ThruLines Suggests Potential Ancestors – How Accurate Are They?

I wanted to evaluate the accuracy of Ancestry’s ThruLines suggested Potential Ancestors when compared with a tree I know is accurate. I conducted an experiment where I created a small tree on Ancestry for a DNA tester that included only the first two generations, meaning grandparents and great-grandparents.

Click to enlarge any image.

This gave Ancestry enough data to work with and means that for the upstream ancestors, Ancestry’s ThruLines suggested specific people as ancestors.

How well did Ancestry do? Are the Potential Ancestors suggested by Ancestry accurate? How do they make those suggestions anyway? Are they useful?

I do have a second, completely separate, full tree connected to my other DNA test, and I do know who those ancestors are, or, in some cases, I know who they aren’t. I’ve had the privilege of working intensively on my genealogy for decades, so I can easily compare what is known and proven, or what has been disproven, to Ancestry’s suggested Potential Ancestors.

We’ll start with the great-grandparents’ generation, but first, let’s talk about how ThruLines works. I’ve previously written about ThruLines here and here.

How ThruLines Works

ThruLines is a tool for people who have taken an AncestryDNA test and who link themselves to their position on their tree. Linking is a critical step. If you don’t link the DNA test to the proper profile, the tester won’t have ThruLines. I provided step-by-step instructions, here.

I want to emphasize this again, ThruLines is a TOOL, not an answer. It may or may not be accurate and it’s entirely UP TO YOU to take that hint, run with it, and verify or disprove. Ancestry is providing you with a hint.

Essentially, the more ancestors that you provide to Ancestry, generally, the better they can do when suggesting additional Potential Ancestors. They do need something to work with. I wrote about that in the article Optimizing Your Tree at Ancestry for More Hints and DNA ThruLines.

If you don’t provide at least your parents and at least your grandparents in a tree, it’s unlikely that Ancestry will be able to provide Potential Ancestors for you.

I added two generations above the parents in this experiment in order to provide Ancestry with a significant “hook” to latch onto to connect with:

  • Other DNA testers who match the tester AND
  • Other people’s trees, whether the tree-owners have tested their DNA or not

So yes, to be clear, Ancestry DOES:

  • Use the trees of other people whose DNA you match AND have the same ancestors in their tree
  • Along with the trees of people you don’t match (or who haven’t DNA tested,) to propose ancestors for you

ThruLines only reaches back to ancestors within 7 generations, meaning the ancestor is the tester’s 5th great-grandparent or closer.

Most suggested Potential Ancestors in ThruLines have descendants who have tested and are DNA matches to you, but not necessarily all.

On your tree itself, the ThruLines “3 people” icon shows on the ancestors that have Thrulines.

Click to enlarge

Looking at this graphic of my tree, you can see that ThruLines ends at the 7th generation, but Potential Ancestors continue to be suggested beyond 7 generations. Note generation 9, below, which is beyond ThruLines but has Potential Ancestors suggested based entirely on other people’s trees.

ThruLines stops at 7 generations, but Potential Ancestor suggestions do not.

In the above example, in generation 7, Michael McDowell (1720-1755) is a known ancestor and has a ThruLine, but his wife is unknown. Ancestry has suggested a Potential Mother for Michael McDowell (1747-1840) who is also the spouse of Michael McDowell (1720-1755).

Here’s the ThruLines suggestion for Michael McDowell’s wife.

Ironically, there are no DNA matches for either Michael or Eleanor. However, there are DNA matches for their child who clearly descends from Michael. This may be an example of a situation where the other testers are beyond the 7th generation, so they don’t show as matches for our tester in Michael’s generation. The other possibility, of course, is a glitch in ThruLines.

(For those familiar with the Michael McDowell (1720-1755) lineage, Eleanor is his mother, not his wife. His wife is unknown, so this Potential Ancestor is incorrect.)

Potential Ancestors Without DNA Matches

A person may still be suggested as a Potential Ancestor even without any DNA matches.

I have seen situations where a parent has DNA matches to several ThruLine ancestors, but their child has the same suggested ancestor with zero DNA matches listed because the child and the match are one generation too far removed to be listed as a DNA match on ThruLines.

Yet, if you search the child’s match list for the individual listed as a DNA match to their parent through that ancestor, that match is also on the child’s match list.

In the chart that follows, you can see that ancestors in the midrange of generations have many DNA matches, but as you approach the 7th generation, the number of matches drops significantly, and some even have zero. That’s because both people of a match pair have to be within the generational boundary for ThruLines to list them as matches.

In some cases, the ancestor is not suggested for the child in ThruLines because the ancestor is the 6th great-grandparent of the child. If you look directly at the child’s tree, the Potential Ancestor may be suggested there.

Points to Remember

  • The difference between ThruLines and Potential Ancestors is that Potential Ancestors are still suggested beyond the hard 7 generation or 5 GG boundary for ThruLines.
  • ThruLines may suggest Potential Ancestors with or without DNA matches.
  • Potential Ancestors, either within or beyond ThruLines must connect to someone in your tree, or another Potential Ancestor or ancestors who connect to someone in your tree.

Incorrect Ancestors and Discrepancies

An incorrect ancestor can be listed in multiple people’s trees, and Ancestry will suggest that incorrect ancestor for you based on the associated trees. At one point, I did a survey of the number of people who had the incorrect Virginia wife listed for my ancestor, Abraham Estes, and the first 150 trees I viewed had the wrong wife. We have church record proof of her death in England before his children were born by his colonial Virginia wife. Garbage in, garbage out.

That doesn’t mean those trees aren’t useful. In some cases, the information “saved” to that person in those incorrect trees shows you exactly what is out there and can’t be correct. For example, if there is a death record and burial for someone, they can’t also be alive 50 years later in another location. Or someone born in 1780 can’t have been a Revolutionary War veteran. Sometimes you’ll discover same name confusion, or multiple people who have been conflated into one. Other times, you may actually find valid hints for your own ancestor misplaced in someone else’s tree. Always evaluate.

You “should” have the same number of matches to the man and woman of a couple if neither of them had descendants with another partner, but sometimes that doesn’t happen. I would presume that’s due to tree discrepancies among your matches or other trees on Ancestry.

If the same ancestor is listed with multiple name spellings or similar differences, I have no idea how Ancestry determines which version to present to you as a Potential Ancestor. That’s why ThruLines are hints. Ancestry does show you the various trees they utilized and allows you to peruse them for hints for that suggested ancestor.

Just click on the Evaluate button. Unfortunately, neither of these trees have any records for this ancestor.

If you click on the tree, you are then given the opportunity to add Eleanor (meaning the potential ancestor) to your tree from their tree.

I STRONGLY, STRONGLY suggest that you DO NOT do this. By adding information directly from other people’s trees, you’re introducing any errors from their tree into your tree as well.

If you click through to their tree, you’ll often find that they used someone else’s tree as their “source,” so misinformation propagates easily. Seeing “Ancestry Family Trees” as a source, especially in multiple records, provides you with an idea of the research style of that tree owner. This also conveys the message to less-experienced researchers that copy/pasting from other trees is a valid source.

Use this information provided as hints and do your own research and evaluation.

Where Do Potential Ancestors Come From?

Let’s view an example of an incorrect Potential Ancestor suggestion and proof-steps you can utilize to help validate or potentially disprove the suggestion.

We know that George Middleton Clarkston/Clarkson is NOT the father of James Lee Clarkson based on Y-DNA testing where the descendants of the two men not only don’t match, they have a completely different haplogroup. They do not share a common paternal ancestor. Furthermore, proven descendant groups of both men do not have autosomal DNA matches.

However, George Middleton Clarkson is suggested as a Potential Ancestor in ThruLines as the father of James Lee Clarkson.

Mousing over the ThruLines placard shows 98 DNA matches to other people who claim descent from George Middleton Clarkson. How is it possible to have 98 matches with descendants of George Middleton Clarkson, yet he’s not my ancestor?

Many people just see that “98,” which is a high number and think, “well, of course he’s my ancestor, otherwise, I wouldn’t match all those descendants.” It’s not that simple or straightforward though. It’s certainly possible to all be wrong together, especially if you’re dealing with long-held assumptions in the genealogy community and trees copies from other people’s trees for decades.

To view the ThruLine detail for George Middleton Clarkson, just click on the placard.

The ThruLine for George Middleton Clarkson has three attributed children with DNA matches. Let’s evaluate.

  • ThruLines Child 1 is my own James Lee Clarkson that has been erroneously attached to George Middleton Clarkson. However, the Y-DNA of the three various lines, above, does not match. That erroneous connection alone counts for 80 of those 98 matches. If all of those people who match me do descend from our common ancestor, James, those matches all make sense.

According to early histories, James Lee Clarkson was believed to be George’s son based on geographic proximity between the state of Franklin in eastern Tennessee and Russell County, Virginia, but then came DNA testing which said otherwise.

This DNA grouping from the Clarkson/Claxton DNA Project at FamilyTreeDNA shows that the men, above, which includes descendants of James Lee Claxton/Clarkson, all match each other.

  • ThruLines Child 2 is Thomas Clarkston who has 17 DNA matches through 7 of his children.

By clicking on the green evaluate button for Thomas, we see that two of the DNA related trees have records, but three do not.

The first tree is quite interesting for a number of reasons.

  1. Thomas Clarkson is found in Lee County, VA, in relatively close proximity to where James Lee Clarkson is first found in Russell County, VA as an adult in 1795.
  2. There is no actual documentation to connect Thomas Clarkson with George Middleton Clarkson who was hung in 1787 in the lost State of Franklin, Tennessee, now Washington and Greene Counties in Tennessee. It has been “accepted” for years that Thomas descends from George Middleton based on information reportedly passed down within that family long before the internet.

The Claxton/Clarkson DNA Project at FamilyTreeDNA shows the Thomas lineage. This lineage reaches back into England based on Y-DNA matches – a huge and important hint for the Thomas descendants that they won’t be able to obtain anyplace else.

Note that Thomas’s Y-DNA does not match that of James Lee Clarkson/Claxton which means these people must match me through a different line. That’s not surprising given that many of the families of this region intermarried for generations.

  • ThruLines Child 3 is David Claxton, who has one DNA match, so let’s look at that by clicking on the green evaluate button.

You’ll see that this ancestor through David Claxton was recommended based on:

  • One DNA match with a tree with 0 source records, and
  • Zero Ancestry member trees of people whose DNA I don’t match, or that haven’t DNA tested

Checking this tree shows no sources for the following generations either, so I have no way to evaluate the accurace of the tree.

However, I did track his descendants for a generation or so and found them in Wilson County, TN, which allowed me to find them in the Clarkson/Claxton Y DNA Project at FamilyTreeDNA.

In the Clarkson/Claxton DNA project, we see that this David Claxton of Wilson County, TN is in a third DNA group that does not match either the James Lee Claxton or the Thomas Claxton line.

Furthermore, look at the hints for the descendants of David Claxton based on the Y-DNA matches. This link appears to reach back to a Clayton in Kirkington, Yorkshire.

ThruLines Conflation

In this case, three men of similar or the same surnames were cobbled together as sons of George Middleton Clarkson where clearly, based on Y-DNA testing, those three men are not related to each other paternally and do not share a common paternal ancestor. They cannot all three be descendants of George Middleton Clarkson.

It’s amazing how much is missed and erroneously inferred by NOT testing Y-DNA. In very short order, we just proved that the ThruLine that connected all three of these men to George Middleton Clarkson as their ancestor is inaccurate.

In defense of Ancestry, they simply used user-submitted erroneous trees – but you have it within YOUR power to search further, and to utilize Y-DNA or mitochondrial DNA testing for additional clarification. This Clarkson/Claxton information was freely available, publicly, by just checking.

You can find surname or other projects at FamilyTreeDNA, by scrolling down, here, or simply google “<surname you seek> DNA Project.”

How Can These People All Match the Tester?

If we know that the male Claxton/Clarkson line is not the link between these matches, then why and how do these people all DNA match the tester? That’s a great question.

It’s possible that:

  • They match the tester through a different ancestor
  • There has been a genetic disconnect in the Claxton/Clarkson line and the match is through the mother, not the Claxton/Clarkson male
  • Some of the other testers’ genealogy is in error by including George Middleton Clarkson in their trees
  • People accept the George Middleton Clarkson suggestion, adding him to their tree, propagating erroneous information
  • The descendants of James Lee Clarkson/Claxton match because he is their common ancestor, but connecting him to George Middleton Clarkson is erroneous
  • The 15 cM match (and potentially others) is identical by chance
  • The Y-DNA disproved this possibility in this case. In other cases, the matches could have been from the same biological Clarkson/Claxton line, but the testers have their ancestor incorrectly attached to George Middleton Clarkson/Claxton. In this case, we can’t say which of David Claxton, James Lee Claxton and/or Thomas Claxton are or are not individually erroneously connected to George Middleton Clarkson, but we know for a fact that David’s, James’ and Thomas’s descendant’s Y-DNA does not match each other, so they can’t all three be descendants of George Middleton Clarkston. Furthermore, there is no solid evidence that ANY of these three men are his descendant. We know that these three men do not share a common direct paternal ancestor.

I recommend for every male line that you check the relevant Y-DNA project at FamilyTreeDNA and see if the information there confirms or conflicts with a suggested ancestor, or if a descendant hasn’t yet tested. I also STRONGLY recommend that a male in the relevant surname line that carries that surname be asked to test in order to verify the lineage.

ThruLine Ranking

I’m going to rank Ancestry’s suggested Potential Ancestors by awarding points for accuracy on their Potential Ancestor ThruLines suggestions and subtracting points for incorrect Potential Ancestor suggestions. This chart is at the end with links to my 52 Ancestor’s articles for those ancestors.

OK, let’s take a look, beginning with the great-grandparent generation.

Great-Grandparents

I entered all of these ancestors and they are connected to their children, the tester’s grandparents. They are not connected to their parents for purposes of this article, although I do know who the parents are, so let’s see how Ancestry does making Potential Ancestor suggestions through ThruLines.

Ancestors (above example) that are NOT framed by a dotted line and who are NOT labeled as a “Potential Ancestor” have been connected in their tree by the DNA tester, meaning you.

The next generations, below, are all framed by dotted lines, meaning they are Potential Ancestor suggestions provided by Ancestry. Potential Ancestors are always clearly marked with the green bar.

Eight 2nd Great Grandparents

In this generation, because I have not connected them, Ancestry has suggested Potential Ancestors for all sixteen 2X Great-Grandparents.

I’ve provided gold stars for the correct ancestor information meaning both the name and the birth and death date within a year or a decade when they died between census years.

Of these 16, three are completely accurate and the rest were at least partially accurate.

I repeated this process for each one of the suggested Potential Ancestors in the 3rd, 4th and 5th great grandparent categories as well, completing a ranking chart as I went.

Ranking Chart

I’ve ranked Ancestry’s accuracy in their Potential Ancestor recommendations.

  • +2 points means the name AND birth and death years are accurate within a year or decade if they died within a census boundary
  • +1 point means that EITHER the name OR the birth and death dates are (mostly) accurate, but not both
  • 0 means uncertain, so neither positive or negative
  • -1 point means that NEITHER the name NOR birth and death dates are accurate but it’s clear that this is meant to be the correct person. In other words, with some work, this hint could point you in the right direction, but in and of itself, it is inaccurate.
  • -2 means that the person suggested is the wrong person

I’ve been generous where there was some question. I’ve linked these ancestors where I’ve written their 52 Ancestors stories. [LNU] means last name unknown. It’s worth noting that one of the trees Ancestry has available to utilize for Potential Ancestors is my own accurate tree with many source documents for my ancestors.

# Generation Ancestry Name & Birth/Death Years Correct Name & Birth/Death Years # Matches Points Awarded Y or mtDNA Confirmed
1 2nd GGP John R. Estes 1788-1885 John. R. Estes 1787-1885 110 2 Yes
2 2nd GGP Nancy Ann Moore 1789-1865 Ann Moore or Nancy Ann Moore c1785-1860/1870 112 1 Need mtDNA through all females
3 2nd GGP Lazarus Dotson 1785-1861 Lazarus Dodson 1795-1861 46 -1 Yes
4 2nd GGP Elizabeth Campbell 1802-1842 Elizabeth Campbell c 1802-1827/1830 46 1 Yes
5 2nd GGP Elijah R. Vannoy 1782-1850 Elijah Vannoy 1784-1850s 82 -1 Yes
6 2nd GGP Rebecca Lois McNeil 1781-1839 Lois McNiel c1786-c1830s 81 -1 Yes
7 2nd GGP William Crumley ?-1859 William Crumley 1788-1859 97 1 Yes
8 2nd GGP Lydia Brown Crumley 1796-1847 Lydia Brown c1781-1830/1840 112 -1 Yes
9 2nd GGP Henry Bolton 1741-1846 Henry Frederick Bolton 1762-1846 152 -1 Yes
10 2nd GGP Nancy Mann 1777-1841 Nancy Mann c1780-1841 134 1 Yes
11 2nd GGP William Herrel 1803-1859 William Harrell/Herrell c1790-1859 31 1 Yes
12 2nd GGP Mary McDowell 1785-1871 Mary McDowell 1785-after 1872 45 2 Yes
13 2nd GGP Fairwick Clarkson 1800-1874 Fairwix/Fairwick Clarkson/Claxton 1799/1800-1874 82 2 Yes
14 2nd GGP Agnes Sander Muncy 1803-1880 Agnes Muncy 1803-after 1880 106 1 Yes
15 2nd GGP Thomas Charles Speak 1805-1843 Charles Speak 1804/1805-1840/1850 60 1 Yes
16 2nd GGP Ann McKee 1805-1860 Ann McKee 1804/1805-1840/1850 60 1 Yes
17 3rd GGP George M. Estes 1763-1859 George Estes 1763-1859 76 1 Yes
18 3rd GGP Mary C. Younger 1766-1850 Mary Younger c1766-1820/1830 75 -1 Yes
19 3rd GGP William Moore 1756-1810 William Moore 1750-1826 72 1 Yes
20 3rd GGP Susannah Harwell 1748-1795 Lucy [LNU] 1754-1832 69 -2 Need Lucy’s mtDNA through all females
21 3rd GGP Lazarous Dotson 1760-1826 Lazarus Dodson 1760-1826 42 1 Yes
22 3rd GGP Janet Jane Campbell 1762-1826 Jane [LNU] c1760-1830/1840 38 -2 Need mtDNA through all females
23 3rd GGP John Campbell 1772-1836 John Campbell c1772-1838 65 1 Yes
24 3rd GGP Jane Dobkins 1780-1860 Jane Dobkins c1780-c1860 22 2 Yes
25 3rd GGP Francis Vanoy/Vannoy 1746-1822 Daniel Vannoy 1752-after 1794 76 -2 Yes
26 3rd GGP Millicent “Millie” Henderson 1755-1822 Sarah Hickerson 1752/1760-before 1820 76 -2 Need mtDNA through all females
27 3rd GGP William McNeil/McNeal 1760-1830 William McNiel c1760-c1817 116 1 Yes
28 3rd GGP Elizabeth Shepherd McNeil 1766-1820 Elizabeth Shepherd 1766-1830/1840 115 -1 Yes
29 3rd GGP William Crumley 1767-1837 William Crumley c1767-c1839 59 1 Yes
30 3rd GGP Hannah Hanner “Hammer” 1770-1814 unknown 60 -2 Have her mtDNA
31 3rd GGP Jotham Sylvanis Brown 1765-1859 Jotham Brown c1740-c1799 100 -2 Yes
32 3rd GGP Ruth Johnston Brown Phoebe Cole 1747-1802 97 -2 Incorrect person but have correct mtDNA
33 3rd GGP Henry Bolton 1720-1757 Henry Bolton 1729-1765 88 1 Yes
34 3rd GGP Sarah Corry 1729-1797 Sarah Corry 1729-1797 80 2 Need mtDNA through all females
35 3rd GGP Robert James Mann 1753-1801 James Mann 1745-? 77 -1 Need Y-DNA
36 3rd GGP Mary Jane Wilson 1760-1801 Mary Brittain Cantrell c1755-? 80 -2 Incorrect but have correct mtDNA
37 3rd GGP John Herrell 1761-1829 John Harrold c1750-1825 19 -1 Yes
38 3rd GGP Hallie Mary [LNU] c1750-1826 18 -2 Need mtDNA through all females
39 3rd GGP Michael McDowell-McDaniel 1737-1834 Michael McDowell c17471840 25 -2 Yes
40 3rd GGP Sarah Isabel “Liza” Hall Isabel [LNU] c1753-1840/1850 27 -2 Need mtDNA through all females
41 3rd GGP James Lee Clarkson 1775-1815 James Lee Clarkson c1775-1815 170 2 Yes
42 3rd GGP Sarah Helloms Cook 1775-1863 Sarah Cook 1775-1863 188 1 Yes
43 3rd GGP Samuel Munsey-Muncy 1767-1830 Samuel Muncy after 1755-before 1820 108 1 Yes
44 3rd GGP Anne W. Workman 1768-1830 Anne Nancy Workman 1760/1761-after 1860 107 -1 Yes
45 3rd GGP Rev. Nicholas Speak 1782-1852 Nicholas Speak/Speaks 1782-1852 93 2 Yes
46 3rd GGP Sarah Faires Speak 1782-1865 Sarah Faires 1786-1865 93 -1 Yes
47 3rd GGP Andrew McKee 1760-1814 Andrew McKee c1760-1814 86 2 Yes
48 3rd GGP Elizabeth 1765-1839 Elizabeth [LNU] c1767-1838 88 2 Yes
49 4th GGP Moses Estes 1742-1815 Moses Estes c1742-1813 27 1 Yes
50 4th GGP Luremia Susannah Combes 1747-1815 Luremia Combs c1740-c1820 33 -1 Need mtDNA through all females
51 4th GGP Marcus Younger 1735-1816 Marcus Younger 1730/1740-1816 30 2 Yes
52 4th GGP Susanna Hart* 1725-1806 Susanna [possibly] Hart c1740-before 1805 26 -1 Yes
53 4th GGP William Moore 1725-1757 James Moore c1718-c1798 25 -2 Yes
54 4th GGP Margaret Hudspeth 1725-1808 Mary Rice c1723-c1778/1781 26 -2 Need Mary Rice mtDNA through all females
55 4th GGP Samuel “Little Sam” Harwell 1716-1793 Incorrect 36 -2
56 4th GGP Abigail Anne Jackson 1712-1793 Incorrect 33 -2
57 4th GGP Rawleigh “Rolly” Dodson 1730-1793 Raleigh Dodson 1730-c1794 19 2 Yes
58 4th GGP Elizabeth Mary Booth 1728-1793 Mary [LNU] c1730-1807/1808 27 -2 Need Mary’s mtDNA through all females
59 4th GGP Nancy Ann Steele 1728-1836 Unknown mother of Jane [LNU], wife of Lazarus Dodson 16 -2 Need Jane’s mtDNA through all females
60 4th GGP James Campbell 1742-1931 Charles Campbell c1750-c1825 28 -2 Y DNA confirmed NOT this line
61 4th GGP Letitia Allison 1759-1844 Incorrect 31 -2
62 4th GGP Jacob Dobkins 1750-1833 Jacob Dobkins 1751-1835 91 1 Yes
63 4th GGP Dorcas (Darcas) Johnson 1750-1831 Darcus Johnson c1750-c1835 92 2 Yes
64 4th GGP John Francis Vannoy 1719-1778 John Francis Vannoy 1719-1778 47 2 Yes
65 4th GGP Susannah Baker Anderson 1720-1816 Susannah Anderson c1721-c1816 59 2 Need mtDNA through all females
66 4th GGP Thomas Hildreth Henderson 1736-1806 Charles Hickerson c1725-before 1793 37 -2 Have Hickerson Y-DNA
67 4th GGP Mary Frances “Frankie” McIntire 1735-1811 Mary Lytle c1730-before 1794 37 -2 Need mtDNA from all females
68 4th GGP Rev. George W. McNeil 1720-1805 George McNiel c1720-1805 143 1 Yes
69 4th GGP Mary Sarah Coates 1732-1782 Sarah/Sallie or Mary [maybe] Coates c1740-1782/1787 139 1 Need mtDNA through all females
70 4th GGP John James Sheppard Shepherd 1734-1810 Robert Shepherd 1739-1817 136 -2 Have Shepherd Y-DNA
71 4th GGP Sarah Ann Rash 1732-1810 Sarah Rash 1748-1829 178 -1 Yes
72 4th GGP John Crumbley 1737-1794 William Crumley 1736-1793 77 -2 Have Crumley Y-DNA
73 4th GGP Hannah Mercer 1742-1774 Hannah Mercer c1740-c1773 73 2 Yes
74 4th GGP John Hanner (Hainer) Incorrect 19 -2
75 4th GGP Jotham Brown 1740-1799 Incorrect 183 -2 Have Brown Y-DNA
76 4th GGP Phoebe Ellen Johnston 1742-1810 Incorrect 182 -2
77 4th GGP Moses Johnston 1746-1828 Incorrect 45 -2
78 4th GGP Eleanor Havis 1753-1837 Incorrect 47 -2
79 4th GGP Henry Boulton 1693-1737 John Bolton before 1693-after 1729 23 -2 Have Bolton Y-DNA
80 4th GGP Elizabeth Bryan 1658-1742 Elizabeth Goaring 1795-1729 22 -2 Need mtDNA through all females
81 4th GGP Thomas Curry (Corry) 1705-1729 Thomas Curry 1705-1729 25 2 Need Curry Y-DNA
82 4th GGP Monique “Moniky” Curry 1704-1729 Monique Demazares 1705-1729 25 1 Need mtDNA through all females
83 4th GGP Robert James Mann 1740-1787 John Mann 1725-1774 26 -2 Need Mann Y-DNA
84 4th GGP Sarah Susannah McCloskey 1716-1797 Frances Carpenter 1728-1833 28 -2 Need mtDNA through all females
85 4th GGP Benjamin “Col. Ben” Colonel Wilson 1733-1814 Incorrect 28 -2
86 4th GGP Mary Ann Seay 1735-1814 Incorrect 29 -2
87 4th GGP John Hugh McDowell 1695-1742 Michael McDowell c1720-after 1755 7 -2 Incorrect but have correct Y-DNA McDowell Y-DNA
88 4th GGP Mary Magdalena Woods 1705-1800 Incorrect 8 -2
89 4th GGP Ebenezer Hall 1721-1801 Incorrect 6 -2
90 4th GGP Dorcas Abbott Hall 1728-1797 Incorrect 6 -2
91 4th GGP George Middleton Clarkston/Clarkson 1745-1787 Incorrect 98 -2 Incorrect but have correct Clarkson Y-DNA
92 4th GGP Catherine Middleton 1764-1855 Incorrect 94 -2
93 4th GGP William Henry Cook 1750-1920 Joel Cook before 1755 – ? 83 -2 Need Cook Y-DNA
94 4th GGP Elizabeth Wall 1747-1826 Alcy [LNU] c 1755-? 91 -2 Yes
95 4th GGP Obediah Samuel Muncy 1735-1806 Samuel Muncy 1740-1799 33 -1 Yes
96 4th GGP UFN Obediah Muncy wife Unknowen (sic) 1728-1843 Agnes Craven 1745-1811 27 -2 Need Agnes Craven Need mtDNA through all females
97 4th GGP Joseph Workman 1732-1813 Joseph Workman c1736-c1813 64 2 Yes
98 4th GGP Phoebe McRay McMahon 1745-1826 Phoebe McMahon c1741-after 1815 64 1 Yes
99 4th GGP Charles Beckworth Speake/Speaks 1741-1794 Charles Speake c1731-1794 47 1 Yes
100 4th GGP Jane Connor 1742-1789 Incorrect, unknown first wife 40 -2 Need mtDNA through all females
101 4th GGP Gideon Farris 1748-1818 Gideon Faires before 1749-1821 54 -1 Yes
102 4th GGP Sarah Elizabeth McSpadden 1745-1821 Sarah McSpadden c1745-c1820 55 1 Yes
103 4th GGP Hugh McKee 1720-1795 Unknown 34 -2
104 4th GGP Mary Nesbit 1732-1795 Unknown 35 -2
105 4th GGP Private (sic) Unknown father of Elizabeth, wife of Andrew McKee 35 -2
106 4th GGP Anna Elizabeth Carney [wife of “private”] Incorrect 35 -2
107 5th GGP Moses Estes 1711-1788 Moses Estes 1711-1787 13 2 Yes
108 5th GGP Elizabeth Jones “Betty” Webb 1718-1782 Elizabeth [LNU] 1715/1720-1772/1782 5 -2 No known daughters
109 5th GGP George W. Combs 1714-1798 John Combs 1705-1762 6 -2 Need Combs Y-DNA
110 5th GGP Phebe Wade ?-1830 Incorrect 6 -2 Need mtDNA of John Combs first wife through all females
111 5th GGP Sarah Ferguson 1700-1781 Incorrect 3 -2
112 5th GGP Anthony Hart 1700-? Possibly Anthony Hart but no evidence 3 0
113 5th GGP Charles Rev. Moore 1685-1734 Incorrect 4 -2
114 5th GGP Mary Margaret Barry Moore 1690-1748 Incorrect 4 -2
115 5th GGP Ralph Hudspeth II* 1690-1776 Incorrect 9 -2
116 5th GGP Mary Carter 1699-1737 Incorrect 3 -2
117 5th GGP Samuel Harwell 1674-1767 Incorrect 3 -2
118 5th GGP Mary Ann Coleman*8th Ggm (sic) 1678-1723 incorrect 6 -2
119 5th GGP Ambrose (Sar) Jackson 1695-1745 Incorrect 6 -2
120 5th GGP Anne Amy Wyche 1692-1765 Incorrect 6 -2
121 5th GGP George E Dodson (DNA) (sic) 1702-1770 George Dodson 1702-after 1756 23 -1 Yes
122 5th GGP Margaret Dogett Dagord 1708-1770 Margaret Dagord 1708-? 24 1 Need mtDNA through all females
123 5th GGP James Booth 1700-1741 Incorrect 4 -2
124 5th GGP Frances Dale Booth (15great aunt) (sic) 1688-1777 Incorrect 3 -2
125 5th GGP Samuel Scurlock Steele 1709-1790 Incorrect 2 -2
126 5th GGP Robert R. Campbell 1718-1810 Incorrect 34 -2
127 5th GGP Lady: Letitia Crockett 1719-1760 Incorrect 8 -2
128 5th GGP John A. Dobkins 1717-1783 John Dobkins c1710-c1788 20 1 Yes
129 5th GGP Mary Elizabeth Betty Moore 1739-1815 Elizabeth [LNU] c1711-? 20 -2 Need mtDNA through all females
130 5th GGP Peter Johnson 1715-1796 Peter Johnson/Johnston c1720-c1794 0 1 Yes
131 5th GGP Mary Polly Phillips 1729-1790 Mary Polly Phillips c1726-? 1 2 Need mtDNA through all females
132 5th GGP Francis Janzen Vannoy Van Noy 1688-1774 Francis Vannoy 1688-1774 8 1 Yes
133 5th GGP Rebecca Anna Catherine Anderson 1698-1785 Rebecca Annahh Andriesen/ Anderson 1697-1727 13 -1 Need mtDNA through all females
134 5th GGP Cornelius Anderson (Andriessen) 1670-1724 Kornelis Andriesen 1670-1724 5 2 Yes
135 5th GGP Annetje Annah Opdyck 1670-1746 Annetje Opdyck c1675-after 1746 5 2 Need mtDNA through all females
136 5th GGP Thomas Hildret Henderson 1715-1794 Incorrect

 

3 -2
137 5th GGP Mary Frisby 1709-1794 Incorrect 3 -2
138 5th GGP Alexander (Alex) McEntire 1707-1802 Incorrect 12 -2
139 5th GGP Hannah Janet McPherson 1711-1792 Incorrect 15 -2
140 5th GGP Thomas James McNeil 1699-1803 Incorrect 25 -2
141 5th GGP Mary Hannah Parsons 1697-1784 Incorrect 27 -2
142 5th GGP John Coates 1699-1732 Incorrect 21 -2
143 5th GGP Sarah Ann Titcombe 1710-1732 Incorrect 22 -2
144 5th GGP George Sheppard, Shepherd 1716-1751 George Shepherd c1700-1751 42 1 Have Shepherd Y-DNA
145 5th GGP Elizabeth Mary Angelicke Day (Daye) 1699-? Elizabeth Mary Angelica Daye 1699-after 1750 41 1 Need mtDNA through all females
146 5th GGP Joseph Rash 1722-1776 Joseph Rash before 1728-c1767 36 1 Yes
147 5th GGP Mary Warren 1726-1792 Mary Warren 1726-? 36 1 Yes
148 5th GGP James L Crumley/Cromley 1712-1784 James Crumley c1711-1764 11 -1 Yes
149 5th GGP Catherine Bowen Gilkey 1712-1784 Catherine [LNU] c1712-c1790 11 -1 Need mtDNA through all females
150 5th GGP Edward Willis Mercer 1704-1763 Edward Mercer 1704-1763 5 1 Yes
151 5th GGP Ann Lueretias Coats 1710-1763 Ann [LNU] 1699/1705-c1786/1790 5 -2 Need mtDNA through all females
152 5th GGP Daniel Brown 1710-1798 Incorrect 39 -2
153 5th GGP Mary Brown 1717-1777 Incorrect 40 -2
154 5th GGP Zopher “Elder” Johnson/Johnston* 1700-1804 Incorrect 51 -2
155 5th GGP Elizabeth Williamson Cooper 1703-1794 Incorrect 49 -2
156 5th GGP Joseph Benjamin Johnson (6th ggf) (sic) 1709-1795 Incorrect 3 -2
157 5th GGP Elizabeth Shepard 1709-1786 Incorrect 3 -2
158 5th GGP John (Boulware) Havis (Rev/war) (sic) 1728-1807 Incorrect 4 -2
159 5th GGP Susannah Gentile Boullier (Boulware) 1733-1817 Incorrect 3 -2
160 5th GGP Henry Boulton Jr. 1652-1720 Incorrect 22 -2
161 5th GGP Elizabeth Bryan 1658-1742 Incorrect, linked in two generations Duplicate not processing -2
162 5th GGP Norton Bryan 1634-1672 Incorrect 2 -2
163 5th GGP Elizabeth Middlemore 1640-1658 Incorrect 2 -2
164 5th GGP Guillam Demazure 1685-1706 Guillam Demazares before 1685-after 1705 2 2 Need Y-DNA
165 5th GGP Marie Demazure 1686-1705 Marie [LNU] before 1686-after 1705 2 1 Need mtDNA through all females
166 5th GGP John Robert Mann {Minnis} 1711-1772 Incorrect 3 -2
167 5th GGP Anne Vincent 1711-1747 Incorrect 3 -2
168 5th GGP Joseph David McCluskey 1693-1756 Incorrect 3 -2
169 5th GGP Barbara S Rohlflag 1695-1755 Incorrect 3 -2
170 5th GGP Willis Wilson, Jr. 1710-1794 Incorrect 4 -2
171 5th GGP Elizabeth Goodrich ?-1789 Incorrect 4 -2
172 5th GGP Reverend James Matthew Seay 1696-1757 Incorrect 7 -2
173 5th GGP Elizabeth (James M Seay) Wilson or Lewis 1696-1752 Incorrect 6 -2
174 5th GGP Ephriam Samuel McDowell 1673-1774 Murtough McDowell before 1700-1752 0 -2 Yes
175 5th GGP Margaret Elizabeth Irvine 1674-1728 Eleanor [LNU] before 1700-after 1730 1 -2 Need mtDNA through all females
176 5th GGP Michael Marion Woods 1684-1782 Incorrect 9 -2
177 5th GGP Mary Catherine Woods 1690-1742 Incorrect 9 -2
178 5th GGP Joseph Hall 1680-1750 Incorrect 0 -2
179 5th GGP Sarah Kimball Hall Haley 1686-1752 Incorrect 0 -2
180 5th GGP Edward Abbott 1702-759 Incorrect 0 -2
181 5th GGP Dorcas Mehitable Chandler 1704-1748 Incorrect 0 -2
182 5th GGP James Anderson Clarkston 1717-1816 Incorrect 17 -2
183 5th GGP Thomasina Elizabeth Middleton 1720-1796 Incorrect 17 -2
184 5th GGP Harlace Middleton Incorrect 5 -2
185 5th GGP Capt. Vallentine Felty Kuke Cook 1730-1797 Incorrect 25 -2
186 5th GGP Michael Wall 1728-1749 Incorrect 11 -2
187 5th GGP Rebecca Chapman 1725-1791 Incorrect 11 -2
188 5th GGP Samuel Scott Muncy 1712-1786 Samuel Muncy 1712-after 1798 50 -1 Yes
189 5th GGP Mary Daughtery Skidmore 1710-1797 Mary Skidmore c1710-1811 51 -1 Need mtDNA through all females
190 5th GGP Abraham Woertman Workman 1709-1749 Abraham Workman 1709-1813 26 1 Yes
191 5th GGP Hannah Annetje (Smith) Workman 1706-1747 Annetie Smith 1714-? 26 1 Need mtDNA through all females
192 5th GGP Hugh McMahon 1699-1749 Hugh McMahon 1699-1749 17 2 Need Y-DNA
193 5th GGP Agnas Norton 1699-1747 Agnas Norton after 1700-? 17 2 Need mtDNA through all females
194 5th GGP Thomas Bowling Speake V 1698-1765 Thomas Speak c1634-1681 11 -2 Yes
195 5th GGP Jane Barton/Brisco Smoote 1714-1760 Elizabeth Bowling 1641-before 1692 12 -2 No known daughters
196 5th GGP William Farris 1714-1776 William Faires/Farris before 1728-1776 11 1 Yes
197 5th GGP Deborah Johnson Faries 1734-1812 Deborah [LNU] 1734-1812 11 1 Need mtDNA through all females
198 5th GGP Thomas of Borden’s Grant McSpadden 1720-1765 Thomas McSpadden c1721-1785 19 1 Yes
199 5th GGP Mary Dorothy Edmondson (Edmundson, Edmiston, Edmisten) 1721-1786 Dorothy [possibly Edmiston] 1721-? 28 1 Yes
200 5th GGP Thomas Alexander McKee, Sr 1693-1769 Incorrect 7 -2
201 5th GGP Tecumseh Margaret Opessa Pekowi 1695-1780 Incorrect 6 -2
202 5th GGP Thomas F Nesbit 1707-1783 Incorrect 7 -2
203 5th GGP Jean McKee 1707-1790 Incorrect 7 -2
Total -163

Please note that I will provide a free Y-DNA testing scholarship at FamilyTreeDNA for any male descending through all men from the male ancestor where it’s noted that Y-DNA is needed. Y-DNA is typically the surname line in most western countries.

I will also provide a mitochondrial DNA testing scholarship at FamilyTreeDNA for anyone who descends from the women where it’s noted that mitochondrial DNA is needed. Mitochondrial DNA passes through all females to the current generation, which can be male or female.

If this is you or a family member, please reach out to me.

The Scores

Of the 203 ancestors for which Ancestry provided a Potential Ancestor, they could have amassed a total of 406 points if each one provided an accurate name and accurate birth and death dates within a reasonable margin. If they were completely wrong on every one, they could have earned a negative score of -406.

Ancestry’s ThruLine accuracy score was -163, meaning they were wrong more than right. Zero was the break-even point where there was equally as much accurate information as inaccurate.

In fairness though, the older ancestors are more likely to be wrong than the more recent ones, and there are more older ancestors given that ancestors double in each generation. Once Ancestry provided a wrong ancestor, they continued down that wrong path on up the tree, so once the path was incorrect, it never recovered.

Regardless of why, Ancestry suggested incorrect information, and as we know, many people take that information to heart as gospel. In fact, many people even call these *TrueLines* instead of *ThruLines*.

Ok, how did Ancestry do?

Category Total Percent
+2 – Both Name and Date Accurate or Within Range 24 11.82%
+1 – Name and/or Date Partly Accurate 41 20.2%
0 – Uncertain 1 0.49%
-1 – Neither Name nor Date Accurate, but Enough Context to Figure Out With Research 22 10.84%
-2 – Inaccurate, the wrong person 115 56.65%

 Take Aways – Lessons Learned

This leads us to the lessons learned portion.

  • Never, ever, take ThruLines or Potential Ancestors at face value. They are hints and nothing more. Ancestry states that “ThruLines uses Ancestry trees to suggest how you may be related to your DNA matches through common ancestors.” (Bolding is mine.)
  • Verify everything.
  • Never simply copy something from another tree or accept a hint of any kind without a thorough evaluation. No, your ancestor probably did not zigzag back and forth across the country every other year in the 1800s. If you think they did, then you’ll need lots of information to prove that unusual circumstance. Extraordinary circumstances require extraordinary proof.
  • Never add extraneous “things” to names like “DNA match” or name someone “Private,” unless, of course, that was actually their name. Extraneous “pieces” in names confuses Ancestry’s search routines too, so you’re hurting your own chances of finding relevant information about your ancestor, not to mention ThruLines for others.
  • Naming someone “Private” isn’t useful if they are attached to other non-private people as ancestors, siblings and descendants. Just sayin…
  • Once the first incorrect ancestor is suggested, ThruLines continues to go up the incorrect tree.
  • In the the older or oldest generations, a small number of DNA matches for a particular ancestor may simply mean that lots of people are beyond the ThruLines match reporting thresholds. Unfortunately, Ancestry does NOT have a function where you can hunt for matches by ancestor.
  • In the the older or oldest generations, a small number of DNA matches may also mean it’s either the wrong ancestor, or they have few descendants, or few have tested.
  • The number of matches, in either direction, is not directly predictive of the accuracy of the suggested ancestor.
  • One of the best ways to validate ancestor accuracy is to match other descendants through multiple children of the ancestor, assuming that the children have been assigned to that ancestor properly. Recall George Middleton Clarkson where the three male children assigned to him do not have the same Y-DNA.
  • Another validation technique is to also match descendants of both parents of the ancestor(s) in question, through multiple children.
  • Remember that paper trail documentation is an extremely important aspect of genealogy.
  • Do not rely on trees without sources, or on trees with sources without verifying that every source is actually referencing this specific person.
  • Same name confusion is a very real issue.
  • For male ancestors, always check the Y-DNA projects at FamilyTreeDNA to verify that males attached as children have descendants with matching Y-DNA.
  • Always test males for their surname line. You never know when you’ll either prove or disprove a long-held belief, or discover that someplace, there has been a biological break in that line.
  • Y-DNA matches can provide extremely valuable information on earlier ancestral lines which may lead to breaking through your brick wall.
  • Mitochondrial DNA testing and matching of descendants is sometimes the only way of proving maternity or discovering matches to earlier ancestors.
  • Both Y-DNA and mitochondrial DNA, via haplogroups, can provide origins information for that one specific line, meaning you don’t have to try to figure out which ancestor contributed some percentage of ethnicity or population-based DNA.
  • Everyone can test their mitochondrial DNA, inherited from their direct matrilineal line, and men can test their Y-DNA, which is their surname line.
  • Remember that ThruLines can only be as good as the trees upon which it relies.
  • Review the source trees for each Potential Ancestor provided, evaluating each source carefully, including notes, images and web links. You just never know where that diamond is hiding.

How Can Ancestry Improve ThruLines, Potential Ancestors and Provide Customers with Better Tools?

To improve ThruLines and/or Potential Ancestors, Ancestry could:

  • My #1 request would be to implement a “search by ancestor” feature for DNA matches. This would be especially beneficial for situations where matches are beyond the 5GG threshold, or if someone is testing a hypothesis to see if they match descendants of a particular person.
  • Provide a “dismiss” function, or even a function where a customer could provide a reason why they don’t believe a connection or suggestion is accurate. This could travel with that link for other users as well so people can benefit from commentary from and collaboration with others.
  • Provide all DNA matches to people who share a specific ancestor, even if one person is beyond the 5 GG level. Currently, if both people are beyond that threshold, the match won’t show for either, so that’s no problem. The hybrid way it works today is both confusing and misleading and the hard cutoff obfuscates matches that have the potential to be extremely useful. Often this is further exacerbated by the 20 cM thresold limit on shared matches.
  • Add a feature similar to the now defunct NADs (New Ancestor Discoveries) where Ancestry shows you a group of your matches that descend from common ancestors, but those ancestors are NOT connected to anyone in your tree. However, DO NOT name the tool New Ancestor Discoveries because these people may not be, and often are not, your ancestors. If you’re related to a group of people who all have these people in THEIR tree as ancestors, that alone is a powerful hint. You might be descended from their ancestors, from the spouse of one of their children – something. But it’s information to work with when you have brick walls where Ancestry cannot connect someone as a potential ancestor directly to someone in your tree. Even locations of those brick-wall-breaker possible ancestors would be a clue. In fact, it’s not terribly different than the Potential Ancestors today, except today’s Potential Ancestors are entirely tree based (beyond ThruLines) and dependent upon connecting with someone in your tree. These new Brick-Wall-Breaker Potential Ancestors are (1.) NOT connected to your tree, and (2.) are all a result of DNA matches with people who have these ancestors in their tree.
  • If you already map your segment information at DNAPainter, the Brick-Wall-Breaker ancestral lineage connection would be immediately evident if Ancestry provided DNA segment location information. In other words, there are answers and significant hints that could be available to Ancestry’s customers.
  • Extend ThruLines for (at least) another two generations. Today ThruLines ends at the point that many people begin running into brick walls about the time the US census began. Using a 25-year generation, the current algorithm gives you 175 years (about 1825 starting with the year 2000), and a 30-year generation gives you 210 years (about 1790). Extending that two additional generations would give testers two more generations, several more Potential Ancestors, and 50-60 more years, approaching or reaching across the US colonial threshold.
  • Extending ThruLines and adding that Brick-Wall-Breaker functionality wouldn’t be nearly as important if customers could search by ancestor and download their match with direct ancestor information, similar to the other vendors, but since we can’t, we’re completely reliant on ThruLines and Potential Ancestors for automated connections by ancestor. Downloading your match list including a list of each person’s direct ancestors and matching segments would provide resources for many of these customer needs, without Ancestry having to do significant major development. If nothing else, it could be an interim stepping-stone.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA Black Friday is Here

Yes, I know it’s not Friday yet, but the DNA Black Friday sales have started, and sale dates are limited, so here we go.

These are the best prices I’ve ever seen at both FamilyTreeDNA and MyHeritage. If you’ve been waiting to purchase a DNA test for that special someone, there’s never been a better time.

Remember, to jump-start your genetic genealogy, test close or targeted relatives in addition to yourself:

  • Parents, or if both parents are not available, full and half-siblings
  • If neither parents nor siblings are available, your siblings’ descendants
  • Grandparents or descendants of your grandparents – aunts, uncles, or their descendants
  • Cousins descended from great-grandparents or other known ancestors
  • Y and mitochondrial DNA descendants of specific, targeted ancestors

For yourself, you’ll want to fish in all the ponds by taking an autosomal test or uploading a DNA file to each of the four vendors. Upload/download instructions are available here.

Everyone can test their own mitochondrial DNA to learn about your mother’s direct matrilineal line, and males can test their Y-DNA to unveil information about their patrilineal or surname line. Women, you can test your father’s, brother’s, or paternal uncle’s Y-DNA.

I’ve written a DNA explainer article, 4 Kinds of DNA for Genetic Genealogy, which you might find helpful. Please feel free to pass it on.

Vendor Offerings

FamilyTreeDNA

Free shipping within the US for orders of $79 or more

FamilyTreeDNA is the only major testing company that offers multiple types of tests, meaning Y-DNA, mitochondrial and autosomal. You can also get your toes wet with introductory level tests for Y DNA (37 and 111 marker tests), or you can go for the big gun right away with the Big Y-700.

This means that if you’ve purchased tests in the past, you can upgrade now. Upgrade pricing is shown below. Click here to sign on to your account to purchase an upgrade or additional product.

At FamilyTreeDNA, by taking advantage of autosomal plus Y-DNA and mitochondrial DNA, you will get to know your ancestors in ways not possible elsewhere. You can even identify or track them using your myOrigins painted ethnicity segments.

FamilyTreeDNA divides your Family Finder matches maternal and paternally for you if you create or upload a tree and link known testers. How cool is this?!!!

MyHeritage

The MyHeritage DNA test is on sale for $36, the best autosomal test price I’ve ever seen anyplace.

MyHeritage has a significant European presence and I find European matches at MyHeritage that aren’t anyplace else. MyHeritage utilizes user trees and DNA matches to construct Theories of Family Relativity that shows how you and your matches may be related.

Remember, you can upload the raw data file from the MyHeritage DNA test to both FamilyTreeDNA and GEDmatch for free.

Free shipping on 2 kits or more.

This sale ends at the end-of-day on Black Friday.

You can combine your DNA test with a MyHeritage records subscription with a free trial, here.

Ancestry

The AncestryDNA test is $59, here. With Ancestry’s super-size DNA database, you’re sure to get lots of matches and hints via ThruLines.

You can get free shipping if you’re an Amazon Prime member.

If you order an AncestryDNA test, you can upload the raw DNA file to FamilyTreeDNA, MyHeritage and GEDmatch for free. Unfortunately, Ancestry does not accept uploads from other vendors.

23andMe

The 23andMe Ancestry + Traits DNA test is $79, here. 23andMe is well known for its Ancestry Composition (ethnicity) results and one-of-a-kind genetic tree.

The 23andMe Ancestry + Traits + Health test is now $99, here.

You can get free shipping if you’re an Amazon Prime member.

If you order either of the 23andMe tests, you can upload the raw data file to FamilyTreeDNA, MyHeritage, and GEDmatch for free. Unfortunately, 23andMe does not accept uploads from other vendors.

Can’t Wait!!

This is always my favorite time of the year because I know that beginning soon, we will all be receiving lots of new matches from people who purchased or received DNA tests during the holiday season.

  • What can you do to enhance your genealogy?
  • Have you ordered Y and mitochondrial DNA tests for yourself and people who carry the Y and mitochondrial DNA of your ancestors?
  • Are you in all of the autosomal databases?
  • Who are you ordering tests for?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

In Search of…How Am I Related to That Close Match?

My friend recently reached out to me for some help with a close match at Ancestry. Which vendor doesn’t matter – the process for figuring out who my friend is related to her match would be essentially the same at any vendor.

My friend has no idea who the match is, nor how they are related. That match has not replied, nor is any of her information recognizable, such as an account name or photo. She has no tree, so there are literally no clues provided by the match.

We need to turn to science and old-fashioned sleuthing.

This eighth article in the “In Search of…” series steps you through the process I’m stepping my friend through.

This process isn’t difficult, per se, but there are several logical, sequential steps. I strongly recommend you read through this (at least) once, then come back and work through the process if you’re trying to solve a similar mystery.

The “In Search of…” Series

Please note that I’ve written an entire series of “In Search of…” articles that will step you through the search process and help you understand how to unravel your results. If you’re new, reading these, in order, before proceeding, would be a good idea.

  • I introduced the “In Search of” series in the article, DNA: In Search of…New Series Launches.
  • In the second article, DNA: In Search of…What Do You Mean I’m Not Related to My Family? – and What Comes Next? we discussed the discovery that something was amiss when you don’t match a family member that you expect to match, then how to make sure a vial or upload mix-up didn’t happen. Next, I covered the basics of the four kinds of DNA tests you’ll be able to use to solve your mystery.
  • In the third article, In Search of…Vendor Features, Strengths, and Testing Strategies, we discussed testing goals and strategies, including testing with and uploading to multiple autosomal DNA vendors, Y DNA, and mitochondrial DNA testing. We reviewed the vendor’s strengths and the benefits of combining vendor information and resources.
  • In the fourth article, DNA: In Search of…Signs of Endogamy, we discussed the signs of endogamy and various ways to determine if you or your recent ancestors descend from an endogamous population.
  • In the fifth article, DNA: In Search of…Full and Half-Siblings we discussed how to determine if you have a sibling match, if they are a half or full sibling, and how to discern the difference.
  • In the sixth article, Connect Your DNA test, and Others, to Your Tree, I explained how to optimize your DNA tests in order to take advantage of the features offered by each our primary DNA testing vendors.
  • In the seventh article, How to Share DNA Results and Tree Access at Ancestry, I wrote step-by-step instructions for providing access to another person to allow them to view your DNA results, AND to share your tree – which are two different things. If you have a mystery match, and they are willing to allow you access, in essence “to drive,” you can just send them the link to this article that provides detailed instructions. Note that Ancestry has changed the user interface slightly with the rollout of their new “sides” matches, but I can’t provide the new interface screenshots yet because my account has not been upgraded.

Sarah – The Mystery Match

My friend, who I’ll be calling the Tester, matches Sarah (not her name) at 554 cM. At that close level, you don’t have to worry about segments being removed by Timber at Ancestry, so that is an actual cM match level. Timber only removes segments when the match is under 90 cM. Other vendors don’t remove cMs at all.

Ancestry shows the possible relationships at that level as follows:

Some of these relationships can be immediately dismissed in this situation. For example, the Tester knows that Sarah is not her grandchild or great-grandchild.

Our tester does not have any full siblings, or any known half-siblings, but like many genealogists, she is always open-minded. Both of her parents are living, and her father has already tested. Sarah does not match her father. So, this match is on her mother’s side.

It’s obvious that Sarah is not a full sibling, nor is she a half-sibling, based on the cM values, but she might be a child, or grandchild of a maternal half-sibling.

Let’s begin with observations and questions that will help our Tester determine how she and Sarah are related.

  1. It’s clear that IF this is a half-sibling descendant match, it’s on her mother’s side, because Sarah does not match our Tester’s father.
  2. The tester’s mother has six siblings, none of whom have tested directly, but three of whom have children or grandchildren who have tested.
  3. By viewing shared matches, Sarah matches known relatives of BOTH the maternal grandmother AND maternal grandfather of our tester, which means Sarah is NOT the product of an unknown half-sibling of her mother. Remember, Ancestry does not display shared matches of less than 20 cM. Other vendors do not restrict your shared matches.
  4. Ancestry does not provide mitochondrial DNA information, so that cannot be utilized, but could be utilized if this match was at FamilyTreeDNA, and partially utilized in an exclusionary manner if the match was at 23andMe.

DNAPainter

DNAPainter’s Shared cM Tool provides a nice visual display of possible relationships, so I entered the matching cM amount

The returned relationships are similar to Ancestry’s possible relationships.

The grid display shows the possible relationships. Relationships that fall outside of this probability range are muted.

The color shading is by generation, meaning dark grey is through great-great-grandparents, apricot is through great-grandparents, green is through grandparents, grey is through one or both parents, and blue are your own descendants.

Based on known factors, I put a red X in the boxes that can’t apply to Sarah and our Tester after evaluating each relationship. I bracketed the statistically most likely relationships in red, although I must loudly say, “do not ignore those other possibilities.”

Let’s step through the logic which will be different for everyone’s own situation, of course.

  • Age alone eliminates the great and half-great grandparents, aunts, and uncles. They are all deceased and would be well over 100 years old if they were living.
  • The green half relationships are eliminated because we know via shared matches that Sarah matches BOTH of the Tester’s maternal grandparent’s sides.
  • We know that Sarah is not a second cousin because second cousins match only ONE maternal grandparent’s ancestor’s descendants, and Sarah matches both of the tester’s maternal grandparents through their descendants. In other words, Sarah and our Tester both match people who descend from both of the Tester’s maternal grandmother AND grandfather’s lines, which, unless they are related, means Sarah’s closest common ancestor (MCRA – most recent common ancestor) with our Tester are either her maternal grandparents, or her mother.
  • Therefore, we know that Sarah cannot be any of the apricot-colored relationships because she matches BOTH of our Tester’s maternal grandparents. She would only be related through one of the Tester’s maternal grandparents to be related on the apricot level.
  • Sarah cannot be a full great-niece or nephew, or great or great-great niece or nephew because the Tester has no full siblings, confirmed by the fact that Sarah does not match the Tester’s father.
  • We know that Sarah is not the great-grandchild of the Tester, in part due to age, but the definitive scientific ax to that possibility is that Sarah does not match our Tester’s father. (Yes, our Tester does match her father at the appropriate level.)

We know that Sarah is somehow a descendant of BOTH of Tester’s maternal grandparents, so must be in either the green band of relationships, the grey half-relationships, or the blue direct relationships. All of these relationships would be descended from the Tester’s maternal grandparents (plural.)

We’ve eliminated the blue direct relationship because Sarah does not match the Tester’s father. This removes the possibility that the Tester’s children have an unknown great-grandchild, although in this case, age removes that possibility anyway.

This process-of-elimination leaves as possible relationships:

  • Grey band half niece/nephew and half great-niece/nephew, meaning that the Tester has an unknown half-sibling on their mother’s side whose child or grandchild has tested.
  • Green band first cousin which means that the tester descends from one of the Tester’s maternal aunts or uncles. Given that Sarah is not a known child of any of the Tester’s six aunts and uncles, that opens the possibility that her mother’s sibling has a previously unknown child. Three of the Tester’s mother’s siblings are females, and three are males.
  • Green band first cousin once removed is one generation further down the tree, meaning a child of a first cousin.

Using facts we know, we’ve already restricted the possible relationships to four.

Hypothesis and Shared Matches

In situations like this, I use a spreadsheet, create hypothesis scenarios and look for eliminators.

I worked with the Tester to assemble an easy spreadsheet with each of her mother’s siblings in a column, along with their year of birth. All names have been changed.

The hypothesis we are working with is that the Tester’s mother has a previously unknown child and that Sarah is that person’s child or grandchild.

Across the top of our spreadsheet, which you could also simply create as a chart, I’ve written the names of the maternal grandparents.

The Tester’s mother, Susie, is shown in the boxes that are colored red, and her siblings are listed in their birth order. Siblings who have anyone in their line who has tested are shown by colored boxes.

The Tester is shown in red beneath her mother, Susie, and a potential mystery half-sibling is shown beneath Susie.

This is importantthe relationships shown are FROM THE PERSPECTIVE OF THE TESTER.

This means, at far left, with the red arrow, these people at the top, meaning the mother’s siblings are the Tester’s aunts and uncles.

The next generation down are the Tester’s first cousins, followed by the next row, with 1C1R. The cell colors in that column correspond to the DNAPainter generation columns.

In the red “Mother” group, you’ll see that I’ve included that mystery half-sibling and beneath, the relationships that could exist at that same generation level. So, if the mystery half-sibling had a child, that person would be the half-niece/nephew of the Tester.

The cM value pointed to by the arrows, is the cM value at which the TESTER matches that person.

In this case, Ginger’s son, Jacob matches our Tester at 946 cM, which is exactly normal for a first cousin. Ginger’s son, Aaron, has not tested, but his daughter, Crystal, has and matches our Tester at 445 cM.

Three of the Tester’s aunts/uncles, John, Jim, and Elsie are not represented in this matrix, because no one from their line has yet tested. The Tester has contacted members of those families asking if they will accept a testing scholarship.

Analysis Grids

Some of the children of our Tester’s aunts/uncles have tested, and their matches to Sarah are shown in the bottom row in yellow, on the chart below.

Of course, obtaining Sarah’s matching cM information required the Tester to contact her aunts/uncles and cousins to ask them to look at their match to Sarah at Ancestry.

For each set of relationships with Sarah, I’ve prepared a mini-relationship grid below Sarah’s matches with one of the Tester’s aunts/uncles’ descendants.

  • If Sarah is related to the Tester through an unknown half-sibling, Sarah will match the tester more closely than she will match any of the children of the Tester’s aunts and uncles.
  • If Sarah descends through one of the Tester’s aunts’ or uncles’ lines, Sarah will match someone in those lines more closely than our Tester, but we may need to compensate for generations in our analysis.

I pasted the DNAPainter image in the spreadsheet in a convenient place to remind myself of which relationships are possible between our Tester and Sarah, then I created a small grid beneath the Tester’s match to Sarah, who is the yellow row.

Let me explain, beginning with our Tester’s match to Sarah.

Tester’s Match to Sarah

The Tester matches Sarah at 554 cM, which can potentially be a number of different relationships. I’ve listed the possible relationships with the most likely, at 87%, at the top. I have not listed any relationships we’ve positively eliminated, even though they would be scientifically possible.

I can’t do this for our Tester’s Uncle David, because the Tester has not yet heard back from David’s son, Gary, as to how many cMs he shares with Sarah.

Our tester’s aunts, Ginger and Barbara do have descendants who have tested, so let’s evaluate those relationships.

Ginger and Sarah

We know less about Ginger and Sarah than we do about our Tester and Sarah. However, many of the same relationship constraints remain constant.

  • For example, we know that Sarah matches both of Ginger’s grandparents, because Ginger is our tester’s aunt, Susie’s full sibling.
  • Our tester and all of the other family members who have tested match on both maternal grandparents’ sides.
  • Therefore, we also know that the 2C relationships won’t work either because Sarah matches both maternal grandparents.
  • Based on ages, it’s very unlikely that Sarah is a great-grandchild of Ginger’s children, in part, because I’m operating under the assumption that Sarah is old enough to purchase her own test, so not a child. Ancestry’s terms of service require testers to be 18 years of age to purchase or activate a DNA test. Also, Sarah’s test is not managed by someone else.
  • We don’t know about great-nieces and nephews though, because if one of Ginger’s sibling’s children had an unknown child, that person could be Sarah or Sarah’s parent.

Ginger’s son Jacob

Using the closest match in Ginger’s line, her son Jacob, we find the following possibilities using Jacob’s match to Sarah of 284cM.

The DNAPainter grid shows the more distant relationship clearly.

You can quickly determine that Sarah probably does not descend from Ginger’s line, but let’s add this to our spreadsheet for completeness.

You can see that the MOST likely relationship, of the possible relationships based on our known factors, is 1C2R, which is the least likely relationship between our Tester and Sarah. It’s important to note that our Tester and Jacob are in the same generation, so we don’t need to do any compensating for a generational difference.

Comparing those relationships, you can see that the least likely relationship between Sarah and Jacob is much more likely between Sarah and our Tester.

Therefore, we can rule out Ginger’s line as a candidate. Sarah is not a descendant of Ginger.

Let’s move on to Barbara’s line.

Barbara’s Daughter Cindy

This time, we’re going to do a bit of inferring because we do have a generational difference.

Barbara’s granddaughter, Mary, has tested and matches Sarah at 230 cM. While we know that Sarah probably wouldn’t match Mary’s mother, Cindy, at exactly double that, 460 cM, it would certainly be close.

So, for purposes of this comparison, I’m using 460 cM for Sarah to match Cindy.

That makes this comparison in the same generation as Ginger and our Tester to Sarah. We are comparing apples to apples and not apples to half an apple (an apple once removed, technically, but I digress.) 😊

You can see that this analysis is MUCH closer to the cM amounts and relationship possibilities of Sarah and our Tester.

Here are the possible relationships of Sarah and Cindy, with the most likely being boxed in red.

Where Are We?

Here is my completed spreadsheet, so far, less the two DNAPainter graphs for Ginger and Barbara’s lines.

To date, we’ve eliminated Ginger as Sarah’s ancestor.

Both Susie, the mother of our Tester, and Susie’s sister Barbara are still candidates to have an unknown child based on DNA, or one of their children possibly having an unknown child.

Of course, we still have one more sister, Elsie, and those three silent brothers sitting over there. It’s much easier for a male to have an unknown child than a female. By unknown, in this situation, I mean truly unknown, not hidden.

What’s Needed?

Of course, what we really need is tests from each of Susie’s siblings, but that’s not going to happen. What can we potentially do with what we have, how, and why?

Our Tester can refine these results in a number of ways.

  • Talk to living siblings or other family members and tactfully ask what they know about the four women during their reproductive years. Were they missing, off at school, visiting “aunts” in another location, separated from a spouse, etc.?
  • Check to see if Sarah shared her ethnicity results (View match, then click on “Ethnicity.”) If Sarah has a significant ethnicity that is impossible to confuse, this might be significant. For example, if Sarah is 50% Korean, and one of Susie’s brothers served in Korea, that makes him a prime candidate.
  • If possible, ask John, David, Jim, Ginger, Barbara, and Elsie to take DNA tests themselves. The best test is ALWAYS the oldest generation because their DNA is not yet divided in subsequent generations.
  • If that’s not possible, find a child or grandchild of Elsie, Jim, and John to test.
  • The Tester needs to find out how closely David’s son, Gary matches Sarah, then perform the same analysis that we stepped through above.
  • Ask Ginger’s son, Jacob to see if Sarah also shares matches with the closest family members of the known father of Ginger’s children. One of Ginger’s children could have had an unknown child. This is unlikely, based on what we’ve already determined about Sarah’s match level to Jacob, but it’s worth asking.
  • Ask Barbara’s granddaughter, Mary, to see if she and Sarah share matches with the closest family members of the known father of Barbara’s children. This scenario is much more likely.
  • If the answer is yes to either of the last two questions, we have identified which line Sarah descends from, because she can only descend from both Barbara AND the father of her children if Sarah descends from that couple.
  • If the answer is no, we’ve only eliminated full siblings to Ginger and Barbara’s children, not half-siblings.
  • If our Tester can make contact with Gary, ask him if he and Sarah share matches with David’s wife’s line. One of David’s children could have an unknown child.
  • If our Tester can actually make contact with Sarah, and if Sarah is willing and interested, our Tester can create a list of people to look for in her matches – for example, the spouses’ lines of all of Susie’s siblings. If Sarah matches NONE of the spouses’ lines, then one of Susie’s siblings (our Tester’s aunts/uncles,) or Susie’s mother, has an unknown child. However, if Sarah is a novice tester or genealogist, she might well be quite overwhelmed with understanding how to perform these searches. She may already be overwhelmed by discovering that she doesn’t match who she expected to match. Or, she may already know the answer to this question.
  • It would be easier if Sarah granted our Tester access to her DNA results to sort through all of these possibilities, but that’s not something I would expect a stranger to do, especially if this result is something Sarah wasn’t expecting.

I wrote instructions for providing access to DNA results in the article, How to Share DNA Results and Tree Access at Ancestry.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

How to Share DNA Results and Tree Access at Ancestry

There are two types of access you may want to share with other users at Ancestry, and specific times when you’ll want to do each.

If you have set your privacy selections to allow DNA matching, and tree sharing, your DNA matches will have access to that information. If not, they won’t.

Let’s check.

Click the down arrow to the right of your signon page, then Account Settings.

Click on DNA.

Then, click on the little right arrow waaaaayyyy over there.

Scroll down until you see Tree Link, and be sure your test is linked to yourself in your tree.

Privacy

Next, the Privacy section displays your selections in effect for both matching and your ethnicity estimates. Click on the little down arrow labeled “Change” to view other options.

If you do NOT have matching enabled, you won’t see matches and they won’t see you.

Granting DNA Sharing Access

If you don’t match with someone, they won’t be able to see whether you’ve tested your DNA or not.

  • You can still share access to your DNA, even if you don’t match.
  • If you do match, and you’re collaborating with someone, you can share more with them, in essence, letting them “drive.”

Here’s how.

Next, click on Sharing Preferences.

You’ll click the down arrow to see who you’ve shared your DNA results with. These people may or may not be your DNA matches. For example, there are a few people that I’ve collaborated with for years that I’ve shared my DNA results with because I’m really, really HOPING they will make a breakthrough for both of us.

Plus, not to be morbid, but you just never know when you’ll be meeting the ancestors and I want my DNA to go on working for my genealogy partners and family members after I’m no longer doing the work myself. That’s also why I write my 52 Ancestors stories, but I digress.

You might be wondering what kind of information other people could be looking for. Let me give you an immediate example. Even though we don’t personally match, my cousin Greg has been looking for people that he matches, and I match too, that he knows descend from our common ancestor, Peter Johnson.

Any tests you own are listed first here, along with anyone you’ve granted access to your DNA results.

If you click on “Add a person,” you can add someone else to your share list.

You always get to select the level of access people you share with have.

If your cousin George tested for you, has no interest himself, you’ll want to ask him to grant you the ability to manage his results. Just understand that manage means just that – entirely.

Typically, I grant view because they can see everything I can see, but they can’t change things.

Sharing DNA does NOT mean you’re automatically sharing your tree.

Sharing Trees

Sharing trees is important for three reasons.

  • DNA matches
  • For people who don’t match your DNA but are researching the same ancestors and find your tree through hints or ancestor searches
  • People you specifically want to provide access to your tree

One of my cousins kindly shared his DNA results with me, but he did not share his tree and now I can no longer get in touch with him. Unfortunately, he’s not well, so it’s unlikely that I will ever be able to contact him.

Let’s look at Tree management, sharing and invitations.

Your Tree Privacy Settings

Go back to Account Settings and select “Trees.”

Next, you’ll see your trees and trees that others have shared with you.

Select your tree you wish to view, share or work with.

Then, select Privacy Settings at the top of the page.

You can review your tree privacy settings. As you can see, mine is public. I firmly believe that a rising tide lifts all ships. I realize that this is a controversial topic, but I share my work freely and hope others will as well. I’m providing quality breadcrumbs. At least my research and information is available among the copy/paste misinformation abominations.

My cousin who shared his DNA with me has a private tree, and even though I can see how he matches people, I cannot view their common ancestors because his tree is private and he didn’t realize he needed to grant me separate access to his tree in addition to his DNA results.

Furthermore, if your tree is private, your DNA matches can’t view your tree and the DNA match has limited utility without tree access.

Invite People to Your Tree

My tree is public, so it’s available for viewing in searches and by DNA matches. However, I still need to grant specific access to people to directly access my tree without them having to search around to find my tree in their ancestor search hints and matches.

Click on “Invitations.”

You’ll be able to see who you’ve granted access to, their Role, and if they can see living people.

To invite someone to your tree from here, click on “Invite People.”

Don’t forget to click “save” at the bottom of the page.

You can generate a one-time link for the person you’re inviting, meaning the link can only be used by one person, or have Ancestry send them an email invite or use their Ancestry Username.

An Easier Tree Invite Location

There is no easier way to invite people to view your DNA results, but there is an easier way to share your tree.

On your main Ancestry page, click on Trees, then on the down arrow by the name of the tree you wish to share. Select “Invite” which will take you to the same Invite page as above.

Now is a good time to review your settings and be sure they are the most beneficial to your genealogy goals.

Furthermore, you’re going to need this article for my next “In Search of…” article in a day or so.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search of…Full and Half-Siblings

This is the fifth article in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to identify ancestors further back in time as well.

Please note that if a family member has tested and you do NOT see their results, ask them to verify that they have chosen to allow matching and for other people to view them in their match list. That process varies at different vendors.

You can also ask if they can see you in their results.

All Parties Need to Test

Searching for unknown siblings isn’t exactly searching, because to find them, they, themselves, or their descendant(s) must have taken a DNA test at the same vendor where you tested or uploaded a DNA file.

You may know through any variety of methods that they exist, or might exist, but if they don’t take a DNA test, you can’t find them using DNA. This might sound obvious, but I see people commenting and not realizing that the other sibling(s) must test too – and they may not have.

My first questions when someone comments in this vein are:

  1. Whether or not they are positive their sibling actually tested, meaning actually sent the test in to the vendor, and it was received by the testing company. You’d be surprised how many tests are living in permanent residence on someone’s countertop until it gets pushed into the drawer and forgotten about.
  2. If the person has confirmed that their sibling has results posted. They may have returned their test, but the results aren’t ready yet or there was a problem.
  3. AND that both people have authorized matching and sharing of results. Don’t hesitate to reach out to your vendor’s customer care if you need help with this.

Sibling Scenarios

The most common sibling scenarios are when one of two things happens:

  • A known sibling tests, only to discover that they don’t match you in the full sibling range, or not at all, when you expected they would
  • You discover a surprise match in the full or half-sibling range

Let’s talk about these scenarios and how to determine:

  • If someone is a sibling
  • If they are a full or half-sibling
  • If a half-sibling, if they descend from your mother or father

As with everything else genetic, we’ll be gathering and analyzing different pieces of evidence along the way.

Full and Half-Siblings

Just to make sure we are all on the same page:

  • A full sibling is someone who shares both parents with you.
  • A half-sibling is someone who shares one parent with you, but not the other parent.
  • A step-sibling is someone who shares no biological parents with you. This situation occurs when your parent marries their parent, after you are both born, and their parent becomes your step-parent. You share neither of your biological parents with a step-sibling, so you share no DNA and will not show up on each other’s match lists.
  • A three-quarters sibling is someone with whom you share one parent, but two siblings are the other parent. For example, you share the same mother, but one brother fathered you, and your father’s brother fathered your sibling. Yes, this can get very messy and is almost impossible for a non-professional to sort through, if even then. (This is not a solicitation. I do not take private clients.) We will not be addressing this situation specifically.

Caution

With any search for unknown relatives, you have no way of knowing what you will find.

In one’s mind, there are happy reunions, but you may experience something entirely different. Humans are human. Their stories are not always happy or rosy. They may have made mistakes they regret. Or they may have no regrets about anything.

Your sibling may not know about you or the situation under which you, or they, were born. Some women were victims of assault and violence, which is both humiliating and embarrassing. I wrote about difficult situations, here.

Your sibling or close family member may not be receptive to either you, your message, or even your existence. Just be prepared, because the seeking journey may not be pain-free for you or others, and may not culminate with or include happy reunions.

On the other hand, it may.

Please step back and ponder a bit about the journey you are about to undertake and the possible people that may be affected, and how. This box, once opened, cannot be closed again. Be sure you are prepared.

On the other hand, sometimes that box lid pops off, and the information simply falls in your lap one day when you open your match list, and you find yourself sitting there, in shock, staring at a match, trying to figure out what it all means.

Congratulations, You Have a Sibling!

This might not be exactly what runs through your mind when you see that you have a very close match that you weren’t expecting.

The first two things I recommend when making this sort of discovery, after a few deep breaths, a walk, and a cup of tea, are:

  • Viewing what the vendor says
  • Using the DNAPainter Shared cM Relationship Chart

Let’s start with DNAPainter.

DNAPainter

DNAPainter provides a relationship chart, here, based on the values from the Shared cM Project.

You can either enter a cM amount or a percentage of shared DNA. I prefer the cM amount, but it doesn’t really matter.

I’ll enter 2241 cM from a known half-sibling match. To enter a percent, click on the green “enter %.”

As you can see, statistically speaking, this person is slightly more likely to be a half-sibling than they are to be a full sibling. In reality, they could be either.

Looking at the chart below, DNAPainter highlights the possible relationships from the perspective of “Self.”

The average of all the self-reported relationships is shown, on top, so 2613 for a full sibling. The range is shown below, so 1613-3488 for a full sibling.

In this case, there are several possibilities for two people who share 2241 cM of DNA.

I happen to know that these two people are half-siblings, but if I didn’t, it would be impossible to tell from this information alone.

The cM range for full siblings is 1613-3488, and the cM range for half-siblings is 1160-2436.

  • The lower part of the matching range, from 1160-1613 cM is only found in half-siblings.
  • The portion of the range from 1613-2436 cM can be either half or full siblings.
  • The upper part of the range, from 2436-3488 cM is only found in full siblings.

If your results fall into the center portion of the range, you’re going to need to utilize other tools. Fortunately, we have several.

If you’ve discovered something unexpected, you’ll want to verify using these tools, regardless. Use every tool available. Ranges are not foolproof, and the upper and lower 10% of the responses were removed as outliers. You can read more about the shared cM Project, here and here.

Furthermore, people may be reporting some half-sibling relationships as full sibling relationships, because they don’t expect to be half-siblings, so the ranges may be somewhat “off.”

Relationship Probability Calculator

Third-party matching database, GEDmatch, provides a Relationship Probability Calculator tool that is based on statistical probability methods without compiled user input. Both tools are free, and while I haven’t compared every value, both seem to be reasonably accurate, although they do vary somewhat, especially at the outer ends of the ranges.

When dealing with sibling matches, if you are in all four databases, GEDmatch is a secondary resource, but I will include GEDmatch when they have a unique tool as well as in the summary table. Some of your matches may be willing to upload to GEDmatch if the vendor where you match doesn’t provide everything you need and GEDmatch has a supplemental offering.

Next, let’s look at what the vendors say about sibling matches.

Vendors

Each of the major vendors reports sibling relationships in a slightly different way.

Sibling Matches at Ancestry

Ancestry reports sibling relationships as Sister or Brother, but they don’t say half or full.

If you click on the cM portion of the link, you’ll see additional detail, below

Ancestry tells you that the possible relationships are 100% “Sibling.” The only way to discern the difference between full and half is by what’s next.

If the ONLY relationship shown is Sibling at 100%, that can be interpreted to mean this person is a full sibling, and that a half-sibling or other relationship is NOT a possibility.

Ancestry never stipulates full or half.

The following relationship is a half-sibling at Ancestry.

Ancestry identifies that possible range of relationships as “Close Family to First Cousin” because of the overlaps we saw in the DNAPainter chart.

Clicking through shows that there is a range of possible relationships, and Ancestry is 100% sure the relationship is one of those.

DNAPainter agrees with Ancestry except includes the full-sibling relationship as a possibility for 1826 cM.

Sibling Matches at 23andMe

23andMe does identify full versus half-siblings.

DNAPainter disagrees with 23andMe and claims that anyone who shares 46.2% of their DNA is a parent/child.

However, look at the fine print. 23andMe counts differently than any of the other vendors, and DNAPainter relies on the Shared cM Project, which relies on testers entering known relationship matching information. Therefore, at any other vendor, DNAPainter is probably exactly right.

Before we understand how 23andMe counts, we need to understand about half versus fully identical segments.

To determine half or full siblings, 23andMe compares two things:

  1. The amount of shared matching DNA between two people
  2. Fully Identical Regions (FIR) of DNA compared to Half Identical Regions (HIR) of DNA to determine if any of your DNA is fully identical, meaning some pieces of you and your sibling’s DNA is exactly the same on both your maternal and paternal chromosomes.

Here’s an example on any chromosome – I’ve randomly selected chromosome 12. Which chromosome doesn’t matter, except for the X, which is different.

Your match isn’t broken out by maternal and paternal sides. You would simply see, on the chromosome browser, that you and your sibling match at these locations, above.

In reality, though, you have two copies of each chromosome, one from Mom and one from Dad, and so does your sibling.

In this example, Mom’s chromosome is visualized on top, and Dad’s is on the bottom, below, but as a tester, you don’t know that. All you know is that you match your sibling on all of those blue areas, above.

However, what’s actually happening in this example is that you are matching your sibling on parts of your mother’s chromosome and parts of your father’s chromosome, shown above as green areas

23andMe looks at both copies of your chromosome, the one you inherited from Mom, on top, and Dad, on the bottom, to see if you match your sibling on BOTH your mother’s and your father’s chromosomes in that location.

I’ve boxed the green matching areas in purple where you match your sibling fully, on both parents’ chromosomes.

If you and your sibling share both parents, you will share significant amounts of the same DNA on both copies of the same chromosomes, meaning maternal and paternal. In other words, full siblings share some purple fully identical regions (FIR) of DNA with each other, while half-siblings do not (unless they are also otherwise related) because half-siblings only share one parent with each other. Their DNA can’t be fully identical because they have a different parent that contributed the other copy of their chromosome.

Total Shared DNA Fully Identical DNA from Both Parents
Full Siblings ~50% ~25%
Half Siblings ~25% 0
  • Full siblings are expected to share about 50% of the same DNA. In other words, their DNA will match at that location. That’s all the green boxed locations, above.
  • Full siblings are expected to share about 25% of the same DNA from BOTH parents at the same location on BOTH copies of their chromosomes. These are fully identical regions and are boxed in purple, above.

You’ll find fully identical segments about 25% of the time in full siblings, but you won’t find fully identical segments in half-siblings. Please note that there are exceptions for ¾ siblings and endogamous populations.

You can view each match at 23andMe to see if you have any completely identical regions, shown in dark purple in the top comparison of full siblings. Half siblings are shown in the second example, with less total matching DNA and no FIR or completely identical regions.

Please note that your matching amount of DNA will probably be higher at 23andMe than at other companies because:

  • 23andMe includes the X chromosome in the match totals
  • 23andMe counts fully identical matching regions twice. For full siblings, that’s an additional 25%

Therefore, a full sibling with an X match will have a higher total cM at 23andMe than the same siblings elsewhere because not only is the X added into the total, the FIR match region is added a second time too.

Fully Identical Regions (FIR) and Half Identical Regions (HIR) at GEDmatch

At GEDMatch, you can compare two people to each other, with an option to display the matching information and a painted graphic for each chromosome that includes FIR and HIR.

If you need to know if you and a match share fully identical regions and you haven’t tested at 23andMe, you can both upload your DNA data file to GEDmatch and use their One to One Autosomal DNA Comparison.

On the following page, simply enter both kit numbers and accept the defaults, making sure you have selected one of the graphics options.

While GEDmatch doesn’t specifically tell you whether someone is a full or half sibling, you can garner additional information about the relationship based on the graphic at GEDmatch.

GEDMatch shows both half and fully identical regions.

The above match is between two full siblings using a 7 cM threshold. The blue on the bottom bar indicates a match of 7 cM or larger. Black means no match.

The green regions in the top bar indicate places where these two people carry the same DNA on both copies of their chromosome 1. This means that both people inherited the same DNA from BOTH parents on the green segments.

In the yellow regions, the siblings inherited the same DNA from ONE parent, but different DNA in that region from the other parent. They do match each other, just on one of their chromosomes, not both.

Without a tool like this to differentiate between HIR and FIR, you can’t tell if you’re matching someone on one copy of your chromosome, or on both copies.

In the areas marked with red on top, which corresponds to the black on the bottom band, these two siblings don’t match each other because they inherited different DNA from both parents in that region. The yellow in that region is too scattered to be significant.

Full siblings generally share a significant amount of FIR, or fully identical regions of DNA – about 25%.

Half siblings will share NO significant amount of FIR, although some will be FIR on very small, scattered green segments simply by chance, as you can see in the example, below.

This half-sibling match shares no segments large enough to be a match (7 cM) in the black section. In the blue matching section, only a few small green fragments of DNA match fully, which, based on the rest of that matching segment, must be identical by chance or misreads. There are no significant contiguous segments of fully identical DNA.

When dealing with full or half-siblings, you’re not interested in small, scattered segments of fully identical regions, like those green snippets on chromosome 6, but in large contiguous sections of matching DNA like the chromosome 1 example.

GEDmatch can help when you match when a vendor does not provide FIR/HIR information, and you need additional assistance.

Next, let’s look at full and half-siblings at FamilyTreeDNA

Sibling Matches at FamilyTreeDNA

FamilyTreeDNA does identify full siblings.

Relationships other than full siblings are indicated by a range. The two individuals below are both half-sibling matches to the tester.

The full range when mousing over the relationship ranges is shown below.

DNAPainter agrees except also gives full siblings as an option for the two half-siblings.

FamilyTreeDNA also tells you if you have an X match and the size of your X match.

We will talk about X matching in a minute, which, when dealing with sibling identification, can turn out to be very important.

Sibling Matches at MyHeritage

MyHeritage indicates brother or sister for full siblings

MyHeritage provides other “Estimated relationships” for matches too small to be full siblings.

DNAPainter’s chart agrees with this classification, except adds additional relationship possibilities.

Be sure to review all of the information provided by each vendor for close relationships.

View Close Known Relationships

The next easiest step to take is to compare your full or half-sibling match to known close family members from your maternal and paternal sides, respectively. The closer the family members, the better.

It’s often not possible to determine if someone is a half sibling or a full sibling by centiMorgans (cMs) alone, especially if you’re searching for unknown family members.

Let’s start with the simplest situation first.

Let’s say both of your parents have tested, and of course, you match both of them as parents.

Your new “very close match” is in the sibling range.

The first thing to do at each vendor is to utilize that vendor’s shared matches tool and see whether your new match matches one parent, or both.

Here’s an example.

Close Relationships at FamilyTreeDNA

This person has a full sibling match, but let’s say they don’t know who this is and wants to see if their new sibling matches one or both of their parents.

Select the match by checking the box to the left of the match name, then click on the little two-person icon at far right, which shows “In Common” matches

You can see on the resulting shared match list that both of the tester’s parents are shown on the shared match list.

Now let’s make this a little more difficult.

No Parents, No Problem

Let’s say neither of your parents has tested.

If you know who your family is and can identify your matches, you can see if the sibling you match matches other close relatives on both or either side of your family.

You’ll want to view shared matches with your closest known match on both sides of your tree, beginning with the closest first. Aunts, uncles, first cousins, etc.

You will match all of your family members through second cousins, and 90% of your third cousins. You can view additional relationship percentages in the article, How Much of Them is in You?.

I recommend, for this matching purpose, to utilize 2nd cousins and closer. That way you know for sure if you don’t share them as a match with your sibling, it’s because the sibling is not related on that side of the family, not because they simply don’t share any DNA due to their distance.

In this example, you have three sibling matches. Based on your and their matches to the same known first and second cousins, you can see that:

  • Sibling 1 is your full sibling, because you both match the same maternal and paternal first and second cousins
  • Sibling 2 is your paternal half-sibling because you both match paternal second cousins and closer, but not maternal cousins.
  • Sibling 3 is your maternal half-sibling because you both match maternal second cousins and closer, but not paternal cousins.

Close Relationships at Ancestry

Neither of my parents have tested, but my first cousin on my mother’s side has. Let’s say I have a suspected sibling or half-sibling match, so I click on the match’s name, then on Shared Matches.

Sure enough, my new match also matches my first cousin that I’ve labeled as “on my mother’s side.”

If my new match in the sibling range also matches my second cousins or closer on my father’s side, the new match is a full sibling, not a half-sibling.

Close Relationships at MyHeritage

Comparing my closest match provided a real surprise. I wonder if I’ve found a half-sibling to my mother.

Now, THIS is interesting.

Hmmm. More research is needed, beginning with the age of my match. MyHeritage provides ages if the MyHeritage member authorizes that information to be shared.

Close Relationships at 23andMe

Under DNA Relatives, click on your suspected sibling match, then scroll down and select “Find Relatives in Common.”

The Relatives in Common list shows people that match both of you.

The first common match is very close and a similar relationship to my closest match on my father’s side. This would be expected of a sibling. I have no common matches with this match to anyone on my mother’s side, so they are only related on my father’s side. Therefore they are a paternal half-sibling, not a full sibling.

More Tools Are Available

Hopefully, by now, you’ve been able to determine if your mystery match is a sibling, and if so, if they are a half or full sibling, and through which parent.

We have some additional tools that are relevant and can be very informative in some circumstances. I suggest utilizing these tools, even if you think you know the answer.

In this type of situation, there’s no such thing as too much information.

X Matching

X matching, or lack thereof, may help you determine how you are related to someone.

There are two types of autosomal DNA. The X chromosome versus chromosomes 1-22. The X chromosome (number 23) has a unique inheritance path that distinguishes it from your other chromosomes.

The X chromosome inheritance path also differs between men and women.

Here’s my pedigree chart in fan form, highlighting the ancestors who may have contributed a portion of their X chromosome to me. In the closest generation, this shows that I inherited an X chromosome from both of my parents, and who in each of their lines could have contributed an X to them.

The white or uncolored positions, meaning ancestors, cannot contribute any portion of an X chromosome to me based on how the X chromosome is inherited.

You’ll notice that my father inherited none of his X chromosome from any of his paternal ancestors, so of course, I can’t inherit what he didn’t inherit. There are a very limited number of ancestors on my father’s side whom I can inherit any portion of an X chromosome from.

Men receive their Y chromosome from their fathers, so men ONLY receive an X chromosome from their mother.

Therefore, men MUST pass their mother’s X chromosome on to their female offspring because they don’t have any other copy of the X chromosome to pass on.

Men pass no X chromosome to sons.

We don’t need to worry about a full fan chart when dealing with siblings and half-siblings.

We only need to be concerned with the testers plus one generation (parents) when utilizing the X chromosome in sibling situations.

These two female Disney Princesses, above, are full siblings, and both inherited an X chromosome from BOTH their mother and father. However, their father only has one X (red) chromosome to give them, so the two females MUST match on the entire red X chromosome from their father.

Their mother has two X chromosomes, green and black, to contribute – one from each of her parents.

The full siblings, Melody, and Cinderella:

  • May have inherited some portion of the same green and black X chromosomes from their mother, so they are partial matches on their mother’s X chromosome.
  • May have inherited the exact same full X chromosome from their mother (both inherited the entire green or both inherited the entire black), so they match fully on their mother’s X chromosome.
  • May have inherited the opposite X from different maternal grandparents. One inherited the entire green X and one inherited the entire black X, so they don’t match on their mother’s X chromosome.

Now, let’s look at Cinderella, who matches Henry.

This female and male full sibling match can’t share an X chromosome on the father’s side, because the male’s father doesn’t contribute an X chromosome to him. The son, Henry, inherited a Y chromosome instead from his father, which is what made them males.

Therefore, if a male and female match on the X chromosome, it MUST be through HIS mother, but could be through either of her parents. In a sibling situation, an X match between a male and female always indicates the mother.

In the example above, the two people share both of their mother’s X chromosomes, so are definitely (at least) maternally related. They could be full siblings, but we can’t determine that by the X chromosome in this situation, with males.

However, if the male matches the female on HER father’s X chromosome, there a different message, example below.

You can see that the male is related to the female on her father’s side, where she inherited the entire magenta X chromosome. The male inherited a portion of the magenta X chromosome from his mother, so these two people do have an X match. However, he matches on his mother’s side, and she matches on her father’s side, so that’s clearly not the same parent.

  • These people CAN NOT be full siblings because they don’t match on HER mother’s side too, which would also be his mother’s side if they were full siblings.
  • They cannot be maternal half-siblings because their X DNA only matches on her father’s side, but they wouldn’t know that unless she knew which side was which based on share matches.
  • They cannot be paternal half-siblings because he does not have an X chromosome from his father.

They could, however, be uncle/aunt-niece/nephew or first cousins on his mother’s side and her father’s side. (Yes, you’re definitely going to have to read this again if you ever need male-female X matching.)

Now, let’s look at X chromosome matching between two males. It’s a lot less complicated and much more succinct.

Neither male has inherited an X chromosome from their father, so if two males DO match on the X, it MUST be through their mother. In terms of siblings, this would mean they share the same mother.

However, there is one slight twist. In the above example, you can see that the men inherited a different proportion of the green and black X chromosomes from their common mother. However, it is possible that the mother could contribute her entire green X chromosome to one son, Justin in this example, and her entire black X chromosome to Henry.

Therefore, even though Henry and Justin DO share a mother, their X chromosome would NOT match in this scenario. This is rare but does occasionally happen.

Based on the above examples, the X chromosome may be relevant in the identification of full or half siblings based on the sexes of the two people who otherwise match at a level indicating a full or half-sibling relationship.

Here’s a summary chart for sibling X matching.

X Match Female Male
Female Will match on shared father’s full X chromosome, mother’s X is the same rules as chromosomes 1-22 Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both of their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related.
Male Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both or their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related. Both males are related on their mother’s side – either full or half-siblings.

Here’s the information presented in a different way.

DOES match X summary:

  • If a male DOES match a female on the X, he IS related to her through HIS mother’s side, but could match her on her mother or father’s side. If their match is not through her mother, then they are not full siblings nor maternal half-siblings. They cannot match through his father, so they cannot be paternal half-siblings.
  • If a female DOES match a female on the X, they could be related on either side and could be full or half-siblings.
  • If a male DOES match a male on the X, they ARE both related through their mother. They may also be related on their father’s side, but the X does not inform us of that.

Does NOT match X summary:

  • If a male does NOT match a female on the X, they are NOT related through HIS mother and are neither full siblings nor maternal half-siblings. Since a male does not have an X chromosome from his father, they cannot be paternal half-siblings based on an X match.
  • If a male does NOT match a male, they do NOT share a mother.
  • If a female does NOT match another female on the X, they are NOT full siblings and are NOT half-siblings on their paternal side. Their father only has one X chromosome, and he would have given the same X to both daughters.

Of the four autosomal vendors, only 23andMe and FamilyTreeDNA report X chromosome results and matching, although the other two vendors, MyHeritage and Ancestry, include the X in their DNA download file so you can find X matches with those files at either FamilyTreeDNA or GEDMatch if your match has or will upload their file to either of those vendors. I wrote step-by-step detailed download/upload instructions, here.

X Matching at FamilyTreeDNA

In this example from FamilyTreeDNA, the female tester has discovered two half-sibling matches, both through her father. In the first scenario, she matches a female on the full X chromosome (181 cM). She and her half-sibling MUST share their father’s entire X chromosome because he only had one X, from his mother, to contribute to both of his daughters.

In the second match to a male half-sibling, our female tester shares NO X match because her father did not contribute an X chromosome to his son.

If we didn’t know which parents these half-sibling matches were through, we can infer from the X matching alone that the male is probably NOT through the mother.

Then by comparing shared matches with each sibling, Advanced Matches, or viewing the match Matrix, we can determine if the siblings match each other and are from the same or different sides of the family.

Under Additional Tests and Tools, Advanced Matching, FamilyTreeDNA provides an additional tool that can show only X matches combined with relationships.

Of course, you’ll need to view shared matches to see which people match the mother and/or match the father.

To see who matches each other, you’ll need to use the Matrix tool.

At FamilyTreeDNA, the Matrix, located under Autosomal DNA Results and Tools, allows you to select your matches to see if they also match each other. If you have known half-siblings, or close relatives, this is another way to view relationships.

Here’s an example using my father and two paternal half-siblings. We can see that the half-siblings also match each other, so they are (at least) half-siblings on the paternal side too.

If they also matched my mother, we would be full siblings, of course.

Next, let’s use Y DNA and mitochondrial DNA.

Y DNA and Mitochondrial DNA

In addition to autosomal DNA, we can utilize Y DNA and mitochondrial DNA (mtDNA) in some cases to identify siblings or to narrow or eliminate relationship possibilities.

Given that Y DNA and mitochondrial DNA both have distinctive inheritance paths, full and half-siblings will, or will not, match under various circumstances.

Y DNA

Y DNA is passed intact from father to son, meaning it’s not admixed with any of the mother’s DNA. Daughters do not inherit Y DNA from their father, so Y DNA is only useful for male-to-male comparisons.

Two types of Y DNA are used for genealogy, STR markers for matching, and haplogroups, and both are equally powerful in slightly different ways.

Y DNA at FamilyTreeDNA

Men can order either 37 or 111 STR marker tests, or the BIg Y which provides more than 700 markers and more. FamilyTreeDNA is the only one of the vendors to offer Y DNA testing that includes STR markers and matching between men.

Men who order these tests will be compared for matching on either 37, 111 or 700 STR markers in addition to SNP markers used for haplogroup identification and assignment.

Fathers will certainly match their sons, and paternal line brothers will match each other, but they will also match people more distantly related.

However, if two men are NOT either full or half siblings on the paternal side, they won’t match at 111 markers.

If two men DON’T match, especially at high marker levels, they likely aren’t siblings. The word “likely” is in there because, very occasionally, a large deletion occurs that prevents STR matching, especially at lower levels.

Additionally, men who take the 37 or 111 marker test also receive an estimated haplogroup at a high level for free, without any additional testing.

However, if men take the Big Y-700 test, they not only will (or won’t) match on up to 700 STR markers, they will also receive a VERY refined haplogroup via SNP marker testing that is often even more sensitive in terms of matching than STR markers. Between these two types of markers, Y DNA testing can place men very granularly in relation to other men.

Men can match in two ways on Y DNA, and the results are very enlightening.

If two men match on BOTH their most refined haplogroup (Big Y test) AND STR markers, they could certainly be siblings or father/son. They could also be related on the same line for another reason, such as known or unknown cousins or closer relationships like uncle/nephew. Of course, Y DNA, in addition to autosomal matching, is a powerful combination.

Conversely, if two men don’t have a similar or close haplogroup, they are not a father and son or paternal line siblings.

FamilyTreeDNA offers both inexpensive entry-level testing (37 and 111 markers) and highly refined advanced testing of most of the Y chromosome (Big Y-700), so haplogroup assignments can vary widely based on the test you take. This makes haplogroup matching and interpretation a bit more complex.

For example, haplogroups R-M269 and I-BY14000 are not related in thousands of years. One is haplogroup R, and one is haplogroup I – completely different branches of the Y DNA tree. These two men won’t match on STR markers or their haplogroup.

However, because FamilyTreeDNA provides over 50,000 different haplogroups, or tree branches, for Big Y testers, and they provide VERY granular matching, two father/son or sibling males who have BOTH tested at the Big Y-700 level will have either the exact same haplogroup, or at most, one branch difference on the tree if a mutation occurred between father and son.

If both men have NOT tested at the Big Y-700 level, their haplogroups will be on the same branch. For example, a man who has only taken a 37/111 marker STR test may be estimated at R-M269, which is certainly accurate as far as it goes.

His sibling who has taken a Big Y test will be many branches further downstream on the tree – but on the same large haplogroup R-M269 branch. It’s essential to pay attention to which tests a Y DNA match has taken when analyzing the match.

The beauty of the two kinds of tests is that even if one haplogroup is very general due to no Big Y test, their STR markers should still match. It’s just that sometimes this means that one hand is tied behind your back.

Y DNA matching alone can eliminate the possibility of a direct paternal line connection, but it cannot prove siblingship or paternity alone – not without additional information.

The Advanced Matching tool will provide a list of matches in all categories selected – in this case, both the 111 markers and the Family Finder test. You can see that one of these men is the father of the tester, and one is the full sibling.

You can view haplogroup assignments on the public Y DNA tree, here. I wrote about using the public tree, here.

In addition, recently, FamilyTreeDNA launched the new Y DNA Discover tool, which explains more about haplogroups, including their ages and other fun facts like migration paths along with notable and ancient connections. I wrote about using the Discover tool, here.

Y DNA at 23andMe

Testers receive a base haplogroup with their autosomal test. 23andMe tests a limited number of Y DNA SNP locations, but they don’t test many, and they don’t test STR markers, so there is no Y DNA matching and no refined haplogroups.

You can view the haplogroups of your matches. If your male sibling match does NOT share the same haplogroup, the two men are not paternal line siblings. If two men DO share the same haplogroup, they MIGHT be paternal siblings. They also might not.

Again, autosomal close matching plus haplogroup comparisons include or exclude paternal side siblings for males.

Paternal side siblings at 23andMe share the same haplogroup, but so do many other people. These two men could be siblings. The haplogroups don’t exclude that possibility. If the haplogroups were different, that would exclude being either full or paternal half-siblings.

Men can also compare their mitochondrial DNA to eliminate a maternal relationship.

These men are not full siblings or maternal half-siblings. We know, unquestionably, because their mitochondrial haplogroups don’t match.

23andMe also constructs a genetic tree, but often struggles with close relative placement, especially when half-relationships are involved. I do not recommend relying on the genetic tree in this circumstance.

Mitochondrial DNA

Mitochondrial DNA is passed from mothers to all of their children, but only females pass it on. If two people, males or females, don’t match on their mitochondrial DNA test, with a couple of possible exceptions, they are NOT full siblings, and they are NOT maternal half-siblings.

Mitochondrial DNA at 23andMe

23andMe provides limited, base mitochondrial haplogroups, but no matching. If two people don’t have the same haplogroup at 23andMe, they aren’t full or maternal siblings, as illustrated above.

Mitochondrial DNA at FamilyTreeDNA

FamilyTreeDNA provides both mitochondrial matching AND a much more refined haplogroup. The full sequence test (mtFull), the only version sold today, is essential for reliable comparisons.

Full siblings or maternal half-siblings will always share the same haplogroup, regardless of their sex.

Generally, a full sibling or maternal half-sibling match will match exactly at the full mitochondrial sequence (FMS) level with a genetic distance of zero, meaning fully matching and no mismatching mutations.

There are rare instances where maternal siblings or even mothers and children do not match exactly, meaning they have a genetic distance of greater than 0, because of a mutation called a heteroplasmy.

I wrote about heteroplasmies, here.

Like Y DNA, mitochondrial DNA cannot identify a sibling or parental relationship without additional evidence, but it can exclude one, and it can also provide much-needed evidence in conjunction with autosomal matching. The great news is that unlike Y DNA, everyone has mitochondrial DNA and it comes directly from their mother.

Once again, FamilyTreeDNA’s Advanced Matching tool provides a list of people who match you on both your mitochondrial DNA test and the Family Finder autosomal test, including transfers/uploads, and provides a relationship.

You can see that our tester matches both a full sibling and their mother. Of course, a parent/child match could mean that our tester is a female and one of her children, of either sex, has tested.

Below is an example of a parent-child match that has experienced a heteroplasmy.

Based on the comparison of both the mitochondrial DNA test, plus the autosomal Family Finder test, you can verify that this is a close family relationship.

You can also eliminate potential relationships based on the mitochondrial DNA inheritance path. The mitochondrial DNA of full siblings and maternal half-siblings will always match at the full sequence and haplogroup level, and paternal half-siblings will never match. If paternal half-siblings do match, it’s happenstance or because of a different reason.

Sibling Summary and Checklist

I’ve created a quick reference checklist for you to use when attempting to determine whether or not a match is a sibling, and, if so, whether they are half or full siblings. Of course, these tools are in addition to the DNAPainter Shared cM Tool and GEDmatch’s Relationship Predictor Calculator.

FamilyTreeDNA Ancestry 23andMe MyHeritage GEDmatch
Matching Yes Yes Yes Yes Yes
Shared Matches Yes – In Common With Yes – Shared Matches Yes – Relatives in Common Yes – Review DNA Match Yes – People who match both or 1 of 2 kits
Relationship Between Shared Matches No No No Yes, under shared match No
Matches Match Each Other* Yes, Matrix No Yes, under “View DNA details,” then, “compare with more relatives” Partly, through triangulation Yes, can match any kits
Full Siblings Yes Sibling, implies full Yes Brother, Sister, means full No
Half Siblings Sibling, Uncle/Aunt-Niece/Nephew, Grandparent-Grandchild Close Family – 1C Yes Half sibling, aunt/uncle-niece-nephew No
Fully Identical Regions (FIR) No No Yes No Yes
Half Identical Regions (HIR) No No Yes No Yes
X matching Yes No Yes No Yes
Unusual Reporting or Anomalies No No, Timber is not used on close relationships X match added into total, FIR added twice No Matching amount can vary from vendors
Y DNA Yes, STRs, refined haplogroups, matching No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Mitochondrial DNA Yes, full sequence, matching, refined haplogroup No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Combined Tools (Autosomal, X, Y, mtDNA) Yes No No No No

*Autoclusters through Genetic Affairs show cluster relationships of matches to the tester and to each other, but not all matches are included, including close matches. While this is a great tool, it’s not relevant for determining close and sibling relationships. See the article, AutoClustering by Genetic Affairs, here.

Additional Resources

Some of you may be wondering how endogamy affects sibling numbers.

Endogamy makes almost everything a little more complex. I wrote about endogamy and various ways to determine if you have an endogamous heritage, here.

Please note that half-siblings with high cM matches also fall into the range of full siblings (1613-3488), with or without endogamy. This may be, but is not always, especially pronounced in endogamous groups.

As another resource, I wrote an earlier article, Full or Half Siblings, here, that includes some different examples.

Strategy

You have a lot of quills in your quiver now, and I wish you the best if you’re trying to unravel a siblingship mystery.

You may not know who your biological family is, or maybe your sibling doesn’t know who their family is, but perhaps your close relatives know who their family is and can help. Remember, the situation that has revealed itself may be a shock to everyone involved.

Above all, be kind and take things slow. If your unexpected sibling match becomes frightened or overwhelmed, they may simply check out and either delete their DNA results altogether or block you. They may have that reaction before you have a chance to do anything.

Because of that possibility, I recommend performing your analysis quickly, along with taking relevant screenshots before reaching out so you will at least have that much information to work with, just in case things go belly up.

When you’re ready to make contact, I suggest beginning by sending a friendly, short, message saying that you’ve noticed that you have a close match (don’t say sibling) and asking what they know about their family genealogy – maybe ask who their grandparents are or if they have family living in the area where you live. I recommend including a little bit of information about yourself, such as where you were born and are from.

I also refrain from using the word adoption (or similar) in the beginning or giving too much detailed information, because it sometimes frightens people, especially if they know or discover that there’s a painful or embarrassing family situation.

And, please, never, ever assume the worst of anyone or their motives. They may be sitting at their keyboard with the same shocked look on their face as you – especially if they have, or had, no idea. They may need space and time to reach a place of acceptance. There’s just nothing more emotionally boat-capsizing in your life than discovering intimate and personal details about your parents, one or both, especially if that discovery is disappointing and image-altering.

Or, conversely, your sibling may have been hoping and waiting just for you!

Take a deep breath and let me know how it goes!

Please feel free to share this article with anyone who could benefit.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search of…Signs of Endogamy

This is the fourth in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to ancestors further back in time as well.

In this article, we discuss endogamy – how to determine if you have it, from what population, and how to follow the road signs.

After introductions, we will be covering the following topics:

  • Pedigree collapse and endogamy
  • Endogamous groups
  • The challenge(s) of endogamy
  • Endogamy and unknown close relatives (parents, grandparents)
  • Ethnicity and Populations
  • Matches
  • AutoClusters
  • Endogamous Relationships
  • Endogamous DNA Segments
  • “Are Your Parents Related?” Tool
  • Surnames
  • Projects
  • Locations
  • Y DNA, Mitochondrial DNA, and Endogamy
  • Endogamy Tools Summary Tables
    • Summary of Endogamy Tools by Vendor
    • Summary of Endogamous Populations Identified by Each Tool
    • Summary of Tools to Assist People Seeking Unknown Parents and Grandparents

What Is Endogamy and Why Does It Matter?

Endogamy occurs when a group or population of people intermarry among themselves for an extended period of time, without the introduction of many or any people from outside of that population.

The effect of this continual intermarriage is that the founders’ DNA simply gets passed around and around, eventually in small segments.

That happens because there is no “other” DNA to draw from within the population. Knowing or determining that you have endogamy helps make sense of DNA matching patterns, and those patterns can lead you to unknown relatives, both close and distant.

This Article

This article serves two purposes.

  • This article is educational and relevant for all researchers. We discuss endogamy using multiple tools and examples from known endogamous people and populations.
  • In order to be able to discern endogamy when we don’t know who our parents or grandparents are, we need to know what signs and signals to look for, and why, which is based on what endogamy looks like in people who know their heritage.

There’s no crystal ball – no definitive “one-way” arrow, but there are a series of indications that suggest endogamy.

Depending on the endogamous population you’re dealing with, those signs aren’t always the same.

If you’re sighing now, I understand – but that’s exactly WHY I wrote this article.

We’re covering a lot of ground, but these road markers are invaluable diagnostic tools.

I’ve previously written about endogamy in the articles:

Let’s start with definitions.

Pedigree Collapse and Endogamy

Pedigree collapse isn’t the same as endogamy. Pedigree collapse is when you have ancestors that repeat in your tree.

In this example, the parents of our DNA tester are first cousins, which means the tester shares great-grandparents on both sides and, of course, the same ancestors from there on back in their tree.

This also means they share more of those ancestors’ DNA than they would normally share.

John Smith and Mary Johnson are both in the tree twice, in the same position as great-grandparents. Normally, Tester Smith would carry approximately 12.5% of each of his great-grandparents’ DNA, assuming for illustration purposes that exactly 50% of each ancestor’s DNA is passed in each generation. In this case, due to pedigree collapse, 25% of Tester Smith’s DNA descends from John Smith, and another 25% descends from Mary Johnson, double what it would normally be. 25% is the amount of DNA contribution normally inherited from grandparents, not great-grandparents.

While we may find first cousin marriages a bit eyebrow-raising today, they were quite common in the past. Both laws and customs varied with the country, time, social norms, and religion.

Pedigree Collapse and Endogamy is NOT the Same

You might think that pedigree collapse and endogamy is one and the same, but there’s a difference. Pedigree collapse can lead to endogamy, but it takes more than one instance of pedigree collapse to morph into endogamy within a population. Population is the key word for endogamy.

The main difference is that pedigree collapse occurs with known ancestors in more recent generations for one person, while endogamy is longer-term and systemic in a group of people.

Picture a group of people, all descended from Tester Smith’s great-grandparents intermarrying. Now you have the beginnings of endogamy. A couple hundred or a few hundred years later, you have true endogamy.

In other words, endogamy is pedigree collapse on a larger scale – think of a village or a church.

My ancestors’ village of Schnait, in Germany, is shown above in 1685. One church and maybe 30 or 40 homes. According to church and other records, the same families had inhabited this village, and region, for generations. It’s a sure bet that both pedigree collapse and endogamy existed in this small community.

If pedigree collapse happens over and over again because there are no other people within the community to marry, then you have endogamy. In other words, with endogamy, you assuredly DO have historical pedigree collapse, generally back in time, often before you can identify those specific ancestors – because everyone descends from the same set of founders.

Endogamy Doesn’t Necessarily Indicate Recent Pedigree Collapse

With deep, historic endogamy, you don’t necessarily have recent pedigree collapse, and in fact, many people do not. Jewish people are a good example of this phenomenon. They shared ancestors for hundreds or thousands of years, depending on which group we are referring to, but in recent, known, generations, many Jewish people aren’t related. Still, their DNA often matches each other.

The good news is that there are telltale signs and signals of endogamy.

The bad news is that not all of these are obvious, meaning as an aid to people seeking clues about unknown close relatives, and other “signs” aren’t what they are believed to be.

Let’s step through each endogamy identifier, or “hint,” and then we will review how we can best utilize this information.

First, let’s take a look at groups that are considered to be endogamous.

Endogamous Groups

Jewish PeopleSpecifically groups that were isolated from other groups of Jewish (and other) people; Ashkenazi (Germany, Northern France, and diaspora), Sephardic (Spanish, Iberia, and diaspora), Mizrahi (Israel, Middle Eastern, and diaspora,) Ethiopian Jews, and possibly Jews from other locations such as Mountain Jews from Kazakhstan and the Caucasus.

AcadiansDescendants of about 60 French families who settled in “Acadia” beginning about 1604, primarily on the island of Nova Scotia, and intermarried among themselves and with the Mi’kmaq people. Expelled by the English in 1755, they were scattered in groups to various diasporic regions where they continued to intermarry and where their descendants are found today. Some Acadians became the Cajuns of Louisiana.

Anabaptist Protestant FaithsAmish, Mennonite, and Brethren (Dunkards) and their offshoots are Protestant religious sects founded in Europe in the 14th, 15th, and 16th centuries on the principle of baptizing only adults or people who are old enough to choose to follow the faith, or rebaptizing people who had been previously baptized as children. These Anabaptist faiths tend to marry within their own group or church and often expel those who marry outside of the faith. Many emigrated to the American colonies and elsewhere, seeking religious freedom. Occasionally those groups would locate in close proximity and intermarry, but not marry outside of other Anabaptist denominations.

Native American (Indigenous) People – all indigenous peoples found in North and South America before European colonization descended from a small number of original founders who probably arrived at multiple times.

Indigenous Pacific Islanders – Including indigenous peoples of Australia, New Zealand, and Hawaii prior to colonization. They are probably equally as endogamous as Native American people, but I don’t have specific examples to share.

Villages – European or other villages with little inflow or whose residents were restricted from leaving over hundreds of years.

Other groups may have significant multiple lines of pedigree collapse and therefore become endogamous over time. Some people from Newfoundland, French Canadians, and Mormons (Church of Jesus Christ of Latter-Day Saints) come to mind.

Endogamy is a process that occurs over time.

Endogamy and Unknown Relatives

If you know who your relatives are, you may already know you’re from an endogamous population, but if you’re searching for close relatives, it’s helpful to be able to determine if you have endogamous heritage, at least in recent generations.

If you know nothing about either parent, some of these tools won’t help you, at least not initially, but others will. However, as you add to your knowledge base, the other tools will become more useful.

If you know the identity of one parent, this process becomes at least somewhat easier.

In future articles, we will search specifically for parents and each of your four grandparents. In this article, I’ll review each of the diagnostic tools and techniques you can use to determine if you have endogamy, and perhaps pinpoint the source.

The Challenge

People with endogamous heritage are related in multiple, unknown ways, over many generations. They may also be related in known ways in recent generations.

If both of your parents share the SAME endogamous culture or group of relatives:

  • You may have significantly more autosomal DNA matches than people without endogamy, unless that group of people is under-sampled. Jewish people have significantly more matches, but Native people have fewer due to under-sampling.
  • You may experience a higher-than-normal cM (centiMorgan) total for estimated relationships, especially more distant relationships, 3C and beyond.
  • You will have many matches related to you on both your maternal and paternal sides.
  • Parts of your autosomal DNA will be the same on both your mother’s and father’s sides, meaning your DNA will be fully identical in some locations. (I’ll explain more in a minute.)

If either (or both) of your parents are from an endogamous population, you:

  • Will, in some cases, carry identifying Y and mitochondrial DNA that points to a specific endogamous group. This is true for Native people, can be true for Jewish people and Pacific Islanders, but is not true for Anabaptist people.

One Size Does NOT Fit All

Please note that there is no “one size fits all.”

Each or any of these tools may provide relevant hints, depending on:

  • Your heritage
  • How many other people have tested from the relevant population group
  • How many close or distant relatives have tested
  • If your parents share the same heritage
  • Your unique DNA inheritance pattern
  • If your parents, individually, were fully endogamous or only partly endogamous, and how far back generationally that endogamy occurred

For example, in my own genealogy, my maternal grandmother’s father was Acadian on his father’s side. While I’m not fully endogamous, I have significantly more matches through that line proportionally than on my other lines.

I have Brethren endogamy on my mother’s side via her paternal grandmother.

Endogamous ancestors are shown with red stars on my mother’s pedigree chart, above. However, please note that her maternal and paternal endogamous ancestors are not from the same endogamous population.

However, I STILL have fewer matches on my mother’s side in total than on my father’s side because my mother has recent Dutch and recent German immigrants which reduces her total number of matches. Neither of those lines have had as much time to produce descendants in the US, and Europe is under-sampled when compared with the US where more people tend to take DNA tests because they are searching for where they came from.

My father’s ancestors have been in the US since it was a British Colony, and I have many more cousins who have tested on his side than mother’s.

If you looked at my pedigree chart and thought to yourself, “that’s messy,” you’d be right.

The “endogamy means more matches” axiom does not hold true for me, comparatively, between my parents – in part because my mother’s German and Dutch lines are such recent immigrants.

The number of matches alone isn’t going to tell this story.

We are going to need to look at several pieces and parts for more information. Let’s start with ethnicity.

Ethnicity and Populations

Ethnicity can be a double-edged sword. It can tell you exactly nothing you couldn’t discern by looking in the mirror, or, conversely, it can be a wealth of information.

Ethnicity reveals the parts of the world where your ancestors originated. When searching for recent ancestors, you’re most interested in majority ethnicity, meaning the 50% of your DNA that you received from each of your parents.

Ethnicity results at each vendor are easy to find and relatively easy to understand.

This individual at FamilyTreeDNA is 100% Ashkenazi Jewish.

If they were 50% Jewish, we could then estimate, and that’s an important word, that either one of their parents was fully Jewish, and not the other, or that two of their grandparents were Jewish, although not necessarily on the same side.

On the other hand, my mother’s ethnicity, shown below, has nothing remarkable that would point to any majority endogamous population, yet she has two.

The only hint of endogamy from ethnicity would be her ~1% Americas, and that isn’t relevant for finding close relatives. However, minority ancestry is very relevant for identifying Native ancestors, which I wrote about, here.

You can correlate or track your ethnicity segments to specific ancestors, which I discussed in the article, Native American & Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments, here.

Since I wrote that article, FamilyTreeDNA has added the feature of ethnicity or population Chromosome Painting, based on where each of your populations fall on your chromosomes.

In this example on chromosome 1, I have European ancestry (blue,) except for the pink Native segment, which occurs on the following segment in the same location on my mother’s chromosome 1 as well.

Both 23andMe, and FamilyTreeDNA provide chromosome painting AND the associated segment information so you can identify the relevant ancestors.

Ancestry is in the process of rolling out an ethnicity painting feature, BUT, it has no segment or associated matching information. While it’s interesting eye candy, it’s not terribly useful beyond the ethnicity information that Ancestry already provides. However, Jonny Perl at DNAPainter has devised a way to estimate Ancestry’s start and stop locations, here. Way to go Jonny!

Now all you need to do is convince your Ancestry matches to upload their DNA file to one of the three databases, FamilyTreeDNA, MyHeritage, and GEDMatch, that accept transfers, aka uploads. This allows matching with segment data so that you can identify who matches you on that segment, track your ancestors, and paint your ancestral segments at DNAPainter.

I provided step-by-step instructions, here, for downloading your raw DNA file from each vendor in order to upload the file to another vendor.

Ethnicity Sides

Three of the four DNA testing vendors, 23andMe, FamilyTreeDNA, and recently, Ancestry, attempt to phase your ethnicity DNA, meaning to assign it to one parental “side” or the other – both in total and on each chromosome.

Here’s Ancestry’s SideView, where your DNA is estimated to belong to parent 1 and parent 2. I detailed how to determine which side is which, here, and while that article was written specifically pertaining to Ancestry’s SideView, the technique is relevant for all the vendors who attempt to divide your DNA into parents, a technique known as phasing.

I say “attempt” because phasing may or may not be accurate, meaning the top chromosome may not always be parent 1, and the bottom chromosome may not always be chromosome 2.

Here’s an example at 23andMe.

See the two yellow segments. They are both assigned as Native. I happen to know one is from the mother and one is from the father, yet they are both displayed on the “top” chromosome, which one would interpret to be the same parent.

I am absolutely positive this is not the case because this is a close family member, and I have the DNA of the parent who contributed the Native segment on chromosome 1, on the top chromosome. That parent does not have a Native segment on chromosome 2 to contribute. So that Native segment had to be contributed by the other parent, but it’s also shown on the top chromosome.

The DNA segments circled in purple belong together on the same “side” and were contributed to the tester by the same parent. The Native segment on chromosome 2 abuts a purple African segment, suggesting perhaps that the ancestor who contributed that segment was mixed between those ethnicities. In the US, that suggests enslavement.

The other African segments, circled, are shown on the second chromosome in each pair.

To be clear, parent 1 is not assigned by the vendors to either mother or father and will differ by person. Your parent 1, or the parent on the top chromosome may be your mother and another person’s parent 1 may be their father.

As shown in this example, parents can vary by chromosome, a phenomenon known as “strand swap.” Occasionally, the DNA can even be swapped within a chromosome assignment.

You can, however, get an idea of the division of your DNA at any specific location. As shown above, you can only have a maximum of two populations of DNA on any one chromosome location.

In our example above, this person’s majority ancestry is European (blue.) On each chromosome where we find a minority segment, the opposite chromosome in the same location is European, meaning blue.

Let’s look at another example.

At FamilyTreeDNA, the person whose ethnicity painting is shown below has a Native American (pink) ancestor on their father’s side. FamilyTreeDNA has correctly phased or identified their Native segments as all belonging to the second chromosome in each pair.

Looking at chromosome 18, for example, most of their father’s chromosome is Native American (pink). The other parent’s chromosome is European (dark blue) at those same locations.

If one of the parents was of one ethnicity, and the other parent is a completely different ethnicity, then one bar of each chromosome would be all pink, for example, and one would be entirely blue, representing the other ethnicity.

Phasing ethnicity or populations to maternal and paternal sides is not foolproof, and each chromosome is phased individually.

Ethnicity can, in some cases, give you a really good idea of what you’re dealing with in terms of heritage and endogamy.

If someone had an Ashkenazi Jewish father and European mother, for example, one copy of each chromosome would be yellow (Ashkenazi Jewish), and one would be blue (European.)

However, if each of their parents were half European Jewish and half European (not Jewish), then their different colored segments would be scattered across their entire set of chromosomes.

In this case, both of the tester’s parents are mixed – European Jewish (green) and Western Europe (blue.) We know both parents are admixed from the same two populations because in some locations, both parents contributed blue (Western Europe), and in other locations, both contributed Jewish (green) segments.

Both MyHeritage and Ancestry provide a secondary tool that’s connected to ethnicity, but different and generally in more recent times.

Ancestry’s DNA Communities

While your ethnicity may not point to anything terribly exciting in terms of endogamy, Genetic Communities might. Ancestry says that a DNA Community is a group of people who share DNA because their relatives recently lived in the same place at the same time, and that communities are much smaller than ethnicity regions and reach back only about 50-300 years.

Based on the ancestors’ locations in the trees of me and my matches, Ancestry has determined that I’m connected to two communities. In my case, the blue group is clearly my father’s line. The orange group could be either parent, or even a combination of both.

My endogamous Brethren could be showing up in Maryland, Pennsylvania, and Ohio, but it’s uncertain, in part, because my father’s ancestral lines are found in Virginia, West Virginia, and Maryland too.

These aren’t useful for me, but they may be more useful for fully endogamous people, especially in conjunction with ethnicity.

My Acadian cousin’s European ethnicity isn’t informative.

However, viewing his DNA Communities puts his French heritage into perspective, especially combined with his match surnames.

I wrote about DNA Communities when it was introduced with the name Genetic Communities, here.

MyHeritage’s Genetic Groups

MyHeritage also provides a similar feature that shows where my matches’ ancestors lived in the same locations as mine.

One difference, though, is that testers can adjust their ethnicity results confidence level from high, above, to low, below where one of my Genetic Groups overlaps my ethnicity in the Netherlands.

You can also sort your matches by Genetic Groups.

The results show you not only who is in the group, but how many of your matches are in that group too, which provides perspective.

I wrote about Genetic Groups, here.

Next, let’s look at how endogamy affects your matches.

Matches

The number of matches that a person has who is from an entirely endogamous community and a person with no endogamy may be quite different.

FamilyTreeDNA provides a Family Matching feature that triangulates your matches and assigns them to your paternal or maternal side by using known matches that you have linked to their profile cards in your tree. You must link people for the Family Matching feature known as “bucketing” to be enabled.

The people you link are then processed for shared matches on the same chromosome segment(s). Triangulated individuals are then deposited in your maternal, paternal, and both buckets.

Obviously, your two parents are the best people to link, but if they haven’t tested (or uploaded their DNA file from another vendor) and you have other known relatives, link them using the Family Tree tab at the top of your personal page.

I uploaded my Ancestry V4 kit to use as an example for linking. Let’s pretend that’s my sister. If I had not already linked my Ancestry V4 kit to “my sister’s” profile card, I’d want to do that and link other known individuals the same way. Just drag and drop the match to the correct profile card.

Note that a full or half sibling will be listed as such at FamilyTreeDNA, but an identical twin will show as a potential parent/child match to you. You’re much more likely to find a parent than an identical twin, but just be aware.

I’ve created a table of FamilyTreeDNA bucketed match results, by category, comparing the number of matches in endogamous categories with non-endogamous.

Total Matches Maternal Matches Paternal Matches Both % Both % DNA Unassigned
100% Jewish 34,637 11,329 10,416 4,806 13.9 23.3
100% Jewish 32,973 10,700 9,858 4,606 14 23.7
100% Jewish 32,255 9,060 10,970 3,892 12 25.8
75% Jewish 24,232 11,846 Only mother linked Only mother linked Only mother linked
100% Acadian 8093 3826 2299 1062 13 11
100% Acadian 7828 3763 1825 923 11.8 17
Not Endogamous 6760 3845 1909 13 0.19 14.5
Not Endogamous 7723 1470 3317 6 0.08 38
100% Native American 1,115 Unlinked Unlinked Unlinked
100% Native American 885 290 Unknown Can’t calculate without at least one link on both sides

The 100% Jewish, Acadian, and Not Endogamous testers both have linked their parents, so their matches, if valid (meaning not identical by chance, which I discussed here,) will match them plus one or the other parent.

One person is 75% Jewish and has only linked their Jewish mother.

The Native people have not tested their parents, and the first Native person has not linked anyone in their tree. The second Native person has only linked a few maternal matches, but their mother has not tested. They are seeking their father.

It’s very difficult to find people who are fully Native as testers. Furthermore, Native people are under-sampled. If anyone knows of fully Native (or other endogamous) people who have tested and linked their parents or known relatives in their trees, and will allow me to use their total match numbers anonymously, please let me know.

As you can see, Jewish, Acadian, and Native people are 100% endogamous, but many more Jewish people than Native people have tested, so you CAN’T judge endogamy by the total number of matches alone.

In fact, in order:

  • Fully Jewish testers have about 4-5 times as many matches as the Acadian and Non-endogamous testers
  • Acadian and Non-endogamous testers have about 5-6 times as many matches as the Native American testers
  • Fully Jewish people have about 30 times more matches than the Native American testers

If a person’s endogamy with a particular population is only on their maternal or paternal side, they won’t have a significant number of people related to both sides, meaning few people will fall into the “Both” bucket. People that will always be found in the ”Both” bucket are full siblings and their descendants, along with descendants of the tester, assuming their match is linked to their profiles in the tester’s tree.

In the case of our Jewish testers, you can easily see that the “Both” bucket is very high. The Acadians are also higher than one would reasonably expect without endogamy. A non-endogamous person might have a few matches on both sides, assuming the parents are not related to each other.

A high number of “Both” matches is a very good indicator of endogamy within the same population on both parents’ sides.

The percentage of people who are assigned to the “Both” bucket is between 11% and 14% in the endogamous groups, and less than 1% in the non-endogamous group, so statistically not relevant.

As demonstrated by the Native people compared to the Jewish testers, the total number of matches can be deceiving.

However, being related to both parents, as indicated by the “Both” bucket, unless you have pedigree collapse, is a good indicator of endogamy.

Of course, if you don’t know who your relatives are, you can’t link them in your tree, so this type of “hunt” won’t generally help people seeking their close family members.

However, you may notice that you’re matching people PLUS both of their parents. If that’s the case, start asking questions of those matches about their heritage.

A very high number of total matches, as compared to non-endogamous people, combined with some other hints might well point to Jewish heritage.

I included the % DNA Unassigned category because this category, when both parents are linked, is the percentage of matches by chance, meaning the match doesn’t match either of the tester’s parents. All of the people with people listed in “Both” categories have linked both of their parents, not just maternal and paternal relatives.

Matching Location at MyHeritage

MyHeritage provides a matching function by location. Please note that it’s the location of the tester, but that may still be quite useful.

The locations are shown in the most-matches to least-matches order. Clicking on the location shows the people who match you who are from that location. This would be the most useful in situations where recent immigration has occurred. In my case, my great-grandfather from the Netherlands arrived in the 1860s, and my German ancestors arrived in the 1850s. Neither of those groups are endogamous, though, unless it would be on a village level.

AutoClusters

Let’s shift to Genetic Affairs, a third-party tool available to everyone.

Using their AutoCluster function, Genetic Affairs clusters your matches together who match both each other and you.

This is an example of the first few clusters in my AutoCluster. You can see that I have several colored clusters of various sizes, but none are huge.

Compare that to the following endogamous cluster, sample courtesy of EJ Blom at Genetic Affairs.

If your AutoCluster at Genetic Affairs looks something like this, a huge orange blob in the upper left hand corner, you’re dealing with endogamy.

Please also note that the size of your cluster is also a function of both the number of testers and the match threshold you select. I always begin by using the defaults. I wrote about using Genetic Affairs, here.

If you tested at or transferred to MyHeritage, they too license AutoClusters, but have optimized the algorithm to tease out endogamous matches so that their Jewish customers, in particular, don’t wind up with a huge orange block of interrelated people.

You won’t see the “endogamy signature” huge cluster in the corner, so you’re less likely to be able to discern endogamy from a MyHeritage cluster alone.

The commonality between these Jewish clusters at MyHeritage is that they all tend to be rather uniform in size and small, with lots of grey connecting almost all the blocks.

Grey cells indicate people who match people in two colored groups. In other words, there is often no clear division in clusters between the mother’s side and the father’s side in Jewish clusters.

In non-endogamous situations, even if you can’t identify the parents, the clusters should still fall into two sides, meaning a group of clusters for each parent’s side that are not related to each other.

You can read more about Genetic Affairs clusters and their tools, here. DNAGedcom.com also provides a clustering tool.

Endogamous Relationships

Endogamous estimated relationships are sometimes high. Please note the word, “sometimes.”

Using the Shared cM Project tool relationship chart, here, at DNAPainter, people with heavy endogamy will discover that estimated relationships MAY be on the high side, or the relationships may, perhaps, be estimated too “close” in time. That’s especially true for more distant relationships, but surprisingly, it’s not always true. The randomness of inheritance still comes into play, and so do potential unknown relatives. Hence, the words “may” are bolded and underscored.

Unfortunately, it’s often stated as “conventional wisdom” that Jewish matches are “always” high, and first cousins appear as siblings. Let’s see what the actual data says.

At DNAPainter, you can either enter the amount of shared DNA (cM), or the percent of shared DNA, or just use the chart provided.

I’ve assembled a compilation of close relationships in kits that I have access to or from people who were generous enough to share their results for this article.

I’ve used Jewish results, which is a highly endogamous population, compared with non-endogamous testers.

The “Jewish Actual” column reports the total amount of shared DNA with that person. In other words, someone to their grandparent. The Average Range is the average plus the range from DNAPainter. The Percent Difference is the % difference between the actual number and the DNAPainter average.

You’ll see fully Jewish testers, at left, matching with their family members, and a Non-endogamous person, at right, matching with their same relative.

Relationship Jewish Actual Percent Difference than Average Average -Range Non-endogamous Actual Percent Difference than Average
Grandparent 2141 22 1754 (984-2482) 1742 <1 lower
Grandparent 1902 8.5 1754 (984-2482) 1973 12
Sibling 3039 16 2613 (1613-3488) 2515 3.5 lower
Sibling 2724 4 2613 (1613-3488) 2761 5.5
Half-Sibling 2184 24 1759 (1160-2436) 2127 21
Half-Sibling 2128 21 1759 (1160-2436) 2352 34
Aunt/Uncle 2066 18.5 1741 (1201-2282) 1849 6
Aunt/Uncle 2031 16.5 1741 (1201-2282) 2097 20
1C 1119 29 866 (396-1397) 959 11
1C 909 5 866 (396-1397) 789 9 lower
1C1R 514 19 433 (102-980) 467 8
1C1R 459 6 433 (102-980) 395 9 lower

These totals are from FamilyTreeDNA except one from GEDMatch (one Jewish Half-sibling).

Totals may vary by vendor, even when matching with the same person. 23andMe includes the X segments in the total cMs and also counts fully identical segments twice. MyHeritage imputation seems to err on the generous side.

However, in these dozen examples:

  • You can see that the Jewish actual amount of DNA shared is always more than the average in the estimate.
  • The red means the overage is more than 100 cM larger.
  • The percentage difference is probably more meaningful because 100 cM is a smaller percentage of a 1754 grandparent connection than compared to a 433 cM 1C1R.

However, you can’t tell anything about endogamy by just looking at any one sample, because:

  • Some of the Non-Endogamous matches are high too. That’s just the way of random inheritance.
  • All of the actual Jewish match numbers are within the published ranges, but on the high side.

Furthermore, it can get more complex.

Half Endogamous

I requested assistance from Jewish genealogy researchers, and a lovely lady, Sharon, reached out, compiled her segment information, and shared it with me, granting permission to share with you. A HUGE thank you to Sharon!

Sharon is half-Jewish via one parent, and her half-sibling is fully Jewish. Their half-sibling match to each other at Ancestry is 1756 cM with a longest segment of 164 cM.

How does Jewish matching vary if you’re half-Jewish versus fully Jewish? Let’s look at 21 people who match both Sharon and her fully Jewish half-sibling.

Sharon shared the differences in 21 known Jewish matches with her and her half-sibling. I’ve added the Relationship Estimate Range from DNAPainter and colorized the highest of the two matches in yellow. Bolding in the total cM column shows a value above the average range for that relationship.

Total Matching cMs is on the left, with Longest Segment on the right.

While this is clearly not a scientific study, it is a representative sample.

The fully Jewish sibling carries more Jewish DNA, which is available for other Jewish matches to match as a function of endogamy (identical by chance/population), so I would have expected the fully Jewish sibling to match most if not all Jewish testers at a higher level than the half-Jewish sibling.

However, that’s not universally what we see.

The fully Jewish sibling is not always the sibling with the highest number of matches to the other Jewish testers, although the half-Jewish tester has the larger “Longest Segment” more often than not.

Approximately two-thirds of the time (13/21), the fully Jewish person does have a higher total matching cM, but about one-third of the time (8/21), the half-Jewish sibling has a higher matching cM.

About one-fourth of the time (5/21), the fully Jewish sibling has the longest matching segment, and about two-thirds of the time (13/21), the half-Jewish sibling does. In three cases, or about 14% of the time, the longest segment is equal which may indicate that it’s the same segment.

Because of endogamy, Jewish matches are more likely to have:

  • Larger than average total cM for the specific relationship
  • More and smaller matching segments

However, as we have seen, neither of those are definitive, nor always true. Jewish matches and relationships are not always overestimated.

Ancestry and Timber

Please note that Ancestry downweights some matches by removing some segments using their Timber algorithm. Based on my matches and other accounts that I manage, Ancestry does not downweight in the 2-3rd cousin category, which is 90 cM and above, but they do begin downweighting in the 3-4th cousin category, below 90 cM, where my “Extended Family” category begins.

If you’ve tested at Ancestry, you can check for yourself.

By clicking on the amount of DNA you share with your match on your match list at Ancestry, shown above, you will be taken to another page where you will be able to view the unweighted shared DNA with that match, meaning the amount of DNA shared before the downweighting and removal of some segments, shown below.

Given the downweighting, and the information in the spreadsheet provided by Sharon, it doesn’t appear that any of those matches would have been in a category to be downweighted.

Therefore, for these and other close matches, Timber wouldn’t be a factor, but would potentially be in more distant matches.

Endogamous Segments

Endogamous matches tend to have smaller and more segments. Small amounts of matching DNA tend to skew the total DNA cM upwards.

How and why does this happen?

Ancestral DNA from further back in time tends to be broken into smaller segments.

Sometimes, especially in endogamous situations, two smaller segments, at one time separated from each other, manage to join back together again and form a match, but the match is only due to ancestral segments – not because of a recent ancestor.

Please note that different vendors have different minimum matching cM thresholds, so smaller matches may not be available at all vendors. Remember that factors like Timber and imputation can affect matching as well.

Let’s take a look at an example. I’ve created a chart where two ancestors have their blue and pink DNA broken into 4 cM segments.

They have children, a blue child and a pink child, and the two children, shown above, each inherited the same blue 4 cM segment and the same pink 4 cM segment from their respective parents. The other unlabeled pink and blue segments are not inherited by these two children, so those unlabeled segments are irrelevant in this example.

The parents may have had other children who inherited those same 4 cM labeled pink and blue segments as well, and if not, the parents’ siblings were probably passing at least some of the same DNA down to their descendants too.

The blue and pink children had children, and their children had children – for several generations.

Time passed, and their descendants became an endogamous community. Those pink and blue 4 cM segments may at some time be lost during recombination in the descendants of each of their children, shown by “Lost pink” and “Lost blue.”

However, because there is only a very limited amount of DNA within the endogamous community, their descendants may regain those same segments again from their “other parent” during recombination, downstream.

In each generation, the DNA of the descendant carrying the original blue or pink DNA segment is recombined with their partner. Given that the partners are both members of the same endogamous community, the two people may have the same pink and/or blue DNA segments. If one parent doesn’t carry the pink 4 cM segment, for example, their offspring may receive that ancestral pink segment from the other parent.

They could potentially, and sometimes do, receive that ancestral segment from both parents.

In our example, the descendants of the blue child, at left, lost the pink 4 cM segment in generation 3, but a few generations later, in generation 11, that descendant child inherited that same pink 4 cM segment from their other parent. Therefore, both the 4 cM blue and 4 cM pink segments are now available to be inherited by the descendants in that line. I’ve shown the opposite scenario in the generational inheritance at right where the blue segment is lost and regained.

Once rejoined, that pink and blue segment can be passed along together for generations.

The important part, though, is that once those two segments butt up against each other again during recombination, they aren’t just two separate 4 cM segments, but one segment that is 8 cM long – that is now equal to or above the vendors’ matching threshold.

This is why people descended from endogamous populations often have the following matching characteristics:

  • More matches
  • Many smaller segment matches
  • Their total cM is often broken into more, smaller segments

What does more, smaller segments, look like, exactly?

More, Smaller Segments

All of our vendors except Ancestry have a chromosome browser for their customers to compare their DNA to that of their matches visually.

Let’s take a look at some examples of what endogamous and non-endogamous matches look like.

For example, here’s a screen shot of a random Jewish second cousin match – 298 cM total, divided into 12 segments, with a longest segment of 58 cM,

A second Jewish 2C with 323 cM total, across 19 segments, with a 69 cM longest block.

A fully Acadian 2C match with 600 cM total, across 27 segments, with a longest segment of 69 cM.

A second Acadian 2C with 332 cM total, across 20 segments, with a longest segment of 42 cM.

Next, a non-endogamous 2C match with 217 cM, across 7 segments, with a longest segment of 72 cM.

Here’s another non-endogamous 2C example, with 169 shared cM, across 6 segments, with a longest segment of 70 cM.

Here’s the second cousin data in a summary table. The take-away from this is the proportion of total segments

Tester Population Total cM Longest Block Total Segments
Jewish 2C 298 58 12
Jewish 2C 323 69 19
Acadian 2C 600 69 27
Acadian 2C 332 42 20
Non-endogamous 2C 217 72 7
Non-endogamous 2C 169 70 6

You can see more examples and comparisons between Native American, Jewish and non-endogamous DNA individuals in the article, Concepts – Endogamy and DNA Segments.

I suspect that a savvy mathematician could predict endogamy based on longest block and total segment information.

Lara Diamond, a mathematician, who writes at Lara’s Jewnealogy might be up for this challenge. She just published compiled matching and segment information in her Ashkenazic Shared DNA Survey Results for those who are interested. You can also contribute to Laura’s data, here.

Endogamy, Segments, and Distant Relationships

While not relevant to searching for close relatives, heavily endogamous matches 3C and more distant, to quote one of my Jewish friends, “dissolve into a quagmire of endogamy and are exceedingly difficult to unravel.”

In my own Acadian endogamous line, I often simply have to label them “Acadian” because the DNA tracks back to so many ancestors in different lines. In other words, I can’t tell which ancestor the match is actually pointing to because the same DNA segments or segments is/are carried by several ancestors and their descendants due to founder effect.

The difference with the Acadians is that we can actually identify many or most of them, at least at some point in time. As my cousin, Paul LeBlanc, once said, if you’re related to one Acadian, you’re related to all Acadians. Then he proceeded to tell me that he and I are related 137 different ways. My head hurts!

It’s no wonder that endogamy is incredibly difficult beyond the first few generations when it turns into something like multi-colored jello soup.

“Are Your Parents Related?” Tool

There’s another tool that you can utilize to determine if your parents are related to each other.

To determine if your parents are related to each other, you need to know about ROH, or Runs of Homozygosity (ROH).

ROH means that the DNA on both strands or copies of the same chromosome is identical.

For a few locations in a row, ROH can easily happen just by chance, but the longer the segment, the less likely that commonality occurs simply by chance.

The good news is that you don’t need to know the identity of either of your parents. You don’t need either of your parent’s DNA tests – just your own. You’ll need to upload your DNA file to GEDmatch, which is free.

Click on “Are your parents related?”

GEDMatch analyzes your DNA to see if any of your DNA, above a reasonable matching threshold, is identical on both strands, indicating that you inherited the exact same DNA from both of your parents.

A legitimate match, meaning one that’s not by chance, will include many contiguous matching locations, generally a minimum of 500 SNPs or locations in a row. GEDmatch’s minimum threshold for identifying identical ancestral DNA (ROH) is 200 cM.

Here’s my result, including the graphic for the first two chromosomes. Notice the tiny green bars that show identical by chance tiny sliver segments.

I have no significant identical DNA, meaning my parents are not related to each other.

Next, let’s look at an endogamous example where there are small, completely identical segments across a person’s chromosome

This person’s Acadian parents are related to each other, but distantly.

Next, let’s look at a Jewish person’s results.

You’ll notice larger green matching ROH, but not over 200 contiguous SNPs and 7 cM.

GEDMatch reports that this Jewish person’s parents are probably not related within recent generations, but it’s clear that they do share DNA in common.

People whose parents are distantly related have relatively small, scattered matching segments. However, if you’re seeing larger ROH segments that would be large enough to match in a genealogical setting, meaning multiple greater than 7 cM and 500 SNPs,, you may be dealing with a different type of situation where cousins have married in recent generations. The larger the matching segments, generally, the closer in time.

Blogger Kitty Cooper wrote an article, here, about discovering that your parents are related at the first cousin level, and what their GEDMatch “Are Your Parents Related” results look like.

Let’s look for more clues.

Surnames

There MAY be an endogamy clue in the surnames of the people you match.

Viewing surnames is easier if you download your match list, which you can do at every vendor except Ancestry. I’m not referring to the segment data, but the information about your matches themselves.

I provided instructions in the recent article, How to Download Your DNA Match Lists and Segment Files, here.

If you suspect endogamy for any reason, look at your closest matches and see if there is a discernable trend in the surnames, or locations, or any commonality between your matches to each other.

For example, Jewish, Acadian, and Native surnames may be recognizable, as may locations.

You can evaluate in either or both of two ways:

  • The surnames of your closest matches. Closest matches listed first will be your default match order.
  • Your most frequently occurring surnames, minus extremely common names like Smith, Jones, etc., unless they are also in your closest matches. To utilize this type of matching, sort the spreadsheet in surname order and then scan or count the number of people with each surname.

Here are some examples from our testers.

Jewish – Closest surname matches.

  • Roth
  • Weiss
  • Goldman
  • Schonwald
  • Levi
  • Cohen
  • Slavin
  • Goodman
  • Sender
  • Trebatch

Acadian – Closest surname matches.

  • Bergeron
  • Hebert
  • Bergeron
  • Marcum
  • Muise
  • Legere
  • Gaudet
  • Perry
  • Verlander
  • Trombley

Native American – Closest surname matches.

  • Ortega
  • Begay
  • Valentine
  • Hayes
  • Montoya
  • Sun Bear
  • Martin
  • Tsosie
  • Chiquito
  • Yazzie

You may recognize these categories of surnames immediately.

If not, Google is your friend. Eliminate common surnames, then Google for a few together at a time and see what emerges.

The most unusual surnames are likely your best bets.

Projects

Another way to get some idea of what groups people with these surnames might belong to is to enter the surname in the FamilyTreeDNA surname search.

Go to the main FamilyTreeDNA page, but DO NOT sign on.

Scroll down until you see this image.

Type the surname into the search box. You’ll see how many people have tested with that surname, along with projects where project administrators have included that surname indicating that the project may be of interest to at least some people with that surname.

Here’s a portion of the project list for Cohen, a traditional Jewish surname.

These results are for Muise, an Acadian surname.

Clicking through to relevant surname projects, and potentially contacting the volunteer project administrator can go a very long way in helping you gather and sift information. Clearly, they have an interest in this topic.

For example, here’s the Muise surname in the Acadian AmerIndian project. Two great hints here – Acadian heritage and Halifax, Nova Scotia.

Repeat for the balance of surnames on your list to look for commonalities, including locations on the public project pages.

Locations

Some of the vendor match files include location information. Each person on your match list will have the opportunity at the vendor where they tested to include location information in a variety of ways, either for their ancestors or themselves.

Where possible, it’s easiest to sort or scan the download file for this type of information.

Ancestry does not provide or facilitate a match list, but you can still create your own for your closest 20 or 30 matches in a spreadsheet.

MyHeritage provides common surname and ancestral location information for every match. How cool is that!

Y DNA, Mitochondrial DNA, and Endogamy

Haplogroups for both Y and mitochondrial DNA can indicate and sometimes confirm endogamy. In other cases, the haplogroup won’t help, but the matches and their location information just might.

FamilyTreeDNA is the only vendor that provides Y DNA and mitochondrial DNA tests that include highly granular haplogroups along with matches and additional tools.

23andMe provides high-level haplogroups which may or may not be adequate to pinpoint a haplogroup that indicates endogamy.

Of course, only males carry Y DNA that tracks to the direct paternal (surname) line, but everyone carries their mother’s mitochondrial DNA that represents their mother’s mother’s mother’s, or direct matrilineal line.

Some haplogroups are known to be closely associated with particular ethnicities or populations, like Native Americans, Pacific Islanders, and some Jewish people.

Haplogroups reach back in time before genealogy and can give us a sense of community that’s not available by either looking in the mirror or through traditional records.

This Native American man is a member of high-level haplogroup Q-M242. However, some men who carry this haplogroup are not Native, but are of European or Middle Eastern origin.

I entered the haplogroup in the FamilyTreeDNA Discover tool, which I wrote about, here.

Checking the information about this haplogroup reveals that their common ancestor descended from an Asian man about 30,000 years ago.

The migration path in the Americans explains why this person would have an endogamous heritage.

Our tester would receive a much more refined haplogroup if he upgraded to the Big Y test at FamilyTreeDNA, which would remove all doubt.

However, even without additional testing, information about his matches at FamilyTreeDNA may be very illuminating.

The Q-M242 Native man’s Y DNA matches men with more granular haplogroups, shown above, at left. On the Haplogroup Origins report, you can see that these people have all selected the “US (Native American)” country option.

Another useful tool would be to check the public Y haplotree, here, and the public mitochondrial tree here, for self-reported ancestor location information for a specific haplogroup.

Here’s an example of mitochondrial haplogroup A2 and a few subclades on the public mitochondrial tree. You can see that the haplogroup is found in Mexico, the US (Native,) Canada, and many additional Caribbean, South, and Central American countries.

Of course, Y DNA and mitochondrial DNA (mtDNA) tell a laser-focused story of one specific line, each. The great news, if you’re seeking information about your mother or father, the Y is your father’s direct paternal (surname) line, and mitochondrial is your mother’s direct matrilineal line.

Y and mitochondrial DNA results combined with ethnicity, autosomal matching, and the wide range of other tools that open doors, you will be able to reveal a great deal of information about whether you have endogamous heritage or not – and if so, from where.

I’ve provided a resource for stepping through and interpreting your Y DNA results, here, and mitochondrial DNA, here.

Discover for Y DNA Only

If you’re a female, you may feel left out of Y DNA testing and what it can tell you about your heritage. However, there’s a back door.

You can utilize the Y DNA haplogroups of your closest autosomal matches at both FamilyTreeDNA and 23andMe to reveal information

Haplogroup information is available in the download files for both vendors, in addition to the Family Finder table view, below, at FamilyTreeDNA, or on your individual matches profile cards at both 23andMe and FamilyTreeDNA.

You can enter any Y DNA haplogroup in the FamilyTreeDNA Discover tool, here.

You’ll be treated to:

  • Your Haplogroup Story – how many testers have this haplogroup (so far), where the haplogroup is from, and the haplogroup’s age. In this case, the haplogroup was born in the Netherlands about 250 years ago, give or take 200 years. I know that it was 1806 or earlier based on the common ancestor of the men who tested.
  • Country Frequency – heat map of where the haplogroup is found in the world.
  • Notable Connections – famous and infamous (this haplogroup’s closest notable person is Leo Tolstoy).
  • Migration Map – migration path out of Africa and through the rest of the world.
  • Ancient Connections – ancient burials. His closest ancient match is from about 1000 years ago in Ukraine. Their shared ancestor lived about 2000 years ago.
  • Suggested Projects – based on the surname, projects that other matches have joined, and haplogroups.
  • Scientific Details – age estimates, confidence intervals, graphs, and the mutations that define this haplogroup.

I wrote about the Discover tool in the article, FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages.

Endogamy Tools Summary Tables

Endogamy is a tough nut sometimes, especially if you’re starting from scratch. In order to make this topic a bit easier and to create a reference tool for you, I’ve created three summary tables.

  • Various endogamy-related tools available at each vendor which will or may assist with evaluating endogamy
  • Tools and their ability to detect endogamy in different groups
  • Tools best suited to assist people seeking information about unknown parents or grandparents

Summary of Endogamy Tools by Vendor

Please note that GEDMatch is not a DNA testing vendor, but they accept uploads and do have some tools that the testing vendors do not.

 Tool 23andMe Ancestry FamilyTreeDNA MyHeritage GEDMatch
Ethnicity Yes Yes Yes Yes Use the vendors
Ethnicity Painting Yes + segments Yes, limited Yes + segments Yes
Ethnicity Phasing Yes Partial Yes No
DNA Communities No Yes No No
Genetic Groups No No No Yes
Family Matching aka Bucketing No No Yes No
Chromosome Browser Yes No Yes Yes Yes
AutoClusters Through Genetic Affairs No Through Genetic Affairs Yes, included Yes, with subscription
Match List Download Yes, restricted # of matches No Yes Yes Yes
Projects No No Yes No
Y DNA High-level haplogroup only No Yes, full haplogroup with Big Y, matching, tools, Discover No
Mitochondrial DNA High-level haplogroup only No Yes, full haplogroup with mtFull, matching, tools No
Public Y Tree No No Yes No
Public Mito Tree No No Yes No
Discover Y DNA – public No No Yes No
ROH No No No No Yes

Summary of Endogamous Populations Identified by Each Tool

The following chart provides a guideline for which tools are useful for the following types of endogamous groups. Bolded tools require that both parents be descended from the same endogamous group, but several other tools give more definitive results with higher amounts of endogamy.

Y and mitochondrial DNA testing are not affected by admixture, autosomal DNA or anything from the “other” parent.

Tool Jewish Acadian Anabaptist Native Other/General
Ethnicity Yes No No Yes Pacific Islander
Ethnicity Painting Yes No No Yes Pacific Islander
Ethnicity Phasing Yes, if different No No Yes, if different Pacific Islander, if different
DNA Communities Yes Possibly Possibly Yes Pacific Islander
Genetic Groups Yes Possibly Possibly Yes Pacific Islander
Family Matching aka Bucketing Yes Yes Possibly Yes Pacific Islander
Chromosome Browser Possibly Possibly Yes, once segments or ancestors identified Possibly Pacific Islander, possibly
Total Matches Yes, compared to non-endogamous No No No No, unknown
AutoClusters Yes Yes Uncertain, probably Yes Pacific Islander
Estimated Relationships High Not always Sometimes No Sometimes Uncertain, probably
Relationship Range High Possibly, sometimes Possibly Possibly Possibly Pacific Islander, possibly
More, Smaller Segments Yes Yes Probably Yes Pacific Islander, probably
Parents Related Some but minimal Possibly Uncertain Probably similar to Jewish Uncertain, Possibly
Surnames Probably Probably Probably Not Possibly Possibly
Locations Possibly Probably Probably Not Probably Probably Pacific Islander
Projects Probably Probably Possibly Possibly Probably Pacific Islander
Y DNA Yes, often Yes, often No Yes Pacific Islander
Mitochondrial DNA Yes, often Sometimes No Yes Pacific Islander
Y public tree Probably not alone No No Yes Pacific Islander
MtDNA public tree Probably not No No Yes Pacific Islander
Y DNA Discover Yes Possibly Probably not, maybe projects Yes Pacific Islander

Summary of Endogamy Tools to Assist People Seeking Unknown Parents and Grandparents

This table provides a summary of when each of the various tools can be useful to:

  • People seeking unknown close relatives
  • People who already know who their close relatives are, but are seeking additional information or clues about their genealogy

I considered rating these on a 1 to 10 scale, but the relative usefulness of these tools is dependent on many factors, so different tools will be more or less useful to different people.

For example, ethnicity is very useful if someone is admixed from different populations, or even 100% of a specific endogamous population. It’s less useful if the tester is 100% European, regardless of whether they are seeking close relatives or not. Conversely, even “vanilla” ethnicity can be used to rule out majority or recent admixture with many populations.

Tools Unknown Close Relative Seekers Known Close Relatives – Enhance Genealogy
Ethnicity Yes, to identify or rule out populations Yes
Ethnicity Painting Yes, possibly, depending on population Yes, possibly, depending on population
Ethnicity Phasing Yes, possibly, depending on population Yes, possibly, depending on population
DNA Communities Yes, possibly, depending on population Yes, possibly, depending on population
Genetic Groups Possibly, depending on population Possibly, depending on population
Family Matching aka Bucketing Not if parents are entirely unknown, but yes if one parent is known Yes
Chromosome Browser Unlikely Yes
AutoClusters Yes Yes, especially at MyHeritage if Jewish
Estimated Relationships High Not No
Relationship Range High Not reliably No
More, Smaller Segments Unlikely Unlikely other than confirmation
Match List Download Yes Yes
Surnames Yes Yes
Locations Yes Yes
Projects Yes Yes
Y DNA Yes, males only, direct paternal line, identifies surname lineage Yes, males only, direct paternal line, identifies and correctly places surname lineage
Mitochondrial DNA Yes, both sexes, direct matrilineal line only Yes, both sexes, direct matrilineal line only
Public Y Tree Yes for locations Yes for locations
Public Mito Tree Yes for locations Yes for locations
Discover Y DNA Yes, for heritage information Yes, for heritage information
Parents Related – ROH Possibly Less useful

Acknowledgments

A HUGE thank you to several people who contributed images and information in order to provide accurate and expanded information on the topic of endogamy. Many did not want to be mentioned by name, but you know who you are!!!

If you have information to add, please post in the comments.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

How to Download Your DNA Match Lists & Segment Files

If you’ve taken an autosomal DNA test and you’re working to determine how your matches are related to you, meaning which ancestors you share, you’ll want to download your DNA match list.

There are three types of files that you can potentially download from each of the major autosomal DNA testing vendors.

Raw DNA file – If you want to upload your DNA file to another vendor for matching at their site (MyHeritage and FamilyTreeDNA,) you’ll need to download your raw data file from the vendor where you tested. I provided step-by-step instructions for this process at each of the vendors, here.

DNA Segment File – This file contains the segment information with each of your matches, including the start and end locations of your matching segment(s), the total number of matching (shared) centiMorgans (cM) above the vendor’s matching threshold, and sometimes the longest segment.

If you want to sort a spreadsheet to look for all of your matches on specific areas of chromosomes, this is the best way to achieve that goal. I use this information at DNAPainter when painting the segments of matches with whom I can identify a common ancestor.

You may be able to download filtered lists or individual match data as well, as opposed to an entire match list spreadsheet, but the methodology varies at each vendor.

Ancestry does not provide segment information at all. 23and Me combines this information with the next file.

Match List – This file will contain your list of matches along with other information about the matches which you will find genealogically helpful. I find using this file easier than viewing each match separately at the vendors when trying to obtain an overview or when searching for a particular surname in either my match list or their ancestral surnames.

I can also sort by haplogroup, for example, which can sometimes help immensely if that information is available.

Ancestry does not facilitate or allow downloading your match list. 23andMe combines this information with your matching DNA segments in one file.

Here’s a handy-dandy summary by testing vendor.

Vendor Raw DNA File DNA Segment File Match List
23andMe Yes, instructions here Yes, instructions in this article Yes, instructions in this article
FamilyTreeDNA Yes, instructions here Yes, instructions in this article Yes, instructions in this article
MyHeritage Yes, instructions here Yes, instructions in this article Yes, instructions in this article
Ancestry Yes, instructions here No, does not provide No, does not provide

I’ve written step-by-step instructions for how to download your Match List and DNA Segment file(s) at each vendor.

23andMe

Please note that 23and Me is the only vendor to limit your matches, which means you will only receive a file containing:

  • 1500 matches if you tested before the V5 chip, so before August 9, 2017, and have not established communications with matches that would have rolled off of your list otherwise. (I have 1805 matches, so have established contact with 305 that would otherwise have rolled off the end.)
  • 1500 if you tested on the V5 chip, so beginning August 9, 2017, but did not establish communications OR did not purchase the health option, OR did not purchase the yearly membership. If you established communications, those matches won’t roll off, and if you purchase the membership, the match threshold is raised. You may still need to establish contact to keep people from rolling off the larger list as well.
  • 5000-ish (23andMe doesn’t say exactly) if you tested on the V5 chip for BOTH ancestry and healthy AND purchased the yearly membership.

You will only receive match information for people who are listed on your restricted match list, not people who have rolled off as closer matches arrived. Therefore, I encourage you to retain your old match lists because some of your matches will be gone each time you download.

23andMe combines your match list with your segment file.

Sign on and select DNA Relatives on the toolbar.

Next, select “See all relatives.”

Scroll to the very bottom and click on Request DNA Relatives Data Download.

Your file will be prepared, and you’ll receive an email when the file is ready to be downloaded. Mine only took a minute or two, and I simply waited on my 23andMe page until the message appeared.

Save and open the downloaded file, and you’ll see a variety of information about each of your matches, in closest-match-first order, including:

  • Match name
  • Chromosome segment match information, including start and end locations, genetic distance (centiMorgans cMs,) and SNPs
  • Maternal and paternal sides if your parent or parents have tested
  • Number of matching segments
  • Relationship information
  • Birth year
  • Percent shared DNA
  • Haplogroups
  • Notes you’ve made
  • Family surnames
  • Family locations
  • 4 Grandparents’ birth country
  • Family Tree URL, external to 23andMe, if provided by tester

FamilyTreeDNA

At FamilyTreeDNA, your match list and segment information are contained in two separate files.

Sign on and click on Family Finder Matches under Autosomal DNA Results and Tools.

You’ll see your matches. At the top of your match list, on the right side, click on “Export CSV.”

You can select “All Matches” or “Filtered Matches.”

If you haven’t selected a filter, you won’t be able to make that selection. Generally, you want the entire match list.

Your match list will be prepared and downloaded.

You’ll find:

  • Match name
  • Relationship information
  • Shared DNA total
  • Longest segment
  • Linked relationship if you have linked that person to their profile card in your tree
  • Ancestral surnames
  • Haplogroups if tested
  • Notes you’ve made
  • Bucketing – Paternal, maternal, both, none
  • X-Match amount

Note – If you’re a male, valid X matches (meaning matches that are not identical by chance,) will always be on your maternal side because you received your Y chromosome from your father instead of a copy of his X. I wrote about X matching, here.

If your match is a male, an X match will always be through his mother’s line.

Segment information is available in a separate download on the chromosome browser page.

Under Autosomal DNA Results and Tools, click on the Chromosome Browser.

You’ll be able to select people to compare in the chromosome browser, but to download all of your matching segments to all of your matches, click on “Download All Segments.”

If you select people to compare your relationship, and then click on “Download Segments,” you’ll only be downloading the segments for the people you are comparing.

To download all of your segments, be sure the “All” is showing in the link and download before selecting anyone for comparison.

MyHeritage

MyHeritage also provides two separate files for matches and chromosome segment information.

Select DNA matches, then the 3-dot menu, then “Export DNA Matches.”

If you also want your individual segment information for your matches, also order the second file on that menu, “Export shared DNA segment info for shared DNA matches.”.

You’ll see a message that your report is being prepared and will be sent to the email address on file.

If your file doesn’t appear in your email box, check your spam folder.

Your match list provides:

  • Match name
  • Age
  • Country
  • Contact link
  • DNA managed by (if not the tester)
  • Contact link for DNA manager
  • Relationship information
  • Total cM
  • Percent of matching DNA
  • Number of matching segments
  • Largest segment
  • Has tree and tree manager
  • Number of people in their tree
  • Tree link and link to contact tree manager
  • Number of SmartMatches
  • Shared ancestral surnames
  • All ancestral surnames
  • Notes you’ve made
  • Has Theory of Family Relativity

Now that you have these files, what do you do with them?

Evaluating

Is there anything that stands out as remarkable, perhaps that you didn’t know or notice before? Patterns that might be informative?

I had a huge brick wall on my mother’s side that has since fallen, but retrospectively, had I reviewed these lists when that wall was still standing firm, there was a huge hint just waiting for me.

My mother has a very unexpected Acadian line through her great-grandfather, Anthony Lore, so 12.5% of her heritage.

On my match list, I see a large number of French surnames, but I didn’t know of any French ancestors on either side of my tree. Many surnames repeat, such as LeBlanc, d’Entremont (which is really unusual), Landry, and deForest. Why were these people on my match list? This is definitely smoke, and there must be fire someplace, but where?

Looking at the locations associated with these matches’ ancestors would have provided additional clues.

However, simply googling my great-grandfather’s surname in combination with those French surnames I listed above produced these 3 top search results.

Yes, you guessed it. Anthony turned out to be “Antoine” and Lore is spelled in a variety of ways, including Lord. His family is Acadian.

That’s Anthony Lore, which is how he was listed on the death certificate of his son, in the software on my computer, above, and here is Antoine Lore at WikiTree, below.

As you can see, that brick wall falling opened a whole new group of ancestors, and along with it, my appreciation of endogamy😊

Match lists facilitate viewing the big picture and can be a very useful tool for people seeking unknowns or trying to group people together in a variety of ways.

Do you have any brick walls that need to fall?

How can or do you utilize your match lists?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA-eXplained Celebrates Tenth Anniversary!

This blog, DNA-eXplained, is celebrating its 10th anniversary today. How time flies!

I never thought for a minute about a 10th anniversary when I launched that first article.

I started blogging to teach people and literally “explain” about genetic genealogy – which is why I selected the name DNA-eXplained. Over time, it has also been nicknamed DNAeXplain, which is fine.

I hoped to be able to answer questions once, with graphics and examples, instead of over and over again off-the-cuff. I needed someplace where people could be referred for answers. Blogging seemed like the perfect medium for achieving exactly that.

Blogs allow writers to publish content attractively and react to changes and announcements quickly.

Blogs encourage readers to subscribe for email delivery or use RSS reader aggregation and can publish to social media.

Content can be located easily using browser searches.

Everything, all content, is indexed and searchable by keyword or phrase.

Blogging certainly seemed like the right solution. Still, I was hesitant.

I vividly remember working at my desk that day, a different desk in a different location, and anguishing before pressing the “publish” button that first time. Was I really, REALLY sure? I had the sense that I was sitting in one of those life-defining fork-in-the-road moments and once embarked upon, there would be no turning back.

I’m so glad I closed my eyes and pushed that button!

I knew we were going to be in for an incredible journey. Of course, I had no idea where that roller coaster ride was going, but we would be riding together, regardless. What a journey it has been!

A decade later, I’ve had the opportunity to meet and become friends with so many of you, both online and in person. I’ve met countless cousins I never knew I had, thanks to various blog articles, including the 52 Ancestors series which has turned out to be 365 and counting.

I am incredibly grateful for this opportunity! I thought I was giving to others, yet I’ve been greatly enriched by this experience and all of you.

So much has changed in all of our lives.

Looking Back

Today, as I look back at that very short first article, I can’t help but think just how unbelievably far we’ve come.

There was one Y and mitochondrial DNA testing vendor in 2012, FamilyTreeDNA, and that’s still the case today.

There were three autosomal testing companies, 23andMe, FamilyTreeDNA, and Ancestry, in addition to the Genographic Project, which was sunset in 2019 after an amazing 15-year run. GEDmatch was two years old in 2012 and had been formed to fill the need for advanced autosomal matching tools. In 2016, MyHeritage joined the autosomal testing market. All of those companies have since been acquired.

In 2012, FamilyTreeDNA broke ground by accepting uploaded DNA files from other vendors. Autosomal DNA tests cost about $300 although prices were dropping. I don’t anticipate prices dropping much further now, because companies have to maintain a reasonable profit margin to stay in business.

In 2013, when DNA-eXplained celebrated its first anniversary, I had published 162 articles.

That first year was VERY busy with lots of innovation occurring in the industry. You can read my end-of-year article, 2012 Top 10 Genetic Genealogy Happenings if you’d like to reminisce a bit. For comparison, here’s my Genetic Genealogy at 20 Years summary.

The World is Our Oyster

In the past decade, I’ve penned articles in a wide variety of locations, in several countries, on 5 continents.

I’ve written in my offices, of course, but also in cars, on buses, trains, and planes. I’ve crafted several articles on ships while cruising. In fact, writing is one of my favorite “sea-day” things to do, often sitting on deck if it’s a nice day.

I’ve written in cemeteries, which shouldn’t surprise you, on the hood of my car, and cross-legged on the floor at innumerable conferences.

I’ve composed at picnic tables and in countless hotel lobbies, libraries, laboratories, restaurants, and coffee shops. And, in at least 3 castles.

I’ve written while on archaeology digs, balancing my laptop on my knees while sitting on an inverted bucket, trying to keep dirt, sand, and ever-present insects away.

I’ve even written in hospitals, both as a visitor and a patient. Yea, I might not have told you about that.

I’ve pretty much taken you with me everyplace I’ve gone for the past decade. And we are no place near finished!

Today

This article is number 1531 which means I’ve published an article every 2.3 days for a decade. Truthfully, I’m stunned. I had no idea that I have been that prolific. I never have writer’s block. In fact, I have the opposite problem. So many wonderful topics to write about and never enough time.

A huge, HUGE thank you to all of my readers. Writers don’t write if people don’t read!

DNA-eXplained has received millions and millions of views and is very popular, thanks to all of you.

There have been more than 48,000 comments, 4,800 a year or about 13 each day, and yes, I read every single one before approving it for publication.

Akismet, my spam blocker only reports for 45 months, but in that time alone, there have been about 100,000 attempted SPAM comments. That equates to about 75 each day and THANK GOODNESS I don’t have to deal with those.

WordPress doesn’t count “pages,” as such, but if my articles average 10 pages each, and each page averages 500 words, then we’re looking at someplace between 7 and 8 million words. That’s 13 times the size of War and Peace😊. Not only do I write each article, but I proofread it several times too.

Peering Into the Future

Genetic genealogy as a whole continues to produce the unexpected and solve mysteries.

Tools like triangulation in general, Family Matching at FamilyTreeDNA, genetic trees at 23andMe, Theories of Family Relativity at MyHeritage, and ThruLines at Ancestry have provided hints and tools to both suggest and confirm relationships and break through brick walls.

Ethnicity chromosome painting at both 23andMe and FamilyTreeDNA help unravel ancestral mysteries, especially for people with combinations of fundamentally different ancestries, as does Genetic Communities at Ancestry and Genetic Groups at MyHeritage.

Third-party tools that we love today weren’t even a twinkle in a developer’s eye in 2012. Products like DNAPainter, Genetic Affairs, and DNAGedcom pick up where the vendors leave off and are widely utilized by genealogists.

I hope that all of our vendors continue to invest in product development and provide the genetic genealogy community with new and innovative tools that assist us with breaking down those pesky brick walls.

Primarily, though, I hope you continue to enjoy your genealogy journey and make steady progress, with a rocket boost from genetic testing.

The vendors can provide wonderful tools, but it’s up to us to use them consistently, wringing out every possible drop. Don’t neglect paternal (male surname) Y DNA and matrilineal mitochondrial DNA testing for people who carry those important lines for your ancestors. All 4 kinds of DNA have a very specific and unique genealogical use.

I encourage you to test every relative you can and check their and your results often. New people test every single day. You never know where that critical piece of information will come from, or when that essential puzzle piece will drop into place.

Be sure to upload to both FamilyTreeDNA and MyHeritage (plus GEDMatch) so you are in the database of all the vendors. (Instructions here.) Fate favors the prepared.

Thank You!!

Thank you from the bottom of my heart for supporting me by reading and sharing my articles with your friends, organizations, and family members, by purchasing through the affiliate links, by buying my book, and by graciously sharing your own experiences.

Thank you for your suggestions and questions which plant the seeds of new articles and improvements.

I hope you’ve made progress with your research, unraveled some thorny knots, and that you’ve enjoyed this decade as much as I have. Tell me in the comments what you enjoyed the most or found most useful?

Here’s to another wonderful 10 years together!

___________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

 

Find a Grave (Owned by Ancestry), Seriously, JUST STOP Incentivizing the Creation of Memorials of the Recently Deceased

I’ve been horrified, as has any sentient being, about the massacre in Uvalde, Texas.

I’ve also been increasingly furious these past few days because the practice of awarding “points” by Find a Grave, owned by Ancestry, to people who create memorials is making an already horrific situation much worse for traumatized families whose members perished.

THESE CHILDREN AREN’T EVEN BURIED, yet a non-family member rushed to create memorials for them, including photos and other family details lifted from news articles and other sources! We won’t even mention the copyright violations that Ancestry/Find a Grave consistently chooses to ignore.

This vampiristic death-gathering and memorial-creating behavior isn’t limited to the Uvalde massacre, it’s Buffalo and other victims of mass killings in addition to people who die of natural causes every day.

The same thing happened with one of my immediate family members a few years ago, and I still remember the shock of discovering her via a “hint” in the midst of grief.

Before I continue, I’d encourage you to read Judy Russell’s blog article, Ancestry, this one’s on you, but come back here when you’re done. Judy is on FIRE about this one, and with good reason.

Ancestry’s Failed Policy

Ancestry’s supposed policy of showing limited information about a memorial unless the creator is an immediate family member obviously had a major fail given that Judy was able to take screenshots of the memorial of this recently murdered child.

After a rather loud and persistent outcry from the community, back in January Find a Grave decided to redact some information for 3 months after a death. Yet, the memorial remains in place for the family to find. Ancestry does NOT prevent the creation of these memorials for bounty points.

This situation should never have happened in the first place and has been ongoing with incredible foot-dragging by Ancestry FOR YEARS! It’s just in our faces again with the Uvalde and other recent high-profile mass murders.

Even with the photo and some information hidden, for now, the Uvalde victims’ memorials are still listed. The one above is the same child’s memorial as in Judy’s article.

Even after eventually transferring the memorial to a family member, the original creator is always still listed. Unfortunately, this practice of awarding points and forever listing the “creator” by Ancestry encourages and incentivizes “trophy hunting.”

Here’s an example from one of my immediate family members.

You can then click on the name of the creator or the “maintainer,” which is me in this case, and see their stats. Here’s mine.

Notice that in Judy’s original screenshot, you could see the Find A Grave identity of the person who created that child’s memorial. However, Find a Grave has chosen to “protect” that person in the redacted version by not showing the creator’s identity. So we don’t know who collected that bounty point.

This is not a new issue. Ancestry/Find a Grave has not and is not acting expediently to resolve the situation. In fact, the “situation” doesn’t have to exist at all.

Take a look at this complaint board about Find a Grave. These issues pepper the genealogical community on social media, day after day after day.

Why Is This Happening?

This occurs because Ancestry displays the number of memorials created by volunteers. Some people spend their time finding obituaries and death announcements and creating memorials for people as soon as they die in order to rack up points, like a game.

The problem is that finding your loved one’s memorial, often with incorrect information, created by a stranger is unexpectedly jarring, at best. Especially to discover that your family member was only a trophy harvest whose memorial was created hours after they died. Then, having to ask (sometimes beg an unresponsive person) for the transfer of their memorial to you, only to have the creator’s name forever associated with the memorial adds insult to injury.

I’m not referring here to a volunteer who lives locally and “takes care” of local cemeteries, like the person who created memorials for my parents months after they were buried, not hours after they died. Most of those people are respectful, kind, and pleasant to deal with. They provide their services out of the kindness of their heart AFTER giving the family a respectable amount of time. Those ARE NOT the people I’m referring to.

Those lovely local volunteers aren’t the mega-harvester people searching online funeral home listings morning and night for new points to score. That is NOT a service to anyone except themselves, and oh yea, Find a Grave/Ancestry who can then serve up hints to Ancestry subscribers and garner page views.

Ancestry clearly wants to keep those harvesters engaged but to the detriment of the actual genealogists who subscribe to Ancestry’s services. That’s a mighty high price leveraged on the backs of their customers. And let’s face it, sooner or later, everyone’s parents, siblings, or (God forbid), children pass away. Ancestry is rewarding people to further torture the grieving. Every grieving person needs a respectable amount of time and space. Ancestry, of all companies, should be sensitive to this.

What Needs to Be Done?

I’m not privy to any inside information, but I believe that originally Find a Grave, before it was purchased by Ancestry, began listing memorials and other stats to encourage volunteers to document and photograph cemeteries to assist genealogists. That was the original purpose.

However, that purpose has morphed into something very different. Ancestry has the agency, and responsibility to put the brakes on.

Ancestry needs to:

  1. Stop awarding points like trophies, at least publicly.
  2. Remove the name of the original creator when the memorial is transferred to a family member.
  3. Prevent anyone except close family members from creating memorials for minimally 90 days and I’d suggest a year.

I wasn’t done with my mother’s estate for at least a year and wasn’t ready to deal with seeing her photo and obituary online until then.

And if that was my child, OMG.

Who in their right mind would think that entering those massacred children into Find a Grave immediately was acceptable by any criteria? Any standards of decency? And why would Find a Grave tolerate this for even a minute? Death is traumatic for family members under the “best” of circumstances and it only goes downhill from there.

And this is clearly the worse of circumstances.

While the individuals who created those memorials before the bodies were even cold were insensitive, and that’s the best spin I can put on it, Ancestry is the only one who can, should, and has the responsibility to stop this. And they have, so far, been unwilling.

It’s time for every single one of us to speak up. Bloggers and influences as well as the rest of Ancestry’s customers. We can all be influencers.

Use Your Outside Voice

Ok, bloggers and social media people – use your voices. We have even more influence cumulatively, together, as a chorus, than individually.

I do need to provide a word of warning though, especially to bloggers and other professionals.

Ancestry is punitive if you don’t always write positively about them. They will pull your affiliate account if you have one. They will exclude you from influencer calls, meetings, and related events at conferences. I’m guessing Judy and I will be enjoying snacks in the restaurant while those meetings are taking place. I encourage you to join us. It’s worth it to do the right thing.

You don’t need to be a blogger to have an influence. Everyone has a voice. Here are several things everyone can do.

Ancestry’s CEO

Deborah Liu was named Ancestry’s CEO in February 2021. She can fix this with one call or email.

This would be a good Twitter thread to reply to:

Based on Deborah’s social media photos, she has children. Ask her how she would feel if her children were massacred, and some unknown trophy hunter created their memorial as soon as their name was available. Would she feel violated? Crushed? Robbed of the opportunity to provide that caring act for her precious family member when she was ready?

God forbid this would ever happen to Deborah or her family, but if it did, this problem would be remedied in about 30 seconds.

Deborah may be “mourning with them,” but she is increasing the grief of countless people by failing to remediate Ancestry’s company policy. Furthermore, she, assuredly, is not following the Golden Rule by “doing unto others.” As if just doing the “right thing” isn’t enough reason alone.

Here’s the Biblical reference, if she needs it:

Matthew 7:12 (International Version), “So in everything, do to others what you would have them do to you, for this sums up the Law and the Prophets.”

Perhaps Deborah didn’t know before, but let’s make absolutely positively sure she knows now!

Other Resources

Here’s a list of other places you can place comments and make yourself heard!

Let’s be that squeaky wheel and get results. Be respectful, but be sure to remind Ancestry that you are a PAYING customer when you call.

Ancestry, it’s way past time to step up.

Ancestry’s SideView™ – Dividing Your Ethnicity in Two

Recently, Ancestry introduced a new view of your ethnicity called SideView™. In a nutshell, AncestryDNA uses your DNA matches to attempt to divide your ethnicity into regions inherited from Parent 1 and Parent 2.

Based on your matches and the common DNA they share with you, Ancestry strives to divide your ethnicity into parental “sides,” although Ancestry can’t tell you which side is maternal and which side is paternal.

Even though Ancestry can’t tell you which side is which parent, there are tricks that might help you do just that.

Ethnicity

Before we look at SideView, let’s have a quick review of ethnicity estimates and how they do and don’t work.

Every vendor creates their own proprietary mathematical algorithm to determine their customers’ ethnicity or population percentages based on their own customer database and other resources.

“Country” boundaries change and people migrate. The article, Making Sense of Ethnicity Updates may be helpful.

If you haven’t done so, create a spreadsheet or chart identifying the amount of DNA you would inherit from each ancestor if exactly 50% of each ancestor’s DNA was passed down in each generation. Your spreadsheet may/will help you identify which “side” belongs to which parent. I provided instructions for calculating your expected ethnicity percentages based on your genealogy in the article, Concepts – Calculating Ethnicity Percentages.

My Genealogy

I’ve updated my genealogy totals slightly since that 2017 article because I’ve been able to push some of those lines back in time, either genealogically, via Big-Y or full sequence mitochondrial DNA testing and matching, or a combination of both.

Here’s an updated chart. I’ve included the last two ethnicity percentage results from each vendor except MyHeritage because their ethnicity results have remained the same for several years although they released Genetic Groups to complement ethnicity in 2020.

I’ve clustered geographies in regions because the vendors measure locations differently. Locations sometimes change within the same vendor with different releases.

The earlier “Unknown” genealogy category is gone now because I’ve been able to assign those ancestors to a geographic region if not an exact “country.”

The Genealogy Percent column, with a header and totals in yellow, details the geographic source for each of my 64 great-great-great-great-grandparents who each contributed approximately 1.5625% of my DNA. Of course, we know that DNA isn’t divided exactly in half in each generation, and I possibly inherited none of the DNA of some of those people and more than 1.5625% from others. Regardless, this is the best measuring stick of what I should expect and a way to determine if my ethnicity results are in the right ballpark.

The yellow cells in the vendor column totals reflect the “best fit” for my known genealogy percentages when compared against the expected percentages. In the Native grouping, vendors receive a yellow cell for identifying that heritage.

OK, now let’s take a look at Ancestry’s new SideView.

Finding SideView

At Ancestry, your ethnicity estimate, as well as your new SideView results, are found in the DNA Story section of your DNA Results Summary tab.

Ancestry does update your ethnicity estimate from time to time, so yours may have changed since you last viewed your results.

Ideally, if exactly half of the DNA of each ancestor was passed down in each generation, then I would have the amount of DNA shown in my personal chart, assuming my genealogy is accurate with no adoptions or unexpected parent events.

Also ideally, I would show exactly half of each of my parent’s ethnicity.

But that’s not how it works. While we do inherit half of our DNA from each parent, they can randomly give us all of a segment of DNA from one ancestor and not any of a segment of DNA from a different ancestor.

I wrote about how DNA is passed to children in the article, Ancestral DNA Percentages – How Much of Them is in You?. This explains how and why you might not inherit the exact amount of a specific ethnicity you would expect. Of course, that combined with each vendor’s different algorithms may produce results that surprise you, although the discrepancy should be relatively small.

Keep in mind how ethnicity inheritance works as you view your ethnicity results, including SideView.

SideView Results

Here are my Sideview results.

Remember, we don’t know which parent is “1” and which is “2.” Click on “How we identify this” to learn about how SideView works.

Here’s a more detailed description along with some nice graphics.

Analyzing My Results

SideView appears right beside your ethnicity map, so be sure to consult that map. Note that regions reflect populations, not necessarily countries as boundaries are drawn today.

The first thing I noticed is that my significant Dutch heritage, along with my French is missing in my ethnicity results as well as on the map.

How is this possible?

The arrows point to the Netherlands and France. These are important pieces of my ancestry on my Mother’s side. Mom was 25% Dutch so I should be about 12.5%. My maternal side genealogical breakdown is shown in the chart below.

Mom % I Should Inherit From Mom
German 50 25
Dutch 25 12.5
French/Acadian 12.5 6.25
England 12.5 6.25
Native ~2 in the Acadian line ~1

Of course, my Native American is also missing at Ancestry, even though the other three major vendors identify those segments. The two vendors who paint ethnicity by segment, 23andMe and FamilyTreeDNA report Native on the same segment on my chromosome 1, so it’s unlikely that both of those vendors are in error in exactly the same way.

While Native is critically important to my genealogy, it is a small percentage. Missing a small percentage, while frustrating, is more understandable than missing a larger percentage.

My Dutch ancestors at 12.5% and French at 6.25% are not trivial and together comprise more than one-third of my mother’s heritage and more than one-sixth of mine. And yes, in case you’re wondering, I do match many other people who descend from these same ancestors so it’s not a mistaken or misidentified ancestor issue.

My father was kind of a colonial mutt. Scottish, Irish, and English with a small smattering of African and Native along with 1.5% Scandinavian/Nordic. The African in the later versions tends to show as Middle Eastern or North African, or doesn’t show at all, but that segment with a small Native one cluster together on the same chromosome. I also match other people who are Native/African on those segments as well.

However, given that neither of those ethnicities appear at Ancestry, we don’t have those to work with, nor do we have specific segment information.

Let’s work with what we do have.

View Breakdown

I wish Ancestry did not say “Now, you can see which ethnicities you inherited from each parent,” because while that’s the goal, it isn’t always the case. Lots of people will simply accept that statement at face value.

Click on View breakdown.

You’ll see your results broken into two sides with the reported regions noted at the bottom. All regions are showing in the circle by default.

To see how this works, click on any single or combination of regions.

Determining Sides

What can we do to determine which side is which parent?

Let’s start with ethnicities or regions which should be unique to one parent and not the other.

I clicked on both Norway and Sweden/Denmark since I know that one couple on my father’s side is Scandinavian/Nordic, but I discovered that Ancestry assigned pieces of those regions to both Parent 1 and Parent 2.

I’m positive that my mother did not have any ancestors in the past 6 generations and significantly further back that were Scandinavian or Nordic, BUT, Germany and the Netherlands both border those regions. People traveled, wars happened and populations as a whole mixed, so while I’m confident of my genealogy, this actual ethnicity may be accurate even though it does not reflect genealogical locations. It may well reflect populations and admixture.

What I am sure of is that I can’t use these particular regions to identify which side is maternal or paternal.

Detailed Comparison

Let’s look at the detailed comparison you’ll see by scrolling down.

Can I identify any of these regions as solely connected with only one parent?

Yes, I can. Ancestry has assigned Germanic Europe to only one parent, and Mom is 50% German, so Parent 1 has to be Mother. I should expect to be assigned roughly half of what my mother has – so about 25% Germanic.

Mother has no Irish, so Ireland has to be Dad, which also correlates to known genealogy.

However, the rest of the ethnicity results are questionable, including Mom’s missing Dutch and her missing England and Northwest Europe which should total in the neighborhood of 37.5%. I would be expected to inherit about 18.75% of that from her. Where is it?

No Segments

I very much wish Ancestry provided segment information.

Using segment matching information from the other three vendors, including ethnicity segment information from both 23andMe and FamilyTreeDNA, I’ve painted my segments at DNAPainter, so I know which ancestors or ancestral lines contributed which DNA segments.

If Ancestry, provided users with segment information, I could determine which ethnicities they have attributed to which ancestors and maybe unravel why.

Another Possible Clue

There is one additional way I might be able to figure out where Ancestry attributed Mom’s Dutch and French heritage.

Given that I know which of my closest matches are maternal and paternal, I can utilize shared matching plus shared ethnicity to look for similarities. Just click on the match with someone, then on the Ethnicity tab.

The closest match on my mother’s side is my first cousin who also descends from my maternal grandparents. My cousin’s relevant parent should have roughly the same amount of the same ethnicities as my Mom since they were siblings, taking into account that not all of our ancestors’ DNA is passed in exactly half and siblings, unless they are identical twins, don’t inherit all of the same DNA from their parents. Of course, that means my first cousin should share roughly the same amount of DNA/ethnicity from our common grandparents as I do.

My cousin’s other parent is European with what appears to be a significant number of German ancestors, so we need to take that into account when viewing my cousin’s shared ethnicity comparison with me, above.

I can see that my cousin has 4% French and 1% Native, but that percentage might have been contributed by their other parent, especially since there is a French surname in that line.

If my cousin’s other parent had been African or Asian or an ethnicity that is different from the ethnicity of our shared line, it would be easier to compare our results meaningfully.

In this case, the shared match ethnicity comparison did not help, but your mileage may vary based on your unique circumstances.

Assign the Parent

If you are fortunate enough to be able to determine which parent is which, you can assign Parent 1 and 2 as maternal or paternal at Ancestry by clicking on the “Edit parents” icon at top right on the Detailed Comparison page.

I selected side 1 as Maternal based on the 35% Germanic Europe which is very clearly my mother’s side.

What I wish we could do, but we can’t, is to explain why we disagree with some portion of an assigned ethnicity. Ancestry does have my tree and I do have Thrulines from these ancestors, so the information is available for comparison should Ancestry choose to utilize that resource.

You can undo your selections by selecting “Back” or click on “Sounds good.”

I initially clicked on “Sounds good,” even though that bothers me. I hope that I’m not confirming something that’s incorrect, given my Mother’s missing Dutch and French, and that I’m not going to make *something* worse in the future by baking in bad ingredients. I’m not comfortable confirming something that’s significantly wrong. On the other hand, Parent 1 is clearly my mother, so I’m conflicted and I really don’t know exactly what I’m confirming to Ancestry.

In other words, we don’t know what Ancestry is doing under the hood with this information, if anything, other than labeling your sides.

Ultimately, I clicked “Back”, at least for now, to leave my sides unassigned until there is some benefit to me to identify the parental sides and I know I’m not confirming something that shouldn’t be confirmed. In other words, I know which parent is which, but I do NOT want to confirm that these ethnicities are fundamentally accurately assigned, because they are not.

Does Testing Your Parents Make a Difference?

If you’re wondering if testing your parents makes a difference with SideView predictions, it does not.

Ancestry is NOT utilizing your parents’ DNA for SideView ethnicity division, even if your parent or parents have tested, which Ancestry confirms in their documentation.

If you’re wondering why Ancestry doesn’t use your parent’s DNA to improve your SideView results, remember that someone who matches you at the parent/child level can be either your parent or your child. Often trees are either absent or incorrect, so Ancestry cannot simply assume anything.

Benefits of SideView?

What do you think?

Is there a benefit to SideView or is it simply interesting window dressing?

Are your SideView results accurate?

Do you feel that Sideview is accurate enough to be genealogically useful?

Are you able to utilize Sideview for your genealogy? If so, how?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research