The Best of 2022

It’s that time of year where we look both backward and forward.

Thank you for your continued readership! Another year under our belts!

I always find it interesting to review the articles you found most interesting this past year.

In total, I published 97 articles in 2022, of which 56 were directly instructional about genetic genealogy. I say “directly instructional,” because, as you know, the 52 Ancestors series of articles are instructional too, but told through the lives of my ancestors. That leaves 41 articles that were either 52 Ancestors articles, or general in nature.

It has been quite a year.

2022 Highlights

In a way, writing these articles serves as a journal for the genetic genealogy community. I never realized that until I began scanning titles a year at a time.

Highlights of 2022 include:

Which articles were your favorites that were published in 2022, and why?

Your Favorites

Often, the topics I select for articles are directly related to your comments, questions and suggestions, especially if I haven’t covered the topic previously, or it needs to be featured again. Things change in this industry, often. That’s a good thing!

However, some articles become forever favorites. Current articles don’t have enough time to amass the number of views accumulated over years for articles published earlier, so recently published articles are often NOT found in the all-time favorites list.

Based on views, what are my readers’ favorites and what do they find most useful?

In the chart below, the 2022 ranking is not just the ranking of articles published in 2022, but the ranking of all articles based on 2022 views alone. Not surprisingly, six of the 15 favorite 2022 articles were published in 2022.

The All-Time Ranking is the ranking for those 2022 favorites IF they fell within the top 15 in the forever ranking, over the entire decade+ that this blog has existed.

Drum roll please!!!

Article Title Publication Date 2022 Ranking All-Time Ranking
Concepts – Calculating Ethnicity Percentages January 2017 1 2
Proving Native American Ancestry Using DNA December 2012 2 1
Ancestral DNA Percentages – How Much of Them in in You? June 2017 3 5
AutoKinship at GEDmatch by Genetic Affairs February 2022 4
442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match? Daily Updates Here September 2020 5
The Origins of Zana of Abkhazia July 2021 6
Full or Half Siblings April 2019 7 15
Ancestry Rearranged the Furniture January 2022 8
DNA from 459 Ancient British Isles Burials Reveals Relationships – Does Yours Match? February 2022 9
DNA Inherited from Grandparents and Great-Grandparents January 2020 10
Ancestry Only Shows Shared Matches of 20 cM and Greater – What That Means & Why It Matters May 2022 11
How Much Indian Do I Have in Me??? June 2015 12 8
Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links March 2022 13
FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages June 2022 14
Ancient Ireland’s Y and Mitochondrial DNA – Do You Match??? November 2020 15

2023 Suggestions

I have a few articles already in the works for 2023, including some surprises. I’ll unveil one very soon.

We will be starting out with:

  • Information about RootsTech where I’ll be giving at least 7 presentations, in person, and probably doing a book signing too. Yes, I know, 7 sessions – what was I thinking? I’ve just missed everyone so very much.
  • An article about how accurately Ancestry’s ThruLines predicts Potential Ancestors and a few ways to prove, or disprove, accuracy.
  • The continuation of the “In Search Of” series.

As always, I’m open for 2023 suggestions.

In the comments, let me know what topics you’d like to see.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Chromosomes and Genealogy

Sometimes people ask about how chromosomes relate to genealogy. Every single one of us started with that question, right?

Are chromosomes different sizes, and does that matter? What are the mystery terms, cMs and SNPs? How does all of this intersect with genealogy? Do I care?

These are all great questions, and of course, there are different ways to answer. Let’s start with some basics.

Chromosomes 1-22

First, you have two copies of each of chromosomes 1-22.

The karyogram above, a photo taken through a microscope, courtesy of the National Human Genome Research Institute, shows the chromosomes of a human male. I’ve added the numbering and labeled the X and Y chromosomes (23).

You inherit one copy of each chromosome from each of your parents. You can see the two halves of each chromosome, above. One half of each chromosome is contributed by the person’s mother, and the other half is contributed by the father.

That’s why DNA matching works, and each match can be designated as “maternal” or “paternal,” depending on how your match is related to you.

Each match will be related either maternally, paternally, or sometimes, both. Of course, that’s presuming the matches are identical by descent, and not identical by chance, but that’s a different discussion. For this article, we’re referencing valid matches with whom you share common ancestors – whether you know who they are or not.

Your 23rd chromosome is different than chromosomes 1-22.

Chromosome 23 Determines a Child’s Sex

Your 23rd chromosome is your sex-determination chromosome and is inherited differently.

You still inherit one copy of chromosome 23 from each parent.

  • Males inherit a Y chromosome from their father, which is what makes males male.
  • Males inherit an X chromosome from their mother.
  • Females inherit an X chromosome from both parents, which makes them female.
Chromosome 23 Father Contributes Mother Contributes
Male Child Y chromosome X chromosome
Female Child X chromosome X chromosome

Because males don’t inherit an X chromosome from their father, X chromosome matching for genealogy has a unique and specific pattern of descent which allows testers to immediately eliminate some potential common ancestors.

The Y chromosome can be tested separately for males and follows the direct paternal line. You can read about the 4 Kinds of DNA for Genetic Genealogy, here.

The X chromosome is quite useful for genealogy due to its unique inheritance path and is included by both FamilyTreeDNA and 23andMe in matching.

Picture This

Three of the four major vendors, plus GEDmatch, provide a visual match depiction of your chromosomes using a chromosome browser:

Unfortunately, Ancestry does not provide a chromosome browser or segment location information.

Using your chromosomes as the canvas, matches to your father and mother are shown using the chromosome browser at FamilyTreeDNA, below.

You can see that a tester matches both parents on the entire covered region of all of their chromosomes. The beginning and the end tips of each chromosome sometimes aren’t covered, and neither are some other regions that are very SNP-location-poor. Omitted regions are shown by hashes. Regions that are light grey, but not hashed, are covered, but the match’s test didn’t produce results in that region.

This is why you may have a slightly different size match with one parent versus the other, especially if they both didn’t test at the same vendor at the same time.

The chromosome browser graphic visually answers the chromosome size question, but there’s more to this answer. It’s easy to see that there’s a significant difference in the physical chromosome size, but there’s more to the story.

SNPs – Chromosome Street Addresses

SNPs, known as Single Nucleotide Polymorphisms, are mutations recorded at specific addresses on chromosomes. Each chromosome holds a specific number of addresses that are read during sequencing and used for match comparison.

All of your other matches that are not parent-child and not your identical twin will match on some subset of these locations.

The Rest of the Answer – Centimorgans and SNPs

Centimorgans (cMs) are units of recombination used to measure genetic distance. You can read a scientific definition here.

For our conceptual purposes, think of centimorgans as lines on a football field. They represent distance on the chromosome.

SNPs are locations that are compared between two people to see if a match occurs.

Think of SNPs as addresses for blades of grass on that football field where an expected value occurs. If values at that address are different, then they don’t match. If values are the same, then they do match. For autosomal DNA matching, we look for long runs of SNPs that match between two people to confirm a common ancestor.

Think of SNPs as blades of grass growing between the lines on the football field. In some areas, especially in my yard, there will be many fewer blades of grass between those lines than there would be on either a well-maintained football field, or maybe a manicured golf course. You can think of the lighter green bands as sparse growth and the darker green bands as dense growth.

If the distance between 2 lines on the football field is 8 cM, for example, and there are 700 blades of grass growing there, you’ll be a match to another person if (almost) all of your blades of grass between those 2 lines match, assuming the match threshold is minimally 8 cM and 700 SNPs.

For purposes of autosomal DNA, the combination of centimorgans (distance,) and the number of SNPs (locations) within that distance measurement determines if someone is considered a match to you. In other words, you’re listed as a match if the shared DNA is over the minimum or selected thresholds. Think of track and field hurdles. To get to the end (a match), you have to get over all of the hurdles!

For example, a threshold of 8 cM and 700 SNPs means that anyone who matches you equal to or greater than both of these cumulative thresholds will be displayed as a match. Centimorgans and SNPs work in tandem to ensure valid matches.

A Second Yardstick

So, the second measure of chromosome size is the number of cMs from the beginning to the end of the chromosome, and the number of SNPs on that chromosome.

Different vendors, and different DNA testing chips cover slightly different regions. This is my match with my mother, which shows:

  • Total matching cMs on each chromosome
  • Total matching SNPs on each chromosome
  • SNP Density, which is a calculation (cM/SNPs) showing how “thick” the SNP grass is on each chromosome

The higher the matching number of cMs, especially in a row (longest segment,) the higher quality the match, and the closer the relationship.

Note that endogamous, or intermarried populations, may need separate interpretations. I discussed the signs of endogamy in this article.

Calculating Matches

Some vendors provide the ability to select your match cM and SNP thresholds, and others make those selections for you. Most vendors no longer display the number of matching SNPs, given that SNP-poor regions are, for the most part, automatically eliminated, although you can view them in your matching segment download file. In other words, the vendors simply take care of this for you. The accepted rule of thumb has always been that 500 (some said 700) or fewer SNPs was too small to be genealogically relevant, regardless of the cM match size.

Vendors include numerous and varying factors in determining match quality and potential relationships, including:

  • Total shared DNA, meaning total matching cM
  • Longest shared, meaning contiguously matching DNA block
  • X matching
  • Sex of tester (especially with respect to X matching)
  • Endogamy flags
  • Half versus fully identical DNA regions (to positively identify relationships such as half vs full siblings)
  • Triangulated segments
  • Family Matching (maternal and paternal bucketing) at FamilyTreeDNA
  • Tree matching

Not all vendors include all factors, and each vendor utilizes proprietary algorithms for features like triangulation.

The question isn’t chromosome size or even match size alone, but the quality of the match plus additive genealogical features like Theories of Family Relativity at MyHeritage to identify common and even previously unknown ancestors.

Be sure to test at the primary vendors or upload for free to MyHeritage, FamilyTreeDNA and GEDmatch to receive as many matches as possible. You just never know where that match you really need is hiding!

Enjoy!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Free WikiTree Symposium & Special Events – November 4 & 5

Did you know that November 5th is WikiTree Day and WikiTree is celebrating its 14th anniversary? Personally, I love WikiTree.

Here’s why, in three bullets:

  • WikiTree is a “one-world tree,” which generally makes me somewhat uncomfortable, but WikiTree has addressed the issues that concern me in general and provides MANY wonderful tools.
  • It’s easy to interact and make changes. There are often LOTS of sources, and there’s even a discussion board and conflict resolution process.
  • But the best part is that WikiTree is free, public, readily available, and includes DNA information linked to other researchers. Did I mention that it includes DNA information?

I always check WikiTree and update my ancestor’s profiles.

For example, in my tree, here, John Younger Estes is noted as having a confirmed Y DNA connection.

Let’s take a look at his profile, here.

You can see lots of information about John, including that there are two men whose Y DNA confirms this line, one that descends from his father’s line, and one from his own line.

You can also see that four people have listed themselves as descendants of John, along with autosomal test details. Hey, I see two new cousins I don’t know about…

Scroll on down to see sources. Lots of sources. What genealogist doesn’t love sources?

Free 36-Hour WikiTree Symposium

WikiTree provides lots of features, and you can learn about genealogy and how to utilize WikiTree resources at their celebration Symposium that’s coming up this week, beginning Friday, November 4, at 8 AM EDT. The Symposium runs nonstop for 24 hours, followed by a 12-hour WikiTree Day event.

You can view the list of speakers, session descriptions, and  WikiTree Day special events, here. A big shout out and thank you to all of the speakers and contributors who are generously donating their time to make the event fun and successful.

Here’s the schedule for November 4th, and schedule for November 5th.

Join Me – Twice

Please join me for a pre-recorded session, “DNA for Native American Genealogy” at 2:30 PM EDT on Friday afternoon, here.

Why pre-recorded, you ask? Well, I have a not-so-minor problem. I was already having internet provider issues before the hurricane, and now, they are much worse due to infrastructure damage. And I mean MUCH, as in my screen intermittently freezes every 3 or 4 minutes. It’s one of those long stories, and it won’t be resolved anytime soon.

Of course, that makes live presentation impossible right now, so I’ve done the best I can under the circumstances. I think you’ll enjoy it if you have any oral or confirmed history of Native American ancestry in your family.

I will be joining a Panel Discussion live (I hope) on Saturday, November 5th at 9 AM EDT about the future of genetic genealogy with several of my geneapeeps, including WikiTree’s founder, Chris Whitten.

If my screen freezes, someone else can hop in with no problem, like Mags Gaulden who can talk about mitochondrial DNA all day long. Or Tom MacEntee who provided hundreds of webinars and sessions on a wide variety of topics to genealogy societies during Covid lockdowns.

Panelist Amy Johnson Crow is responsible for the 52 Ancestors idea, which was to publish something, somehow, about an ancestor every week – which could be updating their WikiTree profile. Trust me, I think of Amy every single week and have for about 380 weeks now, but who’s counting? I can’t wait to hear how she utilizes WikiTree.

I’m also EXTREMELY pleased to see panelist Daniel Loftus, one of our younger genealogists who just began college. However, no moss is growing under this young man’s feet. He’s already making a difference as the founder of Project Infant, dedicated to identifying and documenting the victims of the Mother and Baby Homes in Ireland. Come join us and give a hearty welcome to Daniel. His generation IS the future of genealogy.

Here’s the YouTube link for the panel discussion.

Register

You can register for the events here – it’s totally free.

The sessions will remain on YouTube for 30 days if you can’t make it this weekend, your internet service provider is related to my internet service provider, or you can’t manage to stay up straight for 36 hours straight anymore. That would be me!

If you have questions, here’s the Facebook page too.

I made a list of sessions that I’m planning to watch. Which ones are you excited about?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

In Search of…How Am I Related to That Close Match?

My friend recently reached out to me for some help with a close match at Ancestry. Which vendor doesn’t matter – the process for figuring out who my friend is related to her match would be essentially the same at any vendor.

My friend has no idea who the match is, nor how they are related. That match has not replied, nor is any of her information recognizable, such as an account name or photo. She has no tree, so there are literally no clues provided by the match.

We need to turn to science and old-fashioned sleuthing.

This eighth article in the “In Search of…” series steps you through the process I’m stepping my friend through.

This process isn’t difficult, per se, but there are several logical, sequential steps. I strongly recommend you read through this (at least) once, then come back and work through the process if you’re trying to solve a similar mystery.

The “In Search of…” Series

Please note that I’ve written an entire series of “In Search of…” articles that will step you through the search process and help you understand how to unravel your results. If you’re new, reading these, in order, before proceeding, would be a good idea.

  • I introduced the “In Search of” series in the article, DNA: In Search of…New Series Launches.
  • In the second article, DNA: In Search of…What Do You Mean I’m Not Related to My Family? – and What Comes Next? we discussed the discovery that something was amiss when you don’t match a family member that you expect to match, then how to make sure a vial or upload mix-up didn’t happen. Next, I covered the basics of the four kinds of DNA tests you’ll be able to use to solve your mystery.
  • In the third article, In Search of…Vendor Features, Strengths, and Testing Strategies, we discussed testing goals and strategies, including testing with and uploading to multiple autosomal DNA vendors, Y DNA, and mitochondrial DNA testing. We reviewed the vendor’s strengths and the benefits of combining vendor information and resources.
  • In the fourth article, DNA: In Search of…Signs of Endogamy, we discussed the signs of endogamy and various ways to determine if you or your recent ancestors descend from an endogamous population.
  • In the fifth article, DNA: In Search of…Full and Half-Siblings we discussed how to determine if you have a sibling match, if they are a half or full sibling, and how to discern the difference.
  • In the sixth article, Connect Your DNA test, and Others, to Your Tree, I explained how to optimize your DNA tests in order to take advantage of the features offered by each our primary DNA testing vendors.
  • In the seventh article, How to Share DNA Results and Tree Access at Ancestry, I wrote step-by-step instructions for providing access to another person to allow them to view your DNA results, AND to share your tree – which are two different things. If you have a mystery match, and they are willing to allow you access, in essence “to drive,” you can just send them the link to this article that provides detailed instructions. Note that Ancestry has changed the user interface slightly with the rollout of their new “sides” matches, but I can’t provide the new interface screenshots yet because my account has not been upgraded.

Sarah – The Mystery Match

My friend, who I’ll be calling the Tester, matches Sarah (not her name) at 554 cM. At that close level, you don’t have to worry about segments being removed by Timber at Ancestry, so that is an actual cM match level. Timber only removes segments when the match is under 90 cM. Other vendors don’t remove cMs at all.

Ancestry shows the possible relationships at that level as follows:

Some of these relationships can be immediately dismissed in this situation. For example, the Tester knows that Sarah is not her grandchild or great-grandchild.

Our tester does not have any full siblings, or any known half-siblings, but like many genealogists, she is always open-minded. Both of her parents are living, and her father has already tested. Sarah does not match her father. So, this match is on her mother’s side.

It’s obvious that Sarah is not a full sibling, nor is she a half-sibling, based on the cM values, but she might be a child, or grandchild of a maternal half-sibling.

Let’s begin with observations and questions that will help our Tester determine how she and Sarah are related.

  1. It’s clear that IF this is a half-sibling descendant match, it’s on her mother’s side, because Sarah does not match our Tester’s father.
  2. The tester’s mother has six siblings, none of whom have tested directly, but three of whom have children or grandchildren who have tested.
  3. By viewing shared matches, Sarah matches known relatives of BOTH the maternal grandmother AND maternal grandfather of our tester, which means Sarah is NOT the product of an unknown half-sibling of her mother. Remember, Ancestry does not display shared matches of less than 20 cM. Other vendors do not restrict your shared matches.
  4. Ancestry does not provide mitochondrial DNA information, so that cannot be utilized, but could be utilized if this match was at FamilyTreeDNA, and partially utilized in an exclusionary manner if the match was at 23andMe.

DNAPainter

DNAPainter’s Shared cM Tool provides a nice visual display of possible relationships, so I entered the matching cM amount

The returned relationships are similar to Ancestry’s possible relationships.

The grid display shows the possible relationships. Relationships that fall outside of this probability range are muted.

The color shading is by generation, meaning dark grey is through great-great-grandparents, apricot is through great-grandparents, green is through grandparents, grey is through one or both parents, and blue are your own descendants.

Based on known factors, I put a red X in the boxes that can’t apply to Sarah and our Tester after evaluating each relationship. I bracketed the statistically most likely relationships in red, although I must loudly say, “do not ignore those other possibilities.”

Let’s step through the logic which will be different for everyone’s own situation, of course.

  • Age alone eliminates the great and half-great grandparents, aunts, and uncles. They are all deceased and would be well over 100 years old if they were living.
  • The green half relationships are eliminated because we know via shared matches that Sarah matches BOTH of the Tester’s maternal grandparent’s sides.
  • We know that Sarah is not a second cousin because second cousins match only ONE maternal grandparent’s ancestor’s descendants, and Sarah matches both of the tester’s maternal grandparents through their descendants. In other words, Sarah and our Tester both match people who descend from both of the Tester’s maternal grandmother AND grandfather’s lines, which, unless they are related, means Sarah’s closest common ancestor (MCRA – most recent common ancestor) with our Tester are either her maternal grandparents, or her mother.
  • Therefore, we know that Sarah cannot be any of the apricot-colored relationships because she matches BOTH of our Tester’s maternal grandparents. She would only be related through one of the Tester’s maternal grandparents to be related on the apricot level.
  • Sarah cannot be a full great-niece or nephew, or great or great-great niece or nephew because the Tester has no full siblings, confirmed by the fact that Sarah does not match the Tester’s father.
  • We know that Sarah is not the great-grandchild of the Tester, in part due to age, but the definitive scientific ax to that possibility is that Sarah does not match our Tester’s father. (Yes, our Tester does match her father at the appropriate level.)

We know that Sarah is somehow a descendant of BOTH of Tester’s maternal grandparents, so must be in either the green band of relationships, the grey half-relationships, or the blue direct relationships. All of these relationships would be descended from the Tester’s maternal grandparents (plural.)

We’ve eliminated the blue direct relationship because Sarah does not match the Tester’s father. This removes the possibility that the Tester’s children have an unknown great-grandchild, although in this case, age removes that possibility anyway.

This process-of-elimination leaves as possible relationships:

  • Grey band half niece/nephew and half great-niece/nephew, meaning that the Tester has an unknown half-sibling on their mother’s side whose child or grandchild has tested.
  • Green band first cousin which means that the tester descends from one of the Tester’s maternal aunts or uncles. Given that Sarah is not a known child of any of the Tester’s six aunts and uncles, that opens the possibility that her mother’s sibling has a previously unknown child. Three of the Tester’s mother’s siblings are females, and three are males.
  • Green band first cousin once removed is one generation further down the tree, meaning a child of a first cousin.

Using facts we know, we’ve already restricted the possible relationships to four.

Hypothesis and Shared Matches

In situations like this, I use a spreadsheet, create hypothesis scenarios and look for eliminators.

I worked with the Tester to assemble an easy spreadsheet with each of her mother’s siblings in a column, along with their year of birth. All names have been changed.

The hypothesis we are working with is that the Tester’s mother has a previously unknown child and that Sarah is that person’s child or grandchild.

Across the top of our spreadsheet, which you could also simply create as a chart, I’ve written the names of the maternal grandparents.

The Tester’s mother, Susie, is shown in the boxes that are colored red, and her siblings are listed in their birth order. Siblings who have anyone in their line who has tested are shown by colored boxes.

The Tester is shown in red beneath her mother, Susie, and a potential mystery half-sibling is shown beneath Susie.

This is importantthe relationships shown are FROM THE PERSPECTIVE OF THE TESTER.

This means, at far left, with the red arrow, these people at the top, meaning the mother’s siblings are the Tester’s aunts and uncles.

The next generation down are the Tester’s first cousins, followed by the next row, with 1C1R. The cell colors in that column correspond to the DNAPainter generation columns.

In the red “Mother” group, you’ll see that I’ve included that mystery half-sibling and beneath, the relationships that could exist at that same generation level. So, if the mystery half-sibling had a child, that person would be the half-niece/nephew of the Tester.

The cM value pointed to by the arrows, is the cM value at which the TESTER matches that person.

In this case, Ginger’s son, Jacob matches our Tester at 946 cM, which is exactly normal for a first cousin. Ginger’s son, Aaron, has not tested, but his daughter, Crystal, has and matches our Tester at 445 cM.

Three of the Tester’s aunts/uncles, John, Jim, and Elsie are not represented in this matrix, because no one from their line has yet tested. The Tester has contacted members of those families asking if they will accept a testing scholarship.

Analysis Grids

Some of the children of our Tester’s aunts/uncles have tested, and their matches to Sarah are shown in the bottom row in yellow, on the chart below.

Of course, obtaining Sarah’s matching cM information required the Tester to contact her aunts/uncles and cousins to ask them to look at their match to Sarah at Ancestry.

For each set of relationships with Sarah, I’ve prepared a mini-relationship grid below Sarah’s matches with one of the Tester’s aunts/uncles’ descendants.

  • If Sarah is related to the Tester through an unknown half-sibling, Sarah will match the tester more closely than she will match any of the children of the Tester’s aunts and uncles.
  • If Sarah descends through one of the Tester’s aunts’ or uncles’ lines, Sarah will match someone in those lines more closely than our Tester, but we may need to compensate for generations in our analysis.

I pasted the DNAPainter image in the spreadsheet in a convenient place to remind myself of which relationships are possible between our Tester and Sarah, then I created a small grid beneath the Tester’s match to Sarah, who is the yellow row.

Let me explain, beginning with our Tester’s match to Sarah.

Tester’s Match to Sarah

The Tester matches Sarah at 554 cM, which can potentially be a number of different relationships. I’ve listed the possible relationships with the most likely, at 87%, at the top. I have not listed any relationships we’ve positively eliminated, even though they would be scientifically possible.

I can’t do this for our Tester’s Uncle David, because the Tester has not yet heard back from David’s son, Gary, as to how many cMs he shares with Sarah.

Our tester’s aunts, Ginger and Barbara do have descendants who have tested, so let’s evaluate those relationships.

Ginger and Sarah

We know less about Ginger and Sarah than we do about our Tester and Sarah. However, many of the same relationship constraints remain constant.

  • For example, we know that Sarah matches both of Ginger’s grandparents, because Ginger is our tester’s aunt, Susie’s full sibling.
  • Our tester and all of the other family members who have tested match on both maternal grandparents’ sides.
  • Therefore, we also know that the 2C relationships won’t work either because Sarah matches both maternal grandparents.
  • Based on ages, it’s very unlikely that Sarah is a great-grandchild of Ginger’s children, in part, because I’m operating under the assumption that Sarah is old enough to purchase her own test, so not a child. Ancestry’s terms of service require testers to be 18 years of age to purchase or activate a DNA test. Also, Sarah’s test is not managed by someone else.
  • We don’t know about great-nieces and nephews though, because if one of Ginger’s sibling’s children had an unknown child, that person could be Sarah or Sarah’s parent.

Ginger’s son Jacob

Using the closest match in Ginger’s line, her son Jacob, we find the following possibilities using Jacob’s match to Sarah of 284cM.

The DNAPainter grid shows the more distant relationship clearly.

You can quickly determine that Sarah probably does not descend from Ginger’s line, but let’s add this to our spreadsheet for completeness.

You can see that the MOST likely relationship, of the possible relationships based on our known factors, is 1C2R, which is the least likely relationship between our Tester and Sarah. It’s important to note that our Tester and Jacob are in the same generation, so we don’t need to do any compensating for a generational difference.

Comparing those relationships, you can see that the least likely relationship between Sarah and Jacob is much more likely between Sarah and our Tester.

Therefore, we can rule out Ginger’s line as a candidate. Sarah is not a descendant of Ginger.

Let’s move on to Barbara’s line.

Barbara’s Daughter Cindy

This time, we’re going to do a bit of inferring because we do have a generational difference.

Barbara’s granddaughter, Mary, has tested and matches Sarah at 230 cM. While we know that Sarah probably wouldn’t match Mary’s mother, Cindy, at exactly double that, 460 cM, it would certainly be close.

So, for purposes of this comparison, I’m using 460 cM for Sarah to match Cindy.

That makes this comparison in the same generation as Ginger and our Tester to Sarah. We are comparing apples to apples and not apples to half an apple (an apple once removed, technically, but I digress.) 😊

You can see that this analysis is MUCH closer to the cM amounts and relationship possibilities of Sarah and our Tester.

Here are the possible relationships of Sarah and Cindy, with the most likely being boxed in red.

Where Are We?

Here is my completed spreadsheet, so far, less the two DNAPainter graphs for Ginger and Barbara’s lines.

To date, we’ve eliminated Ginger as Sarah’s ancestor.

Both Susie, the mother of our Tester, and Susie’s sister Barbara are still candidates to have an unknown child based on DNA, or one of their children possibly having an unknown child.

Of course, we still have one more sister, Elsie, and those three silent brothers sitting over there. It’s much easier for a male to have an unknown child than a female. By unknown, in this situation, I mean truly unknown, not hidden.

What’s Needed?

Of course, what we really need is tests from each of Susie’s siblings, but that’s not going to happen. What can we potentially do with what we have, how, and why?

Our Tester can refine these results in a number of ways.

  • Talk to living siblings or other family members and tactfully ask what they know about the four women during their reproductive years. Were they missing, off at school, visiting “aunts” in another location, separated from a spouse, etc.?
  • Check to see if Sarah shared her ethnicity results (View match, then click on “Ethnicity.”) If Sarah has a significant ethnicity that is impossible to confuse, this might be significant. For example, if Sarah is 50% Korean, and one of Susie’s brothers served in Korea, that makes him a prime candidate.
  • If possible, ask John, David, Jim, Ginger, Barbara, and Elsie to take DNA tests themselves. The best test is ALWAYS the oldest generation because their DNA is not yet divided in subsequent generations.
  • If that’s not possible, find a child or grandchild of Elsie, Jim, and John to test.
  • The Tester needs to find out how closely David’s son, Gary matches Sarah, then perform the same analysis that we stepped through above.
  • Ask Ginger’s son, Jacob to see if Sarah also shares matches with the closest family members of the known father of Ginger’s children. One of Ginger’s children could have had an unknown child. This is unlikely, based on what we’ve already determined about Sarah’s match level to Jacob, but it’s worth asking.
  • Ask Barbara’s granddaughter, Mary, to see if she and Sarah share matches with the closest family members of the known father of Barbara’s children. This scenario is much more likely.
  • If the answer is yes to either of the last two questions, we have identified which line Sarah descends from, because she can only descend from both Barbara AND the father of her children if Sarah descends from that couple.
  • If the answer is no, we’ve only eliminated full siblings to Ginger and Barbara’s children, not half-siblings.
  • If our Tester can make contact with Gary, ask him if he and Sarah share matches with David’s wife’s line. One of David’s children could have an unknown child.
  • If our Tester can actually make contact with Sarah, and if Sarah is willing and interested, our Tester can create a list of people to look for in her matches – for example, the spouses’ lines of all of Susie’s siblings. If Sarah matches NONE of the spouses’ lines, then one of Susie’s siblings (our Tester’s aunts/uncles,) or Susie’s mother, has an unknown child. However, if Sarah is a novice tester or genealogist, she might well be quite overwhelmed with understanding how to perform these searches. She may already be overwhelmed by discovering that she doesn’t match who she expected to match. Or, she may already know the answer to this question.
  • It would be easier if Sarah granted our Tester access to her DNA results to sort through all of these possibilities, but that’s not something I would expect a stranger to do, especially if this result is something Sarah wasn’t expecting.

I wrote instructions for providing access to DNA results in the article, How to Share DNA Results and Tree Access at Ancestry.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

How to Share DNA Results and Tree Access at Ancestry

There are two types of access you may want to share with other users at Ancestry, and specific times when you’ll want to do each.

If you have set your privacy selections to allow DNA matching, and tree sharing, your DNA matches will have access to that information. If not, they won’t.

Let’s check.

Click the down arrow to the right of your signon page, then Account Settings.

Click on DNA.

Then, click on the little right arrow waaaaayyyy over there.

Scroll down until you see Tree Link, and be sure your test is linked to yourself in your tree.

Privacy

Next, the Privacy section displays your selections in effect for both matching and your ethnicity estimates. Click on the little down arrow labeled “Change” to view other options.

If you do NOT have matching enabled, you won’t see matches and they won’t see you.

Granting DNA Sharing Access

If you don’t match with someone, they won’t be able to see whether you’ve tested your DNA or not.

  • You can still share access to your DNA, even if you don’t match.
  • If you do match, and you’re collaborating with someone, you can share more with them, in essence, letting them “drive.”

Here’s how.

Next, click on Sharing Preferences.

You’ll click the down arrow to see who you’ve shared your DNA results with. These people may or may not be your DNA matches. For example, there are a few people that I’ve collaborated with for years that I’ve shared my DNA results with because I’m really, really HOPING they will make a breakthrough for both of us.

Plus, not to be morbid, but you just never know when you’ll be meeting the ancestors and I want my DNA to go on working for my genealogy partners and family members after I’m no longer doing the work myself. That’s also why I write my 52 Ancestors stories, but I digress.

You might be wondering what kind of information other people could be looking for. Let me give you an immediate example. Even though we don’t personally match, my cousin Greg has been looking for people that he matches, and I match too, that he knows descend from our common ancestor, Peter Johnson.

Any tests you own are listed first here, along with anyone you’ve granted access to your DNA results.

If you click on “Add a person,” you can add someone else to your share list.

You always get to select the level of access people you share with have.

If your cousin George tested for you, has no interest himself, you’ll want to ask him to grant you the ability to manage his results. Just understand that manage means just that – entirely.

Typically, I grant view because they can see everything I can see, but they can’t change things.

Sharing DNA does NOT mean you’re automatically sharing your tree.

Sharing Trees

Sharing trees is important for three reasons.

  • DNA matches
  • For people who don’t match your DNA but are researching the same ancestors and find your tree through hints or ancestor searches
  • People you specifically want to provide access to your tree

One of my cousins kindly shared his DNA results with me, but he did not share his tree and now I can no longer get in touch with him. Unfortunately, he’s not well, so it’s unlikely that I will ever be able to contact him.

Let’s look at Tree management, sharing and invitations.

Your Tree Privacy Settings

Go back to Account Settings and select “Trees.”

Next, you’ll see your trees and trees that others have shared with you.

Select your tree you wish to view, share or work with.

Then, select Privacy Settings at the top of the page.

You can review your tree privacy settings. As you can see, mine is public. I firmly believe that a rising tide lifts all ships. I realize that this is a controversial topic, but I share my work freely and hope others will as well. I’m providing quality breadcrumbs. At least my research and information is available among the copy/paste misinformation abominations.

My cousin who shared his DNA with me has a private tree, and even though I can see how he matches people, I cannot view their common ancestors because his tree is private and he didn’t realize he needed to grant me separate access to his tree in addition to his DNA results.

Furthermore, if your tree is private, your DNA matches can’t view your tree and the DNA match has limited utility without tree access.

Invite People to Your Tree

My tree is public, so it’s available for viewing in searches and by DNA matches. However, I still need to grant specific access to people to directly access my tree without them having to search around to find my tree in their ancestor search hints and matches.

Click on “Invitations.”

You’ll be able to see who you’ve granted access to, their Role, and if they can see living people.

To invite someone to your tree from here, click on “Invite People.”

Don’t forget to click “save” at the bottom of the page.

You can generate a one-time link for the person you’re inviting, meaning the link can only be used by one person, or have Ancestry send them an email invite or use their Ancestry Username.

An Easier Tree Invite Location

There is no easier way to invite people to view your DNA results, but there is an easier way to share your tree.

On your main Ancestry page, click on Trees, then on the down arrow by the name of the tree you wish to share. Select “Invite” which will take you to the same Invite page as above.

Now is a good time to review your settings and be sure they are the most beneficial to your genealogy goals.

Furthermore, you’re going to need this article for my next “In Search of…” article in a day or so.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA to Surpass 60,000 Y DNA Haplogroups and Introduces New Time Tree

The public Y DNA tree at FamilyTreeDNA is on the brink of crossing the 60,000 branch threshold.

When do you think it will sprout enough leaves to get there? I’m betting on tomorrow, or maybe the next day?

You can check here to see when it happens!

Discover Tool Grows Too

The new Discover tool launched almost exactly three months ago, and people are purchasing or upgrading to the Big Y test to learn about their matches and discover their place in the history of mankind. Of course, every test boosts genealogy and helps the tree of mankind grow. You can read about how to use the Discover tool, here.

The Discover Tool continues to add features for Y DNA testers too.

Introducing the Time Tree

A couple of weeks ago, FamilyTreeDNA introduced the time tree.

The time tree shows your haplogroup age and placement on the tree, plus age estimates for nearby haplogroups too. You can click up and down the tree by haplogroup.

My Estes haplogroups are shown above with incredible accuracy based on my proven genealogy. I’m still amazed that science, alone, without the benefit of genealogy, can get within half a century many times.

Looking at another example, you can see that haplogroup Q-FTC17883 has two testers and a notable connection, Kevin Segura.

The genetically calculated age estimate of this branch is about 1950.

Using the back arrow to click back one haplogroup shows the current testers, the Lovelock4 ancient sample, and additional haplogroups.

Note that while the Lovelock sample is shown to be the same haplogroup as today’s testers, recovery of ancient DNA is not always complete. In other words, that sample might have SNPs that the contemporary testers don’t have, or the sample may be incomplete, or no-calls may not be reported. Sample ages may not be included either, so FamilyTreeDNA has to work with what’s available.

What I’m saying is that Lovelock 4 is “at least,” reliably, haplogroup Q-FTC17883 and shares that SNP with present-day testers.

But Wait, There’s More

This past week, FamilyTreeDNA made another big update.

Included are the ancient samples published in the recent paper about the Southern Arc, the bridge between western Asia and Europe and samples from western Europe and England that help tell the story of Anglo-Saxon migration.

These ancient peoples helped form the gene pool in Europe, then pushed on into the British Isles.

Additionally, this past week’s updates include:

  • 345 new haplogroup reports (Haplotree changes up until September 23rd)
  • In total, almost 2,600 ancient DNA samples, including all the samples from the Southern Arc and Anglo-Saxon migration papers, two large new studies with a total of 590 samples!
  • In total, over 4,300 academic modern DNA samples from different parts of the world, including 1,200 new from Sardinia
  • New flags added: Druze, Italy (Sardinia), Western Sahara (Sahrawi)

Fun

I’ve spent quite a bit of time trying to find my ancestral lines in appropriate surname and regional projects, upgrading cousins, and finding new people to test.

I enter their Y DNA haplogroup into Discover and share my new-found information with my cousins who agreed to test. Everyone loves Discover because it’s so relatable.

For example, you can enter haplogroup:

  • I-A1843 to view Wild Bill Hickok
  • Q-M3 for Shawnee Chief Blue Jacket
  • R-FT62777 to learn about Johnny Cash

By entering your own, or your ancestor’s Y DNA haplogroups, you can discover where they came from, which lines they share with notable people, and identify their ancient cousins. The more refined your haplogroup, the more relevant the information will be, which is why I recommend the Big Y test. My Estes line estimated haplogroup from STR testing is R-M269

There are 23 haplogroups between R-M269 and my ancestor, Moses Estes’s haplogroup, R-ZS3700 in 1711. R-M269 is interesting, but R-ZS3700 is VERY relevant.

Even if you can’t “jump the pond” with genealogy records, you certainly can with Y DNA and mitochondrial DNA testing.

Can you find the Y DNA haplogroups of your male ancestors? Check surname projects and your autosomal matches for cousins who may have or would be willing to Y DNA test. I wish I had just tested all those earlier cousins at the Big Y level, because several have gone on to meet their ancestors and I can’t upgrade their sample now.

Test yourself and your cousins to reveal information about your common ancestors, and have fun with your new discoveries!!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Vote for Roberta’s RootsTech 2023 Session Topic

RootsTech has graciously allowed me some latitude in selecting my session topic for 2023, so I’m asking what you’d like to see.

RootsTech 2023 will be both virtual AND in-person in Salt Lake City, Utah, March 2-4. You can click here to sign up for updates. The virtual portion will be free again this year, (thank you FamilySearch) so everyone will be able to attend.

I’m currently aiming for in-person. Fingers crossed. I’m already getting excited, and it’s still literally almost exactly six months away! I feel like I haven’t seen anyone in FOREVER!

I don’t have all the details yet, but I know for sure that I’m speaking, one way or another.

Since all of you will be able to attend virtually, I thought I’d ask for topic suggestions.

Is there a topic you’ve particularly enjoyed and found useful, or, conversely, a topic where you would like more information?

How about a topic you think would be broadly useful to a large number of people?

Or maybe a “how to” session about something?

Here are a couple of guidelines.

  • The topic shouldn’t be too general or too specific.
  • I have to be able to cover all of the material in roughly 40-45 minutes.
  • The topic needs to be relevant to a broad audience.

Suggestions for catchy titles are gladly accepted too! 😊

Please make your suggestions in the comments. Thanks so much!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Research Like a Pro Podcast – Native American DNA with Roberta Estes

I love to see families working together. Nicole Dyer and Diana Elder are a lovely mother-daughter genealogy team and hostesses of Research Like a Pro, a podcast through their genealogy research company, Family Locket. Their Research Like a Pro podcasts help genealogists “take your research to the next level.”

I was so pleased to be invited to join them for a discussion about my book, DNA for Native American Genealogy.

For those of you who don’t normally listen to podcasts and don’t have a podcast app, you don’t need one. You can just click to listen online, or they have kindly transcribed the session. The transcription is automated, so not exact, but still a great tool.

Interviews are interesting because the back and forth is so revealing and includes information not found in the book. As it turns out, their family had a Native American story too – and it was very similar to mine. That oral history which was accepted as fact in my family is what launched my search many years ago.

They “cheated” and opened by asking me about what drives and inspires me. I’m not interviewed live very often, and don’t think I’ve ever been asked this question before. If you’d like to hear me talk about what motivates me and gets me out of bed every morning, aka, “life’s pennies,” click here.

Of course, most of the hour was spent discussing Native American records and resources, including DNA evidence. We discussed ethnicity and how to actually USE it (yes, you can), vendors, their products and resources, Y and mitochondrial DNA, third-party tools, and how to integrate these resources successfully.

As a bonus, let me give you one of the tips I talked about that’s not in the book. Declined enrollment applications for the Five Civilized Tribes. If your family wasn’t enrolled, they might be found in the declined applications, which often provide a HUGE amount of family information. Here is a list of those resources at FamilySearch. Don’t miss the Cherokee by Blood book series by Jerry Wright Jordan and the Extract of Rejected Applications of the Guion Miller Roll of the Eastern Cherokee series by Jo Ann Curls Page.

Also, as an aside, in some cases, DNA testing has proven using Y or mitochondrial DNA that the declined enrollment was in error and the family did, in fact, have Native ancestors. That’s both heartbreaking and validating.

This was such a fun and informative hour. I swear, we talked about everything. While this podcast is focused on finding Native American ancestors, the DNA tools, tips, and research techniques are certainly relevant and useful for everyone, so please join us and enjoy!

If you don’t have my book yet, you can purchase it here:

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search of…Full and Half-Siblings

This is the fifth article in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to identify ancestors further back in time as well.

Please note that if a family member has tested and you do NOT see their results, ask them to verify that they have chosen to allow matching and for other people to view them in their match list. That process varies at different vendors.

You can also ask if they can see you in their results.

All Parties Need to Test

Searching for unknown siblings isn’t exactly searching, because to find them, they, themselves, or their descendant(s) must have taken a DNA test at the same vendor where you tested or uploaded a DNA file.

You may know through any variety of methods that they exist, or might exist, but if they don’t take a DNA test, you can’t find them using DNA. This might sound obvious, but I see people commenting and not realizing that the other sibling(s) must test too – and they may not have.

My first questions when someone comments in this vein are:

  1. Whether or not they are positive their sibling actually tested, meaning actually sent the test in to the vendor, and it was received by the testing company. You’d be surprised how many tests are living in permanent residence on someone’s countertop until it gets pushed into the drawer and forgotten about.
  2. If the person has confirmed that their sibling has results posted. They may have returned their test, but the results aren’t ready yet or there was a problem.
  3. AND that both people have authorized matching and sharing of results. Don’t hesitate to reach out to your vendor’s customer care if you need help with this.

Sibling Scenarios

The most common sibling scenarios are when one of two things happens:

  • A known sibling tests, only to discover that they don’t match you in the full sibling range, or not at all, when you expected they would
  • You discover a surprise match in the full or half-sibling range

Let’s talk about these scenarios and how to determine:

  • If someone is a sibling
  • If they are a full or half-sibling
  • If a half-sibling, if they descend from your mother or father

As with everything else genetic, we’ll be gathering and analyzing different pieces of evidence along the way.

Full and Half-Siblings

Just to make sure we are all on the same page:

  • A full sibling is someone who shares both parents with you.
  • A half-sibling is someone who shares one parent with you, but not the other parent.
  • A step-sibling is someone who shares no biological parents with you. This situation occurs when your parent marries their parent, after you are both born, and their parent becomes your step-parent. You share neither of your biological parents with a step-sibling, so you share no DNA and will not show up on each other’s match lists.
  • A three-quarters sibling is someone with whom you share one parent, but two siblings are the other parent. For example, you share the same mother, but one brother fathered you, and your father’s brother fathered your sibling. Yes, this can get very messy and is almost impossible for a non-professional to sort through, if even then. (This is not a solicitation. I do not take private clients.) We will not be addressing this situation specifically.

Caution

With any search for unknown relatives, you have no way of knowing what you will find.

In one’s mind, there are happy reunions, but you may experience something entirely different. Humans are human. Their stories are not always happy or rosy. They may have made mistakes they regret. Or they may have no regrets about anything.

Your sibling may not know about you or the situation under which you, or they, were born. Some women were victims of assault and violence, which is both humiliating and embarrassing. I wrote about difficult situations, here.

Your sibling or close family member may not be receptive to either you, your message, or even your existence. Just be prepared, because the seeking journey may not be pain-free for you or others, and may not culminate with or include happy reunions.

On the other hand, it may.

Please step back and ponder a bit about the journey you are about to undertake and the possible people that may be affected, and how. This box, once opened, cannot be closed again. Be sure you are prepared.

On the other hand, sometimes that box lid pops off, and the information simply falls in your lap one day when you open your match list, and you find yourself sitting there, in shock, staring at a match, trying to figure out what it all means.

Congratulations, You Have a Sibling!

This might not be exactly what runs through your mind when you see that you have a very close match that you weren’t expecting.

The first two things I recommend when making this sort of discovery, after a few deep breaths, a walk, and a cup of tea, are:

  • Viewing what the vendor says
  • Using the DNAPainter Shared cM Relationship Chart

Let’s start with DNAPainter.

DNAPainter

DNAPainter provides a relationship chart, here, based on the values from the Shared cM Project.

You can either enter a cM amount or a percentage of shared DNA. I prefer the cM amount, but it doesn’t really matter.

I’ll enter 2241 cM from a known half-sibling match. To enter a percent, click on the green “enter %.”

As you can see, statistically speaking, this person is slightly more likely to be a half-sibling than they are to be a full sibling. In reality, they could be either.

Looking at the chart below, DNAPainter highlights the possible relationships from the perspective of “Self.”

The average of all the self-reported relationships is shown, on top, so 2613 for a full sibling. The range is shown below, so 1613-3488 for a full sibling.

In this case, there are several possibilities for two people who share 2241 cM of DNA.

I happen to know that these two people are half-siblings, but if I didn’t, it would be impossible to tell from this information alone.

The cM range for full siblings is 1613-3488, and the cM range for half-siblings is 1160-2436.

  • The lower part of the matching range, from 1160-1613 cM is only found in half-siblings.
  • The portion of the range from 1613-2436 cM can be either half or full siblings.
  • The upper part of the range, from 2436-3488 cM is only found in full siblings.

If your results fall into the center portion of the range, you’re going to need to utilize other tools. Fortunately, we have several.

If you’ve discovered something unexpected, you’ll want to verify using these tools, regardless. Use every tool available. Ranges are not foolproof, and the upper and lower 10% of the responses were removed as outliers. You can read more about the shared cM Project, here and here.

Furthermore, people may be reporting some half-sibling relationships as full sibling relationships, because they don’t expect to be half-siblings, so the ranges may be somewhat “off.”

Relationship Probability Calculator

Third-party matching database, GEDmatch, provides a Relationship Probability Calculator tool that is based on statistical probability methods without compiled user input. Both tools are free, and while I haven’t compared every value, both seem to be reasonably accurate, although they do vary somewhat, especially at the outer ends of the ranges.

When dealing with sibling matches, if you are in all four databases, GEDmatch is a secondary resource, but I will include GEDmatch when they have a unique tool as well as in the summary table. Some of your matches may be willing to upload to GEDmatch if the vendor where you match doesn’t provide everything you need and GEDmatch has a supplemental offering.

Next, let’s look at what the vendors say about sibling matches.

Vendors

Each of the major vendors reports sibling relationships in a slightly different way.

Sibling Matches at Ancestry

Ancestry reports sibling relationships as Sister or Brother, but they don’t say half or full.

If you click on the cM portion of the link, you’ll see additional detail, below

Ancestry tells you that the possible relationships are 100% “Sibling.” The only way to discern the difference between full and half is by what’s next.

If the ONLY relationship shown is Sibling at 100%, that can be interpreted to mean this person is a full sibling, and that a half-sibling or other relationship is NOT a possibility.

Ancestry never stipulates full or half.

The following relationship is a half-sibling at Ancestry.

Ancestry identifies that possible range of relationships as “Close Family to First Cousin” because of the overlaps we saw in the DNAPainter chart.

Clicking through shows that there is a range of possible relationships, and Ancestry is 100% sure the relationship is one of those.

DNAPainter agrees with Ancestry except includes the full-sibling relationship as a possibility for 1826 cM.

Sibling Matches at 23andMe

23andMe does identify full versus half-siblings.

DNAPainter disagrees with 23andMe and claims that anyone who shares 46.2% of their DNA is a parent/child.

However, look at the fine print. 23andMe counts differently than any of the other vendors, and DNAPainter relies on the Shared cM Project, which relies on testers entering known relationship matching information. Therefore, at any other vendor, DNAPainter is probably exactly right.

Before we understand how 23andMe counts, we need to understand about half versus fully identical segments.

To determine half or full siblings, 23andMe compares two things:

  1. The amount of shared matching DNA between two people
  2. Fully Identical Regions (FIR) of DNA compared to Half Identical Regions (HIR) of DNA to determine if any of your DNA is fully identical, meaning some pieces of you and your sibling’s DNA is exactly the same on both your maternal and paternal chromosomes.

Here’s an example on any chromosome – I’ve randomly selected chromosome 12. Which chromosome doesn’t matter, except for the X, which is different.

Your match isn’t broken out by maternal and paternal sides. You would simply see, on the chromosome browser, that you and your sibling match at these locations, above.

In reality, though, you have two copies of each chromosome, one from Mom and one from Dad, and so does your sibling.

In this example, Mom’s chromosome is visualized on top, and Dad’s is on the bottom, below, but as a tester, you don’t know that. All you know is that you match your sibling on all of those blue areas, above.

However, what’s actually happening in this example is that you are matching your sibling on parts of your mother’s chromosome and parts of your father’s chromosome, shown above as green areas

23andMe looks at both copies of your chromosome, the one you inherited from Mom, on top, and Dad, on the bottom, to see if you match your sibling on BOTH your mother’s and your father’s chromosomes in that location.

I’ve boxed the green matching areas in purple where you match your sibling fully, on both parents’ chromosomes.

If you and your sibling share both parents, you will share significant amounts of the same DNA on both copies of the same chromosomes, meaning maternal and paternal. In other words, full siblings share some purple fully identical regions (FIR) of DNA with each other, while half-siblings do not (unless they are also otherwise related) because half-siblings only share one parent with each other. Their DNA can’t be fully identical because they have a different parent that contributed the other copy of their chromosome.

Total Shared DNA Fully Identical DNA from Both Parents
Full Siblings ~50% ~25%
Half Siblings ~25% 0
  • Full siblings are expected to share about 50% of the same DNA. In other words, their DNA will match at that location. That’s all the green boxed locations, above.
  • Full siblings are expected to share about 25% of the same DNA from BOTH parents at the same location on BOTH copies of their chromosomes. These are fully identical regions and are boxed in purple, above.

You’ll find fully identical segments about 25% of the time in full siblings, but you won’t find fully identical segments in half-siblings. Please note that there are exceptions for ¾ siblings and endogamous populations.

You can view each match at 23andMe to see if you have any completely identical regions, shown in dark purple in the top comparison of full siblings. Half siblings are shown in the second example, with less total matching DNA and no FIR or completely identical regions.

Please note that your matching amount of DNA will probably be higher at 23andMe than at other companies because:

  • 23andMe includes the X chromosome in the match totals
  • 23andMe counts fully identical matching regions twice. For full siblings, that’s an additional 25%

Therefore, a full sibling with an X match will have a higher total cM at 23andMe than the same siblings elsewhere because not only is the X added into the total, the FIR match region is added a second time too.

Fully Identical Regions (FIR) and Half Identical Regions (HIR) at GEDmatch

At GEDMatch, you can compare two people to each other, with an option to display the matching information and a painted graphic for each chromosome that includes FIR and HIR.

If you need to know if you and a match share fully identical regions and you haven’t tested at 23andMe, you can both upload your DNA data file to GEDmatch and use their One to One Autosomal DNA Comparison.

On the following page, simply enter both kit numbers and accept the defaults, making sure you have selected one of the graphics options.

While GEDmatch doesn’t specifically tell you whether someone is a full or half sibling, you can garner additional information about the relationship based on the graphic at GEDmatch.

GEDMatch shows both half and fully identical regions.

The above match is between two full siblings using a 7 cM threshold. The blue on the bottom bar indicates a match of 7 cM or larger. Black means no match.

The green regions in the top bar indicate places where these two people carry the same DNA on both copies of their chromosome 1. This means that both people inherited the same DNA from BOTH parents on the green segments.

In the yellow regions, the siblings inherited the same DNA from ONE parent, but different DNA in that region from the other parent. They do match each other, just on one of their chromosomes, not both.

Without a tool like this to differentiate between HIR and FIR, you can’t tell if you’re matching someone on one copy of your chromosome, or on both copies.

In the areas marked with red on top, which corresponds to the black on the bottom band, these two siblings don’t match each other because they inherited different DNA from both parents in that region. The yellow in that region is too scattered to be significant.

Full siblings generally share a significant amount of FIR, or fully identical regions of DNA – about 25%.

Half siblings will share NO significant amount of FIR, although some will be FIR on very small, scattered green segments simply by chance, as you can see in the example, below.

This half-sibling match shares no segments large enough to be a match (7 cM) in the black section. In the blue matching section, only a few small green fragments of DNA match fully, which, based on the rest of that matching segment, must be identical by chance or misreads. There are no significant contiguous segments of fully identical DNA.

When dealing with full or half-siblings, you’re not interested in small, scattered segments of fully identical regions, like those green snippets on chromosome 6, but in large contiguous sections of matching DNA like the chromosome 1 example.

GEDmatch can help when you match when a vendor does not provide FIR/HIR information, and you need additional assistance.

Next, let’s look at full and half-siblings at FamilyTreeDNA

Sibling Matches at FamilyTreeDNA

FamilyTreeDNA does identify full siblings.

Relationships other than full siblings are indicated by a range. The two individuals below are both half-sibling matches to the tester.

The full range when mousing over the relationship ranges is shown below.

DNAPainter agrees except also gives full siblings as an option for the two half-siblings.

FamilyTreeDNA also tells you if you have an X match and the size of your X match.

We will talk about X matching in a minute, which, when dealing with sibling identification, can turn out to be very important.

Sibling Matches at MyHeritage

MyHeritage indicates brother or sister for full siblings

MyHeritage provides other “Estimated relationships” for matches too small to be full siblings.

DNAPainter’s chart agrees with this classification, except adds additional relationship possibilities.

Be sure to review all of the information provided by each vendor for close relationships.

View Close Known Relationships

The next easiest step to take is to compare your full or half-sibling match to known close family members from your maternal and paternal sides, respectively. The closer the family members, the better.

It’s often not possible to determine if someone is a half sibling or a full sibling by centiMorgans (cMs) alone, especially if you’re searching for unknown family members.

Let’s start with the simplest situation first.

Let’s say both of your parents have tested, and of course, you match both of them as parents.

Your new “very close match” is in the sibling range.

The first thing to do at each vendor is to utilize that vendor’s shared matches tool and see whether your new match matches one parent, or both.

Here’s an example.

Close Relationships at FamilyTreeDNA

This person has a full sibling match, but let’s say they don’t know who this is and wants to see if their new sibling matches one or both of their parents.

Select the match by checking the box to the left of the match name, then click on the little two-person icon at far right, which shows “In Common” matches

You can see on the resulting shared match list that both of the tester’s parents are shown on the shared match list.

Now let’s make this a little more difficult.

No Parents, No Problem

Let’s say neither of your parents has tested.

If you know who your family is and can identify your matches, you can see if the sibling you match matches other close relatives on both or either side of your family.

You’ll want to view shared matches with your closest known match on both sides of your tree, beginning with the closest first. Aunts, uncles, first cousins, etc.

You will match all of your family members through second cousins, and 90% of your third cousins. You can view additional relationship percentages in the article, How Much of Them is in You?.

I recommend, for this matching purpose, to utilize 2nd cousins and closer. That way you know for sure if you don’t share them as a match with your sibling, it’s because the sibling is not related on that side of the family, not because they simply don’t share any DNA due to their distance.

In this example, you have three sibling matches. Based on your and their matches to the same known first and second cousins, you can see that:

  • Sibling 1 is your full sibling, because you both match the same maternal and paternal first and second cousins
  • Sibling 2 is your paternal half-sibling because you both match paternal second cousins and closer, but not maternal cousins.
  • Sibling 3 is your maternal half-sibling because you both match maternal second cousins and closer, but not paternal cousins.

Close Relationships at Ancestry

Neither of my parents have tested, but my first cousin on my mother’s side has. Let’s say I have a suspected sibling or half-sibling match, so I click on the match’s name, then on Shared Matches.

Sure enough, my new match also matches my first cousin that I’ve labeled as “on my mother’s side.”

If my new match in the sibling range also matches my second cousins or closer on my father’s side, the new match is a full sibling, not a half-sibling.

Close Relationships at MyHeritage

Comparing my closest match provided a real surprise. I wonder if I’ve found a half-sibling to my mother.

Now, THIS is interesting.

Hmmm. More research is needed, beginning with the age of my match. MyHeritage provides ages if the MyHeritage member authorizes that information to be shared.

Close Relationships at 23andMe

Under DNA Relatives, click on your suspected sibling match, then scroll down and select “Find Relatives in Common.”

The Relatives in Common list shows people that match both of you.

The first common match is very close and a similar relationship to my closest match on my father’s side. This would be expected of a sibling. I have no common matches with this match to anyone on my mother’s side, so they are only related on my father’s side. Therefore they are a paternal half-sibling, not a full sibling.

More Tools Are Available

Hopefully, by now, you’ve been able to determine if your mystery match is a sibling, and if so, if they are a half or full sibling, and through which parent.

We have some additional tools that are relevant and can be very informative in some circumstances. I suggest utilizing these tools, even if you think you know the answer.

In this type of situation, there’s no such thing as too much information.

X Matching

X matching, or lack thereof, may help you determine how you are related to someone.

There are two types of autosomal DNA. The X chromosome versus chromosomes 1-22. The X chromosome (number 23) has a unique inheritance path that distinguishes it from your other chromosomes.

The X chromosome inheritance path also differs between men and women.

Here’s my pedigree chart in fan form, highlighting the ancestors who may have contributed a portion of their X chromosome to me. In the closest generation, this shows that I inherited an X chromosome from both of my parents, and who in each of their lines could have contributed an X to them.

The white or uncolored positions, meaning ancestors, cannot contribute any portion of an X chromosome to me based on how the X chromosome is inherited.

You’ll notice that my father inherited none of his X chromosome from any of his paternal ancestors, so of course, I can’t inherit what he didn’t inherit. There are a very limited number of ancestors on my father’s side whom I can inherit any portion of an X chromosome from.

Men receive their Y chromosome from their fathers, so men ONLY receive an X chromosome from their mother.

Therefore, men MUST pass their mother’s X chromosome on to their female offspring because they don’t have any other copy of the X chromosome to pass on.

Men pass no X chromosome to sons.

We don’t need to worry about a full fan chart when dealing with siblings and half-siblings.

We only need to be concerned with the testers plus one generation (parents) when utilizing the X chromosome in sibling situations.

These two female Disney Princesses, above, are full siblings, and both inherited an X chromosome from BOTH their mother and father. However, their father only has one X (red) chromosome to give them, so the two females MUST match on the entire red X chromosome from their father.

Their mother has two X chromosomes, green and black, to contribute – one from each of her parents.

The full siblings, Melody, and Cinderella:

  • May have inherited some portion of the same green and black X chromosomes from their mother, so they are partial matches on their mother’s X chromosome.
  • May have inherited the exact same full X chromosome from their mother (both inherited the entire green or both inherited the entire black), so they match fully on their mother’s X chromosome.
  • May have inherited the opposite X from different maternal grandparents. One inherited the entire green X and one inherited the entire black X, so they don’t match on their mother’s X chromosome.

Now, let’s look at Cinderella, who matches Henry.

This female and male full sibling match can’t share an X chromosome on the father’s side, because the male’s father doesn’t contribute an X chromosome to him. The son, Henry, inherited a Y chromosome instead from his father, which is what made them males.

Therefore, if a male and female match on the X chromosome, it MUST be through HIS mother, but could be through either of her parents. In a sibling situation, an X match between a male and female always indicates the mother.

In the example above, the two people share both of their mother’s X chromosomes, so are definitely (at least) maternally related. They could be full siblings, but we can’t determine that by the X chromosome in this situation, with males.

However, if the male matches the female on HER father’s X chromosome, there a different message, example below.

You can see that the male is related to the female on her father’s side, where she inherited the entire magenta X chromosome. The male inherited a portion of the magenta X chromosome from his mother, so these two people do have an X match. However, he matches on his mother’s side, and she matches on her father’s side, so that’s clearly not the same parent.

  • These people CAN NOT be full siblings because they don’t match on HER mother’s side too, which would also be his mother’s side if they were full siblings.
  • They cannot be maternal half-siblings because their X DNA only matches on her father’s side, but they wouldn’t know that unless she knew which side was which based on share matches.
  • They cannot be paternal half-siblings because he does not have an X chromosome from his father.

They could, however, be uncle/aunt-niece/nephew or first cousins on his mother’s side and her father’s side. (Yes, you’re definitely going to have to read this again if you ever need male-female X matching.)

Now, let’s look at X chromosome matching between two males. It’s a lot less complicated and much more succinct.

Neither male has inherited an X chromosome from their father, so if two males DO match on the X, it MUST be through their mother. In terms of siblings, this would mean they share the same mother.

However, there is one slight twist. In the above example, you can see that the men inherited a different proportion of the green and black X chromosomes from their common mother. However, it is possible that the mother could contribute her entire green X chromosome to one son, Justin in this example, and her entire black X chromosome to Henry.

Therefore, even though Henry and Justin DO share a mother, their X chromosome would NOT match in this scenario. This is rare but does occasionally happen.

Based on the above examples, the X chromosome may be relevant in the identification of full or half siblings based on the sexes of the two people who otherwise match at a level indicating a full or half-sibling relationship.

Here’s a summary chart for sibling X matching.

X Match Female Male
Female Will match on shared father’s full X chromosome, mother’s X is the same rules as chromosomes 1-22 Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both of their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related.
Male Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both or their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related. Both males are related on their mother’s side – either full or half-siblings.

Here’s the information presented in a different way.

DOES match X summary:

  • If a male DOES match a female on the X, he IS related to her through HIS mother’s side, but could match her on her mother or father’s side. If their match is not through her mother, then they are not full siblings nor maternal half-siblings. They cannot match through his father, so they cannot be paternal half-siblings.
  • If a female DOES match a female on the X, they could be related on either side and could be full or half-siblings.
  • If a male DOES match a male on the X, they ARE both related through their mother. They may also be related on their father’s side, but the X does not inform us of that.

Does NOT match X summary:

  • If a male does NOT match a female on the X, they are NOT related through HIS mother and are neither full siblings nor maternal half-siblings. Since a male does not have an X chromosome from his father, they cannot be paternal half-siblings based on an X match.
  • If a male does NOT match a male, they do NOT share a mother.
  • If a female does NOT match another female on the X, they are NOT full siblings and are NOT half-siblings on their paternal side. Their father only has one X chromosome, and he would have given the same X to both daughters.

Of the four autosomal vendors, only 23andMe and FamilyTreeDNA report X chromosome results and matching, although the other two vendors, MyHeritage and Ancestry, include the X in their DNA download file so you can find X matches with those files at either FamilyTreeDNA or GEDMatch if your match has or will upload their file to either of those vendors. I wrote step-by-step detailed download/upload instructions, here.

X Matching at FamilyTreeDNA

In this example from FamilyTreeDNA, the female tester has discovered two half-sibling matches, both through her father. In the first scenario, she matches a female on the full X chromosome (181 cM). She and her half-sibling MUST share their father’s entire X chromosome because he only had one X, from his mother, to contribute to both of his daughters.

In the second match to a male half-sibling, our female tester shares NO X match because her father did not contribute an X chromosome to his son.

If we didn’t know which parents these half-sibling matches were through, we can infer from the X matching alone that the male is probably NOT through the mother.

Then by comparing shared matches with each sibling, Advanced Matches, or viewing the match Matrix, we can determine if the siblings match each other and are from the same or different sides of the family.

Under Additional Tests and Tools, Advanced Matching, FamilyTreeDNA provides an additional tool that can show only X matches combined with relationships.

Of course, you’ll need to view shared matches to see which people match the mother and/or match the father.

To see who matches each other, you’ll need to use the Matrix tool.

At FamilyTreeDNA, the Matrix, located under Autosomal DNA Results and Tools, allows you to select your matches to see if they also match each other. If you have known half-siblings, or close relatives, this is another way to view relationships.

Here’s an example using my father and two paternal half-siblings. We can see that the half-siblings also match each other, so they are (at least) half-siblings on the paternal side too.

If they also matched my mother, we would be full siblings, of course.

Next, let’s use Y DNA and mitochondrial DNA.

Y DNA and Mitochondrial DNA

In addition to autosomal DNA, we can utilize Y DNA and mitochondrial DNA (mtDNA) in some cases to identify siblings or to narrow or eliminate relationship possibilities.

Given that Y DNA and mitochondrial DNA both have distinctive inheritance paths, full and half-siblings will, or will not, match under various circumstances.

Y DNA

Y DNA is passed intact from father to son, meaning it’s not admixed with any of the mother’s DNA. Daughters do not inherit Y DNA from their father, so Y DNA is only useful for male-to-male comparisons.

Two types of Y DNA are used for genealogy, STR markers for matching, and haplogroups, and both are equally powerful in slightly different ways.

Y DNA at FamilyTreeDNA

Men can order either 37 or 111 STR marker tests, or the BIg Y which provides more than 700 markers and more. FamilyTreeDNA is the only one of the vendors to offer Y DNA testing that includes STR markers and matching between men.

Men who order these tests will be compared for matching on either 37, 111 or 700 STR markers in addition to SNP markers used for haplogroup identification and assignment.

Fathers will certainly match their sons, and paternal line brothers will match each other, but they will also match people more distantly related.

However, if two men are NOT either full or half siblings on the paternal side, they won’t match at 111 markers.

If two men DON’T match, especially at high marker levels, they likely aren’t siblings. The word “likely” is in there because, very occasionally, a large deletion occurs that prevents STR matching, especially at lower levels.

Additionally, men who take the 37 or 111 marker test also receive an estimated haplogroup at a high level for free, without any additional testing.

However, if men take the Big Y-700 test, they not only will (or won’t) match on up to 700 STR markers, they will also receive a VERY refined haplogroup via SNP marker testing that is often even more sensitive in terms of matching than STR markers. Between these two types of markers, Y DNA testing can place men very granularly in relation to other men.

Men can match in two ways on Y DNA, and the results are very enlightening.

If two men match on BOTH their most refined haplogroup (Big Y test) AND STR markers, they could certainly be siblings or father/son. They could also be related on the same line for another reason, such as known or unknown cousins or closer relationships like uncle/nephew. Of course, Y DNA, in addition to autosomal matching, is a powerful combination.

Conversely, if two men don’t have a similar or close haplogroup, they are not a father and son or paternal line siblings.

FamilyTreeDNA offers both inexpensive entry-level testing (37 and 111 markers) and highly refined advanced testing of most of the Y chromosome (Big Y-700), so haplogroup assignments can vary widely based on the test you take. This makes haplogroup matching and interpretation a bit more complex.

For example, haplogroups R-M269 and I-BY14000 are not related in thousands of years. One is haplogroup R, and one is haplogroup I – completely different branches of the Y DNA tree. These two men won’t match on STR markers or their haplogroup.

However, because FamilyTreeDNA provides over 50,000 different haplogroups, or tree branches, for Big Y testers, and they provide VERY granular matching, two father/son or sibling males who have BOTH tested at the Big Y-700 level will have either the exact same haplogroup, or at most, one branch difference on the tree if a mutation occurred between father and son.

If both men have NOT tested at the Big Y-700 level, their haplogroups will be on the same branch. For example, a man who has only taken a 37/111 marker STR test may be estimated at R-M269, which is certainly accurate as far as it goes.

His sibling who has taken a Big Y test will be many branches further downstream on the tree – but on the same large haplogroup R-M269 branch. It’s essential to pay attention to which tests a Y DNA match has taken when analyzing the match.

The beauty of the two kinds of tests is that even if one haplogroup is very general due to no Big Y test, their STR markers should still match. It’s just that sometimes this means that one hand is tied behind your back.

Y DNA matching alone can eliminate the possibility of a direct paternal line connection, but it cannot prove siblingship or paternity alone – not without additional information.

The Advanced Matching tool will provide a list of matches in all categories selected – in this case, both the 111 markers and the Family Finder test. You can see that one of these men is the father of the tester, and one is the full sibling.

You can view haplogroup assignments on the public Y DNA tree, here. I wrote about using the public tree, here.

In addition, recently, FamilyTreeDNA launched the new Y DNA Discover tool, which explains more about haplogroups, including their ages and other fun facts like migration paths along with notable and ancient connections. I wrote about using the Discover tool, here.

Y DNA at 23andMe

Testers receive a base haplogroup with their autosomal test. 23andMe tests a limited number of Y DNA SNP locations, but they don’t test many, and they don’t test STR markers, so there is no Y DNA matching and no refined haplogroups.

You can view the haplogroups of your matches. If your male sibling match does NOT share the same haplogroup, the two men are not paternal line siblings. If two men DO share the same haplogroup, they MIGHT be paternal siblings. They also might not.

Again, autosomal close matching plus haplogroup comparisons include or exclude paternal side siblings for males.

Paternal side siblings at 23andMe share the same haplogroup, but so do many other people. These two men could be siblings. The haplogroups don’t exclude that possibility. If the haplogroups were different, that would exclude being either full or paternal half-siblings.

Men can also compare their mitochondrial DNA to eliminate a maternal relationship.

These men are not full siblings or maternal half-siblings. We know, unquestionably, because their mitochondrial haplogroups don’t match.

23andMe also constructs a genetic tree, but often struggles with close relative placement, especially when half-relationships are involved. I do not recommend relying on the genetic tree in this circumstance.

Mitochondrial DNA

Mitochondrial DNA is passed from mothers to all of their children, but only females pass it on. If two people, males or females, don’t match on their mitochondrial DNA test, with a couple of possible exceptions, they are NOT full siblings, and they are NOT maternal half-siblings.

Mitochondrial DNA at 23andMe

23andMe provides limited, base mitochondrial haplogroups, but no matching. If two people don’t have the same haplogroup at 23andMe, they aren’t full or maternal siblings, as illustrated above.

Mitochondrial DNA at FamilyTreeDNA

FamilyTreeDNA provides both mitochondrial matching AND a much more refined haplogroup. The full sequence test (mtFull), the only version sold today, is essential for reliable comparisons.

Full siblings or maternal half-siblings will always share the same haplogroup, regardless of their sex.

Generally, a full sibling or maternal half-sibling match will match exactly at the full mitochondrial sequence (FMS) level with a genetic distance of zero, meaning fully matching and no mismatching mutations.

There are rare instances where maternal siblings or even mothers and children do not match exactly, meaning they have a genetic distance of greater than 0, because of a mutation called a heteroplasmy.

I wrote about heteroplasmies, here.

Like Y DNA, mitochondrial DNA cannot identify a sibling or parental relationship without additional evidence, but it can exclude one, and it can also provide much-needed evidence in conjunction with autosomal matching. The great news is that unlike Y DNA, everyone has mitochondrial DNA and it comes directly from their mother.

Once again, FamilyTreeDNA’s Advanced Matching tool provides a list of people who match you on both your mitochondrial DNA test and the Family Finder autosomal test, including transfers/uploads, and provides a relationship.

You can see that our tester matches both a full sibling and their mother. Of course, a parent/child match could mean that our tester is a female and one of her children, of either sex, has tested.

Below is an example of a parent-child match that has experienced a heteroplasmy.

Based on the comparison of both the mitochondrial DNA test, plus the autosomal Family Finder test, you can verify that this is a close family relationship.

You can also eliminate potential relationships based on the mitochondrial DNA inheritance path. The mitochondrial DNA of full siblings and maternal half-siblings will always match at the full sequence and haplogroup level, and paternal half-siblings will never match. If paternal half-siblings do match, it’s happenstance or because of a different reason.

Sibling Summary and Checklist

I’ve created a quick reference checklist for you to use when attempting to determine whether or not a match is a sibling, and, if so, whether they are half or full siblings. Of course, these tools are in addition to the DNAPainter Shared cM Tool and GEDmatch’s Relationship Predictor Calculator.

FamilyTreeDNA Ancestry 23andMe MyHeritage GEDmatch
Matching Yes Yes Yes Yes Yes
Shared Matches Yes – In Common With Yes – Shared Matches Yes – Relatives in Common Yes – Review DNA Match Yes – People who match both or 1 of 2 kits
Relationship Between Shared Matches No No No Yes, under shared match No
Matches Match Each Other* Yes, Matrix No Yes, under “View DNA details,” then, “compare with more relatives” Partly, through triangulation Yes, can match any kits
Full Siblings Yes Sibling, implies full Yes Brother, Sister, means full No
Half Siblings Sibling, Uncle/Aunt-Niece/Nephew, Grandparent-Grandchild Close Family – 1C Yes Half sibling, aunt/uncle-niece-nephew No
Fully Identical Regions (FIR) No No Yes No Yes
Half Identical Regions (HIR) No No Yes No Yes
X matching Yes No Yes No Yes
Unusual Reporting or Anomalies No No, Timber is not used on close relationships X match added into total, FIR added twice No Matching amount can vary from vendors
Y DNA Yes, STRs, refined haplogroups, matching No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Mitochondrial DNA Yes, full sequence, matching, refined haplogroup No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Combined Tools (Autosomal, X, Y, mtDNA) Yes No No No No

*Autoclusters through Genetic Affairs show cluster relationships of matches to the tester and to each other, but not all matches are included, including close matches. While this is a great tool, it’s not relevant for determining close and sibling relationships. See the article, AutoClustering by Genetic Affairs, here.

Additional Resources

Some of you may be wondering how endogamy affects sibling numbers.

Endogamy makes almost everything a little more complex. I wrote about endogamy and various ways to determine if you have an endogamous heritage, here.

Please note that half-siblings with high cM matches also fall into the range of full siblings (1613-3488), with or without endogamy. This may be, but is not always, especially pronounced in endogamous groups.

As another resource, I wrote an earlier article, Full or Half Siblings, here, that includes some different examples.

Strategy

You have a lot of quills in your quiver now, and I wish you the best if you’re trying to unravel a siblingship mystery.

You may not know who your biological family is, or maybe your sibling doesn’t know who their family is, but perhaps your close relatives know who their family is and can help. Remember, the situation that has revealed itself may be a shock to everyone involved.

Above all, be kind and take things slow. If your unexpected sibling match becomes frightened or overwhelmed, they may simply check out and either delete their DNA results altogether or block you. They may have that reaction before you have a chance to do anything.

Because of that possibility, I recommend performing your analysis quickly, along with taking relevant screenshots before reaching out so you will at least have that much information to work with, just in case things go belly up.

When you’re ready to make contact, I suggest beginning by sending a friendly, short, message saying that you’ve noticed that you have a close match (don’t say sibling) and asking what they know about their family genealogy – maybe ask who their grandparents are or if they have family living in the area where you live. I recommend including a little bit of information about yourself, such as where you were born and are from.

I also refrain from using the word adoption (or similar) in the beginning or giving too much detailed information, because it sometimes frightens people, especially if they know or discover that there’s a painful or embarrassing family situation.

And, please, never, ever assume the worst of anyone or their motives. They may be sitting at their keyboard with the same shocked look on their face as you – especially if they have, or had, no idea. They may need space and time to reach a place of acceptance. There’s just nothing more emotionally boat-capsizing in your life than discovering intimate and personal details about your parents, one or both, especially if that discovery is disappointing and image-altering.

Or, conversely, your sibling may have been hoping and waiting just for you!

Take a deep breath and let me know how it goes!

Please feel free to share this article with anyone who could benefit.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

How to Download Your DNA Match Lists & Segment Files

If you’ve taken an autosomal DNA test and you’re working to determine how your matches are related to you, meaning which ancestors you share, you’ll want to download your DNA match list.

There are three types of files that you can potentially download from each of the major autosomal DNA testing vendors.

Raw DNA file – If you want to upload your DNA file to another vendor for matching at their site (MyHeritage and FamilyTreeDNA,) you’ll need to download your raw data file from the vendor where you tested. I provided step-by-step instructions for this process at each of the vendors, here.

DNA Segment File – This file contains the segment information with each of your matches, including the start and end locations of your matching segment(s), the total number of matching (shared) centiMorgans (cM) above the vendor’s matching threshold, and sometimes the longest segment.

If you want to sort a spreadsheet to look for all of your matches on specific areas of chromosomes, this is the best way to achieve that goal. I use this information at DNAPainter when painting the segments of matches with whom I can identify a common ancestor.

You may be able to download filtered lists or individual match data as well, as opposed to an entire match list spreadsheet, but the methodology varies at each vendor.

Ancestry does not provide segment information at all. 23and Me combines this information with the next file.

Match List – This file will contain your list of matches along with other information about the matches which you will find genealogically helpful. I find using this file easier than viewing each match separately at the vendors when trying to obtain an overview or when searching for a particular surname in either my match list or their ancestral surnames.

I can also sort by haplogroup, for example, which can sometimes help immensely if that information is available.

Ancestry does not facilitate or allow downloading your match list. 23andMe combines this information with your matching DNA segments in one file.

Here’s a handy-dandy summary by testing vendor.

Vendor Raw DNA File DNA Segment File Match List
23andMe Yes, instructions here Yes, instructions in this article Yes, instructions in this article
FamilyTreeDNA Yes, instructions here Yes, instructions in this article Yes, instructions in this article
MyHeritage Yes, instructions here Yes, instructions in this article Yes, instructions in this article
Ancestry Yes, instructions here No, does not provide No, does not provide

I’ve written step-by-step instructions for how to download your Match List and DNA Segment file(s) at each vendor.

23andMe

Please note that 23and Me is the only vendor to limit your matches, which means you will only receive a file containing:

  • 1500 matches if you tested before the V5 chip, so before August 9, 2017, and have not established communications with matches that would have rolled off of your list otherwise. (I have 1805 matches, so have established contact with 305 that would otherwise have rolled off the end.)
  • 1500 if you tested on the V5 chip, so beginning August 9, 2017, but did not establish communications OR did not purchase the health option, OR did not purchase the yearly membership. If you established communications, those matches won’t roll off, and if you purchase the membership, the match threshold is raised. You may still need to establish contact to keep people from rolling off the larger list as well.
  • 5000-ish (23andMe doesn’t say exactly) if you tested on the V5 chip for BOTH ancestry and healthy AND purchased the yearly membership.

You will only receive match information for people who are listed on your restricted match list, not people who have rolled off as closer matches arrived. Therefore, I encourage you to retain your old match lists because some of your matches will be gone each time you download.

23andMe combines your match list with your segment file.

Sign on and select DNA Relatives on the toolbar.

Next, select “See all relatives.”

Scroll to the very bottom and click on Request DNA Relatives Data Download.

Your file will be prepared, and you’ll receive an email when the file is ready to be downloaded. Mine only took a minute or two, and I simply waited on my 23andMe page until the message appeared.

Save and open the downloaded file, and you’ll see a variety of information about each of your matches, in closest-match-first order, including:

  • Match name
  • Chromosome segment match information, including start and end locations, genetic distance (centiMorgans cMs,) and SNPs
  • Maternal and paternal sides if your parent or parents have tested
  • Number of matching segments
  • Relationship information
  • Birth year
  • Percent shared DNA
  • Haplogroups
  • Notes you’ve made
  • Family surnames
  • Family locations
  • 4 Grandparents’ birth country
  • Family Tree URL, external to 23andMe, if provided by tester

FamilyTreeDNA

At FamilyTreeDNA, your match list and segment information are contained in two separate files.

Sign on and click on Family Finder Matches under Autosomal DNA Results and Tools.

You’ll see your matches. At the top of your match list, on the right side, click on “Export CSV.”

You can select “All Matches” or “Filtered Matches.”

If you haven’t selected a filter, you won’t be able to make that selection. Generally, you want the entire match list.

Your match list will be prepared and downloaded.

You’ll find:

  • Match name
  • Relationship information
  • Shared DNA total
  • Longest segment
  • Linked relationship if you have linked that person to their profile card in your tree
  • Ancestral surnames
  • Haplogroups if tested
  • Notes you’ve made
  • Bucketing – Paternal, maternal, both, none
  • X-Match amount

Note – If you’re a male, valid X matches (meaning matches that are not identical by chance,) will always be on your maternal side because you received your Y chromosome from your father instead of a copy of his X. I wrote about X matching, here.

If your match is a male, an X match will always be through his mother’s line.

Segment information is available in a separate download on the chromosome browser page.

Under Autosomal DNA Results and Tools, click on the Chromosome Browser.

You’ll be able to select people to compare in the chromosome browser, but to download all of your matching segments to all of your matches, click on “Download All Segments.”

If you select people to compare your relationship, and then click on “Download Segments,” you’ll only be downloading the segments for the people you are comparing.

To download all of your segments, be sure the “All” is showing in the link and download before selecting anyone for comparison.

MyHeritage

MyHeritage also provides two separate files for matches and chromosome segment information.

Select DNA matches, then the 3-dot menu, then “Export DNA Matches.”

If you also want your individual segment information for your matches, also order the second file on that menu, “Export shared DNA segment info for shared DNA matches.”.

You’ll see a message that your report is being prepared and will be sent to the email address on file.

If your file doesn’t appear in your email box, check your spam folder.

Your match list provides:

  • Match name
  • Age
  • Country
  • Contact link
  • DNA managed by (if not the tester)
  • Contact link for DNA manager
  • Relationship information
  • Total cM
  • Percent of matching DNA
  • Number of matching segments
  • Largest segment
  • Has tree and tree manager
  • Number of people in their tree
  • Tree link and link to contact tree manager
  • Number of SmartMatches
  • Shared ancestral surnames
  • All ancestral surnames
  • Notes you’ve made
  • Has Theory of Family Relativity

Now that you have these files, what do you do with them?

Evaluating

Is there anything that stands out as remarkable, perhaps that you didn’t know or notice before? Patterns that might be informative?

I had a huge brick wall on my mother’s side that has since fallen, but retrospectively, had I reviewed these lists when that wall was still standing firm, there was a huge hint just waiting for me.

My mother has a very unexpected Acadian line through her great-grandfather, Anthony Lore, so 12.5% of her heritage.

On my match list, I see a large number of French surnames, but I didn’t know of any French ancestors on either side of my tree. Many surnames repeat, such as LeBlanc, d’Entremont (which is really unusual), Landry, and deForest. Why were these people on my match list? This is definitely smoke, and there must be fire someplace, but where?

Looking at the locations associated with these matches’ ancestors would have provided additional clues.

However, simply googling my great-grandfather’s surname in combination with those French surnames I listed above produced these 3 top search results.

Yes, you guessed it. Anthony turned out to be “Antoine” and Lore is spelled in a variety of ways, including Lord. His family is Acadian.

That’s Anthony Lore, which is how he was listed on the death certificate of his son, in the software on my computer, above, and here is Antoine Lore at WikiTree, below.

As you can see, that brick wall falling opened a whole new group of ancestors, and along with it, my appreciation of endogamy😊

Match lists facilitate viewing the big picture and can be a very useful tool for people seeking unknowns or trying to group people together in a variety of ways.

Do you have any brick walls that need to fall?

How can or do you utilize your match lists?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research