,” I can see results under the column, “Big Y.” This does NOT mean that the tester matches either Mr. Carnes or Mr. Riker on the Big Y, but is telling me that there are 14 differences out of 615 STR markers above 111 markers for Mr. Carnes, and 8 of 389 for Mr. Riker.

In other words, this Big Y column is providing STR information, not indicating a Big Y match. You can’t tell one way or another if someone shown on the Block Tree is shown there because they are a Big Y match or because they are an STR match that shares the same haplogroup.

As a cautionary note, your STR matches that have taken the Big Y ARE shown on the block tree, which is a good thing. Just don’t assume that means they are Big Y matches.

The 30 SNP threshold precludes some matches.

My research indicates that the people who match on STRs and carry the same haplogroup, but don’t match at the Big Y level, are every bit as relevant as those who do match on the Big Y.

McNIel Big Y block tree menu

If you’re not vigilant when viewing the block tree, you’ll make the assumption that you match all of the people showing on the Block Tree on the Big Y test since Block Tree appears under the Big Y tools. You have to check Big Y matches specifically to see if you match people shown on the Block Tree. You don’t necessarily match all of them on the Big Y test, and vice versa, of course.

You match Block Tree inhabitants either:

  • On the Big Y, but not the STR panels
  • On the Big Y AND at least one level of STRs between 12 and 111, inclusive
  • On STRs to someone who has taken the Big Y test, but whom you do not match on the Big Y test

Big Y-500 or Big Y-700?

McNiel Big Y STR differences

click to enlarge

Looking at the number of STR markers on the matches page of the Block Tree for BY69003, above, or on the STR Matches page is the only way to determine whether or not your match took the Big Y-700 or the Big Y-500 test.

If you add 111 to the Big Y SNP number of 615 for Mr. Carnes, the total equals 726, which is more than 700, so you know he took the Big Y-700.

If you add 111 to 389 for Mr. Riker, you get 500, which is less than 700, so you know that he took the Big Y-500 and not the Big Y-700.

There are still a very small number of men in the database who did not upgrade to 111 when they ordered their original Big Y test, but generally, this calculation methodology will work. Today, all Big Y tests are upgraded to 111 markers if they have not already tested at that level.

Why does Big Y-500 vs Big Y-700 matter? The enriched chemistry behind the testing technology improved significantly with the Big Y-700 test, enhancing Y-DNA results. I was an avowed skeptic until I saw the results myself after upgrading men in the Estes DNA project. In other words, if Big Y-500 testers upgrade, they will probably have more SNPs in common.

You may want to contact your closest Big Y-500 matches and ask if they will consider upgrading to the Big Y-700 test. For example, if we had close McNiel or similar surname matches, I would do exactly that.

Matching Both the Big Y and STRs – No Single Source

There is no single place or option to view whether or not you match someone BOTH on the Big Y AND STR markers. You can see both match categories individually, of course, but not together.

You can determine if your STR matches took the Big Y, below, and their haplogroup, which is quite useful, but you can’t tell if you match them at the Big Y level on this page.

McNiel Big Y STR match Big Y

click to enlarge

Selecting “Display Only Matches With Big Y” means displaying matches to men who took the Big Y test, not necessarily men you match on the Big Y. Mr. Conley, in the example above, does not match my McNeill cousin on the Big Y but does match him at 12 and 25 STR markers.

I hope FTDNA will add three display options:

  • Select only men that match on the Big Y in the STR panel
  • Add an option for Big Y on the advanced matches page
  • Indicate men who also match on STRs on the Big Y match page

It was cumbersome and frustrating to have to view all of the matches multiple times to compile various pieces of information in a separate spreadsheet.

No Big Y Match Download

There is also no option to download your Big Y matches. With a few matches, this doesn’t matter, but with 119 matches, or more, it does. As more people test, everyone will have more matches. That’s what we all want!

What you can do, however, is to download your STR matches from your match page at levels 12-111 individually, then combine them into one spreadsheet. (It would be nice to be able to download them all at once.)

McNiel Big Y csv

You can then add your Big Y matches manually to the STR spreadsheet, or you can simply create a separate Big Y spreadsheet. That’s what I chose to do after downloading my cousin’s 14,737 rows of STR matches. I told you that R-M222 was prolific! I wasn’t kidding.

This high number of STR matches also perfectly illustrates why the Big Y SNP results were so critical in establishing the backbone relationship structure. Using the two tools together is indispensable.

An additional benefit to downloading STR results is that you can sort the STR spreadsheet columns in surname order. This facilitates easily spotting all spelling variations of McNiel, including words like Niel, Neal and such that might be relevant but that you might not notice otherwise.

Creating a Big Y Spreadsheet

My McNiel cousin has 119 Big Y-700 matches.

I built a spreadsheet with the following columns facilitating sorting in a number of ways, with definitions as follows:

McNiel Big Y spreadsheet

click to enlarge

  • First Name
  • Last Name – You will want to search matches on your personal page at Family Tree DNA by this surname later, so be sure if there is a hyphenated name to enter it completely.
  • Haplogroup – You’ll want to sort by this field.
  • Convergent – A field you’ll complete when doing your analysis. Convergence is the common haplogroup in the tree shared by you and your match. In the case of the green matches above, which are color-coded on my spreadsheet to indicate the closest matches with my McNiel cousin, the convergent haplogroup is BY18350.
  • Common Tree Gen – This column is the generations on the Block Tree shown to this common haplogroup. In the example above, it’s between 9 and 14 SNP generations. I’ll show you where to gather this information.
  • Geographic Location – Can be garnered from 4 sources. No color in that cell indicates that this information came from the Earliest Known Ancestor (EKA) field in the STR matches. Blue indicates that I opened the tree and pulled the location information from that source. Orange means that someone else by the same surname whom the tester also Y DNA matches shows this location. I am very cautious when assigning orange, and it’s risky because it may not be accurate. A fourth source is to use Ancestry, MyHeritage, or another genealogical resource to identify a location if an individual provides genealogical information but no location in the EKA field. Utilizing genealogy databases is only possible if enough information is provided to make a unique identification. John Smith 1700-1750 won’t do it, but Seamus McDougal (1750-1810) married to Nelly Anderson might just work.
  • STR Match – Tells me if the Big Y match also matches on STR markers, and if so, which ones. Only the first 111 markers are used for matching. No STR match generally means the match is further back in time, but there are no hard and fast rules.
  • Big Y Match – My original goal was to combine this information with the STR match spreadsheet. If you don’t wish to combine the two, then you don’t need this column.
  • Tree – An easy way for me to keep track of which matches do and do not have a tree. Please upload or create a tree.

You can also add a spreadsheet column for comments or contact information.

McNiel Big Y profile

You will also want to click your match’s name to display their profile card, paying particular attention to the “About Me” information where people sometimes enter genealogical information. Also, scan the Ancestral Surnames where the match may enter a location for a specific surname.

Private Variants

I added additional spreadsheet columns, not shown above, for Private Variant analysis. That level of analysis is beyond what most people are interested in doing, so I’m only briefly discussing this aspect. You may want to read along, so you at least understand what you are looking at.

Clicking on Private Variants in your Big Y Results shows your variants, or mutations, that are unnamed as SNPs. When they are named, they become SNPs and are placed on the haplotree.

The reference or “normal” state for the DNA allele at that location is shown as the “Reference,” and “Genotype” is the result of the tester. Reference results are not shown for each tester, because the majority are the same. Only mutations are shown.

McNiel Big Y private variants

There are 5 Private Variants, total, for my cousin. I’ve obscured the actual variant numbers and instead typed in 111111 and 222222 for the first two as examples.

McNiel Big Y nonmatching variants

In our example, there are 6 Big Y matches, with matches one and five having the non-matching variants shown above.

Non-matching variants mean that the match, Mr. Scott, in example 1, does NOT match the tester (my cousin) on those variants.

  • If the tester (you) has no mutation, you won’t have a Private Variant shown on your Private Variant page.
  • If the tester does have a Private Variant shown, and that variant shows ON their matches list of non-matching variants, it means the match does NOT match the tester, and either has the normal reference value or a different mutation. Explained another way, if you have a mutation, and that variant is listed on your match list of Non-Matching Variants, your match does NOT match you and does NOT have the same mutation.
  • If the match does NOT have the Private Variant on their list, that means the match DOES match the tester, and they both have the same mutation, making this Private Variant a candidate to be named as a new SNP.
  • If you don’t have a Private Variant listed, but it shows in the Non-Matching Variants of your match, that means you have the reference or normal value, and they have a mutation.

In example #1, above, the tester has a mutation at variant 111111, and 111111 is shown as a Non-Matching Variant to Mr. Scott, so Mr. Scott does NOT match the tester. Mr. Scott also does NOT match the tester at locations 222222 and 444444.

In example #5, 111111 is NOT shown on the Non-Matching Variant list, so Mr. Treacy DOES match the tester.

I have a terrible time wrapping my head around the double negatives, so it’s critical that I make charts.

On the chart below, I’ve listed the tester’s private variants in an individual column each, so 111111, 222222, etc.

For each match, I’ve copy and pasted their Non-Matching Variants in a column to the right of the tester’s variants, in the lavender region. In this example, I’ve typed the example variants into separate columns for each tester so you can see the difference. Remember, a non-matching variant means they do NOT match the tester’s mutation.

McNiel private variants spreadsheet

On my normal spreadsheet where the non-matching variants don’t have individuals columns, I then search for the first variant, 111111. If the variant does appear in the list, it means that match #1 does NOT have the mutation, so I DON’T put an X in the box for match #1 under 111111.

In the example above, the only match that does NOT have 111111 on their list of Non-Matching Variants is #5, so an X IS placed in that corresponding cell. I’ve highlighted that column in yellow to indicate this is a candidate for a new SNP.

You can see that no one else has the variant, 222222, so it truly is totally private. It’s not highlighted in yellow because it’s not a candidate to be a new SNP.

Everyone shares mutation 333333, so it’s a great candidate to become a new SNP, as is 555555.

Match #6 shares the mutation at 444444, but no one else does.

This is a manual illustration of an automated process that occurs at Family Tree DNA. After Big Y matches are returned, automated software creates private variant lists of potential new haplogroups that are then reviewed internally where SNPs are evaluated, named, and placed on the tree if appropriate.

If you follow this process and discover matches, you probably don’t need to do anything, as the automated review process will likely catch up within a few days to weeks.

Big Y Matches

In the case of the McNiel line, it was exciting to discover several private variants, mutations that were not yet named SNPs, found in several matches that were candidates to be named as SNPs and placed on the Y haplotree.

Sure enough, a few days later, my McNeill cousin had a new haplogroup assignment.

Most people have at least one Private Variant, locations in which they do NOT match another tester. When several people have these same mutations, and they are high-quality reads, the Private Variant qualifies to be added to the haplotree as a SNP, a task performed at FamilyTreeDNA by Michael Sager.

If you ever have the opportunity to hear Michael speak, please do so. You can watch Michael’s presentation at Genetic Genealogy Ireland (GGI) titled “The Tree of Mankind,” on YouTube, here, compliments of Maurice Gleeson who coordinates GGI. Maurice has also written about the Gleeson Y DNA project analysis, here.

As a result of Cousin McNeill’s test, six new SNPs have been added to the Y haplotree, the tree of mankind. You can see our new haplogroup for our branch, BY18332, with an equivalent SNP, BY25938, along with three sibling branches to the left and right on the tree.

McNiel Big Y block tree 4 branch

Big Y testing not only answers genealogical questions, it advances science by building out the tree of mankind too.

The surname of the men who share the same haplogroup, R-BY18332, meaning the named SNP furthest down the tree, are McCollum and Campbell. Not what I expected. I expected to find a McNeil who does match on at least some STR markers. This is exactly why the Big Y is so critical to define the tree structure, then use STR matches to flesh it out.

Taking the Big Y-700 test provided granularity between 6 matches, shown above, who were all initially assigned to the same branch of the tree, BY18350, but were subsequently divided into 4 separate branches. My McNiel cousin is no longer equally as distant from all 6 men. We now know that our McNiel line is genetically closer on the Y chromosome to Campbell and McCollum and further distant from Murphy, Scott, McMichael, and Glass.

Not All SNP Matches are STR Matches

Not all SNP matches are also STR matches. Some relationships are too far back in time. However, in this case, while each person on the BY18350 branches matches at some STR level, only the Campbell individual matches at all STR levels.

Remember that variants (mutations) are accumulating down both respective branches of the tree at the same time, meaning one per roughly every 100 years (if 100 is the average number we want to use) for both testers. A total of 30 variants or mutations difference, an average of 15 on each branch of the tree (McNiel and their match) would suggest a common ancestor about 1500 years ago, so each Big Y match should have a common ancestor 1500 years ago or closer. At least on average, in theory.

The Big Y test match threshold is 30 variants, so if there were any more mismatches with the Campbell male, they would not have been a Big Y match, even though they have the exact same haplogroup.

Having the same haplogroup means that their terminal SNP is identical, the SNP furthest down the tree today, at least until someone matches one of them on their Private Variants (if any remain unnamed) and a new terminal SNP is assigned to one or both of them.

Mutations, and when they happen, are truly a roll of the dice. This is why viewing all of your Big Y Block Tree matches is critical, even if they don’t show on your Big Y match list. One more variant and Campbell would have not been shown as a match, yet he is actually quite close, on the same branch, and matches on all STR panels as well.

SNPs Establish the Backbone Structure

I always view the block tree first to provide a branching tree structure, then incorporate STR matches into the equation. Both can equally as important to genealogy, but haplogroup assignment is the most accurate tool, regardless of whether the two individuals match on the Big Y test, especially if the haplogroups are relatively close.

Let’s work with the Block Tree.

The Block Tree

McNIel Big Y block tree menu

Clicking on the link to the Block Tree in the Big Y results immediately displays the tester’s branch on the tree, below.

McNiel Big Y block tree descent

click to enlarge

On the left side are SNP generation markers. Keep in mind that approximate SNP generations are marked every 5 generations. The most recent generations are based on the number of private variants that have not yet been assigned as branches on the tree. It’s possible that when they are assigned that they will be placed upstream someplace, meaning that placement will reduce the number of early branches and perhaps increase the number of older branches.

The common haplogroup of all of the branches shown here with the upper red arrow is R-BY3344, about 15 SNP generations ago. If you’re using 100 years per SNP generation, that’s about 1500 years. If you’re using 80 years, then 1200 years ago. Some people use even fewer years for calculations.

If some of the private variants in the closer branches disappear, then the common ancestral branch may shift to closer in time.

This tree will always be approximate because some branches can never be detected. They have disappeared entirely over time when no males exist to reproduce.

Conversely, subclades have been born since a common ancestor clade whose descendants haven’t yet tested. As more people test, more clades will be discovered.

Therefore, most recent common ancestor (MRCA) haplogroup ages can only be estimated, based on who has tested and what we know today. The tree branches also vary depending on whether testers have taken the Big Y-500 or the more sensitive Big Y-700, which detects more variants. The Y haplotree is a combination of both.

Big Y-500 results will not be as granular and potentially do not position test-takers as far down the tree as Big Y-700 results would if they upgraded. You’ll need to factor that into your analysis if you’re drawing genealogical conclusions based on these results, especially close results.

You’ll note that the direct path of descent is shown above with arrows from BY3344 through the first blue box with 5 equivalent SNPS, to the next white box, our branch, with two equivalent SNPs. Our McNeil ancestor, the McCollum tester, and the Campell tester have no unresolved private variants between them, which suggests they are probably closer in time than 10 generations back. You can see that the SNP generations are pushed “up” by the neighbor variants.

Because of the fact that private variants don’t occur on a clock cycle and occur in individual lines at an unsteady rate, we must use averages.

That means that when we look further “up” the tree, clicking generation by generation on the up arrow above BY3344, the SNP generations on the left side “adjust” based on what is beneath, and unseen at that level.

The Block Tree Adjusts

Note, in the example above, BY3344 is at SNP generation 15.

Next, I clicked one generation upstream, to R-S668.

McNiel Big Y block tree S668

click to enlarge

You can see that S668 is about 21 SNP generations upstream, and now BY3344 is listed as 20 generations, not 15. You can see our branch, BY3344, but you can no longer see subclades or our matches below that branch in this view.

You can, however, see two matches that descend through S668, brother branches to BY3344, red arrows at far right.

Clicking on the up arrow one more time shows us haplogroup S673, below, and the child branches. The three child branches on which the tester has matches are shown with red arrows.

McNiel Big Y S673

click to enlarge

You’ll immediately notice that now S668 is shown at 19 SNP generations, not 20, and S673 is shown at 20. This SNP generation difference between views is a function of dealing with aggregated and averaged private variants on combined lines and causes the SNP generations to shift. This is also why I always say “about.”

As you continue to click up the tree, the shifting SNP generations continue, reminding us that we can’t truly see back in time. We can only achieve approximations, but those approximations improve as more people test, and more SNPs are named and placed in their proper places on the phylotree.

I love the Block Tree, although I wish I could see further side-to-side, allowing me to view all of the matches on one expanded tree so I can easily see their relationships to the tester, and each other.

Countries and Origins

In addition to displaying shared averaged autosomal origins of testers on a particular branch, if they have taken the Family Finder test and opted-in to sharing origins (ethnicity) results, you can also view the countries indicated by testers on that branch along with downstream branches of the tree.

McNiel Big Y countries

click to enlarge

For example, the Countries tab for S673 is shown above. I can see matches on this branch with no downstream haplogroup currently assigned, as well as cumulative results from downstream branches.

Still, I need to be able to view this information in a more linear format.

The Block Tree and spreadsheet information beautifully augment the haplotree, so let’s take a look.

The Haplotree

On your Y DNA results page, click on the “Haplotree and SNPs” link.

McNIel Big Y haplotree menu

click to enlarge

The Y haplotree will be displayed in pedigree style, quite familiar to genealogists. The SNP legend will be shown at the top of the display. In some cases, “presumed positive” results occur where coverage is lacking, back mutations or read errors are encountered. Presumed positive is based on positive SNPs further down the tree. In other words, that yellow SNP below must read positive or downstream ones wouldn’t.

McNIel Big Y pedigree descent

click to enlarge

The tester’s branch is shown with the grey bar. To the right of the haplogroup-defining SNP are listed the branch and equivalent SNP names. At far right, we see the total equivalent SNPs along with three dots that display the Country Report. I wish the haplotree also showed my matches, or at least my matching surnames, allowing me to click through. It doesn’t, so I have to return to the Big Y page or STR Matches page, or both.

I’ve starred each branch through which my McNiell cousin descends. Sibling branches are shown in grey. As you’ll recall from the Block Tree, we do have matches on those sibling branches, shown side by side with our branch.

The small numbers to the right of the haplogroup names indicate the number of downstream branches. BY18350 has three, all displayed. But looking upstream a bit, we see that DF97 has 135 downstream branches. We also have matches on several of those branches. To show those branches, simply click on the haplogroup.

The challenge for me, with 119 McNeill matches, is that I want to see a combination of the block tree, my spreadsheet information, and the haplotree. The block tree shows the names, my spreadsheet tells me on which branches to look for those matches. Many aren’t easily visible on the block tree because they are downstream on sibling branches.

Here’s where you can find and view different pieces of information.

Data and Sources STR Matches Page Big Y Matches Page Block Tree Haplogroups & SNPs Page
STR matches Yes No, but would like to see who matches at which STR levels If they have taken Big Y test, but doesn’t mean they match on Big Y matching No
SNP matches *1 Shows if STR match has common haplogroup, but not if tester matches on Big Y No, but would like to see who matches at which STR level Big Y matches and STR matches that aren’t Big Y matches are both shown No, but need this feature – see combined haplotree/ block tree
Other Haplogroup Branch Residents Yes, both estimated and tested No, use block tree or click through to profile card, would like to see haplogroup listed for Big Y matches Yes, both Big Y and STR tested, not estimated. Cannot tell if person is Big Y match or STR match, or both. No individuals, but would like that as part of countries report, see combined haplotree/block tree
Fully Expanded Phylotree No No Would like ability to see all branches with whom any Big Y or STR match resides at one time, even if it requires scrolling Yes, but no match information. Matches report could be added like on Block Tree.
Averaged Ethnicities if Have FF Test No No Yes, by haplogroup branch No
Countries Matches map STR only No, need Big Y matches map Yes Yes
Earliest Known Ancestor Yes No, but can click through to profile card No No
Customer Trees Yes No, need this link No No
Profile Card Yes, click through Yes, click through Yes, click through No match info on this page
Downloadable data By STR panel only, would like complete download with 1 click, also if Big Y or FF match Not available at all No No
Path to common haplogroup No No, but would like to see matches haplogroup and convergent haplogroup displayed No, would like the path to convergent haplogroup displayed as an option No, see combined match-block -haplotree in next section

*1 – the best way to see the haplogroup of a Big Y match is to click on their name to view their profile card since haplogroup is not displayed on the Big Y match page. If you happen to also match on STRs, their haplogroup is shown there as well. You can also search for their name using the block tree search function to view their haplogroup.

Necessity being the mother of invention, I created a combined match/block tree/haplotree.

And I really, REALLY hope Family Tree DNA implements something like this because, trust me, this was NOT fun! However, now that it’s done, it is extremely useful. With fewer matches, it should be a breeze.

Here are the steps to create the combined reference tree.

Combo Match/Block/Haplotree

I used Snagit to grab screenshots of the various portions of the haplotree and typed the surnames of the matches in the location of our common convergent haplogroup, taken from the spreadsheet. I also added the SNP generations in red for that haplogroup, at far left, to get some idea of when that common ancestor occurred.

McNIel Big Y combo tree

click to enlarge

This is, in essence, the end-goal of this exercise. There are a few steps to gather data.

Following the path of two matches (the tester and a specific match) you can find their common haplogroup. If your match is shown on the block tree in the same view with your branch, it’s easy to see your common convergent parent haplogroup. If you can’t see the common haplogroup, it’s takes a few extra steps by clicking up the block tree, as illustrated in an earlier section.

We need the ability to click on a match and have a tree display showing both paths to the common haplogroup.

McNiel Big Y convergent

I simulated this functionality in a spreadsheet with my McNiel cousin, a Riley match, and an Ocain match whose terminal SNP is the convergent SNP (M222) between Riley and McNiel. Of course, I’d also like to be able to click to see everyone on one chart on their appropriate branches.

Combining this information onto the haplotree, in the first image, below, M222, 4 men match my McNeill cousin – 2 who show M222 as their terminal SNP, and 2 downstream of M222 on a divergent branch that isn’t our direct branch. In other words, M222 is the convergence point for all 4 men plus my McNeill cousin.

McNiel Big Y M222 haplotree

click to enlarge

In the graphic below, you can see that M222 has a very large number of equivalent SNPs, which will likely become downstream haplogroups at some point in the future. However, today, these equivalent SNPs push M222 from 25 generations to 59. We’ll discuss how this meshes with known history in a minute.

McNiel Big Y M222 block tree

click to enlarge

Two men, Ocain and Ransom, who have both taken the Big Y, whose terminal SNP is M222, match my McNiel cousin. If their common ancestor was actually 59 generations in the past, it’s very, very unlikely that they would match at all given the 30 mutation threshold.

On my reconstructed Match/Block/Haplotree, I included the estimated SNP generations as well. We are starting with the most distant haplogroups and working our way forward in time with the graphics, below.

Make no mistake, there are thousands more men who descend from M222 that have tested, but all of those men except 4 have more than 30 mutations total, so they are not shown as Big Y matches, and they are not shown individually on the Block Tree because they neither match on the Big Y or STR tests. However, there is a way to view information for non-matching men who test positive for M222.

McNiel Big Y M222 countries

click to enlarge

Looking at the Block Tree for M222, many STR match men took a SNP test only to confirm M222, so they would be shown positive for the M222 SNP on STR results and, therefore, in the detailed view of M222 on the Block tree.

Haplogroup information about men who took the M222 test and whom the tester doesn’t match at all are shown here as well in the country and branch totals for R-M222. Their names aren’t displayed because they don’t match the tester on either type of Y DNA test.

Back to constructing my combined tree, I’ve left S658 in both images, above and below, as an overlap placeholder, as we move further down, or towards current, on the haplotree.

McNiel Big Y combo tree center

click to enlarge

Note that BY18350, above, is also an overlap connecting below.

You’ll recall that as a result of the Big Y test, BY18350 was split and now has three child branches plus one person whose terminal SNP is BY18350. All of the men shown below were on one branch until Big Y results revealed that BY18350 needed to be split, with multiple new haplogroups added to the tree.

McNiel Big Y combo tree current

click to enlarge

Using this combination of tools, it’s straightforward for me to see now that our McNiel line is closest to the Campbell tester from Scotland according to the Big Y test + STRs.

Equal according to the Big Y test, but slightly more distant, according to STR matching, is McCollum. The next closest would be sibling branches. Then in the parent group of the other three, BY18350, we find Glass from Scotland.

In BY18350 and subgroups, we find several Scotland locations and one Northern Ireland, which was likely from Scotland initially, given the surname and Ulster Plantation era.

The next upstream parent haplogroup is BY3344, which looks to be weighted towards ancestors from Scotland, shown on the country card, below.

McNiel Big Y BY3344

click to enlarge

This suggests that the origins of the McNiel line was, perhaps, in Scotland, but it doesn’t tell us whether or not George and presumably, Thomas, immigrated from Ireland or Scotland.

This combined tree, with SNPs, surnames from Big Y matches, along with Country information, allows me to see who is really more closely related and who is further away.

What I didn’t do, and probably should, is to add in all of the STR matches who have taken the Big Y test, shown on their convergent branch – but that’s just beyond the scope of time I’m willing to invest, at least for now, given that hundreds of STR matches have taken the Big Y test, and the work of building the combined tree is all manual today.

For those reading this article without access to the Y phylogenetic tree, there’s a public version of the Y and mitochondrial phylotrees available, here.

What About Those McNiels?

No other known McNiel descendants from either Thomas or George have taken the Big Y test, so I didn’t expect any to match, but I am interested in other men by similar surnames. Does ANY other McNiel have a Big Y match?

As it turns out, there are two, plus one STR match who took a Big Y test, but is not a Big Y match.

However, as you can see on the combined match/block/haplotree, above, the closest other Big Y-matching McNeil male is found at about 19 SNP generations, or roughly 1900 years ago. Even if you remove some of the variants in the lower generations that are based on an average number of individual variants, you’re still about 1200 years in the past. It’s extremely doubtful that any surname would survive in both lines from the year 800 or so.

That McNeil tester’s ancestor was born in 1747 in Tranent, Scotland.

The second Big Y-matching person is an O’Neil, a few branches further up in the tree.

The convergent SNP of the two branches, meaning O’Neil and McNeill are at approximately the 21 generation level. The O’Neil man’s Neill ancestor is found in 1843 in Cookestown, County Tyrone, Ireland.

McNiel Big Y convergent McNeil lines

I created a spreadsheet showing convergent lines:

  • The McNeill man with haplogroup A4697 (ancestor Tranent, Scotland) is clearly closest genetically.
  • O’Neill BY91591, who is brother clades with Neel and Neal, all Irish, is another Big Y match.
  • The McNeill man with haplogroup FT91182 is an STR match, but not a Big Y match.

The convergent haplogroup of all of these men is DF105 at about the 22 SNP generation marker.

STRs

Let’s turn back to STR tests, with results that produce matches closer in time.

Searching my STR download spreadsheet for similar surnames, I discovered several surname matches, mining the Earliest Known Ancestor information, profiles and trees produced data as follows:

Ancestor STR Match Level Location
George Charles Neil 12, 25, match on Big Y A4697 1747-1814 Tranent, Scotland
Hugh McNeil 25 (tested at 67) Born 1800 Country Antrim, Northern Ireland
Duncan McNeill 12 (tested at 111) Married 1789, Argyllshire, Scotland
William McNeill 12, 25 (tested at 37) Blackbraes, Stirlingshire, Scotland
William McNiel 25 (tested at 67) Born 1832 Scotland
Patrick McNiel 25 (tested at 111) Trien East, County Roscommon, Ireland
Daniel McNeill 25 (tested at 67) Born 1764 Londonderry, Northern Ireland
McNeil 12 (tested at 67) 1800 Ireland
McNeill (2 matches) 25 (tested Big Y-  SNP FT91182) 1810, Antrim, Northern Ireland
Neal 25 – (tested Big Y, SNP BY146184) Antrim, Northern Ireland
Neel (2 matches) 67 (tested at 111, and Big Y) 1750 Ireland, Northern Ireland

Our best clue that includes a Big Y and STR match is a descendant of George Charles Neil born in Tranent, Scotland, in 1747.

Perhaps our second-best clue comes in the form of a 111 marker match to a descendant of one Thomas McNeil who appears in records as early as 1753 and died in 1761 In Rombout Precinct, Dutchess County, NY where his son John was born. This line and another match at a lower level both reportedly track back to early New Hampshire in the 1600s.

The MacNeil DNA Project tells us the following:

Participant 106370 descends from Isaiah McNeil b. 14 May 1786 Schaghticoke, Rensselaer Co. NY and d. 28 Aug 1855 Poughkeepsie, Dutchess Co., NY, who married Alida VanSchoonhoven.

Isaiah’s parents were John McNeal, baptized 21 Jun 1761 Rombout, Dutchess Co., NY, d. 15 Feb 1820 Stillwater, Saratoga Co., NY and Helena Van De Bogart.

John’s parents were Thomas McNeal, b.c. 1725, d. 14 Aug 1761 NY and Rachel Haff.

Thomas’s parents were John McNeal Jr., b. around 1700, d. 1762 Wallkill, Orange Co., NY (now Ulster Co. formed 1683) and Martha Borland.

John’s parents were John McNeal Sr. and ? From. It appears that John Sr. and his family were this participant’s first generation of Americans.

Searching this line on Ancestry, I discovered additional information that, if accurate, may be relevant. This lineage, if correct, and it may not be, possibly reaching back to Edinburgh, Scotland. While the information gathered from Ancestry trees is certainly not compelling in and of itself, it provides a place to begin research.

Unfortunately, based on matches shown on the MacNeil DNA Project public page, STR marker mutations for kits 30279, B78471 and 417040 when compared to others don’t aid in clustering or indicating which men might be related to this group more closely than others using line-marker mutations.

Matches Map

Let’s take a look at what the STR Matches Map tells us.

McNiel Big Y matches map menu

This 67 marker Matches Map shows the locations of the earliest known ancestors of STR matches who have entered location information.

McNiel Big Y matches mapMcNiel Big Y matches map legend

My McNeill cousin’s closest matches are scattered with no clear cluster pattern.

Unfortunately, there is no corresponding map for Big Y matches.

SNP Map

The SNP map provided under the Y DNA results allows testers to view the locations where specific haplogroups are found.

McNiel Big Y SNP map

The SNP map marks an area where at least two or more people have claimed their most distant known ancestor to be. The cluster size is the maximum amount of miles between people that is allowed in order for a marker indicating a cluster at a location to appear. So for example, the sample size is at least 2 people who have tested, and listed their most distant known ancestor, the cluster is the radius those two people can be found in. So, if you have 10 red dots, that means in 1000 miles there are 10 clusters of at least two people for that particular SNP. Note that these locations do NOT include people who have tested positive for downstream locations, although it does include people who have taken individual SNP tests.

Working my way from the McNiel haplogroup backward in time on the SNP map, neither BY18332 nor BY18350 have enough people who’ve tested, or they didn’t provide a location.

Moving to the next haplogroup up the tree, two clusters are formed for BY3344, shown below.

McNIel Big Y BY3344 map

S668, below.

McNiel Big Y S668 map

It’s interesting that one cluster includes Glasgow.

S673, below.

McNiel Big Y S673 map

DF85, below:

McNiel Big Y DF85 map

DF105 below:

McNiel BIg Y DF105 map

M222, below:

McNiel Big Y M222 map

For R-M222, I’ve cropped the locations beyond Ireland and Scotland. Clearly, RM222 is the most prevalent in Ireland, followed by Scotland. Wherever M222 originated, it has saturated Ireland and spread widely in Scotland as well.

R-M222

R-M222, the SNP initially thought to indicate Niall of the 9 Hostages, occurred roughly 25-59 SNP generations in the past. If this age is even remotely accurate, averaging by 80 years per generation often utilized for Big Y results, produces an age of 2000 – 4720 years. I find it extremely difficult to believe any semblance of a surname survived that long. Even if you reduce the time in the past to the historical narrative, roughly the year 400, 1600 years, I still have a difficult time believing the McNiel surname is a result of being a descendant of Niall of the 9 Hostages directly, although oral history does have staying power, especially in a clan setting where clan membership confers an advantage.

Surname or not, clearly, our line along with the others whom we match on the Big Y do descend from a prolific common ancestor. It’s very unlikely that the mutation occurred in Niall’s generation, and much more likely that other men carried M222 and shared a common ancestor with Niall at some point in the distant past.

McNiel Conclusion – Is There One?

If I had two McNiel wishes, they would be:

  • Finding records someplace in Virginia that connect George and presumably brothers Thomas and John to their parents.
  • A McNiel male from wherever our McNiel line originated becoming inspired to Y DNA test. Finding a male from the homeland might point the way to records in which I could potentially find baptismal records for George about 1720 and Thomas about 1724, along with possibly John, if he existed.

I remain hopeful for a McNiel from Edinburgh, or perhaps Glasgow.

I feel reasonably confident that our line originated genetically in Scotland. That likely precludes Niall of the 9 Hostages as a direct ancestor, but perhaps not. Certainly, one of his descendants could have crossed the channel to Scotland. Or, perhaps, our common ancestor is further back in time. Based on the maps, it’s clear that M222 saturates Ireland and is found widely in Scotland as well.

A great deal depends on the actual age of M222 and where it originated. Certainly, Niall had ancestors too, and the Ui Neill dynasty reaches further back, genetically, than their recorded history in Ireland. Given the density of M222 and spread, it’s very likely that M222 did, in fact, originate in Ireland or, alternatively, very early in Scotland and proliferated in Ireland.

If the Ui Neill dynasty was represented in the persona of the High King, Niall of the 9 Hostages, 1600 years ago, his M222 ancestors were clearly inhabiting Ireland earlier.

We may not be descended from Niall personally, but we are assuredly related to him, sharing a common ancestor sometime back in the prehistory of Ireland and Scotland. That man would sire most of the Irish men today and clearly, many Scots as well.

Our ancestors, whoever they were, were indeed in Ireland millennia ago. R-M222, our ancestor, was the ancestor of the Ui Neill dynasty and of our own Reverend George McNiel.

Our ancestors may have been at Knowth and New Grange, and yes, perhaps even at Tara.

Tara Niall mound in sun

Someplace in the mists of history, one man made a different choice, perhaps paddling across the channel, never to return, resulting in M222 descendants being found in Scotland. His descendants include our McNeil ancestors, who still slumber someplace, awaiting discovery.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Genetic Affairs: AutoPedigree Combines AutoTree with WATO to Identify Your Potential Tree Locations

If you’re an adoptee or searching for an unknown parent or ancestor, AutoPedigree is just what you’ve been waiting for.

By now, we’re all familiar with Genetic Affairs who launched in 2018 with their signature autocluster tool. AutoCluster groups your matches into clusters by who your matches match with each other, in addition to you.

browser autocluster

A year later, in December 2019, Genetic Affairs introduced AutoTree, automated tree reconstruction based on your matches trees at Ancestry and Family Finder at Family Tree DNA, even if you don’t have a tree.

Now, Genetic Affairs has introduced AutoPedigree, a combination of the AutoTree reconstruction technology combined with WATO, What Are the Odds, as seen here at DNAPainter. WATO is a statistical probability technique developed by the DNAGeek that allows users to review possible positions in a tree for where they best fit.

Here’s the progressive functionality of how the three Genetic Affairs tools, combined, function:

  • AutoCluster groups people based on if they match you and each other
  • AutoTree finds common ancestors for trees from each cluster
  • Next, AutoTree finds the trees of all matches combined, including from trees of your DNA matches not in clusters
  • AutoPedigree checks to see if a common ancestor tree meets the minimum requirement which is (at least) 3 matches of greater to or equal to 30-40 cM. If yes, an AutoPedigree with hypotheses is created based on the common ancestor of the matching people.
  • Combined AutoPedigrees then reviews all AutoTrees and AutoPedigrees that have common ancestors and combine them into larger trees.

Let’s look at examples, beginning with DNAPainter who first implemented a form of WATO.

DNA Painter

Let’s say you’re trying to figure out how you’re related to a group of people who descend from a specific ancestral couple. This is particularly useful for someone seeking unknown parents or other unknown relationships.

DNA tools are always from the perspective of the tester, the person whose kit is being utilized.

At DNAPainter, you manually create the pedigree chart beginning with a common couple and creating branches to all of their descendants that you match.

This example at DNAPainter shows the matches with their cM amounts in yellow boxes.

xAutoPedigree DNAPainter WATO2

The tester doesn’t know where they fit in this pedigree chart, so they add other known lines and create hypothesis placeholder possibilities in light blue.

In other words, if you’re searching for your mother and you were born in 1970, you know that your mother was likely born between 1925 (if she was 45 when she gave birth to you) and 1955 (if she was 15 when she gave birth to you.) Therefore, in the family you create, you’d search for parents who could have given birth to children during those years and create hypothetical children in those tree locations.

The WATO tool then utilizes the combination of expected cMs at that position to create scores for each hypothesis position based on how closely or distantly you match other members of that extended family.

The Shared cM Project, created and recently updated by Blaine Bettinger is used as the foundation for the expected centimorgan (cM) ranges of each relationship. DNAPainter has automated the possible relationships for any given matching cM amount, here.

In the graphic above, you can see that the best hypothesis is #2 with a score of 1, followed by #4 and #5 with scores of 3 each. Hypothesis 1 has a score of 63.8979 and hypothesis 3 has a score of 383.

You’ll need to scroll to the bottom to determine which of the various hypothesis are the more likely.

Autopedigree DNAPainter calculated probability

Using DNAPainter’s WATO implementation requires you to create the pedigree tree to test the hypothesis. The benefit of this is that you can construct the actual pedigree as known based on genealogical research. The down-side, of course, is that you have to do the research to current in each line to be able to create the pedigree accurately, and that’s a long and sometimes difficult manual process.

Genetic Affairs and WATO

Genetic Affairs takes a different approach to WATO. Genetic Affairs removes the need for hand entry by scanning your matches at Ancestry and Family Tree DNA, automatically creating pedigrees based on your matches’ trees. In addition, Genetic Affairs automatically creates multiple hypotheses. You may need to utilize both approaches, meaning Genetic Affairs and DNAPainter, depending on who has tested, tree completeness at the vendors, and other factors.

The great news is that you can import the Genetic Affairs reconstructed trees into DNAPainter’s WATO tool instead of creating the pedigrees from scratch. Of course, Genetic Affairs can only use the trees someone has entered. You, on the other hand, can create a more complete tree at DNAPainter.

Combining the two tools leverages the unique and best features of both.

Genetic Affairs AutoPedigree Options

Recently, Genetic Affairs released AutoPedigree, their new tool that utilizes the reconstructed AutoTrees+WATO to place the tester in the most likely region or locations in the reconstructed tree.

Let’s take a look at an example. I’m using my own kit to see what kind of results and hypotheses exist for where I fit in the tree reconstructed from my matches and their trees.

If you actually do have a tree, the AutoTree portion will simply be counted as an equal tree to everyone else’s trees, but AutoPedigree will ignore your tree, creating hypotheses as if it doesn’t exist. That’s great for adoptees who may have hypothetical trees in progress, because that tree is disregarded.

First, sign on to your account at Genetic Affairs and select the AutoPedigree option for either Ancestry or Family Tree DNA which reconstructs trees and generates hypotheses automatically. For AutoPedigree construction, you cannot combine the results from Ancestry and FamilyTreeDNA like you can when reconstructing trees alone. You’ll need to do an AutoPedigree run for each vendor. The good news is that while Ancestry has more testers and matches, FamilyTreeDNA has many testers stretching back 20 years or so in the past who passed away before testing became available at Ancestry. Often, their testers reach back a generation or two further. You can easily transfer Ancestry (and other) results to Family Tree DNA for free to obtain more matches – step-by-step instructions here.

At Genetic Affairs, you should also consider including half-relations, especially if you are dealing with an unknown parent situation. Selecting half-relationships generates very large trees, so you might want to do the first run without, then a second run with half relationships selected.

AutoPedigree options

Results

I ran the program and opened the resulting email with the zip file. Saving that file automatically unzips for me, displaying the following 5 files and folders.

Autopedigree cluster

Clicking on the AutoCluster HTML link reveals the now-familiar clusters, shown below.

Autopedigree clusters

I have a total of 26 clusters, only partially shown above. My first peach cluster and my 9th blue cluster are huge.

Autopedigree 26 clusters

That’s great news because it means that I have a lot to work with.

autopedigree folder

Next, you’ll want to click to open your AutoPedigree folder.

For each cluster, you’ll have a corresponding AutoPedigree file if an AutoPedigree can be generated from the trees of the people in that cluster.

My first cluster is simply too large to show successfully in blog format, so I’m selecting a smaller cluster, #21, shown below with the red arrow, with only 6 members. Why so small, you ask? In part, because I want to illustrate the fact that you really don’t need a lot of matches for the AutoPedigree tool to be useful.

Autopedigree multiple clusters

Note also that this entire group of clusters (blue through brown) has members in more than one cluster, indicated by the grey cells that mean someone is a member of at least 2 clusters. That tells me that I need to include the information from those clusters too in my analysis. Fortunately, Genetic Affairs realizes that and provides a combined AutoPedigree tool for that as well, which we will cover later in the article. Just note for now that the blue through brown clusters seem to be related to cluster 21.

Let’s look at cluster 21.

autopedigree cluster 21

In the AutoPedigree folder, you’ll see cluster files when there are trees available to create pedigrees for individual clusters. If you’re lucky, you’ll find 2 files for some clusters.

autopedigree ancestors

At the top of each cluster AutoPedigree file, Genetic Affairs shows you the home couple of the descendant group shown in the matches and their corresponding trees.

Autopedigree WATO chart

Image 1 – click to enlarge

I don’t expect you to be able to read everything in the above pedigree chart, just note the matches and arrows.

You can see three of my cousins who match, labeled with “Ancestry.” You also see branches that generate a viable hypothesis. When generating AutoPedigrees, Genetic Affairs truncates any branches that cannot result in a viable hypothesis for placing the tester in a viable location on the tree, so you may not see all matches.

Autopedigree hyp 1

Image 2 – click to enlarge

On the top branch, you’ll see hyp-1-child1 which is the first hypothesis, with the first child. Their child is hyp-2- child2, and their child is hyp-3-child3. The tester (me, in this case) cannot be the persons shown with red flags, called badges, based on how I match other people and other tree information such as birth and death dates.

Think of a stoplight, red=no, green are your best bets and the rest are yellow, meaning maybe. AutoPedigree makes no decisions, only shows you options, and calculated mathematically how probable each location is to be correct.

Remember, these “children,” meaning hypothesis 1-child 1 may or may not have actually existed. These relationships are hypothetical showing you that IF these people existed, where the tester could appear on the tree.

We know that I don’t fit on the branch above hypothesis 1, because I only match the descendant of Adam Lentz at 44.2 cM which is statistically too low for me to also inhabit that branch.

I’ve included half relationships, so we see hyp-7-child1-half too, which is a half-sibling.

The rankings for hypotheses 1, 2, and 7 all have red badges, meaning not possible, so they have a score of 0. Hypothesis 3 and 8 are possible, with a ranking of 16, respectively.

autopedigree my location

Image 3 – click to enlarge

Looking now at the next segment of the tree, you see that based on how I match my Deatsman and Hartman cousins, I can potentially fit in any portion of the tree with green badges (in the red boxes) or yellow badges.

You can also see where I actually fit in the tree. HOWEVER, that placement is from AutoTree, the tree reconstruction portion, based on the fact that I have a tree (or someone has a tree with me in it). My own tree is ignored for hypothesis generation for the AutoPedigree hypothesis generation portion.

Had my first cousins once removed through my grandfather John Ferverda’s brother, Roscoe, tested AND HAD A TREE, there would have been no question where I fit based on how I match them.

autopedigree cousins

As it turns out they did test, but provided no tree meaning that Genetic Affairs had no tree to work with.

Remember that I mentioned that my first cluster was huge. Many more matches mean that Genetic Affairs has more to work with. From that cluster, here’s an example of a hypothesis being accurate.

autopedigree correct

Image 4 – click to enlarge

You can see the hypothetical line beneath my own line, with hypothesis 104, 105, 106, 107, 108. The AutoTree portion of my tree is shown above, with my father and grandparents and my name in the green block. The AutoPedigree portion ignores my own tree, therefore generating the hypothesis that’s where I could fit with a rank of 2. And yes, that’s exactly where I fit in the tree.

In this case, there were some hypotheses ranked at 1, but they were incorrect, so be sure to evaluate all good (green) options, then yellow, in that order.

Genetic Affairs cannot work with 23andMe results for AutoPedigree because 23andMe doesn’t provide or support trees on their site. AutoClusters are integrated at MyHeritage, but not the AutoTree or AutoPedigree functions, and they cannot be run separately.

That leaves Family Tree DNA and Ancestry.

Combined AutoPedigree

After evaluating each of the AutoPedigrees generated for each cluster for which an AutoPedigree can be generated, click on the various cluster combined autopedigrees.

autopedigree combined

You can see that for cluster 1, I have 7 separate AutoPedigrees based on common ancestors that were different. I have 3 AutoPedigrees also for cluster 9, and 2 AutoPedigrees for 15, 21, and 24.

I have no AutoPedigrees for clusters 2, 3, 5, 6, 7, 8, 14, 17, 18, and 22.

Moving to the combined clusters, the numbers of which are NOT correlated to the clusters themselves, Genetic Affairs has searched trees and combined ancestors in various clusters together when common ancestors were found.

Autopedigree multiple clusters

Remember that I asked you to note that the above blue through brown clusters seem to have commonality between the clusters based on grey cell matches who are found in multiple groups? In fact, these people do share common ancestors, with a large combined AutoPedigree being generated from those multiple clusters.

I know you can’t read the tree in the image that follows. I’m only including it so you’ll see the scale of that portion of my tree that can be reconstructed from my matches with hypotheses of where I fit.

autopedigree huge

Image 5 – click to enlarge

These larger combined pedigrees are very useful to tie the clusters together and understand how you match numerous people who descend from the same larger ancestral group, further back in time.

Integration with DNAPainter

autopedigree wato file

Each AutoPedigree file and combined cluster AutoPedigree file in the AutoPedigree folder is provided in WATO format, allowing you to import them into DNAPainter’s WATO tool.

autopedigree dnapainter import

You can manually flesh out the trees based on actual genealogy in WATO at DNAPainter, manually add matches from GEDmatch, 23andMe or MyHeritage or matches from vendors where your matches trees may not exist but you know how your match connects to you.

Your AutoTree Ancestors

But wait, there’s more.

autopedigree ancestors folder

If you click on the Ancestors folder, you’ll see 5 options for tree generations 3-7.

autopedigree ancestor generations

My three-generation auto-generated reconstructed tree looks like this:

autopedigree my tree

Selecting the 5th generation level displays Jacob Lentz and Frederica Ruhle, the couple shown in the AutoCluster 21 and AutoPedigree examples earlier. The color-coding indicates the source of the ancestors in that position.

Autopedigree expanded tree

click to enlarge

You will also note that Genetic Affairs indicates how many matches I have that share this common ancestor along with which clusters to view for matches relevant to specific ancestors. How cool is this?!!

Remember that you can also import the genetic match information for each AutoTree cluster found at Family Tree DNA into DNAPainter to paint those matches on your chromosomes using DNAPainter’s Cluster Auto Painter.

If you run AutoCluster for matches at 23andMe, MyHeritage, or FamilyTreeDNA, all vendors who provide segment information, you can also import that cluster segment information into DNAPainter for chromosome painting.

However, from that list of vendors, you can only generate AutoTrees and AutoPedigrees at Family Tree DNA. Given this, it’s in your best interest for your matches to test at or upload their DNA (plus tree) to Family Tree DNA who supports trees AND provides segment information, both, and where you can run AutoTree and AutoPedigree.

Have you painted your clusters or generated AutoTrees? If you’re an adoptee or looking for an unknown parent or grandparent, the new AutoPedigree function is exactly what you need.

Documentation

Genetic Affairs provides complete instructions for AutoPedigree in this newsletter, along with a user manual here, and the Facebook Genetic Affairs User Group can be found here.

I wrote the introductory article, AutoClustering by Genetic Affairs, here, and Genetic Affairs Reconstructs Trees from Genetic Clusters – Even Without Your Tree or Common Ancestors, here. You can read about DNAPainter, here.

Transfer your DNA file, for free, from Ancestry to Family Tree DNA or MyHeritage, by following the easy instructions, here.

Have fun! Your ancestors are waiting.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

 

Shared cM Project 2020 Analysis, Comparison & Handy Reference Charts

Recently, Blaine Bettinger published V4 of the Shared cM Project, and along with that, Jonny Perl at DNAPainter updated the associated interactive tool as well, including histograms. I wrote about that, here.

The goal of the shared cM project was and remains to document how much DNA can be expected to be shared by various individuals at specific relationship levels. This information allows matches to at least minimally “position” themselves in a general location their trees or conversely, to eliminate specific potential relationships.

Shared cM Project match data is gathered by testers submitting their match information through the submission portal, here.

When the Shared cM Project V3 was released in September 2017, I combined information from various sources and provided an analysis of that data, including the changes from the V2 release in 2016.

I’ve done the same thing this year, adding the new data to the previous release’s table.

Compiled Comparison Table

I initially compiled this table for myself, then decided to update it and share with my readers. This chart allows me to view various perspectives on shared data and relationships and in essence has all the data I might need, including multiple versions, in one place. Feel free to copy and save the table.

In the comparison table below, the relationship rows with data from various sources is shown as follows:

  • White – Shared cM Project 2016
  • Peach – Shared cM Project 2017
  • Purple – Shared cM Project 2020
  • Green – DNA Detectives chart

I don’t know if DNA Detectives still uses the “green chart” or if they have moved to the interactive DNAPainter tool. I’ve retained the numbers for historical reference regardless.

Additionally, in some places, you’ll see references to the “degree of relationship,” as in “third degree relatives always match each other.” I’ve included a “Degree of Relationship” column to the far right, but I don’t come across those “relationship degree” references often anymore either. However, it’s here for reference if you need it.

23andMe still gives relationships in percentages, so I’ve included the expected shared percent of DNA for each relationship and the actual shared range from the DNA Detectives Green Chart.

One column shows the expected shared cM amount, assuming that 50% of the DNA from each ancestor is passed on in each generation. Clearly, we know that inheritance doesn’t happen that cleanly because recombination is a random event and children do NOT inherit exactly half of each ancestor’s DNA carried by their parents, but the average should be someplace close to this number.

shared cm table 2020

click to open separately, then use your magnifier to enlarge

The first thing I noticed about V4 is that there is a LOT more data which means that the results are likely more accurate. V4 increased by 32K data points, or 147%. Bravo to everyone who participated, to Blaine for the analysis and to Jonny for automating the results at DNAPainter.

Methods

Blaine provided his white paper, here, which includes “everything you need to know” about the project, and I strongly encourage you to read it. Not only does this document explain the process and methods, it’s educational in its own right.

On the first page, Blaine discusses issues. Any time you are crowd sourcing information, you’re going to encounter challenges and errors. Blaine did remove any entries that were clearly problematic, plus an additional 1% of all entries for each category – .5% from each end meaning the largest and smallest entries. This was done in an attempt to remove the results most likely to be erroneous.

Known issues include:

  • Data entry errors – I refer to these as “clerical mutations,” but they happen and there is no way, unless the error is egregious, to know what is a typo and what is real. Obviously, a parent sharing only a 10 cM segment with a child is not possible, but other data entry errors are well within the realm of possible.
  • Incorrect relationships – Misreported or misunderstood relationships will skew the numbers. Relationships may be believed to be one type, but are actually something else. For example, a half vs full sibling, or a half vs full aunt or uncle.
  • Misunderstood Relationships – People sometimes become confused as to the difference between “half” and “removed” from time to time. I wrote a helpful article titled Quick Tip – Calculating Cousin Relationships Easily.
  • Endogamy – Endogamy occurs when a population intermarries within itself, meaning that the same ancestral DNA is present in many members of the community. This genetic result is that you may share more DNA with those cousins than you would otherwise share with cousins at the same distance without endogamy.
  • Pedigree Collapse – Pedigree collapse occurs when you find the same ancestors multiple times in your tree. The closer to current those ancestors appear, the more DNA you will potentially carry from those repeat ancestors. The difference between endogamy and pedigree collapse is that endogamy is a community event and pedigree collapse has only to do with your own tree. You might just have both, too.
  • Company Reporting Differences – Different companies report DNA in different ways in addition to having different matching thresholds. For example, Family Tree DNA includes in your match total all DNA to 1 cM that you share with a match over the matching threshold. Conversely, Ancestry has a lower matching threshold, but often strips out some matching DNA using Timber. 23andMe counts fully identical segments twice and reports the X chromosome in their totals. MyHeritage does not report the X chromosome. There is no “right” or “wrong,” or standardization, simply different approaches. Hopefully, the variances will be removed or smoothed in the averages.
  • Distant Cousin Relationships – While this isn’t really an issue, per se, it’s important to understand what is being reported beyond 2nd cousin relationships in that the only relationships used to calculate these averages is the DNA from people who DO share DNA with their more distant cousins. In other words, if you do NOT match your 3rd cousin, then your “0” shared DNA is not included in the average. Only those who do match have their matching amounts included. This means that the average is only the average of people who match, not the average of all 3rd cousins.

Challenges aside, the Shared cM Project provides genealogists with a wonderful opportunity to use the combined data of tens of thousands of relationships to estimate and better understand the relationship range of our matches.

The Shared cM Project in combination with DNAPainter provides us with a wonderful tool.

Histograms

When analyzing the data, one of the first things I noticed was a very unusual entry for parent/child relationships.

We all know that children each inherit exactly half of their parent’s DNA. We expect to find an amount in the ballpark of 3400, give or take a bit for normal variances like read errors or reporting differences.

Shared cM parent child.png

click to enlarge

I did not expect to see a minimum shared cM amount for a child/parent relationship at 2376, fully 1024 cM below expected value of 3400 cM. Put bluntly, that’s simply not possible. You cannot live without one third of one of your parent’s DNA. If this data is actually accurate from someone’s account, please contact me because I want to actually see this phenomenon.

I reached out to Blaine, knowing this result is not actually possible, wondering how this would ever get through the quality control cycle at any vendor.

After some discussion, here’s Blaine’s reply:

If you look at the histogram, you’ll see that those are most likely outliers. One of my lessons for the ScP (Shared cM Project) lately is that people shouldn’t be using the data without the histograms.

People get frustrated with this, but I can’t edit data without a basis even if I think it doesn’t make sense. I have to let the data itself decide what data to remove. So I removed 1% from each relationship, the lowest 0.5% and the highest 0.5%. I could have removed more, but based on the histograms, [removing] more appeared to be removing too much valid data. As people submit more parent/child relationships these outliers/incorrect submissions will be removed. But thankfully using the histograms makes it clear.

Indeed, if you look on page 23 on Blaine’s white paper, you’ll see the following histogram of parent/child relationships submitted.

shared cm histogram.png

click to enlarge

Keep in mind that Blaine already removed any obvious errors, plus 1% of the total from either end of the spectrum. In this case, he utilized 2412 submissions, so he would have removed about 24 entries that were even further out on the data spectrum.

On the chart above, we can see that a total of about 14 are still really questionable. It’s not until we get to 3300 that these entries seem feasible. My speculation is that these people meant to type 3400 instead of 2400, and so forth.

shared cm parent grid.png

click to enlarge

The great news is that Jonny Perl at DNAPainter included the histograms so you can judge for yourself if you are in the weeds on the outlier scale by clicking on the relationship.

shared cm parent submissions.png

click to enlarge

Other relationships, like this niece/nephew relationship fit the expected bell shaped curve very nicely.

shared cm niece.png

Of course, this means that if you match your niece or nephew at 900 cM instead of the range shown above, that person is probably not your full niece or nephew – a revelation that may be difficult because of the implications for you, your parent and sibling. This would suggest that your sibling is a half sibling, not a full sibling.

Entering specific amounts of shared DNA and outputting probabilities of specific relationships is where the power of DNAPainter enters the picture. Let’s enter 900 cM and see what happens.

shared cm half niece.png

That 900 cM match is likely your half niece or nephew. Of course, this example illustrates perfectly why some relationships are entered incorrectly – especially if you don’t know that your niece or nephew is a half niece or nephew – because your sibling is a half-sibling instead of a full sibling. Some people, even after receiving results don’t realize there is a discrepancy, either because their data is on the boundary, with various relationships being possible, or because they don’t understand or internalize the genetic message.

shared cm full siblings.png

click to enlarge

This phenomenon probably explains the low minimum value for full siblings, because many of those full siblings aren’t. Let’s enter 1613 and see what DNAPainter says.

shared cm half sibling.png

You’ll notice that DNAPainter shows the 1613 cM relationship as a half-sibling.

shared cm sibling.png

And the histogram indeed shows that 1613 would be the outlier. Being larger that 1600, it would appear in the 1700 category.

shared cm half vs full.png

click to enlarge

Accurately discerning close relationships is often incredibly important to testers. In the histogram chart above, you can see that the blue and orange histograms plotted on the same chart show that there is only a very small amount of overlap between the two histograms. This suggests that some people, those in the overlap range, who believe they are full siblings are in reality half-siblings, and possibly, a few in the reverse situation as well.

What Else is Noteworthy?

First, some relationships cannot be differentiated or sorted out by using the cM data or histogram charts alone.

shared cm half vs aunt.png

click to enlarge

For example, you cannot tell the difference between half-siblings and an aunt/uncle relationship. In order to make that determination, you would need to either test or compare to additional people or use other clues such as genealogical research or geographic proximity.

Second, the ranges of many relationships are wider than they were before. Often, we see the lows being lower and the highs being higher as a result of more data.

shared cm low high.png

click to enlarge

For example, take a look at grandparents. The expected relationship is 1700 cM, the average is 1754 which is very close to the previous average numbers of 1765 and 1766. However, the minimum is now 984 and the new maximum is 2462.

Why might this be? Are ranges actually wider?

Blaine removed 1% each time, which means that in V3, 6 results would have been removed, 3 from each end, while 11 would be removed in V4. More data means that we are likely to see more outliers as entries increase, with the relationship ranges are increasingly likely to overlap on the minimum and maximum ends.

Third, it’s worth noting that several relationships share an expected amount of DNA that is equal, 12.5% which equals 850 cM, in this example.

shared cm 4 relationships.png

click to enlarge

These four relationships appear to be exactly the same, genetically. The only way to tell which one of these relationships is accurate for a given match pair, aside from age (sometimes) and opportunity, is to look at another known relationship. For example, how closely might the tester be related to a parent, sibling, aunt, uncle or first cousin, or one of their other matches. Occasionally, an X chromosome match will be enlightening as well, given the unique inheritance path of the X chromosome.

Additional known relationships help narrow unknown relationships, as might Y DNA or mitochondrial DNA testing, if appropriate. You can read about who can test for the various kinds of tests, here.

Fourth, it’s been believed for several years that all 5th degree relatives, and above, match, and the V4 data confirms that.

shared cm 5th degree.png

click to enlarge

There are no zeroes in the column for minimum DNA shared, 4th column from right.

5th degree relatives include:

  • 2nd cousins
  • 1st cousins twice removed
  • Half first cousins once removed
  • Half great-aunt/uncle

Fifth, some of your more distant cousins won’t match you, beginning with 6th degree relationships.

shared cm disagree.png

click to enlarge

At the 6th degree level, the following relationships may share no DNA above the vendor matching threshold:

  • First cousins three times removed
  • Half first cousins twice removed
  • Half second cousins
  • Second cousins once removed

You’ll notice that the various reporting models and versions don’t always agree, with earlier versions of the Shared cM Project showing zeroes in the minimum amount of DNA shared.

Sixth, at the 7th degree level, some number of people in every relationship class don’t share DNA, as indicated by the zeros in the Shared cM Minimum column.

shared cm 7th degree.png

click to enlarge

The more generations back in time that you move, the fewer cousins can be expected to match.

shared cm isogg cousin match.png

This chart from the ISOGG Wiki Cousin statistics page shows the probability of matching a cousin at a specific level based on information provided by testing companies.

Quick Reference Chart Summary

In summary, V4 of the Shared cM Project confirms that all 2nd cousins can expect to match, but beyond that in your trees, cousins may or may not match. I suspect, without evidence, that the further back in time that people are related, the less likely that the proper “cousinship level” is reported. For example, it would be easier to confuse 7th and 8th cousins as compared to 1st and 2nd cousins. Some people also confuse 8th cousins with 8 generations back in your tree. It’s not equivalent.

shared cm eighth cousin.png

click to enlarge

It’s interesting to note that Degree 17 relatives, 8th cousins, 9 generations removed from each other (counting your parents as generation 1), still match in some cases. Note that some companies and people count you as generation 1, while others count your parents as generation 1.

The estimates of autosomal matching reaching 5 or 6 generations back in time, meaning descendants of common 4 times great-grandparents will sometimes match, is accurate as far as it goes, although 5-6 generations is certainly not a line in the sand.

It would be more accurate to state that:

  • 2nd cousins, people descended from common great-grandparents, 3 generations back in time will always match
  • 4th cousins, people descended from common 3 times great grandparents, 5 generations back in time, will match about half of the time
  • 8th cousins, people descended from 7 times great grandparents, 9 generations back in time still match a small percentage of the time
  • Cousins from more distant ancestors can possibly match, but it’s unlikely and may result from a more recent unknown ancestor

I created this summary chart, combining information from the ISOGG chart and the Shared cM Project as a handy quick reference. Enjoy!

shared cm quick reference.png

click to enlarge

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Phylogenetic Tree of Novel Coronavirus (hCoV-19) Covid-19

Covid Pedigree.png

I found this information about the phylogenetic tree of Covid-19 very interesting, in part, due to how rapidly this virus mutates.

Note that this tree was constructed with shared contributed information from just 333 samples, and that as of today, we know of 126,000+ confirmed cases, meaning that there are assuredly many more and this tree is a bare bones structure.

This tree and additional information can be viewed in various ways on this site.

Covid branching.png

Imagine how vast this tree would look if we could see the entire branching tree structure. This also explains the phenomenon of rapid viral mutation to either more or less virulent strains, and why “next year’s” vaccine will only be partially effective against a strain that was prevalent a few months earlier.

Let’s talk about mutations for a minute. We look at trees like this for the history of mankind or womankind over tens of thousands of years, not a 9 or 10 week timeline in the evolution of a virus.

If you look at that orange branch at about 5 o’clock, you can easily imagine that branch mutating to be nearly harmless, and the red branch at about 2 o’clock mutating to be even more deadly. It would be some time until we discovered that the different tree branches were behaving in different ways, and then even longer to determine how to harvest that information and distill it to be useful for prevention or cure.

I also found it very interesting to view the source of the various viral strains in the Americas on a GIS map.

Covid infection map.png

The strain in western Canada originated in Iran, as did the strain in New Zealand and one in Australia. Of course, the Iranian line originally came from China. Some infections in Australia came directly from China, as did most of the European pockets. South America and Mexico both arrived from Italy, as did many of the UK infections, although some appear to have passed through the Netherlands and Belgium first.

If you ever had any doubt in your mind about world being high interconnected, this should remove any question.

Take a few minutes and look at all of the informational options on this website. It’s wonderfully cool and is not limited to this outbreak.

I’ve updated my original article with additional resources as they’ve become available – in particular this “active case” map.

Keep yourself safe. Wash, limit social contact and hey, do some genealogy!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

News: Nebula Genomics Whole Genome, MyHeritage Photos Go Viral & Upcoming Publication Schedule

“It never rains but it pours.”

Let’s just say I’m a tad bit overwhelmed right now for numerous reasons. Never, ever even whisper to yourself, “what else could go wrong?” Because you know what happens next, right!

Right now, I need to focus on what needs to be done for RootsTech and on some unexpected matters.

Translated, this means that my blog article publication schedule is slipping, and here’s what to expect.

There won’t be any 52 Ancestors articles for at least two weeks, and perhaps a tad longer. There’s a lot of research and prep that goes into each one, and I just don’t have the cycles right now.

I will *try* to get my regular technical article out this week. I did have a couple queued before RootsTech, but they aren’t finalized. Fingers crossed.

I will try to get at least a short RootsTech article out next week while I’m there. If I manage to do that, the photos will be uncropped and it will be “rough” and brief compared to my normal articles. Think of it as embedded reporting – I’m your correspondent on the ground:)

I do have a couple very interesting newsy items to share with you today.

Nebula Genomics Introduces 30X Whole Genome Sequence, Partners with Family Tree DNA

Nebula.png

I just received an e-mail from Nebula Genomics announcing that they are offering a whole genome 30X (30 scan coverage) sequence (WGS) for $299, plus a subscription to maintain access to updates in their research library. The idea is to sequence once and update your data forever, meaning that medical and other information will be at your fingertips as it becomes available. You can read their FAQ, here and the announcement here.

For this price, the DNA is sequenced in Hong Kong, not mainland China (a situation you can read about here,) but by BGI, renamed from Bejing Genomics Institute, a Chinese government-owned firm. This gives me significant pause due to the Chinese political regime and oppression of the Uighur population using genetic data. Nebula states that they are looking to move their processing onshore in the near future. I will be much more comfortable as soon as that happens.

However, there’s more news. Nebula has partnered with Family Tree DNA.

Hey, Family Tree DNA has a world-class lab, GenebyGene. Perhaps Nebula can move their processing there. I would even pay more to *NOT* send my DNA to a Chinese firm.

Nebula FTDNA.png

Beginning in Q2, you’ll be able to transfer at least some of your information from Nebula Genomics to Family Tree DNA’s Y and mitochondrial databases. This appears to be a direct company to company transfer, much easier than a download/upload, assures accuracy and provides enhanced security.

I don’t see details, and it’s not Q2 yet of course, but I would expect this transfer to function similar to others where the transfer and perhaps some basic tools are free, but for advanced tools, an unlock fee at Family Tree DNA would probably be required. I also don’t know if all data would be transferred, or what happens if you’ve already taken a lower level test, or if coverage isn’t sufficient. Lots to work out moving forward.

Unlike the other WGS products that I’ve considered, Nebula provides a genomic browser and available files for download. In other words, you don’t just receive your sequenced file on a disc and wonder what to do next, and how.

I do have questions about this new offering, but for the $299 price, anyone thinking about whole genome sequencing and is OK with BGI should consider Nebula, especially with the possibility of transferring Y and mitochondrial DNA directly.

As far as I’m concerned, whole genome sequencing become a viable option when:

  • It’s reasonably priced
  • The coverage is adequate, at least 30X
  • My data is secure (meaning not BGI or China)
  • I can easily transfer portions elsewhere (without having to use third party tools to extract the data) and utilize the Y, mitochondrial and autosomal files as uploads in other locations
  • The vendor provides tools or a subscription so I can reap continuing value

When Nebula processing moves onshore, or at least to a western-world lab, I’ll be all in!

My Heritage Colorized Photos Go Viral

I’m pleased to tell you that MyHeritage reports that people have colorized more than a million photos in the first 5 days since they first announced their new photo colorization tool. That means sharing with family and other people getting excited about genealogy.

I’m observing family members on social media realizing they have “long lost” pictures and sharing them when they see the new colorized photos posted. As genealogists, this is EXACTLY what we want to see.

Look at some of these amazing photos in the MyHeritage blog article, here.

Remember, if you’re not a MyHeritage subscriber, you can colorize 10 photos for free and then you can set up a free trial subscription account. When you colorize the photos, MyHeritage saves them beside the original in your MyHeritage account for you. I love this service.

If you’re having problems with older photos, try rescanning the original at the highest scan resolution possible.

I’ve also discovered that this tool doesn’t just colorize photos of people – but of buildings, landscapes and pets too. I’ve found the best results are with something that has a natural green, like leaves, because the software seems to calibrate itself by finding something it can identify.

Fluffy.png

Fluffy color.png

You’ll forgive me if I go and have a good cry now.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

DNA Inherited from Grandparents and Great-Grandparents

Philip Gammon, our statistician friend has been working with crossover simulations again in order to tell us what we might expect relative to how much DNA we actually inherit from grandparents and great-grandparents.

We know that on average, we’re going to inherit 25% of our DNA from each grandparent – but we also know in reality that’s not what happens. We get more or less than exactly 25% from each person in a grandparent pair. It’s the total of the DNA of both grandparents that adds up to 50% for the couple.

How does this work, and does it make a difference whether we inherit our grandparent’s DNA through males or females?

Philip has answers for us as a result of his simulations.

DNA Inheritance from Grandparents

Philip Gammon:

When we consider the DNA that we inherit from our ancestors the only quantity that we can be certain of is that we receive half of our autosomal DNA from each parent. This is delivered to us in the form of the 22 segments (i.e. chromosomes) provided by our mothers in the ova and the 22 segments/chromosomes provided by our fathers in the sperm cell. Beyond parent-child relationships we tend to talk about averages. For instance, we receive an average of one quarter of our DNA from each of our four grandparents and an average of one-eighth of our DNA from each of our eight great-grandparents etc.

These figures vary because our parents didn’t necessarily pass on to us equal portions of the DNA that they received from their parents. The level of variation is driven by the number (and location) of crossover events that occur when the ova and the sperm cells are created.

The statistics relevant to the recombination process were discussed in detail in a previous article (Crossovers: Frequency and Inheritance Statistics – Male Versus Female Matters). With the availability these days of abundant real data from direct-to-consumer genetic testing companies (such as the 23andMe data utilised by Campbell et. al. in their paper titled “Escape from crossover interference increases with maternal age”) we can use this information as a basis for simulations that accurately mimic the crossover process. From these simulations we can measure the amount of variation that is expected to be observed in the proportions of DNA inherited from our ancestors. This is precisely what I have done in simulations run on my GAT-C model.

Before looking at the simulation results let’s anticipate what we expect to see. The previous article on crossover statistics revealed that there are an average of about 42 crossovers in female meiosis and about 27 in male meiosis. So, on the set of 22 chromosomes received from our mothers there will have been an average of 42 crossover locations where there was a switch between DNA she inherited from one parent to the other. That means that the DNA we inherit from our maternal grandparents typically comes in about 64 segments, but it won’t necessarily be 32 segments from each maternal grandparent. Chromosomes that experienced an odd number of crossovers contain an even number of segments (half originating from the grandmother, the other half from the grandfather) but chromosomes with an even number of crossovers (or zero!) have an odd number of segments so on these chromosomes you must receive one more segment from one grandparent than the other. And of course not all segments are the same size either. A single crossover occurring close to one end of the chromosome results in a small segment from one grandparent and a large segment from the other. All up there are quite a few sources of variation that can affect the amount of DNA inherited from grandparents. The only certainty here is that the amount inherited from the two maternal grandparents must add to 50%. If you inherit more than the average of 25% from one maternal grandparent that must be offset by inheriting less than 25% from the other maternal grandparent.

Gammon grandparents maternal percent.png

The above chart shows the results of 100,000 simulation runs. Excluding the bottom and top 1% of results, 98% of people will receive between 18.7% and 31.3% of their DNA from a maternal grandparent. The more darkly shaded region in the centre shows the people who receive a fairly even split of between 24% and 26% from the maternal grandparents. Only 28.8% of people are in this region and the remainder receive a less even contribution.

On the set of 22 chromosomes received from fathers there will have been an average of around 27 crossovers so the DNA received from the paternal grandparents has only been split into around 49 segments. It’s the same amount of DNA as received from mothers but just in larger chunks of the grandparent’s DNA. This creates greater opportunity for the father to pass on unequal amounts of DNA from the two grandparents so it would be expected that results from paternal inheritance will show more variation than from maternal inheritance.

Gammon grandparents paternal percent.png

The above chart shows the results of 100,000 simulated paternal inheritance events. They are more spread out than the maternal events with the middle 98% of people receiving between 16.7% and 33.3% of their DNA from a paternal grandparent. Only 21.9% of people receive a fairly even split of between 24% and 26% from each paternal grandparent as shown by the more darkly shaded region in the centre.

Gammon grandparents percent cM.png

To help with the comparison between maternal and paternal inheritance from grandparents the two distributions have been overlayed on the same scale in the chart above. And what are the chances of receiving a fairly even split of grandparents DNA from both your mother and your father? Only 6.3% of people can be expected to inherit an amount of between 24% and 26% of their DNA from all four grandparents.

Now I’ll extend the simulations out to the next generation and examine the variation in proportions of DNA inherited from the eight great-grandparents. There are effectively four groups of great-grandparents:

  • Mother’s maternal grandparents
  • Mother’s paternal grandparents
  • Father’s maternal grandparents
  • Father’s paternal grandparents

The DNA from group 1 has passed to you via two maternal recombination events, from your mother’s mother to your mother, then from your mother to you. On average there would have been 42 crossovers in each of these recombination events. Group 4 comprised two paternal recombination events averaging only 27 crossovers in each. The average amount of DNA received along each path is the same but along the group 1 path it would comprise of more numerous smaller segments than the group 4 path. Groups 2 and 3 would be somewhere between, both consisting of one maternal and one paternal recombination event.

Gammon greatgrandparents percent cM.png

The above chart shows the variation in the amount of DNA received from members of the four groups of great-grandparents. 25,000 simulations were performed. The average amount from any great-grandparent is 12.5% but there can be considerably more variation in the amount received from the father’s paternal grandparents than from the mother’s maternal grandparents. Groups 2 and 3 are between these two extremes and are equivalent. It doesn’t matter whether a paternal recombination follows a maternal one or vice versa – the end result is that both paths consist of the same average number of crossovers.

The table below shows the range in the amount of DNA that people receive from their great-grandparents. The bottom and top 1% of outcomes have been excluded. Note that these are based on a total of 3,418 cM for the 22 autosomes which is the length observed in the Campbell et. al. study. The average of 12.5% of total DNA is 854.5 cM:

Group 1st percentile 99th percentile
Mother’s maternal grandparents 522 cM 1219 cM
Mother’s paternal grandparents 475 cM 1282 cM
Father’s maternal grandparents 475 cM 1281 cM
Father’s paternal grandparents 426 cM 1349 cM

As a matter of interest, in each of the 25,000 simulations the amount of DNA received from the eight great-grandparents were sorted into order from the highest cM to the lowest cM. The averages of each of these eight amounts were then calculated and the results are below:

Gammon greatgrandparents average cM.png

On average, a person receives 1,129 cM from the great-grandparent that they inherited the most of their DNA from and only 600 cM from the great-grandparent that they received the least of their DNA from. But none of us are the result of 25,000 trials – we are each the product of recombination events that occurred once only. The above chart shows the average or typical variation in the amount of DNA received from the eight great-grandparents. Half of people will have experienced more variation than shown above and half of people will have experienced less variation.

Could you have received the same amount of DNA from all eight grandparents? Of course, it is possible, but it turns out that it is extremely unlikely. The average is 12.5% (854.5 cM) so anything between 12% (820.4 cM) and 13% (888.7 cM) could be considered as being close to this figure. The results reveal that this did not occur in any of the 25,000 simulations. Not one person received amounts between 12% and 13% from all eight great-grandparents.

Widening the criteria, I observe that there were 13 instances in the 25,000 simulations where people received between 11.5% and 13.5% of their DNA from all eight great-grandparents. That is still an extremely rare occurrence. Expanding the range further to between 11% and 14% saw a total of 126 instances, but this still only represents about half a percent of all observations. I think that we just have to face the fact that unless we are an extremely rare individual then we will not have inherited close to equal amounts of DNA from our eight great-grandparents.

Now, back to Roberta.

Thanks Philip.

Now we see why we might not inherit the same amount of DNA from our grandparents and great-grandparents.

We Don’t Have Equal Numbers of Matches on Tree Branches

This also might explain, at least in part, why people don’t have the same number of DNA matches on each branch of their tree.

Of course, other reasons include:

  • Uneven family sizes
  • Fewer or more cousins testing on different branches
  • Recent immigration meaning there are few people available to test
  • Family from a region where DNA testing and/or genealogy is not popular
  • Endogamy which dramatically increases the number of people you will match

Real Life Example

In our real-life example, two grandchildren are fortunate to have three grandparents and one great-grandparent available for matching.

For comparison purposes, let’s take a look at how many matches each grandchild has in common with their grandparents and great-grandparent.

The line of descent is as follows:

Gammon line of descent.png

Both end of line testers are female children.

The transmission path from their great-grandmother is:

  • Female to their paternal grandmother
  • Female to their father
  • Male to female tester

The transmission path from their maternal grandfather is:

  • Male to their mother
  • Female to female tester

The transmission path from their maternal grandmother is:

  • Female to their mother
  • Female to female tester

This first chart shows the number of common matches.

Matches Grand 1 Grand 2 GGF GGM Grand 3 Grand 4
Female 1 absent 1061 absent 238 529 1306
Female 2 absent 1225 absent 431 700 1064

It’s interesting that the matches in just 3 generations to the great-grandmother vary by 55%. The second tester has almost twice as many matches in common with her great-great-grandmother as she does the first tester. There a difference in the earlier generation, meaning matches to Grand 2, but only about 23%. That difference increased significantly in one generation.

The second chart shows the total number of matching cM with the matching family member.

Total cM Grand 1 Grand 2 GGF GGM Grand 3 Grand 4
Female 1 absent 1688 absent 713 1601 1818
Female 2 absent 1750 absent 852 1901 1511

We can see that the amount of DNA inherited from a grandparent does correlate with the number of matches to that grandparents. The more DNA shared, of course the better the chances of sharing that DNA with another person. However, multiple factors may be involved with why some people have more or fewer matches.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Y DNA: Part 1 – Overview

This is Part 1 of a series about Y DNA and how to use it successfully for genealogy.

If you’re in need of a brief DNA testing overview, please read 4 Kinds of DNA for Genetic Genealogy.

Y DNA testing has so much to offer. In this overview article, I’m touching briefly on each of the major functions and features of Y DNA testing. Following articles in this series will focus on how to utilize each tool for genealogy and harvesting every snippet of information available.

If you have Y DNA results, you can sign on to your account at Family Tree DNA and follow along. Throughout these articles, we’ll step through every tab and function, how to use them, and what they mean to you.

What is Y DNA and Why Do I Care?

Y DNA is what makes males, well, male.

The 23rd pair of human chromosomes consists of an X and a Y chromosome.

Female children inherit an X from both parents.

Male children inherit an X chromosome from their mother, but a Y from their father.

Generally, the Y chromosome follows the male surname line, so Estes males pass their Estes Y chromosome to their sons.

When adoptions occur, of course the surname of record does not match the biological surname associated with the Y chromosome – which is exactly why male adoptees take Y DNA tests.

Inheritance Path

In the example below, you can see that the light blue Y chromosome is passed from father to son to son to son to the male child in the current generation.

Y overview inheritance path

Click to enlarge

The dark blue maternal great-grandfather in this example also passes his Y chromosome to his son, but it stops there since the next generation in this tree is a female.

The light blue son at the bottom inherits a Y chromosome from his father, from ancestors all the way up that light blue line – along with his surname. The daughter doesn’t receive a Y chromosome nor do any females.

If you’re a male, you can test your own Y DNA of course.

If you’re a female, like the daughter, above, you must find a male in the line you seek to test. In this case, the brother, father, grandfather, paternal uncles and so forth represent her father’s Y DNA.

If you want information from any of the Y chromosome lineages in this chart that you don’t personally carry, you must find a male descended directly patrilineally from that line to test. It’s generally fairly easy to identify those people, because they will also carry the relevant surname. There are several examples in the article, Concepts – Who to Test for Your Father’s DNA.

Every Y DNA line has its own unique story for genealogists to harvest – assuming we can find an appropriate candidate for testing or find someone who has already tested. We’ll talk about how to see if your line may have already tested in the Projects section later in this article.

Why Y DNA Works

Y DNA is inherited from the patrilineal line directly. Unlike autosomal DNA, there is no genetic contribution from any females.

This uniquely male inheritance path allows us to use Y DNA for matching to other males beginning with the first generation, the father, then reaching back many generations providing a way to view our ancestral heritage beyond the line-in-the-sand boundary of surnames.

In other words, because Y DNA is not mixed with any DNA from the mothers, it’s very nearly identical to our patrilineal ancestors’ Y DNA – meaning it matches that of the father, and grandfather, reaching back many generations.

Some people, especially new autosomal testers, believe that Y DNA is ONLY useful for deep ancestry and not for genealogy. That’s ENTIRELY mistaken. Y DNA is extremely important in confirming descent from known ancestors. In fact, without Y DNA, you can’t tell the difference with autosomal testing between a child born to a male and a child born to the female of a couple. I wrote about that hereNo one wants to spend years barking up the wrong tree.

Y DNA testing is also the single best way to push the Y DNA genealogy back further in time. It can and does identify the geographic source, overseas, of the DNA lineage, through matches to other testers as well as haplogroup matches. These are things autosomal DNA simply cannot accomplish.

In fact, Y DNA did exactly that for my own Speak(es) line, connecting us genetically to the Speak family from Downham, Lancashire, England which then facilitated discovering the actual baptism document of our immigrant ancestor. Finding our English geographic source had eluded researchers for decades. A year later, a group of 20+ descendants visited Downham and stood in that very church.

Speak Family at St Mary Whalley

There simply is no better success story.

Migration Path Identified

Not only can Y DNA confirm recent ancestors and find ones more distant, by tracing a series of mutations, we can track our ancestor over time beginning with Y Line Adam, born in Africa tens of thousands of years ago to that church in an ancestral country and then to where we are today.

Y overview migration path.png

Mutations Happen

If mutations never occurred, the Y DNA of all males would be identical and therefore not useful for us to use for genealogy or to peer back in time beyond the advent of surnames.

Mutations do occur, just not on any schedule. This means that it’s difficult to predict how long ago we shared a common ancestor with someone else based solely on Y DNA mutations – although some types of mutations are better predictors than others.

A mutation might occur between a male and his father, or there might be no mutations for hundreds or even, potentially, thousands of years – depending on the marker type.

For example, in the Estes DNA project, one group of men have no STR (short tandem repeat) mutations in 8 generations. Others have several in the same number of generations.

Part of the success of matching genealogically with Y DNA testing has to do with:

  • The type of markers tested
  • The number of markers tested – testing fewer marker locations results in matches that are much less specific and therefore less relevant.
  • The luck of whether anyone else from your line has tested

The best results are between men who have taken the Big Y-700 test which provides for the largest number of STR markers and all SNPs (single nucleotide polymorphisms) , both previously known and discovered individually during that person’s Big Y test result.

Let’s take a look at the two different kinds of Y DNA markers and their mutations.

Two Kinds of Mutations

Y DNA can be tested for two different kinds of mutations, STR (short tandem repeat) markers and SNPs (single nucleotide polymorphisms.)

All DNA is comprised of four different nucleotides, abbreviated by A, C, G and T.

  1. A=adenine
  2. C=cytosine
  3. G=guanine
  4. T=thymine

When mutations take place, they can take the form of three types of mutations:

  • A deletion occurs when a nucleotide, or multiple nucleotides, fail to copy during reproduction. Therefore, that location or locations are then blank, with no DNA at that location permanently.
  • A replacement occurs when a nucleotide is replaced or swapped out with a different nucleotide. For example, an A could be replaced with one of the other nucleotides, and so forth.
  • An insertion occurs when a nucleotide or a group of nucleotides is duplicated and inserted between existing nucleotides.

Let’s look at how this actually works.

Indel example 1

Here’s an example segment of DNA.

A deletion would occur if the leading A (or a series of nucleotides) were simply gone.

Indel example 3

A replacement would occur if the first A above were to change to T or G or C as in the example below:

Indel example 2

A replacement is a SNP mutation.

An insertion would be where DNA is inserted between existing nucleotide locations.

STR example

Note the extra red CTs that have been inserted. Specifically, 4 extra CTs, for a total of 5 sets of CT. This is the definition of a STR, a short tandem repeat mutation.

STR markers, known as short tandem repeats, accrue what are similar to copy machine errors. This occurs when a specific segment of Y DNA gets repeated several times in a row. In other words, the copy machine gets stuck.

STR Markers

We purchase STR Y DNA tests from Family Tree DNA grouped into panels that include a specific number of markers.

Y overview STR results

Example of 37 marker results – click to enlarge

These panels consist of the following number of marker locations:

  • 12 markers (now obsolete)
  • 25 markers (now obsolete)
  • 37 markers
  • 67 markers (replaced by 111)
  • 111 markers
  • 500 markers bundled as part of the now-obsolete Big Y-500
  • 700 markers bundled with the Big Y-700

The more markers purchased, the more data points to be compared, and the more relevant and convincing the results.

What Matches See

The STR matches and SNP matches look different on the tester’s results page.

Y overview matches

Click to enlarge

People whom you match on STR panels can see that you do match, if you’ve opted-in to matching, but they can’t see specific differences or mutations. They see the name you’ve entered for yourself, your earliest known ancestor and your match can send e-mail to you. Aside from that, they can’t see your results or mutations unless you’ve joined a public project.

Y overview project

Click to enlarge

Within projects, participant names cannot be listed publicly. In other words, your matches can’t tell that it’s you unless you tell them your kit number or they recognize your earliest known ancestor on the project page and you are the only person with that ancestor.

The Big Y-700 test tests all STR markers in addition to scanning the entire Y chromosome for all SNP (haplogroup defining) mutations. They have the STR matches page like everyone else, but they also have an additional Big Ypage.

People who have taken the Big Y test see a different view of matches on their Big Y matches tab. This is true for either the original Big Y, Big Y-500 which includes a minimum of 500 STR markers or the current Big Y-700 test which includes a minimum of 700 STR markers. (You can always upgrade to the Big Y-700 from earlier tests.)

Y overview Big Y.png

For SNP markers only, above, Big Y matches can see who they match and the SNPs they do and don’t match with that person in common.

For STR markers available only under the Big Y umbrella, meaning above 111 markers, results are displayed under the Y DNA Matches tab in the Big Y STR Differences column, below.

Y overview Big Y STRs

Click to enlarge

You can easily see that only one man on this match list has also taken the Big Y test, and he had 2 differences out of 440 markers. That’s in addition to 2 differences in the first 111 markers, for a total of 4 differences (mutations) in 551 markers.

Researching Without Testing

The great news is that even if you’ve just ordered your test and are waiting for results, you can research and join projects now.

For that matter, you can research using public projects without testing by going to the main Family Tree DNA webpage, scroll down and simply entering the surname of interest into the search box.

New dashboard surname search

You’ll be directed to surname projects where you can view ancestors and results of anonymized project members.

Give it a try to see what comes up for your surnames of interest.

Project Results

Projects at Family Tree DNA provide testers with access to volunteer administrators who help users with various types of information. Administrators also cluster users in projects that are meaningful to their research.

Most Y DNA testers immediately join their surname project.

Using the Estes surname project as an example, you can see that I’ve grouped the project members in ways I feel will be helpful to their genealogy.

Y overview Estes project.png

The Paternal Ancestor Names are particularly helpful to testers as well as people who are interested in testing in order to determine whether or not they are descended from a specific line.

It’s very useful to be able to discern if someone from your line has already tested – because it provides someone for you to match against, or not, as the case may be.

Y overview hap C project.png

The haplogroup C-P39 Y DNA project is shown above with the Paternal Ancestor Name as provided by testers that reflects Native American and First Nations ancestors.

Another important project feature is the project map function, allowing testers in a specific haplogroup (C-P39 below) to view the locations of the earliest known ancestors of other members of the same haplogroup – whether project members match each other or not. Your Native ancestors traveled with theirs and descended from a common ancestor. Cool, huh!

Y overview C map.png

What’s the story associated with the pin distribution of the C-P39 project, above? I wish we knew, and we may someday as research progresses. Whatever it is, it’s probably important genealogically.

Another type of project to join is a geographical or interest group project.

The Acadian AmerIndian Project welcomes descendants who have tested the Y, autosomal and/or mitochondrial DNA of the various Acadian families which includes French and English settlers along with First Nations indigenous ancestors.

Y overview Acadian.png

The map below shows the distribution of Y DNA members of the Acadian Amerindian project diaspora before and after Le Grand Dérangement” that scattered their descendants to the winds.

Y overview Acadian map.png

The pins on the Acadian Amerindian project map above are color coded by haplogroup.

Projects such as this facilitate genealogists discovering the haplogroup and related information about their direct line ancestor without personally testing.

Y overview Doucet.png

For example, if Germain Doucet born about 1641, part of the mustard-colored group above, is my ancestor, by viewing and/or joining this project, I can obtain this information about my ancestor. Project members can see more than casual browsers, because some testers only choose to display results to other project members and some projects are private, with results only displayed to project members. Many surname projects accept descendants who don’t carry the surname itself.

I obviously can’t personally test for Germain Doucet’s Y DNA myself, but thankfully, others who do descend patrilineally from Germain Doucet have been generous enough to test and share by joining this project.

Furthermore, I can contact the tester through the project administrator(s) and gain a great cousin with potentially LOTS of information.

Just think how useful Y DNA would be to genealogists if everyone tested!

Finding Projects to Join

I encourage all testers to join appropriate haplogroup projects. Often, more than one haplogroup project exists for each Y DNA letter, such as C or R. Generally, there are many subgroups for each core haplogroup and you may want to join more than one depending on your results.

I encourage testers to browse the selections and join other interest projects. For example, there are projects such as the Anabaptist Project which focuses on an endogamous religious sect, French-Swiss which is regional, or the American Indian project for people researching Native ancestry, in addition to relevant surname and haplogroup project(s). There are more than 10,000 total (well-organized) projects to choose from.

Your project selections may be a huge benefit to someone else as well as to your own research. Y DNA testing and matching is your best bet for jumping the pond and finding connections overseas.

How to Join Projects

Sign on to your personal page at Family Tree DNA and click on myProjects at the top, then on “Join A Project.”

Mitochondrial DNA join a project

Next, you’ll see a list of projects in which your surname appears. These may or may not be relevant for you.

Y overview project list

Click to enlarge

You can search by surname.

Y overview surname search.png

More importantly, you can browse in any number of sections.

Y-overview-project-categories.png

For Y DNA, I would suggest specifically surnames, of course, Y DNA haplogroups along with Y DNA Geographical Projects, and Dual Geographical Projects.

Y overview haplogroup alpha

Click to enlarge

When you find a project of interest, click to read the description written by the volunteer administrators to see if it’s a good fit for you, then click through to join.

Next Article in the Series

Of course, you’re probably wondering what all of those numbers in your results and shown in projects mean. The next article in a couple weeks will address the meaning of STR marker results.

Testing

If you haven’t yet Y DNA tested and you want to know what secrets your Y DNA holds, you can order your Y DNA test here.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

2019: The Year and Decade of Change

2019 ends both a year and a decade. In the genealogy and genetic genealogy world, the overwhelmingly appropriate word to define both is “change.”

Everything has changed.

Millions more records are online now than ever before, both through the Big 3, being FamilySearch, MyHeritage and Ancestry, but also through multitudes of other sites preserving our history. Everyplace from National Archives to individual blogs celebrating history and ancestors.

All you need to do is google to find more than ever before.

I don’t know about you, but I’ve made more progress in the past decade that in all of the previous ones combined.

Just Beginning?

If you’re just beginning with genetic genealogy, welcome! I wrote this article just for you to see what to expect when your DNA results are returned.

If you’ve been working with genetic genealogy results for some time, or would like a great review of the landscape, let’s take this opportunity to take a look at how far we’ve come in the past year and decade.

It’s been quite a ride!

What Has Changed?

EVERYTHING

Literally.

A decade ago, we had Y and mitochondrial DNA, but just the beginning of the autosomal revolution in the genetic genealogy space.

In 2010, Family Tree DNA had been in business for a decade and offered both Y and mitochondrial DNA testing.

Ancestry offered a similar Y and mtDNA product, but not entirely the same markers, nor full sequence mitochondrial. Ancestry subsequently discontinued that testing and destroyed the matching database. Ancestry bought the Sorenson database that included Y, mitochondrial and autosomal, then destroyed that data base too.

23andMe was founded in 2006 and began autosomal testing in 2007 for health and genealogy. Genealogists piled on that bandwagon.

Family Tree DNA added autosomal to their menu in 2010, but Ancestry didn’t offer an autosomal product until 2012 and MyHeritage not until 2016. Both Ancestry and MyHeritage have launched massive marketing and ad campaigns to help people figure out “who they are,” and who their ancestors were too.

Family Tree DNA

2019 FTDNA

Family Tree DNA had a banner year with the Big Y-700 product, adding over 211,000 Y DNA SNPs in 2019 alone to total more than 438,000 by year end, many of which became newly defined haplogroups. You can read more here. Additionally, Family Tree DNA introduced the Block Tree and public Y and public mitochondrial DNA trees.

Anyone who ignores Y DNA testing does so at their own peril. Information produced by Y DNA testing (and for that matter, mitochondrial too) cannot be obtained any other way. I wrote about utilizing mitochondrial DNA here and a series about how to utilize Y DNA begins in a few days.

Family Tree DNA remains the premier commercial testing company to offer high resolution and full sequence testing and matching, which of course is the key to finding genealogy solutions.

In the autosomal space, Family Tree DNA is the only testing company to provide Phased Family Matching which uses your matches on both sides of your tree, assuming you link 3rd cousins or closer, to assign other testers to specific parental sides of your tree.

Family Tree DNA accepts free uploads from other testing companies with the unlock for advanced features only $19. You can read about that here and here.

MyHeritage

MyHeritage, the DNA testing dark horse, has come from behind from their late entry into the field in 2016 with focused Europeans ads and the purchase of Promethease in 2019. Their database stands at 3.7 million, not as many as either Ancestry or 23andMe, but for many people, including me – MyHeritage is much more useful, especially for my European lines. Not only is MyHeritage a genealogy company, piloted by Gilad Japhet, a passionate genealogist, but they have introduced easy-to-use advanced tools for consumers during 2019 to take the functionality lead in autosomal DNA.

2019 MyHeritage.png

You can read more about MyHeritage and their 2019 accomplishments, here.

As far as I’m concerned, the MyHeritage bases-loaded 4-product “Home Run” makes MyHeritage the best solution for genetic genealogy via either testing or transfer:

  • Triangulation – shows testers where 3 or more people match each other. You can read more, here.
  • Tree Matching – SmartMatching for both DNA testers and those who have not DNA tested
  • Theories of Family Relativity – a wonderful new tool introduced in February. You can read more here.
  • AutoClusters – Integrated cluster technology helps you to visualize which groups of people match each other.

One of their best features, Theories of Family Relativity connects the dots between people you DNA match with disparate trees and other documents, such as census. This helps you and others break down long-standing brick walls. You can read more, here.

MyHeritage encourages uploads from other testing companies with basic functions such as matching for free. Advanced features cost either a one-time unlock fee of $29 or are included with a full subscription which you can try for free, here. You can read about what is free and what isn’t, here.

You can develop a testing and upload strategy along with finding instructions for how to upload here and here.

23andMe

Today, 23andMe is best known for health, having recovered after having had their wings clipped a few years back by the FDA. They were the first to offer Health results, leveraging the genealogy marketspace to attract testers, but have recently been eclipsed by both Family Tree DNA with their high end full Exome Tovana test and MyHeritage with their Health upgrade which provides more information than 23andMe along with free genetic counseling if appropriate. Both the Family Tree DNA and MyHeritage tests are medically supervised, so can deliver more results.

23andMe has never fully embraced genetic genealogy by adding the ability to upload and compare trees. In 2019, they introduced a beta function to attempt to create a genetic tree on your behalf based on how your matches match you and each other.

2019 23andMe.png

These trees aren’t accurate today, nor are they deep, but they are a beginning – especially considering that they are not based on existing trees. You can read more here.

The best 23andMe feature for genealogy, as far as I’m concerned, is their ethnicity along with the fact that they actually provide testers with the locations of their ethnicity segments which can help testers immensely, especially with minority ancestry matching. You can read about how to do this for yourself, here.

23andMe generally does not allow uploads, probably because they need people to test on their custom-designed medical chip. Very rarely, once that I know of in 2018, they do allow uploads – but in the past, uploaders do not receive all of the genealogy features and benefits of testing.

You can however, download your DNA file from 23andMe and upload elsewhere, with instructions here.

Ancestry

Ancestry is widely known for their ethnicity ads which are extremely effective in recruiting new testers. That’s the great news. The results are frustrating to seasoned genealogists who get to deal with the fallout of confused people trying to figure out why their results don’t match their expectations and family stories. That’s the not-so-great news.

However, with more than 15 million testers, many of whom DO have genealogy trees, a serious genealogist can’t *NOT* test at Ancestry. Testers do need to be aware that not all features are available to DNA testers who don’t also subscribe to Ancestry’s genealogy subscriptions. For example, you can’t see your matches’ trees beyond a 5 generation preview without a subscription. You can read more about what you do and don’t receive, here.

Ancestry is the only one of the major companies that doesn’t provide a chromosome browser, despite pleas for years to do so, but they do provide ThruLines that show you other testers who match your DNA and show a common ancestor with you in their trees.

2019 Ancestry.png

ThruLines will also link partial trees – showing you ancestral descendants from the perspective of the ancestor in question, shown above. You can read about ThruLines, here.

Of course, without a chromosome browser, this match is only as good as the associated trees, and there is no way to prove the genealogical connection. It’s possible to all be wrong together, or to be related to some people through a completely different ancestor. Third party tools like Genetic Affairs and cluster technology help resolve these types of issues. You can read more, here.

You can’t upload DNA files from other testing companies to Ancestry, probably due to their custom medical chip. You can download your file from Ancestry and upload to other locations, with instructions here.

Selling Customers’ DNA

Neither Family Tree DNA, MyHeritage nor Gedmatch sell, lease or otherwise share their customers’ DNA, and all three state (minimally) they will not in the future without prior authorization.

All companies utilize their customers’ DNA internally to enhance and improve their products. That’s perfectly normal.

Both Ancestry and 23andMe sell consumers DNA to both known and unknown partners if customers opt-in to additional research. That’s the purpose of all those questions.

If you do agree or opt-in, and for those who tested prior to when the opt-in began, consumers don’t know who their DNA has been sold to, where it is or for what purposes it’s being utilized. Although anonymized (pseudonymized) before sale, autosomal results can easily be identified to the originating tester (if someone were inclined to do so) as demonstrated by adoptees identifying parents and law enforcement identifying both long deceased remains and criminal perpetrators of violent crimes. You can read more about re-identification here, although keep in mind that the re-identification frequency (%) would be much higher now than it was in 2018.

People are widely split on this issue. Whatever you decide, to opt-in or not, just be sure to do your homework first.

Always read the terms and conditions fully and carefully of anything having to do with genetics.

Genealogy

The bottom line to genetic genealogy is the genealogy aspect. Genealogists want to confirm ancestors and discover more about those ancestors. Some information can only be discovered via DNA testing today, distant Native heritage, for example, breaking through brick walls.

This technology, as it has advanced and more people have tested, has been a godsend for genealogists. The same techniques have allowed other people to locate unknown parents, grandparents and close relatives.

Adoptees

Not only are genealogists identifying people long in the past that are their ancestors, but adoptees and those seeking unknown parents are making discoveries much closer to home. MyHeritage has twice provided thousands of free DNA tests via their DNAQuest program to adoptees seeking their biological family with some amazing results.

The difference between genealogy, which looks back in time several generations, and parent or grand-parent searches is that unknown-parent searches use matches to come forward in time to identify parents, not backwards in time to identify distant ancestors in common.

Adoptee matching is about identifying descendants in common. According to Erlich et al in an October 2018 paper, here, about 60% of people with European ancestry could be identified. With the database growth since that time, that percentage has risen, I’m sure.

You can read more about the adoption search technique and how it is used, here.

Adoptee searches have spawned their own subculture of sorts, with researchers and search angels that specialize in making these connections. Do be aware that while many reunions are joyful, not all discoveries are positively received and the revelations can be traumatic for all parties involved.

There’s ying and yang involved, of course, and the exact same techniques used for identifying biological parents are also used to identify cold-case deceased victims of crime as well as violent criminals, meaning rapists and murderers.

Crimes Solved

The use of genetic genealogy and adoptee search techniques for identifying skeletal remains of crime victims, as well as identifying criminals in order that they can be arrested and removed from the population has resulted in a huge chasm and division in the genetic genealogy community.

These same issues have become popular topics in the press, often authored by people who have no experience in this field, don’t understand how these techniques are applied or function and/or are more interested in a sensational story than in the truth. The word click-bait springs to mind although certainly doesn’t apply equally to all.

Some testers are adamantly pro-usage of their DNA in order to identify victims and apprehend violent criminals. Other testers, not so much and some, on the other end of the spectrum are vehemently opposed. This is a highly personal topic with extremely strong emotions on both sides.

The first such case was the Golden State Killer, which has been followed in the past 18 months or so by another 100+ solved cases.

Regardless of whether or not people want their own DNA to be utilized to identify these criminals and victims, providing closure for families, I suspect the one thing we can all agree on is that we are grateful that these violent criminals no longer live among us and are no longer preying on innocent victims.

I wrote about the Golden State Killer, here, as well as other articles here, here, here and here.

In the genealogy community, various vendors have adopted quite different strategies relating to these kinds of searches, as follows:

  • Ancestry, 23andMe and MyHeritage – have committed to fight all access attempts by law enforcement, including court ordered subpoenas.
  • MyHeritage, Family Tree DNA and GedMatch allow uploads, so forensic kits, meaning kits from deceased remains or rape kits could be uploaded to search for matches, the same as any other kit. Law Enforcement uploads violate the MyHeritage terms of service. Both Family Tree DNA and GEDmatch have special law enforcement procedures in place. All three companies have measures in place to attempt to detect unauthorized forensic uploads.
  • Family Tree DNA has provided a specific Law Enforcement protocol and guidelines for forensic uploads, here. All EU customers were opted out earlier in 2019, but all new or existing non-EU customers need to opt out if they do not want their DNA results available for matching to law enforcement kits.
  • GEDmatch was recently sold to Verogen, a DNA forensics company, with information, here. Currently GEDMatch customers are opted-out of matching for law enforcement kits, but can opt-in. Verogen, upon purchase of GEDmatch, required all users to read the terms and conditions and either accept the terms or delete their kits. Users can also delete their kits or turn off/on law enforcement matching at any time.

New Concerns

Concerns in late 2019 have focused on the potential misuse of genetic matching to potentially target subsets of individuals by despotic regimes such as has been done by China to the Uighurs.

You can read about potential risks here, here and here, along with a recent DoD memo here.

Some issues spelled out in the papers can be resolved by vendors agreeing to cryptographically sign their files when customers download. Of course, this would require that everyone, meaning all vendors, play nice in the sandbox. So far, that hasn’t happened although I would expect that the vendors accepting uploads would welcome cryptographic signatures. That pretty much leaves Ancestry and 23andMe. I hope they will step up to the plate for the good of the industry as a whole.

Relative to the concerns voiced in the papers and by the DoD, I do not wish to understate any risks. There ARE certainly risks of family members being identified via DNA testing, which is, after all, the initial purpose even though the current (and future) uses were not foreseen initially.

In most cases, the cow has already left that barn. Even if someone new chooses not to test, the critical threshold is now past to prevent identification of individuals, at least within the US and/or European diaspora communities.

I do have concerns:

  • Websites where the owners are not known in the genealogical community could be collecting uploads for clandestine purposes. “Free” sites are extremely attractive to novices who tend to forget that if you’re not paying for the product, you ARE the product. Please be very cognizant and leery. Actually, just say no unless you’re positive.
  • Fearmongering and click-bait articles in general will prevent and are already causing knee-jerk reactions, causing potential testers to reject DNA testing outright, without doing any research or reading terms and conditions.
  • That Ancestry and 23andMe, the two major vendors who don’t accept uploads will refuse to add crypto-signatures to protect their customers who download files.

Every person needs to carefully make their own decisions about DNA testing and participating in sharing through third party sites.

Health

Not surprisingly, the DNA testing market space has cooled a bit this past year. This slowdown is likely due to a number of factors such as negative press and the fact that perhaps the genealogical market is becoming somewhat saturated. Although, I suspect that when vendors announce major new tools, their DNA kit sales spike accordingly.

Look at it this way, do you know any serious genealogists who haven’t DNA tested? Most are in all of the major databases, meaning Ancestry, 23andMe, FamilyTreeDNA, MyHeritage and GedMatch.

All of the testing companies mentioned above (except GEDmatch who is not a testing company) now have a Health offering, designed to offer existing and new customers additional value for their DNA testing dollar.

23andMe separated their genealogy and health offering years ago. Ancestry and MyHeritage now offer a Health upgrade. For existing customers, FamilyTreeDNA offers the Cadillac of health tests through Tovana.

I would guess it goes without saying here that if you really don’t want to know about potential health issues, don’t purchase these tests. The flip side is, of course, that most of the time, a genetic predisposition is nothing more and not a death sentence.

From my own perspective, I found the health tests to be informative, actionable and in some cases, they have been lifesaving for friends.

Whoever knew genealogy might save your life.

Innovative Third-Party Tools

Tools, and fads, come and go.

In the genetic genealogy space, over the years, tools have burst on the scene to disappear a few months later. However, the last few years have been won by third party tools developed by well-known and respected community members who have created tools to assist other genealogists.

As we close this decade, these are my picks of the tools that I use almost daily, have proven to be the most useful genealogically and that I feel I just “couldn’t live without.”

And yes, before you ask, some of these have a bit of a learning curve, but if you are serious about genealogy, these are all well worthwhile:

  • GedMatch – offers a wife variety of tools including triangulation, half versus fully identical segments and the ability to see who your matches also match. One of the tools I utilize regularly is segment search to see who else matches me on a specific segment, attached to an ancestor I’m researching. GedMatch, started by genealogists, has lasted more than a decade prior to the sale in December 2019.
  • Genetic Affairs – a barn-burning newcomer developed by Evert-Jan Blom in 2018 wins this years’ “Best” award from me, titled appropriately, the “SNiPPY.”.

Genetic Affairs 2019 SNiPPY Award.png

Genetic Affairs offers clustering, tree building between your matches even when YOU don’t have a tree. You can read more here.

2019 genetic affairs.png

Just today, Genetic Affairs released a new cluster interface with DNAPainter, example shown above.

  • DNAPainter – THE chromosome painter created by Jonny Perl just gets better and better, having added pedigree tree construction this year and other abilities. I wrote a composite instructional article, here.
  • DNAGedcom.com and Genetic.Families, affiliated with DNAAdoption.org – Rob Warthen in collaboration with others provides tools like clustering combined with triangulation. My favorite feature is the gathering of all direct ancestors of my matches’ trees at the various vendors where I’ve DNA tested which allows me to search for common surnames and locations, providing invaluable hints not otherwise available.

Promising Newcomer

  • MitoYDNA – a non-profit newcomer by folks affiliated with DNAAdoption and DNAGedcom is designed to replace YSearch and MitoSearch, both felled by the GDPR ax in 2018. This website allows people to upload their Y and mitochondrial DNA results and compare the values to each other, not just for matching, which you can do at Family Tree DNA, but also to see the values that do and don’t match and how they differ. I’ll be taking MitoYDNA for a test drive after the first of the year and will share the results with you.

The Future

What does the future hold? I almost hesitate to guess.

  • Artificial Intelligence Pedigree Chart – I think that in the not-too-distant future we’ll see the ability to provide testers with a “one and done” pedigree chart. In other words, you will test and receive at least some portion of your genealogy all tidily presented, red ribbon untied and scroll rolled out in front of you like you’re the guest on one of those genealogy TV shows.

Except it’s not a show and is a result of DNA testing, segment triangulation, trees and other tools which narrow your ancestors to only a few select possibilities.

Notice I said, “the ability to.” Just because we have the ability doesn’t mean a vendor will implement this functionality. In fact, just think about the massive businesses built upon the fact that we, as genealogists, have to SEARCH incessantly for these elusive answers. Would it be in the best interest of these companies to just GIVE you those answers when you test?

If not, then these types of answers will rest with third parties. However, there’s a hitch. Vendors generally don’t welcome third parties offering advanced tools and therefore block those tools, even though they are being used BY the customer or with their explicit authorization to massage their own data.

On the other hand, as a genealogist, I would welcome this feature with open arms – because as far as I’m concerned, the identification of that ancestor is just the first step. I get to know them by fleshing out their bones by utilizing those research records.

In fact, I’m willing to pony up to the table and I promise, oh-so-faithfully, to maintain my subscription lifelong if one of those vendors will just test me. Please, please, oh pretty-please put me to the test!

I guess you know what my New Year’s Wish is for this and upcoming years now too😊

What About You?

What do you think the high points of 2019 have been?

How about the decade?

What do you think the future holds?

Do you care to make any predictions?

Are you planning to focus on any particular goal or genealogy problem in 2020?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Big Y News and Stats + Sale

I must admit – this past January when FamilyTreeDNA announced the Big Y-700, an upgrade from the Big Y-500 product, I was skeptical. I wondered how much benefit testers would really see – but I was game to purchase a couple upgrades – and I did. Then, when the results came back, I purchased more!

I’m very pleased to announce that I’m no longer skeptical. I’m a believer.

The Big Y-700 has produced amazing results – and now FamilyTreeDNA has decoupled the price of the BAM file in addition to announcing substantial sale prices for their Thanksgiving Sale.

I’m going to discuss sale pricing for products other than the Big Y in a separate article because I’d like to focus on the progress that has been made on the phylogenetic tree (and in my own family history) as a result of the Big Y-700 this year.

Big Y Pricing Structure Change

FamilyTreeDNA recently anounced some product structure changes.

The Big Y-700 price has been permanently dropped by $100 by decoupling the BAM file download from the price of the test itself. This accomplishes multiple things:

  • The majority of testers don’t want or need the BAM file, so the price of the test has been dropped by $100 permanently in order to be able to price the Big Y-700 more attractively to encourage more testers. That’s good for all of us!!!
  • For people who ordered the Big Y-700 since November 1, 2019 (when the sale prices began) who do want the BAM file, they can purchase the BAM file separately through the “Add Ons and Upgrades” page, via the “Upgrades” tab for $100 after their test results are returned. There will also be a link on the Big Y-700 results page. The total net price for those testers is exactly the same, but it represents a $100 permanent price drop for everyone else.
  • This BAM file decoupling reduces the initial cost of the Big Y-700 test itself, and everyone still has the option of purchasing the BAM file later, which will make the Big Y-700 test more affordable. Additionally, it allows the tester who wants the BAM file to divide the purchase into two pieces, which will help as well.
  • The current sale price for the Big Y-700 for the tester who has taken NO PREVIOUS Y DNA testing is now just $399, formerly $649. That’s an amazing price drop, about 40%, in the 9 months since the Big Y-700 was introduced!
  • Upgrade pricing is available too, further down in this article.
  • If you order an upgrade from any earlier Big Y to the Big Y-700, you receive an upgraded BAM file because you already paid for the BAM file when you ordered your initial Big Y test.
  • The VCF file is still available for download at no additional cost with any Big Y test.
  • There is no change in the BAM file availability for current customers. Everyone who ordered before November 1, 2019 will be able to download their BAM file as always.

The above changes are permanent, except for the sale price.

2019 has been a Banner Year

I know how successful the Big Y-700 has been for kits and projects that I manage, but how successful has it been overall, in a scientific sense?

I asked FamilyTreeDNA for some stats about the number of SNPs discovered and the number of branches added to the Y phylotree.

Drum roll please…

Branches Added This Year Total Tree Branches Variants Added to Tree This Year Total Variants Added to Tree
2018 6,259 17,958 60,468 132.634
2019 4,394 22.352 32,193 164,827

The tests completed in 2019 are only representative for 10 months, through October, and not the entire year.

Haplotree Branches

Not every SNP discovered results in a new branch being added to the haplotree, but many do. This chart shows the number of actual branches added in 2018 and 2019 to date.

Big Y 700 haplotree branches.png

These stats, provided by FamilyTreeDNA, show the totals in the bottom row, which is a cumulative branch number total, not a monthly total. At the end of October 2019, the total number of individual branches were 22,352.

Big Y 700 haplotree branches small.png

This chart, above, shows some of the smaller haplogroups.

Big Y 700 haplotree branches large.png

This chart shows the larger haplogroups, including massive haplogroup R.

Haplotree Variants

The number of variants listed below is the number of SNPs that have been discovered, named and placed on the tree. You’ll notice that these numbers are a lot larger than the number of branches, above. That’s because roughly 168,000 of these are equivalent SNPs, meaning they don’t further branch the tree – at least not yet. These 168K variants are the candidates to be new branches as more people test and the tree can be further split.

Big Y 700 variants.png

These numbers also don’t include Private Variants, meaning SNPs that have not yet been named.

If you see Private Variants listed in your Big Y results, when enough people have tested positive for the same variant, and it makes sense, the variants will be given a SNP name and placed on the tree.

Big Y 700 variants small.png

The smaller haplogroups variants again, above, followed by the larger, below.

Big Y 700 variants large.png

Upgrades from the Big Y, or Big Y-500 to Big Y-700

Based on what I see in projects, roughly one third of the Big Y and Big Y-500 tests have upgraded to the Big Y-700.

For my Estes line, I wondered how much value the Big Y-700 upgrade would convey, if any, but I’m extremely glad I upgraded several kits. As a result of the Big Y-700, we’ve further divided the sons of Abraham, born in 1747. This granularity wasn’t accomplished by STR testing and wasn’t accomplished by the Big Y or Big Y-500 testing alone – although all of these together are building blocks. I’m ECSTATIC since it’s my own ancestral line that has the new lineage defining SNP.

Big Y 700 Estes.png

Every Estes man descended from Robert born in 1555 has R-BY482.

The sons of the immigrant, Abraham, through his father, Silvester, all have BY490, but the descendants of Silvester’s brother, Robert, do not.

Moses, son of Abraham has ZS3700, but the rest of Abraham’s sons don’t.

Then, someplace in the line of kit 831469, between Moses born in 1711 and the present-day tester, we find a new SNP, BY154784.

Big Y 700 Estes block tree.png

Looking at the block tree, we see the various SNPs that are entirely Estes, except for one gentleman who does not carry the Estes surname. I wrote about the Block Tree, here.

Without Big Y testing, none of these SNPs would have been found, meaning we could never have split these lines genealogically.

Every kit I’ve reviewed carries SNPs that the Big Y-700 has been able to discern that weren’t discovered previously.

Every. Single. One.

Now, even someone who hasn’t tested Y DNA before can get the whole enchilada – meaning 700+ STRs, testing for all previously discovered SNPs, and new branch defining SNPs, like my Estes men – for $399.

If a new Estes tester takes this test, without knowing anything about his genealogy, I can tell him a great deal about where to look for his lineage in the Estes tree.

Reduced Prices

FamilyTreeDNA has made purchasing the Big Y-700 outright, or upgrading, EXTREMELY attractive.

Test Price
Big Y-700 purchase with no previous Y DNA test

 

$399
Y-12 upgrade to Big Y-700 $359
Y-25 upgrade to Big Y-700 $349
Y-37 upgrade to Big Y-700 $319
Y-67 upgrade to Big Y-700 $259
Y-111 upgrade to Big Y-700 $229
Big Y or Big Y-500 upgrade to Big Y-700 $189

Note that the upgrades include all of the STR markers as yet untested. For example, the 12-marker to Big Y-700 includes all of the STRs between 25 and 111, in addition to the Big Y-700 itself. The Big Y-700 includes:

  • All of the already discovered SNPs, called Named Variants, extending your haplogroup all the way to the leaf at the end of your branch
  • Personal and previously undiscovered SNPs called Private Variants
  • All of the untested STR markers inclusive through 111 markers
  • A minimum of a total of 700 STR markers, including markers above 111 that are only available through Big Y-700 testing

With the refinements in the Big Y test over the past few years, and months, the Big Y is increasingly important to genealogy – equally or more so than traditional STR testing. In part, because SNPs are not prone to back mutations, and are therefore more stable than STR markers. Taken together, STRs and SNPs are extremely informative, helping to break down ancestral brick walls for people whose genealogy may not reach far back in time – and even those who do.

If you are a male and have not Y DNA tested, there’s never been a better opportunity. If you are a female, find a male on a brick wall line and sponsor a scholarship.

Click here to order or upgrade!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research