How to Download Your DNA Matching Segment Data and Why You Should

There are two or three types of data that testers may be able to download from DNA testing sites. Genealogy customers need to periodically download as much as possible.

  1. Raw data files needed for transferring DNA files from the company where you tested to other testing or analysis/comparison sites such as FamilyTreeDNA, MyHeritage, and GEDmatch for matching and other tools.
  2. Matching segment files which detail your matches, segment by segment with people whom you match.
  3. Match information files that provide you with additional information about your matches. What’s included varies by vendor.

This type of information is not uniformly available from all vendors, but is available as follows:

Vendor Raw Data File Matching Segment File Match Information File
FamilyTreeDNA Yes Yes Yes
MyHeritage Yes Yes Yes
23andMe Yes Yes Yes
Ancestry Yes No No
GedMatch Not a testing company, so no Yes Yes

I have provided step-by-step information about how to download your raw DNA data files and upload them to other vendors in a series of articles that you can find here.

Some of the answers in the table above need caveats because each vendor is different. Let’s take a look.

Matching Segment Files

In this article, I’ll provide information about how to download your matching segment and match information file(s).

Unfortunately, Ancestry does not provide any segment data at all, nor do they provide a way to download your match information. Third-party tools that did this for you have been banned by Ancestry, under threat of legal action, so this information is no longer available to Ancestry customers.

You can’t obtain this information from Ancestry, but you can transfer your DNA file to other vendors such as FamilyTreeDNA, MyHeritage and the third-party site, GEDmatch where you’ll receive additional matches. Some Ancestry matches will have transferred elsewhere as well, and you can take advantage of your matching segment information.

Why Do I Want a Matching Segment File?

The matching segment file provides you with information about exactly how and where you match each person.

Here’s an example that includes the match name, chromosome, start and end location of the match along with the total number of CentiMorgans (cM) and total SNPs in the matching segment. Your matching segment file consists of hundreds/thousands of rows of this information.

Determining who matches you on the same segment is important because it facilitates the identification of common ancestors. Segment matching is also the first step in triangulation which allows you to confirm descent from common ancestors with your matches.

I wrote about triangulation at each vendor in the following articles:

Matching and Triangulation help you sort out legitimate matches, and which ancestors that DNA segment comes from.

Sorting For Legitimate Matches

On each segment location of your DNA, you will match:

  • People from your Mom’s side
  • People from your Dad’s side
  • People that are identical by chance (IBC) where they match you because part of the DNA from your Mom’s side and part from your Dad’s side just happens to look like their DNA (or vice versa.)

You can see how matching works in this example of 10 DNA locations. You inherited half of your Mom’s DNA and half of your Dad’s.

  • Legitimate maternal matches to you on this segment will have all As in this location.
  • Legitimate paternal matches to you will have all Cs in this location.
  • Identical by chance matches will match you, because they have the same DNA as both of your parents that you carry – interspersed. They will not match either of your parents individually.

IBC matches DO technically match you, but accidentally. In other words, they are identical by chance (IBC) because they just happen to match the DNA of both of your parents intermixed. Conversely, you can match the DNA of their parents intermixed as well. Regardless of why, they are not a legitimate maternal or paternal match to you.

For example, you can see that the identical by chance (IBC) match to you, above, won’t match the legitimate maternal or legitimate paternal matches.

When comparing your matches on any segment, you’ll wind up with a group of people who match you and each other on your maternal side, a group on your paternal side, and “everyone else” who is IBC.

I wrote about IBD, identical by descent DNA and IBC, identical by chance DNA and how that works, here.

A downloadable segment match file allows you to sort all of your matches by chromosome and segment. That’s the first step in determining if your matches match each other – which is how to determine if people are legitimate matches or IBC.

Additionally, these files allow you to utilize features at DNAPainter along with the tools at DNAGedcom and Genetic Affairs.

Match Information File

There’s a second file you’ll want to download as well except at 23andMe who includes all of the information in one file. You’ll want to download these files from each vendor at the same time so they are coordinated and include the same matches from the same time.

Downloading the second file, your match information, provides additional information which will be helpful for your genealogy. The information in this file varies by vendor, but includes items such as, but not limited to:

  • Tree link
  • Haplogroup
  • Match date
  • Predicted Relationship Range
  • Actual Relationship
  • Total shared cM
  • Longest segment cM
  • Maternal or paternal bucket (FamilyTreeDNA)
  • Notes
  • Email
  • Family Surnames
  • Location
  • Percent of shared DNA

You never know when vendors are going to change something that will affect your matches, like 23andMe did last fall, so it’s a good idea to download periodically.

Downloading your segment match and match information files are free, so let’s do this.

Downloading Your Segment Match & Information Files

FamilyTreeDNA

Sign on to your account.

click images to enlarge

Under your Family Finder Autosomal DNA test results, click on Chromosome Browser.

On the chromosome browser page, at the top right, click on Download All Segments.

Caveat – if you access the chromosome browser through the Family Finder match page, shown below, you will receive the segment matches ONLY for the people you have selected.

After selecting specific matches, as shown above, the option on the chromosome browser page will only say “Download Segments.” It does NOT say “Download All Segments.”

Clicking on this link only downloads the segments that you match with those people, so always be sure to access “Download ALL Segments” directly through the chromosome browser selection on your Autosomal DNA Family Finder menu without going to your match page and selecting specific matches.

The segment download file includes only the segments, but not additional information, such as which side, maternal or paternal, those matches are bucketed to, surnames and so forth. You need to download a second file.

To download additional information about your matches, scroll to the very bottom of your Family Finder match page and click on either Download Matches or Download Filtered matches. If you’ve used a filter such as maternal or paternal, you’ll receive only those matches, so be sure no filters are in use to download all of your matches’ information.

Your reports will be downloaded to your computer, so save them someplace where you can find them.

MyHeritage

Sign in to your account and click on the DNA tab, then DNA Matches.

At the far right-hand side, you’ll see three little dots. Click on the dots and you’ll see the options to export both the entire DNA Matches list and the shared DNA segment info for all DNA Matches.

You’ll want to download both. The first file Is the DNA matches list.

To download your segment matches, select the second option, “Export shared DNA segment info…”

Your files will be emailed to you.

23andMe

At 23andMe, sign on to your account and click on “DNA Relatives” under the Ancestry tab.

You’ll see your list of matches. Scroll to the very bottom where you’ll see the link to “Download aggregate data.”

23andMe combines your segment and match information in one file.

Remember that at 23andMe, your matches are limited to 2000 (unless you’re a V5 subscriber), minus the number of people who have not opted in to Relative Sharing. Additionally, there will be a number of people in the download file whose names appear, but who don’t have any segment data. Those people opted-in to Relative Sharing, but not to share segment information.

For example, my download file has 2827 rows. Of those, 1769 are unique individuals, meaning that I have matches with multiple segments for 1058 people. This means that of my 2000 allowed matches, 231 (or more) did not opt-in for Relative Sharing. The “or more” means that 23andMe does not roll matches off the list if you have communicated with the person, so some people may actually have more than 2000 matches. It’s impossible to know how 23andMe approaches calculations in this case.

Of those 1769 unique individuals on my match list, 257, or 15% did not share segment information. I’d sure like for those to be automatically rolled off and replaced with the next 257 who do share. 1512 or roughly three-quarters, 75%, of my 2000 allowed matches are useful for genealogy.

Initially, when 23andMe made their changes last fall, they were reportedly limiting the download file number to 1000, but they have reversed that policy on the V3 and V4 chips. I downloaded files from both chip versions to confirm that’s true.

I don’t have the V5 chip subscription level, nor am I going to retest to do that, so I don’t know if V5 subscribers receive all 5000 of the allowed matches in their download file.

This is the perfect example of why it’s a good idea to download your match files periodically. 23andMe is the only testing vendor that restricts your matches and when they roll off your list, they are irretrievable.

Aside from that, safe is better than sorry. You never know when something will change at a vendor and you’ll wish you had downloaded your match files earlier.

GedMatch

GedMatch, a third-party vendor, provides lots of tools but isn’t intuitive and provides almost no tutorial or information about how to navigate or use their site. There are some YouTube videos and Kitty Cooper has written several how-to articles. GEDmatch has promised a facelift soon.

GEDmatch provides many tools for free, along with a Tier1 level which provides advanced features by subscription.

At GEDmatch, you can see up to 2000 matches for free, but you must be a Tier 1 subscription member to download your matches – and the download is restricted to your top 1000 matches.

There are two Tier 1 one-to-many comparison options that are very similar. For either, you’ll enter your kit number and make your selection. Given that you’re restricted to 1000 in the download, there is no reason to search for more than 1000 kits.

click to enlarge

Then, click on Visualization options

You will then see the list of visualization options which includes “List/CSV.”

Clicking on “List/CSV” provides you with options.

click to enlarge

You’ll want to select the Matched Segment List, and you can either select “Prevent Hard Breaks,” or not. Allowing hard breaks means that small non-matching regions between two matching segments is not ignored, and the two segments are reported as two separate segments – if they are large enough to be reported.

If you prevent hard breaks, non-matching regions of less than 500,000 thousand base positions are ignored, creating one larger blended segment. It’s my preference to allow hard breaks because I’ve seen too many instances of erroneously “blended” segments.

When your matching segment file is complete, you will be prompted to download to your computer.

Thanks to Genetic Affairs, I discovered an alternate way to obtain more than 1000 downloaded matches from GEDmatch.

GEDmatch Alternative Methodology

Genetic Affairs suggests using the DNA Segment Search with a minimum of 5000 kits, and to enable the option to “Prevent Hard Breaks.”

Do not close the session while GedMatch is processing or you’ll need to restart your query.

When finished click “Here” to download the file to your system.

Now you’re ready for part 2.

Next, you’ll want to select the Triangulation feature.

These functions take time, so you’ll be watching as the counter increases. Or maybe go eat dinner or research some genealogy.

I can hear the “Jeopardy countdown music

When finished, click on “Here” to download this second file.

Whew! Now you should have your segment and match information files from each company that supports this information and provides downloads.

Saving Files

I generally save my files by vendor and date. However, if you’re going to use the files for a special project – you may want to make a copy elsewhere. For example, I’m going to use these files for Genetic Affairs’ AutoSegment feature, so I’ve downloaded fresh files from each vendor on the same date and made a separate copy, stored in my Genetic Affairs folder. I’ll let you know how that goes😊

Bottom Line

  • Test at vendors that don’t accept transfers. Ancestry and 23andMe
  • Test at or transfer to the rest. FamilyTreeDNA, MyHeritage and GEDmatch
  • Unlock or subscribe to the advanced tools that include chromosome browsers, ethnicity, and more, depending on the vendor. FamilyTreeDNA, MyHeritage, GEDmatch
  • Upload or create trees at each vendor (except 23andMe who doesn’t support trees.)
  • Download as much information as you can from each vendor.
  • Work your matches through shared (in common with) matches, trees, segments, and clusters!

Have fun!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Genetic Genealogy at 20 Years: Where Have We Been, Where Are We Going and What’s Important?

Not only have we put 2020 in the rear-view mirror, thankfully, we’re at the 20-year, two-decade milestone. The point at which genetics was first added to the toolbox of genealogists.

It seems both like yesterday and forever ago. And yes, I’ve been here the whole time,  as a spectator, researcher, and active participant.

Let’s put this in perspective. On New Year’s Eve, right at midnight, in 2005, I was able to score kit number 50,000 at Family Tree DNA. I remember this because it seemed like such a bizarre thing to be doing at midnight on New Year’s Eve. But hey, we genealogists are what we are.

I knew that momentous kit number which seemed just HUGE at the time was on the threshold of being sold, because I had inadvertently purchased kit 49,997 a few minutes earlier.

Somehow kit 50,000 seemed like such a huge milestone, a landmark – so I quickly bought kits, 49,998, 49,999, and then…would I get it…YES…kit 50,000. Score!

That meant that in the 5 years FamilyTreeDNA had been in business, they had sold on an average of 10,000 kits per year, or 27 kits a day. Today, that’s a rounding error. Then it was momentous!

In reality, the sales were ramping up quickly, because very few kits were sold in 2000, and roughly 20,000 kits had been sold in 2005 alone. I know this because I purchased kit 28,429 during the holiday sale a year earlier.

Of course, I had no idea who I’d test with that momentous New Year’s Eve Y DNA kit, but I assuredly would find someone. A few months later, I embarked on a road trip to visit an elderly family member with that kit in tow. Thank goodness I did, and they agreed and swabbed on the spot, because they are gone today and with them, the story of the Y line and autosomal DNA of their branch.

In the past two decades, almost an entire generation has slipped away, and with them, an entire genealogical library held in their DNA.

Today, more than 40 million people have tested with the four major DNA testing companies, although we don’t know exactly how many.

Lots of people have had more time to focus on genealogy in 2020, so let’s take a look at what’s important? What’s going on and what matters beyond this month or year?

How has this industry changed in the last two decades, and where it is going?

Reflection

This seems like a good point to reflect a bit.

Professor Dan Bradley reflecting on early genetic research techniques in his lab at the Smurfit Institute of Genetics at Trinity College in Dublin. Photo by Roberta Estes

In the beginning – twenty years ago, there were two companies who stuck their toes in the consumer DNA testing water – Oxford Ancestors and Family Tree DNA. About the same time, Sorenson Genomics and GeneTree were also entering that space, although Sorenson was a nonprofit. Today, of those, only FamilyTreeDNA remains, having adapted with the changing times – adding more products, testing, and sophistication.

Bryan Sykes who founded Oxford Ancestors announced in 2018 that he was retiring to live abroad and subsequently passed away in 2020. The website still exists, but the company has announced that they have ceased sales and the database will remain open until Sept 30, 2021.

James Sorenson died in 2008 and the assets of Sorenson Molecular Genealogy Foundation, including the Sorenson database, were sold to Ancestry in 2012. Eventually, Ancestry removed the public database in 2015.

Ancestry dabbled in Y and mtDNA for a while, too, destroying that database in 2014.

Other companies, too many to remember or mention, have come and gone as well. Some of the various company names have been recycled or purchased, but aren’t the same companies today.

In the DNA space, it was keep up, change, die or be sold. Of course, there was the small matter of being able to sell enough DNA kits to make enough money to stay in business at all. DNA processing equipment and a lab are expensive. Not just the equipment, but also the expertise.

The Next Wave

As time moved forward, new players entered the landscape, comprising the “Big 4” testing companies that constitute the ponds where genealogists fish today.

23andMe was the first to introduce autosomal DNA testing and matching. Their goal and focus was always medical genetics, but they recognized the potential in genealogists before anyone else, and we flocked to purchase tests.

Ancestry settled on autosomal only and relies on the size of their database, a large body of genealogy subscribers, and a widespread “feel-good” marketing campaign to sell DNA kits as the gateway to “discover who you are.”

FamilyTreeDNA did and still does offer all 3 kinds of tests. Over the years, they have enhanced both the Y DNA and mitochondrial product offerings significantly and are still known as “the science company.” They are the only company to offer the full range of Y DNA tests, including their flagship Big Y-700, full sequence mitochondrial testing along with matching for both products. Their autosomal product is called Family Finder.

MyHeritage entered the DNA testing space a few years after the others as the dark horse that few expected to be successful – but they fooled everyone. They have acquired companies and partnered along the way which allowed them to add customers (Promethease) and tools (such as AutoCluster by Genetic Affairs), boosting their number of users. Of course, MyHeritage also offers users a records research subscription service that you can try for free.

In summary:

One of the wonderful things that happened was that some vendors began to accept compatible raw DNA autosomal data transfer files from other vendors. Today, FamilyTreeDNA, MyHeritage, and GEDmatch DO accept transfer files, while Ancestry and 23andMe do not.

The transfers and matching are free, but there are either minimal unlock or subscription plans for advanced features.

There are other testing companies, some with niche markets and others not so reputable. For this article, I’m focusing on the primary DNA testing companies that are useful for genealogy and mainstream companion third-party tools that complement and enhance those services.

The Single Biggest Change

As I look back, the single biggest change is that genetic genealogy evolved from the pariah of genealogy where DNA discussion was banned from the (now defunct) Rootsweb lists and summarily deleted for the first few years after introduction. I know, that’s hard to believe today.

Why, you ask?

Reasons varied from “just because” to “DNA is cheating” and then morphed into “because DNA might do terrible things like, maybe, suggest that a person really wasn’t related to an ancestor in a lineage society.”

Bottom line – fear and misunderstanding. Change is exceedingly difficult for humans, and DNA definitely moved the genealogy cheese.

From that awkward beginning, genetic genealogy organically became a “thing,” a specific application of genealogy. There was paper-trail traditional genealogy and then the genetic aspect. Today, for almost everyone, genealogy is “just another tool” in the genealogist’s toolbox, although it does require focused learning, just like any other tool.

DNA isn’t separate anymore, but is now an integral part of the genealogical whole. Having said that, DNA can’t solve all problems or answer all questions, but neither can traditional paper-trail genealogy. Together, each makes the other stronger and solves mysteries that neither can resolve alone.

Synergy.

I fully believe that we have still only scratched the surface of what’s possible.

Inheritance

As we talk about the various types of DNA testing and tools, here’s a quick graphic to remind you of how the different types of DNA are inherited.

  • Y DNA is inherited paternally for males only and informs us of the direct patrilineal (surname) line.
  • Mitochondrial DNA is inherited by everyone from their mothers and informs us of the mother’s matrilineal (mother’s mother’s mother’s) line.
  • Autosomal DNA can be inherited from potentially any ancestor in random but somewhat predictable amounts through both parents. The further back in time, the less identifiable DNA you’ll inherit from any specific ancestor. I wrote about that, here.

What’s Hot and What’s Not

Where should we be focused today and where is this industry going? What tools and articles popped up in 2020 to help further our genealogy addiction? I already published the most popular articles of 2020, here.

This industry started two decades ago with testing a few Y DNA and mitochondrial DNA markers, and we were utterly thrilled at the time. Both tests have advanced significantly and the prices have dropped like a stone. My first mitochondrial DNA test that tested only 400 locations cost more than $800 – back then.

Y DNA and mitochondrial DNA are still critically important to genetic genealogy. Both play unique roles and provide information that cannot be obtained through autosomal DNA testing. Today, relative to Y DNA and mitochondrial DNA, the biggest challenge, ironically, is educating newer genealogists about their potential who have never heard about anything other than autosomal, often ethnicity, testing.

We have to educate in order to overcome the cacophony of “don’t bother because you don’t get as many matches.”

That’s like saying “don’t use the right size wrench because the last one didn’t fit and it’s a bother to reach into the toolbox.” Not to mention that if everyone tested, there would be a lot more matches, but I digress.

If you don’t use the right tool, and all of the tools at your disposal, you’re not going to get the best result possible.

The genealogical proof standard, the gold standard for genealogy research, calls for “a reasonably exhaustive search,” and if you haven’t at least considered if or how Y
DNA
and mitochondrial DNA along with autosomal testing can or might help, then your search is not yet exhaustive.

I attempt to obtain the Y and mitochondrial DNA of every ancestral line. In the article, Search Techniques for Y and Mitochondrial DNA Test Candidates, I described several methodologies to find appropriate testing candidates.

Y DNA – 20 Years and Still Critically Important

Y DNA tracks the Y chromosome for males via the patrilineal (surname) line, providing matching and historical migration information.

We started 20 years ago testing 10 STR markers. Today, we begin at 37 markers, can upgrade to 67 or 111, but the preferred test is the Big Y which provides results for 700+ STR markers plus results from the entire gold standard region of the Y chromosome in order to provide the most refined results. This allows genealogists to use STR markers and SNP results together for various aspects of genealogy.

I created a Y DNA resource page, here, in order to provide a repository for Y DNA information and updates in one place. I would encourage anyone who can to order or upgrade to the Big Y-700 test which provides critical lineage information in addition to and beyond traditional STR testing. Additionally, the Big Y-700 test helps build the Y DNA haplotree which is growing by leaps and bounds.

More new SNPs are found and named EVERY SINGLE DAY today at FamilyTreeDNA than were named in the first several years combined. The 2006 SNP tree listed a grand total of 459 SNPs that defined the Y DNA tree at that time, according to the ISOGG Y DNA SNP tree. Goran Rundfeldt, head of R&D at FamilyTreeDNA posted this today:

2020 was an awful year in so many ways, but it was an unprecedented year for human paternal phylogenetic tree reconstruction. The FTDNA Haplotree or Great Tree of Mankind now includes:

37,534 branches with 12,696 added since 2019 – 51% growth!
defined by
349,097 SNPs with 131,820 added since 2019 – 61% growth!

In just one year, 207,536 SNPs were discovered and assigned FT SNP names. These SNPs will help define new branches and refine existing ones in the future.

The tree is constructed based on high coverage chromosome Y sequences from:
– More than 52,500 Big Y results
– Almost 4,000 NGS results from present-day anonymous men that participated in academic studies

Plus an additional 3,000 ancient DNA results from archaeological remains, of mixed quality and Y chromosome coverage at FamilyTreeDNA.

Wow, just wow.

These three new articles in 2020 will get you started on your Y DNA journey!

Mitochondrial DNA – Matrilineal Line of Humankind is Being Rewritten

The original Oxford Ancestor’s mitochondrial DNA test tested 400 locations. The original Family Tree DNA test tested around 1000 locations. Today, the full sequence mitochondrial DNA test is standard, testing the entire 16,569 locations of the mitochondria.

Mitochondrial DNA tracks your mother’s direct maternal, or matrilineal line. I’ve created a mitochondrial DNA resource page, here that includes easy step-by-step instructions for after you receive your results.

New articles in 2020 included the introduction of The Million Mito Project. 2021 should see the first results – including a paper currently in the works.

The Million Mito Project is rewriting the haplotree of womankind. The current haplotree has expanded substantially since the first handful of haplogroups thanks to thousands upon thousands of testers, but there is so much more information that can be extracted today.

Y and Mitochondrial Resources

If you don’t know of someone in your family to test for Y DNA or mitochondrial DNA for a specific ancestral line, you can always turn to the Y DNA projects at Family Tree DNA by searching here.

The search provides you with a list of projects available for a specific surname along with how many customers with that surname have tested. Looking at the individual Y DNA projects will show the earliest known ancestor of the surname line.

Another resource, WikiTree lists people who have tested for the Y DNA, mitochondrial DNA and autosomal DNA lines of specific ancestors.

Click on images to enlarge

On the left side, my maternal great-grandmother’s profile card, and on the right, my paternal great-great-grandfather. You can see that someone has tested for the mitochondrial DNA of Nora (OK, so it’s me) and the Y DNA of John Estes (definitely not me.)

MitoYDNA, a nonprofit volunteer organization created a comparison tool to replace Ysearch and Mitosearch when they bit the dust thanks to GDPR.

MitoYDNA accepts uploads from different sources and allows uploaders to not only match to each other, but to view the STR values for Y DNA and the mutation locations for the HVR1 and HVR2 regions of mitochondrial DNA. Mags Gaulden, one of the founders, explains in her article, What sets mitoYDNA apart from other DNA Databases?.

If you’ve tested at nonstandard companies, not realizing that they didn’t provide matching, or if you’ve tested at a company like Sorenson, Ancestry, and now Oxford Ancestors that is going out of business, uploading your results to mitoYDNA is a way to preserve your investment. PS – I still recommend testing at FamilyTreeDNA in order to receive detailed results and compare in their large database.

CentiMorgans – The Word of Two Decades

The world of autosomal DNA turns on the centimorgan (cM) measure. What is a centimorgan, exactly? I wrote about that unit of measure in the article Concepts – CentiMorgans, SNPs and Pickin’ Crab.

Fortunately, new tools and techniques make using cMs much easier. The Shared cM Project was updated this year, and the results incorporated into a wonderfully easy tool used to determine potential relationships at DNAPainter based on the number of shared centiMorgans.

Match quality and potential relationships are determined by the number of shared cMs, and the chromosome browser is the best tool to use for those comparisons.

Chromosome Browser – Genetics Tool to View Chromosome Matches

Chromosome browsers allow testers to view their matching cMs of DNA with other testers positioned on their own chromosomes.

My two cousins’ DNA where they match me on chromosomes 1-4, is shown above in blue and red at Family Tree DNA. It’s important to know where you match cousins, because if you match multiple cousins on the same segment, from the same side of your family (maternal or paternal), that’s suggestive of a common ancestor, with a few caveats.

Some people feel that a chromosome browser is an advanced tool, but I think it’s simply standard fare – kind of like driving a car. You need to learn how to drive initially, but after that, you don’t even think about it – you just get in and go. Here’s help learning how to drive that chromosome browser.

Triangulation – Science Plus Group DNA Matching Confirms Genealogy

The next logical step after learning to use a chromosome browser is triangulation. If fact, you’re seeing triangulation above, but don’t even realize it.

The purpose of genetic genealogy is to gather evidence to “prove” ancestral connections to either people or specific ancestors. In autosomal DNA, triangulation occurs when:

  • You match at least two other people (not close relatives)
  • On the same reasonably sized segment of DNA (generally 7 cM or greater)
  • And you can assign that segment to a common ancestor

The same two cousins are shown above, with triangulated segments bracketed at MyHeritage. I’ve identified the common ancestor with those cousins that those matching DNA segments descend from.

MyHeritage’s triangulation tool confirms by bracketing that these cousins also match each other on the same segment, which is the definition of triangulation.

I’ve written a lot about triangulation recently.

If you’d prefer a video, I recorded a “Top Tips” Facebook LIVE with MyHeritage.

Why is Ancestry missing from this list of triangulation articles? Ancestry does not offer a chromosome browser or segment information. Therefore, you can’t triangulate at Ancestry. You can, however, transfer your Ancestry DNA raw data file to either FamilyTreeDNA, MyHeritage, or GEDmatch, all three of which offer triangulation.

Step by step download/upload transfer instructions are found in this article:

Clustering Matches and Correlating Trees

Based on what we’ve seen over the past few years, we can no longer depend on the major vendors to provide all of the tools that genealogists want and need.

Of course, I would encourage you to stay with mainstream products being used by a significant number of community power users. As with anything, there is always someone out there that’s less than honorable.

2020 saw a lot of innovation and new tools introduced. Maybe that’s one good thing resulting from people being cooped up at home.

Third-party tools are making a huge difference in the world of genetic genealogy. My favorites are Genetic Affairs, their AutoCluster tool shown above, DNAPainter and DNAGedcom.

These articles should get you started with clustering.

If you like video resources, here’s a MyHeritage Facebook LIVE that I recorded about how to use AutoClusters:

I created a compiled resource article for your convenience, here:

I have not tried a newer tool, YourDNAFamily, that focuses only on 23andMe results although the creator has been a member of the genetic genealogy community for a long time.

Painting DNA Makes Chromosome Browsers and Triangulation Easy

DNAPainter takes the next step, providing a repository for all of your painted segments. In other words, DNAPainter is both a solution and a methodology for mass triangulation across all of your chromosomes.

Here’s a small group of people who match me on the same maternal segment of chromosome 1, including those two cousins in the chromosome browser and triangulation sections, above. We know that this segment descends from Philip Jacob Miller and his wife because we’ve been able to identify that couple as the most distant ancestor intersection in all of our trees.

It’s very helpful that DNAPainter has added the functionality of painting all of the maternal and paternal bucketed matches from Family Tree DNA.

All you need to do is to link your known matches to your tree in the proper place at FamilyTreeDNA, then they do the rest by using those DNA matches to indicate which of the rest of your matches are maternal and paternal. Instructions, here. You can then export the file and use it at DNAPainter to paint all of those matches on the correct maternal or paternal chromosomes.

Here’s an article providing all of the DNAPainter Instructions and Resources.

DNA Matches Plus Trees Enhance Genealogy

Of course, utilizing DNA matching plus finding common ancestors in trees is one of the primary purposes of genetic genealogy – right?

Vendors have linked the steps of matching DNA with matching ancestors in trees.

Genetic Affairs take this a step further. If you don’t have an ancestor in your tree, but your matches have common ancestors with each other, Genetic Affairs assembles those trees to provide you with those hints. Of course, that common ancestor might not be relevant to your genealogy, but it just might be too!

click to enlarge

This tree does not include me, but two of my matches descend from a common ancestor and that common ancestor between them might be a clue as to why I match both of them.

Ethnicity Continues to be Popular – But Is No Shortcut to Genealogy

Ethnicity is always popular. People want to “do their DNA” and find out where they come from. I understand. I really do. Who doesn’t just want an answer?

Of course, it’s not that simple, but that doesn’t mean it’s not disappointing to people who test for that purpose with high expectations. Hopefully, ethnicity will pique their curiosity and encourage engagement.

All four major vendors rolled out updated ethnicity results or related tools in 2020.

The future for ethnicity, I believe, will be held in integrated tools that allow us to use ethnicity results for genealogy, including being able to paint our ethnicity on our chromosomes as well as perform segment matching by ethnicity.

For example, if I carry an African segment on chromosome 1 from my father, and I match one person from my mother’s side and one from my father’s side on that same segment – one or the other of those people should also have that segment identified as African. That information would inform me as to which match is paternal and which is maternal

Not only that, this feature would help immensely tracking ancestors back in time and identifying their origins.

Will we ever get there? I don’t know. I’m not sure ethnicity is or can be accurate enough. We’ll see.

Transition to Digital and Online

Sometimes the future drags us kicking and screaming from the present.

With the imposed isolation of 2020, conferences quickly moved to an online presence. The genealogy community has all pulled together to make this work. The joke is that 2020’s most used phrase is “can you hear me?” I can vouch for that.

Of course while the year 2020 is over, the problem isn’t and is extending at least through the first half of 2021 and possibly longer. Conferences are planned months, up to a year, in advance and they can’t turn on a dime, so don’t even begin to expect in-person conferences until either late in 2021 or more likely, 2022 if all goes well this year.

I expect the future will eventually return to in-person conferences, but not entirely.

Finding ways to be more inclusive allows people who don’t want to or can’t travel or join in-person to participate.

I’ve recorded several sessions this year, mostly for 2021. Trust me, these could be a comedy, mostly of errors😊

I participated in four MyHeritage Facebook LIVE sessions in 2020 along with some other amazing speakers. This is what “live” events look like today!

Screenshot courtesy MyHeritage

A few days ago, I asked MyHeritage for a list of their LIVE sessions in 2020 and was shocked to learn that there were more than 90 in English, all free, and you can watch them anytime. Here’s the MyHeritage list.

By the way, every single one of the speakers is a volunteer, so say a big thank you to the speakers who make this possible, and to MyHeritage for the resources to make this free for everyone. If you’ve ever tried to coordinate anything like this, it’s anything but easy.

Additonally, I’ve created two Webinars this year for Legacy Family Tree Webinars.

Geoff Rasmussen put together the list of their top webinars for 2020, and I was pleased to see that I made the top 10! I’m sure there are MANY MORE you’d be interested in watching. Personally, I’m going to watch #6 yet today! Also, #9 and #22. You can always watch new webinars for free for a few days, and you can subscribe to watch all webinars, here.

The 2021 list of webinar speakers has been announced here, and while I’m not allowed to talk about something really fun that’s upcoming, let’s just say you definitely have something to look forward to in the springtime!

Also, don’t forget to register for RootsTech Connect which is entirely online and completely free, February 25-27, here.

Thank you to Penny Walters for creating this lovely graphic.

There are literally hundreds of speakers providing sessions in many languages for viewers around the world. I’ve heard the stats, but we can’t share them yet. Let me just say that you will be SHOCKED at the magnitude and reach of this conference. I’m talking dumbstruck!

During one of our zoom calls, one of the organizers says it feels like we’re constructing the plane as we’re flying, and I can confirm his observation – but we are getting it done – together! All hands on deck.

I’ll be presenting an advanced session about triangulation as well as a mini-session in the FamilySearch DNA Resource Center about finding your mother’s ancestors. I’ll share more information as it’s released and I can.

Companies and Owners Come & Go

You probably didn’t even notice some of these 2020 changes. Aside from the death of Bryan Sykes (RIP Bryan,) the big news and the even bigger unknown is the acquisition of Ancestry by Blackstone. Recently the CEO, Margo Georgiadis announced that she was stepping down. The Ancestry Board of Directors has announced an external search for a new CEO. All I can say is that very high on the priority list should be someone who IS a genealogist and who understands how DNA applies to genealogy.

Other changes included:

In the future, as genealogy and DNA testing becomes ever more popular and even more of a commodity, company sales and acquisitions will become more commonplace.

Some Companies Reduced Services and Cut Staff

I understand this too, but it’s painful. The layoffs occurred before Covid, so they didn’t result from Covid-related sales reductions. Let’s hope we see renewed investment after the Covid mess is over.

In a move that may or may not be related to an attempt to cut costs, Ancestry removed 6 and 7 cM matches from their users, freeing up processing resources, hardware, and storage requirements and thereby reducing costs.

I’m not going to beat this dead horse, because Ancestry is clearly not going to move on this issue, nor on that of the much-requested chromosome browser.

Later in the year, 23andMe also removed matches and other features, although, to their credit, they have restored at least part of this functionality and have provided ethnicity updates to V3 and V4 kits which wasn’t initially planned.

It’s also worth noting that early in 2020, 23andMe laid off 100 people as sales declined. Since that time, 23andMe has increasingly pushed consumers to pay to retest on their V5 chip.

About the same time, Ancestry also cut their workforce by about 6%, or about 100 people, also citing a slowdown in the consumer testing market. Ancestry also added a health product.

I’m not sure if we’ve reached market saturation or are simply seeing a leveling off. I wrote about that in DNA Testing Sales Decline: Reason and Reasons.

Of course, the pandemic economy where many people are either unemployed or insecure about their future isn’t helping.

The various companies need some product diversity to survive downturns. 23andMe is focused on medical research with partners who pay 23andMe for the DNA data of customers who opt-in, as does Ancestry.

Both Ancestry and MyHeritage provide subscription services for genealogy records.

FamilyTreeDNA is part of a larger company, GenebyGene whose genetics labs do processing for other companies and medical facilities.

A huge thank you to both MyHeritage and FamilyTreeDNA for NOT reducing services to customers in 2020.

Scientific Research Still Critical & Pushes Frontiers

Now that DNA testing has become a commodity, it’s easy to lose track of the fact that DNA testing is still a scientific endeavor that requires research to continue to move forward.

I’m still passionate about research after 20 years – maybe even more so now because there’s so much promise.

Research bleeds over into the consumer marketplace where products are improved and new features created allowing us to better track and understand our ancestors through their DNA that we and our family members inherit.

Here are a few of the research articles I published in 2020. You might notice a theme here – ancient DNA. What we can learn now due to new processing techniques is absolutely amazing. Labs can share files and information, providing the ability to “reprocess” the data, not the DNA itself, as more information and expertise becomes available.

Of course, in addition to this research, the Million Mito Project team is hard at work rewriting the tree of womankind.

If you’d like to participate, all you need to do is to either purchase a full sequence mitochondrial DNA kit at FamilyTreeDNA, or upgrade to the full sequence if you tested at a lower level previously.

Predictions

Predictions are risky business, but let me give it a shot.

Looking back a year, Covid wasn’t on the radar.

Looking back 5 years, neither Genetic Affairs nor DNAPainter were yet on the scene. DNAAdoption had just been formed in 2014 and DNAGedcom which was born out of DNAAdoption didn’t yet exist.

In other words, the most popular tools today didn’t exist yet.

GEDmatch, founded in 2010 by genealogists for genealogists was 5 years old, but was sold in December 2019 to Verogen.

We were begging Ancestry for a chromosome browser, and while we’ve pretty much given up beating them, because the horse is dead and they can sell DNA kits through ads focused elsewhere, that doesn’t mean genealogists still don’t need/want chromosome and segment based tools. Why, you’d think that Ancestry really doesn’t want us to break through those brick walls. That would be very bizarre, because every brick wall that falls reveals two more ancestors that need to be researched and spurs a frantic flurry of midnight searching. If you’re laughing right now, you know exactly what I mean!

Of course, if Ancestry provided a chromosome browser, it would cost development money for no additional revenue and their customer service reps would have to be able to support it. So from Ancestry’s perspective, there’s no good reason to provide us with that tool when they can sell kits without it. (Sigh.)

I’m not surprised by the management shift at Ancestry, and I wouldn’t be surprised to see several big players go public in the next decade, if not the next five years.

As companies increase in value, the number of private individuals who could afford to purchase the company decreases quickly, leaving private corporations as the only potential buyers, or becoming publicly held. Sometimes, that’s a good thing because investment dollars are infused into new product development.

What we desperately need, and I predict will happen one way or another is a marriage of individual tools and functions that exist separately today, with a dash of innovation. We need tools that will move beyond confirming existing ancestors – and will be able to identify ancestors through our DNA – out beyond each and every brick wall.

If a tester’s DNA matches to multiple people in a group descended from a particular previously unknown couple, and the timing and geography fits as well, that provides genealogical researchers with the hint they need to begin excavating the traditional records, looking for a connection.

In fact, this is exactly what happened with mitochondrial DNA – twice now. A match and a great deal of digging by one extremely persistent cousin resulting in identifying potential parents for a brick-wall ancestor. Autosomal DNA then confirmed that my DNA matched with 59 other individuals who descend from that couple through multiple children.

BUT, we couldn’t confirm those ancestors using autosomal DNA UNTIL WE HAD THE NAMES of the couple. DNA has the potential to reveal those names!

I wrote about that in Mitochondrial DNA Bulldozes Brick Wall and will be discussing it further in my RootsTech presentation.

The Challenge

We have most of the individual technology pieces today to get this done. Of course, the combined technological solution would require significant computing resources and processing power – just at the same time that vendors are desperately trying to pare costs to a minimum.

Some vendors simply aren’t interested, as I’ve already noted.

However, the winner, other than us genealogists, of course, will be the vendor who can either devise solutions or partner with others to create the right mix of tools that will combine matching, triangulation, and trees of your matches to each other, even if you don’t’ share a common ancestor.

We need to follow the DNA past the current end of the branch of our tree.

Each triangulated segment has an individual history that will lead not just to known ancestors, but to their unknown ancestors as well. We have reached critical mass in terms of how many people have tested – and more success would encourage more and more people to test.

There is a genetic path over every single brick wall in our genealogy.

Yes, I know that’s a bold statement. It’s not future Jetson’s flying-cars stuff. It’s doable – but it’s a matter of commitment, investment money, and finding a way to recoup that investment.

I don’t think it’s possible for the one-time purchase of a $39-$99 DNA test, especially when it’s not a loss-leader for something else like a records or data subscription (MyHeritage and Ancestry) or a medical research partnership (Ancestry and 23andMe.)

We’re performing these analysis processes manually and piecemeal today. It’s extremely inefficient and labor-intensive – which is why it often fails. People give up. And the process is painful, even when it does succeed.

This process has also been made increasingly difficult when some vendors block tools that help genealogists by downloading match and ancestral tree information. Before Ancestry closed access, I was creating theories based on common ancestors in my matches trees that weren’t in mine – then testing those theories both genetically (clusters, AutoTrees and ThruLines) and also by digging into traditional records to search for the genetic connection.

For example, I’m desperate to identify the parents of my James Lee Clarkson/Claxton, so I sorted my spreadsheet by surname and began evaluating everyone who had a Clarkson/Claxton in their tree in the 1700s in Virginia or North Carolina. But I can’t do that anymore now, either with a third-party tool or directly at Ancestry. Twenty million DNA kits sold for a minimum of $79 equals more than 1.5 billion dollars. Obviously, the issue here is not a lack of funds.

Including Y and mitochondrial DNA resources in our genetic toolbox not only confirms accuracy but also provides additional hints and clues.

Sometimes we start with Y DNA or mitochondrial DNA, and wind up using autosomal and sometimes the reverse. These are not competing products. It’s not either/or – it’s *and*.

Personally, I don’t expect the vendors to provide this game-changing complex functionality for free. I would be glad to pay for a subscription for top-of-the-line innovation and tools. In what other industry do consumers expect to pay for an item once and receive constant life-long innovations and upgrades? That doesn’t happen with software, phones nor with automobiles. I want vendors to be profitable so that they can invest in new tools that leverage the power of computing for genealogists to solve currently unsolvable problems.

Every single end-of-line ancestor in your tree represents a brick wall you need to overcome.

If you compare the cost of books, library visits, courthouse trips, and other research endeavors that often produce exactly nothing, these types of genetic tools would be both a godsend and an incredible value.

That’s it.

That’s the challenge, a gauntlet of sorts.

Who’s going to pick it up?

I can’t answer that question, but I can say that 23andMe can’t do this without supporting extensive trees, and Ancestry has shown absolutely no inclination to support segment data. You can’t achieve this goal without segment information or without trees.

Among the current players, that leaves two DNA testing companies and a few top-notch third parties as candidates – although – as the past has proven, the future is uncertain, fluid, and everchanging.

It will be interesting to see what I’m writing at the end of 2025, or maybe even at the end of 2021.

Stay tuned.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

DNA Testing Sales Decline: Reason and Reasons

If you’re involved in genetic genealogy, you’ve probably noticed the recent announcements by both 23andMe and Ancestry relative to workforce layoffs as a result of declining sales.

Layoffs

In January, 23andMe announced that it was laying off 100 people which equated to 14% of its staff.

Following suit, Ancestry this week announced that they are laying off 100 people, 6% of their work force. They discuss their way forward, here.

One shift of this type can be a blip, but two tends to attract attention because it *could* indicate a trend. Accordingly, several articles have been written about possible reasons why this might be occurring. You can read what TechCrunch says here, Business Insider here, and The Verge, here.

Depending on who you talk to and that person’s perspective, the downturn is being attributed to:

  • Market Saturation
  • No Repeat Sales
  • Privacy Concerns
  • FAD Over

Ok, So What’s Happening?

Between Ancestry and 23andMe alone, more than 26 million DNA tests have been sold, without counting the original DNA testing company, FamilyTreeDNA along with MyHeritage who probably have another 4 or 5 million between them.

Let’s say that’s a total of 30 million people in DNA databases that offer matching. The total population of the US is estimated to be about 329 million, including children, which means that one person in 10 or 11 people in the US has now tested. Of course, DNA testing reaches worldwide, but it’s an interesting comparison indicating how widespread DNA testing has become overall.

This slowing of new sales shouldn’t really surprise anyone. In July 2019, Illumina, the chip maker who supplies equipment and supplies to the majority of the consumer DNA testing industry said that the market was softening after a drop in their 2019 second quarter revenue.

Also last year, Ancestry and MyHeritage both announced health products, a move which would potentially generate a repeat sale from someone who has already tested their DNA for genealogy purposes. I suspected at the time this might be either a pre-emptive strike, or in response to slowed sales.

In November 2019, Family Tree DNA announced an extensive high-end health test through Tovana which tests the entire Exome, the portion of our DNA useful for medical and health analysis. (Note that as of 2021, the Ancestry and Tovana tests have been discontinued,)

In a sense, this health focus too is trendy, but moves away from genealogy into an untapped area.

23andMe who, according to their website, has obtained $791 million in venture capital or equity funding has always been focused on medical research. In July of 2018 GlaxoSmithKline infused $300 million into 23andMe in exchange for access to DNA results of their 5 million customers who have opted-in to medical research, according to Genengnews. If you divide the 300 million investment by 5 million opted-in customers, 23andMe received $60 per DNA kit.

That 5 million number is low though, based on other statements by 23andMe which suggests they have 10 million total customers, 80% of which opt-in for medical research. That would be a total of 8 million DNA results available to investors.

Divide $791 million by 8 million kits and 23andMe, over the years, has received roughly $99 for each customer who has opted in to research.

We know who Ancestry has partnered with for research, but not how much Ancestry has received.

There’s very big money, huge money, in collaborating with Big Pharma and others. Given the revenue potential, it’s amazing that the other two vendors, Family Tree DNA and MyHeritage, haven’t followed suit, but they haven’t.

Additionally, in January, 23andMe sold the rights to a new drug it developed in-house as a potential treatment for inflammatory diseases for a reported (but unconfirmed by 23andMe) $5 million.

It’s ironic that two companies who just announced layoffs are the two who have partnered to sell access to their opted-in customers’ DNA results.

My Thoughts

I’ve been asked several times about my thoughts on this shift within the industry. I have refrained from saying much, because I think there has been way too much “hair on fire” clickbait reporting that is fanning the flames of fear, not only in the customer base, but in general.

I am sharing my thoughts, and while they are not entirely positive, in that there is clearly room for improvement, I want to emphasize that I am very upbeat about this industry as a whole, and this article ends very positively with suggestions for exactly that – so please read through.

Regardless of why, fewer new people are testing which of course results in fewer sales, and fewer new matches for us.

My suspicion is that each of the 4 reasons given above is accurate to some extent, and the cumulative effect plus a couple of other factors is the reason we’re seeing the downturn.

Let’s take a look at each one.

Market Saturation

Indeed, we’ve come a very long way from the time when DNA was a verboten topic on the old RootsWeb mailing lists and boards.

Early DNA adopters back then were accused of “cheating,” and worse. Our posts were deleted immediately. How times have changed!

As the technology matured, 23andMe began offering autosomal testing accompanied by cousin matching.

Ancestry initially stepped into the market with Y and mitochondrial DNA testing, but ultimately destroyed that database which included Y and mitochondrial DNA results from Relative Genetics, a company they had previously acquired. People in those databases, as well as who had irreplaceable samples in Sorenson, which Ancestry also purchased and subsequently took offline permanently have never forgotten.

Those genealogists have probably since tested at Ancestry, but they may be more inclined to test the rest of their family at places like Family Tree DNA and MyHeritage who have chromosome browsers and tools that support more serious researchers.

I think a contributing factor is that fewer “serious genealogists” are coming up in the ranks. The perception that all you need to do is enter a couple of generations and click on a few leaves, and you’re “done” misleads people as to the complexity and work involved in genealogical research. Not to mention how many of those hints are inaccurate and require analysis.

Having said that, I view each one of these people who are encouraged for the first time by an ad, even if it is misleading in its simplicity, as a potential candidate. We were all baby genealogists once, and some of us stayed for reasons known only to us. Maybe we have the genealogy gene😊

But yes, I would agree that the majority, by far, of serious genealogists have already tested someplace. What they have not done universally is transferred from 23andMe and Ancestry to the other companies that can help them, such as MyHeritage, FamilyTreeDNA and GEDmatch. If they had, the customer numbers at those companies would be higher. We all need to fish in every pond.

Advertising and Ethnicity

The DNA ads over the last few years have focused almost exclusively on ethnicity – the least reliable aspect of genetic genealogy – but also the “easiest” to understand if a customer takes their ethnicity percentages at face value. And of course, every consumer that purchases a test as a result of one of these ads does exactly that – spits or swabs, mails and opens their results to see what they “are” – full of excited anticipation.

Many people have absolutely no idea there’s more, like cousin matching – and many probably wouldn’t care.

The buying public who purchases due to these ads are clearly not early adopters, and most likely are not genealogists. One can hope that at least a few of them get hooked as a result, or at least enter a minimal tree.

Unfortunately, of the two companies experiencing layoffs, only Ancestry supports trees. Genealogy revolves around trees, pure and simple.

23andMe has literally had years to do so and has refused to natively support trees. Their FamilySearch link is not the same as supporting trees and tree matching. Their attempt at creating a genetic tree is laudable and has potential, but it’s not something that can be translated into a genealogical benefit for most people. I’m guessing that there aren’t any genealogists working for 23andMe, or they aren’t “heard” amid the vervre surrounding medical research.

All told, I’m not surprised that the two companies who are experiencing the layoffs are the two companies whose ads we saw most often focused on ethnicity, especially Ancestry. Who can forget the infamous kilt/leiderhosen ad that Ancestry ran? I still cringe.

Many people who test for ethnicity never sign on again – especially if they are unhappy with the results.

Ancestry and 23andMe spent a lot on ad campaigns, ramped up for the resulting sales, but now the ads are less effective, so not being run as much or at all. Sales are down. Who’s to say which came first, the chicken (fewer ads) or the egg (lower sales.)

This leads us to the next topic, add on sales.

No Repeat Sales

DNA testing, unless you have something else to offer customers is being positioned as a “one and done” sale, meaning that it’s a single purchase with no potential for additional revenue. While that’s offered as a reason for the downturn, it’s not exactly true for DNA test sales.

Ancestry clearly encourages customers to subscribe to their records database by withholding access to some DNA features without a subscription. For Ancestry, DNA is the bait for a yearly repeat sale of a subscription. Genealogists subscribe, of course, but people who aren’t genealogists don’t see the benefit.

Ancestry does not allow transfers into their database, which would provide for additional revenue opportunity. I suspect the reason is twofold. First, they want the direct testing revenue, but perhaps more importantly, in order to sell their customer’s DNA who have agreed to participate in research, or partner with research firms, those customers need to have tested on Ancestry’s custom chip. This holds true for 23andMe as well.

Through the 23andMe financial information in the earlier section, it’s clear that while the consumer only pays a one time fee to test, multiple research companies will pay over and over for access to that compiled consumer information.

Ancestry and 23andMe have the product, your opted-in DNA test that you paid for, and they can sell it over and over again. Hopefully, this revenue stream helps to fund development of genetic genealogical tools.

MyHeritage also provides access to advanced DNA tools by selling a subscription to their records database after a free trial. MyHeritage has integrated their DNA testing with genealogical records to provide their advanced Theories of Family Relativity tool, a huge boon to genealogists.

While Family Tree DNA doesn’t have a genealogical records database like Ancestry and MyHeritage, they provide Y DNA and mitochondrial DNA testing, in addition to the autosomal Family Finder test. If more people tested Y DNA and mitochondrial DNA, more genealogical walls would fall due to the unique inheritance path and the fact that neither Y nor mitochondrial DNA is admixed with DNA from the other parent.

Generally, only genealogists know about and are going to order Y DNA and mtDNA tests, or sponsor others to take them to learn more about their ancestral lines. These tests don’t provide yearly revenue like an ongoing subscription, but at least the fact that Family Tree DNA offers three different tests does provide the potential for at least some additional sales.

Both MyHeritage and FamilyTreeDNA encourage uploads, and neither sell, lease or share your DNA for medical testing. You can find upload instructions, here.

In summary of this section, all of the DNA testing companies do have some sort of additional (potential) revenue stream from DNA testing, so it’s not exactly “one and done.”

Health Testing Products

As for health testing, 23andMe has always offered some level of health information for their customers. Health and research has always been their primary focus. Health and genealogy was originally bundled into one test. Today, DNA ancestry tests with the health option at 23andMe cost more than a genealogy-only test and are two separate products.

MyHeritage also offers a genealogy only DNA test and a genealogy plus health DNA test.

In 2019, both Ancestry and MyHeritage added health testing to their menu as upgrades for existing customers.

In November 2019, FamilyTreeDNA announced an alliance with Tovana for their customers to order a full exome grade medical test and accompanying report. I recently received mine and am still reviewing the results – they are extensive.

It’s clear that all four companies see at least some level of consumer interest in health and traits as a lucrative next step.

Medical Research and DNA Sales

Both Ancestry and 23andMe are pursuing and have invested in relationships with research institutions or Big Pharma. I have concerns with how this is handled. You may not.

I’m supportive of medical research, but I’m concerned that most people have no idea of the magnitude and scope of the contracts between Ancestry and 23andMe with Big Pharma and others, in part, because the details are not public. Customers may also not be aware of exactly what they are opting in to, what it means or where their DNA/DNA results are going.

As a consumer, I want to know where my DNA is, who is using it, and for what purpose. I don’t want my DNA to wind up being used for a nefarious purpose or something I don’t approve of. Think Uighurs in China by way of example. BGI Genetics, headquartered in China but with an Americas division and facilities in Silicon Valley has been a major research institute for years. I want to know what my DNA is being used for, and by whom. The fact that the companies won’t provide their customers with that information makes me makes me immediately wonder why not.

I would like to be able to opt-in for specific studies, not blindly for every use that is profitable to the company involved, all without my knowledge. No blank checks. For example, I opted out of 23andMe research when they patented the technology for designer babies.

Furthermore, I feel that if someone is going to profit from my DNA, it should be me since I paid for the sequencing. At minimum, a person whose DNA is used in these studies should receive some guarantee that they will be provided with any drug in which their DNA is used for development, in particular if their insurance doesn’t pay and they cannot afford the drug.

Drug prices have risen exponentially in the US recently, with many people no longer able to afford their medications. For example, the price of insulin has tripled over the last decade, causing people to ration or cut back on their insulin, if not go without altogether. It would be the greatest of ironies if the very people whose DNA was sold and used to create a drug had no access to it.

Of course, Ancestry and 23andMe are not required to inform consumers of which studies their DNA or DNA results are used for, so we don’t know. Always read all of the terms and conditions, and all links when authorizing anything.

Both companies indicate that your DNA results are anonymized before being shared, but we now know that’s not really possible anymore, because it’s relatively easy to re-identify someone. This is exactly how adoptees identify their biological parents through genetic matches. Dr. Yaniv Erlich reported in the journal Science November 2018 that more than 60% of Europeans could be reidentified through a genealogy database of only 1.28 million individuals.

I think greater transparency and a change in policy favoring the consumer would go a long way to instilling more confidence in the outside research relationships that both Ancestry and 23andMe pursue and maintain. It would probably increase their participation level as well if people could select the research initiatives to which they want to contribute their DNA.

Privacy Concerns

The news has been full of articles about genetic privacy, especially in the months since the Golden State Killer case was solved. That was only April 2018, but it seems like eons ago.

Unfortunately, much of what has been widely reported is inaccurate. For example, no company has ever thrown the data base open for the FBI or anyone to rummage through like a closet full of clothes. However, headlines and commentary like that attract outrage and hundreds of thousands of clicks. In the news and media industry, “it’s all about eyeballs.”

In one case, an article I interviewed for extensively in an educational capacity was written accurately, but the headline was awful. The journalist in question replied that the editors write the headlines, not the reporters.

One instance of this type of issue would be pretty insignificant, but the news in this vein hasn’t abated, always simmering just below the surface waiting for something to fan the flames. Outrage sells.

For the most part, those within the genealogy community at least attempt to sort out what is accurate reporting and what is not, but those people are the ones who have already tested.

People outside the genealogy community just know that they’ve now seen repeated headlines reporting that their genetic privacy either has been, could be or might be breached, and they are suspicious and leery. I would be too. They have no idea what that actually means, what is actually occurring, where, or that they are probably far more at risk on social media sites.

These people are not genealogists, and now they look at ads and think to themselves, “yes, I’d like to do that, but…”

And they never go any further.

People are frightened and simply disconnect from the topic – without testing.

If, as a consumer, you see several articles or posts saying that <fill in car model> is really bad, when you consider a purchase, even if you initially like that model, you’ll remember all of those negative messages. You may never realize that the source was the competition which would cause you to interpret those negative comments in a completely different light.

I think that some of the well-intentioned statements made by companies to reassure their existing and potential customers have actually done more harm than good by reinforcing that there’s a widespread issue. “You’re safe with us” can easily be interpreted as, “there’s something to be afraid of.”

Added to that is the sensitive topic of adoptee and unknown parent searches.

Reunion stories are wonderfully touching, and we all love them, but you seldom see the other side of the coin. Not every story has a happy ending, and many don’t. Not every parent wants to be found for a variety of reasons. If you’re the child and don’t want to find your parents, don’t test, but it doesn’t work the other way around. A parent can often be identified by their relatives’ DNA matches to their child.

While most news coverage reflects positive adoptee reunion outcomes, that’s not universal, and almost every family has a few lurking skeletons. People know that. Some people are fearful of what they might discover about themselves or family members and are correspondingly resistant to DNA testing. Realizing you might discover that your father isn’t your biological father if you DNA test gives people pause. It’s a devastating discovery and some folks decide they’d rather not take that chance, even though they believe it’s not possible.

The genealogical search techniques for identifying unknown parents or close relatives and the technique used by law enforcement to identify unknown people, either bodies or perpetrators is exactly the same. If you are in one of the databases, who you match can provide a very big hint to someone hunting for the identify of an unknown person.

People who are not genealogists, adoptees or parents seeking to find children placed for adoption may be becoming less comfortable with this idea in general.

Of course, the ability for law enforcement to upload kits to GedMatch/Verogen and Family Tree DNA, under specific controlled conditions, has itself been an explosive and divisive topic within and outside of the genealogy community since April 2018.

These law enforcement kits are either cold case remains of victims, known as “Does,” or body fluids from the scenes of violent crimes, such as rape, murder and potentially child abduction and aggravated assault. To date, since the Golden State Killer identification, numerous cases have produced a “solve.” ISOGG, a volunteer organization, maintains a page of known cases solved, here.

GEDmatch encourages people to opt-in for law-enforcement matching, meaning that their kit can be seen as a match to kits uploaded by law enforcement agencies or companies working on behalf of law enforcement agencies. If a customer doesn’t opt-in, their kit can’t be seen as a match to a law enforcement kit.

Family Tree DNA initially opted-out all EU kits from law enforcement matching, due to GDPR, and provides the option for their customers to opt-out of law-enforcement matching.

Neither MyHeritage, Ancestry nor 23andMe cooperate with law enforcment under any circumstances and have stated that they will actively resist all subpoenaes in court.

ISOGG provides a FAQ on Investigative Genetic Genealogy, here.

The two sides of the argument have rather publicly waged war on each other in an ongoing battle to convince people of the merits of their side of the equation, including working with news organizations.

Unfortunately, this topic is akin to arguing over politics. No one changes their mind, and everyone winds up mad.

Notice I’m not linking any articles here, not even my own. I do not want to fan these flames, but I would be remiss if I didn’t mention that the topic of law enforcement usage itself, the on-going public genetic genealogy community war and resulting media coverage together have very probably contributed to the lagging sales. I’d also be remiss if I didn’t mention that while a great division of opinion exists, and many people are opposed, there are also many people who are extremely supportive.

All of this, combined, intentionally or not, has introduced FUD, fear, uncertainty and doubt – a very old disinformation “sales technique.”

In a sense, for consumers, this has been like watching pigs mud-wrestle.

As my dad used to say, “Never mud-wrestle with a pig. The pig enjoys it, you get muddy and the spectators can’t tell the difference.” The spectators in this case vote with their lack of spending and no one is a winner.

DNA Testing Was A FAD

Another theory is that genealogy DNA testing was just a FAD whose time has come and gone. I think the FAD was ethnicity testing, and that chicken has come home to roost.

Both 23andMe and Ancestry clearly geared up for testers attracted by their very successful ads. I was just recently on a cruise, and multiple times I heard people at another table discussing their ethnicity results from some unnamed company. They introduced the topic by saying, “I did my DNA.”

The discussion was almost always the same. Someone said that they thought their ethnicity was pretty accurate, someone else said theirs was awful, and the discussion went from there. Not one time did anyone ever mention a company name, DNA matching or any other functionality. I’m not even sure they understood there are different DNA testing companies.

If I was a novice listening-in, based on that discussion, I would have learned to doubt the accuracy of “doing my DNA.”

If most of the people who purchased ethnicity tests understood in advance that ethnicity testing truly is “just an estimate,” they probably wouldn’t have purchased in the first place. If they understood the limitations and had properly set expectations, perhaps they would not have been as unhappy and disenchanted with their results. I realize that’s not very good marketing, but I think that chicken coming home to roost is a very big part of what we’re seeing now.

The media has played this up too, with stories about how the ethnicity of identical twins doesn’t match. If people bother to read more than the headline, and IF it’s a reasonably accurate article, they’ll come to understand why and how that might occur. If not, what they’ll take away is that DNA testing is wrong and unreliable. So don’t bother.

Furthermore, most people don’t understand that ethnicity testing and cousin matching are two entirely different aspects of a DNA test. The “accuracy” of ethnicity is not related to the accuracy of cousin matching, but once someone questions the credibility of DNA testing – their lack of confidence is universal.

I would agree, the FAD is over – meaning lots of people testing primarily for ethnicity. I think the marketing challenge going forward is to show people that DNA testing can be useful for other things – and to make that easy.

Ethnicity was the low hanging fruit and it’s been picked.

Slowed Growth – Not Dead in the Water

The rate of growth has slowed. This does not by any stretch of the imagination mean that genetic genealogy or DNA testing is dead in the water. DNA fishes for us 365x24x7.

For example, just today, I received a message from 23andMe that 75 new relatives have joined 23andMe. I also received match notifications from Family Tree DNA and MyHeritage.  Hey – calorie-free treats!!!

These new matches are nothing to sneeze at. I remember when I was thrilled over ONE new match.

I have well over 100,000 matches if you combine my matches at the four vendors.

Without advanced tools like triangulation, Phased Family Matching, Theories of Family Relativity, ThruLines, DNAPainter, DNAgedcom and Genetic Affairs, I’d have absolutely no prayer of grouping and processing this number of matches for genealogy.

Even if I received no new matches for the next year, I’d still not be finished analyzing the autosomal matches I already have.

This Too Shall Pass

At least I hope it will.

I think people will still test, but the market has corrected. This level of testing is probably the “new normal.”

Neither Ancestry or 23andMe are spending the big ad dollars – or at least not as big.

In order for DNA testing companies to entice customers into purchasing subscriptions or add-on products, tools need to be developed or enhanced that encourage customers to return to the site over and over. This could come in the form of additional results or functionality calculated on their behalf.

That “on their behalf” point is important. Vendors need to focus on making DNA fun, and productive, not work. New tools, especially in the last year or two, have taken a big step in that direction. Make the customer wonder every day what gift is waiting for him or her that wasn’t there yesterday. Make DNA useful and fun!

I would call this “DNA crack.” 😊

Cooking Up DNA Crack!

In order to assist the vendors, I’ve compiled one general suggestion plus what I would consider to be the “Big 3 Wish List” for each of their DNA products in term of features or improvements that would encourage customers to either use or return to their sites. (You’re welcome.)

I don’t want this to appear negative, so I’ve also included the things I like most about each vendor.

If you have something to add, please feel free to comment in a positive fashion.

Family Tree DNA

I Love: Y and Mitochondrial DNA, Phased Family Matching, and DNA projects

General Suggestion – Fix chronic site loading issues which discourage customers

  • Tree Matching – fix the current issues with trees and implement tree matching for DNA matches
  • Triangulation – including by match group and segment
  • Clustering – some form of genetic networks

MyHeritage

I Love: Theories of Family Relativity, triangulation, wide variety of filters, SmartMatches and Record Matches

General – Clarify confusing subscription options in comparative grid format

  • Triangulation by group and segment
  • View DNA matches by ancestor
  • Improved Ethnicity

Ancestry

I Love: Database size, ThruLines, record and DNA hints (green leaves)

General – Focus on the customers’ needs and repeated requests

  • Accept uploads
  • Chromosome Browser (yes, I know this is a dead horse, but that doesn’t change the need)
  • Triangulation (dead horse’s brother)

23andMe

I Love: Triangulation, Ethnicity quality, ethnicity segments identified, painted and available for download

General – Focus on genealogy tools if you’re going to sell a genealogy test

  • Implement individual customer trees – not Family Search
  • Remove 2000 match limit (which is functionally less after 23andMe hides the people not opted into matching)
  • DNA + Tree Matching

Summary

In summary, we, as consumers need to maintain our composure, assuring others that no one’s hair is on fire and the sky really is not falling. We need to calmly educate as opposed to frighten.

Just the facts.

Other approaches don’t serve us in the end. Frightening people away may “win” the argumentative battle of the day, but we all lose the war if people are no longer willing to test.

This is much like a lifeboat – we all succeed together, or we all lose.

Everybody row!

As genealogists, we need to:

  • Focus on verifying ancestors and solving genealogy challenges
  • Sharing those victories with others, including family members
  • Encourage our relatives to test, and transfer so that their testing investment provides as much benefit as possible
  • Offer to help relatives with the various options on each vendor’s platform
  • Share the joy

People share exciting good news with others, especially on Facebook and social media platforms, and feel personally invested when you share new results with them. Collaboration bonds people.

A positive attitude, balanced perspective and excitement about common ancestors goes a very, very long was in terms of encouraging others.

We have more matches now than ever before, along with more and better tools. Matches are still rolling in, every single day.

New announcements are expected at Rootstech in a couple short weeks.

There’s so much opportunity and work to do.

The sky is not falling. It rained a bit.

The seas may have been stormy, but as a genealogist, the sun is out and a rising tide lifts us all.

Rising tide

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

DNAPainter: Painting “Bucketed” Family Tree DNA Maternal and Paternal Family Finder Matches in One Fell Swoop

DNAPainter has done it again, providing genealogists with a wonderful tool that facilitates separating your matches into maternal and paternal categories so that they can be painted on the proper chromosome – in one fell swoop no less.

Of course, the entire purpose of painting your chromosomes is to identify segments that descend from specific ancestors in order to push those lines back further in time genealogically. Identifying segments, confirming and breaking down brick walls is the name of the game.

DNA Painter New Import Tool

The new DNAPainter tool relies on Family Tree DNA’s Phased Family Matching which assigns your matches to maternal and paternal buckets. On your match list, at the top, you’ll see the following which indicates how many matches you have in total and how many people are assigned to each bucket.

DNAPainter FF import.png

Note that these are individual matches, not total matching segments – that number would be higher.

In order for Family Tree DNA to create bucketed matches for you, you’ll need to:

  • Either create a tree or upload a GEDCOM file
  • Attach your DNA kit to “you” in your tree
  • Attach all 4th cousins and closer with whom you match to their proper location on your tree

Yes, it appears that Family Tree DNA is now using 4th cousins, not just third cousins and closer, which provides for additional bucketed matches.

How reliable is bucketing?

Quite. Occasionally one of two issues arise which becomes evident if you actually compare the matches’ segments to the parent with whom they are bucketed:

  • One or more of your matches’ segments do match you and your parent, but additionally, one or more segments match you, but not your parent
  • The X chromosome is particularly susceptible to this issue, especially with lower cM matches
  • Occasionally, a match that is large enough to be bucketed isn’t, likely because no known, linked cousin shares that segment

Getting Started

Get started by creating or uploading your tree at Family Tree DNA.

DNAPainter mytree.png

After uploading your GEDCOM file or creating your tree at Family Tree DNA, click on the “matches” icon at the top of the tree to link yourself and your relatives to their proper places on your tree. Your matches will show in the box below the helix icon.

DNAPainter FF matches.png

I created an example “twin” for myself to use for teaching purposes by uploading a file from Ancestry, so I’m going to attach that person to my tree as my “Evil Twin.” (Under normal circumstances, I do not recommend uploading duplicate files of anyone.)

DNAPainter FF matches link.png

Just drag and drop the person on your match list on top of their place on the tree.

DNAPainter Ff sister.png

Here I am as my sister, Example Adoptee.

I’ve wished for a very, very long time that there was a way to obtain a list of segment matches sorted by maternal and paternal bucket without having to perform spreadsheet gymnastics, and now there is, at DNAPainter.

DNAPainter does the heavy-lifting so you don’t have to.

What Does DNAPainter Do with Bucketed Matches?

When you are finished uploading two files at DNAPainter, you’ll have:

  • Maternal groups of triangulated matches
  • Paternal groups of triangulated matches
  • Matches that could not be assigned based on the bucketing. Some (but not all) of these matches will be identical by chance – typically roughly 15-20% of your match list. You can read about identical by chance, here.

I’ll walk you through the painting process step by step.

First, you need to be sure your relatives are connected to your tree at Family Tree DNA so that you have matches assigned to your maternal and paternal buckets. The more relatives you connect, per the instructions in the previous section, the more matching people will be able to be placed into maternal or paternal buckets.

Painting Bucketed Matches at DNAPainter

I wrote basic articles about how to use DNAPainter here. If you’re unfamiliar with how to use DNAPainter or it’s new to you, now would be a good time to read those articles. This next section assumes that you’re using DNAPainter. If not, go ahead, register, and set up a profile. One profile is free for everyone, but multiple profiles require a subscription.

First, make a duplicate of the profile that you’re working with. This DNAPainter upload tool is in beta.

DNAPainter duplicate profile.png

Since I’m teaching and experimenting, I am using a fresh, new profile for this experiment. If it works successfully, I’ll duplicate my working profile, just in case something goes wrong or doesn’t generate the results I expect, and repeat these steps there.

Second, at Family Tree DNA, Download a fresh copy of your complete matching segment file. This “Download Segments” link is found at the top right of the chromosome browser page.

DNAPainter ff download segments.png

Third, download your matches at the bottom left of the actual matches page. This file hold information about your matches, such as which ones are bucketed, but no segment information. That’s in the other file.

DNAPainter csv.png

Name both of these files something you can easily identify and that tells them apart. I called the first one “Segments” in front of the file name and the second one “Matches” in front of the file name.

Fourth, at DNAPainter, you’ll need to import your entire downloaded segment file that you just downloaded from Family Tree DNA. I exclude segments under 7cM because they are about 50% identical by chance.

DNAPainter import instructions

click to enlarge

Select the segment file you just named and click on import.

DNAPainter both.png

At this point, your chromosomes at DNAPainter will look like this, assuming you’re using a new profile with nothing else painted.

Let’s expand chromosome 1 and see what it looks like.

DNAPainter chr 1 both.png

Note that all segments are painted over both chromosomes, meaning both the maternal and paternal copies of chromosome 1, partially shown above, because at this point, DNAPainter can’t tell which people match on the maternal and which people match on the paternal sides. The second “matches” file from Family Tree DNA has not yet been imported into DNAPainter, which tells DNAPainter which matches are on the maternal and which are on the paternal chromosomes.

If you’re not working with a new profile, then you’ll also see the segments you’ve already painted. DNAPainter attempts to NOT paint segments that appear to have previously been painted.

Fifth, at DNAPainter, click on the “Import mat/pat info from ftDNA” link on the left which will provide you with a page to import the matches file information. This is the file that has maternal and paternal sides specified for bucketed matches. DNAPainter needs both the segment file, which you already imported, and the matches file.

DNAPainter import bucket

click to enlarge

After the second import, the “matches” file, my matches are magically redistributed onto their appropriate chromosomes based on the maternal and paternal bucketing information.

I love this tool!

At this point, you will have three groups of matches, assuming you have people assigned to your maternal and paternal buckets.

  • A “Shared” group for people who are related to both of your parents, or who aren’t designated as a bucketed match to either parent
  • Maternal group (pink chromosome)
  • Paternal group (blue chromosome)

It’s Soup!!!

I’m so excited. Now my matches are divided into maternal and paternal chromosome groups.

DNAPainter import complete.png

Just so you know, I changed the colors of my legend at DNAPainter using “edit group,” because all three groups were shades of pink after the import and I wanted to be able to see the difference clearly.

DNAPainter legend.png

Your Painted Chromosomes

Let’s take a look at what we have.

DNAPainter both, mat, pat.png

There’s still pink showing, meaning undetermined, which gets painted over both the maternal and paternal chromosomes, but there’s also a lot of magenta (maternal) and blue (paternal) showing now too as a result of bucketing.

Let’s look at chromosome 1.

DNAPainter chr 1 all.png

This detail, which is actually a summary, shows that the bucketed maternal (magenta) and paternal (blue) matches have actually covered most of the chromosome. There are still a few areas without coverage, but not many.

For a genealogist, this is beautiful!!!

How many matches were painted?

DNAPainter paternal total.png

DNAPainter maternal total.png

Expanding chromosome 1, and scrolling to the maternal portion, I can now see that I have several painted maternal segments, and almost the entire chromosome is covered.

Here’s the exciting part!

DNAPainter ch1 1 mat expanded.png

I starred the relatives I know, on the painting, above and on the pedigree chart, below. The green group descends through Hiram Ferverda and Eva Miller, the yellow group through Antoine Lore and Rachel Hill. The blue group is Acadian, upstream of Antoine Lore.

DNAPainter maternal pedigree.png

Those ancestors are shown by star color on my pedigree chart.

I can now focus on the genealogies of the other unstarred people to see if their genealogy can push those segments back further in time to older ancestors.

On my Dad’s side, the first part of chromosome 1 is equally as exciting.

DNAPainter chr 1 pat expanded.png

The yellow star only pushed this triangulated group back only to my grandparents, but the green star is from a cousin descended from my great-grandparents. The red star matches are even more exciting, because my common ancestor with Lawson is my brick wall – Marcus Younger and his wife, Susanna, surname unknown, parents of Mary Younger.

DNAPainter paternal pedigree.png

I need to really focus hard on this cluster of 12 people because THEIR common ancestors in their trees may well provide the key I need to push back another generation – through the brick wall. That is, after all, the goal of genetic genealogy.

Woohoooo!

Manual Spreadsheet Compare

Because I decided to torture myself one mid-winter day, and night, I wanted to see how much difference there is between the bucketed matches that I just painted and actual matches that I’ve identified by downloading my parents’ segment match files and mine and comparing them manually against each other. I removed any matches in my file that were not matches to my parent, in addition to me, then painted the rest.

I’ll import the resulting manual spreadsheet into the same experimental DNAPainter profile so we can view matches that were NOT painted previously. DNAPainter does not paint matches previously painted, if it can tell the difference. Since both of these files are from downloads, without the name of the matches being in any way modified, DNAPainter should be able to recognize everyone and only paint new segment matches.

Please note here that the PERSON unquestionably belongs bucketed to the parental side in question, but not all SEGMENTS necessarily match you and your parent. Some will not, and those are the segments that I removed from my spreadsheet.

DNAPainter manual spreadsheet example.png

Here’s a made-up example where I’ve combined my matches and my mother’s matches in one spreadsheet in order to facilitate this comparison. I colored my Mom’s matches green so they are easy to see when comparing to my own, then sorting by the match name.

Person 1 matches me and Mom both, at 10 cM on chromosome 1. Person 1 is assigned to my maternal side due to the matches above 9 cM, the lowest threshold at Family Tree DNA for bucketing.

In this example, we can see that Person 1 matches me and Mom (colored green), both, on the segment on chromosome 1. That match, bracketed by red, is a valid, phased, match and should be painted.

However, Person 1 also matches me, but NOT Mom on chromosome 2. Because Person 1 is bucketed to mother, this segment on chromosome 2 will also be painted to my maternal chromosome 2 using the DNAPainter import. The only way to sort this out is to do the comparison manually.

The same holds true for the X match shown. The two segments shown in red should NOT be painted, but they will be unless you are willing to compare you and your parents’ matches manually, you will just have to evaluate segments individually when you see that you’re working in a cluster where matches have been assigned through the mass import tool.

If you choose to compare the spreadsheets manually to assure that you’re not painting segments like the red ones above, DNAPainter provides instructions for you to create your own mass upload template, which is what I did after removing any segment matches of people that were not “in common” between me and mother on the same chromosomal segment, like the red ones, above.

Please note that if you delete the erroneous segments and later reimport your bucketed matches, they will appear again. I’m more inclined to leave them, making a note.

I did not do a manual comparison of my father’s side of the tree after discovering just how little difference was found on my mother’s side, and how much effort was involved in the manual comparison.

Creating a Mass Upload Template and File

DNAPainter custom mass upload.png

The instructions for creating your own mass upload file are provided by DNAPainter – please follow them exactly.

In my case, after doing the manual spreadsheet compare with my mother, only a total of 18 new segments were imported that were not previously identified by bucketing.

Three of those segments were over 15cM, but the rest were smaller. I expected there would be more. Family Tree DNA is clearly doing a great job with maternal and paternal bucketing assignments, but they can’t do it without known relatives that have also tested and are linked to your tree. The very small discrepancy is likely due to matches with cousins that I have not been able to link on my tree.

The great news is that because DNAPainter recognizes already-painted segments, I can repeat this anytime and just paint the new segments, without worrying about duplicates.

  • The information above pertains to segments that should have been painted, but weren’t.
  • The information below pertains to segments that were painted, but should not have been.

I did not keep track of how many segments I deleted that would have erroneously been painted. There were certainly more than 18, but not an overwhelming number. Enough though to let me know to be careful and confirm the segment match individually before using any of the mass uploaded matches for hypothesis or conclusions.

Given that this experiment went well, I created a copy of my “real” profile in order to do the same import and see what discoveries are waiting!

Before and After

Before I did the imports into my “real” file (after making a copy, of course,) I had painted 82% of my DNA using 1700 segments. Of course, each one of those segments in my original profile is identified with an ancestor, even if they aren’t very far back in time.

Although I didn’t paint matches in common with my mother before this mass import, each of my matches in common with my mother are in common with one or the other of my maternal grandparents – and by using other known matches I can likely push the identity of those segments further back in time.

Status Percent Segments Painted
Before mass Phased Family Match bucketed import 82 1700
After mass Phased Family Match bucketed import 88 7123
After additional manual matches with my mother added 88 7141

While I did receive 18 additional matching segments by utilizing the manually intensive spreadsheet matching and removal process, I did not receive enough more matches to justify the hours and hours of work. I won’t be doing that anymore with Family Tree DNA files since they have so graciously provided bucketing and DNAPainter can leverage that functionality.

Those hours will be much better spent focusing on unraveling the ancestors whose stories are told in clusters of triangulated matches.

I Love The Import Tool, But It’s Not Perfect

Keep in mind that the X chromosome needs a match of approximately twice the size of a regular chromosome to be as reliable. In other words, a 14 cM threshold for the X chromosome is roughly equivalent to a 7 cM match for any other chromosome. Said another way, a 7 cM match on the X is about equal to a 3.5 cM match on any other chromosome.

X matches are not created equal.

The SNP density on the X chromosome is about half that of the other chromosomes, making it virtually impossible to use the same matching criteria. I don’t encourage using matches of less than 500 SNPs unless you know you’re in a triangulated group and WITH at least a few larger, proven matches on that segment of the X chromosome.

Having said that, X matches, due to their unique inheritance path can persist for many generations and be extremely useful. You can read about working with the X chromosome here and here.

I noticed when I was comparing segments in the manual spreadsheet that I had to remove many X matches with people who had identical matches on other chromosomes with me and my mother. In other words, just because they matched my mother and me exactly on one chromosome, that phasing did not, by default, extend to matching on other segments.

I checked my manually curated file and discovered that I had a total of seven X matches that should have been, and were, painted because they matched me and Mom both.

DNAPainter X spreadsheet example.png

However, there were many that didn’t match me and Mom both, matching only me, that were painted because that person was bucketed (assigned) to my maternal side because a different segment phased to mother correctly.

On the X chromosome, here’s what happened.

DNAPainter maternal X.png

You can see that a lot more than 7 bright red matches were painted – 26 more to be exact. That’s because if an individual is bucketed on your maternal or paternal side, it’s presumed that all of the matching segments come from the same ancestor and are legitimate, meaning identical by descent and not by chance. They aren’t. Every single segment has an inheritance path and story of its own – and just because one segment triangulates does NOT mean that other segments that match that person will triangulate as well.

The X chromosome is the worst case scenario of course, because these 7 cM segments are actually as reliable as roughly 3.5 cM segments on any other chromosome, which is to say that more than 50% of them will be incorrect. However, some will be accurate and those will match me and mother both. 21% of the X matches to people who phased and triangulated on other chromosomes were accurate – 79% were not. Thankfully, we have phasing, bucketing and tools like this to be able to tell the difference so we can utilize the 21% that are accurate. No one wants to throw the baby out with the bath water, nor do we want to chase after phantoms.

Keep in mind that Phased Family Matching, like any other tool, is just that, a tool and needs some level of critical analysis.

Every Segment Has Its Own Story

We know that every single DNA segment has an independent inheritance path and story of its own. (Yes, I’ve said that several time now because it’s critically important so that you don’t wind up barking up the wrong tree, literally, pardon the pun.)

In the graphic above of my painted X chromosome matches, only the six matches with green stars are on the hand-curated match list. One had already been painted previously. The balance of the bright red matches were a part of the mass import and need to be deleted. Additionally, one of the accurate matches did not upload for some reason, so I’ll add that one manually.

I suggest that you go ahead and paint your bucketed segments, but understand that you may have a red herring or two in your crop of painted segment matches.

As you begin to work with these clusters of matches, check your matching segments with your parents (or other family members who were used in bucketing) and make sure that all the segments that have been painted by bulk upload actually match on all of the same segments.

If you have a parent that tested, there is no need to see if you and your match match other relatives on that same side. If your match does not match you and your parent on some significant overlapping portion of that same segment, the match is invalid. DNA does not “skip generations.”

If you don’t have a parent that has tested, your known relatives are your salvation, and the key to bucketed matches.

The great news is that you can easily see that a bulk match was painted from the coloring of the batch import. As you discover the relevant genealogy and confirm that all segments actually match your parent (or another family member, if you don’t have parents to test,) move the matching person to the appropriately colored ancestral group.

I further recommend that you hand curate the X chromosome using a spreadsheet. The nature of the X makes depending on phased matching too risky, especially with a tool like DNAPainter that can’t differentiate between a legitimate and non-legitimate match. The X chromosome matches are extraordinarily valuable because they can be useful in ways that other chromosomes can’t be due to the X’s unique inheritance path.

What About You?

If you don’t have your DNA at Family Tree DNA and you have tested elsewhere, you can transfer your DNA file for free, allowing you to see your matches and use many of the Family Tree DNA tools. However, to access the chromosome browser, which you’ll need for DNA painting, you’ll need to purchase the unlock for $19, but that’s still a lot less than retesting.

Here are transfer instructions for transferring your DNA file from 23andMe, Ancestry or MyHeritage.

If you have not purchased a Family Finder test at Family Tree DNA and don’t have a DNA file to transfer, you can order a test here.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Autosomal DNA Testing 101 – What Now?

When I first started this blog, my goal was to provide explanations and examples of genetic genealogy topics so that there would be fewer questions and easier answers.

That sounded like a great idea, but the reality of the situation is that the consumer market for autosomal DNA testing has exploded – meaning more and more consumers with more and more questions.  Compounding that situation, the consumers who purchase these tests today, especially on impulse, and mostly I’m referring to Ancestry.com here, often have absolutely no idea what to expect or even what they want except that Ancestry will find their ancestors for them.  That’s because that’s what Ancestry tells them in their advertising.

So, in the big picture, the questions and inquiries that experienced people are currently receiving are becoming less specific and more general and often exhibit a lack of understanding of what DNA testing can do.  It’s frustrating to parties on both sides of the fence, but I’m glad people are asking because it means they are interested and willing to learn.

Rather than approach this topic from a technical perspective of how to work with autosomal DNA, I’d like to talk about what can be done with autosomal DNA testing from a newbie perspective.  The person who just got their results back and are saying to themselves, “OK, now what can I do with this?”

However, there is lots “how to” information in this article for everyone if you click on the links.  If nothing else, this gives you a tool to send to those overly excited newbies who are starry eyed but have no clue how to proceed.  Remember, you were once new too!

This is part 1 of a two part series.  The second part will focus on how to make contact with your matches successfully.  But now, let’s pretend it’s day 1 and you just got your autosomal test results back.

Why Did You Test?

The first question to ask yourself is why did you test in the first place?  If your answer is “because Ancestry had a sale,” that’s fine, but then you’ll need to read all four options to know what you can do with autosomal DNA.

1.  I want to meet other people I’m related to.

Ok, but the first thing here you’re going to have to define is the word “related.”  You are likely related to everyone on your match list.  I said likely, because there may be some people there whose DNA simply matches yours by chance.  For the most part, and especially for those people who are your closest matches, you’re related somehow. The challenge, of course, is to figure out how – meaning through which ancestor.  This is the genealogy jigsaw puzzle of you!

All three of the major vendors, Family Tree DNA, Ancestry and 23andMe show you your closest matches first on your match list.

autosomal 101 FTDNA

Do you want to meet your DNA cousins only if you can identify a common ancestor?  Do you want to work with them on genealogy? The answers to these questions will help sort through the rest of what to do and how.

If your goal is to contact your matches, then Family Tree DNA is the easiest, as they provide you with the e-mail addresses of your matches by clicking on the little envelope for each match on your match page, shown above.

Ancestry is second easiest, but forces you to use their internal message system which often doesn’t deliver the messages.  (Do not send more than 30 in one day or Ancestry will blacklist your messages and block your communications, thinking you are a spammer.)

23andMe is the most difficult as you have to request permission to communicate with each match and also to share DNA and if your match authorizes communication, then you can communicate through 23andMe’s message system.  Sound cumbersome?  It is and the response rate is low.

Confirming Genealogy

Let’s look at another reason for testing.

2.  I want to confirm my genealogy is correct – meaning that my great-grandfather really is my great-grandfather and so forth on up the line.

Well, you’re in luck, especially if some of your cousins, known or otherwise, have tested.  Confirming your genealogy is easier done in closer generations than more distant ones and the more cousins from various lines that have tested, the better.  That’s because you will share more of your DNA with relatives when you have a close common ancestor.

Autosomal DNA is divided approximately in half in each generation, when the child receives half of their DNA from each parent – so the closer your cousin, the more likely you are to share more DNA with them.  The more DNA you share, the more likely you are to be able to identify which ancestor it comes from.  And if a match matches you and your proven cousin both on the same segment, that identifies positively which line that match comes from.  That three way matching is called triangulation.

Let’s talk about the word “confirm.”  Herein lies a challenge, because DNA does have the absolute ability to confirm ancestors, as noted above.  DNA also has the ability to give you hints that go towards a “preponderance of evidence.”  DNA, can also lead you astray if you draw erroneous conclusions – and one vendor provides a tool (or tools) that encourages overstepping conclusions.  Let’s look at each circumstance.

Proof Positive through Triangulation

Just what it says – absolutely unquestionable proof that a particular ancestor is your ancestor.  If you match two other people who also descend from your common ancestors, Joe and Jane Doe, on the same segment of DNA, that is confirmation that you share that ancestor and that segment of your DNA is considered proven to that ancestral line.  This requires two things.  First, that your DNA matches on the same segment AND that you have identified the same ancestors, Joe and Jane Doe, genealogically in your trees.

Now, you probably can’t tell which side of the couple, Jane or Joe, the DNA is from unless you also match two people on just Jane’s side of the family or just Joe’s on that same segment.

One caveat here – counting you and your parent as two of the three people doesn’t work because you and your parents are too close in the tree.  By three people, that would preferably be three people who descend from that couple through three different children.

Here’s an example.

JohnDoe

It would also ideally be more than three people, but three is the minimum to form a triangulation group.  In the real world, these matches might not start and end of the same segments as in the example above, but the overlapping portion should be significant

The example above is proof positive, because the three people descend from the same ancestor, through different children, and match on the same chromosome in the same locations.

This technique is called triangulation.

Now for the bad news – you can’t do this at Ancestry.com, because they don’t provide you with any of the segment information in the last 5 columns.  Ancestry has no chromosome browser, which is the tool that shows you where on your DNA you match your cousins.

Family Tree DNA’s chromosome display tool that is part of their chromosome browser is shown below.

Two cousins browser

On the example above, you can see that Barbara Jean Long, the black background person on the chromosome graphic, is being compared to her two first cousins, the blue and orange on the chromosome graphic.

You can download the information from Family Tree DNA or 23andMe in spreadsheet format, or you can display the information graphically, like in the example above.  You can see the “stacked” locations where both the cousins match the black background person they are being compared to.  You can also see that there are some locations where only one of the cousins matches the background person, like on chromosome 20.  And of course, some locations where neither cousin matches the background person, like on chromosome 21.

If you download that data, the information gives you the locations where the people being compared match the person they are being compared against.

Two cousins combined

The chart above is the download of part of chromosome 1 for Barbara, Cheryl and Donald, siblings who are Barbara’s first cousins.

The areas where the 3 people overlap, or triangulate, are colored in green on the spreadsheet, while the rows entirely in pink or blue do not triangulate – meaning Barbara matches either one cousin or the other, but not both.  Keep in mind that this example only proves their common ancestral couple, which in this case are common grandparents – but the technique is the same no matter which common ancestor you are trying to prove.

This bring us to our next topic, that of close relatives.

Close Relative Matches

I previously said that you can’t use you and a close relative to prove a distant ancestor.  But that’s not necessarily true when the relationship you are trying to prove is closer in time.  The chart below shows the relationships of the example above.

Miller Ferverda chart

In the case shown above, two first cousins who are siblings, Cheryl and Don, are being compared to their common first cousin, Barbara.  Their fathers were siblings and their common ancestors were their grandparents.  This is not 6 generations up a tree where matching is iffy.  You can be expected to match closely with your first cousins where you may not match with more distant cousins, because you simply didn’t inherit any of the same DNA from your distant common ancestor.  You should be sharing about 12.5% of your DNA with first cousins, and if you have first cousins that you’re not matching, that might signal that an undocumented adoption has occurred in one line or the other.

In a case like this, if you and a first cousin match, that suffices to prove a close connection.  If you don’t match, it suffices to raise questions.  A lot of questions.  Big ugly questions.  The next thing to do is to see if any other known cousins have tested and who they match – or don’t match.

For example, if Barbara Ferverda was not the child of John Ferverda, she would not match either Cheryl nor Don, and we’d know there was a problem.  If Cheryl and Don match other Ferverda or Miller relatives and Barbara didn’t, then we’d know the genetic break in the line was on Barbara’s side and not on Cheryl/Don’s side.

This same technique is also how we know which “side” matches are on.  If an unknown match matches both Barbara and Cheryl, for example, it’s a good bet that their common ancestor is someplace in the Miller/Ferverda line.  If they also match another Miller on the same segment, then the common ancestor has been narrowed to the Miller side of the Miller/Ferverda couple.

Unfortunately, not all DNA results are as definitive or easy to prove as these.  Let’s look at some of the more “squishy” results.

Preponderance of Evidence through Aggregated Data

In regular genealogy, there are a range of proofs.  There is direct evidence that someone is the child of an ancestor.  That would be a will, for example, that names a daughter and her husband and maybe even tells where they moved to.  This would be your lucky day!

Think of that will as equivalent to triangulated proof of a common ancestor.  There is just no arguing with the evidence.

If you’re not that lucky, you have to piece the shreds of indirect evidence together to make a story.  In the genealogy world, this is called preponderance of evidence, and I am always, always much less comfortable with this type of evidence than I am with solid proof.

There are various flavors of pieces of evidence in the DNA world. Sometimes we have hints of relationships without proof.

The most common is when you have matches with a group of people who share the same surname, but you can’t get back far enough to find a common ancestor.  Is this a probable match?  Yes?  Guaranteed?  No.  Have I seen them fall apart and the actual match be on another entirely unrelated line?  Yes.  See why I call these squishy?

Ancestry takes this one step further with their DNA Circles.  For a DNA Circle to be created, you must match DNA with someone in the Circle AND everyone in the Circle must match DNA with someone else in the Circle AND everyone in the Circle must have a common ancestor in their tree.  Circles begin with a minimum of three people.  Generally, the more people who match AND have the same ancestor, the stronger the likelihood that you would be able to confirmation the common ancestor of the group as your ancestor too – if you had a chromosome browser type of tool.  Still, Circles alone are not and never will be, proof.  Circles are great hints and along with other research, can confirm genealogical research.  For example, my paper genealogy says I descend from Henry Bolton, and I find myself in Henry Bolton’s tree, matching several other Bolton descendants through Henry’s other children.  Those multiple connections pretty well confirms the paper trail is accurate and no undocumented adoptions have occurred in my line.

Now, the bad news….Circles is predicated upon matching of trees.  If there is a common misconception out there that is replicated in these trees, then people who match will be shown in a Circle predicated on bad information.  And, there is no way to know.  However, people interpret the existence of a DNA Circle as proof positive and that it confirms the tree.  Membership in a DNA Circle is absolutely NOT proof of any kind, let alone proof positive – except that your DNA matches the people who you are connected to by lines and their DNA matches the people they are connected to by lines.  You can see my connections in orange below, and the background connections in light grey.

circle henry bolton matches2

This is an example of my Henry Bolton Circle.  I match 5 different people’s DNA (the orange lines) who also show Henry Bolton as their ancestor.  This does NOT mean the match is on the same segment, so it is NOT triangulated.  This is a grouping of data where multiple people match each other, not a genetic triangulation group where everyone matches on the same segment.  In fact there are cases that I have found where the person I match in a circle is through a different line entirely, so in that case, the presumption of which common ancestor our common DNA is from is incorrect.

I want to be very clear, there is nothing wrong with DNA Circles, so far as they go.  The consumer needs to understand what Circles are really saying – and what they can’t and don’t say.  DNA Circles are another important tool in our arsenal.  We just have to be careful not to assume, or presume, more than is there.  Presuming that we match someone in the Circle because we share Henry Bolton’s DNA may in fact be inaccurate.  We may match on a completely unrelated line – but because we do match and share a common ancestor in our tree – we both find ourselves in the Henry Bolton Circle.

Are you reading those squishy words?  Presume – it’s related to the word assume…right???  And keep in mind that Circles are created based in part on those wonderfully accurate Ancestry trees.  Are you feeling good about this preponderance of evidence yet?

However, in my case, I’ve done due diligence with the genealogy and I have all of my proof ducks in a row.  The fact that I do match so many Bolton descendants confirms my work, along with the fact that at the other vendors and at GedMatch, I  have triangulated my matches and proven the Bolton DNA.  So, this circle is valid but the only proof I have is not found at Ancestry or because I’m a Circle member, but by triangulation and aggregated data using other vendor’s tools.

This next screen shot is of an exact triangulated match using GedMatch’s triangulation tool.  Each line shows me matching two cousins, along with the start and stop segments.  This just happens to be the Ferverda example.  So, I match six people, all on the same segment, all with a known common ancestor.  This is proof positive.  Not all “matching” is nearly so definitive.

Gedmatch triangulation

Sometimes the matches aren’t so neat and tidy. That’s when we move to using aggregated data.

Aggregated Data – What’s That?

Aggregated data is a term I’ve come up with because there isn’t any term to fit in today’s genetic genealogy vocabulary.  In essence, aggregated data is when a group of people (who may or may not know who their common ancestor is) match on common segments of data, but not necessarily on the same segments, or not all of the same segments.  When you have an entire group of these people, they form a stair step “right shift” kind of graph.

The interesting part of this is that by utilizing aggregated data and looking not only at who we match, but who our matches match that share a common ancestor, we can gain insight and hints.  Finding a common ancestor is of course a huge benefit in this type of situation because then you’ve identified at least a DNA “line” for the entire group.

If we were to utilize the triangulation tools at Gedmatch and look at my closest triangulated matches, they would look something like this, where the segments that I match with each person (or in this case, two people) shift some to the right.  What you are seeing is the start and stop match locations, with graphing.  Therefore, I match all of these people that have a common ancestor.

Each match overlaps the one above and below to come extent – and often by a lot.  These are known as triangulation groups (TG).

However, the top match and the bottom match do not overlap, so they don’t triangulate with each other.  They are still valid triangulated matches to me and you can expect to see this kind of matching when using aggregated data.

Understand that when you see your triangulation groups at GedMatch, your mother’s side and your father’s side will be intermixed. In this case, I know the common ancestor and I know many of these testers, so I’m positive that this is a valid grouping (plus, they all match my Mom too – the best test of all.)

gedmatch triang group

Here’s another example only showing three matches.  All three are triangulated to me through the same ancestor, but the locations of the top and bottom matches don’t overlap with each other.  Both overlap the one in the middle in part.

gedmatch overlap

New Ancestor Discoveries – Not Evidence at All

Let’s look at the third reason for DNA testing.

3.  I want to find new ancestors.

Discovering brand new ancestors is a bit tougher.

There are two ways to discover new ancestors.  The first is through triangulation combined with traditional genealogy.  I have done this, but in these cases, I did have a clue as to what I was looking for.  In other words, the new ancestor I discovered was actually confirming a wife’s surname or identifying the parents of an ancestor from several potential candidate couples.

The second way to potentially discover a new ancestor is Ancestry’s New Ancestor Discoveries, NADs, which is really a somewhat misleading name.  What Ancestry has determined is that you match a group of people who share a common ancestor – and Ancestry’s leap of faith is that you share that ancestor do too.  While that may not be correct, what IS very relevant is that you do match this group of people who DO share a common lineage and there is an important hint there for you someplace!  But don’t just accept Ancestry’s discovery as your new ancestor – because there is a good chance it isn’t.  Let’s take a look.

Ancestral Lines Through Triangulation

Let’s go back to the John Doe example.

JohnDoe

Let’s take the worst case scenario.  You’re an adopted and have no information.  But you match an entire group of people in a triangulated group who DO know the identity of their common ancestor.

Does this mean that John Doe is your ancestor?  No.  John Doe could be your ancestor, or he could be the brother of your ancestor, or the uncle of your ancestor.  What this does tell you is that either John Doe is your ancestor, some of John Doe’s ancestors are your ancestors, or you are extremely unlucky and you are matching this entire group by chance.  The larger the segment, the less likely your match will be by chance.  Over 10 cM you’re pretty safe on an individual match and I think you’re safe with triangulated groups well below 10 cM.

Ancestry’s New Ancestor Discoveries

You can make this same type of discovery at Ancestry, but it’s not nearly as easy as Ancestry implies in their ads and you have no segment data to work with, just their match, shown below.

Larimer NAD

“Just take the test and we’ll find your ancestors,” the ad says.  Well, yes and no and “it depends.”

Ancestry went out on a limb a few months ago, right about April Fools Day, and frankly, they fell off the end of the branch by claiming that New Ancestor Discoveries are your missing ancestors found.  While that is clearly an overly optimistic marketing statement, the concept of matching you with people you match who all share a common ancestor is sound – it was the implementation and hyper-marketing that was flawed.

The premise here is that if you match people in a Circle that have a common ancestor, that you too might, please note the word might, share that ancestor – even if that person is not in your tree.  In other words, even if you don’t know who they are.  Just like the John Doe triangulation example above.

Here is my connection to the Larimer DNA Circle, even though I don’t know of a Larimer ancestor.

Larimer NAD circle

Now, the problem is that you might be related to an ancestor on one side upstream several generations, but it’s manifesting itself as a match to that particular couple because several people of that couple’s descendants have tested.  I’ve shown an example of how this might work below.

common unknown ancestor

In this example, you can see that your true common ancestor is unknown to both groups of people, but it’s not Mary Johnson and John Jones, or in my case, not John and Jane Larimer.

However, three descendants of Mary Johnson and John Jones tested, and you match all three.  If you also showed Mary Johnson and John Jones in your tree, then you’d be in a Circle with them at Ancestry.  However, since Mary Johnson and John Jones are NOT your ancestors, they are not in your tree.  Since you match three of their descendants, Ancestry concludes that indeed, Mary Johnson and John Jones must also be your ancestors.

While NADs are inaccurate about half the time, the fact that you do share DNA with the people in this group is important, because someplace, upstream, it’s likely that you share a common ancestor.  It’s also possible that you match these three people through unconnected ancestors upstream and it’s a fluke that they all three also descend from this couple.  And yes, that does happen, especially when all of the people involved have ancestors from the same region.

The first day that Ancestry rolled the New Ancestor Discoveries, I was assigned a couple that could not possibly be my ancestors.  I called them Bad NADs.

In my experience, there are more erroneous NADs out there than good ones.  I knew my original one was bad, as I had proof positive because I have triangulated my other lines.  Then, one day, my bad NAD was gone and now, a few weeks later, I have another assigned NAD couple that I have not been able to prove or disprove – the Larimers.  Truthfully, after the bad NAD fiasco, I haven’t spent a lot of time or effort because without tools, there is no place to go with this unless the people I match will download their results to GedMatch.  I’m hoping that a new tool to be released soon will help.

Here’s how NADs could be useful.  Let’s say that my Larimer matches download to GedMatch and I discover that they also match a triangulated group from my McDowell line.  Well, guess what – my Michael’s McDowell’s wife is unknown.  Might she be a Larimer?  Michael’s mother is also unknown.  Might she be a Larimer?  It gives me a line and a place to begin to work, especially if they share any common geography with my ancestors.

Even if the NADs aren’t my direct ancestors, this is still useful information, because somehow, I probably do connect to these people, even though my hands are somewhat tied.  However, labeling them New Ancestor Discoveries encourages people to jump to highly incorrect conclusions.  This isn’t even in the preponderance of evidence category, let alone proof.  It’s information that you can potentially use with other DNA tools (at GedMatch) and old fashioned genealogy to work on proving a connection to this line.  Nothing more.

So what is the net-net of this? Circles can count in the preponderance of evidence, especially in conjunction with other evidence, but NADs don’t.  Neither are proof.  If we were able to work with the segment data and compare it, we might very well be able to determine more, but Ancestry does not provide a chromosome browser, so we can’t.

Ancestor Chromosome Mapping

4.  I want to map my chromosomes to my ancestors so that I know which of my DNA I inherited from each ancestor.

If this is your DNA testing goal, you certainly did not start by testing with Ancestry.com, because they don’t have any tools to help you do this.  This tends to be a goal that people develop after they really understand what autosomal DNA testing can do for them.  In order to map your genome, you have to have access to segment information and you have to triangulate, or prove, the segments to each ancestor.  So count Ancestry out unless you can talk your matches into downloading their raw data files to either GedMatch or Family Tree DNA.  You’ll be testing with both Family Tree DNA and 23andMe and downloading your match information to a spreadsheet and utilizing the tools at www.gedmatch.com and www.dnagedcom.com.

Just so you get an idea of how much fun this can be, here’s my genome mapped to ancestors a few months ago.  I have more mapped now, but haven’t redone my map utilizing Kitty Cooper’s Tools.

Roberta's ancestor map2

Tips and Tricks for Contact Success

Regardless of which of these goals you had when you tested, or have since developed, now that you know what you can do – most of the options are going to require you to do something – often contacting your matches.

One thing that doesn’t happen is that your new genealogy is not delivered to you gift wrapped and all you have to do is open the box, untie the bow around the scroll, and roll it down the hallway.  That only happens on the genealogy TV shows:)

So join me in a few days for part two of Autosomal DNA Testing 101 – Tips and Tricks for Contact Success.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research