DNA: In Search Of…Your Grandparents

Are you searching for an unknown relative or trying to unravel and understand unexpected results? Maybe you discovered that one or both of your parents is not your biological parent. Maybe one of your siblings might be a half-sibling instead. Or maybe you suddenly have an unexpected match that looks to be an unknown close relative, possibly a half-sibling. Perhaps there’s a close match you can’t place.

Or, are you searching for the identity of your grandparent or grandparents? If you’re searching for your parent or parents, often identifying your grandparents is a necessary step to narrow the parent-candidates.

I’ve written an entire series of “In Search of Unknown Family” articles, permanently listed together, here. They will step you through the search process and help you understand how to unravel your results. If you’re new, reading these, in order, before proceeding, would be a good idea.

Identifying a Grandparent

I saved this “grandparents” article for later in the series because you will need the tools and techniques I’ve introduced in the earlier articles. Identifying grandparents is often the most challenging of any of the relationships we’ve covered so far. In part because each of those four individuals occupies a different place in your tree, meaning their X, Y-DNA and mitochondrial DNA is carried by different, and not all, descendants. This means we sometimes have to utilize different tools and techniques.

If you’re trying to identify any of your four grandparents, females are sometimes more challenging than males.

Why?

Women don’t have a Y chromosome to test. This can be a double handicap. Female testers can’t test a Y chromosome, and maternal ancestors don’t have a Y chromosome to match.

Of course, every circumstance differs. You may not have a male to test for paternal lines either.

The maternal grandfather can be uniquely challenging, because two types of DNA, Y-DNA and mitochondrial DNA matching are immediately eliminated for all testers.

While I’ve focused on the maternal grandfather in this example, these techniques can be utilized for all four grandparents as well as for parents. At the end, I’ll review other grandparent relationships and additional tools you might be able to utilize for each one.

In addition to autosomal DNA, we can also utilize mitochondrial DNA, Y-DNA and sometimes X DNA in certain situations.

Testing, Tests and Vendors

As you recall, only men have a Y chromosome (blue arrow), so only genetic males can take a Y-DNA test. Men pass their Y chromosome from father to son in each generation. Daughters don’t receive a Y chromosome.

Everyone has their mother’s mitochondrial DNA (pink arrow.) Women pass their mitochondrial DNA to both sexes of their children, but only females pass it on. In the current generation, represented by the son and daughter, above, the mother’s yellow heart-shaped mitochondrial DNA is inherited by both sexes of her children. In the current generation, males and females can both test for their mother’s mitochondrial DNA.

Of course, everyone has autosomal DNA, inherited from all of their ancestral lines through at least the 5th or 6th generation, and often further back in time. Autosomal DNA is divided in half in each generation, as children inherit half of each parents’ autosomal DNA (with the exception of the X chromosome, which males only inherit from their mother.)

The four major vendors, Ancestry, 23andMe, FamilyTreeDNA and MyHeritage sell autosomal DNA tests, but only FamilyTreeDNA sells Y-DNA and mitochondrial DNA tests.

Only 23andMe and FamilyTreeDNA report X matching.

All vendors except Ancestry provide segment location information along with a chromosome browser.

You can read about the vendor’s strengths and weaknesses in the third article, here.

Ordering Y and Mitochondrial DNA Tests

If you’re seeking the identities of grandparents, the children and parents, above, can test for the following types of DNA in addition to autosomal:

Person in Pedigree Y-DNA Mitochondrial
Son His father’s blue star His mother’s pink heart
Daughter None Her mother’s pink heart
Father His father’s blue star His mother’s gold heart
Mother None Her mother’s pink heart

Note that none of the people shown above in the direct pedigree line carry the Y-DNA of the green maternal grandfather. However, if the mother has a full sibling, the green “Male Child,” he will carry the Y-DNA of the maternal grandfather. Just be sure the mother and her brother are full siblings, because otherwise, the brother’s Y-DNA may not have been inherited from your mother’s father. I wrote about full vs half sibling determination, here.

Let’s view this from a slightly different perspective. For each grandparent in the tree, which of the two testers, son or daughter, if either, carry that ancestor’s DNA of the types listed in the columns.

Ancestor in Tree Y-DNA Mitochondrial DNA Autosomal DNA X DNA
Paternal Grandfather Son Neither Son, daughter Neither
Paternal Grandmother Has no Y chromosome None (father has it, doesn’t pass it on to son or daughter) Son, daughter Daughter (son does not receive father’s X chromosome)
Maternal Grandfather Neither Neither Son, daughter Son, daughter (potentially)
Maternal Grandmother Has no Y chromosome Son, daughter Son, daughter Son, daughter (potentially)

Obtaining the Y-DNA and mitochondrial DNA of those grandparents from their descendants will provide hints and may be instrumental in identifying the grandparent.

FamilyTreeDNA

You’ll need to order Y-DNA (males only) and mitochondrial DNA tests separately from autosomal DNA tests. They are three completely different tests.

At FamilyTreeDNA, the autosomal DNA test is called Family Finder to differentiate it from their Y-DNA and mitochondrial DNA tests.

Their autosomal test is called Family Finder whether you order a test from FamilyTreeDNA, or upload your results to their site from another vendor (instructions here.)

I recommend ordering the Big Y-700 Y-DNA test if possible, and if not, the highest resolution Y-DNA test you can afford. The Big Y-700 is the most refined Y-DNA test available, includes multiple tools and places Big Y-700 testers on the Time Tree through the Discover tool, providing relatively precise estimates of when those men shared a common ancestor. If you’ve already purchased a lower-precision Y-DNA test at FamilyTreeDNA, you can easily upgrade.

I wrote about using the Discover tool here. The recently added Group Time Tree draws a genetic Y-DNA tree of Big-Y testers in common projects, showing earliest known ancestors and the date of the most recent common ancestor.

You need to make sure your Family Finder, mitochondrial DNA and Y-DNA (if you’re a male) tests are ordered from the same account at FamilyTreeDNA.

You want all 3 of your tests on the same account (called a kit number) so that you can use the advanced search features that display people who match you on combinations of multiple kinds of tests. For example, if you’re a male, do your Y-DNA matches also match you on the autosomal Family Finder test, and if so, how closely? Advanced matching also provides X matching tools.

X DNA is included in autosomal tests. X DNA has a distinct matching pattern for males and females which makes it uniquely useful for genealogy. I wrote about X DNA matching here.

If you upload your autosomal results to FamilyTreeDNA from another company, you’re only uploading a raw DNA file, not the DNA itself, so FamilyTreeDNA will need to send you a swab kit to test your Y-DNA and mitochondrial DNA. If you upload your autosomal DNA, simply sign in to your kit, purchase the Y-DNA and/or mitochondrial DNA tests and they will send you a swab kit.

If you test directly at FamilyTreeDNA, you can add any test easily by simply signing in and placing an order. They will use your archived DNA from your swab sample, as long as there’s enough left and it’s of sufficient quality.

Fish In All Ponds

The first important thing to do in your grandparent search is to be sure you’re fishing in all ponds. In other words, be sure you’ve tested at all 4 vendors, or uploaded files to FamilyTreeDNA and MyHeritage.

When you upload files to those vendors, be sure to purchase the unlock for their advanced tools, because you’re going to utilize everything possible.

If you have relatively close matches at other vendors, ask if they will upload their files too. The upload is free. Not only will they receive additional matches, and another set of ethnicity results, their results will help you by associating your matches with specific sides of your family.

Why Order Multiple Tests Now Instead of Waiting?

I encourage testers to order their tests at the beginning of their journey, not one at a time. Each new test from a vendor takes about 6-8 weeks from the time you initially order – they send the test, you swab or spit, return it, and they process your DNA. Of course, uploading takes far less time.

If you’re adding elapsed time, two autosomal tests (Ancestry and 23andMe), two uploads (FamilyTreeDNA and MyHeritage,) a Y-DNA and a mitochondrial DNA test, if all purchased serially, one after the other, means you’ll be waiting about 6-8 months.

Do you want to wait 6-8 months? Can you afford to?

Part of that answer has to do with what, exactly, you’re seeking.

A Name or Information?

Are you seeking the name of a person, or are you seeking information about that person? With grandparents, you may be hoping to meet them, and time may be of the essence. Time delayed may not be able to be recovered or regained.

Most people don’t just want to put a name to the person they are seeking – they want to learn about them. You will have different matches at each company. Even after you identify the person you seek, the people you match at each company may have information about them, their photos, know about their life, family, and their ancestors. They may be able and willing to facilitate an introduction if that’s what you seek.

One cousin that I assisted discovered that his father had died just 6 weeks before he made the connection. He was heartsick.

Having data from all vendors simultaneously will allow you to compile that data and work with it together as well as separately. Using your “best” matches at each company, augmented by both Y-DNA and mitochondrial DNA can make MUCH shorter work of this search.

Your Y-DNA, if you’re a male will give you insights into your surname line, and the Big-Y test now comes with estimates of how far in the past you share a common ancestor with other men that have taken the Big-Y test. This can be a HUGE boon to a male trying to figure out his surname line.

Y-DNA and mitochondrial DNA, respectively, will eliminate many people from being your mother or father, or your direct paternal or direct maternal line ancestor. Both provide insights into which population and where that population originated as well. In other words, it provides you lineage-specific information not available elsewhere.

Your Y-DNA and mitochondrial DNA can also provide critically important information about whether that direct line ancestor belonged to an endogamous population, and where they came from.

Strategies

You may be tempted to think that you only need to test at one vendor, or at the vendor with the largest database, but that’s not necessarily true.

Here’s a table of my closest matches at the 4 vendors.

Vendor Closest Maternal Closest Paternal Comments
Ancestry 1C, 1C1R Half 1C, 2C I recognized both of the maternal and neither of the paternal.
23andMe 2C, 2C 1C1R, half-gr-niece Recognized both maternal, one paternal
MyHeritage Mother uploaded, 1C Half-niece, half 1C Recognized both maternal, one paternal
FamilyTreeDNA Mother tested, 1C1R Parent/child, half-gr-niece Recognized all 4

To be clear, I tested my mother at FamilyTreeDNA before she passed away, but if I was an adoptee searching for my mother, that’s the first database she would be in. As her family, we were able to order the Family Finder test from her archived DNA after she had passed away. I then uploaded her DNA file to MyHeritage, but she’ll never be at either 23andMe or Ancestry because they don’t accept uploads and she clearly can’t test.

Additionally, being able to identify maternal matches by viewing shared matches with my mother separates out close matches from my paternal side.

Let’s put this another way, I stand a MUCH BETTER chance of unraveling this mystery with the combined closest matches of all 4 databases instead of the top ones from just one database.

I’m providing analysis methodologies for working with results from all of the vendors together, in case your answer is not immediately obvious. Taking multiple tests facilitates using all of these tools immediately, not months later. Solving the puzzle sooner means you may not miss valuable connection opportunities.

You may also discover that the door slams shut with some people, but another match may be unbelievably helpful. Don’t unnecessarily limit your possibilities.

Here’s the testing and upload strategy I recommend.

What When Ancestry 23andMe MyHeritage FamilyTreeDNA GEDmatch
Order autosomal test Initially Yes Yes Upload Upload Upload
Order Big-Y DNA test if male Initially Yes
Order mitochondrial DNA test Initially Yes
Upload free autosomal file From Ancestry or 23andMe Yes Yes Yes
Unlock Advanced Tools When upload file $29 $19 $9.95 month
Includes X Matching No Yes No Yes Yes
Chromosome Browser, segment location information No Yes Yes Yes Yes

When you upload a DNA file to a vendor site, only upload one file per site, per tester. Otherwise, multiple tests simply glom up everyone’s match list with multiple matches to the same person and can be very confusing.

  • One person took an autosomal test at a company that accepts uploads, forgot about it, uploaded a file from another vendor later, and immediately thought she had found her parent. She had not. She “found” herself.
  • Another person though she had found two sisters, but one person had uploaded their own file from two different vendors.

Multiple vendor sites reveal multiple close matches to different people which increase your opportunity to discover INFORMATION about your family, not just the identity of the person.

Match Ranges

Given that we are searching for an unknown maternal grandfather, your mother may not have had any (known) full siblings. The “best” match would be to a full or half siblings to your parents, or their descendants, depending on how old your grandparents would be.

Let’s take the “worst case” scenario, meaning there are no full siblings AND there are many possible generations between you and the people you may match.

Now, let’s look at DNAPainter’s Shared cM tool.

You’re going to be looking for someone who is either your mother’s half sibling on her father’s side, or who is a full sibling.

If your mother is adopted, it’s possible that she has or had full siblings. If your mother was born circa 1920, it’s likely that you will be matching the next generation, or two, or three.

However, if your mother was born later, you could be matching her siblings directly.

I’m going to assume half siblings for this example, because they are more difficult than full siblings.

Full sibling relationships for your mother’s siblings are listed at right. Your full aunt or uncle at top, then their descendant generations below.

At left, in red, are the half-sibling relationships and the matching amounts.

You can see that if you’re dealing with half 1C3R (half first cousin three times removed,) you may not match.

Therefore, in order to isolate matches, it’s imperative to test every relevant relative possible.

Who’s Relevant for DNA Testing?

Who is relevant to test If you’re attempting to identify your maternal grandfather?

The goal is to be able to assign matches to the most refined ancestor possible. In other words, if you can assign someone to either your grandmother’s line, or your grandfather’s line, that’s better than assigning the person to your grandparents jointly.

Always utilize the tests of the people furthest up the tree, meaning the oldest generations. Their DNA is less-diluted, meaning it has been divided fewer times. Think about who is living and might be willing to test.

You need to be able to divide your matches between your parents, and then between your grandparents on your mother’s side.

  • Test your parents, of course, and any of their known siblings, half or full.
  • If those siblings have passed away, test as many of their children as you can.
  • If any of your grandparents are living, test them
  • If BOTH of your grandparents on the same side aren’t available to test, test any, preferably all, living aunts or uncles.
  • If your maternal grandmother had siblings, test them or their descendants if they are deceased.
  • If your parents are deceased, test your aunts, uncles, full siblings and half-siblings on your mother’s side. (Personally, I’d test all half-siblings, not just maternal.)
  • Half-siblings are particularly valuable because there is no question which “side” your shared DNA came from. They will match people you don’t because they received part of your parent’s DNA that you did not.

Furthermore, shared matches to half-siblings unquestionably identify which parent those matches are through.

Essentially, you’re trying to account for all matches that can be assigned to your grandparents whose identities you know – leaving only people who descend from your unknown maternal grandfather.

Testing your own descendants will not aid your quest. There is no need to test them for this purpose, given that they received half of your DNA.

I wrote about why testing close relatives is important in the article Superpower: Your Aunts’ and Uncles’ DNA is Your DNA Too – Maximize Those Matches!

Create or Upload a Tree

Three of the four major vendors, plus GEDMatch, support and utilize family trees.

You’ll want to either upload or create a tree at each of the vendor sites.

You can either upload a GEDCOM file from your home computer genealogy software, or you can create a tree at one of the vendors, download it, and upload to the others. I described that process at Ancestry, here.

Goal

Your goal is to work with your highest matches first to determine how they are related to you, thereby eliminating matches to known lineages.

Assuming you’re only searching for the identity of one grandparent, it’s beneficial to have done enough of your genealogy on your three known grandparents to be able to assign matches from those lines to those sides.

Step 1 is to check each vendor for close matches that might fall into that category.

The Top 15 at Each Vendor

Your closest several autosomal matches are the most important and insightful. I begin with the top 15 autosomal results at each vendor, initially, which provides me with the best chance of meaningful close relationship discoveries.

Create a Spreadsheet or Chart

I hate to use that S word (spreadsheet), because I don’t want non-technical people to be discouraged. So, I’m going to show you how I set up a spreadsheet and you can simply create a chart or even draw this out on paper if you wish.

I’ve color-coded columns for each of my 4 grandparents. The green column is the target Maternal Grandfather whose identity I’m seeking.

I match our first example; Erik, at 417 cM. Based on various pieces of information, taken together, I’ve determined that I’m Erik’s half 1C1R. His 8 great-grandparent surnames, or the ones he has provided, indicate that I’m related to Eric on my paternal grandfather’s line.

You’ll want to record your closest matches in this fashion.

Let’s look at how to find this information and work with the tools at the individual vendors.

23andMe

Let’s start at 23andMe, because they create a potential genetic tree for you, which may or may not be accurate.

I have two separate tests at 23andMe. One is a V3 and one is a V4 test. I keep one in its pristine state, and I work with the second one. You’ll see two of “me” in the tree, and that’s why.

23andMe makes it easy to see estimated relationships, although they are not always correct. Generally, they are close, and they can be quite valuable.

Click on any image to enlarge

The maternal and paternal “sides” may not be positioned where genealogists are used to seeing them. Remember, 23andMe has no genealogy trees, so they are attempting to construct a genetic tree based on how people are related to you and to each other, with no prior knowledge. They do sometimes have issues with half-relationships, so I’d encourage you to use this tree to isolate people to the three grandparents you know.

In my case, I was able to determine the maternal and paternal sides easily based on known cousins. This is the perfect example of why it’s important to test known relatives from both sides of your family.

My paternal side, at right, in blue, was easy because I recognized my half-sister’s family, and because of known cousins who I recognized from having tested elsewhere. I’ve worked with them for years. The blue stars show people I could identify, mostly second cousins.

My maternal side is at left, in red. Normally, for genealogists, the maternal side is at right, and the paternal at left, so don’t make assumptions, and don’t let this positioning throw you.

I’m pretending I don’t know who my maternal grandfather is. I was able to identify my maternal grandmother’s side based on a known second cousin.

That leaves my target – my maternal grandfather’s line.

All of the matches to the left of the red circle would, by process of elimination, be on my maternal grandfather’s side.

The next step would be to figure out how the 5 people descending from my maternal grandfather’s line are related to each other – through which of their ancestors.

On the DNA Relatives match list, here’s what needs to be checked:

  • Do your matches share surnames with you or your ancestors?
  • Do they show surnames in common with each other?
  • Is there a common location?
  • Birth year which helps you understand their potential generation.
  • Did they list their grandparents’ birthplaces?
  • Did they provide a family tree link?
  • Do they also match each other using the Relatives in Common feature?
  • Do they triangulate, indicated by “DNA Overlap” in Relatives in Common?
  • Who else is on the Relatives in Common list, and what do they have in common with each other?
  • Looking at your Ancestry Composition compared with theirs, what are your shared populations, and are they relevant? If you are both 100% European, then shared populations aren’t useful, but if both people share the same minority ancestry, especially on the same segments, it may indeed be relevant – especially if it can’t be accounted for on the known sides of the family.

Reach out to these people and see what they know about their genealogy, if they have tested elsewhere, and if they have a genealogy tree someplace that you can view.

If they can tell you their grandparents’ names, birth and death dates and locations, you can check public sources like WikiTree, FamilySearch and Geni, or build trees for them. You can also use Newspaper resources, like Newspapers.com, NewspaperArchive and the newspapers at MyHeritage.

I added the top 15 23andMe matches into the spreadsheet I created.

You’ll notice that not many people at 23andMe enter surnames. However, if you can identify individuals from your 3 known lines, you can piggyback the rest by using Relatives in Common in conjunction with the genetic tree placement.

Be sure to check all the people that are connected to the target line in your genetic tree.

You’ll want to harvest your DNA segments to paint at DNAPainter if you don’t solve this mystery with initial reviews at each vendor.

Ancestry

Let’s move to Ancestry next.

At Ancestry, you’ll want to start with your closest matches on your match list.

Ancestry classifies “Close Matches” as anyone 200 cM or greater, which probably won’t reach as far down as the matches we’ll want to include.

Some of the categories in the Shared cM Chart from DNAPainter, above, don’t work based on ages, so I’ve eliminated those. I also know, for example, that someone who could fall in the grandparent/grandchild category (blue star,) in my case, does not, so must be a different relationship.

Second cousins, who share great-grandparents, can be expected to share about 229 cM of DNA on average, or between 41 and 592 cM. First cousins share 866 cM, and half first cousins share 449 cM on average.

I have 13 close matches (over 200 cM), but I’m including my top 15 at each vendor, so I added two more. You can always go back and add more matches if necessary. Just keep in mind that the smaller the match, the greater the probability that it came from increasingly distant generations before your grandparents. Your sweet spot to identify grandparents is between 1C and 2C.

I need to divide my close matches into 4 groups, each one equating to a grandparent. Record this on your spreadsheet.

You can group your matches at Ancestry using colored dots, which means you can sort by those groups.

You can also select a “side” for a match by clicking on “Yes” under the question, “Do you recognize them?”

Initially, you want to determine if this person is related to you on your mother’s or father side, and hopefully, through which grandparent.

Recently, Ancestry added a feature called SideView which allows testers to indicate, based on ethnicity, which side is “parent 1” and which side is “parent 2.” I wrote about that, here.

Make your selection, assuming you can tell which “side” of you descends from which parent based on ethnicity and/or shared matches. How you label “parent 1,” meaning either maternal or paternal, determines how Ancestry assigns your matches, when possible.

Using these tools, which may not be completely accurate, plus shared matches with people you can identify, divide your matches among your three known grandparents, meaning that the people you cannot assign will be placed in the fourth “unknown” column.

On my spreadsheet, I assign all of my closest matches to one of my grandparents. Michael is my first cousin (1C) and we share both maternal grandparents, so he’s not helpful in the division because he can’t be assigned to only one grandparent.

The green maternal grandfather is who I’m attempting to identify.

There are 4 people, highlighted in yellow, who don’t fall into the other three grandparent lines, so they get added to the green column and will be my focus.

I would be inclined to continue adding matches using a process known as the Leeds Method, until I had several people in each category. Looking back at the DNAPainter cM chart, at this point, we don’t have anyone below 200 cM and the matches we need might be below that threshold. The more matches you have to work with, the better.

At Ancestry, you cannot download your matches into a spreadsheet, nor can you work with other clustering tools such as Genetic Affairs, so you’ll have to build out your spreadsheet manually.

Check for the same types of information that I reviewed at 23andMe:

  • Review trees, if your matches have them, minimally recording the surnames of their 8 great-grandparents.
  • Review shared matches, looking for common names in the trees in recent generations.
  • View shared matches with people with whom you have a “Common Ancestor” indication, which means a ThruLine. You won’t have Thrulines with your target grandparent, of course, but Thrulines will allow you to place the match in one of the other columns. I wrote about ThruLines here, here and here.
  • ThruLines sometimes suggests ancestors based on other people’s trees, so be EXCEEDINGLY careful with potential ancestor suggestions. That’s not to say you should discount those suggestions. Just treat them as tree hints that may have been copy/pasted hundreds of times, because that’s what they are.

I make notes on each match so I can easily see the connection by scanning without opening the match.

Now, I have a total of 30 entries on my spreadsheet, 15 from 23and Me and 15 from Ancestry.

Why Not Use Autosclusters?

Even with vendors who allow or provide cluster tools, I don’t use an automated autocluster tool at this point. Autocluster tools often omit your closest matches because your closest matches would be in nearly half of all your clusters, which isn’t exactly informative. However, for this purpose, those are the very matches we need to evaluate.

After identifying groups of people that represent the missing grandparent, using our spreadsheet methodology, autoclusters could be useful to identify common surnames and even to compare the trees of our matches using AutoTree, AutoPedigree and AutoKinship. AutoClusters cannot be utilized at Ancestry, but is available through MyHeritage and at GEDmatch, or through Genetic Affairs for 23andMe and FamilyTreeDNA.

Next, let’s move to FamilyTreeDNA.

FamilyTreeDNA

FamilyTreeDNA is the only vendor that provides Family Matching, also known as “bucketing.” FamilyTreeDNA assigns your matches to either a paternal or maternal bucket, or both, based on triangulated matches with someone you’ve linked to a profile in your tree.

The key to Family Matching is to link known Family Finder matches to their profile cards in your tree.

Clicking on the Family Tree link at the top of your personal page allows you to link your matches to the profile cards of your matches.

FamilyTreeDNA utilizes these linked matches to assign those people, and matches who match you and those people, both, on at least one common segment, to the maternal or paternal tabs on your match list.

Always link as many known people as possible (red stars) which will result in more matches being bucketed and assigned to parents’ sides for you, even if neither parent is available to test.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

You can see at the top of my match list that I have a total of 8000 matches of which 3422 are paternal, 1517 are maternal and 3 match on both sides. Full siblings, their (and my) children and their descendants will always match on both sides. People with endogamy across both parents may have several matches on both sides.

If your relevant parent has tested, always work from their test.

Because we are searching for the maternal grandfather, in this case, we can ignore all tests that are bucketed as paternal matches.

Given that we are searching for my maternal grandfather, I probably have not been able to link as many maternal matches, other than possibly ones from my maternal grandmother. This means that the maternal grandfather’s matches are not bucketed because there are no identified matches to link on that side of my tree.

If you sort by maternal and paternal tabs, you’ll miss people who aren’t bucketed, meaning they have no maternal or paternal icon, so I recommend simply scanning down the list and processing maternal matches and non-bucketed matches.

By being able to confidently ignore paternally bucketed matches and only processing maternal and non-assigned matches, this is equivalent to processing the first 48 total matches. If I were to only look at the first 15 matches, 12 were paternal and only 3 are maternal.

Using bucketing at FamilyTreeDNA is very efficient and saves a lot of work.

Omitting paternal matches also means we are including smaller matches which could potentially be from common ancestors further back in the tree. Or, they could be younger testers. Or simply smaller by the randomness of recombination.

FamilyTreeDNA is a goldmine, with 16 of 20 maternal matches being from the unknown maternal grandfather.

Next, let’s see what’s waiting at MyHeritage.

MyHeritage

MyHeritage is particularly useful if your lineage happens to be from Europe. Of course, if you’re searching for an unknown person, you probably have no idea where they or their ancestors are from. Two of my best matches first appeared at MyHeritage.

Of course, your matches with people who descend from your unknown maternal grandfather won’t have any Theories of Family Relativity, as that tool is based on BOTH a DNA match plus a tree or document match. However, Theories is wonderful to group your matches to your other three grandparents.

MyHeritage provides a great deal of information for each match, including common surnames with your tree. If you recognize the surnames (and shared matches) as paternal or maternal, then you can assign the match. However, the matches you’re most interested in are the highest matches without any surnames in common with you – which likely point to the missing maternal grandfather.

However, those people may, and probably do, have surnames in common with each other.

Of the matches who aren’t attributed to the other three grandparents, the name Ferverda arises again and again. So does Miller, which suggests the grandparent or great-grandparent couple may well be Ferverda/Miller.

Let’s continue working through the process with our spreadsheet and see what we can discover about those surnames.

Our 60 Results

Of the 60 total results, 15 from each vendor, a total of 24 cannot be assigned to other columns through bucketing or shared matches, so are associated with the maternal grandfather. Of course, Michael who descends from both of my maternal grandparents won’t be helpful initially.

Cheryl, Donald and Michael are duplicates at different vendors, but the rest are not.

Of the relevant matches, the majority, 12 are from FamilyTreeDNA, four each are from Ancestry and MyHeritage, and three are from 23andMe.

Of the names provided in the surname fields of matches, in matches’ trees in the first few generations, and the testers’ surnames, Ferverda is repeated 12 times, for 50% of the time. Miller is repeated 9 times, so it’s likely that either of those are the missing grandfather’s surname. Of course, if we had Y-DNA, we’d know the answer to that immediately.

Comparing trees of my matches, we find John Ferverda as the common ancestor between two different matches. John is the son of Hiram Ferverda and Eva Miller who are found in several trees.

That’s a great hint. But is this the breakthrough I need?

What’s Next?

The next step is to look for connections between the maternal grandmother, Edith Lore, who is known in our example, and a Ferverda male. He is probably one of the sons of Hiram Ferverda and Eva Miller. Do they lived in the same area? In close proximity? Do they attend the same church or school? Are they neighbors or live close to the family or some of their relatives? Does she have connections with Ferverda family members? We are narrowing in.

Some of Hiram and Eva’s sons might be able to be eliminated based on age or other factors, or at least be less likely candidates. Any of their children who had moved out of state when the child was conceived would be less likely candidates. Age would be a factor, as would opportunity.

Target testing of the Ferverda sons’ children, or the descendants of their children would (probably) be able to pinpoint which of their sons is more closely related to me (or my mother) than the rest.

In our case, indeed, John Ferverda is the son we are searching for and his descendant, Michael is the highest match on the list. Cheryl and Donald descend from John’s brother, which eliminates him as a candidate. Another tester descends from a third Ferverda son, which eliminates that son as well.

Michael, my actual first cousin with a 755 cM match at one vendor, and 822 cM at a second vendor, is shown by the MyHeritage cM Explainer with an 88% probability that he is my first cousin.

However, when I’m trying to identify the maternal grandfather, which is half of that couple, I need to focus one generation further back in time to eliminate other candidates.

The second and third closest matches are both Donald at 395 cM and Cheryl at 467 cM who also share the same Ferverda/Miller lineage and are the children of my maternal grandfather’s brother.

On the spreadsheet, I need to look at the trees of people who have both Ferverda and Miller, which brought me to both Cheryl and Donald, then Michael, which allowed me to identify John Ferverda, unquestionably, as my grandfather based on the cM match amounts.

Cheryl and Donald, who are confirmed full siblings, and my mother either have to be first cousins, or half siblings. Their match with mother is NOT in the half-sibling range for one sibling, and on the lower edge with the other. Mother also matches Michael as a nephew, not more distantly as she would if he were a first cousin once removed (1C1R) instead of a nephew.

Evaluating these matches combined confirms that my maternal grandfather is indeed John Ferverda.

What About X DNA?

The X chromosome has a unique inheritance path which is sometimes helpful in this circumstance, especially to males.

Women inherit an X chromosome from both parents, but males inherit an X chromosome from ONLY their mother. A male inherits a Y chromosome from his father which is what makes him male. Women inherit two X chromosomes, one from each parent, and no Y, which is what makes them female.

Therefore, if you are a male and are struggling with which side of your tree matches are associated with, the X chromosome may be of help.

Your mother passed her X chromosome to you, which could be:

  • Her entire maternal X, meaning your maternal grandmother’s X chromosome
  • Her entire paternal X, meaning your maternal grandfather’s X chromosome (which descends from his mother)
  • Some combination of your maternal grandmother and maternal grandfather’s chromosomes

One thing we know positively is that a male’s X matches are ALWAYS from their maternal side only, so that should help when dividing a male’s matches maternally or paternally. Note – be aware of potential pedigree collapse, endogamy and identical-by-chance matches if it looks like a male has a X match on his father’s side.

Unfortunately, the X chromosome cannot assist females in the same way, because females inherit an X from both parents. Therefore, they can match people in the same was as a male, but also in additional ways.

  • Females will match their paternal grandmother on her entire X chromosome, and will match one or both of their maternal grandparents on the X chromosome.
  • Females will NEVER match their paternal grandfather’s X chromosome because their father did not inherit an X chromosome from his father.
  • Males will match one or both of their maternal grandparents on their X chromosome.
  • Males will NEVER match their paternal grandparents, because males do not receive an X chromosome from their father.

The usefulness of X DNA matching depends on the inheritance path of both the tester AND their match.

When Can Y-DNA or Mitochondrial DNA Help with Grandparent Identification?

If you recall, I selected the maternal grandfather as the person to seek because no tester carries either the Y-DNA or mitochondrial DNA of their maternal grandfather. In other words, this was the most difficult identification, meaning that any of the other three grandparents would be, or at least could be, easier with the benefit of Y-DNA and/or mitochondrial DNA testing.

In addition to matching, both Y-DNA and mitochondrial DNA will provide testers with location origins, both continental and often much more specific locations based on where other testers and matches are from.

Y-DNA often provides a surname.

Let’s see how these tests, matches and results can assist us.

  • Paternal grandfather – If I was a male descended from John Ferverda paternally, I could have tested both my autosomal DNA PLUS my Y-DNA, which would have immediately revealed the Ferverda surname via Y-DNA. Two Ferverda men are shown in the Ferverda surname DNA project, above.

That revelation would have confirmed the Ferverda surname when combined with the high frequency of Ferverda found among autosomal matches on the spreadsheet.

  • Maternal grandmother – If we were searching for a maternal grandmother, both the male and female sibling testers (as shown in the pedigree chart) would have her mitochondrial DNA which could provide matches to relevant descendants. Mitochondrial DNA at both FamilyTreeDNA and 23andMe could also eliminate anyone who does not match on a common haplogroup, when comparing 23andMe results to 23andMe results, and FamilyTreeDNA to FamilyTreeDNA results at the same level.

At 23andMe, only base level haplogroups are provided, but they are enough to rule out a direct matrilineal line ancestor.

At FamilyTreeDNA, the earlier HVR1 and HVR2 tests provide base level haplogroups, while full sequence testing provides granular, specific haplogroups. Full sequence is the recommended testing level.

  • Paternal grandmother – If we were searching for a paternal grandmother, testers would, of course, need either their father to test his mitochondrial DNA, or for one of his siblings to test which could be used in the same way as described for maternal grandmother matching.

Summary

Successfully identifying a grandparent is dependent on many factors. Before you make that identification, it’s very difficult to know which are more or less important.

For example, if the grandparent is from a part of the world with few testers, you will have far fewer matches, potentially, than other lines from more highly tested regions. In my case, two of my four grandparents’ families, including Ferverda, immigrated in the 1850s, so they had fewer matches than families that have been producing large families in the US for generations.

Endogamy may be a factor.

Family size in past and current generations may be a factor.

Simple luck may be a factor.

Therefore, it’s always wise to test your DNA, and that of your parents and close relatives if possible, and upload to all of the autosomal databases. Then construct an analysis plan based on:

  • How you descend from the grandparent in question, meaning do you carry their X DNA, Y-DNA or mitochondrial DNA.
  • Who else is available to test their autosomal DNA to assist with shared matches and the process of elimination.
  • Who else is available to test for Y-DNA and/or mitochondrial DNA of the ancestor in question.

If you don’t find the answer initially, schedule a revisit of your matches periodically and update your spreadsheet. Sometimes DNA and genealogy is a waiting same.

Just remember, luck always favors the prepared!

Resources

You may find the following resource articles beneficial in addition to the links provided throughout this article.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

X Chromosome Master Class

The X chromosome can be especially useful to genetic genealogists because it has a unique inheritance path. Thanks to that characteristic, some of the work of identifying your common ancestor is done just by simply HAVING an X match.

Unfortunately, X-DNA and X matching is both underutilized and somewhat misunderstood – in part because not all vendors utilize the X chromosome for matching.

The X chromosome has the capability of reaching further back in time and breaking down brick walls that might fall no other way.

Hopefully, you will read this article, follow along with your own DNA results and make important discoveries.

Let’s get started!

Who Uses the X Chromosome?

The X chromosome is autosomal in nature, meaning it recombines under some circumstances, but you only inherit your X chromosome from certain ancestors.

It’s important to understand why, and how to utilize the X chromosome for matching. In this article, I’ve presented this information in a variety of ways, including case studies, because people learn differently.

Of the four major testing vendors, only two provide X-DNA match results.

  • FamilyTreeDNA – provides X chromosome results and advanced matching capabilities including filtered X matching
  • 23andMe – provides X chromosome results, but not filtered X matching without downloading your results in spreadsheet format
  • Ancestry and MyHeritage do not provide X-DNA results but do include the X in your raw DNA file so you can upload to vendors who do provide X matching
  • GEDmatch – not a DNA testing vendor but a third-party matching database that provides X matching in addition to other tools

It’s worth noting at this point that X-DNA and mitochondrial DNA is not the same thing. I wrote about that, here. The source of this confusion is that the X chromosome and mitochondrial DNA are both associated in some way with descent from females – but they are very different and so is their inheritance path.

So, what is X-DNA and how does it work?

What is X-DNA?

Everyone inherits two copies of each of chromosomes 1-22, one copy of each chromosome from each of your parents.

That’s why DNA matching works and each match can be identified as “maternal” or “paternal,” depending on how your match is related to you. Each valid match (excluding identical by chance matches) will be related either maternally, or paternally, or sometimes, both.

Your 23rd chromosome is your sex determination chromosome and is inherited differently. Chromosome 23 is comprised of X and Y DNA.

Everyone inherits one copy of chromosome 23 from each parent.

  • Males inherit a Y chromosome from their father, which is what makes males male. They do not inherit an X chromosome from their father.
  • Males always inherit an X chromosome from their mother.
  • Females inherit an X chromosome from both parents, which is what makes them female. Females have two X chromosomes, and no Y chromosome.
Chromosome 23 Father Contributes Mother Contributes
Male Child Y chromosome X chromosome
Female Child X chromosome X chromosome

X-DNA and mitochondrial DNA are often confused, but they are not the same thing. In fact, they are completely different.

Mitochondrial DNA, in BOTH males and females is always inherited from only the mother and only descends from the direct matrilineal line, so only the mother’s mother’s mother’s direct line. X DNA can be inherited from a number of ancestors based on a specific inheritance path.

Everyone has both X-DNA AND mitochondrial DNA.

Because males don’t inherit an X chromosome from their father, X chromosome matching has a unique and specific pattern of descent which allows testers who match to immediately eliminate some potential common ancestors.

  • Males only inherit an X chromosome from their mother, which means they can only have legitimate X matches on their mother’s side of their tree.
  • Females, on the other hand, inherit an X chromosome from both their mother and father. Their father only has one X chromosome to contribute, so his daughter receives her paternal grandmother’s X chromosome intact.
  • Both males and females inherit their mother’s X chromosome just like any of the other 22 autosomes. I wrote about chromosomes, here.

However, the unique X chromosome inheritance path provides us with a fourth very useful type of DNA for genealogy, in addition to Y-DNA, mitochondrial and autosomal DNA.

For the vendors who provide X-matching, it’s included with your autosomal test and does not need to be purchased separately.

The Unique X Chromosome

The X chromosome, even though it is autosomal in nature, meaning it does recombine and divide in certain circumstances, is really its own distinct tool that is not equivalent to autosomal matching in the way we’re accustomed. We just need to learn about the message it’s delivering and how to interpret X matches.

FamilyTreeDNA is one of two vendors who utilizes X chromosome matching, along with 23andMe, which is another good reason to encourage your matches at other vendors to upload their DNA file to FamilyTreeDNA for free matching.

The four major vendors do include X-DNA results in their raw DNA download file, even if they don’t provide X-matching themselves. This means you can upload the results to either FamilyTreeDNA or GEDmatch where you can obtain X matches. I provided step-by-step download/upload instructions for each vendor here.

Let’s look how X matching is both different, and beneficial.

My X Chromosome Family Tree

We are going to build a simple case study. A case study truly is worth 1000 descriptions.

This fan chart of my family tree colorizes the X chromosome inheritance path. In this chart, males are colored blue and females pink, but the salient point is that I can inherit some portion of (or all of) a copy of my X chromosome from the colorized ancestors, and only those ancestors.

Because males don’t inherit an X chromosome from their father, they CANNOT inherit any portion of an X chromosome from their father’s ancestors.

Looking at my father’s half of the chart, at left, you see that I inherited an X chromosome from both of my parents, but my father only inherited an X chromosome from his mother, Ollie Bolton. His father’s portion of the tree is uncolored, so no X chromosome could have descended from his paternal ancestors to him. Therefore he could not pass any X chromosome segments to me from his paternal side – because he doesn’t have X DNA from his father.

Hence, I didn’t inherit an X chromosome from any of the people whose positions in the chart are uncolored, meaning I can only inherit an X chromosome from the pink or blue people.

Essentially any generational male to male, meaning father/son relationship is an X-DNA blocker.

I know positively that I inherited my paternal grandmother, Ollie Bolton’s entire X chromosome, because hers is the only X chromosome my father, in the fan chart above, had to give me. His entire paternal side of the fan chart is uncolored.

Men only ever inherit their X chromosome from their mother. The only exception to this is if a male has the rare genetic condition of Klinefelter Syndrome, also known as XXY. If you are an adult male, it’s likely that you’ll already know if you have Klinefelters, so that’s probably the last possibility you should consider if you appear to have paternal X matches, not the first.

Sometimes, men appear to have X matches on their father’s side, but (barring Klinefelter’s) this is impossible. Those matches must either be identical by chance, or somehow related in an unknown way on their mother’s side.

Everyone inherits an X chromosome from their mother that is some combination of the X from her father and mother. It’s possible to inherit all of your maternal grandmother or maternal grandfather’s X chromosome, meaning they did not recombine during meiosis.

Using DNA Painter as an X Tool

I use DNAPainter to track my matches and correlate segments with ancestors.

I paint my DNA segments for all my chromosomes at DNAPainter which provides me with a central tracking mechanism that is visual in nature and allows me to combine matches from multiple vendors who provide segment information. I provide step-by-step instructions for using DNAPainter, here.

This is my maternal X chromosome with my matches painted. I’ve omitted my matches’ names for privacy.

On the left side of the shaded grey column, those matches are from my maternal grandmother’s ancestors. On the right side, those matches are from my maternal grandfather’s ancestors.

The person in the grey column descends from unknown ancestors. In other words, I can tell that they descend from my maternal line, but I can’t (yet) determine through which of my two maternal grandparents.

There’s also an area to the right of the grey column where there are no matches painted, so I don’t know yet whether I inherited this portion of my X chromosome from my maternal grandmother or maternal grandfather.

The small darker pink columnar band is simply marking the centromere of the chromosome and does not concern us for this discussion.

Click on any image to enlarge

In this summary view of my paternal X chromosome, above, it appears that I may well have inherited my entire X chromosome from my paternal great-grandmother. We know, based on our inheritance rules that I clearly received my paternal grandmother’s X chromosome, because that’s all my father had to give me.

However, by painting my matches based on their ancestors, and selecting the summary view, you can see that most of my paternal X chromosome can be accounted for, with the exception of rather small regions with the red arrows.

It’s not terribly unusual for either a male or female to inherit their entire maternal X chromosome from one grandparent, or in this case, great-grandparent.

Of course, a male doesn’t inherit an X chromosome from their father, but a female can inherit her paternal X chromosome from either or both paternal grandparents.

Does Size Matter?

Generally speaking, an X match needs to be larger than a match on the other chromosomes to be considered genealogically equivalent in the same timeframe as other autosomal matches. This is due to:

  • The unique inheritance pattern, meaning fewer recombination events occurred.
  • The fact that X-DNA is NOT inherited from several lines.
  • The X chromosome has lower SNP density, meaning it contains fewer SNPs, so there are fewer possible locations to match when compared to the other chromosomes.

I know this equivalency requirement sounds negative, but it’s actually not. It means 7 cM (centimorgans) of DNA on the X chromosome will reach back further in time, so you may carry the DNA of an ancestor on the X chromosome that you no longer carry on other chromosomes. It may also mean that older segments remain larger. It’s actually a golden opportunity.

It sounds much more positive to say that a 16 cM X match for a female, or a 13 cM X match for a male is about the same as a 7 cM match for any other autosomal match in the same generation.

Of course, if the 7 cM match gets divided in the following generation, it has slipped below the matching threshold. If a 16 or 13 cM X match gets divided, it’s still a match. Plus, in some generations, if passed from father to daughter, it’s not divided or recombined. So a 7 cM X match may well be descended from ancestors further back in time.

X Chromosome Differences are Important!

Working with our great-great grandparent’s generation, we have 16 direct ancestors as illustrated in the earlier fan chart.

Given that females inherit from 8 X-chromosome ancestors in total, they are going to inherit an average of 45.25 cM of X-DNA from each of those ancestors. Females have two X chromosomes for a total length of 362 cM of X-DNA from both parents.

A male only has one X chromosome, 181 cM in length, so he will receive an average of 36.2 cM from each of 5 ancestors, and it’s all from his mother’s side.

In this chart, I’ve shown the total number of cMs for all of the autosomes, meaning chromosomes 1-22 and, separately, the X for males and females.

  • The average total cM for chromosomes 1-22 individually is 304 cM. (Yes, each chromosome is a different length, but that doesn’t matter for averages.)
  • That 304 cM can be inherited from any of 16 ancestors (in your great-grandparent’s generation)
  • The total number of cM on the X chromosomes for both parents for females totals 362
  • The total cM of X-DNA for males is 181 cM
  • The calculated average cM inherited for the X chromosome in the same generation is significantly different, shown in the bottom row.

The actual average for males and females for any ancestor on any random non-X chromosome (in the gg-grandparent generation) is still 19 cM. Due to the inheritance pattern of the X chromosome, the female X-chromosome average inheritance is 45.25 cM and the male average is 36.2 cM, significantly higher than the average of 19 cM that genetic genealogists have come to expect at this relationship distance on the other chromosomes, combined.

How Do I Interpret an X Match?

It’s important to remember when looking at X matching that you’re only looking at the amount of DNA from one chromosome. When you’re looking at any other matching amount, you’re looking at a total match across all chromosomes, as reported by that vendor. Vendors report total matching DNA differently.

  • The total amount of matching autosomal DNA does not include the X chromosome cMs at FamilyTreeDNA. X-DNA matching cMs are reported separately.
  • The total amount of matching autosomal DNA does include the X chromosome cMs in the total cM match at 23andMe
  • X-DNA is not used for matching or included in the match amount at either MyHeritage or Ancestry, but is included in the raw DNA data download files for all four vendors.
  • The total match amount shows the total for 22 (or 23) chromosomes, NOT just the X chromosome(s). That’s not apples to apples.

Therefore, an X match of 45 cM for a female or 36 for a male is NOT (necessarily) equivalent to a 19 cM non-X match. That 19 cM is the total for 22 chromosomes, while the X match amount is just for one chromosome.

You might consider a 20 cM match on the regular autosomes significant, but a 20 cM X-only match *could* be only roughly equivalent to a 10ish cM match on chromosomes 1-22 in the same generation. That’s the dog-leg inheritance pattern at work.

This is why FamilyTreeDNA does not report an X-only match if there is no other autosomal match. A 19 cM X match is not equivalent to a 19cM match on chromosomes 1-22. Not to mention, calculating relationships based on cM ranges becomes more difficult when the X is included.

However, the flip side is that because of the inheritance pattern of the X chromosome, that 19 cM match, if valid and not IBC, may well reach significantly further back in time than a regular autosomal matches. This can be particularly important for people seeking either Native or enslaved African ancestors for whom traditional records are elusive if they exist at all.

Critical Take-Away Messages

Here are the critical take-away messages:

  1. Because there are fewer ancestral lineages contributing to the tester’s X chromosome, the amount of X chromosomal DNA that a tester inherits from the ancestors who contribute to their X chromosome is increased substantially.
  2. The DNA of the contributing ancestors is more likely to be inherited, because there are fewer other possible contributing ancestors, meaning fewer recombination events or DNA divisions/recombinations.
  3. X-DNA is also more likely to be inherited because when passed from mother to son, it’s passed intact and not admixed with the DNA of the father.
  4. X matches cannot be compared equally to either percentages or cM amounts on any of the other chromosomes, or autosomal DNA in total, because X matching only reports the amount on one single chromosome, while your total cM match amount reports the amount of DNA that matches from all chromosomes (which includes the X at 23andMe).
  5. If you have X matches at 23andMe and/or FamilyTreeDNA, you can expect your total matching to be higher at 23andMe because they include the X matching cM in the total amount of shared DNA. FamilyTreeDNA provides the amount of X matching DNA separately, but not included in the total. MyHeritage and Ancestry do not include X matching DNA.

For clarity, at FamilyTreeDNA, you can see my shared DNA match with my mother. Of course, I match her on the total length of all my chromosomes, which is 3563 cM, the total Shared DNA for chromosomes 1-22. This includes all chromosomes except for the X chromosome which is reported separately at 181 cM. The longest contiguous block of shared DNA is 284 cM, the entire length of chromosome 1, the longest chromosome.

Because I’m a female, I match both parents on the full length of all 23 chromosomes, including 181 cM on both X chromosomes, respectively. Males will only match their mother on their X chromosome, meaning their total autosomal DNA match to their father, because the X is excluded, is 181 cM less than to their mother.

This difference in the amount of shared DNA with each parent, plus the differences in how DNA totals are reported by various vendors is also challenging for tools like DNAPainter’s Shared cM Tool which is based on the crowd sourced Shared cM Project that averages shared DNA numbers for known relationships at various vendors and translates those numbers into possible relationships for unknown matches.

Not all vendors report their total amount of shared DNA the same way. This is true for both X-DNA and half identical (HIR) versus fully identical (FIR) segments at 23andMe. This isn’t to say either approach is right or wrong, just to alert you to the differences.

Said Another Way

Let’s look at this another way.

If the average on any individual chromosome is 19 cMs for a relationship that’s 5 generations back in time. The average X-DNA for the same distance relationship is substantially more, which means that:

  • The X-DNA probably reaches further back in time than an equivalent relationship on any other autosome.
  • The X-DNA will have (probably) divided fewer times, and more DNA will descend from individual ancestors.
  • The inheritance path, meaning potential ancestors who contributed the X chromosomal DNA, is reduced significantly.

It’s challenging to draw equivalences when comparing X-DNA matching to the other chromosomes due to several variables that make interpretation difficult.

Based on the X-match size in comparison to the expected 19 cM single chromosome match at this genealogical distance, what is the comparable X-DNA segment size to the minimum 7 cM size generally accepted as valid on other chromosomes? What would be equal to a 7 cM segment on any other single random autosomal match, even though we know the inheritance probabilities are different and this isn’t apples to apples? Let’s pretend that it is.

This calculation presumes at the great-great-grandparent level that the 19 cM is in one single segment on a single chromosome. Now let’s divide 19 cM by 7 cM, which is 2.7, then divide the X amounts by the same number for the 7 cM equivalent of 16.75 cM for a female and 13.4 cM for a male.

When people say that you need a “larger X match to be equivalent to a regular autosomal match,” this is the phenomenon being referenced. Clearly a 7 cM X match is less relevant, meaning not equivalent, in the same generation as a 7 cM regular autosomal match.

Still, X matching compared to match amounts shown on the other chromosomes is never exact;u apples to apples because:

  • You’re comparing one X chromosome to the combined DNA amounts of many chromosomes.
  • The limited recombination path.
  • DNA from the other autosomes is less likely to be inherited from a specific ancestor.
  • The X chromosome has a lower SNP density than the other chromosomes, meaning fewer SNPs per cM.
  • The X-DNA may well reach further back in time because it has been divided less frequently.

Bottom Line

The X chromosome is different and holds clues that the other autosomes can’t provide.

Don’t dismiss X matches even if you can’t identify a common ancestor. Given the inheritance path, and the reduced number of divisions, your X-DNA may descend from an ancestor further back in time. I certainly would NOT dismiss X matches with smaller cMs than the 13 and 16 shown above, even though they are considered “equivalent” in the same generation.

X chromosome matching can’t really be equated to matching on the other chromosomes. They are two distinct tools, so they can’t be interpreted identically.

Different vendors treat the X chromosome differently, making comparison challenging.

  • 23andMe includes not only the X chromosome in their cM total, but doubles the Fully Identical Regions (FIR) when people, such as full siblings, share the same DNA from both parents. I wrote about that here.
  • Ancestry does not include the X in their cM match calculations.
  • Neither does MyHeritage.
  • FamilyTreeDNA shows an X match only when it’s accompanied by a match on another chromosome.

The Shared cM Project provides an average of all of the data input by crowdsourcing from all vendors, by relationship, which means that the cM values for some relationships are elevated when compared to the same relationship or even same match were it to be reported from a different vendor.

The Best Part!

The X chromosome inheritance pattern means that you’re much more likely to carry some amount of a contributing ancestor’s X-DNA than on any other chromosome.

  • X-DNA may well be “older” because it’s not nearly as likely to be divided, given that there are fewer opportunities for recombination.
  • When you’re tracking your X-DNA back in your tree, whenever you hit a male, you get an automatic “bump” back a generation to his mother. It’s like the free bingo X-DNA square!
  • You can immediately eliminate many ancestors as your most recent common ancestor (MRCA) with an X-DNA match.
  • Because X-DNA reaches further back in time, sometimes you match people who descend from common ancestors further back in time as well.

If you match someone on multiple segments, if one of those matching segments is X-DNA, that segment is more likely to descend from a different ancestor than the segments on chromosomes 1-22. I’ve found many instances where an X match descends from a different ancestor than matching DNA segments on the autosomes. Always evaluate X matches carefully.

Sometimes X-DNA is exactly what you need to solve a mystery.

Ok, now let’s step through how to use X-DNA in a real-life example.

Using X DNA to Solve a Mystery

Let’s say that I have a 30 cM X match with a male.

  • I know immediately that our most recent common ancestor (MRCA) is on HIS mother’s side.
  • I know, based on my fan chart, which ancestral lines are eliminated in my tree. I’ve immediately narrowed the ancestors from 16 to 5 on his side and 16 to 8 on my side.
  • Two matching males is even easier, because you know immediately that the common ancestor must be on both of their mother’s sides, with only 5 candidate lines each at the great-great-grandparent generation.

Female to female matches are slightly more complex, but there are still several immediately eliminated lines each. That means you’ve already eliminated roughly half of the possible relationships by matching another female on their X chromosome.

In this match with a female second cousin, I was able to identify who she was via our common ancestor based on the X chromosome path. In this chart, I’m showing the relevant halves of her chart at left (paternal), and mine (maternal), side by side.

I added blockers on her chart and mine too.

As it turns out, we both inherited most of our X chromosome from our great-grandparents, marked above with the black stars.

Several lines are blocked, and my grandfather’s X chromosome is not a possibility because the common ancestor is my maternal grandmother’s parents. My grandfather is not one of her ancestors.

Having identified this match as my closest relative (other than my mother) to descend on my mother’s maternal side, I was able to map that portion of my X chromosome to my great-grandparents Nora Kirsch and Curtis Benjamin Lore.

My X Chromosome at DNA Painter

Here’s my maternal X chromosome at DNAPainter and how I utilized chromosome painting to push the identification of the ancestors whose X chromosome I inherited back an additional two generations.

Using that initial X chromosome match with my second cousin, shown by the arrow at bottom of the graphic, I mapped a large segment of my maternal X chromosome to my maternal great-grandparents.

By viewing the trees of subsequent X maternal matches, I was then able to push those common segments, shown painted directly above that match with the same color, back another two generations, to Joseph Hill, born in 1790, and Nabby Hall. I was able to do that based on the fact that other matches descend from Joseph and Nabby through different children, meaning we all triangulate on that common segment. I wrote about triangulation at DNAPainter, here.

I received no known X-DNA from my great-grandmother, Nora Kirsch, although a small portion of my X chromosome is still unassigned in yellow as “Uncertain.”

I received a small portion of my maternal X chromosome, in magenta, at left, from my maternal great-great-grandparents, John David Miller and Margaret Lentz.

The X chromosome is a powerful tool and can reach far back in time.

In some cases, the X, and other chromosomes can be inherited intact from one grandparent. I could have inherited my mother’s entire copy of her mother’s, or her father’s X chromosome based on random recombination, or not. As it turns out, I didn’t, and I know that because I’ve mapped my chromosomes to identify my ancestors based on common ancestors with my matches.

X-DNA Advanced Matches at FamilyTreeDNA

At FamilyTreeDNA, the Advanced Matches tab includes the ability to search for X matches, either within the entire database, or within specific projects. I find the project selection to be particularly useful.

For example, within the Claxton project, my father’s maternal grandmother’s line, I recognize my match, Joy, which provides me an important clue as to the possible common ancestor(s) of our shared segments.

Joy’s tree shows that her 4-times great-grandparents are my 3-times great-grandparents, meaning we are 4th cousins once removed and share 17 cM of DNA on our X chromosome across two segments.

Don’t be deceived by the physical appearance of “size” on your chromosomes. The first segment that spans the centromere, or “waist” of the chromosome, above, is 10.29 cM, and the smaller segment at right is 7.02 cM. SNPs are not necessarily evenly distributed along chromosomes.

Remember, an X or other autosomal match doesn’t necessarily mean the entire match is contained in one segment so long as it’s large enough to be divided in two parts and survive the match threshold.

It’s worth noting that Joy and I actually share at least two different, unrelated ancestral lines, so I need to look at Joy’s blocked lines to see if one of those common ancestral lines is not a possibility for our X match. It’s important to evaluate all possible ancestors, plus the inheritance path to eliminate any lineage that involves a father to son inheritance on the X chromosome.

Last but not least, you may match on your X chromosome through a different ancestor than on other chromosomes. Every matching segment has its own individual history. It’s not safe to assume.

Now, take a look at your X chromosome matches at FamilyTreeDNA, 23andMe, and GedMatch. What will you discover?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Beethoven’s DNA Reveals Surprises – Does Your DNA Match?

Beethoven’s DNA has been sequenced from a lock of his hair. That, alone, is amazing news – but that’s just the beginning!

The scientific paper was released this week, and the news media is awash with the unexpected surprises that Beethoven’s DNA has revealed for us. Better yet, his DNA is in the FamilyTreeDNA database and you just might match. Are you related to Beethoven?

His Y-DNA, mitochondrial DNA and autosomal DNA have been recovered and are available for matching.

You can check your autosomal results if you’ve taken a Family Finder test, or you can upload your DNA file from either AncestryDNA, 23andMe or MyHeritage to find out if you match Beethoven. Here are the download/upload instructions for each company.

But first, let’s talk about this amazing sequence of events (pardon the pun) and scientific discoveries!

Beethoven’s Genome is Sequenced

Everyone knows the famous, genius composer, Ludwig van Beethoven. He was born in 1770 in Bonn on the banks of the Rhine River and died in 1827 in Vienna. You can listen to a snippet of his music, here.

We are all about to know him even better.

Yesterday, amid much media fanfare and a press release, the genome and related findings about Beethoven were released by a team of renowned scientists in a collaborative effort. Research partners include the University of Cambridge, the Ira F. Brilliant Center for Beethoven Studies, the American Beethoven Society, KU Leuven, the University Hospital Bonn, the University of Bonn, the Beethoven-Haus Bonn, the Max Planck Institute for Evolutionary Anthropology and  FamilyTreeDNA. I want to congratulate all of these amazing scientists for brilliant work.

Beethoven’s Hair Revelations

In the past, we were unable to retrieve viable DNA from hair, but advances have changed that in certain settings. If you’re eyeing grandma’s hair wreath – the answer is “not yet” for consumer testing. Just continue to protect and preserve your family heirlooms as described in this article.

Thankfully, Beethoven participated in the Victorian custom of giving locks of hair as mementos. Eight different locks of hair attributed to Beethoven were analyzed, with five being deemed authentic and one inconclusive. Those locks provided enough DNA to obtain a great deal of different types of information.

Beethoven’s whole genome was sequenced to a 24X coverage level, meaning the researchers were able to obtain 24 good reads of his DNA, providing a high level of confidence in the accuracy of the sequencing results.

What Was Discovered?

Perhaps the most interesting discovery, at least to genealogists, is that someplace in Beethoven’s direct paternal lineage, meaning his Y-DNA, a non-paternal event (NPE) occurred. The paper’s primary authors referred to this as an “extra-pair-paternity event” but I’ve never heard that term before.

Based on testing of other family members, that event occurred sometime between roughly 1572 and Ludwig’s conception in 1770. The reported lack of a baptismal record had already raised red flags with researchers relative to Beethoven’s paternity, but there is nothing to suggest where in the five generations prior to Ludwig von Beethoven that genetic break occurred. Perhaps testing additional people in the future will provide more specificity.

We also discovered that Beethoven was genetically predisposed to liver disease. He was plagued with jaundice and other liver-related issues for much of his later life.

Beethoven, prior to his death, left a handwritten directive asking his physicians to describe and publicize his health issues which included progressive hearing loss to the point of deafness, persistent gastrointestinal problems and severe liver issues that eventually resulted in his death. Cirrhosis of the liver was widely believed to be his cause of death.

In addition, DNA in the hair revealed that Beethoven had contracted Hepatitis B, which also affects the liver.

The combination of genetic predisposition to liver disease, Hepatitis B and heavy alcohol use probably sealed his fate.

Additional health issues that Beethoven experienced are described in the paper, published in Current Biology.

It’s quite interesting that during this analysis the team devised a method to use triangulated segments that they mapped to various geographic locations, as illustrated above in a graphic from the paper. Fascinating work!!!

As a partner in this research, Cambridge University created a beautiful website, including a video which you can watch, here.

Beethoven’s Later Years

This portrait of Beethoven was painted in 1820 just 7 years before his death, at 56 years of age. By this time, he had been completely deaf for several years, had stopped performing and appearing in public. Ironically, he still continued to compose, but was horribly frustrated and discouraged, even contemplating suicide. I can’t even fathom the depths of despair for a person with his musical genius to become deaf, slowly, like slow torture.

His personal life didn’t fare much better. In 1812, he wrote this impassioned love letter to his “Immortal Beloved” whose identity has never been revealed, if it was ever known by anyone other than Beethoven himself. The letter was never sent, which is why we have it today.

FamilyTreeDNA

FamilyTreeDNA, one of the research partners published a blog article, here.

The FamilyTreeDNA research team not only probed Beethoven’s genealogy, they tested people whose DNA should have matched, but as it turns out, did not.

Beethoven’s mitochondrial DNA haplogroup is H1b1+16,362C, plus a private mutation at C16,176T. Perhaps in the future, Beethoven’s additional private mutation will become a new haplogroup if other members of this haplogroup have it as well. If you have tested your mitochondrial DNA, check and see if Beethoven is on your match list. If you haven’t tested, now’s a great time.

According to the academic paper, Beethoven’s Y-DNA haplogroup is I-Z139, but when viewing Figure 5 in the paper, here, I noticed that Beethoven’s detailed haplogroup is given as I-FT396000, which you can see in the Discover project, here.

Viewing the Time Tree and the Suggested Projects, I noticed that there are four men with that haplogroup, some of whom are from Germany.

The ancestor’s surnames of the I-FT396000 men, as provided in public projects include:

  • Pitzschke (from Germany)
  • Hartmann (from Germany)
  • Stayler
  • Schauer (from Germany)

If your Y-DNA matches Beethoven at any level, you might want to upgrade if you haven’t taken the Big Y-700 test. It would be very interesting to see when and where your most recent common ancestor with Beethoven lived. You just never known – if you match Beethoven, your known ancestry might help unravel the mystery of Beethoven’s unknown paternal lineage.

Beethoven’s DNA is in the FamilyTreeDNA database for matching, including Y-DNA mitochondrial and autosomal results, so you just might match. Take a look! A surprise just might be waiting for you.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search of…Signs of Endogamy

This is the fourth in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to ancestors further back in time as well.

In this article, we discuss endogamy – how to determine if you have it, from what population, and how to follow the road signs.

After introductions, we will be covering the following topics:

  • Pedigree collapse and endogamy
  • Endogamous groups
  • The challenge(s) of endogamy
  • Endogamy and unknown close relatives (parents, grandparents)
  • Ethnicity and Populations
  • Matches
  • AutoClusters
  • Endogamous Relationships
  • Endogamous DNA Segments
  • “Are Your Parents Related?” Tool
  • Surnames
  • Projects
  • Locations
  • Y DNA, Mitochondrial DNA, and Endogamy
  • Endogamy Tools Summary Tables
    • Summary of Endogamy Tools by Vendor
    • Summary of Endogamous Populations Identified by Each Tool
    • Summary of Tools to Assist People Seeking Unknown Parents and Grandparents

What Is Endogamy and Why Does It Matter?

Endogamy occurs when a group or population of people intermarry among themselves for an extended period of time, without the introduction of many or any people from outside of that population.

The effect of this continual intermarriage is that the founders’ DNA simply gets passed around and around, eventually in small segments.

That happens because there is no “other” DNA to draw from within the population. Knowing or determining that you have endogamy helps make sense of DNA matching patterns, and those patterns can lead you to unknown relatives, both close and distant.

This Article

This article serves two purposes.

  • This article is educational and relevant for all researchers. We discuss endogamy using multiple tools and examples from known endogamous people and populations.
  • In order to be able to discern endogamy when we don’t know who our parents or grandparents are, we need to know what signs and signals to look for, and why, which is based on what endogamy looks like in people who know their heritage.

There’s no crystal ball – no definitive “one-way” arrow, but there are a series of indications that suggest endogamy.

Depending on the endogamous population you’re dealing with, those signs aren’t always the same.

If you’re sighing now, I understand – but that’s exactly WHY I wrote this article.

We’re covering a lot of ground, but these road markers are invaluable diagnostic tools.

I’ve previously written about endogamy in the articles:

Let’s start with definitions.

Pedigree Collapse and Endogamy

Pedigree collapse isn’t the same as endogamy. Pedigree collapse is when you have ancestors that repeat in your tree.

In this example, the parents of our DNA tester are first cousins, which means the tester shares great-grandparents on both sides and, of course, the same ancestors from there on back in their tree.

This also means they share more of those ancestors’ DNA than they would normally share.

John Smith and Mary Johnson are both in the tree twice, in the same position as great-grandparents. Normally, Tester Smith would carry approximately 12.5% of each of his great-grandparents’ DNA, assuming for illustration purposes that exactly 50% of each ancestor’s DNA is passed in each generation. In this case, due to pedigree collapse, 25% of Tester Smith’s DNA descends from John Smith, and another 25% descends from Mary Johnson, double what it would normally be. 25% is the amount of DNA contribution normally inherited from grandparents, not great-grandparents.

While we may find first cousin marriages a bit eyebrow-raising today, they were quite common in the past. Both laws and customs varied with the country, time, social norms, and religion.

Pedigree Collapse and Endogamy is NOT the Same

You might think that pedigree collapse and endogamy is one and the same, but there’s a difference. Pedigree collapse can lead to endogamy, but it takes more than one instance of pedigree collapse to morph into endogamy within a population. Population is the key word for endogamy.

The main difference is that pedigree collapse occurs with known ancestors in more recent generations for one person, while endogamy is longer-term and systemic in a group of people.

Picture a group of people, all descended from Tester Smith’s great-grandparents intermarrying. Now you have the beginnings of endogamy. A couple hundred or a few hundred years later, you have true endogamy.

In other words, endogamy is pedigree collapse on a larger scale – think of a village or a church.

My ancestors’ village of Schnait, in Germany, is shown above in 1685. One church and maybe 30 or 40 homes. According to church and other records, the same families had inhabited this village, and region, for generations. It’s a sure bet that both pedigree collapse and endogamy existed in this small community.

If pedigree collapse happens over and over again because there are no other people within the community to marry, then you have endogamy. In other words, with endogamy, you assuredly DO have historical pedigree collapse, generally back in time, often before you can identify those specific ancestors – because everyone descends from the same set of founders.

Endogamy Doesn’t Necessarily Indicate Recent Pedigree Collapse

With deep, historic endogamy, you don’t necessarily have recent pedigree collapse, and in fact, many people do not. Jewish people are a good example of this phenomenon. They shared ancestors for hundreds or thousands of years, depending on which group we are referring to, but in recent, known, generations, many Jewish people aren’t related. Still, their DNA often matches each other.

The good news is that there are telltale signs and signals of endogamy.

The bad news is that not all of these are obvious, meaning as an aid to people seeking clues about unknown close relatives, and other “signs” aren’t what they are believed to be.

Let’s step through each endogamy identifier, or “hint,” and then we will review how we can best utilize this information.

First, let’s take a look at groups that are considered to be endogamous.

Endogamous Groups

Jewish PeopleSpecifically groups that were isolated from other groups of Jewish (and other) people; Ashkenazi (Germany, Northern France, and diaspora), Sephardic (Spanish, Iberia, and diaspora), Mizrahi (Israel, Middle Eastern, and diaspora,) Ethiopian Jews, and possibly Jews from other locations such as Mountain Jews from Kazakhstan and the Caucasus.

AcadiansDescendants of about 60 French families who settled in “Acadia” beginning about 1604, primarily on the island of Nova Scotia, and intermarried among themselves and with the Mi’kmaq people. Expelled by the English in 1755, they were scattered in groups to various diasporic regions where they continued to intermarry and where their descendants are found today. Some Acadians became the Cajuns of Louisiana.

Anabaptist Protestant FaithsAmish, Mennonite, and Brethren (Dunkards) and their offshoots are Protestant religious sects founded in Europe in the 14th, 15th, and 16th centuries on the principle of baptizing only adults or people who are old enough to choose to follow the faith, or rebaptizing people who had been previously baptized as children. These Anabaptist faiths tend to marry within their own group or church and often expel those who marry outside of the faith. Many emigrated to the American colonies and elsewhere, seeking religious freedom. Occasionally those groups would locate in close proximity and intermarry, but not marry outside of other Anabaptist denominations.

Native American (Indigenous) People – all indigenous peoples found in North and South America before European colonization descended from a small number of original founders who probably arrived at multiple times.

Indigenous Pacific Islanders – Including indigenous peoples of Australia, New Zealand, and Hawaii prior to colonization. They are probably equally as endogamous as Native American people, but I don’t have specific examples to share.

Villages – European or other villages with little inflow or whose residents were restricted from leaving over hundreds of years.

Other groups may have significant multiple lines of pedigree collapse and therefore become endogamous over time. Some people from Newfoundland, French Canadians, and Mormons (Church of Jesus Christ of Latter-Day Saints) come to mind.

Endogamy is a process that occurs over time.

Endogamy and Unknown Relatives

If you know who your relatives are, you may already know you’re from an endogamous population, but if you’re searching for close relatives, it’s helpful to be able to determine if you have endogamous heritage, at least in recent generations.

If you know nothing about either parent, some of these tools won’t help you, at least not initially, but others will. However, as you add to your knowledge base, the other tools will become more useful.

If you know the identity of one parent, this process becomes at least somewhat easier.

In future articles, we will search specifically for parents and each of your four grandparents. In this article, I’ll review each of the diagnostic tools and techniques you can use to determine if you have endogamy, and perhaps pinpoint the source.

The Challenge

People with endogamous heritage are related in multiple, unknown ways, over many generations. They may also be related in known ways in recent generations.

If both of your parents share the SAME endogamous culture or group of relatives:

  • You may have significantly more autosomal DNA matches than people without endogamy, unless that group of people is under-sampled. Jewish people have significantly more matches, but Native people have fewer due to under-sampling.
  • You may experience a higher-than-normal cM (centiMorgan) total for estimated relationships, especially more distant relationships, 3C and beyond.
  • You will have many matches related to you on both your maternal and paternal sides.
  • Parts of your autosomal DNA will be the same on both your mother’s and father’s sides, meaning your DNA will be fully identical in some locations. (I’ll explain more in a minute.)

If either (or both) of your parents are from an endogamous population, you:

  • Will, in some cases, carry identifying Y and mitochondrial DNA that points to a specific endogamous group. This is true for Native people, can be true for Jewish people and Pacific Islanders, but is not true for Anabaptist people.

One Size Does NOT Fit All

Please note that there is no “one size fits all.”

Each or any of these tools may provide relevant hints, depending on:

  • Your heritage
  • How many other people have tested from the relevant population group
  • How many close or distant relatives have tested
  • If your parents share the same heritage
  • Your unique DNA inheritance pattern
  • If your parents, individually, were fully endogamous or only partly endogamous, and how far back generationally that endogamy occurred

For example, in my own genealogy, my maternal grandmother’s father was Acadian on his father’s side. While I’m not fully endogamous, I have significantly more matches through that line proportionally than on my other lines.

I have Brethren endogamy on my mother’s side via her paternal grandmother.

Endogamous ancestors are shown with red stars on my mother’s pedigree chart, above. However, please note that her maternal and paternal endogamous ancestors are not from the same endogamous population.

However, I STILL have fewer matches on my mother’s side in total than on my father’s side because my mother has recent Dutch and recent German immigrants which reduces her total number of matches. Neither of those lines have had as much time to produce descendants in the US, and Europe is under-sampled when compared with the US where more people tend to take DNA tests because they are searching for where they came from.

My father’s ancestors have been in the US since it was a British Colony, and I have many more cousins who have tested on his side than mother’s.

If you looked at my pedigree chart and thought to yourself, “that’s messy,” you’d be right.

The “endogamy means more matches” axiom does not hold true for me, comparatively, between my parents – in part because my mother’s German and Dutch lines are such recent immigrants.

The number of matches alone isn’t going to tell this story.

We are going to need to look at several pieces and parts for more information. Let’s start with ethnicity.

Ethnicity and Populations

Ethnicity can be a double-edged sword. It can tell you exactly nothing you couldn’t discern by looking in the mirror, or, conversely, it can be a wealth of information.

Ethnicity reveals the parts of the world where your ancestors originated. When searching for recent ancestors, you’re most interested in majority ethnicity, meaning the 50% of your DNA that you received from each of your parents.

Ethnicity results at each vendor are easy to find and relatively easy to understand.

This individual at FamilyTreeDNA is 100% Ashkenazi Jewish.

If they were 50% Jewish, we could then estimate, and that’s an important word, that either one of their parents was fully Jewish, and not the other, or that two of their grandparents were Jewish, although not necessarily on the same side.

On the other hand, my mother’s ethnicity, shown below, has nothing remarkable that would point to any majority endogamous population, yet she has two.

The only hint of endogamy from ethnicity would be her ~1% Americas, and that isn’t relevant for finding close relatives. However, minority ancestry is very relevant for identifying Native ancestors, which I wrote about, here.

You can correlate or track your ethnicity segments to specific ancestors, which I discussed in the article, Native American & Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments, here.

Since I wrote that article, FamilyTreeDNA has added the feature of ethnicity or population Chromosome Painting, based on where each of your populations fall on your chromosomes.

In this example on chromosome 1, I have European ancestry (blue,) except for the pink Native segment, which occurs on the following segment in the same location on my mother’s chromosome 1 as well.

Both 23andMe, and FamilyTreeDNA provide chromosome painting AND the associated segment information so you can identify the relevant ancestors.

Ancestry is in the process of rolling out an ethnicity painting feature, BUT, it has no segment or associated matching information. While it’s interesting eye candy, it’s not terribly useful beyond the ethnicity information that Ancestry already provides. However, Jonny Perl at DNAPainter has devised a way to estimate Ancestry’s start and stop locations, here. Way to go Jonny!

Now all you need to do is convince your Ancestry matches to upload their DNA file to one of the three databases, FamilyTreeDNA, MyHeritage, and GEDMatch, that accept transfers, aka uploads. This allows matching with segment data so that you can identify who matches you on that segment, track your ancestors, and paint your ancestral segments at DNAPainter.

I provided step-by-step instructions, here, for downloading your raw DNA file from each vendor in order to upload the file to another vendor.

Ethnicity Sides

Three of the four DNA testing vendors, 23andMe, FamilyTreeDNA, and recently, Ancestry, attempt to phase your ethnicity DNA, meaning to assign it to one parental “side” or the other – both in total and on each chromosome.

Here’s Ancestry’s SideView, where your DNA is estimated to belong to parent 1 and parent 2. I detailed how to determine which side is which, here, and while that article was written specifically pertaining to Ancestry’s SideView, the technique is relevant for all the vendors who attempt to divide your DNA into parents, a technique known as phasing.

I say “attempt” because phasing may or may not be accurate, meaning the top chromosome may not always be parent 1, and the bottom chromosome may not always be chromosome 2.

Here’s an example at 23andMe.

See the two yellow segments. They are both assigned as Native. I happen to know one is from the mother and one is from the father, yet they are both displayed on the “top” chromosome, which one would interpret to be the same parent.

I am absolutely positive this is not the case because this is a close family member, and I have the DNA of the parent who contributed the Native segment on chromosome 1, on the top chromosome. That parent does not have a Native segment on chromosome 2 to contribute. So that Native segment had to be contributed by the other parent, but it’s also shown on the top chromosome.

The DNA segments circled in purple belong together on the same “side” and were contributed to the tester by the same parent. The Native segment on chromosome 2 abuts a purple African segment, suggesting perhaps that the ancestor who contributed that segment was mixed between those ethnicities. In the US, that suggests enslavement.

The other African segments, circled, are shown on the second chromosome in each pair.

To be clear, parent 1 is not assigned by the vendors to either mother or father and will differ by person. Your parent 1, or the parent on the top chromosome may be your mother and another person’s parent 1 may be their father.

As shown in this example, parents can vary by chromosome, a phenomenon known as “strand swap.” Occasionally, the DNA can even be swapped within a chromosome assignment.

You can, however, get an idea of the division of your DNA at any specific location. As shown above, you can only have a maximum of two populations of DNA on any one chromosome location.

In our example above, this person’s majority ancestry is European (blue.) On each chromosome where we find a minority segment, the opposite chromosome in the same location is European, meaning blue.

Let’s look at another example.

At FamilyTreeDNA, the person whose ethnicity painting is shown below has a Native American (pink) ancestor on their father’s side. FamilyTreeDNA has correctly phased or identified their Native segments as all belonging to the second chromosome in each pair.

Looking at chromosome 18, for example, most of their father’s chromosome is Native American (pink). The other parent’s chromosome is European (dark blue) at those same locations.

If one of the parents was of one ethnicity, and the other parent is a completely different ethnicity, then one bar of each chromosome would be all pink, for example, and one would be entirely blue, representing the other ethnicity.

Phasing ethnicity or populations to maternal and paternal sides is not foolproof, and each chromosome is phased individually.

Ethnicity can, in some cases, give you a really good idea of what you’re dealing with in terms of heritage and endogamy.

If someone had an Ashkenazi Jewish father and European mother, for example, one copy of each chromosome would be yellow (Ashkenazi Jewish), and one would be blue (European.)

However, if each of their parents were half European Jewish and half European (not Jewish), then their different colored segments would be scattered across their entire set of chromosomes.

In this case, both of the tester’s parents are mixed – European Jewish (green) and Western Europe (blue.) We know both parents are admixed from the same two populations because in some locations, both parents contributed blue (Western Europe), and in other locations, both contributed Jewish (green) segments.

Both MyHeritage and Ancestry provide a secondary tool that’s connected to ethnicity, but different and generally in more recent times.

Ancestry’s DNA Communities

While your ethnicity may not point to anything terribly exciting in terms of endogamy, Genetic Communities might. Ancestry says that a DNA Community is a group of people who share DNA because their relatives recently lived in the same place at the same time, and that communities are much smaller than ethnicity regions and reach back only about 50-300 years.

Based on the ancestors’ locations in the trees of me and my matches, Ancestry has determined that I’m connected to two communities. In my case, the blue group is clearly my father’s line. The orange group could be either parent, or even a combination of both.

My endogamous Brethren could be showing up in Maryland, Pennsylvania, and Ohio, but it’s uncertain, in part, because my father’s ancestral lines are found in Virginia, West Virginia, and Maryland too.

These aren’t useful for me, but they may be more useful for fully endogamous people, especially in conjunction with ethnicity.

My Acadian cousin’s European ethnicity isn’t informative.

However, viewing his DNA Communities puts his French heritage into perspective, especially combined with his match surnames.

I wrote about DNA Communities when it was introduced with the name Genetic Communities, here.

MyHeritage’s Genetic Groups

MyHeritage also provides a similar feature that shows where my matches’ ancestors lived in the same locations as mine.

One difference, though, is that testers can adjust their ethnicity results confidence level from high, above, to low, below where one of my Genetic Groups overlaps my ethnicity in the Netherlands.

You can also sort your matches by Genetic Groups.

The results show you not only who is in the group, but how many of your matches are in that group too, which provides perspective.

I wrote about Genetic Groups, here.

Next, let’s look at how endogamy affects your matches.

Matches

The number of matches that a person has who is from an entirely endogamous community and a person with no endogamy may be quite different.

FamilyTreeDNA provides a Family Matching feature that triangulates your matches and assigns them to your paternal or maternal side by using known matches that you have linked to their profile cards in your tree. You must link people for the Family Matching feature known as “bucketing” to be enabled.

The people you link are then processed for shared matches on the same chromosome segment(s). Triangulated individuals are then deposited in your maternal, paternal, and both buckets.

Obviously, your two parents are the best people to link, but if they haven’t tested (or uploaded their DNA file from another vendor) and you have other known relatives, link them using the Family Tree tab at the top of your personal page.

I uploaded my Ancestry V4 kit to use as an example for linking. Let’s pretend that’s my sister. If I had not already linked my Ancestry V4 kit to “my sister’s” profile card, I’d want to do that and link other known individuals the same way. Just drag and drop the match to the correct profile card.

Note that a full or half sibling will be listed as such at FamilyTreeDNA, but an identical twin will show as a potential parent/child match to you. You’re much more likely to find a parent than an identical twin, but just be aware.

I’ve created a table of FamilyTreeDNA bucketed match results, by category, comparing the number of matches in endogamous categories with non-endogamous.

Total Matches Maternal Matches Paternal Matches Both % Both % DNA Unassigned
100% Jewish 34,637 11,329 10,416 4,806 13.9 23.3
100% Jewish 32,973 10,700 9,858 4,606 14 23.7
100% Jewish 32,255 9,060 10,970 3,892 12 25.8
75% Jewish 24,232 11,846 Only mother linked Only mother linked Only mother linked
100% Acadian 8093 3826 2299 1062 13 11
100% Acadian 7828 3763 1825 923 11.8 17
Not Endogamous 6760 3845 1909 13 0.19 14.5
Not Endogamous 7723 1470 3317 6 0.08 38
100% Native American 1,115 Unlinked Unlinked Unlinked
100% Native American 885 290 Unknown Can’t calculate without at least one link on both sides

The 100% Jewish, Acadian, and Not Endogamous testers both have linked their parents, so their matches, if valid (meaning not identical by chance, which I discussed here,) will match them plus one or the other parent.

One person is 75% Jewish and has only linked their Jewish mother.

The Native people have not tested their parents, and the first Native person has not linked anyone in their tree. The second Native person has only linked a few maternal matches, but their mother has not tested. They are seeking their father.

It’s very difficult to find people who are fully Native as testers. Furthermore, Native people are under-sampled. If anyone knows of fully Native (or other endogamous) people who have tested and linked their parents or known relatives in their trees, and will allow me to use their total match numbers anonymously, please let me know.

As you can see, Jewish, Acadian, and Native people are 100% endogamous, but many more Jewish people than Native people have tested, so you CAN’T judge endogamy by the total number of matches alone.

In fact, in order:

  • Fully Jewish testers have about 4-5 times as many matches as the Acadian and Non-endogamous testers
  • Acadian and Non-endogamous testers have about 5-6 times as many matches as the Native American testers
  • Fully Jewish people have about 30 times more matches than the Native American testers

If a person’s endogamy with a particular population is only on their maternal or paternal side, they won’t have a significant number of people related to both sides, meaning few people will fall into the “Both” bucket. People that will always be found in the ”Both” bucket are full siblings and their descendants, along with descendants of the tester, assuming their match is linked to their profiles in the tester’s tree.

In the case of our Jewish testers, you can easily see that the “Both” bucket is very high. The Acadians are also higher than one would reasonably expect without endogamy. A non-endogamous person might have a few matches on both sides, assuming the parents are not related to each other.

A high number of “Both” matches is a very good indicator of endogamy within the same population on both parents’ sides.

The percentage of people who are assigned to the “Both” bucket is between 11% and 14% in the endogamous groups, and less than 1% in the non-endogamous group, so statistically not relevant.

As demonstrated by the Native people compared to the Jewish testers, the total number of matches can be deceiving.

However, being related to both parents, as indicated by the “Both” bucket, unless you have pedigree collapse, is a good indicator of endogamy.

Of course, if you don’t know who your relatives are, you can’t link them in your tree, so this type of “hunt” won’t generally help people seeking their close family members.

However, you may notice that you’re matching people PLUS both of their parents. If that’s the case, start asking questions of those matches about their heritage.

A very high number of total matches, as compared to non-endogamous people, combined with some other hints might well point to Jewish heritage.

I included the % DNA Unassigned category because this category, when both parents are linked, is the percentage of matches by chance, meaning the match doesn’t match either of the tester’s parents. All of the people with people listed in “Both” categories have linked both of their parents, not just maternal and paternal relatives.

Matching Location at MyHeritage

MyHeritage provides a matching function by location. Please note that it’s the location of the tester, but that may still be quite useful.

The locations are shown in the most-matches to least-matches order. Clicking on the location shows the people who match you who are from that location. This would be the most useful in situations where recent immigration has occurred. In my case, my great-grandfather from the Netherlands arrived in the 1860s, and my German ancestors arrived in the 1850s. Neither of those groups are endogamous, though, unless it would be on a village level.

AutoClusters

Let’s shift to Genetic Affairs, a third-party tool available to everyone.

Using their AutoCluster function, Genetic Affairs clusters your matches together who match both each other and you.

This is an example of the first few clusters in my AutoCluster. You can see that I have several colored clusters of various sizes, but none are huge.

Compare that to the following endogamous cluster, sample courtesy of EJ Blom at Genetic Affairs.

If your AutoCluster at Genetic Affairs looks something like this, a huge orange blob in the upper left hand corner, you’re dealing with endogamy.

Please also note that the size of your cluster is also a function of both the number of testers and the match threshold you select. I always begin by using the defaults. I wrote about using Genetic Affairs, here.

If you tested at or transferred to MyHeritage, they too license AutoClusters, but have optimized the algorithm to tease out endogamous matches so that their Jewish customers, in particular, don’t wind up with a huge orange block of interrelated people.

You won’t see the “endogamy signature” huge cluster in the corner, so you’re less likely to be able to discern endogamy from a MyHeritage cluster alone.

The commonality between these Jewish clusters at MyHeritage is that they all tend to be rather uniform in size and small, with lots of grey connecting almost all the blocks.

Grey cells indicate people who match people in two colored groups. In other words, there is often no clear division in clusters between the mother’s side and the father’s side in Jewish clusters.

In non-endogamous situations, even if you can’t identify the parents, the clusters should still fall into two sides, meaning a group of clusters for each parent’s side that are not related to each other.

You can read more about Genetic Affairs clusters and their tools, here. DNAGedcom.com also provides a clustering tool.

Endogamous Relationships

Endogamous estimated relationships are sometimes high. Please note the word, “sometimes.”

Using the Shared cM Project tool relationship chart, here, at DNAPainter, people with heavy endogamy will discover that estimated relationships MAY be on the high side, or the relationships may, perhaps, be estimated too “close” in time. That’s especially true for more distant relationships, but surprisingly, it’s not always true. The randomness of inheritance still comes into play, and so do potential unknown relatives. Hence, the words “may” are bolded and underscored.

Unfortunately, it’s often stated as “conventional wisdom” that Jewish matches are “always” high, and first cousins appear as siblings. Let’s see what the actual data says.

At DNAPainter, you can either enter the amount of shared DNA (cM), or the percent of shared DNA, or just use the chart provided.

I’ve assembled a compilation of close relationships in kits that I have access to or from people who were generous enough to share their results for this article.

I’ve used Jewish results, which is a highly endogamous population, compared with non-endogamous testers.

The “Jewish Actual” column reports the total amount of shared DNA with that person. In other words, someone to their grandparent. The Average Range is the average plus the range from DNAPainter. The Percent Difference is the % difference between the actual number and the DNAPainter average.

You’ll see fully Jewish testers, at left, matching with their family members, and a Non-endogamous person, at right, matching with their same relative.

Relationship Jewish Actual Percent Difference than Average Average -Range Non-endogamous Actual Percent Difference than Average
Grandparent 2141 22 1754 (984-2482) 1742 <1 lower
Grandparent 1902 8.5 1754 (984-2482) 1973 12
Sibling 3039 16 2613 (1613-3488) 2515 3.5 lower
Sibling 2724 4 2613 (1613-3488) 2761 5.5
Half-Sibling 2184 24 1759 (1160-2436) 2127 21
Half-Sibling 2128 21 1759 (1160-2436) 2352 34
Aunt/Uncle 2066 18.5 1741 (1201-2282) 1849 6
Aunt/Uncle 2031 16.5 1741 (1201-2282) 2097 20
1C 1119 29 866 (396-1397) 959 11
1C 909 5 866 (396-1397) 789 9 lower
1C1R 514 19 433 (102-980) 467 8
1C1R 459 6 433 (102-980) 395 9 lower

These totals are from FamilyTreeDNA except one from GEDMatch (one Jewish Half-sibling).

Totals may vary by vendor, even when matching with the same person. 23andMe includes the X segments in the total cMs and also counts fully identical segments twice. MyHeritage imputation seems to err on the generous side.

However, in these dozen examples:

  • You can see that the Jewish actual amount of DNA shared is always more than the average in the estimate.
  • The red means the overage is more than 100 cM larger.
  • The percentage difference is probably more meaningful because 100 cM is a smaller percentage of a 1754 grandparent connection than compared to a 433 cM 1C1R.

However, you can’t tell anything about endogamy by just looking at any one sample, because:

  • Some of the Non-Endogamous matches are high too. That’s just the way of random inheritance.
  • All of the actual Jewish match numbers are within the published ranges, but on the high side.

Furthermore, it can get more complex.

Half Endogamous

I requested assistance from Jewish genealogy researchers, and a lovely lady, Sharon, reached out, compiled her segment information, and shared it with me, granting permission to share with you. A HUGE thank you to Sharon!

Sharon is half-Jewish via one parent, and her half-sibling is fully Jewish. Their half-sibling match to each other at Ancestry is 1756 cM with a longest segment of 164 cM.

How does Jewish matching vary if you’re half-Jewish versus fully Jewish? Let’s look at 21 people who match both Sharon and her fully Jewish half-sibling.

Sharon shared the differences in 21 known Jewish matches with her and her half-sibling. I’ve added the Relationship Estimate Range from DNAPainter and colorized the highest of the two matches in yellow. Bolding in the total cM column shows a value above the average range for that relationship.

Total Matching cMs is on the left, with Longest Segment on the right.

While this is clearly not a scientific study, it is a representative sample.

The fully Jewish sibling carries more Jewish DNA, which is available for other Jewish matches to match as a function of endogamy (identical by chance/population), so I would have expected the fully Jewish sibling to match most if not all Jewish testers at a higher level than the half-Jewish sibling.

However, that’s not universally what we see.

The fully Jewish sibling is not always the sibling with the highest number of matches to the other Jewish testers, although the half-Jewish tester has the larger “Longest Segment” more often than not.

Approximately two-thirds of the time (13/21), the fully Jewish person does have a higher total matching cM, but about one-third of the time (8/21), the half-Jewish sibling has a higher matching cM.

About one-fourth of the time (5/21), the fully Jewish sibling has the longest matching segment, and about two-thirds of the time (13/21), the half-Jewish sibling does. In three cases, or about 14% of the time, the longest segment is equal which may indicate that it’s the same segment.

Because of endogamy, Jewish matches are more likely to have:

  • Larger than average total cM for the specific relationship
  • More and smaller matching segments

However, as we have seen, neither of those are definitive, nor always true. Jewish matches and relationships are not always overestimated.

Ancestry and Timber

Please note that Ancestry downweights some matches by removing some segments using their Timber algorithm. Based on my matches and other accounts that I manage, Ancestry does not downweight in the 2-3rd cousin category, which is 90 cM and above, but they do begin downweighting in the 3-4th cousin category, below 90 cM, where my “Extended Family” category begins.

If you’ve tested at Ancestry, you can check for yourself.

By clicking on the amount of DNA you share with your match on your match list at Ancestry, shown above, you will be taken to another page where you will be able to view the unweighted shared DNA with that match, meaning the amount of DNA shared before the downweighting and removal of some segments, shown below.

Given the downweighting, and the information in the spreadsheet provided by Sharon, it doesn’t appear that any of those matches would have been in a category to be downweighted.

Therefore, for these and other close matches, Timber wouldn’t be a factor, but would potentially be in more distant matches.

Endogamous Segments

Endogamous matches tend to have smaller and more segments. Small amounts of matching DNA tend to skew the total DNA cM upwards.

How and why does this happen?

Ancestral DNA from further back in time tends to be broken into smaller segments.

Sometimes, especially in endogamous situations, two smaller segments, at one time separated from each other, manage to join back together again and form a match, but the match is only due to ancestral segments – not because of a recent ancestor.

Please note that different vendors have different minimum matching cM thresholds, so smaller matches may not be available at all vendors. Remember that factors like Timber and imputation can affect matching as well.

Let’s take a look at an example. I’ve created a chart where two ancestors have their blue and pink DNA broken into 4 cM segments.

They have children, a blue child and a pink child, and the two children, shown above, each inherited the same blue 4 cM segment and the same pink 4 cM segment from their respective parents. The other unlabeled pink and blue segments are not inherited by these two children, so those unlabeled segments are irrelevant in this example.

The parents may have had other children who inherited those same 4 cM labeled pink and blue segments as well, and if not, the parents’ siblings were probably passing at least some of the same DNA down to their descendants too.

The blue and pink children had children, and their children had children – for several generations.

Time passed, and their descendants became an endogamous community. Those pink and blue 4 cM segments may at some time be lost during recombination in the descendants of each of their children, shown by “Lost pink” and “Lost blue.”

However, because there is only a very limited amount of DNA within the endogamous community, their descendants may regain those same segments again from their “other parent” during recombination, downstream.

In each generation, the DNA of the descendant carrying the original blue or pink DNA segment is recombined with their partner. Given that the partners are both members of the same endogamous community, the two people may have the same pink and/or blue DNA segments. If one parent doesn’t carry the pink 4 cM segment, for example, their offspring may receive that ancestral pink segment from the other parent.

They could potentially, and sometimes do, receive that ancestral segment from both parents.

In our example, the descendants of the blue child, at left, lost the pink 4 cM segment in generation 3, but a few generations later, in generation 11, that descendant child inherited that same pink 4 cM segment from their other parent. Therefore, both the 4 cM blue and 4 cM pink segments are now available to be inherited by the descendants in that line. I’ve shown the opposite scenario in the generational inheritance at right where the blue segment is lost and regained.

Once rejoined, that pink and blue segment can be passed along together for generations.

The important part, though, is that once those two segments butt up against each other again during recombination, they aren’t just two separate 4 cM segments, but one segment that is 8 cM long – that is now equal to or above the vendors’ matching threshold.

This is why people descended from endogamous populations often have the following matching characteristics:

  • More matches
  • Many smaller segment matches
  • Their total cM is often broken into more, smaller segments

What does more, smaller segments, look like, exactly?

More, Smaller Segments

All of our vendors except Ancestry have a chromosome browser for their customers to compare their DNA to that of their matches visually.

Let’s take a look at some examples of what endogamous and non-endogamous matches look like.

For example, here’s a screen shot of a random Jewish second cousin match – 298 cM total, divided into 12 segments, with a longest segment of 58 cM,

A second Jewish 2C with 323 cM total, across 19 segments, with a 69 cM longest block.

A fully Acadian 2C match with 600 cM total, across 27 segments, with a longest segment of 69 cM.

A second Acadian 2C with 332 cM total, across 20 segments, with a longest segment of 42 cM.

Next, a non-endogamous 2C match with 217 cM, across 7 segments, with a longest segment of 72 cM.

Here’s another non-endogamous 2C example, with 169 shared cM, across 6 segments, with a longest segment of 70 cM.

Here’s the second cousin data in a summary table. The take-away from this is the proportion of total segments

Tester Population Total cM Longest Block Total Segments
Jewish 2C 298 58 12
Jewish 2C 323 69 19
Acadian 2C 600 69 27
Acadian 2C 332 42 20
Non-endogamous 2C 217 72 7
Non-endogamous 2C 169 70 6

You can see more examples and comparisons between Native American, Jewish and non-endogamous DNA individuals in the article, Concepts – Endogamy and DNA Segments.

I suspect that a savvy mathematician could predict endogamy based on longest block and total segment information.

Lara Diamond, a mathematician, who writes at Lara’s Jewnealogy might be up for this challenge. She just published compiled matching and segment information in her Ashkenazic Shared DNA Survey Results for those who are interested. You can also contribute to Laura’s data, here.

Endogamy, Segments, and Distant Relationships

While not relevant to searching for close relatives, heavily endogamous matches 3C and more distant, to quote one of my Jewish friends, “dissolve into a quagmire of endogamy and are exceedingly difficult to unravel.”

In my own Acadian endogamous line, I often simply have to label them “Acadian” because the DNA tracks back to so many ancestors in different lines. In other words, I can’t tell which ancestor the match is actually pointing to because the same DNA segments or segments is/are carried by several ancestors and their descendants due to founder effect.

The difference with the Acadians is that we can actually identify many or most of them, at least at some point in time. As my cousin, Paul LeBlanc, once said, if you’re related to one Acadian, you’re related to all Acadians. Then he proceeded to tell me that he and I are related 137 different ways. My head hurts!

It’s no wonder that endogamy is incredibly difficult beyond the first few generations when it turns into something like multi-colored jello soup.

“Are Your Parents Related?” Tool

There’s another tool that you can utilize to determine if your parents are related to each other.

To determine if your parents are related to each other, you need to know about ROH, or Runs of Homozygosity (ROH).

ROH means that the DNA on both strands or copies of the same chromosome is identical.

For a few locations in a row, ROH can easily happen just by chance, but the longer the segment, the less likely that commonality occurs simply by chance.

The good news is that you don’t need to know the identity of either of your parents. You don’t need either of your parent’s DNA tests – just your own. You’ll need to upload your DNA file to GEDmatch, which is free.

Click on “Are your parents related?”

GEDMatch analyzes your DNA to see if any of your DNA, above a reasonable matching threshold, is identical on both strands, indicating that you inherited the exact same DNA from both of your parents.

A legitimate match, meaning one that’s not by chance, will include many contiguous matching locations, generally a minimum of 500 SNPs or locations in a row. GEDmatch’s minimum threshold for identifying identical ancestral DNA (ROH) is 200 cM.

Here’s my result, including the graphic for the first two chromosomes. Notice the tiny green bars that show identical by chance tiny sliver segments.

I have no significant identical DNA, meaning my parents are not related to each other.

Next, let’s look at an endogamous example where there are small, completely identical segments across a person’s chromosome

This person’s Acadian parents are related to each other, but distantly.

Next, let’s look at a Jewish person’s results.

You’ll notice larger green matching ROH, but not over 200 contiguous SNPs and 7 cM.

GEDMatch reports that this Jewish person’s parents are probably not related within recent generations, but it’s clear that they do share DNA in common.

People whose parents are distantly related have relatively small, scattered matching segments. However, if you’re seeing larger ROH segments that would be large enough to match in a genealogical setting, meaning multiple greater than 7 cM and 500 SNPs,, you may be dealing with a different type of situation where cousins have married in recent generations. The larger the matching segments, generally, the closer in time.

Blogger Kitty Cooper wrote an article, here, about discovering that your parents are related at the first cousin level, and what their GEDMatch “Are Your Parents Related” results look like.

Let’s look for more clues.

Surnames

There MAY be an endogamy clue in the surnames of the people you match.

Viewing surnames is easier if you download your match list, which you can do at every vendor except Ancestry. I’m not referring to the segment data, but the information about your matches themselves.

I provided instructions in the recent article, How to Download Your DNA Match Lists and Segment Files, here.

If you suspect endogamy for any reason, look at your closest matches and see if there is a discernable trend in the surnames, or locations, or any commonality between your matches to each other.

For example, Jewish, Acadian, and Native surnames may be recognizable, as may locations.

You can evaluate in either or both of two ways:

  • The surnames of your closest matches. Closest matches listed first will be your default match order.
  • Your most frequently occurring surnames, minus extremely common names like Smith, Jones, etc., unless they are also in your closest matches. To utilize this type of matching, sort the spreadsheet in surname order and then scan or count the number of people with each surname.

Here are some examples from our testers.

Jewish – Closest surname matches.

  • Roth
  • Weiss
  • Goldman
  • Schonwald
  • Levi
  • Cohen
  • Slavin
  • Goodman
  • Sender
  • Trebatch

Acadian – Closest surname matches.

  • Bergeron
  • Hebert
  • Bergeron
  • Marcum
  • Muise
  • Legere
  • Gaudet
  • Perry
  • Verlander
  • Trombley

Native American – Closest surname matches.

  • Ortega
  • Begay
  • Valentine
  • Hayes
  • Montoya
  • Sun Bear
  • Martin
  • Tsosie
  • Chiquito
  • Yazzie

You may recognize these categories of surnames immediately.

If not, Google is your friend. Eliminate common surnames, then Google for a few together at a time and see what emerges.

The most unusual surnames are likely your best bets.

Projects

Another way to get some idea of what groups people with these surnames might belong to is to enter the surname in the FamilyTreeDNA surname search.

Go to the main FamilyTreeDNA page, but DO NOT sign on.

Scroll down until you see this image.

Type the surname into the search box. You’ll see how many people have tested with that surname, along with projects where project administrators have included that surname indicating that the project may be of interest to at least some people with that surname.

Here’s a portion of the project list for Cohen, a traditional Jewish surname.

These results are for Muise, an Acadian surname.

Clicking through to relevant surname projects, and potentially contacting the volunteer project administrator can go a very long way in helping you gather and sift information. Clearly, they have an interest in this topic.

For example, here’s the Muise surname in the Acadian AmerIndian project. Two great hints here – Acadian heritage and Halifax, Nova Scotia.

Repeat for the balance of surnames on your list to look for commonalities, including locations on the public project pages.

Locations

Some of the vendor match files include location information. Each person on your match list will have the opportunity at the vendor where they tested to include location information in a variety of ways, either for their ancestors or themselves.

Where possible, it’s easiest to sort or scan the download file for this type of information.

Ancestry does not provide or facilitate a match list, but you can still create your own for your closest 20 or 30 matches in a spreadsheet.

MyHeritage provides common surname and ancestral location information for every match. How cool is that!

Y DNA, Mitochondrial DNA, and Endogamy

Haplogroups for both Y and mitochondrial DNA can indicate and sometimes confirm endogamy. In other cases, the haplogroup won’t help, but the matches and their location information just might.

FamilyTreeDNA is the only vendor that provides Y DNA and mitochondrial DNA tests that include highly granular haplogroups along with matches and additional tools.

23andMe provides high-level haplogroups which may or may not be adequate to pinpoint a haplogroup that indicates endogamy.

Of course, only males carry Y DNA that tracks to the direct paternal (surname) line, but everyone carries their mother’s mitochondrial DNA that represents their mother’s mother’s mother’s, or direct matrilineal line.

Some haplogroups are known to be closely associated with particular ethnicities or populations, like Native Americans, Pacific Islanders, and some Jewish people.

Haplogroups reach back in time before genealogy and can give us a sense of community that’s not available by either looking in the mirror or through traditional records.

This Native American man is a member of high-level haplogroup Q-M242. However, some men who carry this haplogroup are not Native, but are of European or Middle Eastern origin.

I entered the haplogroup in the FamilyTreeDNA Discover tool, which I wrote about, here.

Checking the information about this haplogroup reveals that their common ancestor descended from an Asian man about 30,000 years ago.

The migration path in the Americans explains why this person would have an endogamous heritage.

Our tester would receive a much more refined haplogroup if he upgraded to the Big Y test at FamilyTreeDNA, which would remove all doubt.

However, even without additional testing, information about his matches at FamilyTreeDNA may be very illuminating.

The Q-M242 Native man’s Y DNA matches men with more granular haplogroups, shown above, at left. On the Haplogroup Origins report, you can see that these people have all selected the “US (Native American)” country option.

Another useful tool would be to check the public Y haplotree, here, and the public mitochondrial tree here, for self-reported ancestor location information for a specific haplogroup.

Here’s an example of mitochondrial haplogroup A2 and a few subclades on the public mitochondrial tree. You can see that the haplogroup is found in Mexico, the US (Native,) Canada, and many additional Caribbean, South, and Central American countries.

Of course, Y DNA and mitochondrial DNA (mtDNA) tell a laser-focused story of one specific line, each. The great news, if you’re seeking information about your mother or father, the Y is your father’s direct paternal (surname) line, and mitochondrial is your mother’s direct matrilineal line.

Y and mitochondrial DNA results combined with ethnicity, autosomal matching, and the wide range of other tools that open doors, you will be able to reveal a great deal of information about whether you have endogamous heritage or not – and if so, from where.

I’ve provided a resource for stepping through and interpreting your Y DNA results, here, and mitochondrial DNA, here.

Discover for Y DNA Only

If you’re a female, you may feel left out of Y DNA testing and what it can tell you about your heritage. However, there’s a back door.

You can utilize the Y DNA haplogroups of your closest autosomal matches at both FamilyTreeDNA and 23andMe to reveal information

Haplogroup information is available in the download files for both vendors, in addition to the Family Finder table view, below, at FamilyTreeDNA, or on your individual matches profile cards at both 23andMe and FamilyTreeDNA.

You can enter any Y DNA haplogroup in the FamilyTreeDNA Discover tool, here.

You’ll be treated to:

  • Your Haplogroup Story – how many testers have this haplogroup (so far), where the haplogroup is from, and the haplogroup’s age. In this case, the haplogroup was born in the Netherlands about 250 years ago, give or take 200 years. I know that it was 1806 or earlier based on the common ancestor of the men who tested.
  • Country Frequency – heat map of where the haplogroup is found in the world.
  • Notable Connections – famous and infamous (this haplogroup’s closest notable person is Leo Tolstoy).
  • Migration Map – migration path out of Africa and through the rest of the world.
  • Ancient Connections – ancient burials. His closest ancient match is from about 1000 years ago in Ukraine. Their shared ancestor lived about 2000 years ago.
  • Suggested Projects – based on the surname, projects that other matches have joined, and haplogroups.
  • Scientific Details – age estimates, confidence intervals, graphs, and the mutations that define this haplogroup.

I wrote about the Discover tool in the article, FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages.

Endogamy Tools Summary Tables

Endogamy is a tough nut sometimes, especially if you’re starting from scratch. In order to make this topic a bit easier and to create a reference tool for you, I’ve created three summary tables.

  • Various endogamy-related tools available at each vendor which will or may assist with evaluating endogamy
  • Tools and their ability to detect endogamy in different groups
  • Tools best suited to assist people seeking information about unknown parents or grandparents

Summary of Endogamy Tools by Vendor

Please note that GEDMatch is not a DNA testing vendor, but they accept uploads and do have some tools that the testing vendors do not.

 Tool 23andMe Ancestry FamilyTreeDNA MyHeritage GEDMatch
Ethnicity Yes Yes Yes Yes Use the vendors
Ethnicity Painting Yes + segments Yes, limited Yes + segments Yes
Ethnicity Phasing Yes Partial Yes No
DNA Communities No Yes No No
Genetic Groups No No No Yes
Family Matching aka Bucketing No No Yes No
Chromosome Browser Yes No Yes Yes Yes
AutoClusters Through Genetic Affairs No Through Genetic Affairs Yes, included Yes, with subscription
Match List Download Yes, restricted # of matches No Yes Yes Yes
Projects No No Yes No
Y DNA High-level haplogroup only No Yes, full haplogroup with Big Y, matching, tools, Discover No
Mitochondrial DNA High-level haplogroup only No Yes, full haplogroup with mtFull, matching, tools No
Public Y Tree No No Yes No
Public Mito Tree No No Yes No
Discover Y DNA – public No No Yes No
ROH No No No No Yes

Summary of Endogamous Populations Identified by Each Tool

The following chart provides a guideline for which tools are useful for the following types of endogamous groups. Bolded tools require that both parents be descended from the same endogamous group, but several other tools give more definitive results with higher amounts of endogamy.

Y and mitochondrial DNA testing are not affected by admixture, autosomal DNA or anything from the “other” parent.

Tool Jewish Acadian Anabaptist Native Other/General
Ethnicity Yes No No Yes Pacific Islander
Ethnicity Painting Yes No No Yes Pacific Islander
Ethnicity Phasing Yes, if different No No Yes, if different Pacific Islander, if different
DNA Communities Yes Possibly Possibly Yes Pacific Islander
Genetic Groups Yes Possibly Possibly Yes Pacific Islander
Family Matching aka Bucketing Yes Yes Possibly Yes Pacific Islander
Chromosome Browser Possibly Possibly Yes, once segments or ancestors identified Possibly Pacific Islander, possibly
Total Matches Yes, compared to non-endogamous No No No No, unknown
AutoClusters Yes Yes Uncertain, probably Yes Pacific Islander
Estimated Relationships High Not always Sometimes No Sometimes Uncertain, probably
Relationship Range High Possibly, sometimes Possibly Possibly Possibly Pacific Islander, possibly
More, Smaller Segments Yes Yes Probably Yes Pacific Islander, probably
Parents Related Some but minimal Possibly Uncertain Probably similar to Jewish Uncertain, Possibly
Surnames Probably Probably Probably Not Possibly Possibly
Locations Possibly Probably Probably Not Probably Probably Pacific Islander
Projects Probably Probably Possibly Possibly Probably Pacific Islander
Y DNA Yes, often Yes, often No Yes Pacific Islander
Mitochondrial DNA Yes, often Sometimes No Yes Pacific Islander
Y public tree Probably not alone No No Yes Pacific Islander
MtDNA public tree Probably not No No Yes Pacific Islander
Y DNA Discover Yes Possibly Probably not, maybe projects Yes Pacific Islander

Summary of Endogamy Tools to Assist People Seeking Unknown Parents and Grandparents

This table provides a summary of when each of the various tools can be useful to:

  • People seeking unknown close relatives
  • People who already know who their close relatives are, but are seeking additional information or clues about their genealogy

I considered rating these on a 1 to 10 scale, but the relative usefulness of these tools is dependent on many factors, so different tools will be more or less useful to different people.

For example, ethnicity is very useful if someone is admixed from different populations, or even 100% of a specific endogamous population. It’s less useful if the tester is 100% European, regardless of whether they are seeking close relatives or not. Conversely, even “vanilla” ethnicity can be used to rule out majority or recent admixture with many populations.

Tools Unknown Close Relative Seekers Known Close Relatives – Enhance Genealogy
Ethnicity Yes, to identify or rule out populations Yes
Ethnicity Painting Yes, possibly, depending on population Yes, possibly, depending on population
Ethnicity Phasing Yes, possibly, depending on population Yes, possibly, depending on population
DNA Communities Yes, possibly, depending on population Yes, possibly, depending on population
Genetic Groups Possibly, depending on population Possibly, depending on population
Family Matching aka Bucketing Not if parents are entirely unknown, but yes if one parent is known Yes
Chromosome Browser Unlikely Yes
AutoClusters Yes Yes, especially at MyHeritage if Jewish
Estimated Relationships High Not No
Relationship Range High Not reliably No
More, Smaller Segments Unlikely Unlikely other than confirmation
Match List Download Yes Yes
Surnames Yes Yes
Locations Yes Yes
Projects Yes Yes
Y DNA Yes, males only, direct paternal line, identifies surname lineage Yes, males only, direct paternal line, identifies and correctly places surname lineage
Mitochondrial DNA Yes, both sexes, direct matrilineal line only Yes, both sexes, direct matrilineal line only
Public Y Tree Yes for locations Yes for locations
Public Mito Tree Yes for locations Yes for locations
Discover Y DNA Yes, for heritage information Yes, for heritage information
Parents Related – ROH Possibly Less useful

Acknowledgments

A HUGE thank you to several people who contributed images and information in order to provide accurate and expanded information on the topic of endogamy. Many did not want to be mentioned by name, but you know who you are!!!

If you have information to add, please post in the comments.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

In Search of…Vendor Features, Strengths, and Testing Strategies

This is the third in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied to ancestors further back in time too.

In this article, we are going to discuss your goals and why testing or uploading to multiple vendors is advantageous – even if you could potentially solve the initial mystery at one vendor. Of course, the vendor you test with first might not be the vendor where the mystery will be solved, and data from multiple vendors might just be the combination you need.

Testing Strategy – You Might Get Lucky

I recommended in the first article that you go ahead and test at the different vendors.

Some people asked why, and specifically, why you wouldn’t just test at one vendor with the largest database first, then proceed to the others if you needed to.

That’s a great question, and I want to discuss the pros and cons in this article more specifically.

Clearly, that is one strategy, but the approach you select might differ based on a variety of considerations:

  • You may only be interested in obtaining the name of the person you are seeking – or – you may be interested in finding out as much as possible.
  • You may find that your best match at one company is decidedly unhelpful, and may even block you or your efforts, while someone elsewhere may be exactly the opposite.
  • Solving your mystery may be difficult and painful at one vendor, but the answer may be infinitely easier at a different vendor where the answer may literally be waiting.
  • There may not be enough, or the right information, or matches, at any one vendor, but the puzzle may be solvable by combining information from multiple vendors and tests. Every little bit helps.
  • You may have a sense of urgency, especially if you hope to meet the person and you’re searching for parents, siblings or grandparents who may be aging.
  • You may be cost-sensitive and cannot afford more than one test at a time. Fortunately, our upload strategy helps with that too. Also, watch for vendor sales or bundles.

From the time you order your DNA test, it will be about 6-8 weeks, give or take a week or two in either direction, before you receive results.

When those results arrive, you might get lucky, and the answer you seek is immediately evident with no additional work and just waiting for you at the first testing company.

If that’s the case, you got lucky and hit the jackpot. If you’re searching for both parents, that means you still have one parent to go.

Unidentified grandparents can be a little more difficult, because there are four of them to sort between.

If you discover a sibling or half-sibling, you still need to figure out who your common parent is. Sometimes X, Y, and mitochondrial DNA provides an immediate answer and is invaluable in these situations.

It’s more likely that you’ll find a group of somewhat more distant relatives. You may be able to figure out who your common grandparents or great-grandparents are, but not your parent(s) initially. Often, the closer generation or two is actually the most difficult because you’re dealing with contemporary records which are not publicly available, fewer descendants, and the topic may be very uncomfortable for some people. It’s also complicated because you’re often not dealing with “full” relationships, but “half,” as in half-sibling, half-niece, half-1C, etc.

You may spend a substantial amount of time trying to solve this puzzle at the first vendor before ordering your next test.

That second test will also take about 6-8 weeks, give or take. I recommend that you order the first two autosomal tests, now.

Order Your First Two Autosomal Tests

The two testing companies with the largest autosomal databases for comparison, Ancestry, and 23andMe, DO NOT accept DNA file uploads from other companies, so you’ll need to test with each individually.

Fortunately, you CAN transfer your autosomal DNA tests to both MyHeritage and FamilyTreeDNA, for free.

You will have different matches at each company. Some people will be far more responsive and helpful than others.

I recommend that you go ahead and order both the Ancestry and 23andMe tests initially, then upload the first one that comes back with results to both FamilyTreeDNA and MyHeritage. Complete, step-by-step download/upload instructions can be found here.

You can also upload your DNA file to a fifth company, Living DNA, but they are significantly smaller and heavily focused on England and Great Britain. However, if that’s where you’re searching, this might be where you find important matches.

You can also upload to GEDMatch, a popular third-party database, but since you’re going to be in the databases of the four major testing companies, there is little to be gained at GEDMatch in terms of people who have not tested at one of the major companies. Do NOT upload to GEDMatch INSTEAD of testing or uploading to the four major sites, as GEDMatch only has a small fraction of the testers in each of the vendor databases.

What GEDMatch does offer is a chromosome browser – something that Ancestry does NOT offer, along with other clustering tools which you may find useful. I recommend GEDMatch in addition to the others, if needed or desired.

Ordering Y and Mitochondrial DNA Tests

We reviewed the basics of the different kinds of DNA, here.

Some people have asked why, if autosomal DNA shows relatives on all of your lines, would one would want to order specific tests that focus on just one line?

It just so happens that the two lines that Y and mitochondrial DNA test ARE the two lines you’re seeking – direct maternal – your mother (and her mother), and direct paternal, your father (and his father.)

These two tests are different kinds of DNA tests, testing a different type of DNA, and provide very focused information, and matches, not available from autosomal DNA tests.

For men, Y DNA can reveal your father’s surname, which can be an invaluable clue in narrowing paternal candidates. Knowing that my brother’s Y DNA matched several men with the surname of Priest made me jump for joy when he matched a woman of that same last name at another vendor.

Here’s a quote from one of the members of a Y DNA project where I’m the volunteer administrator:

“Thank you for your help understanding and using all 4 kinds of my DNA results. By piecing the parts together, I identified my father. Specifically, without Y DNA testing, and the Big Y test, I would not have figured out my parental connection, and then that my paternal line had been assigned to the wrong family. STR testing gave me the correct surname, but the Big Y test showed me exactly where I fit, and disproved that other line. I’m now in touch with my father, and we both know who our relatives are – two things that would have never happened otherwise.”

If you fall into the category of, “I want to know everything I can now,” then order both Y and mitochondrial DNA tests initially, along with those two autosomal tests.

You will need to order Y (males only) and mitochondrial DNA tests separately from the autosomal Family Finder test, although you should order on the same account as your Family Finder test at FamilyTreeDNA.

If you take the Family Finder autosomal test at FamilyTreeDNA or upload your autosomal results from another vendor, you can simply select to add the Y and mitochondrial DNA tests to your account, and they will send you a swab kit.

Conversely, you can order either a Y or mitochondrial DNA test, and then add a Family Finder or upload a DNA file if you’ve already taken an autosomal DNA test to that account too. Note – these might not be current prices – check here for sales.

You will want all 3 of your tests on the same account so that you can use the Advanced Matches feature.

Using Advanced Matches, you’ll be able to view people who match you on combinations of multiple kinds of tests.

For example, if you’re a male, you can see if your Y DNA matches also match you on the Family Finder autosomal test, and if so, how closely?

Here’s an example.

In this case, I requested matches to men with 111 markers who also match the tester on the Family Finder test. I discovered both a father and a full sibling, plus a few more distant matches. There were ten total combined matches to work with, but I’ve only shown five for illustration purposes.

This information is worth its weight in gold.

Is the Big Y Test Worth It?

People ask if the Big Y test is really worth the extra money.

The answer is, “it depends.”

If all you’re looking for are matching surnames, then the answer is probably no. A 37 or 111 marker test will probably suffice. Eventually, you’ll probably want to do the Big Y, though.

If you’re looking for exact placement on the tree, with an estimated distance to other men who have taken that test, then the answer is, “absolutely.” I wish the Big Y test had been available back when I was hunting for my brother’s biological family.

The Big Y test provides a VERY specific haplogroup and places you very accurately in your location on the Y DNA tree, along with other men of your line, assuming they have tested. You may find the surname, as well as being placed within a generation or a few of current in that family line.

Additionally, the Discover page provides estimates of how far in the past you share a common ancestor with other people that share the same haplogroup. This can be a HUGE boon to a male trying to figure out his surname line and how closely in time he’s related to his matches.

Big Y NPE Examples

Y DNA SNP mutations tested with the Big Y test accrue a mutation about every generation, or so. Sometimes we see mutations in every generation.

Here’s an example from my Campbell line. Haplogroups are listed in the top three rows.

I created this spreadsheet, but FamilyTreeDNA provides a block tree for Big Y testers. I’ve added the genealogy of the testers, with the various Big Y testers at the bottom and common ancestors above, in bold.

We have two red NPE lines showing. The MacFarlane tester matches M. Campbell VERY closely, and two Clark males match W. Campbell and other Campbells quite closely. We utilized autosomal plus the Y results to determine where the unknown parentage events occurred. Today, if you’re a Clark or MacFarlane male, or a male by any other surname who was fathered by a Y chromosome Campbell male (by any surname), you’ll know exactly where you fit in this group of testers on your direct paternal line.

Y DNA is important because men often match other men with the same surname, which is a HUGE clue, especially in combination with autosomal DNA results. I say “often,” because it’s possible that no one in your line has tested, or that your father’s surname is not his biological surname either.

Y and mitochondrial DNA matches can be HUGELY beneficial pieces of information either by confirming a close autosomal relationship on that line, or eliminating the possibility.

Lineage-Specific Population Information

In addition to matching other people, both Y and mitochondrial DNA tests provide you with lineage-specific population or “ethnicity” information for this specific line which helps you focus your research.

For example, if you view the Y DNA Haplogroup Origins shown for this tester, you’ll discover that these matches are Jewish.

The tester might not be Jewish on any other genealogical line, but they definitely have Jewish ancestry on their Y DNA, paternal, line.

The same holds true for mitochondrial DNA as well. The main difference with mitochondrial DNA is that the surname changes with each generation, haplogroups today (pre-Million Mito) are less specific, and fewer people have been tested.

Y and Mitochondrial DNA Benefits

Knowing your Y and mitochondrial DNA haplogroups not only arm you with information about yourself, they provide you with matching tools and an avenue to include or exclude people as your direct line paternal or maternal ancestors.

Your Y and mitochondrial DNA can also provide CRITICALLY IMPORTANT information about whether that direct line ancestor belonged to an endogamous population, and where they came from.

For example, both Jewish and Native populations are endogamous populations, meaning highly intermarried for many generations into the past.

Knowing that helps you adjust your autosomal relationship analysis.

Why Order Multiple Tests Initially Instead of Waiting?

If you’ve been adding elapsed time, two autosomal tests (Ancestry and 23andMe), two uploads (to FamilyTreeDNA and MyHeritage,) a Y DNA test, and a mitochondrial DNA test, if all purchased serially, one following the other, means you’ll be waiting approximately 6-8 months.

Do you want to wait 6-8 months for all of your results? Can you afford to?

Part of this answer has to do with what, exactly, you’re seeking, and how patient you are.

Only you can answer that question.

A Name or Information?

Are you seeking the name or identity of a person, or are you seeking information about that person?

Most people don’t just want to put a name to the person they are seeking – they want to learn about them and the rest of the family that door opens.

You will have different matches at each company. Even after you identify the person you seek, the people you match may have trees you can view, with family photos and other important information. (Remember, you can’t see living people in trees.) Your matches may have first-person information about your relative and may know them if they are living, or have known them.

Furthermore, you may have the opportunity to meet that person. Time delayed may not be able to be recovered or regained.

One cousin that I assisted discovered that his father had died just six weeks before he broke through that wall and made the connection.

Working with data from all vendors simultaneously will allow you to combine that data and utilize it together. Using your “best” matches at each company, augmented by X, Y, and/or mitochondrial DNA, can make MUCH shorter work of this search.

Your closest autosomal matches are the most important and insightful. In this series, I will be working with the top 15 autosomal results at each vendor, at least initially. This approach provides me with the best chance of meaningful close relationship discoveries.

Data and Vendor Results Integration

Here’s a table of my two closest maternal and paternal matches at the four major vendors. I can assign these to maternal or paternal sides, because I know the identity of my parents, and I know some of these people. If an adoptee was doing this, the top 4 could all be from one parent, which is why we work with the top 15 or so matches.

Vendor Closest Maternal Closest Paternal Comments
Ancestry 1C, 1C1R Half-1C, 2C I recognized both of the maternal and neither of the paternal.
23andMe 2C, 2C 1C1R, half-gr-niece Recognized both maternal, one paternal
MyHeritage Mother uploaded, 1C Half-niece, half-1C Recognized both maternal, one paternal
FamilyTreeDNA Mother tested, 1C1R Parent/child, half-gr-niece uploaded Recognized all 4

To be clear, I tested my mother’s mitochondrial DNA before she passed away, but because FamilyTreeDNA archives DNA samples for 25 years, as the owner/manager of her DNA kit, I was able to order the Family Finder test after she had passed away. Her tests are invaluable today.

Then, years later, I uploaded her results to MyHeritage.

If I was an adopted child searching for my mother, I would find her results in both databases today. She’ll never be at either 23andMe or Ancestry because she passed away before she could test there and they don’t accept uploads.

Looking at the other vendors, my half-niece at MyHeritage is my paternal half-sibling’s daughter. My half-sibling is deceased, so this is as close as I’ll ever get to matching her.

At 23andMe, the half-great-niece is my half-siblings grandchild.

It’s interesting that I have no matches to descendants of my other half-sibling, who is also deceased. Maybe I should ask if any of his children or grandchildren have tested. Hmmmm…..

You can see that I stand a MUCH BETTER chance of figuring out close relatives using the combined closest matches of all four databases instead of the top matches from just one database. It doesn’t matter if the database is large if the right person or people didn’t test there.

Combine Resources

I’ll be providing analysis methodologies for working with results from all of the vendors together, just in case your answer is not immediately obvious. Taking multiple DNA tests facilitates using all of these tools immediately, not months later. Solving the puzzle sooner means you may not miss valuable opportunities.

You may also discover that the door slams shut with some people, or they may not respond to your queries, but another match may be unbelievably helpful. Don’t limit your possibilities.

Let’s take a look at the strengths of each vendor.

Vendor Strengths and Things to Know

Every vendor has product strengths and idiosyncracies that the others do not. All vendors provide matches and shared matches. Each vendor provides ethnicity tools which certainly can be useful, but the features differ and will be covered elsewhere.

  • AncestryAncestry has the largest autosomal database and includes ThruLines, but no Y or mitochondrial DNA testing, no clusters, no chromosome browser, no triangulation, and no X chromosome matching or reporting. Ancestry provides genealogical records, advanced tools, and full tree access to your matches’ trees with an Ancestry subscription. Ancestry does not allow downloading your match list or segment match information, but the other vendors do.
  • 23andMe 23andMe has the second largest database. They provide triangulation and genetic trees that include your closest matches. Many people test at 23andMe for health and wellness information, so 23andMe has people in their database who are not specifically interested in genealogy and probably won’t have tested elsewhere, but may be invaluable to your search. 23andMe provides Y and mtDNA high-level haplogroups only, but no matching or other haplogroup information. If you purchase a new test or have a V5 ancestry+health current test, you can expand your matches from a limit of 1500 to about 5000 with an annual membership. For seeking close relatives, you don’t need those features, but you may want them for genealogy. 23andMe is the only vendor that limits their customers’ matches.
  • MyHeritageMyHeritage has the third largest database that includes lots of European testers. MyHeritage provides triangulation, Theories of Family Relativity, and an integrated cluster tool* but does not report X matches and does not offer Y or mitochondrial DNA testing. MyHeritage accepts autosomal DNA file uploads from other testing companies for free and provides access to advanced DNA features for a one-time unlock fee. MyHeritage includes genealogical records and full feature access to advanced DNA tools with a Complete Subscription. (Free 15 days trial subscription, here.)
  • FamilyTreeDNA Family Finder (autosomal)FamilyTreeDNA is the oldest DNA testing company, meaning their database includes people who initially tested 20+ years ago and have since passed away. This, in essence, gets you one generation further back in time, with the possibility of stronger matches. Their Family Matching feature buckets and triangulates your matches, assigning them to your maternal or paternal sides if you link known matches to their proper place in your tree, even if your parents have not tested. FamilyTreeDNA accepts uploads from other testing companies for free and provides advanced DNA features for a one time unlock fee.
  • FamilyTreeDNAFamilyTreeDNA is the only company that offers both Y and mitochondrial DNA testing products that include matching, integration with autosomal test results, and other tools. These two tests are lineage-specific and don’t have to be sorted from your other ancestral lines.

I wrote about using Y DNA results, here.

I wrote about using mitochondrial DNA results, here.

*Third parties such as Genetic Affairs provide clustering tools for both 23andMe and FamilyTreeDNA. Clustering is integrated at MyHeritage. Ancestry does not provide a tool for nor allow third-party clustering. If the answer you seek isn’t immediately evident, Genetic Affairs clustering tools group people together who are related to each other, and you, and create both genetic and genealogical trees based on shared matches. You can read more about their tools, here.

Fish in all the Ponds and Use All the Bait Possible

Here’s the testing and upload strategy I recommend, based on the above discussion and considerations. The bottom line is this – if you want as much information as possible, as quickly as possible, order the four tests in red initially. Then transfer the first autosomal test results you receive to the two companies identified in blue. Optionally, GEDMatch may have tools you want to work with, but they aren’t a testing company.

What When Ancestry 23andMe MyHeritage FamilyTreeDNA
Order autosomal Initially X X    
Order Y 111 or Big-Y DNA test if male Initially       X
Order mitochondrial DNA test Initially if desired       X
Upload free autosomal When Ancestry or 23andMe results are available     X X
Unlock Advanced Tools When you upload     $29 $19
Optional GEDMatch free upload If desired, can subscribe for advanced tools

When you upload an autosomal DNA file to a vendor site, only upload one file per site, per tester. Otherwise, multiple tests simply glom up everyone’s match list with multiple matches to the same person.

Multiple vendor sites will hopefully provide multiple close matches, which increase your opportunity to discover INFORMATION about your family, not just the identity of the person you seek.

Or maybe you prefer to wait and order these DNA tests serially, waiting until one set of results is back and you’re finished working with them before ordering the next one. If so, that means you’re a MUCH more patient person than me. 😊

Our next article in this series will be about endogamy, how to know if it applies to you, and what that means to your search.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA DISCOVER™ Launches – Including Y DNA Haplogroup Ages

FamilyTreeDNA just released an amazing new group of public Y DNA tools.

Yes, a group of tools – not just one.

The new Discover tools, which you can access here, aren’t just for people who have tested at FamilyTreeDNA . You don’t need an account and it’s free for everyone. All you need is a Y DNA haplogroup – from any source.

I’m going to introduce each tool briefly because you’re going to want to run right over and try Discover for yourself. In fact, you might follow along with this article.

Y DNA Haplogroup Aging

The new Discover page provides seven beta tools, including Y DNA haplogroup aging.

Haplogroup aging is THE single most requested feature – and it’s here!

Discover also scales for mobile devices.

Free Beta Tool

Beta means that FamilyTreeDNA is seeking your feedback to determine which of these tools will be incorporated into their regular product, so expect a survey.

If you’d like changes or something additional, please let FamilyTreeDNA know via the survey, their support line, email or Chat function.

OK, let’s get started!

Enter Your Haplogroup

Enter your Y DNA haplogroup, or the haplogroup you’re interested in viewing.

If you’re a male who has tested with FamilyTreeDNA , sign on to your home page and locate your haplogroup badge at the lower right corner.

If you’re a female, you may be able to test a male relative or find a haplogroup relevant to your genealogy by visiting your surname group project page to locate the haplogroup for your ancestor.

I’ll use one of my genealogy lines as an example.

In this case, several Y DNA testers appear under my ancestor, James Crumley, in the Crumley DNA project.

Within this group of testers, we have two different Big Y haplogroups, and several estimated haplogroups from testers who have not upgraded to the Big Y.

If you’re a male who has tested at either 23andMe or LivingDNA, you can enter your Y DNA haplogroup from that source as well. Those vendors provide high-level haplogroups.

The great thing about the new Discover tool is that no matter what haplogroup you enter, there’s something for you to enjoy.

I’m going to use haplogroup I-FT272214, the haplogroup of my ancestor, James Crumley, confirmed through multiple descendants. His son John’s descendants carry haplogroup I-BY165368 in addition to I-FT272214, which is why there are two detailed haplogroups displayed for this grouping within the Crumley haplogroup project, in addition to the less-refined I-M223.

Getting Started

When you click on Discover, you’ll be asked to register briefly, agree to terms, and provide your email address.

Click “View my report” and your haplogroup report will appear.

Y DNA Haplogroup Report

For any haplogroup you enter, you’ll receive a haplogroup report that includes 7 separate pages, shown by tabs at the top of your report.

Click any image to enlarge

The first page you’ll see is the Haplogroup Report.

On the first page, you’ll find Haplogroup aging. The TMRCA (time to most recent common ancestor) is provided, plus more!

The report says that haplogroup I-FT272214 was “born,” meaning the mutation that defines this haplogroup, occurred about 300 years ago, plus or minus 150 years.

James Crumley was born about 1710. We know his sons carry haplogroup I-FT272214, but we don’t know when that mutation occurred because we don’t have upstream testers. We don’t know who his parents were.

Three hundred years before the birth of our Crumley tester would be about 1670, so roughly James Crumley’s father’s generation, which makes sense.

James’ son John’s descendants have an additional mutation, so that makes sense too. SNP mutations are known to occur approximately every 80 years, on average. Of course, you know what average means…may not fit any specific situation exactly.

The next upstream haplogroup is I-BY100549 which occurred roughly 500 years ago, plus or minus 150 years. (Hint – if you want to view a haplogroup report for this upstream haplogroup, just click on the haplogroup name.)

There are 5 SNP confirmed descendants of haplogroup I-FT272214 claiming origins in England, all of whom are in the Crumley DNA project.

Haplogroup descendants mean this haplogroup and any other haplogroups formed on the tree beneath this haplogroup.

Share

If you scroll down a bit, you can see the share button on each page. If you think this is fun, you can share through a variety of social media resources, email, or copy the link.

Sharing is a good way to get family members and others interested in both genealogy and genetic genealogy. Light the spark!

I’m going to be sharing with collaborative family genealogy groups on Facebook and Twitter. I can also share with people who may not be genealogists, but who will think these findings are interesting.

If you keep scrolling under the share button or click on “Discover More” you can order Y DNA tests if you’re a biological male and haven’t already taken one. The more refined your haplogroup, the more relevant your information will be on the Discover page as well as on your personal page.

Scrolling even further down provides information about methods and sources.

Country Frequency

The next tab is Country Frequency showing the locations where testers with this haplogroup indicate that their earliest known ancestors are found.

The Crumley haplogroup has only 5 people, which is less than 1% of the people with ancestors from England.

However, taking a look at haplogroup R-M222 with many more testers, we see something a bit different.

Ireland is where R-M222 is found most frequently. 17% of the men who report their ancestors are from Ireland belong to haplogroup R-M222.

Note that this percentage also includes haplogroups downstream of haplogroup R-M222.

Mousing over any other location provides that same information for that area as well.

Seeing where the ancestors of your haplogroup matches are from can be extremely informative. The more refined your haplogroup, the more useful these tools will be for you. Big Y testers will benefit the most.

Notable Connections

On the next page, you’ll discover which notable people have haplogroups either close to you…or maybe quite distant.

Your first Notable Connection will be the one closest to your haplogroup that FamilyTreeDNA was able to identify in their database. In some cases, the individual has tested, but in many cases, descendants of a common ancestor tested.

In this case, Bill Gates is our closest notable person. Our common haplogroup, meaning the intersection of Bill Gates’s haplogroup and my Crumley cousin’s haplogroup is I-L1195. The SNP mutation that defines haplogroup I-L1145 occurred about 4600 years ago. Both my Crumley cousin and Bill Gates descend from that man.

If you’re curious and want to learn more about your common haplogroup, remember, you can enter that haplogroup into the Discover tool. Kind of like genetic time travel. But let’s finish this one first.

Remember that CE means current era, or the number of years since the year “zero,” which doesn’t technically exist but functions as the beginning of the current era. Bill Gates was born in 1955 CE

BCE means “before current era,” meaning the number of years before the year “zero.” So 2600 BCE is approximately 4600 years ago.

Click through each dot for a fun look at who you’re “related to” and how distantly.

This tool is just for fun and reinforces the fact that at some level, we’re all related to each other.

Maybe you’re aware of more notables that could be added to the Discover pages.

Migration Map

The next tab provides brand spanking new migration maps that show the exodus of the various haplogroups out of Africa, through the Middle East, and in this case, into Europe.

Additionally, the little shovel icons show the ancient DNA sites that date to the haplogroup age for the haplogroup shown on the map, or younger. In our case, that’s haplogroup I-M223 (red arrow) that was formed about 16,000 years ago in Europe, near the red circle, at left. These haplogroup ancient sites (shovels) would all date to 16,000 years ago or younger, meaning they lived between 16,000 years ago and now.

Click to enlarge

By clicking on a shovel icon, more information is provided. It’s very interesting that I-L1145, the common haplogroup with Bill Gates is found in ancient DNA in Cardiff, Wales.

This is getting VERY interesting. Let’s look at the rest of the Ancient Connections.

Ancient Connections

Our closest Ancient Connection in time is Gen Scot 24 (so name in an academic paper) who lived in the Western Isles of Scotland.

These ancient connections are more likely cousins than direct ancestors, but of course, we can’t say for sure. We do know that the first man to develop haplogroup I-L126, about 2500 years ago, is an ancestor to both Gen Scot 24 and our Crumley ancestor.

Gen Scot 24 has been dated to 1445-1268 BCE which is about 3400 years ago, which could actually be older than the haplogroup age. Remember that both dating types are ranges, carbon dating is not 100% accurate, and ancient DNA can be difficult to sequence. Haplogroup ages are refined as more branches are discovered and the tree grows.

The convergence of these different technologies in a way that allows us to view the past in the context of our ancestors is truly amazing.

All of our Crumley cousin’s ancient relatives are found in Ireland or Scotland with the exception of the one found in Wales. I think, between this information and the haplogroup formation dates, it’s safe to say that our Crumley ancestors have been in either Scotland or Ireland for the past 4600 years, at least. And someone took a side trip to Wales, probably settled and died there.

Of course, now I need to research what was happening in Ireland and Scotland 4600 years ago because I know my ancestors were involved.

Suggested Projects

I’m EXTREMELY pleased to see suggested projects for this haplogroup based on which projects haplogroup members have joined.

You can click on any of the panels to read more about the project. Remember that not everyone joins a project because of their Y DNA line. Many projects accept people who are autosomally related or descend from the family through the mitochondrial line, the direct mother’s line.

Still, seeing the Crumley surname project would be a great “hint” all by itself if I didn’t already have that information.

Scientific Details

The Scientific Details page actually has three tabs.

The first tab is Age Estimate.

The Age Estimate tab provides more information about the haplogroup age or TMRCA (Time to Most Recent Common Ancestor) calculations. For haplogroup I-FT272214, the most likely creation date, meaning when the SNP occurred, is about 1709, which just happens to align well with the birth of James Crumley about 1710.

However, anyplace in the dark blue band would fall within a 68% confidence interval (CI). That would put the most likely years that the haplogroup-defining SNP mutation took place between 1634 and 1773. At the lower end of the frequency spectrum, there’s a 99% likelihood that the common ancestor was born between 1451 and 1874. That means we’re 99% certain that the haplogroup defining SNP occurred between those dates. The broader the date range, the more certain we can be that the results fall into that range.

The next page, Variants, provides the “normal” or ancestral variant and the derived or mutated variant or SNP (Single Nucleotide Polymorphism) in the position that defines haplogroup I-FT272214.

The third tab displays FamilyTreeDNA‘s public Y DNA Tree with this haplogroup highlighted. On the tree, we can see this haplogroup, downstream haplogroups as well as upstream, along with their country flags.

Your Personal Page

If you have already taken a DNA test at FamilyTreeDNA, you can find the new Discover tool conveniently located under “Additional Tests and Tools.”

If you are a male and haven’t yet tested, then you’ll want to order a Y DNA test or upgrade to the Big Y for the most refined haplogroup possible.

Big Y tests and testers are why the Y DNA tree now has more than 50,000 branches and 460,000 variants. Testing fuels growth and growth fuels new tools and possibilities for genealogists.

What Do You Think?

Do you like these tools?

What have you learned? Have you shared this with your family members? What did they have to say? Maybe we can get Uncle Charley interested after all!

Let me know how you’re using these tools and how they are helping you interpret your Y DNA results and assist your genealogy.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches Katherine Borges https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA Keynote, RootsTech Wrap + Special Show Pricing Still Available

Am I ever whipped. My two live Sessions that were actually a series of three classes each took place on Friday. Yes, that means I presented 6 sessions on Friday, complete with a couple of Zoom gremlins, of course. It’s the nature of the time we live in.

RootsTech tried something new that they’ve never done before. The Zoom class sessions were restricted to 500 attendees each. RootsTech was concerned about disappointed attendees when the room was full and they couldn’t get in, so we live-streamed three of my sessions to Facebook in addition to the 500 Zoom seats.

As of this evening, 6,800 of you have viewed the Facebook video, “Associating Autosomal DNA Segments With Ancestors.” I’m stunned, and touched. Thank you, thank you. Here’s the Facebook link, and here’s the RootsTech YouTube link.

My afternoon sessions, “What Can I DO With Ancestral DNA Segments?” can be viewed here at RootsTech or here on YouTube.

I must admit, I’m really, REALLY looking forward to being together again because RootsTech without the socializing and in-person Expo Hall just isn’t the same. Still, be sure to take a virtual walk through the Expo Hall, here. There’s lots of content in the vendors” booths and it will remain available for all of 2022, until the beginning of RootsTech 2023..

Between prep for my classes and presenting, I didn’t have a lot of time to watch other sessions, but I was able to catch the FamilyTreeDNA keynote and their 2022 Product Sneak Peek. Both were quite worthwhile.

However, I just realized that FamilyTreeDNA’s special show pricing promo codes are still valid for the next two days.

 Special Prices Are Still Available

Every single test that FamilyTreeDNA offers, including UPGRADES, is on sale right now by using special RootsTech promo codes. These prices are good for two more days, through March 7th, so if you want to purchase a Y DNA test, mitochondrial, or Family Finder autosomal test, or upgrade, click here to see the prices only available at RootsTech (and to you through my blog.) It’s not too late, but it will be soon.

To order, click here to sign on or place your order.

FamilyTreeDNA’s Keynote

FamilyTreeDNA’s keynote was titled FamilyTreeDNA: 22 Years of Breaking Down Brick Walls.

I really enjoyed this session, in part because I’ve been a part of the genetic genealogy revolution and evolution from the beginning. Not only that, but I know every single person they interviewed for this video, and have for years. If you’ve been participating in genetic genealogy for some time, you’ll know many of these people too. For a minute, it was almost as good as visiting in person.

I’m going to share a few highlights from the session, but I’m also going to include information NOT in the video. I was one of the early project administrators, so I’ve been along for the ride for just a few months shy of 22 years.

FamilyTreeDNA was the first US company to enter the DNA testing space, the first to offer Y DNA testing, and the only one of the early companies that remains viable today. FamilyTreeDNA was the result of Bennett Greenspan’s dream – but initially, he was only dreaming small. Just like any other genealogist – he was dreaming about breaking down a brick wall which he explains in the video.

I’m so VERY grateful that Bennett had that dream, and persisted, because it means that now millions of us can do the same – and will into the future.

Bennett tells this better than anyone else, along with his partner, Max Blankfeld.

“Some people were fascinated,” Bennett said.

Yep, that’s for sure! I certainly was.

“Among the first genetic genealogists in the world.”

“Frontier of the genetic genealogy revolution.”

Indeed, we were and still are. Today’s genetic genealogy industry wouldn’t even exist were it not for FamilyTreeDNA and their early testers.

I love Max Blankfeld’s story of their first office, and you will too.

This IS the quintessential story of entrepreneurship.

In 2004, when FamilyTreeDNA was only four years old, they hosted the very first annual international project administrator’s conference. At that time, it was believed that the only people that would be interested in learning at that level and would attend a DNA conference would be project administrators who were managing surname and regional projects. How times have changed! This week at RootsTech, we probably had more people viewing DNA sessions than people that had tested altogether in 2004. I purchased kit number 30,087 on December 28, 2004, and kit 50,000 a year later on New Year’s Eve right at midnight!

In April 2005, Nat Geo partnered with FamilyTreeDNA and founded the Genographic Project which was scheduled to last for 5 years. They were hoping to attract 100,000 people who would be willing to test their DNA to discover their roots – and along with that – our human roots. The Genographic Project would run for an incredible 15 years.

In 2005 when the second Project Administrator’s conference was held at the National Geographic Society headquarters in Washington DC, I don’t think any of us realized the historic nature of the moment we were participating in.

I remember walking from my hotel, ironically named “Helix,” to that iconic building. I had spent my childhood reading those yellow magazines at school and dreaming of far-away places. As an adult, I had been a life-long subscriber. Never, in my wildest dreams did I imagine ever visiting Nat Geo and walking the marble Explorer’s Hall with the portraits of the founders and early explorers hanging above and keeping a watchful eye on us. We would not disappoint them.

That 100,000 participation goal was quickly reached, within weeks, and surpassed, leading us all to walk the road towards the building that housed the Explorer’s Hall, Explorers’ in Residence, and so much more.

We were all explorers, pioneers, adventurers seeking to use the DNA from our ancestors in the past to identify who they were. Using futuristic technology tools like a mirror to look backward into the dim recesses of the past.

The archaeology being unearthed and studied was no longer at the ends of the earth but within our own bodies. The final frontier. Reaching out to explore meant reaching inward, and backward in time, using the most progressive technology of the day.

Most of the administrators in attendance, all volunteers, were on a first-name basis with each other and also with Max, Bennett, and the scientists.

Here, Bennett with a member of the science team from the University of Arizona describes future research goals. Every year FamilyTreeDNA has improved its products in numerous ways.

Today, that small startup business has its own ground-breaking state-of-the-art lab. More than 10,000 DNA projects are still administered by passionate volunteer administrators who focus on what they seek – such as the history of their surname or a specific haplogroup. Their world-class lab allows FamilyTreeDNA to focus on research and science in addition to DNA processing. The lab allows constant improvement so their three types of genetic genealogy products, Y, mitochondrial and autosomal DNA.

Those three types of tests combine to provide genealogical insights and solutions. The more the science improves, the more solutions can and will be found.

If you watch the video, you’ll see 6 people who have solved particularly difficult and thorny problems. We are all long-time project administrators, all participate on a daily basis in this field and community – and all have an undying love for both genealogy and genetic genealogy.

You’ll recognize most of these people, including yours truly.

  • I talk about my mother’s heritage, unveiled through mitochondrial DNA.
  • Rob Warthen speaks about receiving a random phone call from another genealogist as his introduction to genetic genealogy. Later, he purchased a DNA test for his girlfriend, an adoptee, for Christmas and sweetened the deal by offering to “go where you’re from” for vacation. He didn’t realize why she was moved to tears – that test revealed the first piece of information she had ever known about her history. DNA changed her and Rob’s life. He eventually identified her birth parents – and went on to found both DNAAdoption.org and DNAGedcom.
  • Richard Hill was adopted and began his search in his 30s, but it would be DNA that ended his search. His moving story is told in his book, Finding Family: My Search for Roots and the Secrets in My DNA.
  • Mags Gaulden, professional genealogist and founder of Grandma’s Genes and MitoYDNA.org tells about her 91-year-old adopted client who had given up all hope of discovering her roots. Back in the 1950s, there was literally nothing in her client’s adoption file. She was reconciled to the fact that “I would never know who I was.” Mags simply could not accept that and 2 years later, Mags found her parents’ names.

  • Lara Diamond’s family was decimated during the holocaust. Lara’s family thought everyone in her grandfather’s family had been killed, but in 2013, autosomal DNA testing let her to her grandfather’s aunt who was not killed in the holocaust as everyone thought. The aunt and first cousin were living in Detroit. Lara went from almost no family to a family reunion, shown above. She says she finally met “people who look like me.”
  • Katherine Borges founded ISOGG.org, the International Society of Genetic Genealogy in 2005, following the first genetic genealogy conference in late 2004 where she realized that the genealogy community desperately needed education – beginning with DNA terms. I remember her jokingly standing in the hallway saying that she understood three words, “a, and and the.” While that’s cute today, it was real at that time because DNA was a foreign language, technology, and concept to genealogy. In fact, for years we were banned from discussing the topic on RootsWeb. The consummate genetic genealogist, Katherine carries DNA kits in her purse, even to Scotland!

Bennett says that he’s excited about the future, for the next generation of molecular scientific achievements. It was Bennett that greenlit the Million Mito project. Bennett’s challenge as a genetic genealogy/business owner was to advance the science that led to products while making enough money to be able to continue advancing the science. It was a fine line, but Max and Bennett navigated those waters quite well.

Apparently, Max, Bennett, and the FamilyTreeDNA customers weren’t the only people who believe that.

In January 2021, myDNA acquired and merged with FamilyTreeDNA. Max and Bennett remain involved as board members.

Dr.Lior Rauchberger, CEO of myDNA which includes FamilyTreeDNA

Dr. Lior Rauchberger, the CEO of the merged enterprise believes in the power of genetics, including genetic genealogy, and is continuing to make investments in FamilyTreeDNA products – including new features. There have already been improvements in 2021 and in the presentation by Katy Rowe, the Product Manager for the FamilyTreeDNA products, she explains what is coming this year.

I hope you enjoyed this retrospective on the past 22 years and are looking forward to crossing new frontiers, and breaking down those brick walls, in the coming decades.

Sneak Peek at FamilyTreeDNA – New Features and Upcoming Releases

You can watch Katy Rowe’s Sneak Peek video about what’s coming, here.

Of course, while other companies need to split their focus between traditional genealogy research records and DNA, FamilyTreeDNA does not. Their only focus is genetics. They plan to make advances in every aspect of their products.

FamilyTreeDNA announced a new Help Center which you can access, here. I found lots of short videos and other helpful items. I had no idea it existed.

In 2021, customers began being able to order a combined Family Finder and myDNA test to provide insights into genealogy along with health and wellness

Wellness includes nutrition and fitness insights.

Existing customers either are or will be able to order the myDNA upgrade to their existing test. The ability to upgrade is being rolled out by groups. I haven’t had my turn yet, but when I do, I’ll test and let you know what I think. Trust me, I’m not terribly interested in how many squats I can do anymore, because I already know that number is zero, but I am very interested in nutrition and diet. I’d like to stay healthy enough to research my ancestors for a long time to come.

FamilyTreeDNA announced that over 72,000 men have taken the Big Y test which has resulted in the Y DNA tree of mankind surpassing 50,000 branches.

This is utterly amazing when you consider how far we’ve come since 2002. This also means that a very high number of men, paired with at least one other man, actually form a new branch on the Y haplotree.

The “age” of tester’s Y DNA haplogroups is now often within the 500-year range – clearly genealogical in nature. Furthermore, many leaf-tip haplogroups as defined by the Big Y SNPs are much closer than that and can differentiate between branches of a known family. The Big Y-700 is now the go-to test for Y DNA and genealogy.

Of course, all these new branches necessitate new maps and haplogroup information. These will be released shortly and will provide users with the ability to see the paths together, which is the view you see here, or track individual lines. The same is true for mitochondrial DNA as well.

Y DNA tree branch ages will be forthcoming soon too. I think this is the #1 most requested feature.

On the Mitochondrial DNA side of the house, the Million Mito project has led to a significant rewrite of the MitoTree. As you know, I’m a Million Mito team member.

Here’s Dr. Paul Maier’s branch, for example. You can see that in the current version of the Phylotree, there is one blue branch and lots of “child” branches beneath that. Of course, when we’re measuring the tree from “Eve,” the end tip leaf branches look small, but it’s there that our genealogy resides.

In the new version, yet to be released, there is much more granularity in the branches of U5a2b2a.

To put this another way, in today’s tree, haplogroup U5a2b2a is about 5,000 years old, but the newly defined branches bring the formation of Paul’s (new) haplogroup into the range of about 500 years. Similar in nature to the Y DNA tree and significantly more useful for genealogical purposes. If you have not taken a mitochondrial DNA full sequence test, please order one now. Maybe your DNA will help define a new branch on the tree plus reveal new information about your genealogy.

Stay tuned on this one. You know the Million Mito Project is near and dear to my heart.

2022 will also see much-needed improvements in the tree structure and user experience, as well as the matches pages.

There are a lot of exciting things on FamilyTreeDNA’s plate and I’m excited to see these new features and functions roll out over the next few months.

Just the Beginning

The three days of RootsTech 2022 may be over, but the content isn’t.

In fact, it’s just the beginning of being able to access valuable information at your convenience. The vendor booths will remain in the Expo Hall until RootsTech 2023, so for a full year, plus the individual instructor’s sessions will remain available for three years.

In a few days, after I take a break, I’ll publish a full list of DNA sessions, along with links for your convenience.

Thank You Shout Outs

I want to say a HUGE thank you to RootsTech for hosting the conference and making it free. I specifically want to express my gratitude to the many, many people working diligently behind the scenes during the last year, and frantically during the past three days.

Another huge thank you to the speakers and vendors whose efforts provide the content for the conference.

And special thanks to you for loving genealogy, taking your time to watch and learn, and for reading this blog.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Identify Your Ancestors – Follow Nested Ancestral Segments

I don’t think that we actively think about our DNA segments as nested ancestors, like Russian Matryoshka dolls, but they are.

That’s exactly why segment information is critical for genealogists. Every segment, and every portion of a segment, has an incredibly important history. In fact, you could say that the further back in time we can track a segment, the more important it becomes.

Let’s see how to unveil nested segments. I’ll use my chromosome 20 as an example because it’s a smaller chromosome. But first, let’s start with my pedigree chart.

Pedigree

Click images to enlarge.

Before we talk about nested segments that originated with specific ancestors, it’s important to take a look at the closest portion of my maternal pedigree chart. My DNA segments came from and through these people. I’ll be working with the first 5 generations, beginning with my mother as generation #1.

Generation 1 – Parents

In the first generation, we receive a copy of each chromosome from each parent. I have a copy of chromosome 20 from my mother and a copy from my father.

At FamilyTreeDNA, you can see that I match my mother on the entire tested region of each chromosome.

Therefore, the entire length of each of my chromosomes is assigned to both mother and father because I received a copy from each parent. I’m fortunate that my mother’s DNA was able to be tested before she passed away.

We see that each copy of chromosome 20 is a total of 110.20 cM long with 17,695 SNPs.

Of course, my mother inherited the DNA on her chromosome 20 from multiple ancestors whose DNA combined in her parents, a portion of which was inherited by my mother. Mom received one chromosome from each of her parents.

I inherited only one copy of each chromosome (In this case, chromosome 20) from Mom, so the DNA of her two parents was divided and recombined so that I inherited a portion of my maternal chromosome 20 from both of my maternal grandparents.

Identifying Maternal and Paternal Matches

Associating matches with your maternal or paternal side is easy at FamilyTreeDNA because their Family Finder matching does it automatically for you if you upload (or create) a tree and link matches that you can identify to their proper place in your tree.

FamilyTreeDNA then uses that matching segment information from known, identified relatives in your tree to place people who match you both on at least one significant-sized segment in the correct maternal, paternal, (or both) buckets. That’s triangulation, and it happens automatically. All you have to do is click on the Maternal tab to view your triangulated maternal matches. As you can see, I have 1432 matches identified as maternal. 

Some other DNA testing companies and third-party tools provide segment information and various types of triangulation information, but they aren’t automated for your entire match list like Family Finder matching at FamilyTreeDNA.

You can read about triangulation in action at MyHeritage, here, 23andMe, here, GEDmatch, here, and DNAPainter, which we’ll use, here. Genetic Affairs AutoKinship tool incorporates triangulation, as does their AutoSegment Triangulation Cluster Tool at GEDmatch. I’ve compiled a reference resource for triangulation, here.

Every DNA testing vendor has people in their database that haven’t tested anyplace else. Your best strategy for finding nested segments and identifying matches to specific ancestors is to test at or transfer your DNA file to every vendor plus GEDmatch where people who test at Ancestry sometimes upload for matching. Ancestry does not provide segment information or a chromosome browser so you’ll sometimes find Ancestry testers have uploaded to GEDmatch, FamilyTreeDNA  or MyHeritage where segment information is readily available. I’ve created step-by-step download/upload instructions for all vendors, here.

Generation 2 – Grandparents

In the second generation, meaning that of my grandparents, I inherited portions of my maternal and paternal grandmother’s and grandfather’s chromosomes.

My maternal and paternal chromosomes can be divided into two pieces or groups each, one for each grandparent.

Using DNAPainter, we can see my father’s chromosome 20 on top and my mother’s on the bottom. I have previously identified segments assigned to specific ancestors which are represented by different colors on these chromosomes. You can read more about how to use DNAPainter, here.

We can divide the DNA inherited from each parent into the DNA inherited from each grandparent based on the trees of people we match. If we test cousins from each side, assigning segments maternally or paternally becomes much, much easier. That’s exactly why I’ve tested several.

For the rest of this article, I’m focusing only on my mother’s side because the concepts and methods are the same regardless of whether you’re working on your maternal side or your paternal side.

Using DNAPainter, I expanded my mother’s chromosome 20 in order to see all of the people I’ve painted on my mother’s side.

DNAPainter allows us to paint matching segments from multiple testing vendors and assign them to specific ancestors as we identify common ancestors with our matches.

Based on these matches, I’ve divided these maternal matches into two categories:

  • Maternal grandmother, meaning my mother’s mother, bracketed in red boxes
  • Maternal grandfather, meaning my mother’s father, bracketed in black boxes.

The text and arrows in these graphics refer to the colors of the brackets/boxes, and NOT the colors of the segments beside people’s names. For example, if you look at the large black box at far right, you’ll see several people, with their matching segments identified by multiple colored bars. The different colored segments (bars) mean I’ve associated the match with different ancestors in multiple or various levels of generations.

Generation 3 – Great-grandparents

Within those maternal and paternal grandparent segments, more nested information is available.

The black Ferverda grandfather segments are further divided into black, from Hiram Ferverda, and gold from his wife Eva Miller. The same concept applies to the red grandmother segments which are now divided into red representing Nora Kirsch and purple representing Curtis Lore, her husband.

While I have only been able to assign the first four segments (at the top) to one person/ancestor, there’s an entire group of matches who share the grouping of segments at right, in gold, descended through Eva Miller. The Miller line is Brethren and Mennonite with lots of testers, so this is a common pattern in my DNA matches.

Eva Miller, the gold ancestor, has two parents, Margaret Elizabeth Lentz and John David Miller, so her segments would come from those two sides.

Generation 4 and 5 – Fuschia Segment

I was able to track the segment shown in fuschia indicated by the blue arrow to Jacob Lentz and his wife Fredericka Ruhle, German immigrant ancestors. Other people in this same match (triangulation) group descend from Margaret Elizabeth Lentz and John David Miller – but that fuschia match is the one that shows us where that segment originated. This allows us to assign that entire gold/blue bracketed set of segments to a specific ancestor or ancestral couple because they triangulate, meaning they all match me and each other.

Therefore, all of the segments that match with the fuschia segment also track back to Jacob Lentz and Fredericka Ruhle, or to their ancestors. We would need people who descend from Jacob’s parents and/or Fredericka’s parents to determine the origins of that segment.

In other words, we know all of these people share a common source of that segment, even if we don’t yet know exactly who that common ancestor was or when they lived. That’s what the process of tracking back discovers.

To be very clear, I received that segment through Jacob and Fredericka, but some of those matches who I have not been able to associate with either Jacob or Fredericka may descend from either Jacob or Fredericka’s ancestors, not Jacob and Fredericka themselves. Connecting the dots between Jacob/Fredericka and their ancestors may be enlightening as to the even older source of that segment.

Let’s take a look at nested segments on my pedigree chart.

Nested Pedigree

Click to enlarge.

You can see the progression of nesting on my pedigree chart, using the same colors for the brackets/boxes. The black Ferverda box at the grandparent level encompasses the entire paternal side of my mother’s ancestry, and the red includes her mother’s entire side. This is identical to the DNAPainter graphic, just expressed on my pedigree chart instead of my chromosome 20.

Then the black gets broken into smaller nested segments of black, gold and fuschia, while the red gets broken into red and purple.

If I had more matches that could be assigned to ancestors, I would have even more nested levels. Of course, if I was using all of my chromosomes, not just 20, I would be able to go back further as well.

You can see that as we move further back in time, the bracketed areas assigned to each color become smaller and smaller, as do the actual segments as viewed on my DNAPainter chromosomes.

Segments Get Progressively Smaller

You can see in the pedigree chart and segment painting above that the segments we inherit from specific ancestors divide over time. As we move further and further back in our tree, the segments inherited from any specific ancestor get smaller and smaller too.

Dr. Paul Maier in the MyOrigins 3.0 White Paper provides this informative graphic that shows the reduction in segments and the number of ancestors whose DNA we carry reaching back in time.

I refer to this as a porcupine chart.

Eventually, we inherit no segments from red ancestors, and the pieces of DNA that we inherit from the distant blue ancestors become so small and fragmented that they cannot be positively identified as coming from a specific ancestor when compared to and matched with other people. That’s why vendors don’t show small segment matches, although different vendors utilize different segment thresholds.

The debate about how small is too small continues, but the answer is not simply segment size alone. There is no one-size-fits-all answer.

As segments become smaller, the probability, or chances that we match another person by chance (IBC) increases. Proof that someone shares a specific ancestor, especially when dealing with increasingly smaller segments is a function of multiple factors, such as tree completeness for both people, shared matches, parental match confirmation, and more. I wrote about What Constitutes Proof, here.

In the Family Finder Matching White Paper, Dr. Maier provides this chart reflecting IBD (Identical By Descent) and IBC (Identical By Chance) segments and the associated false positivity rate. That means how likely you are to match someone on a segment of that size by chance and NOT because you both share the DNA from a common ancestor.

I wrote Concepts: Identical by Descent, State, Population and Chance to help you better understand how this works.

In the chart below, I’ve combined the generations, relationships, # of ancestors, assuming no duplicates, birth year range based on an approximate 30-year generation, percent of DNA assuming exactly half of each ancestor’s DNA descends in each generation (which we know isn’t exactly accurate), and the average amount of total inherited cMs using that same assumption.

Note that beginning with the 7th generation, on average, we can expect to inherit less than 1% of the DNA of an ancestor, or approximately 55 total cM which may be inherited in multiple segments.

The amount of actual cMs inherited in each generation can vary widely and explains why, beginning with third cousins, some people won’t share DNA from a common ancestor above the various vendor matching thresholds. Yet, other cousins several generations removed will match. Inheritance is random.

Parallel Inheritance

In order to match someone else descended from that 11th generation ancestor, BOTH you AND your match will need to have inherited the exact SAME DNA segment, across 11 generations EACH in order to match. This means that 11 transmission events for each person will need to have taken place in parallel with that identical segment being passed from parent to child in each line. For 22 rolls of the genetic dice in a row, the same segment gets selected to be passed on.

You can see why we all need to work to prove that distant matches are valid.

The further back in time we work, the more factors we must take into consideration, and the more confirming proof is needed that a match with another individual is a result of a shared ancestor.

Having said that, shared distant matches ARE the key to breaking through brick-wall ancestors. We just need to be sure we are chasing the real deal and not a red herring.

Exciting Possibilities

The most exciting possibility is that some segments are actually passed intact for several generations, meaning those segments don’t divide into segments too small for matching.

For example, the 22 cM fuschia segment that tracks through generations 4 and 5 to Jacob Lentz and Fredericka Ruhle has been passed either intact or nearly intact to all of those people who stack up and match each other and me on that segment. 22 cM is definitely NOT a small segment and we know that it descended from either Jacob or Fredericka, or perhaps combined segments from each. In any case, if someone from the Lentz line in Germany tested and matched me on that segment (and by inference, the rest of these people too), we would know that segment descended to me from Jacob Lentz – or at least the part we match on if we don’t match on the entire segment.

This is exactly what nested segments are…breadcrumbs to ancestors.

Part of that 22cM segment could be descended from Jacob and part from Fredericka. Then of Jacob’s portion, for example, pieces could descend from both his mother and father.

This is why we track individual segments back in time to discern their origin.

The Promise of the Future

The promise of the future is when a group of other people triangulate on a reasonably sized segment AND know where it came from. When we match that triangulation group, their identified segment may well help break down our brick walls because we match all of them on that same segment.

It is exactly this technique that has helped me identify a Womack segment on my paternal line. I still haven’t identified our common ancestor, but I have confirmed that the Womacks and my Moore/Rice family interacted as neighbors 8 generations ago and likely settled together in Amelia county, migrating from eastern Virginia. In time, perhaps I’ll be able to identify the common Womack ancestor and the link into either my Moore or Rice lines.

I’m hoping for a similar breakthrough on my mother’s side for Philip Jacob Miller’s wife, Magdalena, 7 generations back in my tree. We know Magdalena was Brethren and where they lived when they took up housekeeping. We don’t know who her parents were. However, there are thousands of Miller descendants, so it’s possible that eventually, we will be able to break down that brick wall by using nested segments – ours and people who descend from Magdalena’s siblings, aunts, and uncles.

Whoever those people were, at least some of their descendants will likely match me and/or my cousins on at least one nested Miller segment that will be the same segment identified to their ancestors.

Genealogy is a team sport and solving puzzles using nested segments requires that someone out there is working on identifying triangulated segments that track to their common ancestors – which will be my ancestors too. I have my fingers crossed that someone is working on that triangulation group and I find them or they find me. Of course, I’m working to triangulate and identify my segments to specific ancestors – hoping for a meeting in the middle – that much-desired bridge to the past.

By the time you’ve run out of other records, nested segments are your last chance to identify those elusive ancestors. 

Do you have genealogical brick walls that nested segments could solve?

__________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here. You can also subscribe to receive emails when I publish articles by clicking the “Follow” button at www.DNAexplain.com.

You’re always welcome to forward articles or links to friends.

You Can Help Out and It’s Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

STRs and SNPs – Are STR Markers Still Useful for Y DNA?

Some time back, I wrote an article titled, STRs vs SNPs, Multiple DNA Personalities, which you can read, here. In that article, I explained the difference between STR and SNP markers.

Y DNA is extremely useful for men to track their direct paternal line via the Y chromosome that they inherited from their father. You can see how various types of DNA are inherited, here. By way of comparison, mitochondrial DNA (red) is inherited from your matrilineal line, and autosomal DNA (green) is inherited from all lines.

The Y chromosome, shown in blue above, is passed from father to son without mixing with the DNA of the mother, so it is in essence tracked intact for generations – with the exception of occasional mutations.

Two kinds of mutations make Y DNA genealogically useful. They are STRs, short tandem repeat markers and SNPs, single nucleotide polymorphisms, pronounced as “snips.” If you’re looking for in-depth information about Y DNA, I have provided a Y DNA resource guide here.

How is Y DNA Useful?

For Estes males, we have identified several genetic lineages using these markers that show us where testers fit into the tree of Estes males, which of course in turn fits into the larger tree of mankind.

In some cases, Y DNA is the only clue people have as to their genealogy. In other situations, these tests confirm and further refine both the genetic tree and genealogy.

Let’s look at how these two types of Y DNA markers work, separately and together at FamilyTreeDNA.

STR Markers, Results and Matching

Y DNA STR results are returned in panels when men take Y DNA tests.

Every man who takes a Y DNA test at FamilyTreeDNA receives STR results, shown above. How many marker results he receives depends on the level of the test he orders. In the past, 12, 25, 37, 67 and 111 marker tests were available to purchase individually. Men could also upgrade to higher level tests. 500 and 700 STR marker results are only available when the Big Y test has been purchased.

Today, men can order the entry level 37 Y DNA test or a 111 marker test individually. However, a minimum of 700 STR markers are included in the Big Y-700 test, in addition to SNP results, which we will talk about in a minute.

Matching is Key

However, the benefit isn’t in the STR markers themselves, but in matching to other men. The markers are just the tool used – but the more information you have, the better the result.

STR results are used to match all Y DNA testers against each other. Matches are shown at each marker level.

My Estes male cousin has tested at the Big Y 700 level. He is matched against all other men who have taken a Y DNA test. He can see who he matches at 12 through 111 markers separately. For each man that he matches, if they have taken the Big Y test, he can see how closely he matches at the 500 or 700 marker level too.

This Estes match to my Estes cousin, shown above, has tested at 111 markers, but has not taken the Big Y test, so he has no STR markers above 111. He mismatches my cousin with 1 STR marker difference at 111 markers. That’s pretty close.

Additionally, we can see that the match’s haplogroup has been estimated as R-M269 based on STR results. For a more specific haplogroup, either individual SNP markers must be tested, or an upgrade to the Big Y-700 test can be ordered. I don’t recommend individual SNP marker testing anymore because the Big Y gives you so much more for your money by scanning for all Y DNA mutations.

Big Y-700 and SNPs

The only way to obtain the most detailed Y DNA haplogroup is to take a Big Y test. The Big Y test scans the Y chromosome to search for SNP mutations. The Big Y test doesn’t test any one specific location, like STRs or individual SNP tests, but scans for all mutations – currently known and previously unknown. That’s the beauty. You don’t have to tell it what to look for. The Big Y test scans and looks for everything useful.

More than 200,000 men in the FamilyTreeDNA database have been SNP tested and more than 450,000 variants, or mutations, have been found in Big Y tests. The database grows every single day. Sometimes DNA matching is a waiting game, with your DNA available for matching 24X7. When your DNA is working for you, you just never know when that critical match will be forthcoming.

The Big Y test keeps giving over time, because new variants (mutations) are discovered and eventually named as haplogroups. Many new haplogroups are based on what can best be called family line mutations.

Initially, SNP results and haplogroups were so far up the tree that often, they weren’t genealogically relevant, but that’s NOT the case anymore.

Today, SNP results from the Big Y-700 test are sometimes MORE relevant and dependable than STR results.

Each man receives a very refined personal haplogroup, known colloquially as their terminal SNP, often FAR down the tree from the estimated haplogroup provided with STR testing alone.

After Big Y testing, my cousin is now haplogroup R-ZS3700 instead of R-M269. R-M269 was accurate as far as it went, but only the Big Y test can provide this level of detail which is quite useful.

The Block Tree Divides Lines for You

The Block Tree is provided for all Big Y testers.

Looking at the Block Tree for my cousin, you can see that he and several other primarily Estes men either share the same haplogroup or parent/child haplogroups.

My cousin in R-ZS3700, while R-BY490 is the parent haplogroup of R-ZS3700, and R-BY154784 is a child haplogroup of R-ZS3700.

R-M269 is more than 15 haplogroup branches upstream of my cousin’s R-ZS3700.

You can also easily see that Estes men fall onto different “twigs” of the tree, and those twigs are very genealogically significant. Each column above is a twig, representing a distinct genealogical lineage. Taking the Big Y test separates men into their ancestral branches which can be genealogically associated with specific men.

My cousin is R-ZS3700, along with one other man. Two more men form R-BY154784, a subgroup of R-ZS3700, which means they descend from a specific man who descends from Moses Estes. All of these men descend from R-BY490 and all of those men descend from R-BY482, the parent of R-BY490, as shown on the public haplotree, here.

Men who take the Big Y test ALSO receive separate SNP matching – meaning they have BOTH STR and SNP matching which provides testers with two separate tools to use.

Of course, the only men who will be shown as SNP matches are the men who have taken the Big Y test.

Ok, how is this information useful?

Project View

Looking at the Estes DNA project, you can see that two men who have joined the project carry haplogroup R-ZS3700. Several others descend from that same genealogical line according to their paper trail, and STR matches, but have not taken the Big Y-700 test.

As the project administrator, I’ve grouped these men by their known ancestor, and then, in some cases, I’ve used their terminal SNP to further group them. For example, one man, kit 491887, doesn’t know which Estes line he descends from, but I can confidently group him in Estes Group 4 based on his haplogroup of R-ZS3700.

I can also use STR matching and autosomal matching to further refine his match group if needed for the project. But guaranteed, he’ll need to use both of those additional tools to figure out who his Estes ancestors are.

He was absolutely thrilled to be grouped under Moses Estes, because at least now he has something to work his paper trail backwards towards.

Test Summary

Men who take STR tests alone, meaning 12-111 only, receive STR matching and an estimated haplogroup.

Men who take the Big Y test receive STR results and matches, PLUS the most refined haplogroup possible, many additional STR markers, separate SNP matches and block tree placement.

STR 12-111 Tests Only Big Y-700 Test
STR markers through 111 Yes, depending on test level purchased Yes
STR marker matching with other men Yes Yes
STR markers from 112-700 Only if the tester purchases a Big Y upgrade Yes
Estimated haplogroup Yes Haplogroup is fully tested, not estimated
Tested, most refined haplogroup Not without an upgrade to the Big Y-700 test Yes
SNP Matching No Yes
Block Tree No Yes

Genealogy

Recently, someone asked me how to use these tools separately and together. That’s a great question.

First, if there is a data conflict, SNP results are much more stable than STRs. STRs mutate much more often and sometimes back mutate to the original value which in essence looks like a mutation never happened. Furthermore, sometimes STR markers mutate to the same value independently, meaning that two men share the same mutation – making it look like they descend from the same line – but they don’t.

Before the Big Y tests were available, the only Y DNA tools we had were STR matches and individual SNP mutations. From time to time, one of the STR markers would mutate back to the original value which caused me, as a project administrator, to conclude that men without that specific line-marker mutation were not descended from that line, when in fact, that man’s line had experienced a back-mutation.

How do I know that? When the men involved both took the Big Y-700 test, they have a lineage defining haplogroup that proved that there had been a back-mutation in the STR data and the men in question were in fact from the line originally thought.

Thank goodness for the Big Y test.

STRs and SNPs Working in Tandem

Click any image to enlarge

Looking at the Estes project again, the R-ZS3700 SNP defines the Moses Estes (born 1711) line, a son of the immigrant, Abraham Estes. The men grouped together above are descendants of Moses’s great-grandson. You can see that if I were to use STR markers alone, I would have divided this group into two based on the values of the two bottom kits. However, both genealogy and SNP/haplogroups prove that indeed, the genealogy is accurate.

STR markers alone are inconclusive at best and potentially deceptive if we used only those markers without additional information.

However, we don’t always have the luxury of upgrading every man to the right and Big Y-700 test. Some testers are deceased, some don’t have enough DNA left and cannot submit a new swab, and some simply aren’t interesting.

When we don’t have the more refined Big Y test, the STR markers and matches are certainly valuable.

Furthermore, STR markers can sometimes provide lineages WITHIN haplogroups.

For example, let’s say that in the example above the two men at the bottom were a distinct line of men descended from one specific descendant of Moses Estes. If that were the case, then the STR markers would be very valuable within the R-ZS3700 haplogroup. Maybe I need to reevaluate their genealogy and see if there are any new clues available now that were not available before.

STRs Within Match Groups

Using a different example, I can’t group these Estes men any more closely based on their genealogy or SNP results.

Only two men in this group have taken a Big Y test – those with haplogroup R-BY490. Unfortunately, this haplogroup only confirms that these men descend from the Estes lineage that immigrated to America and that they are NOT from the Moses Estes line. That’s useful, but not enough.

Two other men have taken individual SNP tests, R-DF49 and R-L21 which are not useful in this context. They don’t reach far enough down the tree.

We need more information. Fortunately, we have some.

We have two clusters of STR markers. We can see that three men have a purple grouping of 24 at marker DYS390 (the header with STR marker names is not shown in the screen shot) and a grouping of men that share a mutation of 12 at marker DYS391.

It’s likely, but not a given, that the men clustered together at the bottom with the 12 value descend from the same Estes male common ancestor. The men at the top with a value of both 12 and 24 could belong to that same cluster, with an additional small cluster of 24 further delineating their ancestor – OR – the mutation to 12 at location DYS391 could have arisen independently in two separate lines.

It’s also possible that back-mutations have occurred in some of the other men. We just don’t know.

If I were to advise these men, I’d strongly suggest that they all upgrade to the Big Y-700 with the hope that at least some of them would have SNPs that define existing or new haplogroups that would positively sort their lines.

Then, within those haplogroup groups, I’d focus on STR groupings, genealogy and possibly, autosomal results.

Evaluate All Three, Separately and Together

We have three separate tools (plus autosomal) that need to be considered together as well as separately.

  1. The first, of course, is known genealogy. However, Y DNA testing works well even without genealogy.
  2. Big Y haplogroup information combined with the block tree should be evaluated to define genetic lineages.
  3. STR groupings need to be evaluated separately from and within haplogroups and allow us to add people to the SNP-defined groups of testers. Known genealogy is important when using STR markers.

As a bonus, if the men have also taken the Family Finder test, some men may match each other autosomally as well as Y DNA, if the connection is close enough in time. Of course, Y DNA matches reach much further back in time than autosomal matching because Y DNA is never divided or combined with any DNA from the other parent.

Confirm or Refute

Genealogy can be either confirmed or refuted by either STR or SNP tests, independently or together.

Looking again at the public Estes DNA project, you can see that the first person in that group provided his genealogy as descending from the same Moses Estes line as the other men. However, the STR mutations clearly show that indeed, his genealogy is incorrect for some reason. He does not match any of the other men descended from Moses’s grandson or the rest of the Estes lineage.

This man’s haplogroup is estimated as R-M269, but were he to take the Big Y test, he would assuredly not be R-ZS3700. In fact, his STR markers match two men who have taken the Big Y-700 test and those two men share an entirely different haplogroup, not in the Estes or related branches at all. If this man were to take the Big Y-700 test, he would likely match that haplogroup.

Both STRs and SNPs can disprove a lineage relationship. As I mentioned earlier, of the two, SNPs are more reliable. Often SNPs are required to conclusively divide a group of men descended from a common ancestor.

STRs may or may not be useful, or correct, either without SNP-defined haplogroups, or within those haplogroups.

However, STRs, even alone, are a tool that should not be ignored, especially when we don’t have SNP data or it’s not conclusive.p

A Different View

To literally look at this a different way, I prepared a pedigree type Y DNA haplogroup spreadsheet for the Estes Project at WikiTree. I’ve divided the information by ancestor and included haplogroups. You can view that spreadsheet, here, and you can then compare the colored groups with the Estes DNA Project at FamilyTreeDNA which are grouped by ancestral line.

This is only a small portion of that pedigree showing the Moses lineage. The image is large, but you can see the entire spreadsheet (as of August 2020) here.

Of note, R-BY490 defines the entire Abraham Estes line (green above). Within that line, other SNP lineages have been defined, including R-ZS3700 and R-BY154784.

However, many lines have additional STR motifs that define or suggest associations with specific genealogical ancestral lines, as you can see in the Estes FamilyTreeDNA project, here. I’ve included only a snippet above.

Bottom Line

To answer the original question – yes you can and should use STR and SNP markers both separately and together. If you don’t have enough SNP data, use STR matches along with genealogy information and Family Finder results to augment what you do have.

The more Y DNA information you have in hand, the better prepared you are to analyze and utilize that information for genealogical purposes.

Do you have genealogical questions that Y DNA could potentially solve? What are they and can you find someone to test?

___________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research