Comparing DNA Results – Different Tests at the Same Testing Company

Several people have asked about different tests at the same DNA testing company. They wondered if matching is affected, meaning whether your matches are different if you have two different tests at the same company. Specifically, they asked if you are better off purchasing a test AT a DNA testing vendor that allows uploads, rather than uploading a test from a different vendor. Does it make a difference to the tester or their matches? Do they have the same matches?

These are great questions, and the answer isn’t conclusive. It varies based on several factors.

Having multiple tests at the same DNA testing company can occur in three ways:

  • The same person tests twice at the same DNA testing company.
  • The same person tests once at the DNA testing company and uploads a test from a different testing company. Only two of the primary four DNA testing companies accept uploads from other vendors – FamilyTreeDNA and MyHeritage.
  • The same person uploads two different files from other DNA testing companies to the DNA testing company in question. For example, the DNA company could be FamilyTreeDNA and the two uploaded DNA files could be from either MyHeritage, 23andMe or Ancestry.

All DNA testing companies allow users to download their raw DNA data files. This enables the tester to upload their DNA file to the vendors who accept uploaded files. Both FamilyTreeDNA and MyHeritage provide matching for free, but advanced tools require a small unlock fee of $19 and $29, respectively.

Testing Company Accepts Uploads from Other Companies Download Upload Instructions
23andMe No Instructions here
Ancestry No Instructions here
FamilyTreeDNA Yes, some Instructions here
MyHeritage Yes, some Instructions here

I wrote about developing a DNA testing and transfer/upload strategy, here, and about which companies accept which tests, here.

Not all DNA files are created equal. Therefore, not all files from vendors are compatible with other vendors for various reasons.

Multiple Tests at the Same DNA Testing Company

I have at least two tests at each of the four major vendors. I did this for research purposes, meaning to write articles to share with you.

If you actually test twice at a vendor, meaning purchase two separate tests and take them yourself, you will have two test results at that testing company. At some companies, specifically 23andMe, if you purchase a new test through their “upgrade” procedure, you won’t have two tests, just the newer one.

However, if you’re testing at the DNA testing company, and also uploading, I generally don’t recommend more than one test at each vendor. All it really does is clog up people’s match lists with no or little additional benefit. At 23andMe, with their restrictions on the size of your match list, if everyone had two tests, the effective match limit would be half of their stated limit of about 1500 matches for earlier testers and about 5000 for current testers with subscriptions.

So, in essence, I’m telling you to “do as I say, not as I do.” We all have better things to do with our money rather pay for the same test twice. If you haven’t tested your Y-DNA or mitochondrial DNA, that’s much more beneficial than two autosomal tests at one vendor.

Chips and Chip Evolution

Before we begin the side-by-side comparison, let’s briefly discuss DNA testing chips and how they work.

Each DNA testing company purchases DNA processing equipment. Illumina is the big dog in this arena. Illumina defines the capacity and structure of each chip. In part, how the testing companies use that capacity, or space on each chip, is up to each company. This means that the different testing companies test many of the same autosomal DNA SNP locations, but not all of the same locations.

Furthermore, the individual testing companies can specify a number of “other” locations to be included on their chip, up to the chip maximum size limit. The testing companies who offer Y-DNA or mitochondrial DNA haplogroups from autosomal tests use part of their chip array space for selected known haplogroup-defining SNP locations. This does NOT mean that Y-DNA or mitochondrial DNA is autosomal, just that the testing company used part of their chip array space to target these SNPs in your genome. Of course, for your most refined haplogroup and Y-DNA or mitochondrial DNA matching, you have to take those specific tests at FamilyTreeDNA .

This means that each testing company includes and reports many of the same, but also some different SNP locations when they scan your DNA.

In the lab, after your DNA is extracted from either your saliva or the cheek swab, it’s placed on this array chip which is then placed in the processing equipment.

There are several steps in processing your DNA. Each DNA location specified on the chip is scanned and read multiple times, and the results are recorded. The final output is the raw DNA results file that you see if/when you download your raw DNA file.

Here’s an example from my file. The RSID is the reference SNP cluster ID which is the naming convention used for specific SNPs. It’s not relevant to you, but it is to the lab, along with the chromosome number and position, which is in essence the address on the chromosome.

In the Result column, your file reports one nucleotide (T, A, C or G) that you inherited from each parent at each tested position. They are not listed in “parent order” because your DNA is not organized in that fashion. There’s no way for the lab to know which nucleotide came from which parent, unless they are the same, of course. You can read about nucleotides, here.

When you upload your raw DNA file to a different DNA testing company (vendor), they have to work with a file that isn’t entirely compatible with the files they generate, or the other files uploaded from other DNA testing companies.

In addition to dealing with different file formats and contents from multiple DNA vendors, companies change their own chips and file structure from time to time. In some cases, it’s a forced change by the chip manufacturer. Other times, the vendors want to include different locations or make improvements. For example, with 23andMe’s focus on health, they probably add new medically related SNP locations regularly. Regardless of why, some DNA files include locations not included in other files and are not 100% compatible.

Looking at the first few entries in my example file above, let’s say that the testing vendor included the first ten positions, but an uploaded file from another company did not. Or perhaps the chip changed, and a different version of the company’s own file contains different positions.

DNA testing companies have to “fill in the blanks” for compatibility, and they do this using a technique called imputation. Illumina forced their customers to adopt imputation in 2017 when they dropped the capacity of their chip. I was initially quite skeptical, but imputation has worked surprisingly well. Some of the matching differences you will see when comparing the results of two different DNA files is a result of imputation.

I wrote about imputation in an early article here. Please note the companies have fixed many issues with imputation and improved matching greatly, but the concepts and imputation processes still apply. The downloaded raw data files are your results BEFORE imputation, meaning that it’s up to any company where you upload to process your raw file in the same way they would process a file that they generated. A lot goes on behind the scenes when you upload a file to a DNA testing company.

At both 23andMe and Ancestry, you know that all of your matches tested there, meaning they did not upload a file from another testing company. You don’t know and can’t tell what chip was utilized when your matches tested. The only way to determine a chip testing version, aside from knowing the date or remembering the chip version from when you tested, is to look at the beginning of the raw data download file, although not all files contain that information.

Ok, now that you understand the landscape, let’s look at my results at each company.

23andMe

I tested twice at 23andMe on two different chip versions, V3 and V4, which tested some different locations of my DNA. Neither of these chips is the current version. I originally tested twice to evaluate the differences between the two test versions which you can read about, here.

23andMe named their ethnicity results Ancestry Composition.

They last updated my V3 test’s Ancestry Composition results on July 28, 2021.

The percentages are shown at left, and the country locations are highlighted at right for my 23andMe V3 test.

Click to enlarge any graphic

The 23andMe V4 test was also updated for the last time on July 28, 2021.

The ethnicity results differ substantially between the two chip versions, even though they were both updated on the same date.

In October of 2020, in an effort to “encourage” their customers to pay for a new test on their V5 chip, 23andMe announced that there would be no ethnicity updates on older tests. So, I really don’t know for sure when my tests were actually updated. Just note how different the results are. It’s also worth mentioning that 23andMe does not show trace amounts on their map, so even though my Indigenous American results were found, they aren’t displayed on the map.

Indigenous is, however, shown in yellow on their DNA Chromosome Painting.

No other testing company restricts updates, penalizing their customers who purchased earlier versions of tests.

Matches at 23andMe

23andMe limits your matches to about 1500 unless you have purchased the current test, including health AND pay for an annual $69 subscription which buys you about 5000 matches. I have not purchased this test.

Your number of actual matches displayed/retained is also affected by how many people you have communicated with, or at least initiated communications with. 23andMe does not roll those people off of your match list.

I have 1803 matches on both of my tests, meaning I’ve reached out to about 300 people who would have otherwise been removed from my match list. 23andMe retains your highest matches, deleting lower matches after you reach the maximum match threshold.

I’ve randomly evaluated several of the same matches at each vendor, at least five maternal and five paternal, separated by a blank row. I wanted to determine whether they match me on the same number of centimorgans, meaning the same amount of DNA, on both tests, and the same number of segments.

Match 23and Me V3 23and Me V4
Patricia 292 cM – 12 segments Same as V3
Joe 148 cM, 8 segments Same
Emily 73 cM, 4 segs 72 cM, 4 seg
Roland 27 cM, 1 seg Same
Ian 62 cM, 4 seg Same
Stacy 469 cM, 16 segments 482 cM, 16 segments
Harold 134 cM, 6 segments Same
Dean 69 cM, 3 seg Same
Carl 95 cM, 4 seg Same
Debbie 83 cM, 4 seg 84 cM, 4 seg

As you can see, the matches are either exact or xclose.

Please note that bolded matches are also found at another company. I will include a summary table at the end comparing the same match across multiple vendors.

23and Me Summary

The 23andMe V3 and V4 match results are very close. Since the match limit is the same, and the results are so close between tests, they are essentially identical in terms of matching.

The ethnicity results are similar, but the V4 test reflects a broader region. Italian baffles me in both versions.

Ethnicity should never be taken at face value at any DNA testing company, especially with smaller percentages which could be noise or a combination of other regions which just happens to resemble Italy, in my case.

I don’t know what type of comparison the current chip would yield since I suspect it has more medical and less genealogical SNPs on board.

Reprocessing Tests

This is probably a good place to note that it’s very expensive for any company to update their customer’s ethnicity results because every single customer’s DNA results file must be completely rerun. Note that this does not mean their DNA itself is retested. The output raw data file is reprocessed using a new algorithm.

Rerunning means reprocessing that specific portion of every test, meaning the vendors must rent “time in the cloud.” We are talking millions of dollars for each run. I don’t know how much it costs per test, but think about the expense if it takes $1 to rerun each test in the vendor’s database. Ancestry has more than 20 million tests.

While we, as consumers, are always chomping at the bit for new and better ethnicity results – the testing companies need to be sure it really is “better,” not just different before they invest the money to reprocess and update results.

This is probably why 23andMe decided to cease updating older kits. The newer tests require a subscription which is recurring revenue.

The same is true when DNA testing companies need to rematch their entire user base. This happens when the criteria for matching changes. For example, Ancestry purged a large number of matches for all of their customers back in 2020. While match algorithm changes necessitate rematching, with associated costs, this change also provided Ancestry with the huge benefit of eliminating approximately half of their customer’s matches. This freed up storage space, either physically in their data center or space rented in the cloud, representing substantial cost-savings.

How long can a DNA testing company reasonably be expected to continue investing in a product which never generates additional revenue but for which the maintenance and reinvestment costs never end?

Ancestry and MyHeritage both hope to offset the expenses of maintaining their customer’s DNA tests and providing free updates by selling subscriptions to their record services. 23andMe wants you to purchase a new test and a yearly subscription. FamilyTreeDNA wants you to purchase a Big Y-DNA and mitochondrial DNA test.

OK, now let’s look at my matches at Ancestry.

Ancestry

I’ve taken two Ancestry tests, V1 and V2. There were some differences, which I wrote about here and here. V2 is no longer the current chip.

Except for 23andMe who wants their customers to purchase their most current test, the other companies no longer routinely announce new chip versions. They just go about their business. The only way you know that a vendor actually changed something is when the other companies who accept uploads suddenly encounter an issue with file formats. It always takes a few weeks to sort that out.

My Ancestry V1 test’s ethnicity results don’t show my Native American ethnicity.

Ancestry results were updated in June 2022

However, my V2 results do include Native American ethnicity.

Matches at Ancestry

I have many more matches on my V1 test at Ancestry because I took steps to preserve my smaller matches when Ancestry initiated its massive purge in 2020. I wrote about that here and here.

Ancestry’s SideView breaks matches down into maternal, paternal, and unassigned based on your side selection. You tell Ancestry which side is which. You may be able to determine which “side” is maternal or paternal either by your ethnicity or shared matches. While SideView is not always accurate, it’s a good place to begin.

Match Category Ancestry V1 Test Ancestry V2 Test
Maternal 15,587 15,116
Paternal 42,247 41,870
Both 2 2
Unassigned 48,999 4,127
Total 106,835 61,115

Ancestry either displays all your matches or your matches by side, which I used to compile the table above. I suspect that Ancestry is not assigning any of the smaller preserved matches to “sides” based on the numbers above.

Ancestry implemented a process called Timber that removes DNA that they feel is “too matchy,” meaning you match enough people in this region that they think it’s a pileup region for you personally, and therefore not useful. In some cases, enough DNA is removed causing that person to no longer be considered a match because they fall beneath the match threshold. I am not a fan of Timber.

Your match amount shown is AFTER Timber has removed those segments. Unweighted shared DNA is your pre-Timber match amount.

You can view the Unweighted shared DNA by clicking on the amount of shared DNA on your match list.

You can read Ancestry’s Matching White Paper, here.

Let’s take a look at my matches. I’ve listed both weighted and unweighted where they are different.

Match Ancestry V1 Ancestry V2
Michael 755 cM, 35 seg 737 cM, 33 seg
Edward 66 cM, 4 seg (unweighted 86 cM) 65 cM, 4 seg (unweighted 86 cM)
Tom 59 cM, 3 seg (unweighted 63) Same
Jonathon 43 cM, 4 seg, (unweighted 52 cM) Same
Matthew 20 cM, 2 seg (unweighted 35 cM) Same
Harold 132 cM, 7 seg 135 cM, 6 seg
Dean 67 cM, 4 seg (unweighted 78 cM) 66 cM, 4 seg (unweighted 78 cM)
Debbie 93 cM, 5 seg Same
Valli 142 cM, 3 seg Same
Jared 20 cM, 1 seg (unweighted 22 cM) Same

Timber only removes DNA when the match is under 90 cM. Almost every match under 90 cM has some DNA removed.

Ancestry Summary

The results of the two Ancestry tests are very close.

In some circumstances, no DNA is removed by Timber, so the unweighted is the same as the weighted. However, in other cases, a significant amount is removed. 15 cM of Matthew’s 35 cM was removed by Timber, reducing his total to 20 cM.

Remember that Ancestry does not show shared matches unless they are greater than 20 cM, which is different than any other DNA testing company.

At one point, Ancestry was selling a health test that was also a genealogy test. That test utilized a different chip that is not accepted for uploads by other vendors. The results of that test might well be different that the “normal” Ancestry tests focused on genealogy. The Ancestry health test is no longer offered.

Companies that Accept Uploads

DNA testing companies that accept uploaded DNA files from other DNA testing companies need to process the uploaded file, just like a file that is generated in their own lab. Of course, they must deal with the differences between uploaded files and their own file format. The processing includes imputation and formulates the uploaded file so that it works with the tools that they provide for their customers, including ethnicity (by whatever name they use) matching, family matching (bucketing), advanced matching, the match matrix, triangulation, AutoClusters, Theories of Family Relativity, and other advanced tools.

Of course, the testing company accepting uploads can only work with the DNA locations provided by the original DNA testing company in the uploaded file.

Matching and some additional tools are free to uploaders, but advanced tools require an inexpensive unlock.

FamilyTreeDNA

I took a test at FamilyTreeDNA, plus uploaded a copy of both of my Ancestry DNA files.

FamilyTreeDNA named their population (ethnicity) test myOrigins and the current version is V3. I wrote about the rollout and comparison in September of 2020, here.

My DNA test taken at FamilyTreeDNA, above, reveals Native American segments that match reference populations found both in North and South America and the Caribbean Islands.

At FamilyTreeDNA, my Ancestry V1 uploaded file results show Native American population matches only in North America.

Interestingly, my Ancestry V1 file processed AT Ancestry did not reveal Native American ancestry, but the same file uploaded to and processed at FamilyTreeDNA did show Native American results, reflecting the difference between the vendors’ internal algorithms and reference populations utilized.

My myOrigins results from my Ancestry V2 uploaded file at FamilyTreeDNA also include my North American Native American segments. The V2 test also showed Native American ethnicity at Ancestry, so clearly something changed in Ancestry’s algorithm, locations tested, and/or reference populations between V1 and V2.

Fortunately, FamilyTreeDNA provides both chromosome painting and a population download file so I can match those Native segments with my autosomal matches to identify which of my ancestors contributed those specific segments.

One of my Native segments is shown in pink on Chromosome1. My mother has a Native segment in exactly the same location, so I know that this segment originated with my mother’s ancestors.

I downloaded the myOrigins population segment file and painted my results at DNAPainter, along with the matches where I can identify our common ancestor. This allowed me to pinpoint the ancestral line that contributed this Native segment in my maternal line. You can read about using DNAPainter, here.

FamilyTreeDNA Matches

I have significantly more matches at FamilyTreeDNA on their test than on either of my Ancestry tests that I uploaded. However, nearly the same number are maternally or paternally assigned through Family Matching, with the remainder unassigned. You can read about Family Matching here.

Match Category FamilyTreeDNA Test Ancestry V1 at FamilyTreeDNA Ancestry V2 at FamilyTreeDNA
Paternal 3,479 3,572 3,422
Maternal 1,549 1,536 1,477
Both 3 3 3
All 8,154 6,397 6,579

Family matching, aka bucketing, automatically assigns my matches as maternal and paternal by linking known relatives to their place in my tree.

I completed the following match chart using my original test taken at FamilyTreeDNA, plus the same match at FamilyTreeDNA for both of my Ancestry tests.

In other words, Cheryl matched me at 467 cM on 21 segments on the original test taken at FamilyTreeDNA. She matched me on 473 cM and 21 segments on my Ancestry V1 test uploaded to FamilyTreeDNA and on 483 cM and 22 segments on the Ancestry V2 test uploaded to FamilyTreeDNA.

Match FamilyTreeDNA Ancestry V1 at FTDNA Ancestry V2 at FTDNA
Cheryl 467 cM, 21 seg 473 cM, 21 seg 483 cM, 22 seg
Patricia 195 cM, 11 seg 189 cM, 11 seg 188 cM, 11 seg
Tom 77 cM, 4 seg 71 cM, 4 seg 76 cM, 4 seg
Thomas 72 cM, 3 seg 71 cM, 3 seg 74 cM, 3 seg
Roland 29 cM, 1 seg 35 cM, 2 seg 35 cM, 2 seg
Rex 62 cM, 4 seg 55 cM, 3 seg 57 cM, 3 seg
Don 395 cM, 18 seg 362 cM, 15 seg 398 cM, 18 seg
Ian 64 cM, 4 seg 56 cM, 4 seg 64 cM, 4 seg
Stacy 490 cM, 18 seg 494 cM, 15 seg 489 cM, 14 seg
Harold 127 cM, 5 cM 133 cM, 6 seg 143 cM, 6 seg
Dean 81 cM, 4 seg 75 cM, 3 seg 83 cM, 4 seg
Carl 103 cM, 4 seg 101 cM, 4 seg 102 cM, 4 seg
Debbie 99 cM, 5 seg 97 cM, 5 seg 99 cM, 5 seg
David 373 cM, 16 seg 435 cM, 19 seg 417 cM, 18 seg
Amos 176 cM, 7 seg 177 cM. 8 seg 177 cM, 7 seg
Buster 387 cM, 15 seg 396 cM, 16 seg 402 cM, 17 seg
Charlene 461 cM, 21 seg 450 cM, 21 seg 448 cM, 20 seg
Carol 65 cM, 6 seg 64 cM, 6 seg 65 cM, 6 seg

I have tested many of my cousins at FamilyTreeDNA and encouraged others to test or upload. I’ve attempted to include enough people so that I can have common matches at least at one other DNA testing company for comparison.

FamilyTreeDNA Summary

The matches are relatively close, with a few being exact.

Interestingly, some of the segment counts are different. In most cases, this results from one segment being broken into multiple segments by one or more of the tests, but not always. In the couple that I checked, the entire segment seems to descend from the same ancestral couple, so the break is likely a result of not all of the same DNA locations being tested, plus the limits of imputation.

MyHeritage

I have two tests at MyHeritage. One taken at MyHeritage, and an uploaded file from FamilyTreeDNA.

MyHeritage displays both ethnicity results and Genetic Groups which maps groups of people that you match. I left the Genetic Groups setting at the highest confidence level. Shifting it to lower displays additional Genetic Groups, some of which overlap with or are within ethnicity regions.

My test taken at MyHeritage, above, shows several ethnicities and Genetic Groups, but no Native American.

My FamilyTreeDNA kit processed at MyHeritage shows the same ethnicity regions, one additional Genetic Group, plus Native American heritage in the Amazon which is rather surprising given that I don’t show Native in North American regions where I’m positive my Native ancestors lived.

MyHeritage Matching

At MyHeritage, I compared the results of the test I took with MyHeritage, and a test I uploaded from FamilyTreeDNA. Fewer than half of my matches can be assigned to a parent via shared matching.

Matches MyHeritage Test FamilyTreeDNA at MyHeritage
Paternal 4,422 6,501
Maternal 2,660 3,655
Total 13,233 16,147

I have rounded my matches at MyHeritage to the closest cM.

Match MyHeritage Test FamilyTreeDNA at MyHeritage
Michael 801 cM, 32 seg 823 cM, 31 segments
Cheryl 467 cM, 23 seg 477 cM, 23 seg
Roland No match 28 cM, 1 seg
Patty 156 cM, 9 seg 151 cM, 9 seg
Rex 43 cM, 4 seg 53 cM, 3 seg
Don 369 cM, 16 seg 382 cM, 17 seg
 
David 449 cM, 17 seg 460 cM, 17 seg
Charlene 454 cM, 23 seg 477 cM, 24 seg
Buster 408 cM, 15 seg 410 cM, 16 seg
Amos 183 cM, 8 seg Same
Carol 78 cM, 6 seg 87 cM, 7 seg

MyHeritage Summary

I was surprised to discover that Roland had no match with the MyHeritage test, but did with the FamilyTreeDNA test. I wonder if this is a searching or matching glitch, especially since both companies use the same chip. 28 cM in one segment is a reasonably large match, and even if it was divided in two, it would still be over the matching threshold. I know this is a valid match because Roland triangulates with me and several cousins, I’m positive of our common ancestor, and he also matches me at both FamilyTreeDNA and 23andMe.

Other than that, the matches are reasonably close, with one being exact.

Your Matches Aren’t Everyplace

I unsuccessfully searched for someone who was a match to me in all four databases. Ancestry does not permit match downloads, so I had to search manually. People don’t always use the same names in different databases.

Surprisingly, I was unable to find one match who is in all of the databases. Many people only suggest testing at Ancestry because they have the largest database, but if you look at the following comparison chart that I’ve created, you’ll see that 16 of 26 people, or 62% were not at Ancestry. Conversely, many people were at Ancestry and not elsewhere. I could not find five maternal and five paternal matches at Ancestry that I could identify as matches in another database. 40% were not elsewhere.

If you think for one minute that it doesn’t matter for genealogy if you’re in all four major databases, please reconsider. It surely does matter.

Every single vendor has matches that the others don’t. Substantial, important matches. I have found first and second-cousin matches in every database that weren’t elsewhere.

Many of the original testers have passed away and can’t test again. My mother can never test at either 23andMe or Ancestry, but she is at both FamilyTreeDNA and MyHeritage because I could upgrade her kit at FamilyTreeDNA after she died. I uploaded her to MyHeritage. Of course, because she is a generation closer to our ancestors, she has many valuable matches that I don’t.

Each vendor provides either an email address or a messaging platform for you to contact your matches. Don’t be discouraged if they don’t answer. Just today, I received a reply that was years in the making.

Genealogists hope for immediate gratification, but we are actually in this for the long game. Play it with every tool at your disposal.

The Answer

Does it matter if you test at a DNA testing company, or upload a file?

I know this was a very long answer to what my readers hoped was a simple yes or no question.

There is no consistent answer at either FamilyTreeDNA or MyHeritage, the two DNA testing companies that accept uploads. Be sure you’re in both databases. My closest two matches that I did not test were found at MyHeritage. Here’s a direct link to upload at MyHeritage.

Of the vendors, those two should be the closest to each other because they are both processed in the GenebyGene lab, but again, the actual chip version, when the test was originally taken, and each vendor’s internal processing will result in differences. Neither the original test at the DNA testing company nor the uploaded files have consistently higher or lower matches. Neither type of test or upload appears to be universally more or less accurate. Differences in either direction seem to occur on a match-by-match basis. Many are so close as to be virtually equivalent, with a few seemingly random exceptions. Of course, we always have to consider Timber.

If you upload, unlock the advanced features at both FamilyTreeDNA and MyHeritage.

If you upload to a DNA testing company, you may discover in the future that some features and functions will only be available to original testers.

Personally, if I had the option, I would test at the company directly simply because it eliminates or at least reduces the possibility of future incompatibilities – with the exception of 23andMe which has chosen to not provide consistent updates to older tests. I’m incredibly grateful I didn’t test my mother or now deceased family members at 23andMe, and only there. I would be heartsick, heartbroken, and furious.

Our DNA is an extremely valuable resource for our genealogy. It’s the gift that truly keeps on giving, day after day, even when other records don’t exist. Be sure you and your family members are in each database one way or another, and test your Y-DNA (for males) and mitochondrial DNA (for everyone) to have a complete arsenal at your disposal.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Mother’s Day Visitation Two Decades Out

I hope that you are enjoying Mother’s Day, whether you’re the Mom being honored, you’re honoring your mother, or you’re one of the millions who “mother” and love others, one way or another.

I didn’t have time to complete my normal article for today, but I certainly didn’t want to let Mother’s Day pass without acknowledgment.

I didn’t get my article finished because, let’s just say, I’ve been extremely busy with something VERY interesting.

I can’t tell you everything, but I can tell you a little!

Just a couple of days ago, I was able to visit Mom once again in the freezer at FamilyTreeDNA.

Mom’s DNA has been housed there since 2003, when she swabbed for her first DNA test. It’s so hard to believe that was two decades ago. So much has changed.

That stored DNA sample allowed me to upgrade Mom to the Family Finder test in 2012, six years after she passed away.

In 2013, I visited Mom at FamilyTreeDNA in the freezer and realized, as I looked in that little window, that there was more of my mother in that freezer than anywhere else on earth. My DNA is in there too, with her, just sayin’. I won’t be buried beside her in the soil, but I am near her in that freezer every day. Somebody has to keep an eye on her!

In intervening years, FamilyTreeDNA purchased a larger freezer and moved Mom from the earlier location across the room to the larger cryo-preservation cemetery – I mean freezer.

Now, Mom, with a few million of her friends and several thousand of our relatives, is partying it up in there when no one is looking.

Time Capsule

Every time I stare through that window, it’s like peering backward into a time capsule. I wonder, if all the Y-DNA was processed at the Big Y-700 level, how much of the entire Y-DNA phylogenetic tree would we be able to reconstruct?

People often skip testing mitochondrial DNA, passed from mothers to all their children, thinking it won’t be genealogically useful. I assure you, that’s not always the case. Furthermore, if you don’t test, DNA can never be useful. Every single person has mitochondrial DNA, so just imagine how much of the mitochondrial tree would be created if every one of those samples was tested at or upgraded to the full sequence level.

How many dead ends are in that freezer, meaning no living people carry that line anymore? I’m one of those people because I have no grandchildren through my daughter. Mom’s, her mother’s, and my mitochondrial DNA dies with my generation.

Based on my mitochondrial DNA sequence, meaning my mutations, I’ll VERY likely have a new haplogroup when the Million Mito Project rolls out, and even more likely that it will be at least three branches down the tree, closer in time.

What pieces of our human history will be lost if the people in that freezer don’t test their mitochondrial DNA at the full sequence level? The full sequence is needed to construct the mitochondrial tree of all humanity.

How many more matches would we have if everyone in that freezer had a Family Finder test? How many brick walls would fall? How many mysteries would be solved? Would we be able to reconstruct the DNA of our ancestors from their descendants?

What happens if we never open that time capsule, individually and collectively?

“Just Do It”

I had to pinch myself, though. As I stood in that lab, viewing through that window what I considered a sacred and hallowed space for Mom and humanity as well, I was reminded of what Mom said to me not long before she died. In fact, I can hear her frail voice.

“You need to do that.” 

What was “that”?

“That” was transforming her DNA results into a story – her story, her history and genealogy – and how she connected with the story of all humankind. Her “story” revealed her history, our history, even before genealogy, connecting with her soul. She could touch people whose names she would never know, but who contributed their mitochondrial DNA to her. It brought them alive.

I had an entire litany of sensible, level-headed reasons why I could never “do that,” beginning with the fact that I already had a career and owned a business. I had a family, children, and responsibilities – nope – no can do, Mom.

Not to be deterred, Mom gently stopped me in the process of listing all the perfectly logical and valid reasons why that would never work and told me that all of that was just preparing me for what I was “supposed to do,” and I needed to “just do it.” This was nothing like the mother I knew, always conservative in her advice and never wanting me to step out, even a little bit, onto an unstable limb. Let alone leap off the cliff of uncertainty with absolutely no safety net.

What had happened to my mother?

I simply couldn’t make her understand – all those years ago.

Then, my gaze drifts back to the present, and I remember that I’m staring into a freezer, not a time machine. Mom has already had all the tests available today. But many of her frozen neighbors have not.

As I stood, looking into that window, into the past, and perhaps into the future, I was afraid to turn around.

People were standing behind me, filming. I didn’t want anyone to see those tears slipping down my cheeks. After all, I had simply been looking at a window, right? Just a window. Not a cemetery. Not a portal. Not a time machine, no reason for tears – unless you understand the magnitude of what the freezer holds.

I so hoped that those hot tears didn’t entirely ruin my makeup, or that I could at least escape to the restroom to fix it without being noticed.

The Greatest Journey

On the way to the restroom, I saw this framed magazine, a wink and a nod from Mom, I’m sure. Indeed, our DNA is the greatest journey ever told, ever embarked upon, and the story is not yet entirely written. Mom said DNA would change the world as we know it, and she was right.

Mom, I found a way – or maybe fate found me back in 2004. That fateful fork in the road, although I’m not sure I even realized I had slipped onto that road untaken until it was too late to turn back.

Maybe Mom pushed those buttons from the other side, because I’ve been passionately “doing that” one way or another now for almost two decades. And finally, finally, we are going to be able to tell a larger story.

You and me, Mom. Hand in hand with our cousins. All of them – on every continent around the world.

Making history is on the horizon. DNA rocks. Here’s to all the mothers!!!

Thank You

Happy Mother’s Day, Mom. I love and miss you oh so much. And, while I wasn’t at the time, I’m – ahem – so incredibly grateful for the swift kick in the behind called encouragement.

But then, isn’t that the age-old story of motherhood?

Until next time Mom, you behave in there!

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search Of…Your Grandparents

Are you searching for an unknown relative or trying to unravel and understand unexpected results? Maybe you discovered that one or both of your parents is not your biological parent. Maybe one of your siblings might be a half-sibling instead. Or maybe you suddenly have an unexpected match that looks to be an unknown close relative, possibly a half-sibling. Perhaps there’s a close match you can’t place.

Or, are you searching for the identity of your grandparent or grandparents? If you’re searching for your parent or parents, often identifying your grandparents is a necessary step to narrow the parent-candidates.

I’ve written an entire series of “In Search of Unknown Family” articles, permanently listed together, here. They will step you through the search process and help you understand how to unravel your results. If you’re new, reading these, in order, before proceeding, would be a good idea.

Identifying a Grandparent

I saved this “grandparents” article for later in the series because you will need the tools and techniques I’ve introduced in the earlier articles. Identifying grandparents is often the most challenging of any of the relationships we’ve covered so far. In part because each of those four individuals occupies a different place in your tree, meaning their X, Y-DNA and mitochondrial DNA is carried by different, and not all, descendants. This means we sometimes have to utilize different tools and techniques.

If you’re trying to identify any of your four grandparents, females are sometimes more challenging than males.

Why?

Women don’t have a Y chromosome to test. This can be a double handicap. Female testers can’t test a Y chromosome, and maternal ancestors don’t have a Y chromosome to match.

Of course, every circumstance differs. You may not have a male to test for paternal lines either.

The maternal grandfather can be uniquely challenging, because two types of DNA, Y-DNA and mitochondrial DNA matching are immediately eliminated for all testers.

While I’ve focused on the maternal grandfather in this example, these techniques can be utilized for all four grandparents as well as for parents. At the end, I’ll review other grandparent relationships and additional tools you might be able to utilize for each one.

In addition to autosomal DNA, we can also utilize mitochondrial DNA, Y-DNA and sometimes X DNA in certain situations.

Testing, Tests and Vendors

As you recall, only men have a Y chromosome (blue arrow), so only genetic males can take a Y-DNA test. Men pass their Y chromosome from father to son in each generation. Daughters don’t receive a Y chromosome.

Everyone has their mother’s mitochondrial DNA (pink arrow.) Women pass their mitochondrial DNA to both sexes of their children, but only females pass it on. In the current generation, represented by the son and daughter, above, the mother’s yellow heart-shaped mitochondrial DNA is inherited by both sexes of her children. In the current generation, males and females can both test for their mother’s mitochondrial DNA.

Of course, everyone has autosomal DNA, inherited from all of their ancestral lines through at least the 5th or 6th generation, and often further back in time. Autosomal DNA is divided in half in each generation, as children inherit half of each parents’ autosomal DNA (with the exception of the X chromosome, which males only inherit from their mother.)

The four major vendors, Ancestry, 23andMe, FamilyTreeDNA and MyHeritage sell autosomal DNA tests, but only FamilyTreeDNA sells Y-DNA and mitochondrial DNA tests.

Only 23andMe and FamilyTreeDNA report X matching.

All vendors except Ancestry provide segment location information along with a chromosome browser.

You can read about the vendor’s strengths and weaknesses in the third article, here.

Ordering Y and Mitochondrial DNA Tests

If you’re seeking the identities of grandparents, the children and parents, above, can test for the following types of DNA in addition to autosomal:

Person in Pedigree Y-DNA Mitochondrial
Son His father’s blue star His mother’s pink heart
Daughter None Her mother’s pink heart
Father His father’s blue star His mother’s gold heart
Mother None Her mother’s pink heart

Note that none of the people shown above in the direct pedigree line carry the Y-DNA of the green maternal grandfather. However, if the mother has a full sibling, the green “Male Child,” he will carry the Y-DNA of the maternal grandfather. Just be sure the mother and her brother are full siblings, because otherwise, the brother’s Y-DNA may not have been inherited from your mother’s father. I wrote about full vs half sibling determination, here.

Let’s view this from a slightly different perspective. For each grandparent in the tree, which of the two testers, son or daughter, if either, carry that ancestor’s DNA of the types listed in the columns.

Ancestor in Tree Y-DNA Mitochondrial DNA Autosomal DNA X DNA
Paternal Grandfather Son Neither Son, daughter Neither
Paternal Grandmother Has no Y chromosome None (father has it, doesn’t pass it on to son or daughter) Son, daughter Daughter (son does not receive father’s X chromosome)
Maternal Grandfather Neither Neither Son, daughter Son, daughter (potentially)
Maternal Grandmother Has no Y chromosome Son, daughter Son, daughter Son, daughter (potentially)

Obtaining the Y-DNA and mitochondrial DNA of those grandparents from their descendants will provide hints and may be instrumental in identifying the grandparent.

FamilyTreeDNA

You’ll need to order Y-DNA (males only) and mitochondrial DNA tests separately from autosomal DNA tests. They are three completely different tests.

At FamilyTreeDNA, the autosomal DNA test is called Family Finder to differentiate it from their Y-DNA and mitochondrial DNA tests.

Their autosomal test is called Family Finder whether you order a test from FamilyTreeDNA, or upload your results to their site from another vendor (instructions here.)

I recommend ordering the Big Y-700 Y-DNA test if possible, and if not, the highest resolution Y-DNA test you can afford. The Big Y-700 is the most refined Y-DNA test available, includes multiple tools and places Big Y-700 testers on the Time Tree through the Discover tool, providing relatively precise estimates of when those men shared a common ancestor. If you’ve already purchased a lower-precision Y-DNA test at FamilyTreeDNA, you can easily upgrade.

I wrote about using the Discover tool here. The recently added Group Time Tree draws a genetic Y-DNA tree of Big-Y testers in common projects, showing earliest known ancestors and the date of the most recent common ancestor.

You need to make sure your Family Finder, mitochondrial DNA and Y-DNA (if you’re a male) tests are ordered from the same account at FamilyTreeDNA.

You want all 3 of your tests on the same account (called a kit number) so that you can use the advanced search features that display people who match you on combinations of multiple kinds of tests. For example, if you’re a male, do your Y-DNA matches also match you on the autosomal Family Finder test, and if so, how closely? Advanced matching also provides X matching tools.

X DNA is included in autosomal tests. X DNA has a distinct matching pattern for males and females which makes it uniquely useful for genealogy. I wrote about X DNA matching here.

If you upload your autosomal results to FamilyTreeDNA from another company, you’re only uploading a raw DNA file, not the DNA itself, so FamilyTreeDNA will need to send you a swab kit to test your Y-DNA and mitochondrial DNA. If you upload your autosomal DNA, simply sign in to your kit, purchase the Y-DNA and/or mitochondrial DNA tests and they will send you a swab kit.

If you test directly at FamilyTreeDNA, you can add any test easily by simply signing in and placing an order. They will use your archived DNA from your swab sample, as long as there’s enough left and it’s of sufficient quality.

Fish In All Ponds

The first important thing to do in your grandparent search is to be sure you’re fishing in all ponds. In other words, be sure you’ve tested at all 4 vendors, or uploaded files to FamilyTreeDNA and MyHeritage.

When you upload files to those vendors, be sure to purchase the unlock for their advanced tools, because you’re going to utilize everything possible.

If you have relatively close matches at other vendors, ask if they will upload their files too. The upload is free. Not only will they receive additional matches, and another set of ethnicity results, their results will help you by associating your matches with specific sides of your family.

Why Order Multiple Tests Now Instead of Waiting?

I encourage testers to order their tests at the beginning of their journey, not one at a time. Each new test from a vendor takes about 6-8 weeks from the time you initially order – they send the test, you swab or spit, return it, and they process your DNA. Of course, uploading takes far less time.

If you’re adding elapsed time, two autosomal tests (Ancestry and 23andMe), two uploads (FamilyTreeDNA and MyHeritage,) a Y-DNA and a mitochondrial DNA test, if all purchased serially, one after the other, means you’ll be waiting about 6-8 months.

Do you want to wait 6-8 months? Can you afford to?

Part of that answer has to do with what, exactly, you’re seeking.

A Name or Information?

Are you seeking the name of a person, or are you seeking information about that person? With grandparents, you may be hoping to meet them, and time may be of the essence. Time delayed may not be able to be recovered or regained.

Most people don’t just want to put a name to the person they are seeking – they want to learn about them. You will have different matches at each company. Even after you identify the person you seek, the people you match at each company may have information about them, their photos, know about their life, family, and their ancestors. They may be able and willing to facilitate an introduction if that’s what you seek.

One cousin that I assisted discovered that his father had died just 6 weeks before he made the connection. He was heartsick.

Having data from all vendors simultaneously will allow you to compile that data and work with it together as well as separately. Using your “best” matches at each company, augmented by both Y-DNA and mitochondrial DNA can make MUCH shorter work of this search.

Your Y-DNA, if you’re a male will give you insights into your surname line, and the Big-Y test now comes with estimates of how far in the past you share a common ancestor with other men that have taken the Big-Y test. This can be a HUGE boon to a male trying to figure out his surname line.

Y-DNA and mitochondrial DNA, respectively, will eliminate many people from being your mother or father, or your direct paternal or direct maternal line ancestor. Both provide insights into which population and where that population originated as well. In other words, it provides you lineage-specific information not available elsewhere.

Your Y-DNA and mitochondrial DNA can also provide critically important information about whether that direct line ancestor belonged to an endogamous population, and where they came from.

Strategies

You may be tempted to think that you only need to test at one vendor, or at the vendor with the largest database, but that’s not necessarily true.

Here’s a table of my closest matches at the 4 vendors.

Vendor Closest Maternal Closest Paternal Comments
Ancestry 1C, 1C1R Half 1C, 2C I recognized both of the maternal and neither of the paternal.
23andMe 2C, 2C 1C1R, half-gr-niece Recognized both maternal, one paternal
MyHeritage Mother uploaded, 1C Half-niece, half 1C Recognized both maternal, one paternal
FamilyTreeDNA Mother tested, 1C1R Parent/child, half-gr-niece Recognized all 4

To be clear, I tested my mother at FamilyTreeDNA before she passed away, but if I was an adoptee searching for my mother, that’s the first database she would be in. As her family, we were able to order the Family Finder test from her archived DNA after she had passed away. I then uploaded her DNA file to MyHeritage, but she’ll never be at either 23andMe or Ancestry because they don’t accept uploads and she clearly can’t test.

Additionally, being able to identify maternal matches by viewing shared matches with my mother separates out close matches from my paternal side.

Let’s put this another way, I stand a MUCH BETTER chance of unraveling this mystery with the combined closest matches of all 4 databases instead of the top ones from just one database.

I’m providing analysis methodologies for working with results from all of the vendors together, in case your answer is not immediately obvious. Taking multiple tests facilitates using all of these tools immediately, not months later. Solving the puzzle sooner means you may not miss valuable connection opportunities.

You may also discover that the door slams shut with some people, but another match may be unbelievably helpful. Don’t unnecessarily limit your possibilities.

Here’s the testing and upload strategy I recommend.

What When Ancestry 23andMe MyHeritage FamilyTreeDNA GEDmatch
Order autosomal test Initially Yes Yes Upload Upload Upload
Order Big-Y DNA test if male Initially Yes
Order mitochondrial DNA test Initially Yes
Upload free autosomal file From Ancestry or 23andMe Yes Yes Yes
Unlock Advanced Tools When upload file $29 $19 $9.95 month
Includes X Matching No Yes No Yes Yes
Chromosome Browser, segment location information No Yes Yes Yes Yes

When you upload a DNA file to a vendor site, only upload one file per site, per tester. Otherwise, multiple tests simply glom up everyone’s match list with multiple matches to the same person and can be very confusing.

  • One person took an autosomal test at a company that accepts uploads, forgot about it, uploaded a file from another vendor later, and immediately thought she had found her parent. She had not. She “found” herself.
  • Another person though she had found two sisters, but one person had uploaded their own file from two different vendors.

Multiple vendor sites reveal multiple close matches to different people which increase your opportunity to discover INFORMATION about your family, not just the identity of the person.

Match Ranges

Given that we are searching for an unknown maternal grandfather, your mother may not have had any (known) full siblings. The “best” match would be to a full or half siblings to your parents, or their descendants, depending on how old your grandparents would be.

Let’s take the “worst case” scenario, meaning there are no full siblings AND there are many possible generations between you and the people you may match.

Now, let’s look at DNAPainter’s Shared cM tool.

You’re going to be looking for someone who is either your mother’s half sibling on her father’s side, or who is a full sibling.

If your mother is adopted, it’s possible that she has or had full siblings. If your mother was born circa 1920, it’s likely that you will be matching the next generation, or two, or three.

However, if your mother was born later, you could be matching her siblings directly.

I’m going to assume half siblings for this example, because they are more difficult than full siblings.

Full sibling relationships for your mother’s siblings are listed at right. Your full aunt or uncle at top, then their descendant generations below.

At left, in red, are the half-sibling relationships and the matching amounts.

You can see that if you’re dealing with half 1C3R (half first cousin three times removed,) you may not match.

Therefore, in order to isolate matches, it’s imperative to test every relevant relative possible.

Who’s Relevant for DNA Testing?

Who is relevant to test If you’re attempting to identify your maternal grandfather?

The goal is to be able to assign matches to the most refined ancestor possible. In other words, if you can assign someone to either your grandmother’s line, or your grandfather’s line, that’s better than assigning the person to your grandparents jointly.

Always utilize the tests of the people furthest up the tree, meaning the oldest generations. Their DNA is less-diluted, meaning it has been divided fewer times. Think about who is living and might be willing to test.

You need to be able to divide your matches between your parents, and then between your grandparents on your mother’s side.

  • Test your parents, of course, and any of their known siblings, half or full.
  • If those siblings have passed away, test as many of their children as you can.
  • If any of your grandparents are living, test them
  • If BOTH of your grandparents on the same side aren’t available to test, test any, preferably all, living aunts or uncles.
  • If your maternal grandmother had siblings, test them or their descendants if they are deceased.
  • If your parents are deceased, test your aunts, uncles, full siblings and half-siblings on your mother’s side. (Personally, I’d test all half-siblings, not just maternal.)
  • Half-siblings are particularly valuable because there is no question which “side” your shared DNA came from. They will match people you don’t because they received part of your parent’s DNA that you did not.

Furthermore, shared matches to half-siblings unquestionably identify which parent those matches are through.

Essentially, you’re trying to account for all matches that can be assigned to your grandparents whose identities you know – leaving only people who descend from your unknown maternal grandfather.

Testing your own descendants will not aid your quest. There is no need to test them for this purpose, given that they received half of your DNA.

I wrote about why testing close relatives is important in the article Superpower: Your Aunts’ and Uncles’ DNA is Your DNA Too – Maximize Those Matches!

Create or Upload a Tree

Three of the four major vendors, plus GEDMatch, support and utilize family trees.

You’ll want to either upload or create a tree at each of the vendor sites.

You can either upload a GEDCOM file from your home computer genealogy software, or you can create a tree at one of the vendors, download it, and upload to the others. I described that process at Ancestry, here.

Goal

Your goal is to work with your highest matches first to determine how they are related to you, thereby eliminating matches to known lineages.

Assuming you’re only searching for the identity of one grandparent, it’s beneficial to have done enough of your genealogy on your three known grandparents to be able to assign matches from those lines to those sides.

Step 1 is to check each vendor for close matches that might fall into that category.

The Top 15 at Each Vendor

Your closest several autosomal matches are the most important and insightful. I begin with the top 15 autosomal results at each vendor, initially, which provides me with the best chance of meaningful close relationship discoveries.

Create a Spreadsheet or Chart

I hate to use that S word (spreadsheet), because I don’t want non-technical people to be discouraged. So, I’m going to show you how I set up a spreadsheet and you can simply create a chart or even draw this out on paper if you wish.

I’ve color-coded columns for each of my 4 grandparents. The green column is the target Maternal Grandfather whose identity I’m seeking.

I match our first example; Erik, at 417 cM. Based on various pieces of information, taken together, I’ve determined that I’m Erik’s half 1C1R. His 8 great-grandparent surnames, or the ones he has provided, indicate that I’m related to Eric on my paternal grandfather’s line.

You’ll want to record your closest matches in this fashion.

Let’s look at how to find this information and work with the tools at the individual vendors.

23andMe

Let’s start at 23andMe, because they create a potential genetic tree for you, which may or may not be accurate.

I have two separate tests at 23andMe. One is a V3 and one is a V4 test. I keep one in its pristine state, and I work with the second one. You’ll see two of “me” in the tree, and that’s why.

23andMe makes it easy to see estimated relationships, although they are not always correct. Generally, they are close, and they can be quite valuable.

Click on any image to enlarge

The maternal and paternal “sides” may not be positioned where genealogists are used to seeing them. Remember, 23andMe has no genealogy trees, so they are attempting to construct a genetic tree based on how people are related to you and to each other, with no prior knowledge. They do sometimes have issues with half-relationships, so I’d encourage you to use this tree to isolate people to the three grandparents you know.

In my case, I was able to determine the maternal and paternal sides easily based on known cousins. This is the perfect example of why it’s important to test known relatives from both sides of your family.

My paternal side, at right, in blue, was easy because I recognized my half-sister’s family, and because of known cousins who I recognized from having tested elsewhere. I’ve worked with them for years. The blue stars show people I could identify, mostly second cousins.

My maternal side is at left, in red. Normally, for genealogists, the maternal side is at right, and the paternal at left, so don’t make assumptions, and don’t let this positioning throw you.

I’m pretending I don’t know who my maternal grandfather is. I was able to identify my maternal grandmother’s side based on a known second cousin.

That leaves my target – my maternal grandfather’s line.

All of the matches to the left of the red circle would, by process of elimination, be on my maternal grandfather’s side.

The next step would be to figure out how the 5 people descending from my maternal grandfather’s line are related to each other – through which of their ancestors.

On the DNA Relatives match list, here’s what needs to be checked:

  • Do your matches share surnames with you or your ancestors?
  • Do they show surnames in common with each other?
  • Is there a common location?
  • Birth year which helps you understand their potential generation.
  • Did they list their grandparents’ birthplaces?
  • Did they provide a family tree link?
  • Do they also match each other using the Relatives in Common feature?
  • Do they triangulate, indicated by “DNA Overlap” in Relatives in Common?
  • Who else is on the Relatives in Common list, and what do they have in common with each other?
  • Looking at your Ancestry Composition compared with theirs, what are your shared populations, and are they relevant? If you are both 100% European, then shared populations aren’t useful, but if both people share the same minority ancestry, especially on the same segments, it may indeed be relevant – especially if it can’t be accounted for on the known sides of the family.

Reach out to these people and see what they know about their genealogy, if they have tested elsewhere, and if they have a genealogy tree someplace that you can view.

If they can tell you their grandparents’ names, birth and death dates and locations, you can check public sources like WikiTree, FamilySearch and Geni, or build trees for them. You can also use Newspaper resources, like Newspapers.com, NewspaperArchive and the newspapers at MyHeritage.

I added the top 15 23andMe matches into the spreadsheet I created.

You’ll notice that not many people at 23andMe enter surnames. However, if you can identify individuals from your 3 known lines, you can piggyback the rest by using Relatives in Common in conjunction with the genetic tree placement.

Be sure to check all the people that are connected to the target line in your genetic tree.

You’ll want to harvest your DNA segments to paint at DNAPainter if you don’t solve this mystery with initial reviews at each vendor.

Ancestry

Let’s move to Ancestry next.

At Ancestry, you’ll want to start with your closest matches on your match list.

Ancestry classifies “Close Matches” as anyone 200 cM or greater, which probably won’t reach as far down as the matches we’ll want to include.

Some of the categories in the Shared cM Chart from DNAPainter, above, don’t work based on ages, so I’ve eliminated those. I also know, for example, that someone who could fall in the grandparent/grandchild category (blue star,) in my case, does not, so must be a different relationship.

Second cousins, who share great-grandparents, can be expected to share about 229 cM of DNA on average, or between 41 and 592 cM. First cousins share 866 cM, and half first cousins share 449 cM on average.

I have 13 close matches (over 200 cM), but I’m including my top 15 at each vendor, so I added two more. You can always go back and add more matches if necessary. Just keep in mind that the smaller the match, the greater the probability that it came from increasingly distant generations before your grandparents. Your sweet spot to identify grandparents is between 1C and 2C.

I need to divide my close matches into 4 groups, each one equating to a grandparent. Record this on your spreadsheet.

You can group your matches at Ancestry using colored dots, which means you can sort by those groups.

You can also select a “side” for a match by clicking on “Yes” under the question, “Do you recognize them?”

Initially, you want to determine if this person is related to you on your mother’s or father side, and hopefully, through which grandparent.

Recently, Ancestry added a feature called SideView which allows testers to indicate, based on ethnicity, which side is “parent 1” and which side is “parent 2.” I wrote about that, here.

Make your selection, assuming you can tell which “side” of you descends from which parent based on ethnicity and/or shared matches. How you label “parent 1,” meaning either maternal or paternal, determines how Ancestry assigns your matches, when possible.

Using these tools, which may not be completely accurate, plus shared matches with people you can identify, divide your matches among your three known grandparents, meaning that the people you cannot assign will be placed in the fourth “unknown” column.

On my spreadsheet, I assign all of my closest matches to one of my grandparents. Michael is my first cousin (1C) and we share both maternal grandparents, so he’s not helpful in the division because he can’t be assigned to only one grandparent.

The green maternal grandfather is who I’m attempting to identify.

There are 4 people, highlighted in yellow, who don’t fall into the other three grandparent lines, so they get added to the green column and will be my focus.

I would be inclined to continue adding matches using a process known as the Leeds Method, until I had several people in each category. Looking back at the DNAPainter cM chart, at this point, we don’t have anyone below 200 cM and the matches we need might be below that threshold. The more matches you have to work with, the better.

At Ancestry, you cannot download your matches into a spreadsheet, nor can you work with other clustering tools such as Genetic Affairs, so you’ll have to build out your spreadsheet manually.

Check for the same types of information that I reviewed at 23andMe:

  • Review trees, if your matches have them, minimally recording the surnames of their 8 great-grandparents.
  • Review shared matches, looking for common names in the trees in recent generations.
  • View shared matches with people with whom you have a “Common Ancestor” indication, which means a ThruLine. You won’t have Thrulines with your target grandparent, of course, but Thrulines will allow you to place the match in one of the other columns. I wrote about ThruLines here, here and here.
  • ThruLines sometimes suggests ancestors based on other people’s trees, so be EXCEEDINGLY careful with potential ancestor suggestions. That’s not to say you should discount those suggestions. Just treat them as tree hints that may have been copy/pasted hundreds of times, because that’s what they are.

I make notes on each match so I can easily see the connection by scanning without opening the match.

Now, I have a total of 30 entries on my spreadsheet, 15 from 23and Me and 15 from Ancestry.

Why Not Use Autosclusters?

Even with vendors who allow or provide cluster tools, I don’t use an automated autocluster tool at this point. Autocluster tools often omit your closest matches because your closest matches would be in nearly half of all your clusters, which isn’t exactly informative. However, for this purpose, those are the very matches we need to evaluate.

After identifying groups of people that represent the missing grandparent, using our spreadsheet methodology, autoclusters could be useful to identify common surnames and even to compare the trees of our matches using AutoTree, AutoPedigree and AutoKinship. AutoClusters cannot be utilized at Ancestry, but is available through MyHeritage and at GEDmatch, or through Genetic Affairs for 23andMe and FamilyTreeDNA.

Next, let’s move to FamilyTreeDNA.

FamilyTreeDNA

FamilyTreeDNA is the only vendor that provides Family Matching, also known as “bucketing.” FamilyTreeDNA assigns your matches to either a paternal or maternal bucket, or both, based on triangulated matches with someone you’ve linked to a profile in your tree.

The key to Family Matching is to link known Family Finder matches to their profile cards in your tree.

Clicking on the Family Tree link at the top of your personal page allows you to link your matches to the profile cards of your matches.

FamilyTreeDNA utilizes these linked matches to assign those people, and matches who match you and those people, both, on at least one common segment, to the maternal or paternal tabs on your match list.

Always link as many known people as possible (red stars) which will result in more matches being bucketed and assigned to parents’ sides for you, even if neither parent is available to test.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

You can see at the top of my match list that I have a total of 8000 matches of which 3422 are paternal, 1517 are maternal and 3 match on both sides. Full siblings, their (and my) children and their descendants will always match on both sides. People with endogamy across both parents may have several matches on both sides.

If your relevant parent has tested, always work from their test.

Because we are searching for the maternal grandfather, in this case, we can ignore all tests that are bucketed as paternal matches.

Given that we are searching for my maternal grandfather, I probably have not been able to link as many maternal matches, other than possibly ones from my maternal grandmother. This means that the maternal grandfather’s matches are not bucketed because there are no identified matches to link on that side of my tree.

If you sort by maternal and paternal tabs, you’ll miss people who aren’t bucketed, meaning they have no maternal or paternal icon, so I recommend simply scanning down the list and processing maternal matches and non-bucketed matches.

By being able to confidently ignore paternally bucketed matches and only processing maternal and non-assigned matches, this is equivalent to processing the first 48 total matches. If I were to only look at the first 15 matches, 12 were paternal and only 3 are maternal.

Using bucketing at FamilyTreeDNA is very efficient and saves a lot of work.

Omitting paternal matches also means we are including smaller matches which could potentially be from common ancestors further back in the tree. Or, they could be younger testers. Or simply smaller by the randomness of recombination.

FamilyTreeDNA is a goldmine, with 16 of 20 maternal matches being from the unknown maternal grandfather.

Next, let’s see what’s waiting at MyHeritage.

MyHeritage

MyHeritage is particularly useful if your lineage happens to be from Europe. Of course, if you’re searching for an unknown person, you probably have no idea where they or their ancestors are from. Two of my best matches first appeared at MyHeritage.

Of course, your matches with people who descend from your unknown maternal grandfather won’t have any Theories of Family Relativity, as that tool is based on BOTH a DNA match plus a tree or document match. However, Theories is wonderful to group your matches to your other three grandparents.

MyHeritage provides a great deal of information for each match, including common surnames with your tree. If you recognize the surnames (and shared matches) as paternal or maternal, then you can assign the match. However, the matches you’re most interested in are the highest matches without any surnames in common with you – which likely point to the missing maternal grandfather.

However, those people may, and probably do, have surnames in common with each other.

Of the matches who aren’t attributed to the other three grandparents, the name Ferverda arises again and again. So does Miller, which suggests the grandparent or great-grandparent couple may well be Ferverda/Miller.

Let’s continue working through the process with our spreadsheet and see what we can discover about those surnames.

Our 60 Results

Of the 60 total results, 15 from each vendor, a total of 24 cannot be assigned to other columns through bucketing or shared matches, so are associated with the maternal grandfather. Of course, Michael who descends from both of my maternal grandparents won’t be helpful initially.

Cheryl, Donald and Michael are duplicates at different vendors, but the rest are not.

Of the relevant matches, the majority, 12 are from FamilyTreeDNA, four each are from Ancestry and MyHeritage, and three are from 23andMe.

Of the names provided in the surname fields of matches, in matches’ trees in the first few generations, and the testers’ surnames, Ferverda is repeated 12 times, for 50% of the time. Miller is repeated 9 times, so it’s likely that either of those are the missing grandfather’s surname. Of course, if we had Y-DNA, we’d know the answer to that immediately.

Comparing trees of my matches, we find John Ferverda as the common ancestor between two different matches. John is the son of Hiram Ferverda and Eva Miller who are found in several trees.

That’s a great hint. But is this the breakthrough I need?

What’s Next?

The next step is to look for connections between the maternal grandmother, Edith Lore, who is known in our example, and a Ferverda male. He is probably one of the sons of Hiram Ferverda and Eva Miller. Do they lived in the same area? In close proximity? Do they attend the same church or school? Are they neighbors or live close to the family or some of their relatives? Does she have connections with Ferverda family members? We are narrowing in.

Some of Hiram and Eva’s sons might be able to be eliminated based on age or other factors, or at least be less likely candidates. Any of their children who had moved out of state when the child was conceived would be less likely candidates. Age would be a factor, as would opportunity.

Target testing of the Ferverda sons’ children, or the descendants of their children would (probably) be able to pinpoint which of their sons is more closely related to me (or my mother) than the rest.

In our case, indeed, John Ferverda is the son we are searching for and his descendant, Michael is the highest match on the list. Cheryl and Donald descend from John’s brother, which eliminates him as a candidate. Another tester descends from a third Ferverda son, which eliminates that son as well.

Michael, my actual first cousin with a 755 cM match at one vendor, and 822 cM at a second vendor, is shown by the MyHeritage cM Explainer with an 88% probability that he is my first cousin.

However, when I’m trying to identify the maternal grandfather, which is half of that couple, I need to focus one generation further back in time to eliminate other candidates.

The second and third closest matches are both Donald at 395 cM and Cheryl at 467 cM who also share the same Ferverda/Miller lineage and are the children of my maternal grandfather’s brother.

On the spreadsheet, I need to look at the trees of people who have both Ferverda and Miller, which brought me to both Cheryl and Donald, then Michael, which allowed me to identify John Ferverda, unquestionably, as my grandfather based on the cM match amounts.

Cheryl and Donald, who are confirmed full siblings, and my mother either have to be first cousins, or half siblings. Their match with mother is NOT in the half-sibling range for one sibling, and on the lower edge with the other. Mother also matches Michael as a nephew, not more distantly as she would if he were a first cousin once removed (1C1R) instead of a nephew.

Evaluating these matches combined confirms that my maternal grandfather is indeed John Ferverda.

What About X DNA?

The X chromosome has a unique inheritance path which is sometimes helpful in this circumstance, especially to males.

Women inherit an X chromosome from both parents, but males inherit an X chromosome from ONLY their mother. A male inherits a Y chromosome from his father which is what makes him male. Women inherit two X chromosomes, one from each parent, and no Y, which is what makes them female.

Therefore, if you are a male and are struggling with which side of your tree matches are associated with, the X chromosome may be of help.

Your mother passed her X chromosome to you, which could be:

  • Her entire maternal X, meaning your maternal grandmother’s X chromosome
  • Her entire paternal X, meaning your maternal grandfather’s X chromosome (which descends from his mother)
  • Some combination of your maternal grandmother and maternal grandfather’s chromosomes

One thing we know positively is that a male’s X matches are ALWAYS from their maternal side only, so that should help when dividing a male’s matches maternally or paternally. Note – be aware of potential pedigree collapse, endogamy and identical-by-chance matches if it looks like a male has a X match on his father’s side.

Unfortunately, the X chromosome cannot assist females in the same way, because females inherit an X from both parents. Therefore, they can match people in the same was as a male, but also in additional ways.

  • Females will match their paternal grandmother on her entire X chromosome, and will match one or both of their maternal grandparents on the X chromosome.
  • Females will NEVER match their paternal grandfather’s X chromosome because their father did not inherit an X chromosome from his father.
  • Males will match one or both of their maternal grandparents on their X chromosome.
  • Males will NEVER match their paternal grandparents, because males do not receive an X chromosome from their father.

The usefulness of X DNA matching depends on the inheritance path of both the tester AND their match.

When Can Y-DNA or Mitochondrial DNA Help with Grandparent Identification?

If you recall, I selected the maternal grandfather as the person to seek because no tester carries either the Y-DNA or mitochondrial DNA of their maternal grandfather. In other words, this was the most difficult identification, meaning that any of the other three grandparents would be, or at least could be, easier with the benefit of Y-DNA and/or mitochondrial DNA testing.

In addition to matching, both Y-DNA and mitochondrial DNA will provide testers with location origins, both continental and often much more specific locations based on where other testers and matches are from.

Y-DNA often provides a surname.

Let’s see how these tests, matches and results can assist us.

  • Paternal grandfather – If I was a male descended from John Ferverda paternally, I could have tested both my autosomal DNA PLUS my Y-DNA, which would have immediately revealed the Ferverda surname via Y-DNA. Two Ferverda men are shown in the Ferverda surname DNA project, above.

That revelation would have confirmed the Ferverda surname when combined with the high frequency of Ferverda found among autosomal matches on the spreadsheet.

  • Maternal grandmother – If we were searching for a maternal grandmother, both the male and female sibling testers (as shown in the pedigree chart) would have her mitochondrial DNA which could provide matches to relevant descendants. Mitochondrial DNA at both FamilyTreeDNA and 23andMe could also eliminate anyone who does not match on a common haplogroup, when comparing 23andMe results to 23andMe results, and FamilyTreeDNA to FamilyTreeDNA results at the same level.

At 23andMe, only base level haplogroups are provided, but they are enough to rule out a direct matrilineal line ancestor.

At FamilyTreeDNA, the earlier HVR1 and HVR2 tests provide base level haplogroups, while full sequence testing provides granular, specific haplogroups. Full sequence is the recommended testing level.

  • Paternal grandmother – If we were searching for a paternal grandmother, testers would, of course, need either their father to test his mitochondrial DNA, or for one of his siblings to test which could be used in the same way as described for maternal grandmother matching.

Summary

Successfully identifying a grandparent is dependent on many factors. Before you make that identification, it’s very difficult to know which are more or less important.

For example, if the grandparent is from a part of the world with few testers, you will have far fewer matches, potentially, than other lines from more highly tested regions. In my case, two of my four grandparents’ families, including Ferverda, immigrated in the 1850s, so they had fewer matches than families that have been producing large families in the US for generations.

Endogamy may be a factor.

Family size in past and current generations may be a factor.

Simple luck may be a factor.

Therefore, it’s always wise to test your DNA, and that of your parents and close relatives if possible, and upload to all of the autosomal databases. Then construct an analysis plan based on:

  • How you descend from the grandparent in question, meaning do you carry their X DNA, Y-DNA or mitochondrial DNA.
  • Who else is available to test their autosomal DNA to assist with shared matches and the process of elimination.
  • Who else is available to test for Y-DNA and/or mitochondrial DNA of the ancestor in question.

If you don’t find the answer initially, schedule a revisit of your matches periodically and update your spreadsheet. Sometimes DNA and genealogy is a waiting same.

Just remember, luck always favors the prepared!

Resources

You may find the following resource articles beneficial in addition to the links provided throughout this article.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

X Chromosome Master Class

The X chromosome can be especially useful to genetic genealogists because it has a unique inheritance path. Thanks to that characteristic, some of the work of identifying your common ancestor is done just by simply HAVING an X match.

Unfortunately, X-DNA and X matching is both underutilized and somewhat misunderstood – in part because not all vendors utilize the X chromosome for matching.

The X chromosome has the capability of reaching further back in time and breaking down brick walls that might fall no other way.

Hopefully, you will read this article, follow along with your own DNA results and make important discoveries.

Let’s get started!

Who Uses the X Chromosome?

The X chromosome is autosomal in nature, meaning it recombines under some circumstances, but you only inherit your X chromosome from certain ancestors.

It’s important to understand why, and how to utilize the X chromosome for matching. In this article, I’ve presented this information in a variety of ways, including case studies, because people learn differently.

Of the four major testing vendors, only two provide X-DNA match results.

  • FamilyTreeDNA – provides X chromosome results and advanced matching capabilities including filtered X matching
  • 23andMe – provides X chromosome results, but not filtered X matching without downloading your results in spreadsheet format
  • Ancestry and MyHeritage do not provide X-DNA results but do include the X in your raw DNA file so you can upload to vendors who do provide X matching
  • GEDmatch – not a DNA testing vendor but a third-party matching database that provides X matching in addition to other tools

It’s worth noting at this point that X-DNA and mitochondrial DNA is not the same thing. I wrote about that, here. The source of this confusion is that the X chromosome and mitochondrial DNA are both associated in some way with descent from females – but they are very different and so is their inheritance path.

So, what is X-DNA and how does it work?

What is X-DNA?

Everyone inherits two copies of each of chromosomes 1-22, one copy of each chromosome from each of your parents.

That’s why DNA matching works and each match can be identified as “maternal” or “paternal,” depending on how your match is related to you. Each valid match (excluding identical by chance matches) will be related either maternally, or paternally, or sometimes, both.

Your 23rd chromosome is your sex determination chromosome and is inherited differently. Chromosome 23 is comprised of X and Y DNA.

Everyone inherits one copy of chromosome 23 from each parent.

  • Males inherit a Y chromosome from their father, which is what makes males male. They do not inherit an X chromosome from their father.
  • Males always inherit an X chromosome from their mother.
  • Females inherit an X chromosome from both parents, which is what makes them female. Females have two X chromosomes, and no Y chromosome.
Chromosome 23 Father Contributes Mother Contributes
Male Child Y chromosome X chromosome
Female Child X chromosome X chromosome

X-DNA and mitochondrial DNA are often confused, but they are not the same thing. In fact, they are completely different.

Mitochondrial DNA, in BOTH males and females is always inherited from only the mother and only descends from the direct matrilineal line, so only the mother’s mother’s mother’s direct line. X DNA can be inherited from a number of ancestors based on a specific inheritance path.

Everyone has both X-DNA AND mitochondrial DNA.

Because males don’t inherit an X chromosome from their father, X chromosome matching has a unique and specific pattern of descent which allows testers who match to immediately eliminate some potential common ancestors.

  • Males only inherit an X chromosome from their mother, which means they can only have legitimate X matches on their mother’s side of their tree.
  • Females, on the other hand, inherit an X chromosome from both their mother and father. Their father only has one X chromosome to contribute, so his daughter receives her paternal grandmother’s X chromosome intact.
  • Both males and females inherit their mother’s X chromosome just like any of the other 22 autosomes. I wrote about chromosomes, here.

However, the unique X chromosome inheritance path provides us with a fourth very useful type of DNA for genealogy, in addition to Y-DNA, mitochondrial and autosomal DNA.

For the vendors who provide X-matching, it’s included with your autosomal test and does not need to be purchased separately.

The Unique X Chromosome

The X chromosome, even though it is autosomal in nature, meaning it does recombine and divide in certain circumstances, is really its own distinct tool that is not equivalent to autosomal matching in the way we’re accustomed. We just need to learn about the message it’s delivering and how to interpret X matches.

FamilyTreeDNA is one of two vendors who utilizes X chromosome matching, along with 23andMe, which is another good reason to encourage your matches at other vendors to upload their DNA file to FamilyTreeDNA for free matching.

The four major vendors do include X-DNA results in their raw DNA download file, even if they don’t provide X-matching themselves. This means you can upload the results to either FamilyTreeDNA or GEDmatch where you can obtain X matches. I provided step-by-step download/upload instructions for each vendor here.

Let’s look how X matching is both different, and beneficial.

My X Chromosome Family Tree

We are going to build a simple case study. A case study truly is worth 1000 descriptions.

This fan chart of my family tree colorizes the X chromosome inheritance path. In this chart, males are colored blue and females pink, but the salient point is that I can inherit some portion of (or all of) a copy of my X chromosome from the colorized ancestors, and only those ancestors.

Because males don’t inherit an X chromosome from their father, they CANNOT inherit any portion of an X chromosome from their father’s ancestors.

Looking at my father’s half of the chart, at left, you see that I inherited an X chromosome from both of my parents, but my father only inherited an X chromosome from his mother, Ollie Bolton. His father’s portion of the tree is uncolored, so no X chromosome could have descended from his paternal ancestors to him. Therefore he could not pass any X chromosome segments to me from his paternal side – because he doesn’t have X DNA from his father.

Hence, I didn’t inherit an X chromosome from any of the people whose positions in the chart are uncolored, meaning I can only inherit an X chromosome from the pink or blue people.

Essentially any generational male to male, meaning father/son relationship is an X-DNA blocker.

I know positively that I inherited my paternal grandmother, Ollie Bolton’s entire X chromosome, because hers is the only X chromosome my father, in the fan chart above, had to give me. His entire paternal side of the fan chart is uncolored.

Men only ever inherit their X chromosome from their mother. The only exception to this is if a male has the rare genetic condition of Klinefelter Syndrome, also known as XXY. If you are an adult male, it’s likely that you’ll already know if you have Klinefelters, so that’s probably the last possibility you should consider if you appear to have paternal X matches, not the first.

Sometimes, men appear to have X matches on their father’s side, but (barring Klinefelter’s) this is impossible. Those matches must either be identical by chance, or somehow related in an unknown way on their mother’s side.

Everyone inherits an X chromosome from their mother that is some combination of the X from her father and mother. It’s possible to inherit all of your maternal grandmother or maternal grandfather’s X chromosome, meaning they did not recombine during meiosis.

Using DNA Painter as an X Tool

I use DNAPainter to track my matches and correlate segments with ancestors.

I paint my DNA segments for all my chromosomes at DNAPainter which provides me with a central tracking mechanism that is visual in nature and allows me to combine matches from multiple vendors who provide segment information. I provide step-by-step instructions for using DNAPainter, here.

This is my maternal X chromosome with my matches painted. I’ve omitted my matches’ names for privacy.

On the left side of the shaded grey column, those matches are from my maternal grandmother’s ancestors. On the right side, those matches are from my maternal grandfather’s ancestors.

The person in the grey column descends from unknown ancestors. In other words, I can tell that they descend from my maternal line, but I can’t (yet) determine through which of my two maternal grandparents.

There’s also an area to the right of the grey column where there are no matches painted, so I don’t know yet whether I inherited this portion of my X chromosome from my maternal grandmother or maternal grandfather.

The small darker pink columnar band is simply marking the centromere of the chromosome and does not concern us for this discussion.

Click on any image to enlarge

In this summary view of my paternal X chromosome, above, it appears that I may well have inherited my entire X chromosome from my paternal great-grandmother. We know, based on our inheritance rules that I clearly received my paternal grandmother’s X chromosome, because that’s all my father had to give me.

However, by painting my matches based on their ancestors, and selecting the summary view, you can see that most of my paternal X chromosome can be accounted for, with the exception of rather small regions with the red arrows.

It’s not terribly unusual for either a male or female to inherit their entire maternal X chromosome from one grandparent, or in this case, great-grandparent.

Of course, a male doesn’t inherit an X chromosome from their father, but a female can inherit her paternal X chromosome from either or both paternal grandparents.

Does Size Matter?

Generally speaking, an X match needs to be larger than a match on the other chromosomes to be considered genealogically equivalent in the same timeframe as other autosomal matches. This is due to:

  • The unique inheritance pattern, meaning fewer recombination events occurred.
  • The fact that X-DNA is NOT inherited from several lines.
  • The X chromosome has lower SNP density, meaning it contains fewer SNPs, so there are fewer possible locations to match when compared to the other chromosomes.

I know this equivalency requirement sounds negative, but it’s actually not. It means 7 cM (centimorgans) of DNA on the X chromosome will reach back further in time, so you may carry the DNA of an ancestor on the X chromosome that you no longer carry on other chromosomes. It may also mean that older segments remain larger. It’s actually a golden opportunity.

It sounds much more positive to say that a 16 cM X match for a female, or a 13 cM X match for a male is about the same as a 7 cM match for any other autosomal match in the same generation.

Of course, if the 7 cM match gets divided in the following generation, it has slipped below the matching threshold. If a 16 or 13 cM X match gets divided, it’s still a match. Plus, in some generations, if passed from father to daughter, it’s not divided or recombined. So a 7 cM X match may well be descended from ancestors further back in time.

X Chromosome Differences are Important!

Working with our great-great grandparent’s generation, we have 16 direct ancestors as illustrated in the earlier fan chart.

Given that females inherit from 8 X-chromosome ancestors in total, they are going to inherit an average of 45.25 cM of X-DNA from each of those ancestors. Females have two X chromosomes for a total length of 362 cM of X-DNA from both parents.

A male only has one X chromosome, 181 cM in length, so he will receive an average of 36.2 cM from each of 5 ancestors, and it’s all from his mother’s side.

In this chart, I’ve shown the total number of cMs for all of the autosomes, meaning chromosomes 1-22 and, separately, the X for males and females.

  • The average total cM for chromosomes 1-22 individually is 304 cM. (Yes, each chromosome is a different length, but that doesn’t matter for averages.)
  • That 304 cM can be inherited from any of 16 ancestors (in your great-grandparent’s generation)
  • The total number of cM on the X chromosomes for both parents for females totals 362
  • The total cM of X-DNA for males is 181 cM
  • The calculated average cM inherited for the X chromosome in the same generation is significantly different, shown in the bottom row.

The actual average for males and females for any ancestor on any random non-X chromosome (in the gg-grandparent generation) is still 19 cM. Due to the inheritance pattern of the X chromosome, the female X-chromosome average inheritance is 45.25 cM and the male average is 36.2 cM, significantly higher than the average of 19 cM that genetic genealogists have come to expect at this relationship distance on the other chromosomes, combined.

How Do I Interpret an X Match?

It’s important to remember when looking at X matching that you’re only looking at the amount of DNA from one chromosome. When you’re looking at any other matching amount, you’re looking at a total match across all chromosomes, as reported by that vendor. Vendors report total matching DNA differently.

  • The total amount of matching autosomal DNA does not include the X chromosome cMs at FamilyTreeDNA. X-DNA matching cMs are reported separately.
  • The total amount of matching autosomal DNA does include the X chromosome cMs in the total cM match at 23andMe
  • X-DNA is not used for matching or included in the match amount at either MyHeritage or Ancestry, but is included in the raw DNA data download files for all four vendors.
  • The total match amount shows the total for 22 (or 23) chromosomes, NOT just the X chromosome(s). That’s not apples to apples.

Therefore, an X match of 45 cM for a female or 36 for a male is NOT (necessarily) equivalent to a 19 cM non-X match. That 19 cM is the total for 22 chromosomes, while the X match amount is just for one chromosome.

You might consider a 20 cM match on the regular autosomes significant, but a 20 cM X-only match *could* be only roughly equivalent to a 10ish cM match on chromosomes 1-22 in the same generation. That’s the dog-leg inheritance pattern at work.

This is why FamilyTreeDNA does not report an X-only match if there is no other autosomal match. A 19 cM X match is not equivalent to a 19cM match on chromosomes 1-22. Not to mention, calculating relationships based on cM ranges becomes more difficult when the X is included.

However, the flip side is that because of the inheritance pattern of the X chromosome, that 19 cM match, if valid and not IBC, may well reach significantly further back in time than a regular autosomal matches. This can be particularly important for people seeking either Native or enslaved African ancestors for whom traditional records are elusive if they exist at all.

Critical Take-Away Messages

Here are the critical take-away messages:

  1. Because there are fewer ancestral lineages contributing to the tester’s X chromosome, the amount of X chromosomal DNA that a tester inherits from the ancestors who contribute to their X chromosome is increased substantially.
  2. The DNA of the contributing ancestors is more likely to be inherited, because there are fewer other possible contributing ancestors, meaning fewer recombination events or DNA divisions/recombinations.
  3. X-DNA is also more likely to be inherited because when passed from mother to son, it’s passed intact and not admixed with the DNA of the father.
  4. X matches cannot be compared equally to either percentages or cM amounts on any of the other chromosomes, or autosomal DNA in total, because X matching only reports the amount on one single chromosome, while your total cM match amount reports the amount of DNA that matches from all chromosomes (which includes the X at 23andMe).
  5. If you have X matches at 23andMe and/or FamilyTreeDNA, you can expect your total matching to be higher at 23andMe because they include the X matching cM in the total amount of shared DNA. FamilyTreeDNA provides the amount of X matching DNA separately, but not included in the total. MyHeritage and Ancestry do not include X matching DNA.

For clarity, at FamilyTreeDNA, you can see my shared DNA match with my mother. Of course, I match her on the total length of all my chromosomes, which is 3563 cM, the total Shared DNA for chromosomes 1-22. This includes all chromosomes except for the X chromosome which is reported separately at 181 cM. The longest contiguous block of shared DNA is 284 cM, the entire length of chromosome 1, the longest chromosome.

Because I’m a female, I match both parents on the full length of all 23 chromosomes, including 181 cM on both X chromosomes, respectively. Males will only match their mother on their X chromosome, meaning their total autosomal DNA match to their father, because the X is excluded, is 181 cM less than to their mother.

This difference in the amount of shared DNA with each parent, plus the differences in how DNA totals are reported by various vendors is also challenging for tools like DNAPainter’s Shared cM Tool which is based on the crowd sourced Shared cM Project that averages shared DNA numbers for known relationships at various vendors and translates those numbers into possible relationships for unknown matches.

Not all vendors report their total amount of shared DNA the same way. This is true for both X-DNA and half identical (HIR) versus fully identical (FIR) segments at 23andMe. This isn’t to say either approach is right or wrong, just to alert you to the differences.

Said Another Way

Let’s look at this another way.

If the average on any individual chromosome is 19 cMs for a relationship that’s 5 generations back in time. The average X-DNA for the same distance relationship is substantially more, which means that:

  • The X-DNA probably reaches further back in time than an equivalent relationship on any other autosome.
  • The X-DNA will have (probably) divided fewer times, and more DNA will descend from individual ancestors.
  • The inheritance path, meaning potential ancestors who contributed the X chromosomal DNA, is reduced significantly.

It’s challenging to draw equivalences when comparing X-DNA matching to the other chromosomes due to several variables that make interpretation difficult.

Based on the X-match size in comparison to the expected 19 cM single chromosome match at this genealogical distance, what is the comparable X-DNA segment size to the minimum 7 cM size generally accepted as valid on other chromosomes? What would be equal to a 7 cM segment on any other single random autosomal match, even though we know the inheritance probabilities are different and this isn’t apples to apples? Let’s pretend that it is.

This calculation presumes at the great-great-grandparent level that the 19 cM is in one single segment on a single chromosome. Now let’s divide 19 cM by 7 cM, which is 2.7, then divide the X amounts by the same number for the 7 cM equivalent of 16.75 cM for a female and 13.4 cM for a male.

When people say that you need a “larger X match to be equivalent to a regular autosomal match,” this is the phenomenon being referenced. Clearly a 7 cM X match is less relevant, meaning not equivalent, in the same generation as a 7 cM regular autosomal match.

Still, X matching compared to match amounts shown on the other chromosomes is never exact;u apples to apples because:

  • You’re comparing one X chromosome to the combined DNA amounts of many chromosomes.
  • The limited recombination path.
  • DNA from the other autosomes is less likely to be inherited from a specific ancestor.
  • The X chromosome has a lower SNP density than the other chromosomes, meaning fewer SNPs per cM.
  • The X-DNA may well reach further back in time because it has been divided less frequently.

Bottom Line

The X chromosome is different and holds clues that the other autosomes can’t provide.

Don’t dismiss X matches even if you can’t identify a common ancestor. Given the inheritance path, and the reduced number of divisions, your X-DNA may descend from an ancestor further back in time. I certainly would NOT dismiss X matches with smaller cMs than the 13 and 16 shown above, even though they are considered “equivalent” in the same generation.

X chromosome matching can’t really be equated to matching on the other chromosomes. They are two distinct tools, so they can’t be interpreted identically.

Different vendors treat the X chromosome differently, making comparison challenging.

  • 23andMe includes not only the X chromosome in their cM total, but doubles the Fully Identical Regions (FIR) when people, such as full siblings, share the same DNA from both parents. I wrote about that here.
  • Ancestry does not include the X in their cM match calculations.
  • Neither does MyHeritage.
  • FamilyTreeDNA shows an X match only when it’s accompanied by a match on another chromosome.

The Shared cM Project provides an average of all of the data input by crowdsourcing from all vendors, by relationship, which means that the cM values for some relationships are elevated when compared to the same relationship or even same match were it to be reported from a different vendor.

The Best Part!

The X chromosome inheritance pattern means that you’re much more likely to carry some amount of a contributing ancestor’s X-DNA than on any other chromosome.

  • X-DNA may well be “older” because it’s not nearly as likely to be divided, given that there are fewer opportunities for recombination.
  • When you’re tracking your X-DNA back in your tree, whenever you hit a male, you get an automatic “bump” back a generation to his mother. It’s like the free bingo X-DNA square!
  • You can immediately eliminate many ancestors as your most recent common ancestor (MRCA) with an X-DNA match.
  • Because X-DNA reaches further back in time, sometimes you match people who descend from common ancestors further back in time as well.

If you match someone on multiple segments, if one of those matching segments is X-DNA, that segment is more likely to descend from a different ancestor than the segments on chromosomes 1-22. I’ve found many instances where an X match descends from a different ancestor than matching DNA segments on the autosomes. Always evaluate X matches carefully.

Sometimes X-DNA is exactly what you need to solve a mystery.

Ok, now let’s step through how to use X-DNA in a real-life example.

Using X DNA to Solve a Mystery

Let’s say that I have a 30 cM X match with a male.

  • I know immediately that our most recent common ancestor (MRCA) is on HIS mother’s side.
  • I know, based on my fan chart, which ancestral lines are eliminated in my tree. I’ve immediately narrowed the ancestors from 16 to 5 on his side and 16 to 8 on my side.
  • Two matching males is even easier, because you know immediately that the common ancestor must be on both of their mother’s sides, with only 5 candidate lines each at the great-great-grandparent generation.

Female to female matches are slightly more complex, but there are still several immediately eliminated lines each. That means you’ve already eliminated roughly half of the possible relationships by matching another female on their X chromosome.

In this match with a female second cousin, I was able to identify who she was via our common ancestor based on the X chromosome path. In this chart, I’m showing the relevant halves of her chart at left (paternal), and mine (maternal), side by side.

I added blockers on her chart and mine too.

As it turns out, we both inherited most of our X chromosome from our great-grandparents, marked above with the black stars.

Several lines are blocked, and my grandfather’s X chromosome is not a possibility because the common ancestor is my maternal grandmother’s parents. My grandfather is not one of her ancestors.

Having identified this match as my closest relative (other than my mother) to descend on my mother’s maternal side, I was able to map that portion of my X chromosome to my great-grandparents Nora Kirsch and Curtis Benjamin Lore.

My X Chromosome at DNA Painter

Here’s my maternal X chromosome at DNAPainter and how I utilized chromosome painting to push the identification of the ancestors whose X chromosome I inherited back an additional two generations.

Using that initial X chromosome match with my second cousin, shown by the arrow at bottom of the graphic, I mapped a large segment of my maternal X chromosome to my maternal great-grandparents.

By viewing the trees of subsequent X maternal matches, I was then able to push those common segments, shown painted directly above that match with the same color, back another two generations, to Joseph Hill, born in 1790, and Nabby Hall. I was able to do that based on the fact that other matches descend from Joseph and Nabby through different children, meaning we all triangulate on that common segment. I wrote about triangulation at DNAPainter, here.

I received no known X-DNA from my great-grandmother, Nora Kirsch, although a small portion of my X chromosome is still unassigned in yellow as “Uncertain.”

I received a small portion of my maternal X chromosome, in magenta, at left, from my maternal great-great-grandparents, John David Miller and Margaret Lentz.

The X chromosome is a powerful tool and can reach far back in time.

In some cases, the X, and other chromosomes can be inherited intact from one grandparent. I could have inherited my mother’s entire copy of her mother’s, or her father’s X chromosome based on random recombination, or not. As it turns out, I didn’t, and I know that because I’ve mapped my chromosomes to identify my ancestors based on common ancestors with my matches.

X-DNA Advanced Matches at FamilyTreeDNA

At FamilyTreeDNA, the Advanced Matches tab includes the ability to search for X matches, either within the entire database, or within specific projects. I find the project selection to be particularly useful.

For example, within the Claxton project, my father’s maternal grandmother’s line, I recognize my match, Joy, which provides me an important clue as to the possible common ancestor(s) of our shared segments.

Joy’s tree shows that her 4-times great-grandparents are my 3-times great-grandparents, meaning we are 4th cousins once removed and share 17 cM of DNA on our X chromosome across two segments.

Don’t be deceived by the physical appearance of “size” on your chromosomes. The first segment that spans the centromere, or “waist” of the chromosome, above, is 10.29 cM, and the smaller segment at right is 7.02 cM. SNPs are not necessarily evenly distributed along chromosomes.

Remember, an X or other autosomal match doesn’t necessarily mean the entire match is contained in one segment so long as it’s large enough to be divided in two parts and survive the match threshold.

It’s worth noting that Joy and I actually share at least two different, unrelated ancestral lines, so I need to look at Joy’s blocked lines to see if one of those common ancestral lines is not a possibility for our X match. It’s important to evaluate all possible ancestors, plus the inheritance path to eliminate any lineage that involves a father to son inheritance on the X chromosome.

Last but not least, you may match on your X chromosome through a different ancestor than on other chromosomes. Every matching segment has its own individual history. It’s not safe to assume.

Now, take a look at your X chromosome matches at FamilyTreeDNA, 23andMe, and GedMatch. What will you discover?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Beethoven’s DNA Reveals Surprises – Does Your DNA Match?

Beethoven’s DNA has been sequenced from a lock of his hair. That, alone, is amazing news – but that’s just the beginning!

The scientific paper was released this week, and the news media is awash with the unexpected surprises that Beethoven’s DNA has revealed for us. Better yet, his DNA is in the FamilyTreeDNA database and you just might match. Are you related to Beethoven?

His Y-DNA, mitochondrial DNA and autosomal DNA have been recovered and are available for matching.

You can check your autosomal results if you’ve taken a Family Finder test, or you can upload your DNA file from either AncestryDNA, 23andMe or MyHeritage to find out if you match Beethoven. Here are the download/upload instructions for each company.

But first, let’s talk about this amazing sequence of events (pardon the pun) and scientific discoveries!

Beethoven’s Genome is Sequenced

Everyone knows the famous, genius composer, Ludwig van Beethoven. He was born in 1770 in Bonn on the banks of the Rhine River and died in 1827 in Vienna. You can listen to a snippet of his music, here.

We are all about to know him even better.

Yesterday, amid much media fanfare and a press release, the genome and related findings about Beethoven were released by a team of renowned scientists in a collaborative effort. Research partners include the University of Cambridge, the Ira F. Brilliant Center for Beethoven Studies, the American Beethoven Society, KU Leuven, the University Hospital Bonn, the University of Bonn, the Beethoven-Haus Bonn, the Max Planck Institute for Evolutionary Anthropology and  FamilyTreeDNA. I want to congratulate all of these amazing scientists for brilliant work.

Beethoven’s Hair Revelations

In the past, we were unable to retrieve viable DNA from hair, but advances have changed that in certain settings. If you’re eyeing grandma’s hair wreath – the answer is “not yet” for consumer testing. Just continue to protect and preserve your family heirlooms as described in this article.

Thankfully, Beethoven participated in the Victorian custom of giving locks of hair as mementos. Eight different locks of hair attributed to Beethoven were analyzed, with five being deemed authentic and one inconclusive. Those locks provided enough DNA to obtain a great deal of different types of information.

Beethoven’s whole genome was sequenced to a 24X coverage level, meaning the researchers were able to obtain 24 good reads of his DNA, providing a high level of confidence in the accuracy of the sequencing results.

What Was Discovered?

Perhaps the most interesting discovery, at least to genealogists, is that someplace in Beethoven’s direct paternal lineage, meaning his Y-DNA, a non-paternal event (NPE) occurred. The paper’s primary authors referred to this as an “extra-pair-paternity event” but I’ve never heard that term before.

Based on testing of other family members, that event occurred sometime between roughly 1572 and Ludwig’s conception in 1770. The reported lack of a baptismal record had already raised red flags with researchers relative to Beethoven’s paternity, but there is nothing to suggest where in the five generations prior to Ludwig von Beethoven that genetic break occurred. Perhaps testing additional people in the future will provide more specificity.

We also discovered that Beethoven was genetically predisposed to liver disease. He was plagued with jaundice and other liver-related issues for much of his later life.

Beethoven, prior to his death, left a handwritten directive asking his physicians to describe and publicize his health issues which included progressive hearing loss to the point of deafness, persistent gastrointestinal problems and severe liver issues that eventually resulted in his death. Cirrhosis of the liver was widely believed to be his cause of death.

In addition, DNA in the hair revealed that Beethoven had contracted Hepatitis B, which also affects the liver.

The combination of genetic predisposition to liver disease, Hepatitis B and heavy alcohol use probably sealed his fate.

Additional health issues that Beethoven experienced are described in the paper, published in Current Biology.

It’s quite interesting that during this analysis the team devised a method to use triangulated segments that they mapped to various geographic locations, as illustrated above in a graphic from the paper. Fascinating work!!!

As a partner in this research, Cambridge University created a beautiful website, including a video which you can watch, here.

Beethoven’s Later Years

This portrait of Beethoven was painted in 1820 just 7 years before his death, at 56 years of age. By this time, he had been completely deaf for several years, had stopped performing and appearing in public. Ironically, he still continued to compose, but was horribly frustrated and discouraged, even contemplating suicide. I can’t even fathom the depths of despair for a person with his musical genius to become deaf, slowly, like slow torture.

His personal life didn’t fare much better. In 1812, he wrote this impassioned love letter to his “Immortal Beloved” whose identity has never been revealed, if it was ever known by anyone other than Beethoven himself. The letter was never sent, which is why we have it today.

FamilyTreeDNA

FamilyTreeDNA, one of the research partners published a blog article, here.

The FamilyTreeDNA research team not only probed Beethoven’s genealogy, they tested people whose DNA should have matched, but as it turns out, did not.

Beethoven’s mitochondrial DNA haplogroup is H1b1+16,362C, plus a private mutation at C16,176T. Perhaps in the future, Beethoven’s additional private mutation will become a new haplogroup if other members of this haplogroup have it as well. If you have tested your mitochondrial DNA, check and see if Beethoven is on your match list. If you haven’t tested, now’s a great time.

According to the academic paper, Beethoven’s Y-DNA haplogroup is I-Z139, but when viewing Figure 5 in the paper, here, I noticed that Beethoven’s detailed haplogroup is given as I-FT396000, which you can see in the Discover project, here.

Viewing the Time Tree and the Suggested Projects, I noticed that there are four men with that haplogroup, some of whom are from Germany.

The ancestor’s surnames of the I-FT396000 men, as provided in public projects include:

  • Pitzschke (from Germany)
  • Hartmann (from Germany)
  • Stayler
  • Schauer (from Germany)

If your Y-DNA matches Beethoven at any level, you might want to upgrade if you haven’t taken the Big Y-700 test. It would be very interesting to see when and where your most recent common ancestor with Beethoven lived. You just never known – if you match Beethoven, your known ancestry might help unravel the mystery of Beethoven’s unknown paternal lineage.

Beethoven’s DNA is in the FamilyTreeDNA database for matching, including Y-DNA mitochondrial and autosomal results, so you just might match. Take a look! A surprise just might be waiting for you.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

RootsTech 2023 – Truly United

Finally, finally, we were on our way, winging our way across the world from near and far – flying and motoring into snowy Salt Lake City for RootsTech. It seemed like we had been preparing forever, and Murphy visited many of us as gremlins trying to keep us away – but we persevered, and Murphy’s ploy just didn’t work.

Grab a cup of your favorite beverage, because you’re going to RootsTech with me!

I started out very early in dense fog which was a precursor to a nightmare at the airport. We didn’t know that yet, and the sun emerged beautifully as we were on our way.

Utah was blanketed with snow a few days before our arrival. We were hoping for no more snow.

The snow cover made for stunningly beautiful photos from the air.

The Kennecott Copper Mine outside Salt Lake City is three miles wide, nearly a mile deep and looked very interesting and beautiful laced with snow. These terraces are actually roughly 500 miles of dirt road. This used to be a mountain that was 8400 feet in elevation.

During the flight, I read about my ancestor, Stephen Hopkins and couldn’t help but think about how shocked he would have been that I flew across the country some 413 years after he was shipwrecked in Bermuda on the way to Jamestown, eventually lived in Jamestown for 4 years, sailed back to England, remarried, then arrived on the Mayflower in Plymouth Colony.

His ships and mine were very, very different.

FamilySearch Library

Some of us arrived early for research or meetings, or both.

FamilySearch took the opportunity presented during the Covid shutdown to remodel and upgrade the facilities significantly. The new library is both beautiful and super-functional.

The workstations now have three monitors.

There’s a lovely new break room with vending machines, tables, and a fridge.

To put things in perspective, the break room is larger than the preserved pioneer cabin that stands beside the library.

I’m struck by the contrast of the small cabin standing beside the FamilySearch library at left, and museum at right, and just a block away from skyscrapers.

Rather than leave and waste valuable research time, we had a picnic lunch in the break room.

I went to Salt Lake City early to visit the FamilySearch Library and attempt to break down a brick wall. I think I might have done that. We will see.

Other researchers did the same thing, and you can view a special GenFriends episode, here, hosted by Cheryl Hudson Passey, where several of us shared our excitement about our research, discoveries and simply gathering together again.

I was very excited to meet my cousin, Audrey Hill, for the first time in person, at the library. We’ve been collaborating for several months on our John Hill (1737-1805) and Catherine Mitchell (1738-1827) line. She’s already following up on a lead I never did (my bad.) Go Audrey!!

I spent two days perusing book after book after book in the Virginia and Maryland counties where my Dobkins and Johnson ancestors were known to have lived, then moved to the historically adjacent counties.

I was incredibly discouraged, but on the evening of the second day, back at my hotel again, I reviewed all of the library resources and noticed that I had missed one book that was shelved elsewhere.

Glory be, I *think* I’ve found him and his family.

My Peter Johnson line’s Y-DNA matches the Jochimsson (Yocum) line, so I have a LOT of work to do. But now at least I know where to dig!

I needed this entire book, not just a few pages.

Fortunately for me, Jim volunteered to scan the entire book at one of the new book-scanning stations.

I’m SOOO excited.

RootsTech and the FamilySearch library ran golf carts back and forth between the facilities throughout the conference.

Decisions, decisions.

Well, if you can’t decide, just go to the chocolate shop to think things over😊

The Night Before

Preconference events began on Wednesday evening with the media dinner which allows us to understand the layout, when to be someplace, and where that place might be. It also allows provides accurate information to pass on to you.

Of course, many of us have known each other for years. As the first event of RootsTech, after three years of being apart, it felt like one huge family reunion with everyone catching up. So many hugs!!!

And selfies.

It was wonderful to see Marie Cappart again. I’ll never forget walking down the street in Amsterdam with two friends and hearing someone shouting my name from some distance away. I turned around and there was Marie, running toward me, arms outstretched. What are the chances??

The influencers and media were treated to a tour of the show floor after setup was supposed to be complete.

Finishing touches were being put on the Expo Hall and booths. I guess I never realized how large these booths are and that they actually have to be “constructed”.

The next morning, the show would open and thousands of excited genealogists would descend on the Salt Palace for the next three days.

RootsTech Opens

Finally, the Salt Palace, with its legendary signs outside, was ready to receive genealogy guests.

Everyone was so happy to see each other again. My friends, Janna Helstein, Schelly Taladay Dardashti and Daniel Horowitz with MyHeritage photobombing the group. This was the best of several photos because we were all joyfully laughing so hard.

The absolute best part of RootsTech 2023 was seeing people again, in person. Zoom and similar platforms have been sanity-saving for the past three years – but they aren’t people.

Humans are, I think, wired for connection to each other.

I’ve worked “home office” for decades now, but not without regular contact with others.

The classes were great and there was a lot that was wonderful at RootsTech – but hands down, the best part was hugging so many people.

In case you aren’t aware, genealogists are huggers.

If someone were to have followed me around taking photos, there would have been hundreds of hugs. And I don’t mean polite greeting distant hugs. I mean the “OMG I haven’t seen you in a lifetime and everyone was concerned we might never see each other again” holding tight, never-letting-go hugs.

Mags Gaulden and I spotted each other in front of the WikiTree booth, and some kind soul took our picture. I tried to do a nice thing for her and made DNA masks, not remembering that she was allergic to my cat assistants. Thank goodness Mags realized it quickly enough to remove the masks before they had the opposite of the intended effect. I really do not want to be listed in her obituary! “Cause of death: Roberta’s masks.”

Tears streamed down people’s faces as they saw each other, especially that first day. And I don’t mean because of cat hair, either.

There were thousands of selfies joyfully taken. Lots of “blooper” ones too, but just the giddiness of being together again was intoxicating and overshadowed the challenges of the past few years. For a minute, or a few, everyone could just forget about everything else and enjoy our three-day adrenaline high.

And of course, sometimes things change, and many people weren’t there, for a variety of reasons. I missed so many people and there was more than one moment of silence.

Attendance

Here’s the RootsTech Expo Hall from the second floor. It felt like “coming home” after a long absence.

I was standing inside when the doors opened on the first day. People were waiting, but not the mob like past years.

In a Zoom call with RootsTech staff a week or ten days before the conference, they said they had 6000 paid admissions at that time, and a week or so later, they said they were anticipating the same number of attendees as 2020 which was about three times that number.

That number was clearly aspirational, but it didn’t happen.

I’ve been attending RootsTech since 2018, and the actual in-person attendance, based on observation, was lower than it has been since I’ve been attending. Of course, while we may be getting used to Covid, it’s not over and still a significant concern to many. I had my doubts.

Now that I’ve said that about attendance, let me expand. There were over a million registered online for the virtual sessions PLUS the livestreamed sessions that were held in person as well. I don’t know how many more than a million attended, but that number will only grow because those sessions remain available for viewing after RootsTech. In other words, Rootstech sessions have become a library which you can find and enjoy, here.

Clearly, more people in total were reached in 2023 than in 2020.

Questions for Attendees

This year, I had three in-person classes, and no virtual classes. All three were well-attended.

I don’t know how many people attended my sessions, but I know I took about 2000 DNAeXplain ribbons that were passed out to attendees at the exit doors of my classes if they wanted them for their RootsTech badges. I brought home maybe 100.

After everything is set up for the session (thank you Jim,) I always chat with the people in my sessions that show up early. There’s no reason not to have a little fun for everyone.

My first session was at 9:30 the first day, right after the conference opened at 9. I was passing out ribbons personally to people who were early and I saw the confused looks. So I demonstrated what to do with the ribbons with my own badge.

Ribbons on badges are a RootsTech staple, and it’s the only conference I’ve ever attended with that tradition. I realized, based on the confused looks, that we had several first-time attendees.

I was so excited to welcome people at the beginning of my first session, back to in-person genealogy, and that feeling was palpable throughout the room and the conference as a whole.

How Many First-Time Attendees?

When my session started, I asked how many people were attending RootsTech for the first time, and I was very surprised to discover that roughly half the room raised their hands.

Half!!!

That’s HUGE. No wonder there were so many confused looks about the ribbons.

My three sessions, in order, were:

  • DNA for Native American Genealogy: 10 Ways to Find Your Native American Ancestors
  • DNA Journey – Follow Your Ancestors Path
  • Big Y for the Win

I mention this because of the next questions I asked.

Who Has Taken a DNA Test for Genealogy?

In the first session, “DNA for Native American Genealogy,” I asked who had taken a DNA test, and more than half raised their hands, but several had not. Frankly, that surprised me given how long DNA testing has been available now. I talked to people afterwards, and the common thread for those who had not seemed to be:

  • They didn’t know which vendor or which DNA test to take for this purpose.
  • They thought the ancestor was too far back in time and they would not have any Native results. In my session, I talked about testing the older generations and your cousins. Also, that you don’t know what you don’t know. I asked how many people would purchase a book if they thought the answer to that question even MIGHT be inside, and every single person raised their hand.

I also pointed people to the Native section on my blog, to my book, DNA for Native American Genealogy, and to my second blog focused entirely on early Native American records, www.nativeheritageproject.com.

In the second class, “DNA Journey – Follow Your Ancestor’s Path,” probably three fourths of the class had taken a DNA test. That session was really fun. I used several case studies to illustrate how different kinds of DNA have broken down brick walls AND showed me exactly, and I mean literally exactly where my ancestors were from. I used Y-DNA, mitochondrial DNA and autosomal to accomplish this. Who among you DOESN’T want to stand where your ancestors stood?

Yep, we all do.

I think it was in the second class that I asked a question about how many people had taken the three different types of tests, and here’s the breakdown:

  • Who has taken a DNA test? – The majority of the room
  • Who has taken an autosomal test – It looked to be the same number of people as above
  • Who has taken (or sponsored) a Y-DNA test – Maybe 10% of the room
  • Who has taken a mitochondrial DNA test – A scattering of people

As genealogists, we need to do more Y-DNA and mitochondrial DNA testing, because we don’t know what we don’t know and may well be missing.

In the third class, “Big Y for the Win,” which included both Y-DNA STR testing and the Big Y-700, comparing and contrasting the tests, how to use them, and why the Big Y provides significant advantages, most of the people had taken some type of DNA test.

The second question I asked in the Big Y class was how many people had taken or sponsored a Big Y test, and significantly more than half had, which is what I would have expected.

However, given the session topic, I was surprised to learn that few had used the new, free, Discover Tools, or the recently released Group Time Tree. Both were developed and created by FamilyTreeDNA to maximize the usefulness of Y-DNA haplogroups, and they are amazing.

How Many People Have Tested?

As part of the information that I gathered during the conference, Ancestry has tested 23 million people and MyHeritage 6.5 million. I don’t have a current number for FamilyTreeDNA or 23andMe, but the last numbers I heard some months ago were 2 and 5 million, respectively.

There are clearly more (and new) people who are interested in genealogy and are still DNA testing candidates – especially Y-DNA and mitochondrial DNA which have separate inheritance paths, providing additional and unique benefits as compared to autosomal tests.

Keynotes

The keynote sessions were livestreamed, so you can still view them here. Be sure to watch Steve Rockwood’s welcome. He may be the CEO, but he’s an exceptionally caring, inspirational and humble, man.

I attended two of three keynote sessions. Each keynote session actually included three speakers, which was initially confusing.

Steve Rockwood’s message is that “All Means All” – everyone is included. He also thanked and encouraged people to not be further divisive during this difficult time, and instead to choose inclusion.

Steve asked several questions and in answer to his queries, attendees were encouraged to hold up their phones with their flashlight on. As you can see, the entire huge room is filled with light – our light. One at a time. We can all be the light. You can hear Steve’s message for yourself, here.

Another session I enjoyed immensely was Jordin Sparks, the youngest ever American Idol winner. I’ve been in concert venues that were smaller, so it was a real treat to enjoy this inspirational story plus four of her amazing songs.

I really encourage you to watch this video, especially if you love music. Even Jordin’s guitarist was wiping his eyes!

She literally played to a packed house and I don’t think there was a dry eye anyplace.

Jordin has an incredible voice and an inspirational story. Do yourself a favor and listen, here.

MyHeritage Keynote and Announcements

Aaron Godfrey, VP of Marketing with MyHeritage announced new products and initiatives during the keynote on day 2.

The new Photo Dater app, available soon, will estimate when a photo was taken based on clothes, hairstyles and other items in the photo.

Additionally, Aaron announced the cM Explainer, a wonderful new tool which predicts relationship estimates between DNA matches and includes the ages of the testers, among other factors. cM Explainer is incorporated into your DNA matches at MyHeritage in addition to being independently available for free, here.

I’ll be reviewing this new feature in an article, soon.

In another surprise, Aaron announced that MyHeritage has donated another 5000 kits to DNA Quest, for adoptees, here.

MyHeritage also introduced color coding for family trees, here. If you’re a MyHeritage user, this feature is already available for you on your tree, so check it out.

MyHeritage takes the “most new announcements at RootsTech” award with these new features.

Vendor Booth Sessions

Truth be told, I didn’t even get to visit all of the various booths. I meant to, but it just didn’t happen.

At least two vendors offered sessions throughout all three days. There were probably others, but between my three RootsTech sessions, three booth sessions and the book signing, in addition to keynotes, meetings and interviews, I just wasn’t able to attend many booth sessions.

The ones I did attend were wonderful. I focused on DNA, of course. Let’s start with FamilyTreeDNA.

Sherman McRae presented “Unexpected Y-DNA Results” in the FamilyTreeDNA booth where he’s showing how to utilize the Y-DNA Time Tree in the Discover tool, and the Group Time Tree.

You can view Sherman’s main session, Connect the Forefathers, here.

You just never know when a pilgrim is going to show up for your session.

Janine Cloud, an enrolled Cherokee tribal member and manager of Group Projects at FamilyTreeDNA discussed Y-DNA, mitochondrial and autosomal avenues to prove Native ancestors using DNA, using her own Cherokee ancestors as an example.

Dr Paul Maier, Population Geneticist, Goran Runfeldt, Head of Research and Michael Sager, Phylogeneticist answer questions about Y-DNA in the AMA (Ask Me Anything) session.

Paul and Goran also hosted an AMA for mitochondrial DNA as well, an often overlooked but valuable resource.

In addition to the Native American AMA session for FamilyTreeDNA which I gave with Janine, I gave two booth presentations for MyHeritage, “Time Travel with Your Ancestors” and “AutoClusters for the Win,” both of which were recorded meaning you  just might see them in the future.

The Time Travel session utilized the MyHeritage AI tools to see what my ancestors who came from specific regions or cultures might have looked like in that time and place. In the slide above the AI photo of my grandmother is combined with the document and with the Genetic Group that incorporates that part of Germany.

I combined the AI images with MyHeritage records that link those ancestors to a specific location, showing the predicted ethnicity, genetic groups when applicable, and then the actual location – some of which I’ve visited. My ancestor owned that windmill in the Netherlands, above. Combining these tools is so much FUN. My heritage provided the AI photos, records and ethnicity. I’m the one who did the traveling, of course, but in this way, time travel is possible!

I really enjoyed using this story-telling methodology that incorporates all 4 types of genealogy research and clues.

In the AutoClusters for the Win session in the MyHeritage booth, I discussed how I utilized AutoClusters to solve an adoption case in my own family, and how you can use this very powerful tool as well. The methodology I used works equally as well for genealogy mysteries.

In another MyHeritage booth presentation, Janna Helshtein told an amazing and moving story about her grandparents, their escape from the Holocaust, move to Israel, and more – in their own “voices” using MyHeritage’s Deep Story.

We all sat spellbound.

Janna also offers a free guide on how she created and integrated the Deep Story verbiage that her grandparents “spoke.” It was actually quite easy.

There was more to Janna’s story, but I don’t want to spoil it for you.

I believe MyHeritage intends to make their booth sessions available through social media.

Here, Janna and I are celebrating with a quick picnic style lunch after her presentation. She truly knocked it out of the park.

Shifting Attendance

I’m sharing my opinion here, and not anything a RootsTech spokesperson told me.

I was surprised that the in-person attendance was down as much as it was, truthfully. I think in-person was down by either half or maybe even two-thirds. Some decline wouldn’t have surprised me, but this much was sobering.

I was also VERY surprised that roughly half of the attendees were new. And that number could have actually been higher. That’s a good thing, meaning new people are being attracted to genealogy.

These two things, together, suggest the following to me:

  • The passing of time, Covid, and aging-out of some people caused some decline. I know several people who passed away during the past three years, not to mention those whose lives changed dramatically due to their partner’s illness, passing or life circumstances. Several people lost jobs or moved, or both, or are in that process now.
  • Now let’s flip this and say that the virtual and FREE capability for much of RootsTech made the conference accessible and available to many who could not attend in person. For that, I’m very grateful. I have a friend who has been very ill and participated by taking selfies of herself with the livestreamed sessions on her monitor behind her. She posted her photos on social media to be with us. That warmed my heart so much.
  • I think that the reason there were so many new people was because they were able to attend virtually during 2021 and 2022. Essentially this means that while virtual RootsTech was challenging for everyone on the behind-the-scenes production side, to put it mildly, it served to recruit many new genealogists who would not have participated in person had they not previously attended online.

Based on discussions at the media dinner table, and other statements by Steve Rockwood, CEO of FamilySearch, FamilySearch, including RootsTech, is reaching out to young people and to other areas of the world as well.

According to Steve, who, by the way, turns out to be my 11th cousin according to Relatives at RootsTech and the FamilySearch Tree, RootsTech will forever be a blended conference event.

This year, in addition to the local emcee, there were 15 people in other countries hosting in their locations, times and in their native languages.

This year there were 304 virtual classes, 205 in person, and some of those were streamed online as well.

Don’t forget that Relatives at RootsTech is still available through March 31st and you can contact cousins to collaborate. Some may represent Y-DNA or mitochondrial DNA testing lines that you need for matching and to complete your tree.

Vendors

That brings me to the topic of vendors.

Three of the four major DNA vendors were present, meaning Ancestry, FamilyTreeDNA and MyHeritage. 23andMe was absent in 2020 and again this year. Their last DNA innovation was their genetic tree in September of 2019.

Many of the smaller vendors were not in attendance. I had made friends with several of the Mom and Pop vendors and almost none of them were there this year, nor were many of the organizations and smaller companies. I spoke with several people and they said, almost universally, that the cost of the virtual booths over the past two years, the work involved, and the fact that those virtual booths did not generate many sales, not even equal to the amount of the booth rent, had soured the experience.

Not only are conference booths very expensive, so is the invested labor and time. For those of you who don’t know, booth rent is only a part of it. You want carpet? That’s more. A chair? That’s more. Two chairs? More. A trash basket? More. Oh, you need wireless to handle sales? LOTS more.

I’d say that the Expo Hall was only half to one third of the size it had been previously. Mind you, it’s still huge, especially compared to many other conferences, but I missed seeing many of my favorite vendors.

For example, neither Genealogical.com nor Deseret Books were there this year, so there was no bookstore, and neither were many of the fun t-shirt vendors or others that sold jewelry or genealogy-related merchandise.

I hope that FamilySearch will put their creative caps on and perhaps reach out to their vendors, both past and current, and figure out a way to make RootsTech vendors attractive to the online crowd. Perhaps a “search” game where you have to visit vendor booths to find items. Maybe there could be some permanent online stores as well.

There were fewer food vendors too, but in case anyone was wondering, I could still smell cinnamon-almonds throughout the facility😊

I did run into some of my long-time vendor friends.

My friend Jessica Taylor with Legacy Tree Genealogists. I regularly refer people seeking genealogists who understand both genealogy and DNA to Legacy Tree Genealogists.

I don’t need to tell you how much I love DNAPainter and it was great to see Jonny Perl and Patricia Coleman in the DNAPainter booth.

I feel kind of bad because I obviously caught Rob Warthen and Carol Carman by surprise in the East Coast Genetic Genealogy Conference booth, but it’s the only photo I have of their booth.

Last fall’s ECGGC conference was very successful and I’m planning to speak in person this year, in Baltimore, October 6-8, 2023. Save the date. Last year was the first year and it was wonderful.

My Book Signing

FamilyTreeDNA was kind enough to host my book signing for DNA for Native American Genealogy in conjunction with the Native American Ask Me Anything session. Many thanks to Joe Brickey for her help with this event as well.

After the AMA session, which was the final event of Saturday, just before closing, we took a group picture with the FamilyTreeDNA team, or at least the staff members in the booth at that time.

I did learn that perhaps the last thing Saturday might not be the best time for a book signing, because lots of people leave on Friday night. On the other hand, on Saturday, admission to the conference is free, at least to the show floor, with lots of children’s activities and programs for LDS families. Saturday is always very busy in terms of traffic, with sometimes more Saturday visitors than paying conference attendees. It will be interesting to see final RootsTech conference numbers.

The Thank You That Made My Day!!!

One lovely lady, Charis, came up to me after my first session and explained that she saw an ad for RootsTech. She decided she needed to purchase a ticket and attend. She had never heard of me, but she is very focused on documenting her Native ancestry. She sat in the front row in my first session and paid rapt attention. (Speakers do notice, in case you wondered.)

Charis came up to me afterwards and told me that this class alone was worth her registration fee.

She made my day, but I thought to myself that she would attend other sessions that she would find equally as valuable. After all, the conference was just beginning. She found me the next day and repeated what she had said. On day 3, she attended the Ask Me Anything session, arriving early. She said the said the same thing, AGAIN, and I asked if we could take a picture together. As presenters, we take our time, spend our money to attend these conferences, and invest the effort because we want to help people.

People like Charis make this all worthwhile.

Sweetness Personified

I’m sorry, I just can’t resist sharing the sweetest picture series ever.

In 2020, I met my cousin, Heidi Campbell and her baby at RootsTech. Three years later, I saw Heidi again, with a beautiful new addition to the family.

I just can’t tell you how wonderful it was to hold this baby. The last baby I held was Heidi’s little one, three years ago. The look on Heidi’s face is priceless too when he’s reaching for my glasses. He had the biggest smile EVER on his face and he’s booping noses with me. We had so much fun.

My heart just melted into a huge puddle. I so much wish they lived close so I could “grandma.” Thank you, Heidi, for sharing your sunshine with me.

Rolling Up the Sidewalks

On Saturday, literally at one minute after 3 when the conference closed, the workers at the Salt Palace started rolling up the sidewalks, or in this case, the carpets.

It’s a wrap!!!

Afterglow

At the Salt Lake City airport, I ran into two people and had the opportunity to talk to them again and hug goodbye once more. You’d think we would all have had enough of genealogy, but not a chance. More hugs, gratitude for togetherness, and anticipation for next year.

Winging my way home again, having walked about 6 miles each day, according to Fitbit, I was tired, desperately tired, and my everything hurt. However, I was also incredibly fulfilled to have connected again with old friends and met so many new people that I now look forward to seeing again. We are very fortunate to be members of such a wonderful, diverse and universal community.

I couldn’t help but think, as we crossed the winding Mississippi River, how fortunate we are that we have “time travel” in this way. I’m also struck with how many different ways we have to time travel, with Y-DNA and mitochondrial DNA at FamilyTreeDNA, autosomal testing and ethnicity at various vendors, and actual historical records that are becoming ever-more available remotely.

Using artificial intelligence, we can “see” our ancestor’s heritage in our own faces, or, in this case, the face of my grandfather using the MyHeritage AI Time Machine.

Using our DNA, we can identify the parts of those ancestors that we carry today, reaching back in time several generations with autosomal DNA. In addition to autosomal, both Y-DNA and mitochondrial DNA provide close matches and reach back in time, focused on one specific line, providing insights for millennia.

Time travel, truly reimagined.

There are so many ways to discover and connect with our ancestors available to us today. If we don’t carry the DNA of ancestors a few generations upstream, perhaps selected cousins do. We have several tools and databases at our disposal to find testers.

The DNA of our ancestors can and does actually lead us home, to them and, sometimes, exactly where they lived, as I illustrated with several case studies in my presentation, “Follow Your Ancestors Path.” Today, these options are available to everyone.

RootsTech is in the history books for another year, with new friendships made and old ones renewed. Indeed, we were finally reunited with each other, and introduced to cousins we had never met before. We shared tools, methodologies and information to identify our ancestors. We all left fervently hoping to be reunited again next year.

Please enjoy the amazing RootsTech musical finale here.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Concepts: Your Matches on the Same Segment are NOT Necessarily Related to Each Other

Just because two (or more) people match you on the same segment does NOT mean they are related to each other.

This is a fundamental concept of DNA matching and of using a chromosome browser.

I want to make this concept crystal clear.

This past week, I’ve had two people contact me with the same question that’s based up on a critical misunderstanding, or maybe just lack of understanding.

It’s not intuitive – in fact, it’s counter-intuitive. I understand why they don’t understand.

It seems logical that if two or more people show up as a match to you on the chromosome browser, on the same segment, you’ve hit a home run and all you need to do is to identify their common ancestor who will also be your common ancestor, or at least related. Right?

NOT SO FAST!

Let’s walk through this, step-by-step. Once you “get it,” you’ll never forget it, and you can use this to help other people understand too. Please notice there are lots of links here to other articles I’ve written if you need refreshers or help with terms.

Yay! – I’ve Got Matches

OK, so you’ve just discovered that you have a close match with three people, on the same segment. You’re thrilled! Maybe you’re trying to identify your grandparent, so first or second cousin matches are VERY exciting for you.

They are also close enough matches with large enough segments that you don’t need to worry about false positive matches, meaning identical by chance.

Let’s take a look. I’m using FamilyTreeDNA because that’s where the majority of my family has tested, plus they have a nice chromosome browser and their unique matrix tool.

We have three nice-sized matches to people estimated to be my first or second cousins. I’ve selected all three and compared them in the chromosome browser. The large red match is 87 cM and the blue and teal matches are 39 cM each, and completely within the 87 cM segment, so completely overlapping.

I’ve hit the mother-lode, right?

All I need to do is identify THEIR common ancestor and I’ll surely find mine.

Right???

Nope

Just because they all three match ME on this same segment does NOT mean they all match each other and are from the same side of my family. All three people DO NOT NECESSARILY have the same ancestor. From this information alone, we cannot tell.

I know this seems counterintuitive, especially since you’re seeing them all on MY chromosomes – which are the background pallet.

However, remember that I have two chromosomes. One from my father and one from my mother.

These matches are ALWAYS FROM THE PERSPECTIVE OF THE TESTER.

So, I’m going to see matches in exactly the same location – matches on my mother’s chromosome and matches on my father’s chromosomes – painted on the same segment locations of my chromosome.

Let’s prove that in the simplest of ways.

Mom and Dad

This is my kit, compared with my Dad and Mom.

I only took a screen shot of my first several chromosomes, but you can see that I match both of my parents on the full length of each chromosome – on the same exact segments.

I am the background – the pallet upon which my matches are painted.

First, my father is painted, then my mother – their match to me displayed on my chromosomes.

I assure you, my father and mother are NOT related to each other. I’ll prove it.

I could simply select one parent, then look for the other parent on the shared matches list.

Or, I could use the Matrix tool, especially if I wanted to see if a group of people are related to me and also to each other.

The Matrix

The Matrix tool is available under “See More,” in the Autosomal DNA Results & Tools section.

The Matrix allows you to select 10 or fewer matches to see if they are matches to each other. We already know they are matches to you.

I added my parents into the matrix.

My parents do not match each other, meaning they are not genetically related, because their intersecting cell is not blue.

Next, let’s select those three other people I match and see if they match each other.

Yes indeed, we can see that Cheryl and Donald match each other, but Amos matches NEITHER Cheryl nor Don. Yet, the segments of Cheryl and Donald, who had the 39 cM blue and teal segments on the chromosome browser fall entirely within Amos’s 87 cM segment.

Therefore, if Cheryl and Donald do not match Amos, that means that Cheryl and Donald are from one side of my family, and Amos is from the other. This is absolutely true in this instance because we are comparing the exact same segment on my DNA, so everyone has to match me maternally or paternally, or by chance (IBC.) The segment size alone removes the possibility of IBC.

Each parent gave me one copy of chromosome 4, so everyone who matches me on chromosome 4 must match one or the other parent on that chromosome segment.

I’ve added my parents back into the comparison, at the bottom, with the three matches on chromosome 4. Now you can see that same segment again, and everyone matches me, parents included, of course.

There’s no way to tell the difference whether the blue, red and teal match is on my mother’s or father’s side without additional information.

Again, let’s prove it.

Everybody, Let’s Dance

I added my Mom and Dad back into the matrix.

You can see that Mom and Cheryl and Donald all match each other, plus me of course, by inference because these are my matches.

You can see that Amos and my Dad match each other, and me of course, but not the other people.

Settled

So, we’ve settled that, right.

In my case, I could provide this great example, because I do in fact have parental tests to use for comparison.

You can see when I remove my Dad and Amos that Cheryl and Donald and my Mom all match each other. If I were to remove my Mom, Cheryl and Donald would match each other.

If I remove Mom, Donald and Cheryl, Dad and Amos match each other.

Of course, you may not have either of your parents’ DNA to use as an anchor for matching. You may, in fact, be searching for a parent or close relative.

If you do have “anchor people,” by all means, use them. In fact, upload or create a tree, link your anchor people and as many others as possible to their profiles in your tree at FamilyTreeDNA so your matches will be automatically bucketed, meaning assigned maternally or paternally. FamilyTreeDNA is the only company that offers linking and triangulated bucketing.

But, if you’re searching for your parents or know nothing about your family, you won’t have an anchor point, so what’s next?

What’s Next?

Using a combination of matching, shared matches and the matrix, you can create your own grouping of matches.

My suggestion is to start with your 10 closest matches.

Pull all 10 into the matrix.

Remember, you will match these people across your chromosomes. The only question the matrix answers is “do my matches match each other,” and a “yes” doesn’t’ necessarily mean they match each other on the same line you match either or both of them on.

I’ve noted how each person is related to me.

You can see that there’s a large block of matches on my paternal side. Some are labeled “Father- both.” These people are related both maternally and paternally to my father, because either the families intermarried, or they are descendants of my paternal grandparents.

Three, Donald, Dennis and Cheryl are related on my mother’s side, but it’s worth noting that Dennis doesn’t match Cheryl or Donald. That doesn’t mean he’s not on my mother’s side, it simply means he descends through her maternal line, not the paternal line like Donald and Cheryl. Remember, we’re not comparing people who match on the same chromosome this time – we’re comparing my closest matches across all chromosomes, so it makes sense that my mother’s maternal matches won’t match her paternal matches, but they would both match Mom if she were in the matrix. Clearly they all match me or they would not be in my match list in the first place.

You could also run a Genetic Affairs AutoCluster or AutoTree to cluster your matches for you into groups, although you can’t select specifically which individuals to include, except by upper and lower thresholds.

Regardless of the method you select, you still need to do the homework to figure out the common ancestors, but it’s a lot easier knowing who also match each other.

Circling Back to the Beginning

Now, when you see those two or three or more people all matching you on the same segment on the chromosome browser, you KNOW that you can’t immediately assume they match you and therefore are all related to each other. It’s possible, and even probable that some of them will match you because they match your mother’s chromosome and some will match your father’s chromosome – so they are from different sides of your family.

The Matrix tool shows you, for groups of 10 or less, who also matches each other.

What you are doing by determining if multiple people share common segments and match each other is triangulation. I wrote about triangulation at each company in the articles below:

Unfortunately, Ancestry does not provide a chromosome browser, so triangulation is not possible, but Ancestry does provide shared matching with some caveats. However, some Ancestry customers do upload their DNA file to FamilyTreeDNA, MyHeritage or GEDmatch. You can find step-by-step download/upload instructions for all vendors, here.

Additional Resources

You’ve probably noticed there are lots of links in this article to other articles that I’ve written. You might want to go back and take a look at those if you’re in the process of educating yourself or need help wrapping your head around the “same segment address – two parents – your matches are not created equal” phenomenon.

Here are a couple of additional articles that will help you understand matching on both parents’ sides, and how to get the most out of matching, segments, triangulation and chromosome browsers.

I prepared a triangulation resource summary article, here:

Enjoy!!
____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA Black Friday is Here

Yes, I know it’s not Friday yet, but the DNA Black Friday sales have started, and sale dates are limited, so here we go.

These are the best prices I’ve ever seen at both FamilyTreeDNA and MyHeritage. If you’ve been waiting to purchase a DNA test for that special someone, there’s never been a better time.

Remember, to jump-start your genetic genealogy, test close or targeted relatives in addition to yourself:

  • Parents, or if both parents are not available, full and half-siblings
  • If neither parents nor siblings are available, your siblings’ descendants
  • Grandparents or descendants of your grandparents – aunts, uncles, or their descendants
  • Cousins descended from great-grandparents or other known ancestors
  • Y and mitochondrial DNA descendants of specific, targeted ancestors

For yourself, you’ll want to fish in all the ponds by taking an autosomal test or uploading a DNA file to each of the four vendors. Upload/download instructions are available here.

Everyone can test their own mitochondrial DNA to learn about your mother’s direct matrilineal line, and males can test their Y-DNA to unveil information about their patrilineal or surname line. Women, you can test your father’s, brother’s, or paternal uncle’s Y-DNA.

I’ve written a DNA explainer article, 4 Kinds of DNA for Genetic Genealogy, which you might find helpful. Please feel free to pass it on.

Vendor Offerings

FamilyTreeDNA

Free shipping within the US for orders of $79 or more

FamilyTreeDNA is the only major testing company that offers multiple types of tests, meaning Y-DNA, mitochondrial and autosomal. You can also get your toes wet with introductory level tests for Y DNA (37 and 111 marker tests), or you can go for the big gun right away with the Big Y-700.

This means that if you’ve purchased tests in the past, you can upgrade now. Upgrade pricing is shown below. Click here to sign on to your account to purchase an upgrade or additional product.

At FamilyTreeDNA, by taking advantage of autosomal plus Y-DNA and mitochondrial DNA, you will get to know your ancestors in ways not possible elsewhere. You can even identify or track them using your myOrigins painted ethnicity segments.

FamilyTreeDNA divides your Family Finder matches maternal and paternally for you if you create or upload a tree and link known testers. How cool is this?!!!

MyHeritage

The MyHeritage DNA test is on sale for $36, the best autosomal test price I’ve ever seen anyplace.

MyHeritage has a significant European presence and I find European matches at MyHeritage that aren’t anyplace else. MyHeritage utilizes user trees and DNA matches to construct Theories of Family Relativity that shows how you and your matches may be related.

Remember, you can upload the raw data file from the MyHeritage DNA test to both FamilyTreeDNA and GEDmatch for free.

Free shipping on 2 kits or more.

This sale ends at the end-of-day on Black Friday.

You can combine your DNA test with a MyHeritage records subscription with a free trial, here.

Ancestry

The AncestryDNA test is $59, here. With Ancestry’s super-size DNA database, you’re sure to get lots of matches and hints via ThruLines.

You can get free shipping if you’re an Amazon Prime member.

If you order an AncestryDNA test, you can upload the raw DNA file to FamilyTreeDNA, MyHeritage and GEDmatch for free. Unfortunately, Ancestry does not accept uploads from other vendors.

23andMe

The 23andMe Ancestry + Traits DNA test is $79, here. 23andMe is well known for its Ancestry Composition (ethnicity) results and one-of-a-kind genetic tree.

The 23andMe Ancestry + Traits + Health test is now $99, here.

You can get free shipping if you’re an Amazon Prime member.

If you order either of the 23andMe tests, you can upload the raw data file to FamilyTreeDNA, MyHeritage, and GEDmatch for free. Unfortunately, 23andMe does not accept uploads from other vendors.

Can’t Wait!!

This is always my favorite time of the year because I know that beginning soon, we will all be receiving lots of new matches from people who purchased or received DNA tests during the holiday season.

  • What can you do to enhance your genealogy?
  • Have you ordered Y and mitochondrial DNA tests for yourself and people who carry the Y and mitochondrial DNA of your ancestors?
  • Are you in all of the autosomal databases?
  • Who are you ordering tests for?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Connect Your DNA Test, and Others, to Your Tree

To optimize your DNA tests, each tester needs to take advantage of the features offered by each vendor.

In order to do that, we need to perform the following tasks.

  1. Upload or create a tree (except at 23andMe who does not support trees)
  2. Connect our own test to our own profile card on our tree
  3. Connect other tests we manage to their (or our) tree, depending on the vendor
  4. Connect matches who are known relatives to their profiles on our tree

Each vendor handles these situations differently, so we’ll look at each one of the vendors with step-by-step instructions for handling those situations. We all want to get the most out of the tests we’ve taken!

Plant a Tree

If you have not created or uploaded a tree at each one of the vendors (except 23andMe who does not support genealogy trees), please do so. However, 23andMe does provide for links to your tree elsewhere, so we will review that function.

I manage my “master tree” on my own computer, but I also maintain trees at both Ancestry and MyHeritage where I attach documents and research found at that vendor. I also update my ancestors at WikiTree to be sure other researchers benefit from new discoveries.

I have not uploaded my full tree from my computer anyplace because I have many private notes that are not appropriate for disclosure, not to mention speculative and unproven relationships. I created a pared-down tree at one time to upload to both Ancestry and MyHeritage, and build those trees out from there.

I’m often asked about replacing your tree at the various vendors with an updated tree. If you do that, be aware that you will lose your DNA connections and document links. I do NOT recommend that. I simply maintain multiple trees. I wrote about this in the article, “Genealogy Tree Replacement – Should I or Shouldn’t I?” If you are considering that option, PLEASE read that article first.

RootsMagic, Family Tree Maker, and Legacy Family Tree Software all provide a syncing option with various vendors and FamilySearch, although not every vendor allows access to each of those software companies. I probably should experiment with the syncing option, but given a family member’s terrible experience some years back, I’ve been unwilling to do that. My biggest fear is that I will corrupt the file and not notice it until it’s far too late to revert to a backup.

When you upload or create a tree, make sure deceased and living people are marked as such, and you’ve opted to share your tree. If you don’t, you accidentally have a private tree. Worse yet, you might not realize it. I wrote about that in Quick Tip: Trees, Death Dates and Unintentionally Private Ancestors.

Now, let’s take a look at each vendor.

23andMe

23andMe does not support traditional genealogy trees, but they do provide a location for you to link your tree at another vendor or source.

Under your name at the right side, you’ll see “View Your Profile” under the dropdown.

I’ve not been able to find a generic Ancestry tree link that will allow non-Ancestry subscribers to view my tree, but it’s easy to do at MyHeritage. Simply open your tree at  MyHeritage and just copy the link at the top. Don’t worry, people won’t see anyone living.

If you want to use “one world” types of trees, you can also link to other trees such as FamilySearch or WikiTree, but just remember that you don’t control that content.

You don’t need to connect yourself to your tree at 23andMe, because there is no genealogy tree. However, 23andMe constructs a “genetic tree” for you using your closest matches, based on how you match other people, and how they match each other.

You can view your tree under “Family and Friends,” then “Family Tree.”

I added my ancestors’ names so it’s easy to keep straight. You can do that by simply clicking on the colored circle representing the ancestor, starting with your parents.

If you know that one of your matching relatives is not in exactly the correct tree location, you can click on their circle, and then click on Edit to make modifications.

You may want to add a relative that you can identify but who isn’t connected on the tree that 23andMe constructed.

Looking on the far-right side of the tree, in the lower corner, you’ll see “Add a Relative.” Click there and follow the instructions.

Ancestry

At Ancestry, you need to link your test to “you” in a tree. Your test can only be linked to one person in one tree at a time. You can change this, but you will lose any ThruLines you currently have. They will be regenerated based on the new tree you connect your test to, but based on the tree and other factors, they may not be the same. My recommendation is if you’re going to disconnect yourself and reconnect yourself elsewhere, record everything first.

Alternatively, you can take a second DNA test and simply link that second test to another tree. IMHO, that’s a better alternative. You can leave one in place as your research tree and use the second test to experiment with.

To link your test to your tree, select the “DNA” tab. At far right, you’ll see “Settings.”

You need to tell Ancestry who you are in your tree. Click on “Settings,” then scroll to “Tree Link.”

You can also link other tests you directly manage to their placards in your tree as well.

These links allow Ancestry to form ThruLines using both DNA matches and common ancestors in trees for 7 generations.

On your DNA Match page, Ancestry will ask you if you recognize a match.

If you click on “Yes,” you’ll be asked which side the match is on.

Then you’ll be given a long list of possible relationships in most-likely to least-likely order. Literally, Erik is the last option offered.

Select and confirm.

I’m not positive exactly HOW this helps Ancestry help you, but I suspect it confirms and helps Ancestry perfect ThruLines, relationship predictions, and perhaps even “sides” of ethnicity.

I wrote about Optimizing Your Tree at Ancestry for More Hints and DNA ThruLines.

FamilyTreeDNA

At FamilyTreeDNA, every DNA test kit has its own kit number and associated tree, so you don’t need to tell FamilyTreeDNA who you are if you create a tree from scratch on their site.

FamilyTreeDNA offers a unique family matching feature that sorts your matches into maternal and paternal sides.

In order to take advantage of this, you will need a tree. You can upload a GEDCOM file, although the upload at FamilyTreeDNA does not seem to do well with very large files.

If you don’t have a GEDCOM file on your computer, you can download a tree from either Ancestry or MyHeritage and upload to FamilyTreeDNA.

I wrote about this in the article Download Your Ancestry Tree and Upload it Elsewhere for Added Benefit.

If you upload a tree, you’ll be asked to select the person in the tree that is “you,” meaning the person who tested their DNA.

You’ll want to link known matches to your tree to enable Family Matching, aka bucketing, so that FamilyTreeDNA can divide and assign your matches maternally and paternally.

If you are building your tree at FamilyTreeDNA from scratch, simply click to begin and complete the information on the placards to add your information, then your parents, building out from there. You’ll want to add the ancestral lines to connect with your closest matches on your match list.

Family matching, or bucketing, is enabled by linking known matches to their proper place on your tree. FamilyTreeDNA then evaluates each match, determining if they match a common segment with you and someone you’ve linked. If that match does share a segment with both of you, meaning they triangulate, then that person is assigned either maternally, paternally, or both. I wrote about Triangulation in Action at FamilyTreeDNA, here.

The best people to link are your parents and grandparents, of course, but that’s not always an option. You’ll want to link as many matches as you can.

To link people, either click on the Family Tree tab at the top of the page, or on the “Link on Family Tree” under Relationship Range for individual matches.

Simply click on “Link Matches,” then drag and drop your match to their placard.

Here’s an example of linking parents.

Once someone is linked, the green dot will appear signifying that they are linked, and which type of test. Green is a Family Finder autosomal test, blue means they’ve taken a Y DNA test, and pink is a mitochondrial DNA test.

If your parents aren’t available to test, link every upstream relative that you can identify. By this, I mean that your children and full siblings will match you on both sides, so aren’t helpful for parental-side assignment.

People who have DNA tests from both parents can expect around 80% of their matches to be assigned maternally, paternally, or both.

If you have relatives who have tested at other vendors, you can ask them to upload to FamilyTreeDNA for free matching.

MyHeritage

At MyHeritage, you will connect yourself and any relatives whose tests you manage to your tree.

Under “DNA,” select “Manage DNA kits.”

At the right, you’ll click on the three dots, also known as a hamburger menu (who knew.)

Select Assign (if this is a new test or a transfer) or Re-assign a kit.

Be sure to do this for every kit you manage. I made that mistake and wrote about how I discovered and fixed the problem, here. Kit assignment enables Theories of Family Relativity and other super-helpful features.

I wrote about several things you can do to optimize your chances of receiving Theories of Family Relativity, here.

You can upload DNA kits to MyHeritage from tests taken at other vendors, here.

Fish in All the Ponds

I have provided step-by-step download/upload instructors for all vendors, here. It’s important to fish in all available ponds by making sure you have DNA tests at all four vendors. Then, upload or create trees and complete this bit of housekeeping to increase your chances of catching fish!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search of…Full and Half-Siblings

This is the fifth article in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to identify ancestors further back in time as well.

Please note that if a family member has tested and you do NOT see their results, ask them to verify that they have chosen to allow matching and for other people to view them in their match list. That process varies at different vendors.

You can also ask if they can see you in their results.

All Parties Need to Test

Searching for unknown siblings isn’t exactly searching, because to find them, they, themselves, or their descendant(s) must have taken a DNA test at the same vendor where you tested or uploaded a DNA file.

You may know through any variety of methods that they exist, or might exist, but if they don’t take a DNA test, you can’t find them using DNA. This might sound obvious, but I see people commenting and not realizing that the other sibling(s) must test too – and they may not have.

My first questions when someone comments in this vein are:

  1. Whether or not they are positive their sibling actually tested, meaning actually sent the test in to the vendor, and it was received by the testing company. You’d be surprised how many tests are living in permanent residence on someone’s countertop until it gets pushed into the drawer and forgotten about.
  2. If the person has confirmed that their sibling has results posted. They may have returned their test, but the results aren’t ready yet or there was a problem.
  3. AND that both people have authorized matching and sharing of results. Don’t hesitate to reach out to your vendor’s customer care if you need help with this.

Sibling Scenarios

The most common sibling scenarios are when one of two things happens:

  • A known sibling tests, only to discover that they don’t match you in the full sibling range, or not at all, when you expected they would
  • You discover a surprise match in the full or half-sibling range

Let’s talk about these scenarios and how to determine:

  • If someone is a sibling
  • If they are a full or half-sibling
  • If a half-sibling, if they descend from your mother or father

As with everything else genetic, we’ll be gathering and analyzing different pieces of evidence along the way.

Full and Half-Siblings

Just to make sure we are all on the same page:

  • A full sibling is someone who shares both parents with you.
  • A half-sibling is someone who shares one parent with you, but not the other parent.
  • A step-sibling is someone who shares no biological parents with you. This situation occurs when your parent marries their parent, after you are both born, and their parent becomes your step-parent. You share neither of your biological parents with a step-sibling, so you share no DNA and will not show up on each other’s match lists.
  • A three-quarters sibling is someone with whom you share one parent, but two siblings are the other parent. For example, you share the same mother, but one brother fathered you, and your father’s brother fathered your sibling. Yes, this can get very messy and is almost impossible for a non-professional to sort through, if even then. (This is not a solicitation. I do not take private clients.) We will not be addressing this situation specifically.

Caution

With any search for unknown relatives, you have no way of knowing what you will find.

In one’s mind, there are happy reunions, but you may experience something entirely different. Humans are human. Their stories are not always happy or rosy. They may have made mistakes they regret. Or they may have no regrets about anything.

Your sibling may not know about you or the situation under which you, or they, were born. Some women were victims of assault and violence, which is both humiliating and embarrassing. I wrote about difficult situations, here.

Your sibling or close family member may not be receptive to either you, your message, or even your existence. Just be prepared, because the seeking journey may not be pain-free for you or others, and may not culminate with or include happy reunions.

On the other hand, it may.

Please step back and ponder a bit about the journey you are about to undertake and the possible people that may be affected, and how. This box, once opened, cannot be closed again. Be sure you are prepared.

On the other hand, sometimes that box lid pops off, and the information simply falls in your lap one day when you open your match list, and you find yourself sitting there, in shock, staring at a match, trying to figure out what it all means.

Congratulations, You Have a Sibling!

This might not be exactly what runs through your mind when you see that you have a very close match that you weren’t expecting.

The first two things I recommend when making this sort of discovery, after a few deep breaths, a walk, and a cup of tea, are:

  • Viewing what the vendor says
  • Using the DNAPainter Shared cM Relationship Chart

Let’s start with DNAPainter.

DNAPainter

DNAPainter provides a relationship chart, here, based on the values from the Shared cM Project.

You can either enter a cM amount or a percentage of shared DNA. I prefer the cM amount, but it doesn’t really matter.

I’ll enter 2241 cM from a known half-sibling match. To enter a percent, click on the green “enter %.”

As you can see, statistically speaking, this person is slightly more likely to be a half-sibling than they are to be a full sibling. In reality, they could be either.

Looking at the chart below, DNAPainter highlights the possible relationships from the perspective of “Self.”

The average of all the self-reported relationships is shown, on top, so 2613 for a full sibling. The range is shown below, so 1613-3488 for a full sibling.

In this case, there are several possibilities for two people who share 2241 cM of DNA.

I happen to know that these two people are half-siblings, but if I didn’t, it would be impossible to tell from this information alone.

The cM range for full siblings is 1613-3488, and the cM range for half-siblings is 1160-2436.

  • The lower part of the matching range, from 1160-1613 cM is only found in half-siblings.
  • The portion of the range from 1613-2436 cM can be either half or full siblings.
  • The upper part of the range, from 2436-3488 cM is only found in full siblings.

If your results fall into the center portion of the range, you’re going to need to utilize other tools. Fortunately, we have several.

If you’ve discovered something unexpected, you’ll want to verify using these tools, regardless. Use every tool available. Ranges are not foolproof, and the upper and lower 10% of the responses were removed as outliers. You can read more about the shared cM Project, here and here.

Furthermore, people may be reporting some half-sibling relationships as full sibling relationships, because they don’t expect to be half-siblings, so the ranges may be somewhat “off.”

Relationship Probability Calculator

Third-party matching database, GEDmatch, provides a Relationship Probability Calculator tool that is based on statistical probability methods without compiled user input. Both tools are free, and while I haven’t compared every value, both seem to be reasonably accurate, although they do vary somewhat, especially at the outer ends of the ranges.

When dealing with sibling matches, if you are in all four databases, GEDmatch is a secondary resource, but I will include GEDmatch when they have a unique tool as well as in the summary table. Some of your matches may be willing to upload to GEDmatch if the vendor where you match doesn’t provide everything you need and GEDmatch has a supplemental offering.

Next, let’s look at what the vendors say about sibling matches.

Vendors

Each of the major vendors reports sibling relationships in a slightly different way.

Sibling Matches at Ancestry

Ancestry reports sibling relationships as Sister or Brother, but they don’t say half or full.

If you click on the cM portion of the link, you’ll see additional detail, below

Ancestry tells you that the possible relationships are 100% “Sibling.” The only way to discern the difference between full and half is by what’s next.

If the ONLY relationship shown is Sibling at 100%, that can be interpreted to mean this person is a full sibling, and that a half-sibling or other relationship is NOT a possibility.

Ancestry never stipulates full or half.

The following relationship is a half-sibling at Ancestry.

Ancestry identifies that possible range of relationships as “Close Family to First Cousin” because of the overlaps we saw in the DNAPainter chart.

Clicking through shows that there is a range of possible relationships, and Ancestry is 100% sure the relationship is one of those.

DNAPainter agrees with Ancestry except includes the full-sibling relationship as a possibility for 1826 cM.

Sibling Matches at 23andMe

23andMe does identify full versus half-siblings.

DNAPainter disagrees with 23andMe and claims that anyone who shares 46.2% of their DNA is a parent/child.

However, look at the fine print. 23andMe counts differently than any of the other vendors, and DNAPainter relies on the Shared cM Project, which relies on testers entering known relationship matching information. Therefore, at any other vendor, DNAPainter is probably exactly right.

Before we understand how 23andMe counts, we need to understand about half versus fully identical segments.

To determine half or full siblings, 23andMe compares two things:

  1. The amount of shared matching DNA between two people
  2. Fully Identical Regions (FIR) of DNA compared to Half Identical Regions (HIR) of DNA to determine if any of your DNA is fully identical, meaning some pieces of you and your sibling’s DNA is exactly the same on both your maternal and paternal chromosomes.

Here’s an example on any chromosome – I’ve randomly selected chromosome 12. Which chromosome doesn’t matter, except for the X, which is different.

Your match isn’t broken out by maternal and paternal sides. You would simply see, on the chromosome browser, that you and your sibling match at these locations, above.

In reality, though, you have two copies of each chromosome, one from Mom and one from Dad, and so does your sibling.

In this example, Mom’s chromosome is visualized on top, and Dad’s is on the bottom, below, but as a tester, you don’t know that. All you know is that you match your sibling on all of those blue areas, above.

However, what’s actually happening in this example is that you are matching your sibling on parts of your mother’s chromosome and parts of your father’s chromosome, shown above as green areas

23andMe looks at both copies of your chromosome, the one you inherited from Mom, on top, and Dad, on the bottom, to see if you match your sibling on BOTH your mother’s and your father’s chromosomes in that location.

I’ve boxed the green matching areas in purple where you match your sibling fully, on both parents’ chromosomes.

If you and your sibling share both parents, you will share significant amounts of the same DNA on both copies of the same chromosomes, meaning maternal and paternal. In other words, full siblings share some purple fully identical regions (FIR) of DNA with each other, while half-siblings do not (unless they are also otherwise related) because half-siblings only share one parent with each other. Their DNA can’t be fully identical because they have a different parent that contributed the other copy of their chromosome.

Total Shared DNA Fully Identical DNA from Both Parents
Full Siblings ~50% ~25%
Half Siblings ~25% 0
  • Full siblings are expected to share about 50% of the same DNA. In other words, their DNA will match at that location. That’s all the green boxed locations, above.
  • Full siblings are expected to share about 25% of the same DNA from BOTH parents at the same location on BOTH copies of their chromosomes. These are fully identical regions and are boxed in purple, above.

You’ll find fully identical segments about 25% of the time in full siblings, but you won’t find fully identical segments in half-siblings. Please note that there are exceptions for ¾ siblings and endogamous populations.

You can view each match at 23andMe to see if you have any completely identical regions, shown in dark purple in the top comparison of full siblings. Half siblings are shown in the second example, with less total matching DNA and no FIR or completely identical regions.

Please note that your matching amount of DNA will probably be higher at 23andMe than at other companies because:

  • 23andMe includes the X chromosome in the match totals
  • 23andMe counts fully identical matching regions twice. For full siblings, that’s an additional 25%

Therefore, a full sibling with an X match will have a higher total cM at 23andMe than the same siblings elsewhere because not only is the X added into the total, the FIR match region is added a second time too.

Fully Identical Regions (FIR) and Half Identical Regions (HIR) at GEDmatch

At GEDMatch, you can compare two people to each other, with an option to display the matching information and a painted graphic for each chromosome that includes FIR and HIR.

If you need to know if you and a match share fully identical regions and you haven’t tested at 23andMe, you can both upload your DNA data file to GEDmatch and use their One to One Autosomal DNA Comparison.

On the following page, simply enter both kit numbers and accept the defaults, making sure you have selected one of the graphics options.

While GEDmatch doesn’t specifically tell you whether someone is a full or half sibling, you can garner additional information about the relationship based on the graphic at GEDmatch.

GEDMatch shows both half and fully identical regions.

The above match is between two full siblings using a 7 cM threshold. The blue on the bottom bar indicates a match of 7 cM or larger. Black means no match.

The green regions in the top bar indicate places where these two people carry the same DNA on both copies of their chromosome 1. This means that both people inherited the same DNA from BOTH parents on the green segments.

In the yellow regions, the siblings inherited the same DNA from ONE parent, but different DNA in that region from the other parent. They do match each other, just on one of their chromosomes, not both.

Without a tool like this to differentiate between HIR and FIR, you can’t tell if you’re matching someone on one copy of your chromosome, or on both copies.

In the areas marked with red on top, which corresponds to the black on the bottom band, these two siblings don’t match each other because they inherited different DNA from both parents in that region. The yellow in that region is too scattered to be significant.

Full siblings generally share a significant amount of FIR, or fully identical regions of DNA – about 25%.

Half siblings will share NO significant amount of FIR, although some will be FIR on very small, scattered green segments simply by chance, as you can see in the example, below.

This half-sibling match shares no segments large enough to be a match (7 cM) in the black section. In the blue matching section, only a few small green fragments of DNA match fully, which, based on the rest of that matching segment, must be identical by chance or misreads. There are no significant contiguous segments of fully identical DNA.

When dealing with full or half-siblings, you’re not interested in small, scattered segments of fully identical regions, like those green snippets on chromosome 6, but in large contiguous sections of matching DNA like the chromosome 1 example.

GEDmatch can help when you match when a vendor does not provide FIR/HIR information, and you need additional assistance.

Next, let’s look at full and half-siblings at FamilyTreeDNA

Sibling Matches at FamilyTreeDNA

FamilyTreeDNA does identify full siblings.

Relationships other than full siblings are indicated by a range. The two individuals below are both half-sibling matches to the tester.

The full range when mousing over the relationship ranges is shown below.

DNAPainter agrees except also gives full siblings as an option for the two half-siblings.

FamilyTreeDNA also tells you if you have an X match and the size of your X match.

We will talk about X matching in a minute, which, when dealing with sibling identification, can turn out to be very important.

Sibling Matches at MyHeritage

MyHeritage indicates brother or sister for full siblings

MyHeritage provides other “Estimated relationships” for matches too small to be full siblings.

DNAPainter’s chart agrees with this classification, except adds additional relationship possibilities.

Be sure to review all of the information provided by each vendor for close relationships.

View Close Known Relationships

The next easiest step to take is to compare your full or half-sibling match to known close family members from your maternal and paternal sides, respectively. The closer the family members, the better.

It’s often not possible to determine if someone is a half sibling or a full sibling by centiMorgans (cMs) alone, especially if you’re searching for unknown family members.

Let’s start with the simplest situation first.

Let’s say both of your parents have tested, and of course, you match both of them as parents.

Your new “very close match” is in the sibling range.

The first thing to do at each vendor is to utilize that vendor’s shared matches tool and see whether your new match matches one parent, or both.

Here’s an example.

Close Relationships at FamilyTreeDNA

This person has a full sibling match, but let’s say they don’t know who this is and wants to see if their new sibling matches one or both of their parents.

Select the match by checking the box to the left of the match name, then click on the little two-person icon at far right, which shows “In Common” matches

You can see on the resulting shared match list that both of the tester’s parents are shown on the shared match list.

Now let’s make this a little more difficult.

No Parents, No Problem

Let’s say neither of your parents has tested.

If you know who your family is and can identify your matches, you can see if the sibling you match matches other close relatives on both or either side of your family.

You’ll want to view shared matches with your closest known match on both sides of your tree, beginning with the closest first. Aunts, uncles, first cousins, etc.

You will match all of your family members through second cousins, and 90% of your third cousins. You can view additional relationship percentages in the article, How Much of Them is in You?.

I recommend, for this matching purpose, to utilize 2nd cousins and closer. That way you know for sure if you don’t share them as a match with your sibling, it’s because the sibling is not related on that side of the family, not because they simply don’t share any DNA due to their distance.

In this example, you have three sibling matches. Based on your and their matches to the same known first and second cousins, you can see that:

  • Sibling 1 is your full sibling, because you both match the same maternal and paternal first and second cousins
  • Sibling 2 is your paternal half-sibling because you both match paternal second cousins and closer, but not maternal cousins.
  • Sibling 3 is your maternal half-sibling because you both match maternal second cousins and closer, but not paternal cousins.

Close Relationships at Ancestry

Neither of my parents have tested, but my first cousin on my mother’s side has. Let’s say I have a suspected sibling or half-sibling match, so I click on the match’s name, then on Shared Matches.

Sure enough, my new match also matches my first cousin that I’ve labeled as “on my mother’s side.”

If my new match in the sibling range also matches my second cousins or closer on my father’s side, the new match is a full sibling, not a half-sibling.

Close Relationships at MyHeritage

Comparing my closest match provided a real surprise. I wonder if I’ve found a half-sibling to my mother.

Now, THIS is interesting.

Hmmm. More research is needed, beginning with the age of my match. MyHeritage provides ages if the MyHeritage member authorizes that information to be shared.

Close Relationships at 23andMe

Under DNA Relatives, click on your suspected sibling match, then scroll down and select “Find Relatives in Common.”

The Relatives in Common list shows people that match both of you.

The first common match is very close and a similar relationship to my closest match on my father’s side. This would be expected of a sibling. I have no common matches with this match to anyone on my mother’s side, so they are only related on my father’s side. Therefore they are a paternal half-sibling, not a full sibling.

More Tools Are Available

Hopefully, by now, you’ve been able to determine if your mystery match is a sibling, and if so, if they are a half or full sibling, and through which parent.

We have some additional tools that are relevant and can be very informative in some circumstances. I suggest utilizing these tools, even if you think you know the answer.

In this type of situation, there’s no such thing as too much information.

X Matching

X matching, or lack thereof, may help you determine how you are related to someone.

There are two types of autosomal DNA. The X chromosome versus chromosomes 1-22. The X chromosome (number 23) has a unique inheritance path that distinguishes it from your other chromosomes.

The X chromosome inheritance path also differs between men and women.

Here’s my pedigree chart in fan form, highlighting the ancestors who may have contributed a portion of their X chromosome to me. In the closest generation, this shows that I inherited an X chromosome from both of my parents, and who in each of their lines could have contributed an X to them.

The white or uncolored positions, meaning ancestors, cannot contribute any portion of an X chromosome to me based on how the X chromosome is inherited.

You’ll notice that my father inherited none of his X chromosome from any of his paternal ancestors, so of course, I can’t inherit what he didn’t inherit. There are a very limited number of ancestors on my father’s side whom I can inherit any portion of an X chromosome from.

Men receive their Y chromosome from their fathers, so men ONLY receive an X chromosome from their mother.

Therefore, men MUST pass their mother’s X chromosome on to their female offspring because they don’t have any other copy of the X chromosome to pass on.

Men pass no X chromosome to sons.

We don’t need to worry about a full fan chart when dealing with siblings and half-siblings.

We only need to be concerned with the testers plus one generation (parents) when utilizing the X chromosome in sibling situations.

These two female Disney Princesses, above, are full siblings, and both inherited an X chromosome from BOTH their mother and father. However, their father only has one X (red) chromosome to give them, so the two females MUST match on the entire red X chromosome from their father.

Their mother has two X chromosomes, green and black, to contribute – one from each of her parents.

The full siblings, Melody, and Cinderella:

  • May have inherited some portion of the same green and black X chromosomes from their mother, so they are partial matches on their mother’s X chromosome.
  • May have inherited the exact same full X chromosome from their mother (both inherited the entire green or both inherited the entire black), so they match fully on their mother’s X chromosome.
  • May have inherited the opposite X from different maternal grandparents. One inherited the entire green X and one inherited the entire black X, so they don’t match on their mother’s X chromosome.

Now, let’s look at Cinderella, who matches Henry.

This female and male full sibling match can’t share an X chromosome on the father’s side, because the male’s father doesn’t contribute an X chromosome to him. The son, Henry, inherited a Y chromosome instead from his father, which is what made them males.

Therefore, if a male and female match on the X chromosome, it MUST be through HIS mother, but could be through either of her parents. In a sibling situation, an X match between a male and female always indicates the mother.

In the example above, the two people share both of their mother’s X chromosomes, so are definitely (at least) maternally related. They could be full siblings, but we can’t determine that by the X chromosome in this situation, with males.

However, if the male matches the female on HER father’s X chromosome, there a different message, example below.

You can see that the male is related to the female on her father’s side, where she inherited the entire magenta X chromosome. The male inherited a portion of the magenta X chromosome from his mother, so these two people do have an X match. However, he matches on his mother’s side, and she matches on her father’s side, so that’s clearly not the same parent.

  • These people CAN NOT be full siblings because they don’t match on HER mother’s side too, which would also be his mother’s side if they were full siblings.
  • They cannot be maternal half-siblings because their X DNA only matches on her father’s side, but they wouldn’t know that unless she knew which side was which based on share matches.
  • They cannot be paternal half-siblings because he does not have an X chromosome from his father.

They could, however, be uncle/aunt-niece/nephew or first cousins on his mother’s side and her father’s side. (Yes, you’re definitely going to have to read this again if you ever need male-female X matching.)

Now, let’s look at X chromosome matching between two males. It’s a lot less complicated and much more succinct.

Neither male has inherited an X chromosome from their father, so if two males DO match on the X, it MUST be through their mother. In terms of siblings, this would mean they share the same mother.

However, there is one slight twist. In the above example, you can see that the men inherited a different proportion of the green and black X chromosomes from their common mother. However, it is possible that the mother could contribute her entire green X chromosome to one son, Justin in this example, and her entire black X chromosome to Henry.

Therefore, even though Henry and Justin DO share a mother, their X chromosome would NOT match in this scenario. This is rare but does occasionally happen.

Based on the above examples, the X chromosome may be relevant in the identification of full or half siblings based on the sexes of the two people who otherwise match at a level indicating a full or half-sibling relationship.

Here’s a summary chart for sibling X matching.

X Match Female Male
Female Will match on shared father’s full X chromosome, mother’s X is the same rules as chromosomes 1-22 Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both of their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related.
Male Match through male’s mother, but either of female’s parents. If the X match is not through the female’s mother, they are not full siblings nor maternal half-siblings. They cannot have an X match through the male’s father. They are either full or half-siblings through their mother if they match on both or their mother’s side. If they match on his mother’s side, and her father’s side, they are not siblings but could be otherwise closely related. Both males are related on their mother’s side – either full or half-siblings.

Here’s the information presented in a different way.

DOES match X summary:

  • If a male DOES match a female on the X, he IS related to her through HIS mother’s side, but could match her on her mother or father’s side. If their match is not through her mother, then they are not full siblings nor maternal half-siblings. They cannot match through his father, so they cannot be paternal half-siblings.
  • If a female DOES match a female on the X, they could be related on either side and could be full or half-siblings.
  • If a male DOES match a male on the X, they ARE both related through their mother. They may also be related on their father’s side, but the X does not inform us of that.

Does NOT match X summary:

  • If a male does NOT match a female on the X, they are NOT related through HIS mother and are neither full siblings nor maternal half-siblings. Since a male does not have an X chromosome from his father, they cannot be paternal half-siblings based on an X match.
  • If a male does NOT match a male, they do NOT share a mother.
  • If a female does NOT match another female on the X, they are NOT full siblings and are NOT half-siblings on their paternal side. Their father only has one X chromosome, and he would have given the same X to both daughters.

Of the four autosomal vendors, only 23andMe and FamilyTreeDNA report X chromosome results and matching, although the other two vendors, MyHeritage and Ancestry, include the X in their DNA download file so you can find X matches with those files at either FamilyTreeDNA or GEDMatch if your match has or will upload their file to either of those vendors. I wrote step-by-step detailed download/upload instructions, here.

X Matching at FamilyTreeDNA

In this example from FamilyTreeDNA, the female tester has discovered two half-sibling matches, both through her father. In the first scenario, she matches a female on the full X chromosome (181 cM). She and her half-sibling MUST share their father’s entire X chromosome because he only had one X, from his mother, to contribute to both of his daughters.

In the second match to a male half-sibling, our female tester shares NO X match because her father did not contribute an X chromosome to his son.

If we didn’t know which parents these half-sibling matches were through, we can infer from the X matching alone that the male is probably NOT through the mother.

Then by comparing shared matches with each sibling, Advanced Matches, or viewing the match Matrix, we can determine if the siblings match each other and are from the same or different sides of the family.

Under Additional Tests and Tools, Advanced Matching, FamilyTreeDNA provides an additional tool that can show only X matches combined with relationships.

Of course, you’ll need to view shared matches to see which people match the mother and/or match the father.

To see who matches each other, you’ll need to use the Matrix tool.

At FamilyTreeDNA, the Matrix, located under Autosomal DNA Results and Tools, allows you to select your matches to see if they also match each other. If you have known half-siblings, or close relatives, this is another way to view relationships.

Here’s an example using my father and two paternal half-siblings. We can see that the half-siblings also match each other, so they are (at least) half-siblings on the paternal side too.

If they also matched my mother, we would be full siblings, of course.

Next, let’s use Y DNA and mitochondrial DNA.

Y DNA and Mitochondrial DNA

In addition to autosomal DNA, we can utilize Y DNA and mitochondrial DNA (mtDNA) in some cases to identify siblings or to narrow or eliminate relationship possibilities.

Given that Y DNA and mitochondrial DNA both have distinctive inheritance paths, full and half-siblings will, or will not, match under various circumstances.

Y DNA

Y DNA is passed intact from father to son, meaning it’s not admixed with any of the mother’s DNA. Daughters do not inherit Y DNA from their father, so Y DNA is only useful for male-to-male comparisons.

Two types of Y DNA are used for genealogy, STR markers for matching, and haplogroups, and both are equally powerful in slightly different ways.

Y DNA at FamilyTreeDNA

Men can order either 37 or 111 STR marker tests, or the BIg Y which provides more than 700 markers and more. FamilyTreeDNA is the only one of the vendors to offer Y DNA testing that includes STR markers and matching between men.

Men who order these tests will be compared for matching on either 37, 111 or 700 STR markers in addition to SNP markers used for haplogroup identification and assignment.

Fathers will certainly match their sons, and paternal line brothers will match each other, but they will also match people more distantly related.

However, if two men are NOT either full or half siblings on the paternal side, they won’t match at 111 markers.

If two men DON’T match, especially at high marker levels, they likely aren’t siblings. The word “likely” is in there because, very occasionally, a large deletion occurs that prevents STR matching, especially at lower levels.

Additionally, men who take the 37 or 111 marker test also receive an estimated haplogroup at a high level for free, without any additional testing.

However, if men take the Big Y-700 test, they not only will (or won’t) match on up to 700 STR markers, they will also receive a VERY refined haplogroup via SNP marker testing that is often even more sensitive in terms of matching than STR markers. Between these two types of markers, Y DNA testing can place men very granularly in relation to other men.

Men can match in two ways on Y DNA, and the results are very enlightening.

If two men match on BOTH their most refined haplogroup (Big Y test) AND STR markers, they could certainly be siblings or father/son. They could also be related on the same line for another reason, such as known or unknown cousins or closer relationships like uncle/nephew. Of course, Y DNA, in addition to autosomal matching, is a powerful combination.

Conversely, if two men don’t have a similar or close haplogroup, they are not a father and son or paternal line siblings.

FamilyTreeDNA offers both inexpensive entry-level testing (37 and 111 markers) and highly refined advanced testing of most of the Y chromosome (Big Y-700), so haplogroup assignments can vary widely based on the test you take. This makes haplogroup matching and interpretation a bit more complex.

For example, haplogroups R-M269 and I-BY14000 are not related in thousands of years. One is haplogroup R, and one is haplogroup I – completely different branches of the Y DNA tree. These two men won’t match on STR markers or their haplogroup.

However, because FamilyTreeDNA provides over 50,000 different haplogroups, or tree branches, for Big Y testers, and they provide VERY granular matching, two father/son or sibling males who have BOTH tested at the Big Y-700 level will have either the exact same haplogroup, or at most, one branch difference on the tree if a mutation occurred between father and son.

If both men have NOT tested at the Big Y-700 level, their haplogroups will be on the same branch. For example, a man who has only taken a 37/111 marker STR test may be estimated at R-M269, which is certainly accurate as far as it goes.

His sibling who has taken a Big Y test will be many branches further downstream on the tree – but on the same large haplogroup R-M269 branch. It’s essential to pay attention to which tests a Y DNA match has taken when analyzing the match.

The beauty of the two kinds of tests is that even if one haplogroup is very general due to no Big Y test, their STR markers should still match. It’s just that sometimes this means that one hand is tied behind your back.

Y DNA matching alone can eliminate the possibility of a direct paternal line connection, but it cannot prove siblingship or paternity alone – not without additional information.

The Advanced Matching tool will provide a list of matches in all categories selected – in this case, both the 111 markers and the Family Finder test. You can see that one of these men is the father of the tester, and one is the full sibling.

You can view haplogroup assignments on the public Y DNA tree, here. I wrote about using the public tree, here.

In addition, recently, FamilyTreeDNA launched the new Y DNA Discover tool, which explains more about haplogroups, including their ages and other fun facts like migration paths along with notable and ancient connections. I wrote about using the Discover tool, here.

Y DNA at 23andMe

Testers receive a base haplogroup with their autosomal test. 23andMe tests a limited number of Y DNA SNP locations, but they don’t test many, and they don’t test STR markers, so there is no Y DNA matching and no refined haplogroups.

You can view the haplogroups of your matches. If your male sibling match does NOT share the same haplogroup, the two men are not paternal line siblings. If two men DO share the same haplogroup, they MIGHT be paternal siblings. They also might not.

Again, autosomal close matching plus haplogroup comparisons include or exclude paternal side siblings for males.

Paternal side siblings at 23andMe share the same haplogroup, but so do many other people. These two men could be siblings. The haplogroups don’t exclude that possibility. If the haplogroups were different, that would exclude being either full or paternal half-siblings.

Men can also compare their mitochondrial DNA to eliminate a maternal relationship.

These men are not full siblings or maternal half-siblings. We know, unquestionably, because their mitochondrial haplogroups don’t match.

23andMe also constructs a genetic tree, but often struggles with close relative placement, especially when half-relationships are involved. I do not recommend relying on the genetic tree in this circumstance.

Mitochondrial DNA

Mitochondrial DNA is passed from mothers to all of their children, but only females pass it on. If two people, males or females, don’t match on their mitochondrial DNA test, with a couple of possible exceptions, they are NOT full siblings, and they are NOT maternal half-siblings.

Mitochondrial DNA at 23andMe

23andMe provides limited, base mitochondrial haplogroups, but no matching. If two people don’t have the same haplogroup at 23andMe, they aren’t full or maternal siblings, as illustrated above.

Mitochondrial DNA at FamilyTreeDNA

FamilyTreeDNA provides both mitochondrial matching AND a much more refined haplogroup. The full sequence test (mtFull), the only version sold today, is essential for reliable comparisons.

Full siblings or maternal half-siblings will always share the same haplogroup, regardless of their sex.

Generally, a full sibling or maternal half-sibling match will match exactly at the full mitochondrial sequence (FMS) level with a genetic distance of zero, meaning fully matching and no mismatching mutations.

There are rare instances where maternal siblings or even mothers and children do not match exactly, meaning they have a genetic distance of greater than 0, because of a mutation called a heteroplasmy.

I wrote about heteroplasmies, here.

Like Y DNA, mitochondrial DNA cannot identify a sibling or parental relationship without additional evidence, but it can exclude one, and it can also provide much-needed evidence in conjunction with autosomal matching. The great news is that unlike Y DNA, everyone has mitochondrial DNA and it comes directly from their mother.

Once again, FamilyTreeDNA’s Advanced Matching tool provides a list of people who match you on both your mitochondrial DNA test and the Family Finder autosomal test, including transfers/uploads, and provides a relationship.

You can see that our tester matches both a full sibling and their mother. Of course, a parent/child match could mean that our tester is a female and one of her children, of either sex, has tested.

Below is an example of a parent-child match that has experienced a heteroplasmy.

Based on the comparison of both the mitochondrial DNA test, plus the autosomal Family Finder test, you can verify that this is a close family relationship.

You can also eliminate potential relationships based on the mitochondrial DNA inheritance path. The mitochondrial DNA of full siblings and maternal half-siblings will always match at the full sequence and haplogroup level, and paternal half-siblings will never match. If paternal half-siblings do match, it’s happenstance or because of a different reason.

Sibling Summary and Checklist

I’ve created a quick reference checklist for you to use when attempting to determine whether or not a match is a sibling, and, if so, whether they are half or full siblings. Of course, these tools are in addition to the DNAPainter Shared cM Tool and GEDmatch’s Relationship Predictor Calculator.

FamilyTreeDNA Ancestry 23andMe MyHeritage GEDmatch
Matching Yes Yes Yes Yes Yes
Shared Matches Yes – In Common With Yes – Shared Matches Yes – Relatives in Common Yes – Review DNA Match Yes – People who match both or 1 of 2 kits
Relationship Between Shared Matches No No No Yes, under shared match No
Matches Match Each Other* Yes, Matrix No Yes, under “View DNA details,” then, “compare with more relatives” Partly, through triangulation Yes, can match any kits
Full Siblings Yes Sibling, implies full Yes Brother, Sister, means full No
Half Siblings Sibling, Uncle/Aunt-Niece/Nephew, Grandparent-Grandchild Close Family – 1C Yes Half sibling, aunt/uncle-niece-nephew No
Fully Identical Regions (FIR) No No Yes No Yes
Half Identical Regions (HIR) No No Yes No Yes
X matching Yes No Yes No Yes
Unusual Reporting or Anomalies No No, Timber is not used on close relationships X match added into total, FIR added twice No Matching amount can vary from vendors
Y DNA Yes, STRs, refined haplogroups, matching No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Mitochondrial DNA Yes, full sequence, matching, refined haplogroup No High-level haplogroup only, no matching No No, only if tester enters haplogroup manually
Combined Tools (Autosomal, X, Y, mtDNA) Yes No No No No

*Autoclusters through Genetic Affairs show cluster relationships of matches to the tester and to each other, but not all matches are included, including close matches. While this is a great tool, it’s not relevant for determining close and sibling relationships. See the article, AutoClustering by Genetic Affairs, here.

Additional Resources

Some of you may be wondering how endogamy affects sibling numbers.

Endogamy makes almost everything a little more complex. I wrote about endogamy and various ways to determine if you have an endogamous heritage, here.

Please note that half-siblings with high cM matches also fall into the range of full siblings (1613-3488), with or without endogamy. This may be, but is not always, especially pronounced in endogamous groups.

As another resource, I wrote an earlier article, Full or Half Siblings, here, that includes some different examples.

Strategy

You have a lot of quills in your quiver now, and I wish you the best if you’re trying to unravel a siblingship mystery.

You may not know who your biological family is, or maybe your sibling doesn’t know who their family is, but perhaps your close relatives know who their family is and can help. Remember, the situation that has revealed itself may be a shock to everyone involved.

Above all, be kind and take things slow. If your unexpected sibling match becomes frightened or overwhelmed, they may simply check out and either delete their DNA results altogether or block you. They may have that reaction before you have a chance to do anything.

Because of that possibility, I recommend performing your analysis quickly, along with taking relevant screenshots before reaching out so you will at least have that much information to work with, just in case things go belly up.

When you’re ready to make contact, I suggest beginning by sending a friendly, short, message saying that you’ve noticed that you have a close match (don’t say sibling) and asking what they know about their family genealogy – maybe ask who their grandparents are or if they have family living in the area where you live. I recommend including a little bit of information about yourself, such as where you were born and are from.

I also refrain from using the word adoption (or similar) in the beginning or giving too much detailed information, because it sometimes frightens people, especially if they know or discover that there’s a painful or embarrassing family situation.

And, please, never, ever assume the worst of anyone or their motives. They may be sitting at their keyboard with the same shocked look on their face as you – especially if they have, or had, no idea. They may need space and time to reach a place of acceptance. There’s just nothing more emotionally boat-capsizing in your life than discovering intimate and personal details about your parents, one or both, especially if that discovery is disappointing and image-altering.

Or, conversely, your sibling may have been hoping and waiting just for you!

Take a deep breath and let me know how it goes!

Please feel free to share this article with anyone who could benefit.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research