Concepts: Chromosome Browser – What Is It, How Do I Use It, and Why Do I Care?

The goal of genetic genealogy is to utilize DNA matches to verify known ancestors and identify unknown ancestors.

A chromosome browser is a tool that allows testers to visualize and compare their DNA on each chromosome with that of their genetic matches. How to utilize and interpret that information becomes a little more tricky.

I’ve had requests for one article with all the information in one place about chromosome browsers:

  • What they are
  • How and when to use them
  • Why you’d want to

I’ve included a feature comparison chart and educational resource list at the end.

I would suggest just reading through this article the first time, then following along with your own DNA results after you understand the basic landscape. Using your own results is the best way to learn anything.

What Does a Chromosome Browser Look Like?

Here’s an example of a match to my DNA at FamilyTreeDNA viewed on their chromosome browser.

browser example.png

On my first 16 chromosomes, shown above, my 1C1R (first cousin once removed,) Cheryl, matches me where the chromosomes are painted blue. My chromosome is represented by the grey background, and her matching portion by the blue overlay.

Cheryl matches me on some portion of all chromosomes except 2, 6, and 13, where we don’t match at all.

You can select any one person, like Cheryl, from your match list to view on a chromosome browser to see where they match you on your chromosomes, or you can choose multiple matches, as shown below.

browser multiple example.png

I selected my 7 closest matches that are not my immediate family, meaning not my parents or children. I’m the background grey chromosome, and each person’s match is painted on top of “my chromosome” in the location where they match me. You see 7 images of my grey chromosome 1, for example, because each of the 7 people being compared to me are shown stacked below one another.

Everyplace that Cheryl matches me is shown on the top image of each chromosome, and our matching segment is shown in blue. The same for the second red copy of the chromosome, representing Don’s match to me. Each person I’ve selected to match against is shown by their own respective color.

You’ll note that in some cases, two people match me in the same location. Those are the essential hints we are looking for. We’ll be discussing how to unravel, interpret, and use matches in the rest of this article.

browser MyHeritage example.png

The chromosome browser at MyHeritage looks quite similar. However, I have a different “top 7” matches because each vendor has people who test on their platform who don’t test or transfer elsewhere.

Each vendor that supports chromosome browsers (FamilyTreeDNA, MyHeritage, 23andMe, and GedMatch) provides their own implementation, of course, but the fundamentals of chromosome browsers, how they work and what they are telling us is universal.

Why Do I Need a Chromosome Browser?

“But,” you might say, “I don’t need to compare my DNA with my matches because the vendors already tell me that I match someone, which confirms that we are related and share a common ancestor.”

Well, not exactly. It’s not quite that straightforward.

Let’s take a look at:

  • How and why people match
  • What matches do and don’t tell you
  • Both with and without a chromosome browser

In part, whether you utilize a chromosome browser or not depends on which of the following you seek:

  • A broad-brush general answer; yes or no, I match someone, but either I don’t know how are related, or have to assume why. There’s that assume word again.
  • To actually confirm and prove your ancestry, getting every ounce of value out of your DNA test.

Not everyone’s goals are the same. Fortunately, we have an entire toolbox with a wide range of tools. Different tools are better suited for different tasks.

People seeking unknown parents should read the article, Identifying Unknown Parents and Individuals Using DNA Matching because the methodology for identifying unknown parents is somewhat different than working with genealogy. This article focuses on genealogy, although the foundation genetic principles are the same.

If you’re just opening your DNA results for the first time, the article, First Steps When Your DNA Results are Ready – Sticking Your Toe in the Genealogy Water would be a great place to start.

Before we discuss chromosome browsers further, we need to talk about DNA inheritance.

Your Parents

Every person has 2 copies of each of their 22 chromosomes – one copy contributed by their mother and one copy contributed by their father. A child receives exactly half of the autosomal DNA of each parent. The DNA of each parent combines somewhat randomly so that you receive one chromosome’s worth of DNA from each of your parents, which is half of each parent’s total.

On each chromosome, you receive some portion of the DNA that each parent received from their ancestors, but not exactly half of the DNA from each individual ancestor. In other words, it’s not sliced precisely in half, but served up in chunks called segments.

Sometimes you receive an entire segment of an ancestor’s DNA, sometimes none, and sometimes a portion that isn’t equal to half of your parent’s segment.

browser inheritance.png

This means that you don’t receive exactly half of the DNA of each of your grandparents, which would be 25% each. You might receive more like 22% from one maternal grandparent and 28% from the other maternal grandparent for a total of 50% of the DNA you inherit from your parents. The other 50% of your DNA comes from the other parent, of course. I wrote about that here.

There’s one tiny confounding detail. The DNA of your Mom and Dad is scrambled in you, meaning that the lab can’t discern scientifically which side is which and can’t tell which pieces of DNA came from Mom and which from Dad. Think of a genetic blender.

Our job, using genetic genealogy, is to figure out which side of our family people who match us descend from – which leads us to our common ancestor(s).

Parallel Roads

For the purposes of this discussion, you’ll need to understand that the two copies you receive of each chromosome, one from each parent, have the exact same “addresses.” Think of these as parallel streets or roads with identical addresses on each road.

browser street.png

In the example above, you can see Dad’s blue chromosome and Mom’s red chromosome as compared to me. Of course, children and parents match on the full length of each chromosome.

I’ve divided this chromosome into 6 blocks, for purposes of illustration, plus the centromere where we generally find no addresses used for genetic genealogy.

In the 500 block, we see that the address of 510 Main (red bar) could occur on either Dad’s chromosome, or Mom’s. With only an address and nothing more, you have no way to know whether your match with someone at 510 Main is on Mom’s or Dad’s side, because both streets have exactly the same addresses.

Therefore, if two people match you, at the same address on that chromosome, like 510 Main Street, they could be:

  • Both maternal matches, meaning both descended from your mother’s ancestors, and those two people will also match each other
  • Both paternal matches, meaning both descended from your father’s ancestors, and those two people will also match each other
  • One maternal and one paternal match, and those two people will not match each other

Well then, how do we know which side of the family a match descends from, and how do we know if we share a common ancestor?

Good question!

Identical by Descent

If you and another person match on a reasonably sized DNA segment, generally about 7 cM or above, your match is probably “identical by descent,” meaning not “identical by chance.” In this case, then yes, a match does confirm that you share a common ancestor.

Identical by descent (IBD) means you inherited the piece of DNA from a common ancestor, inherited through the relevant parent.

Identical by chance (IBC) means that your mom’s and dad’s DNA just happens to have been inherited by you randomly in a way that creates a sequence of DNA that matches that other person. I wrote about both IBD and IBC here.

MMB stats by cM 2

This chart, courtesy of statistician Philip Gammon, from the article Introducing the Match-Maker-Breaker Tool for Parental Phasing shows the percentage of time we expect matches of specific segment sizes to be valid, or identical by descent.

Identical by Chance

How does this work?

How is a match NOT identical by descent, meaning that it is identical by chance and therefore not a “real” or valid match, a situation also known as a false positive?

browser inheritance grid.png

The answer involves how DNA is inherited.

You receive a chromosome with a piece of DNA at every address from both parents. Of course, this means you have two pieces of DNA at each address. Therefore people will match you on either piece of DNA. People from your Dad’s side will match you on the pieces you inherited from him, and people from your Mom’s side will match you on the pieces you inherited from her.

However, both of those matches have the same address on their parallel streets as shown in the illustration, above. Your matches from your mom’s side will have all As, and those from your dad’s side will have all Ts.

The problem is that you have no way to know which pieces you inherited from Mom and from Dad – at least not without additional information.

You can see that for 10 contiguous locations (addresses), which create an example “segment” of your DNA, you inherited all As from your Mom and all Ts from your Dad. In order to match you, someone would either need to have an A or a T in one of their two inherited locations, because you have an A and a T, both. If the other person has a C or a G, there’s no match.

Your match inherited a specific sequence from their mother and father, just like you did. As you can see, even though they do match you because they have either an A or a T in all 10 locations – the As and Ts did not all descend from either their mother or father. Their random inheritance of Ts and As just happens to match you.

If your match’s parents have tested, you won’t match either of their parents nor will they match either of your parents, which tells you immediately that this match is by chance (IBC) and not by descent (IBD), meaning this segment did not come from a common ancestor. It’s identical by chance and, therefore, a false positive.

If We Match Someone Else In Common, Doesn’t That Prove Identical by Descent?

Nope, but I sure wish it did!

The vendors show you who else you and your match both match in common, which provides a SUGGESTION as to your common ancestor – assuming you know which common ancestor any of these people share with you.

browser icw.png

However, shared matches are absolutely NOT a guarantee that you, your match, and your common matches all share the same ancestor, unless you’re close family. Your shared match could match you or your match through different ancestors – or could be identical by chance.

How can we be more confident of what matching is actually telling us?

How can we sort this out?

Uncertainties and Remedies

Here’s are 9 things you DON’T know, based on matching alone, along with tips and techniques to learn more.

  1. If your match to Person A is below about 20cM, you’ll need to verify that it’s a legitimate IBD match (not IBC). You can achieve this by determining if Person A also matches one of your parents and if you match one of Person A’s parents, if parents have tested.

Not enough parents have tested? An alternative method is by determining if you and Person A both match known descendants of the candidate ancestors ON THE SAME SEGMENT. This is where the chromosome browser enters the picture.

In other words, at least three people who are confirmed to descend from your presumptive common ancestor, preferably through at least two different children, must match on a significant portion of the same segment.

Why is that? Because every segment has its own unique genealogical history. Each segment can and often does lead to different ancestors as you move further back in time.

In this example, I’m viewing Buster, David, and E., three cousins descended from the same ancestral couple, compared to me on my chromosome browser. I’m the background grey, and they show in color. You can see that all three of them match me on at least some significant portion of the same segment of chromosome 15.

browser 3 cousins.png

If those people also match each other, that’s called triangulation. Triangulation confirms descent from a common ancestral source.

In this case, I already know that these people are related on my paternal side. The fact that they all match my father’s DNA and are therefore all automatically assigned to my paternal matching tab at Family Tree DNA confirms my paper-trail genealogy.

I wrote detailed steps for triangulation at Family Tree DNA, here. In a nutshell, matching on the same segment to people who are bucketed to the same parent is an automated method of triangulation.

Of course, not everyone has the luxury of having their parents tested, so testing other family members, finding common segments, and assigning people to their proper location in your tree facilitates confirmation of your genealogy (and automating triangulation.)

The ONLY way you can determine if people match you on the same segment, and match each other, is having segment information available to you and utilizing a chromosome browser.

browser MyHeritage triangulation.png

In the example above, the MyHeritage triangulation tool brackets matches that match you (the background grey) and who are all triangulated, meaning they all also match each other. In this case, the portion where all three people match me AND each other is bracketed. I wrote about triangulation at MyHeritage here.

  1. If you match several people who descend from the same ancestor, John Doe, for example, on paper, you CANNOT presume that your match to all of those people is due to a segment of DNA descended from John Doe or his wife. You may not match any of those people BECAUSE OF or through segments inherited from John Doe or his wife. You need segment information and a chromosome browser to view the location of those matches.

Assuming these are legitimate IBD matches, you may share another common line, known or unknown, with some or all of those matches.

It’s easy to assume that because you match and share matches in common with other people who believe they are descended from that same ancestor:

  • That you’re all matching because of that ancestor.
  • Even on the same segments.

Neither of those presumptions can be made without additional information.

Trust me, you’ll get yourself in a heap o’ trouble if you assume. Been there, done that. T-shirt was ugly.

Let’s look at how this works.

browser venn.png

Here’s a Venn diagram showing me, in the middle, surrounded by three of my matches:

  • Match 1 – Periwinkle, descends from Lazarus Estes and Elizabeth Vannoy
  • Match 2 – Teal, descends from Joseph Bolton and Margaret Claxton
  • Match 3 – Mustard, descends from John Y. Estes and Rutha Dodson

Utilizing a chromosome browser, autocluster software, and other tools, we can determine if those matches also match each other on a common segment, which means they triangulate and confirm common ancestral descent.

Of course, those people could match each other due to a different ancestor, not necessarily the one I share with them nor the ancestors I think we match through.

If they/we do all match because they descend from a common ancestor, they can still match each other on different segments that don’t match me.

I’m in the center. All three people match me, and they also match each other, shown in the overlap intersections.

Note that the intersection between the periwinkle (Match 1) and teal (Match 2) people, who match each other, is due to the wives of the children of two of my ancestors. In other words, their match to each other has absolutely nothing to do with their match to me. This was an “aha’ moment for me when I first realized this was a possibility and happens far more than I ever suspected.

The intersection of the periwinkle (Match 1) and mustard (Match 3) matches is due to the Dodson line, but on a different segment than they both share with me. If they had matched each other and me on the same segment, we would be all triangulated, but we aren’t.

The source of the teal (Match 2) to mustard (Match 3) is unknown, but then again, Match 3’s tree is relatively incomplete.

Let’s take a look at autocluster software which assists greatly with automating the process of determining who matches each other, in addition to who matches you.

  1. Clustering technology, meaning the Leeds method as automated by Genetic Affairs and DNAGedcom help, but don’t, by themselves, resolve the quandary of HOW people match you and each other.

People in a colored cluster all match you and each other – but not necessarily on the same segment, AND, they can match each other because they are related through different ancestors not related to your ancestor. The benefit of autocluster software is that this process is automated. However, not all of your matches will qualify to be placed in clusters.

browser autocluster.png

My mustard cluster above includes the three people shown in the chromosome browser examples – and 12 more matches that can be now be researched because we know that they are all part of a group of people who all match me, and several of whom match each other too.

My matches may not match each other for a variety of reasons, including:

  • They are too far removed in time/generations and didn’t inherit any common ancestral DNA.
  • This cluster is comprised of some people matching me on different (perhaps intermarried) lines.
  • Some may be IBC matches.

Darker grey boxes indicate that those people should be in both clusters, meaning the red and mustard clusters, because they match people in two clusters. That’s another hint. Because of the grid nature of clusters, one person cannot be associated with more than 2 clusters, maximum. Therefore, people like first cousins who are closely related to the tester and could potentially be in many clusters are not as useful in clusters as they are when utilizing other tools.

  1. Clusters and chromosome browsers are much less complex than pedigree charts, especially when dealing with many people. I charted out the relationships of the three example matches from the Venn diagram. You can see that this gets messy quickly, and it’s much more challenging to visualize and understand than either the chromosome browser or autoclusters.

Having said that, the ultimate GOAL is to identify how each person is related to you and place them in their proper place in your tree. This, cumulatively with your matches, is what identifies and confirms ancestors – the overarching purpose of genealogy and genetic genealogy.

Let’s take a look at this particular colorized pedigree chart.

Browser pedigree.png

click to enlarge

The pedigree chart above shows the genetic relationship between me and the three matches shown in the Venn diagram.

Four descendants of 2 ancestral couples are shown, above; Joseph Bolton and Margaret Claxton, and John Y. Estes and Rutha Dodson. DNA tells me that all 3 people match me and also match each other.

The color of the square (above) is the color of DNA that represents the DNA segment that I received and match with these particular testers. This chart is NOT illustrating how much DNA is passed in each generation – we already know that every child inherits half of the DNA of each parent. This chart shows match/inheritance coloring for ONE MATCHING SEGMENT with each match, ONLY.

Let’s look at Joseph Bolton (blue) and Margaret Claxton (pink). I descend through their daughter, Ollie Bolton, who married William George Estes, my grandfather. The DNA segment that I share with blue Match 2 (bottom left) is a segment that I inherited from Joseph Bolton (blue). I also carry inherited DNA from Margaret Claxton too, but that’s not the segment that I share with Match 2, which is why the path from Joseph Bolton to me, in this case, is blue – and why Match 2 is blue. (Just so you are aware, I know this segment descends from Joseph Bolton, because I also match descendants of Joseph’s father on this segment – but that generation/mtach is not shown on this pedigree chart.)

If I were comparing to someone else who I match through Margaret Claxton, I would color the DNA from Margaret Claxton to me pink in that illustration. You don’t have to DO this with your pedigree chart, so don’t worry. I created this example to help you understand.

The colored dots shown on the squares indicate that various ancestors and living people do indeed carry DNA from specific ancestors, even though that’s not the segment that matches a particular person. In other words, the daughter, Ollie, of Joseph Bolton and Margaret Claxton carries 50% pink DNA, represented by the pink dot on blue Ollie Bolton, married to purple William George Estes.

Ollie Bolton and William George Estes had my father, who I’ve shown as half purple (Estes) and half blue (Bolton) because I share Bolton DNA with Match 2, and Estes DNA with Match 1. Obviously, everyone receives half of each parent’s DNA, but in this case, I’m showing the path DNA descended for a specific segment shared with a particular match.

I’ve represented myself with the 5 colors of DNA that I carry from these particular ancestors shown on the pedigree chart. I assuredly will match other people with DNA that we’ve both inherited from these ancestors. I may match these same matches shown with DNA that we both inherited from other ancestors – for example, I might match Match 2 on a different segment that we both inherited from Margaret Claxton. Match 2 is my second cousin, so it’s quite likely that we do indeed share multiple segments of DNA.

Looking at Match 3, who knows very little about their genealogy, I can tell, based on other matches, that we share Dodson DNA inherited through Rutha Dodson.

I need to check every person in my cluster, and that I share DNA with on these same segment addresses to see if they match on my paternal side and if they match each other.

  1. At Family Tree DNA, I will be able to garner more information about whether or not my matches match each other by using the Matrix tool as well as by utilizing Phased Family Matching.

At Family Tree DNA, I determined that these people all match in common with me and Match 1 by using the “In Common With” tool. You can read more about how to use “In Common With” matching, here.

browser paternal.png

Family Matching phases the matches, assigning or bucketed them maternally or paternally (blue and red icons above), indicating, when possible, if these matches occur on the same side of your family. I wrote about the concept of phasing, here, and Phased Family Matching here and here.

Please note that there is no longer a limit on how distantly related a match can be in order to be utilized in Phased Family Matching, so long as it’s over the phase-matching threshold and connected correctly in your tree.

browser family tree dna link tree.png

Bottom line, if you can figure out how you’re related to someone, just add them into your tree by creating a profile card and link their DNA match to them by simply dragging and dropping, as illustrated above.

Linking your matches allows Family Matching to maternally or paternally assign other matches that match both you and your tree-linked matches.

If your matches match you on the same segment on the same parental side, that’s segment triangulation, assuming the matches are IBD. Phased Family Matching does this automatically for you, where possible, based on who you have linked in your tree.

For matches that aren’t automatically bucketed, there’s another tool, the Matrix.

browser matrix.png

In situations where your matches aren’t “bucketed” either maternally or paternally, the Matrix tool allows you to select matches to determine whether your matches also match each other. It’s another way of clustering where you can select specific people to compare. Note that because they also match each other (blue square) does NOT mean it’s on the same segment(s) where they match you. Remember our Venn diagram.

browser matrix grid.png

  1. Just because you and your matches all match each other doesn’t mean that they are matching each other because of the same ancestor. In other words, your matches may match each other due to another or unknown ancestor. In our pedigree example, you can see that the three matches match each other in various ways.
browser pedigree match.png

click to enlarge

  • Match 1 and Match 2 match each other because they are related through the green Jones family, who is not related to me.
  • Match 2 and Match 3 don’t know why they match. They both match me, but not on the same segment they share with each other.
  • Match 1 and Match 3 match through the mustard Dodson line, but not on the same segment that matches me. If we all did match on the same segment, we would be triangulated, but we wouldn’t know why Match 3 was in this triangulation group.
  1. Looking at a downloaded segment file of your matches, available at all testing vendors who support segment information and a chromosome browser, you can’t determine without additional information whether your matches also match each other.

browser chr 15.png

Here’s a group of people, above, that we’ve been working with on chromosome 15.

My entire match-list shows many more matches on that segment of chromosome 15. Below are just a few.

browser chr 15 all

Looking at seven of these people in the chromosome browser, we can see visually that they all overlap on part of a segment on chromosome 15. It’s a lot easier to see the amount of overlap using a browser as opposed to the list. But you can only view 7 at a time in the browser, so the combination of both tools is quite useful. The downloaded spreadsheet shows you who to select to view for any particular segment.

browser chr 15 compare.png

The critical thing to remember is that some matches will be from tyour mother’s side and some from your father’s side.

Without additional information and advanced tools, there’s no way to tell the difference – unless they are bucketed using Phased Family Matching at Family Tree DNA or bracketed with a triangulation bracket at MyHeritage.

At MyHeritage, this assumes you know the shared ancestor of at least one person in the triangulation group which effectively assigns the match to the maternal or paternal side.

Looking at known relatives on either side, and seeing who they also match, is how to determine whether these people match paternally or maternally. In this example below, the blue people are bucketed paternally through Phased Family Matching, the pink maternally, and the white rows aren’t bucketed and therefore require additional evaluation.

browser chr 15 maternal paternal.png

Additional research shows that Jonathan is a maternal match, but Robert and Adam are identical by chance because they don’t match either of my parents on this segment. They might be valid matches on other segments, but not this one.

browser chr 15 compare maternal paternal.png

  1. Utilizing relatives who have tested is a huge benefit, and why we suggest that everyone test their closest upstream relatives (meaning not children or grandchildren.) Testing all siblings is recommended if both parents aren’t available to test, because every child received different parts of their parents’ DNA, so they will match different relatives.

After deleting segments under 7 cM, I combine the segment match download files of multiple family members (who agree to allow me to aggregate their matches into one file for analysis) so that I can create a master match file for a particular family group. Sorting by match name, I can identify people that several of my cousins’ match.

browser 4 groups.png

This example is from a spreadsheet where I’ve combined the results of about 10 collaborating cousins to determine if we can break through a collective brick wall. Sorted by match name, this table shows the first 4 common matches that appear on multiple cousin’s match lists. Remember that how these people match may have nothing to do with our brick wall – or it might.

Note that while the 4 matches, AB, AG, ag, and A. Wayne, appear in different cousins’ match lists, only one shares a common segment of DNA: AB triangulates with Buster and Iona. This is precisely WHY you need segment information, and a chromosome browser, to visualize these matches, and to confirm that they do share a common DNA segment descended from a specific ancestor.

These same people will probably appear in autocluster groups together as well. It’s worth noting, as illustrated in the download example, that it’s much more typical for “in common with” matches to match on different segments than on the same segment. 

  1. Keep in mind that you will match both your mother and father on every single chromosome for the entire length of each chromosome.

browser parent matching.png

Here’s my kit matching with my father, in blue, and mother, in red on chromosomes 1 and 2.

Given that I match both of my parents on the full chromosome, inheriting one copy of my chromosome from each parent, it’s impossible to tell by adding any person at random to the chromosome browser whether they match me maternally or paternally. Furthermore, many people aren’t fortunate enough to have parents available for testing.

To overcome that obstacle, you can compare to known or close relatives. In fact, your close relatives are genetic genealogy gold and serve as your match anchor. A match that matches you and your close relatives can be assigned either maternally or paternally. I wrote about that here.

browser parent plus buster.png

You can see that my cousin Buster matches me on chromosome 15, as do both of my parents, of course. At this point, I can’t tell from this information alone whether Buster matches on my mother’s or father’s side.

I can tell you that indeed, Buster does match my father on this same segment, but what if I don’t have the benefit of my father’s DNA test?

Genealogy tells me that Buster matches me on my paternal side, through Lazarus Estes and Elizabeth Vannoy. Given that Buster is a relatively close family member, I already know how Buster and I are related and that our DNA matches. That knowledge will help me identify and place other relatives in my tree who match us both on the same segment of DNA.

To trigger Phased Family Matching, I placed Buster in the proper place in my tree at Family Tree DNA and linked his DNA. His Y DNA also matches the Estes males, so no adoptions or misattributed parental events have occurred in the direct Estes patrilineal line.

browser family tree dna tree.png

I can confirm this relationship by checking to see if Buster matches known relatives on my father’s side of the family, including my father using the “in common with” tool.

Buster matches my father as well as several other known family members on that side of the family on the same segments of DNA.

browser paternal bucket.png

Note that I have a total of 397 matches in common with Buster, 140 of which have been paternally bucketed, 4 of which are both (my children and grandchildren), and 7 of which are maternal.

Those maternal matches represent an issue. It’s possible that those people are either identical by chance or that we share both a maternal and paternal ancestor. All 7 are relatively low matches, with longest blocks from 9 to 14 cM.

Clearly, with a total of 397 shared matches with Buster, not everyone that I match in common with Buster is assigned to a bucket. In fact, 246 are not. I will need to take a look at this group of people and evaluate them individually, their genealogy, clusters, the matrix, and through the chromosome browser to confirm individual matching segments.

There is no single perfect tool.

Every Segment Tells a Unique History

I need to check each of the 14 segments that I match with Buster because each segment has its own inheritance path and may well track back to different ancestors.

browser buster segments.png

It’s also possible that we have unknown common ancestors due to either adoptions, NPEs, or incorrect genealogy, not in the direct Estes patrilineal line, but someplace in our trees.

browser buster paint.png

The best way to investigate the history and genesis of each segment is by painting matching segments at DNAPainter. My matching segments with Buster are shown painted at DNAPainter, above. I wrote about DNAPainter, here.

browser overlap.png

By expanding each segment to show overlapping segments with other matches that I’ve painted and viewing who we match, we can visually see which ancestors that segment descends from and through.

browser dnapainter walk back.png

These roughly 30 individuals all descend from either Lazarus Estes and Elizabeth Vannoy (grey), Elizabeth’s parents (dark blue), or her grandparents (burgundy) on chromosome 15.

As more people match me (and Buster) on this segment, on my father’s side, perhaps we’ll push this segment back further in time to more distant ancestors. Eventually, we may well be able to break through our end-of-line brick wall using these same segments by looking for common upstream ancestors in our matches’ trees.

Arsenal of Tools

This combined arsenal of tools is incredibly exciting, but they all depend on having segment information available and understanding how to use and interpret segment and chromosome browser match information.

One of mine and Buster’s common segments tracks back to end-of-line James Moore, born about 1720, probably in Virginia, and another to Charles Hickerson born about 1724. It’s rewarding and exciting to be able to confirm these DNA segments to specific ancestors. These discoveries may lead to breaking through those brick walls eventually as more people match who share common ancestors with each other that aren’t in my tree.

This is exactly why we need and utilize segment information in a chromosome browser.

We can infer common ancestors from matches, but we can’t confirm segment descent without specific segment information and a chromosome browser. The best we can do, otherwise, is to presume that a preponderance of evidence and numerous matches equates to confirmation. True or not, we can’t push further back in time without knowing who else matches us on those same segments, and the identity of their common ancestors.

The more evidence we can amass for each ancestor and ancestral couple, the better, including:

  • Matches
  • Shared “In Common With” Matches, available at all vendors.
  • Phased Family Matching at Family Tree DNA assigns matches to maternal or paternal sides based on shared, linked DNA from known relatives.
  • The Matrix, a Family Tree DNA tool to determine if matches also match each other. Tester can select who to compare.
  • ThruLines from Ancestry is based on a DNA match and shared ancestors in trees, but no specific segment information or chromosome browser. I wrote about ThruLines here and here.
  • Theories of Family Relativity, aka TOFR, at MyHeritage, based on shared DNA matches, shared ancestors in trees and trees constructed between matches from various genealogical records and sources. MyHeritage includes a chromosome browser and triangulation tool. I wrote about TOFR here and here.
  • Triangulation available through Phased Family Matching at Family Tree DNA and the integrated triangulation tool at MyHeritage. Triangulation between only 3 people at a time is available at 23andMe, although 23andMe does not support trees. See triangulation article links in the Resource Articles section below.
  • AutoClusters at MyHeritage (cluster functionality included), at Genetic Affairs (autoclusters plus tree reconstruction) and at DNAGedcom (including triangulation).
  • Genealogical information. Please upload your trees to every vendor site.
  • Y DNA and mitochondrial DNA confirmation, when available, through Family Tree DNA. I wrote about the 4 Kinds of DNA for Genetic Genealogy, here and the importance of Y DNA confirmation here, and how not having that information can trip you up.
  • Compiled segment information at DNAPainter allows you to combine segment information from various vendors, paint your maternal and paternal chromosomes, and visually walk segments back in time. Article with DNAPainter instructions is found here.

Autosomal Tool Summary Table

In order to help you determine which tool you need to use, and when, I’ve compiled a summary table of the types of tools and when they are most advantageous. Of course, you’ll need to read and understand about each tool in the sections above. This table serves as a reminder checklist to be sure you’ve actually utilized each relevant tool where and how it’s appropriate.

Family Tree DNA MyHeritage Ancestry 23andMe GedMatch
DNA Matches Yes Yes Yes Yes, but only highest 2000 minus whoever does not opt -in Yes, limited matches for free, more with subscription (Tier 1)
Download DNA Segment Match Spreadsheet Yes Yes No, must use DNAGedcom for any download, and no chromosome segment information Yes Tier 1 required, can only download 1000 through visualization options
Segment Spreadsheet Benefits View all matches and sort by segment, target all people who match on specific segments for chromosome browser View all matches and sort by segment, target all people who match on specific segments for chromosome browser No segment information but matches might transfer elsewhere where segment information is available View up to 2000 matches if matches have opted in. If you have initiated contact with a match, they will not drop off match list. Can download highest 1000 matches, target people who match on specific segments
Spreadsheet Challenges Includes small segments, I delete less than 7cM segments before using No X chromosome included No spreadsheet and no segment information Maximum of 2000 matches, minus those not opted in Download limited to 1000 with Tier 1, download not available without subscription
Chromosome Segment Information Yes Yes No, only total and longest segment, no segment address Yes Yes
Chromosome Browser Yes, requires $19 unlock if transfer Yes, requires $29 unlock or subscription if transfer No Yes Yes, some features require Tier 1 subscription
X Chromosome Included Yes No No Yes Yes, separate
Chromosome Browser Benefit Visual view of 7 or fewer matches Visual view of 7 or fewer matches, triangulation included if ALL people match on same portion of common segment No browser Visual view of 5 or fewer matches Unlimited view of matches, multiple options through comparison tools
Chromosome Browser Challenges Can’t tell whether maternal or paternal matches without additional info if don’t select bucketed matches Can’t tell whether maternal or paternal without additional info if don’t triangulate or you don’t know your common ancestor with at least one person in triangulation group No browser Can’t tell whether maternal or paternal without other information Can’t tell whether maternal or paternal without other information
Shared “In Common With” Matches Yes Yes Yes Yes, if everyone opts in Yes
Triangulation Yes, Phased Family Matching, plus chromosome browser Yes, included in chromosome browser if all people being compared match on that segment No, and no browser Yes, but only for 3 people if “Shared DNA” = Yes on Relatives in Common Yes, through multiple comparison tools
Ability to Know if Matches Match Each Other (also see autoclusters) Yes, through Matrix tool or if match on common bucketed segment through Family Matching Yes, through triangulation tool if all match on common segment No Yes, can compare any person to any other person on your match list Yes, through comparison tool selections
Autoclusters Can select up to 10 people for Matrix grid, also available for entire match list through Genetic Affairs and DNAGedcom which work well Genetic Affairs clustering included free, DNAGedcom has difficulty due to timeouts No, but Genetic Affairs and DNAGedcom work well No, but Genetic Affairs and DNAGedcom work well Yes, Genetic Affairs included in Tier 1 for selected kits, DNAGedcom is in beta
Trees Can upload or create tree. Linking you and relatives who match to tree triggers Phased Family Matching Can upload or create tree. Link yourself and kits you manage assists Theories of Family Relativity Can upload or create tree. Link your DNA to your tree to generate ThruLines. Recent new feature allows linking of DNA matches to tree. No tree support but can provide a link to a tree elsewhere Upload your tree so your matches can view
Matching and Automated Tree Construction of DNA Matches who Share Common Ancestors with You Genetic Affairs for matches with common ancestors with you Not available Genetic Affairs for matches with common ancestors with you No tree support Not available
Matching and Automated Tree Construction for DNA Matches with Common Ancestors with Each Other, But Not With You Genetic Affairs for matches with common ancestors with each other, but not with you Not available Genetic Affairs for matches with common ancestors with each other, but not with you No tree support Not available
DNAPainter Segment Compilation and Painting Yes, bucketed Family Match file can be uploaded which benefits tester immensely. Will be able to paint ethnicity segments soon. Yes No segment info available, encourage your matches to upload elsewhere Yes, and can paint ethnicity segments from 23andMe, Yes, but only for individually copied matches or highest 1000.
Y DNA and Mitochondrial Matching Yes, both, includes multiple tools, deep testing and detailed matching No No No, base haplogroup only, no matching No, haplogroup only if field manually completed by tester when uploading autosomal DNA file

Transfer Your DNA

Transferring your DNA results to each vendor who supports segment information and accepts transfers is not only important, it’s also a great way to extend your testing collar. Every vendor has strengths along with people who are found there and in no other database.

Ancestry does not provide segment information nor a chromosome browser, nor accept uploads, but you have several options to transfer your DNA file for free to other vendors who offer tools.

23andMe does provide a chromosome browser but does not accept uploads. You can download your DNA file and transfer free to other vendors.

I wrote detailed upload/download and transfer instructions for each vendor, here.

Two vendors and one third party support transfers into their systems. The transfers include matching. Basic tools are free, but all vendors charge a minimal fee for unlocking advanced tools, which is significantly less expensive than retesting:

Third-party tools that work with your DNA results include:

All vendors provide different tools and have unique strengths. Be sure that your DNA is working as hard as possible for you by fishing in every pond and utilizing third party tools to their highest potential.

Resource Articles

Explanations and step by step explanations of what you will see and what to do, when you open your DNA results for the first time.

Original article about chromosomes having 2 sides and how they affect genetic genealogy.

This article explains what triangulation is for autosomal DNA.

Why some matches may not be valid, and how to tell the difference.

This article explains the difference between a match group, meaning a group of people who match you, and triangulation, where that group also matches each other. The concepts are sound, but this article relies heavily on spreadsheets, before autocluster tools were available.

Parental phasing means assigning segment matches to either your paternal or maternal side.

Updated, introductory article about triangulation, providing the foundation for a series of articles about how to utilize triangulation at each vendor (FamilyTreeDNA, MyHeritage, 23andMe, GEDmatch, DNAPainter) that supports triangulation.

These articles step you through triangulation at each vendor.

DNAPainter facilitates painting maternally and paternally phased, bucketed matches from FamilyTreeDNA, a method of triangulation.

Compiled articles with instructions and ideas for using DNAPainter.

Autoclustering tool instructions.

How and why The Leeds Method works.

Step by step instructions for when and how to use FamilyTreeDNA’s chromosome browser.

Close family members are the key to verifying matches and identifying common ancestors.

This article details how much DNA specific relationships between people can expect to share.

Overview of transfer information and links to instruction articles for each vendor, below.



I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags, and other items

DNAPainter: Painting “Bucketed” Family Tree DNA Maternal and Paternal Family Finder Matches in One Fell Swoop

DNAPainter has done it again, providing genealogists with a wonderful tool that facilitates separating your matches into maternal and paternal categories so that they can be painted on the proper chromosome – in one fell swoop no less.

Of course, the entire purpose of painting your chromosomes is to identify segments that descend from specific ancestors in order to push those lines back further in time genealogically. Identifying segments, confirming and breaking down brick walls is the name of the game.

DNA Painter New Import Tool

The new DNAPainter tool relies on Family Tree DNA’s Phased Family Matching which assigns your matches to maternal and paternal buckets. On your match list, at the top, you’ll see the following which indicates how many matches you have in total and how many people are assigned to each bucket.

DNAPainter FF import.png

Note that these are individual matches, not total matching segments – that number would be higher.

In order for Family Tree DNA to create bucketed matches for you, you’ll need to:

  • Either create a tree or upload a GEDCOM file
  • Attach your DNA kit to “you” in your tree
  • Attach all 4th cousins and closer with whom you match to their proper location on your tree

Yes, it appears that Family Tree DNA is now using 4th cousins, not just third cousins and closer, which provides for additional bucketed matches.

How reliable is bucketing?

Quite. Occasionally one of two issues arise which becomes evident if you actually compare the matches’ segments to the parent with whom they are bucketed:

  • One or more of your matches’ segments do match you and your parent, but additionally, one or more segments match you, but not your parent
  • The X chromosome is particularly susceptible to this issue, especially with lower cM matches
  • Occasionally, a match that is large enough to be bucketed isn’t, likely because no known, linked cousin shares that segment

Getting Started

Get started by creating or uploading your tree at Family Tree DNA.

DNAPainter mytree.png

After uploading your GEDCOM file or creating your tree at Family Tree DNA, click on the “matches” icon at the top of the tree to link yourself and your relatives to their proper places on your tree. Your matches will show in the box below the helix icon.

DNAPainter FF matches.png

I created an example “twin” for myself to use for teaching purposes by uploading a file from Ancestry, so I’m going to attach that person to my tree as my “Evil Twin.” (Under normal circumstances, I do not recommend uploading duplicate files of anyone.)

DNAPainter FF matches link.png

Just drag and drop the person on your match list on top of their place on the tree.

DNAPainter Ff sister.png

Here I am as my sister, Example Adoptee.

I’ve wished for a very, very long time that there was a way to obtain a list of segment matches sorted by maternal and paternal bucket without having to perform spreadsheet gymnastics, and now there is, at DNAPainter.

DNAPainter does the heavy-lifting so you don’t have to.

What Does DNAPainter Do with Bucketed Matches?

When you are finished uploading two files at DNAPainter, you’ll have:

  • Maternal groups of triangulated matches
  • Paternal groups of triangulated matches
  • Matches that could not be assigned based on the bucketing. Some (but not all) of these matches will be identical by chance – typically roughly 15-20% of your match list. You can read about identical by chance, here.

I’ll walk you through the painting process step by step.

First, you need to be sure your relatives are connected to your tree at Family Tree DNA so that you have matches assigned to your maternal and paternal buckets. The more relatives you connect, per the instructions in the previous section, the more matching people will be able to be placed into maternal or paternal buckets.

Painting Bucketed Matches at DNAPainter

I wrote basic articles about how to use DNAPainter here. If you’re unfamiliar with how to use DNAPainter or it’s new to you, now would be a good time to read those articles. This next section assumes that you’re using DNAPainter. If not, go ahead, register, and set up a profile. One profile is free for everyone, but multiple profiles require a subscription.

First, make a duplicate of the profile that you’re working with. This DNAPainter upload tool is in beta.

DNAPainter duplicate profile.png

Since I’m teaching and experimenting, I am using a fresh, new profile for this experiment. If it works successfully, I’ll duplicate my working profile, just in case something goes wrong or doesn’t generate the results I expect, and repeat these steps there.

Second, at Family Tree DNA, Download a fresh copy of your complete matching segment file. This “Download Segments” link is found at the top right of the chromosome browser page.

DNAPainter ff download segments.png

Third, download your matches at the bottom left of the actual matches page. This file hold information about your matches, such as which ones are bucketed, but no segment information. That’s in the other file.

DNAPainter csv.png

Name both of these files something you can easily identify and that tells them apart. I called the first one “Segments” in front of the file name and the second one “Matches” in front of the file name.

Fourth, at DNAPainter, you’ll need to import your entire downloaded segment file that you just downloaded from Family Tree DNA. I exclude segments under 7cM because they are about 50% identical by chance.

DNAPainter import instructions

click to enlarge

Select the segment file you just named and click on import.

DNAPainter both.png

At this point, your chromosomes at DNAPainter will look like this, assuming you’re using a new profile with nothing else painted.

Let’s expand chromosome 1 and see what it looks like.

DNAPainter chr 1 both.png

Note that all segments are painted over both chromosomes, meaning both the maternal and paternal copies of chromosome 1, partially shown above, because at this point, DNAPainter can’t tell which people match on the maternal and which people match on the paternal sides. The second “matches” file from Family Tree DNA has not yet been imported into DNAPainter, which tells DNAPainter which matches are on the maternal and which are on the paternal chromosomes.

If you’re not workign with a new profile, then you’ll also see the segments you’ve already painted. DNAPainter attempts to NOT paint segments that appear to have previously been painted.

Fifth, at DNAPainter, click on the “Import mat/pat info from ftDNA” link on the left which will provide you with a page to import the matches file information. This is the file that has maternal and paternal sides specified for bucketed matches. DNAPainter needs both the segment file, which you already imported, and the matches file.

DNAPainter import bucket

click to enlarge

After the second import, the “matches” file, my matches are magically redistributed onto their appropriate chromosomes based on the maternal and paternal bucketing information.

I love this tool!

At this point, you will have three groups of matches, assuming you have people assigned to your maternal and paternal buckets.

  • A “Shared” group for people who are related to both of your parents, or who aren’t designated as a bucketed match to either parent
  • Maternal group (pink chromosome)
  • Paternal group (blue chromosome)

It’s Soup!!!

I’m so excited. Now my matches are divided into maternal and paternal chromosome groups.

DNAPainter import complete.png

Just so you know, I changed the colors of my legend at DNAPainter using “edit group,” because all three groups were shades of pink after the import and I wanted to be able to see the difference clearly.

DNAPainter legend.png

Your Painted Chromosomes

Let’s take a look at what we have.

DNAPainter both, mat, pat.png

There’s still pink showing, meaning undetermined, which gets painted over both the maternal and paternal chromosomes, but there’s also a lot of magenta (maternal) and blue (paternal) showing now too as a result of bucketing.

Let’s look at chromosome 1.

DNAPainter chr 1 all.png

This detail, which is actually a summary, shows that the bucketed maternal (magenta) and paternal (blue) matches have actually covered most of the chromosome. There are still a few areas without coverage, but not many.

For a genealogist, this is beautiful!!!

How many matches were painted?

DNAPainter paternal total.png

DNAPainter maternal total.png

Expanding chromosome 1, and scrolling to the maternal portion, I can now see that I have several painted maternal segments, and almost the entire chromosome is covered.

Here’s the exciting part!

DNAPainter ch1 1 mat expanded.png

I stared the relatives I know, on the painting, above and on the pedigree chart, below. The green group descends through Hiram Ferverda and Eva Miller, the yellow group through Antoine Lore and Rachel Hill. The blue group is Acadian, upstream of Antoine Lore.

DNAPainter maternal pedigree.png

Those ancestors are shown by star color on my pedigree chart.

I can now focus on the genealogies of the other unstarred people to see if their genealogy can push those segments back further in time to older ancestors.

On my Dad’s side, the first part of chromosome 1 is equally as exciting.

DNAPainter chr 1 pat expanded.png

The yellow star only pushed this triangulated group back only to my grandparents, but the green star is from a cousin descended from my great-grandparents. The red star matches are even more exciting, because my common ancestor with Lawson is my brick wall – Marcus Younger and his wife, Susanna, surname unknown, parents of Mary Younger.

DNAPainter paternal pedigree.png

I need to really focus hard on this cluster of 12 people because THEIR common ancestors in their trees may well provide the key I need to push back another generation – through the brick wall. That is, after all, the goal of genetic genealogy.


Manual Spreadsheet Compare

Because I decided to torture myself one mid-winter day, and night, I wanted to see how much difference there is between the bucketed matches that I just painted and actual matches that I’ve identified by downloading my parents’ segment match files and mine and comparing them manually against each other. I removed any matches in my file that were not matches to my parent, in addition to me, then painted the rest.

I’ll import the resulting manual spreadsheet into the same experimental DNAPainter profile so we can view matches that were NOT painted previously. DNAPainter does not paint matches previously painted, if it can tell the difference. Since both of these files are from downloads, without the name of the matches being in any way modified, DNAPainter should be able to recognize everyone and only paint new segment matches.

Please note here that the PERSON unquestionably belongs bucketed to the parental side in question, but not all SEGMENTS necessarily match you and your parent. Some will not, and those are the segments that I removed from my spreadsheet.

DNAPainter manual spreadsheet example.png

Here’s a made-up example where I’ve combined my matches and my mother’s matches in one spreadsheet in order to facilitate this comparison. I colored my Mom’s matches green so they are easy to see when comparing to my own, then sorting by the match name.

Person 1 matches me and Mom both, at 10 cM on chromosome 1. Person 1 is assigned to my maternal side due to the matches above 9 cM, the lowest threshold at Family Tree DNA for bucketing.

In this example, we can see that Person 1 matches me and Mom (colored green), both, on the segment on chromosome 1. That match, bracketed by red, is a valid, phased, match and should be painted.

However, Person 1 also matches me, but NOT Mom on chromosome 2. Because Person 1 is bucketed to mother, this segment on chromosome 2 will also be painted to my maternal chromosome 2 using the DNAPainter import. The only way to sort this out is to do the comparison manually.

The same holds true for the X match shown. The two segments shown in red should NOT be painted, but they will be unless you are willing to compare you and your parents’ matches manually, you will just have to evaluate segments individually when you see that you’re working in a cluster where matches have been assigned through the mass import tool.

If you choose to compare the spreadsheets manually to assure that you’re not painting segments like the red ones above, DNAPainter provides instructions for you to create your own mass upload template, which is what I did after removing any segment matches of people that were not “in common” between me and mother on the same chromosomal segment, like the red ones, above.

Please note that if you delete the erroneous segments and later reimport your bucketed matches, they will appear again. I’m more inclined to leave them, making a note.

I did not do a manual comparison of my father’s side of the tree after discovering just how little difference was found on my mother’s side, and how much effort was involved in the manual comparison.

Creating a Mass Upload Template and File

DNAPainter custom mass upload.png

The instructions for creating your own mass upload file are provided by DNAPainter – please follow them exactly.

In my case, after doing the manual spreadsheet compare with my mother, only a total of 18 new segments were imported that were not previously identified by bucketing.

Three of those segments were over 15cM, but the rest were smaller. I expected there would be more. Family Tree DNA is clearly doing a great job with maternal and paternal bucketing assignments, but they can’t do it without known relatives that have also tested and are linked to your tree. The very small discrepancy is likely due to matches with cousins that I have not been able to link on my tree.

The great news is that because DNAPainter recognizes already-painted segments, I can repeat this anytime and just paint the new segments, without worrying about duplicates.

  • The information above pertains to segments that should have been painted, but weren’t.
  • The information below pertains to segments that were painted, but should not have been.

I did not keep track of how many segments I deleted that would have erroneously been painted. There were certainly more than 18, but not an overwhelming number. Enough though to let me know to be careful and confirm the segment match individually before using any of the mass uploaded matches for hypothesis or conclusions.

Given that this experiment went well, I created a copy of my “real” profile in order to do the same import and see what discoveries are waiting!

Before and After

Before I did the imports into my “real” file (after making a copy, of course,) I had painted 82% of my DNA using 1700 segments. Of course, each one of those segments in my original profile is identified with an ancestor, even if they aren’t very far back in time.

Although I didn’t paint matches in common with my mother before this mass import, each of my matches in common with my mother are in common with one or the other of my maternal grandparents – and by using other known matches I can likely push the identity of those segments further back in time.

Status Percent Segments Painted
Before mass Phased Family Match bucketed import 82 1700
After mass Phased Family Match bucketed import 88 7123
After additional manual matches with my mother added 88 7141

While I did receive 18 additional matching segments by utilizing the manually intensive spreadsheet matching and removal process, I did not receive enough more matches to justify the hours and hours of work. I won’t be doing that anymore with Family Tree DNA files since they have so graciously provided bucketing and DNAPainter can leverage that functionality.

Those hours will be much better spent focusing on unraveling the ancestors whose stories are told in clusters of triangulated matches.

I Love The Import Tool, But It’s Not Perfect

Keep in mind that the X chromosome needs a match of approximately twice the size of a regular chromosome to be as reliable. In other words, a 14 cM threshold for the X chromosome is roughly equivalent to a 7 cM match for any other chromosome. Said another way, a 7 cM match on the X is about equal to a 3.5 cM match on any other chromosome.

X matches are not created equal.

The SNP density on the X chromosome is about half that of the other chromosomes, making it virtually impossible to use the same matching criteria. I don’t encourage using matches of less than 500 SNPs unless you know you’re in a triangulated group and WITH at least a few larger, proven matches on that segment of the X chromosome.

Having said that, X matches, due to their unique inheritance path can persist for many generations and be extremely useful. You can read about working with the X chromosome here and here.

I noticed when I was comparing segments in the manual spreadsheet that I had to remove many X matches with people who had identical matches on other chromosomes with me and my mother. In other words, just because they matched my mother and me exactly on one chromosome, that phasing did not, by default, extend to matching on other segments.

I checked my manually curated file and discovered that I had a total of seven X matches that should have been, and were, painted because they matched me and Mom both.

DNAPainter X spreadsheet example.png

However, there were many that didn’t match me and Mom both, matching only me, that were painted because that person was bucketed (assigned) to my maternal side because a different segment phased to mother correctly.

On the X chromosome, here’s what happened.

DNAPainter maternal X.png

You can see that a lot more than 7 bright red matches were painted – 26 more to be exact. That’s because if an individual is bucketed on your maternal or paternal side, it’s presumed that all of the matching segments come from the same ancestor and are legitimate, meaning identical by descent and not by chance. They aren’t. Every single segment has an inheritance path and story of its own – and just because one segment triangulates does NOT mean that other segments that match that person will triangulate as well.

The X chromosome is the worst case scenario of course, because these 7 cM segments are actually as reliable as roughly 3.5 cM segments on any other chromosome, which is to say that more than 50% of them will be incorrect. However, some will be accurate and those will match me and mother both. 21% of the X matches to people who phased and triangulated on other chromosomes were accurate – 79% were not. Thankfully, we have phasing, bucketing and tools like this to be able to tell the difference so we can utilize the 21% that are accurate. No one wants to throw the baby out with the bath water, nor do we want to chase after phantoms.

Keep in mind that Phased Family Matching, like any other tool, is just that, a tool and needs some level of critical analysis.

Every Segment Has Its Own Story

We know that every single DNA segment has an independent inheritance path and story of its own. (Yes, I’ve said that several time now because it’s critically important so that you don’t wind up barking up the wrong tree, literally, pardon the pun.)

In the graphic above of my painted X chromosome matches, only the six matches with green stars are on the hand-curated match list. One had already been painted previously. The balance of the bright red matches were a part of the mass import and need to be deleted. Additionally, one of the accurate matches did not upload for some reason, so I’ll add that one manually.

I suggest that you go ahead and paint your bucketed segments, but understand that you may have a red herring or two in your crop of painted segment matches.

As you begin to work with these clusters of matches, check your matching segments with your parents (or other family members who were used in bucketing) and make sure that all the segments that have been painted by bulk upload actually match on all of the same segments.

If you have a parent that tested, there is no need to see if you and your match match other relatives on that same side. If your match does not match you and your parent on some significant overlapping portion of that same segment, the match is invalid. DNA does not “skip generations.”

If you don’t have a parent that has tested, your known relatives are your salvation, and the key to bucketed matches.

The great news is that you can easily see that a bulk match was painted from the coloring of the batch import. As you discover the relevant genealogy and confirm that all segments actually match your parent (or another family member, if you don’t have parents to test,) move the matching person to the appropriately colored ancestral group.

I further recommend that you hand curate the X chromosome using a spreadsheet. The nature of the X makes depending on phased matching too risky, especially with a tool like DNAPainter that can’t differentiate between a legitimate and non-legitimate match. The X chromosome matches are extraordinarily valuable because they can be useful in ways that other chromosomes can’t be due to the X’s unique inheritance path.

What About You?

If you don’t have your DNA at Family Tree DNA and you have tested elsewhere, you can transfer your DNA file for free, allowing you to see your matches and use many of the Family Tree DNA tools. However, to access the chromosome browser, which you’ll need for DNA painting, you’ll need to purchase the unlock for $19, but that’s still a lot less than retesting.

Here are transfer instructions for transferring your DNA file from 23andMe, Ancestry or MyHeritage.

If you have not purchased a Family Finder test at Family Tree DNA and don’t have a DNA file to transfer, you can order a test here.



I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Hit a Genetic Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters

Do you want to hit a home run with your DNA test, but find yourself a mite bewildered?

Yep, those matches can be somewhat confusing – especially if you don’t understand what’s going on. Do you have a nagging feeling that you might be missing something?

I’m going to explain chromosome matching, and its big sister, triangulation, step by step to remove any confusion, to help you sort through your matches and avoid imposters.

This article is one of the most challenging I’ve ever written – in part because it’s a concept that I’m so familiar with but can be, and is, misinterpreted so easily. I see mistakes and confusion daily, which means that resulting conclusions stand a good chance of being wrong.

I’ve tried to simplify these concepts by giving you easy-to-use memory tools.

There are three key phrases to remember, as memory-joggers when you work through your matches using a chromosome browser: double-sided, two faces and imposter. While these are “cute,” they are also quite useful.

When you’re having a confusing moment, think back to these memory-jogging key words and walk yourself through your matches using these steps.

These three concepts are the foundation of understanding your matches, accurately, as they pertain to your genealogy. Please feel free to share, link or forward this article to your friends and especially your family members (including distant cousins) who work with genetic genealogy. 

Now, it’s time to enjoy your double-sided, two-faced chromosomes and avoid those imposters:)

Are you ready? Grab a nice cup of coffee or tea and learn how to hit home runs!

Double-Sided – Yes, Really

Your chromosomes really are double sided, and two-faced too – and that’s a good thing!

However, it’s initially confusing because when we view our matches in a chromosome browser, it looks like we only have one “bar” or chromosome and our matches from both our maternal and paternal sides are both shown on our one single bar.

How can this be? We all have two copies of chromosome 1, one from each parent.

Chromosome 1 match.png

This is my chromosome 1, with my match showing in blue when compared to my chromosome, in gray, as the background.

However, I don’t know if this blue person matches me on my mother’s or father’s chromosome 1, both of which I inherited. It could be either. Or neither – meaning the dreaded imposter – especially that small blue piece at left.

What you’re seeing above is in essence both “sides” of my chromosome number 1, blended together, in one bar. That’s what I mean by double-sided.

There’s no way to tell which side or match is maternal and which is paternal without additional information – and misunderstanding leads to misinterpreting results.

Let’s straighten this out and talk about what matches do and don’t mean – and why they can be perplexing. Oh, and how to discover those imposters!

Your Three Matches

Let’s say you have three matches.

At Family Tree DNA, the example chromosome browser I’m using, or at any vendor with a chromosome browser, you select your matches which are viewed against your chromosomes. Your chromosomes are always the background, meaning in this case, the grey background.

Chromosome 1-4.png

  • This is NOT three copies each of your chromosomes 1, 2, 3 and 4.
  • This is NOT displaying your maternal and paternal copies of each chromosome pictured.
  • We CANNOT tell anything from this image alone relative to maternal and paternal side matches.
  • This IS showing three individual people matching you on your chromosome 1 and the same three people matching you in the same order on every chromosome in the picture.

Let’s look at what this means and why we want to utilize a chromosome browser.

I selected three matches that I know are not all related through the same parent so I can demonstrate how confusing matches can be sorted out. Throughout this article, I’ve tried to explain each concept in at least two ways.

Please note that I’m using only chromsomes 1-4 as examples, not because they are any more, or less, important than the other chromosomes, but because showing all 22 would not add any benefit to the discussion. The X chromosome has a separate inheritance path and I wrote about that here.

Let’s start with a basic question.

Why Would I Want to Use a Chromosome Browser?

Genealogists view matches on chromosome browsers because:

  • We want to see where our matches match us on our chromosomes
  • We’d like to identify our common ancestor with our match
  • We want to assign a matching segment to a specific ancestor or ancestral line, which confirmed those ancestors as ours
  • When multiple people match us on the same location on the chromosome browser, that’s a hint telling us that we need to scrutinize those matches more closely to determine if those people match us on our maternal or paternal side which is the first step in assigning that segment to an ancestor

Once we accurately assign a segment to an ancestor, when anyone else matches us (and those other people) on that same segment, we know which ancestral line they match through – which is a great head start in terms of identifying our common ancestor with our new match.

That’s a genetic genealogy home run!

Home Runs 

There are four bases in a genetic genealogy home run.

  1. Determine whether you actually match someone on the same segment
  2. Which is the first step in determining that you match a group of people on the same segment
  3. And that you descend from a common ancestor
  4. The fourth step, or the home run, is to determine which ancestor you have in common, assigning that segment to that ancestor

If you can’t see segment information, you can’t use a chromosome browser and you can’t confirm the match on that segment, nor can you assign that segment to a particular ancestor, or ancestral couple.

The entire purpose of genealogy is to identify and confirm ancestors. Genetic genealogy confirms the paper trail and breaks down even more brick walls.

But before you can do that, you have to understand what matches mean and how to use them.

The first step is to understand that our chromosomes are double-sided and you can’ t see both of your chromosomes at once!

Double Sided – You Can’t See Both of Your Chromosomes at Once

The confusing part of the chromosome browser is that it can only “see” your two chromosomes blended as one. They are both there, but you just can’t see them separately.

Here’s the important concept:

You have 2 copies of chromosomes 1 through 22 – one copy that you received from your mother and one from your father, but you can’t “see” them separately.

When your DNA is sequenced, your DNA from your parents’ chromosomes emerges as if it has been through a blender. Your mother’s chromosome 1 and your father’s chromosome 1 are blended together. That means that without additional information, the vendor can’t tell which matches are from your father’s side and which are from your mother’s side – and neither can you.

All the vendor can tell is that someone matches you on the blended version of your parents. This isn’t a negative reflection on the vendors, it’s just how the science works.

Chromosome 1.png

Applying this to chromosome 1, above, means that each segment from each person, the blue person, the red person and the teal person might match you on either one of your chromosomes – the paternal chromosome or the maternal chromosome – but because the DNA of your mother and father are blended – there’s no way without additional information to sort your chromosome 1 into a maternal and paternal “side.”

Hence, you’re viewing “one” copy of your combined chromosomes above, but it’s actually “two-sided” with both maternal and paternal matches displayed in the chromosome browser.

Parent-Child Matches

Let’s explain this another way.

Chromosome parent.png

The example above shows one of my parents matching me. Don’t be deceived by the color blue which is selected randomly. It could be either parent. We don’t know.

You can see that I match my parent on the entire length of chromosome 1, but there is no way for me to tell if I’m looking at my mother’s match or my father’s match, because both of my parents (and my children) will match me on exactly the same locations (all of them) on my chromosome 1.

Chromosome parent child.png

In fact, here is a combination of my children and my parents matching me on my chromosome 1.

To sort out who is matching on paternal and maternal chromosomes, or the double sides, I need more information. Let’s look at how inheritance works.

Stay with me!

Inheritance Example

Let’s take a look at how inheritance works visually, using an example segment on chromosome 1.

Chromosome inheritance.png

In the example above:

  • The first column shows addresses 1-10 on chromosome 1. In this illustration, we are only looking at positions, chromosome locations or addresses 1-10, but real chromosomes have tens of thousands of addresses. Think of your chromosome as a street with the same house numbers on both sides. One side is Mom’s and one side is Dad’s, but you can’t tell which is which by looking at the house numbers because the house numbers are identical on both sides of the street.
  • The DNA pieces, or nucleotides (T, A, C or G,) that you received from your Mom are shown in the column labeled Mom #1, meaning we’re looking at your mother’s pink chromosome #1 at addresses 1-10. In our example she has all As that live on her side of the street at addresses 1-10.
  • The DNA pieces that you received from your Dad are shown in the blue column and are all Cs living on his side of the street in locations 1-10.

In other words, the values that live in the Mom and Dad locations on your chromosome streets are different. Two different faces.

However, all that the laboratory equipment can see is that there are two values at address 1, A and C, in no particular order. The lab can’t tell which nucleotide came from which parent or which side of the street they live on.

The DNA sequencer knows that it found two values at each address, meaning that there are two DNA strands, but the output is jumbled, as shown in the First and Second read columns. The machine knows that you have an A and C at the first address, and a C and A at the second address, but it can’t put the sequence of all As together and the sequence of all Cs together. What the sequencer sees is entirely unordered.

This happens because your maternal and paternal DNA is mixed together during the extraction process.

Chromosome actual

Click to enlarge image.

Looking at the portion of chromosome 1 where the blue and teal people both match you – your actual blended values are shown overlayed on that segment, above. We don’t know why the blue and the teal people are matching you. They could be matching because they have all As (maternal), all Cs (paternal) or some combination of As and Cs (a false positive match that is identical by chance.)

There are only two ways to reassemble your nucleotides (T, A, C, and G) in order and then to identify the sides as maternal and paternal – phasing and matching.

As you read this next section, it does NOT mean that you must have a parent for a chromosome browser to be useful – but it does mean you need to understand these concepts.

There are two types of phasing.

Parental Phasing

  • Parental Phasing is when your DNA is compared against that of one or both parents and sorted based on that comparison.

Chromosome inheritance actual.png

Parental phasing requires that at least one parent’s DNA is available, has been sequenced and is available for matching.

In our example, Dad’s first 10 locations (that you inherited) on chromosome 1 are shown, at left, with your two values shown as the first and second reads. One of your read values came from your father and the other one came from your mother. In this case, the Cs came from your father. (I’m using A and C as examples, but the values could just as easily be T or G or any combination.)

When parental phasing occurs, the DNA of one of your parents is compared to yours. In this case, your Dad gave you a C in locations 1-10.

Now, the vendor can look at your DNA and assign your DNA to one parent or the other. There can be some complicating factors, like if both your parents have the same nucleotides, but let’s keep our example simple.

In our example above, you can see that I’ve colored portions of the first and second strands blue to represent that the C value at that address can be assigned through parental phasing to your father.

Conversely, because your mother’s DNA is NOT available in our example, we can’t compare your DNA to hers, but all is not lost. Because we know which nucleotides came from your father, the remaining nucleotides had to come from your mother. Hence, the As remain after the Cs are assigned to your father and belong to your mother. These remaining nucleotides can logically be recombined into your mother’s DNA – because we’ve subtracted Dad’s DNA.

I’ve reassembled Mom, in pink, at right.

Statistical/Academic Phasing

  • A second type of phasing uses something referred to as statistical or academic phasing.

Statistical phasing is less successful because it uses statistical calculations based on reference populations. In other words, it uses a “most likely” scenario.

By studying reference populations, we know scientifically that, generally, for our example addresses 1-10, we either see all As or all Cs grouped together.

Based on this knowledge, the Cs can then logically be grouped together on one “side” and As grouped together on the other “side,” but we still have no way to know which side is maternal or paternal for you. We only know that normally, in a specific population, we see all As or all Cs. After assigning strings or groups of nucleotides together, the algorithm then attempts to see which groups are found together, thereby assigning genetic “sides.” Assigning the wrong groups to the wrong side sometimes happens using statistical phasing and is called strand swap.

Once the DNA is assigned to physical “sides” without a parent or matching, we still can’t identify which side is paternal and which is maternal for you.

Statistical or academic phasing isn’t always accurate, in part because of the differences found in various reference populations and resulting admixture. Sometimes segments don’t match well with any population. As more people test and more reference populations become available, statistical/academic phasing improves. 23andMe uses academic phasing for ethnicity, resulting in a strand swap error for me. Ancestry uses academic phasing before matching.

By comparison to statistical or academic phasing, parental phasing with either or both parents is highly accurate which is why we test our parents and grandparents whenever possible. Even if the vendor doesn’t use our parents’ results, we certainly can!

If someone matches you and your parent too, you know that match is from that parent’s side of your tree.


The second methodology to sort your DNA into maternal and paternal sides is matching, either with or without your parents.

Matching to multiple known relatives on specific segments assigns those segments of your DNA to the common ancestor of those individuals.

In other words, when I match my first cousin, and our genealogy indicates that we share grandparents – assuming we match on the appropriate amount of DNA for the expected relationship – that match goes a long way to confirming our common ancestor(s).

The closer the relationship, the more comfortable we can be with the confirmation. For example, if you match someone at a parental level, they must be either your biological mother, father or child.

While parent, sibling and close relationships are relatively obvious, more distant relationships are not and can occur though unknown or multiple ancestors. In those cases, we need multiple matches through different children of that ancestor to reasonably confirm ancestral descent.

Ok, but how do we do that? Let’s start with some basics that can be confusing.

What are we really seeing when we look at a chromosome browser?

The Grey/Opaque Background is Your Chromosome

It’s important to realize that you will see as many images of your chromosome(s) as people you have selected to match against.

This means that if you’ve selected 3 people to match against your chromosomes, then you’ll see three images of your chromosome 1, three images of your chromosome 2, three images of your chromosome 3, three images of your chromosome 4, and so forth.

Remember, chromosomes are double-sided, so you don’t know whether these are maternal or paternal matches (or imposters.)

In the illustration below, I’ve selected three people to match against my chromosomes in the chromosome browser. One person is shown as a blue match, one as a red match, and one as a teal match. Where these three people match me on each chromosome is shown by the colored segments on the three separate images.

Chromosome 1.png

My chromosome 1 is shown above. These images are simply three people matching to my chromosome 1, stacked on top of each other, like cordwood.

The first image is for the blue person. The second image is for the red person. The third image is for the teal person.

If I selected another person, they would be assigned a different color (by the system) and a fourth stacked image would occur.

These stacked images of your chromosomes are NOT inherently maternal or paternal.

In other words, the blue person could match me maternally and the red person paternally, or any combination of maternal and paternal. Colors are not relevant – in other words colors are system assigned randomly.

Notice that portions of the blue and teal matches overlap at some of the same locations/addresses, which is immediately visible when using a chromosome browser. These areas of common matching are of particular interest.

Let’s look closer at how chromosome browser matching works.

What about those colorful bars?

Chromosome Browser Matching

When you look at your chromosome browser matches, you may see colored bars on several chromosomes. In the display for each chromosome, the same color will always be shown in the same order. Most people, unless very close relatives, won’t match you on every chromosome.

Below, we’re looking at three individuals matching on my chromosomes 1, 2, 3 and 4.

Chromosome browser.png

The blue person will be shown in location A on every chromosome at the top. You can see that the blue person does not match me on chromosome 2 but does match me on chromosomes 1, 3 and 4.

The red person will always be shown in the second position, B, on each chromosome. The red person does not match me on chromosomes 2 or 4.

The aqua person will always be shown in position C on each chromosome. The aqua person matches me on at least a small segment of chromosomes 1-4.

When you close the browser and select different people to match, the colors will change and the stacking order perhaps, but each person selected will always be consistently displayed in the same position on all of your chromosomes each time you view.

The Same Address – Stacked Matches

In the example above, we can see that several locations show stacked segments in the same location on the browser.

Chromosome browser locations.png

This means that on chromosome 1, the blue and green person both match me on at least part of the same addresses – the areas that overlap fully. Remember, we don’t know if that means the maternal side or the paternal side of the street. Each match could match on the same or different sides.

Said another way, blue could be maternal and teal could be paternal (or vice versa,) or both could be maternal or paternal. One or the other or both could be imposters, although with large segments that’s very unlikely.

On chromosome 4, blue and teal both match me on two common locations, but the teal person extends beyond the length of the matching blue segments.

Chromosome 3 is different because all three people match me at the same address. Even though the red and teal matching segments are longer, the shared portion of the segment between all three people, the length of the blue segment, is significant.

The fact that the stacked matches are in the same places on the chromosomes, directly above/below each other, DOES NOT mean the matches also match each other.

The only way to know whether these matches are both on one side of my tree is whether or not they match each other. Do they look the same or different? One face or two? We can’t tell from this view alone.

We need to evaluate!

Two Faces – Matching Can be Deceptive!

What do these matches mean? Let’s ask and answer a few questions.

  • Does a stacked match mean that one of these people match on my mother’s side and one on my father’s side?

They might, but stacked matches don’t MEAN that.

If one match is maternal, and one is paternal, they still appear at the same location on your chromosome browser because Mom and Dad each have a side of the street, meaning a chromosome that you inherited.

Remember in our example that even though they have the same street address, Dad has blue Cs and Mom has pink As living at that location. In other words, their faces look different. So unless Mom and Dad have the same DNA on that entire segment of addresses, 1-10, Mom and Dad won’t match each other.

Therefore, my maternal and paternal matches won’t match each other either on that segment either, unless:

  1. They are related to me through both of my parents and on that specific location.
  2. My mother and father are related to each other and their DNA is the same on that segment.
  3. There is significant endogamy that causes my parents to share DNA segments from their more distant ancestors, even though they are not related in the past few generations.
  4. The segments are small (segments less than 7cM are false matches roughly 50% of the time) and therefore the match is simply identical by chance. I wrote about that here. The chart showing valid cM match percentages is shown here, but to summarize, 7-8 cMs are valid roughly 46% of the time, 8-9 cM roughly 66%, 9-10 cM roughly 91%, 10-11 cM roughly 95, but 100 is not reached until about 20 cM and I have seen a few exceptions above that, especially when imputation is involved.

Chromosome inheritance match.png

In this inheritance example, we see that pink Match #1 is from Mom’s side and matches the DNA I inherited from pink Mom. Blue Match #2 is from Dad’s side and matches the DNA I inherited from blue Dad. But as you can see, Match #1 and Match #2 do not match each other.

Therefore, the address is only half the story (double-sided.)

What lives at the address is the other half. Mom and Dad have two separate faces!

Chromosome actual overlay

Click to enlarge image

Looking at our example of what our DNA in parental order really looks like on chromosome 1, we see that the blue person actually matches on my maternal side with all As, and the teal person on the paternal side with all Cs.

  • Does a stacked match on the chromosome browser mean that two people match each other?

Sometimes it happens, but not necessarily, as shown in our example above. The blue and teal person would not match each other. Remember, addresses (the street is double-sided) but the nucleotides that live at that address tell the real story. Think two different looking faces, Mom’s and Dad’s, peering out those windows.

If stacked matches match each other too – then they match me on the same parental side. If they don’t match each other, don’t be deceived just because they live at the same address. Remember – Mom’s and Dad’s two faces look different.

For example, if both the blue and teal person match me maternally, with all As, they would also match each other. The addresses match and the values that live at the address match too. They look exactly the same – so they both match me on either my maternal or paternal side – but it’s up to me to figure out which is which using genealogy.

Chromosome actual maternal.png

Click to enlarge image

When my matches do match each other on this segment, plus match me of course, it’s called triangulation.

Triangulation – Think of 3

If my two matches match each other on this segment, in addition to me, it’s called triangulation which is genealogically significant, assuming:

  1. That the triangulated people are not closely related. Triangulation with two siblings, for example, isn’t terribly significant because the common ancestor is only their parents. Same situation with a child and a parent.
  2. The triangulated segments are not small. Triangulation, like matching, on small segments can happen by chance.
  3. Enough people triangulate on the same segment that descends from a common ancestor to confirm the validity of the common ancestor’s identity, also confirming that the match is identical by descent, not identical by chance.

Chromosome inheritance triangulation.png

The key to determining whether my two matches both match me on my maternal side (above) or paternal side is whether they also match each other.

If so, assuming all three of the conditions above are true, we triangulate.

Next, let’s look at a three-person match on the same segment and how to determine if they triangulate.

Three Way Matching and Identifying Imposters

Chromosome 3 in our example is slightly different, because all three people match me on at least a portion of that segment, meaning at the same address. The red and teal segments line up directly under the blue segment – so the portion that I can potentially match identically to all 3 people is the length of the blue segment. It’s easy to get excited, but don’t get excited quite yet.

Chromosome 3 way match.png

Given that three people match me on the same street address/location, one of the following three situations must be true:

  • Situation 1- All three people match each other in addition to me, on that same segment, which means that all three of them match me on either the maternal or paternal side. This confirms that we are related on the same side, but not how or which side.

Chromosome paternal.png

In order to determine which side, maternal or paternal, I need to look at their and my genealogy. The blue arrows in these examples mean that I’ve determined these matches to all be on my father’s side utilizing a combination of genealogy plus DNA matching. If your parent is alive, this part is easy. If not, you’ll need to utilize common matching and/or triangulation with known relatives.

  • Situation 2 – Of these three people, Cheryl, the blue bar on top, matches me but does not match the other two. Charlene and David, the red and teal, match each other, plus me, but not Cheryl.

Chromosome maternal paternal.png

This means that at least either my maternal or paternal side is represented, given that Charlene and David also match each other. Until I can look at the identity of who matches, or their genealogy, I can’t tell which person or people descend from which side.

In this case, I’ve determined that Cheryl, my first cousin, with the pink arrow matches me on Mom’s side and Charlene and David, with the blue arrows, match me on Dad’s side. So both my maternal and paternal sides are represented – my maternal side with the pink arrow as well as my father’s side with the blue arrows.

If Cheryl was a more distant match, I would need additional triangulated matches to family members to confirm her match as legitimate and not a false positive or identical by chance.

  • Situation 3 – Of the three people, all three match me at the same addresses, but none of the three people match each other. How is this even possible?

Chromosome identical by chance.png

This situation seems very counter-intuitive since I have only 2 chromosomes, one from Mom and one from Dad – 2 sidesof the street. It is confusing until you realize that one match (Cheryl and me, pink arrow) would be maternal, one would be paternal (Charlene and me, blue arrow) and the third (David and me, red arrows) would have DNA that bounces back and forth between my maternal and paternal sides, meaning the match with David is identical by chance (IBC.)

This means the third person, David, would match me, but not the people that are actually maternal and paternal matches. Let’s take a look at how this works

Chromosome maternal paternal IBC.png

The addresses are the same, but the values that live at the addresses are not in this third scenario.

Maternal pink Match #1 is Cheryl, paternal blue Match #2 is Charlene.

In this example, Match #3, David, matches me because he has pink and blue at the same addresses that Mom and Dad have pink and blue, but he doesn’t have all pink (Mom) nor all blue (Dad), so he does NOT match either Cheryl or Charlene. This means that he is not a valid genealogical match – but is instead what is known as a false positive – identical by chance, not by descent. In essence, a wily genetic imposter waiting to fool unwary genealogists!

In his case, David is literally “two-faced” with parts of both values that live in the maternal house and the paternal house at those addresses. He is a “two-faced imposter” because he has elements of both but isn’t either maternal or paternal.

This is the perfect example of why matching and triangulating to known and confirmed family members is critical.

All three people, Cheryl, Charlene and David match me (double sided chromosomes), but none of them match each other (two legitimate faces – one from each parent’s side plus one imposter that doesn’t match either the legitimate maternal or paternal relatives on that segment.)

Remember Three Things

  1. Double-Sided – Mom and Dad both have the same addresses on both sides of each chromosome street.
  2. Two Legitimate Faces – The DNA values, nucleotides, will have a unique pattern for both your Mom and Dad (unless they are endogamous or related) and therefore, there are two legitimate matching patterns on each chromsome – one for Mom and one for Dad. Two legitimate and different faces peering out of the houses on Mom’s side and Dad’s side of the street.
  3. Two-Faced Imposters – those identical by chance matches which zig-zag back and forth between Mom and Dad’s DNA at any given address (segment), don’t match confirmed maternal and paternal relatives on the same segment, and are confusing imposters.

Are you ready to hit your home run?

What’s Next?

Now that we understand how matching and triangulation works and why, let’s put this to work at the vendors. Join me for my article in a few days, Triangulation in Action at Family Tree DNA, MyHeritage, 23andMe and GedMatch.

We will step through how triangulation works at each vendor. You’ll have matches at each vendor that you don’ t have elsewhere. If you haven’t transferred your DNA file yet, you still have time with the step by step instructions below:



I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

First Steps When Your DNA Results are Ready – Sticking Your Toe in the Genealogy Water

First steps helix

Recently someone asked me what the first steps would be for a person who wasn’t terribly familiar with genealogy and had just received their DNA test results.

I wrote an article called DNA Results – First Glances at Ethnicity and Matching which was meant to show new folks what the various vendor interfaces look like. I was hoping this might whet their appetites for more, meaning that the tester might, just might, stick their toe into the genealogy waters😊

I’m hoping this article will help them get hooked! Maybe that’s you!

A Guide

This article can be read in one of two ways – as an overview, or, if you click the links, as a pretty thorough lesson. If you’re new, I strongly suggest reading it as an overview first, then a second time as a deeper dive. Use it as a guide to navigate your results as you get your feet wet.

I’ll be hotlinking to various articles I’ve written on lots of topics, so please take a look at details (eventually) by clicking on those links!

This article is meant as a guideline for what to do, and how to get started with your DNA matching results!

If you’re looking for ethnicity information, check out the First Glances article, plus here and here and here.

Concepts – Calculating Ethnicity Percentages provides you with guidelines for how to estimate your own ethnicity percentages based on your known genealogy and Ethnicity Testing – A Conundrum explains how ethnicity testing is done.

OK, let’s get started. Fun awaits!

The Goal

The goal for using DNA matching in genealogy depends on your interests.

  1. To discover cousins and family members that you don’t know. Some people are interested in finding and meeting relatives who might have known their grandparents or great-grandparents in the hope of discovering new family information or photos they didn’t know existed previously. I’ve been gifted with my great-grandparent’s pictures, so this strategy definitely works!
  2. To confirm ancestors. This approach presumes that you’ve done at least a little genealogy, enough to construct at least a rudimentary tree. Ancestors are “confirmed” when you DNA match multiple other people who descend from the same ancestor through multiple children. I wrote an article, Ancestors: What Constitutes Proof?, discussing how much evidence is enough to actually confirm an ancestor. Confirmation is based on a combination of both genealogical records and DNA matching and it varies depending on the circumstances.
  3. Adoptees and people with unknown parents seeking to discover the identities of those people aren’t initially looking at their own family tree – because they don’t have one yet. The genealogy of others can help them figure out the identity of those mystery people. I wrote about that technique in the article, Identifying Unknown Parents and Individuals Using DNA Matching.

DNAAdoption for Everyone

Educational resources for adoptees and non-adoptees alike can be found at DNAAdoption is not just for adoptees and provides first rate education for everyone. They also provide trained and mentored search angels for adoptees who understand the search process along with the intricacies of navigating the emotional minefield of adoption and unknown parent searches.

First Look” classes for each vendor are free for everyone at DNAAdoption and are self-paced, downloadable onto your computer as a pdf file. Intro to DNA, Applied Autosomal DNA and Y DNA Basics classes are nominally priced at between $29 and $49 and I strongly recommend these. DNAAdoption is entirely non-profit, so your class fee or contribution supports their work. Additional resources can be found here and their 12 adoptee search steps here.

Ok, now let’s look at your results.

Matches are the Key

Regardless of your goal, your DNA matches are the key to finding answers, whether you want to make contact with close relatives, prove your more distant ancestors or you’re involved in an adoptee or unknown parent search.

Your DNA matches that of other people because each of you inherited a piece of DNA, called a segment, where many locations are identical. The length of that DNA segment is measured in centiMorgans and those locations are called SNPs, or single nucleotide polymorphisms. You can read about the definition of a centimorgan and how they are used in the article Concepts – CentiMorgans, SNPs and Pickin’Crab.

While the scientific details are great, they aren’t important initially. What is important is to understand that the more closely you match someone, the more closely you are related to them. You share more DNA with close relatives than more distant relatives.

For example, I share exactly half of my mother’s DNA, but only about 25% of each of my grandparents’ DNA. As the relationships move further back in time, I share less and less DNA with other people who descend from those same ancestors.

Informational Tools

Every vendor’s match page looks different, as was illustrated in the First Glances article, but regardless, you are looking for four basic pieces of information:

  • Who you match
  • How much DNA you share with your match
  • Who else you and your match share that DNA with, which suggests that you all share a common ancestor
  • Family trees to reveal the common ancestor between people who match each other

Every vendor has different ways of displaying this information, and not all vendors provide everything. For example, 23andMe does not support trees, although they allow you to link to one elsewhere. Ancestry does not provide a tool called a chromosome browser which allows you to see if you and others match on the same segment of DNA. Ancestry only tells you THAT you match, not HOW you match.

Each vendor has their strengths and shortcomings. As genealogists, we simply need to understand how to utilize the information available.

I’ll be using examples from all 4 major vendors:

Your matches are the most important information and everything else is based on those matches.

Family Tree DNA

I have tested many family members from both sides of my family at Family Tree DNA using the Family Finder autosomal test which makes my matches there incredibly useful because I can see which family members, in addition to me, my matches match.

Family Tree DNA assigns matches to maternal and paternal sides in a unique way, even if your parents haven’t tested, so long as some close relatives have tested. Let’s take a look.

First Steps Family Tree DNA matches.png

Sign on to your account and click to see your matches.

At the top of your Family Finder matches page, you’ll see three groups of things, shown below.

First Steps Family Tree DNA bucketing

Click to enlarge

A row of tools at the top titled Chromosome Browser, In Common With and Not in Common With.

A second row of tabs that include All, Paternal, Maternal and Both. These are the maternal and paternal tabs I mentioned, meaning that I have a total of 4645 matches, 988 of which are from my paternal side and 847 of which are from my maternal side.

Family Tree DNA assigns people to these “buckets” based on matches with third cousins or closer if you have them attached in your tree. This is why it’s critical to have a tree and test close relatives, especially people from earlier generations like aunts, uncles, great-aunts/uncles and their children if they are no longer living.

If you have one or both parents that can test, that’s a wonderful boon because anyone who matches you and one of your parents is automatically bucketed, or phased (scientific term) to that parent’s side of the tree. However, at Family Tree DNA, it’s not required to have a parent test to have some matches assigned to maternal or paternal sides. You just need to test third cousins or closer and attach them to the proper place in your tree.

How does bucketing work?

Maternal or Paternal “Side” Assignment, aka Bucketing

If I match a maternal first cousin, Cheryl, for example, and we both match John Doe on the same segment, John Doe is automatically assigned to my maternal bucket with a little maternal icon placed beside the match.

First Steps Family Tree DNA match info

Click to enlarge

Every vendor provides an estimated or predicted relationship based on a combination of total centiMorgans and the longest contiguous matching segment. The actual “linked relationship” is calculated based on where this person resides in your tree.

The common surnames at far right are a very nice features, but not every tester provides that information. When the testers do include surnames at Family Tree DNA, common surnames are bolded. Other vendors have similar features.

People with trees are shown near their profile picture with a blue pedigree icon. Clicking on the pedigree icon will show you their ancestors. Your matches estimated relationship to you indicates how far back you should expect to share an ancestor.

For example, first cousins share grandparents. Second cousins share great-grandparents. In general, the further back in time your common ancestor, the less DNA you can be expected to share.

You can view relationship information in chart form in my article here or utilize DNAPainter tools, here, to see the various possibilities for the different match levels.

Clicking on the pedigree chart of your match will show you their tree. In my tree, I’ve connected my parents in their proper places, along with Cheryl and Don, mother’s first cousins. (Yes, they’ve given permission for me to utilize their results, so they aren’t always blurred in images.)

Cheryl and Don are my first cousins once removed, meaning my mother is their first cousin and I’m one generation further down the tree. I’m showing the amount of DNA that I share with each of them in red in the format of total DNA shared and longest unbroken segment, taken from the match list. So 382-53 means I share a total of 382 cM and 53 cM is the longest matching block.

First Steps Family Tree DNA tree.png

The Chromosome Browser

Utilizing the chromosome browser, I can see exactly where I match both Don and Cheryl. It’s obvious that I match them on at least some different pieces of my DNA, because the total and longest segment amounts are different.

The reason it’s important to test lots of close relatives is because even siblings inherit different pieces of DNA from their parents, and they don’t pass the same DNA to their offspring either – so in each generation the amount of shared DNA is probably reduced. I say probably because sometimes segments are passed entirely and sometimes not at all, which is how we “lose” our ancestors’ DNA over the generations.

Here’s a matching example utilizing a chromosome browser.

First Steps Family Tree DNA chromosome browser.png

I clicked the checkboxes to the left of both Cheryl and Don on the match page, then the Chromosome Browser button, and now you can see, above, on chromosomes 1-16 where I match Cheryl (blue) and Don (red.)

In this view, both Don and Cheryl are being compared to me, since I’m the one signed in to my account and viewing my DNA matches. Therefore, one of the bars at each chromosome represents Don’s DNA match to me and one represents Cheryl’s. Cheryl is the first person and Don is the second. Person match colors (red and blue) are assigned arbitrarily by the system.

My grandfather and Cheryl/Don’s father, Roscoe, were siblings.

You can see that on some segments, my grandfather and Roscoe inherited the same segment of DNA from their parents, because today, my mother gave me that exact same segment that I share with both Don and Cheryl. Those segments are exactly identical and shown in the black boxes.

The only way for us to share this DNA today is for us to have shared a common ancestor who gave it to two of their children who passed it on to their descendants who DNA tested today.

On other segments, in red boxes, I share part of the same segments of DNA with Cheryl and Don, but someone along the line didn’t inherit all of that segment. For example on chromosome 3, in the red box, you can see that I share more with Cheryl (blue) than Don (red.)

In other cases, I share with either Don or Cheryl, but Don and Cheryl didn’t inherit that same segment of DNA from their father, so I don’t share with both of them. Those are the areas where you see only blue or only red.

On chromosome 12, you can see where it looks like Don’s and Cheryl’s segments butt up against each other. The DNA was clearly divided there. Don received one piece and Cheryl got the other. That’s known as a crossover and you can read about crossovers here, if you’d like.

It’s important to be able to view segment information to be able to see how others match in order to identify which common ancestor that DNA came from.

In Common With

You can use the “In Common With” tool to see who you match in common with any match. My first 6 matches in common with Cheryl are shown below. Note that they are already all bucketed to my maternal side.

First Steps Family Tree DNA in common with

click to enlarge

You can click on up to 7 individuals in the check box at left to show them on the chromosome browser at once to see if they match you on common segments.

Each matching segment has its own history and may descend from a different ancestor in your common tree.

First Steps 7 match chromosome browser

click to enlarge

If combinations of people do match me on a common segment, because these matches are all on my maternal side, they are triangulated and we know they have to descend from a common ancestor, assuming the segment is large enough. You can read about the concept of triangulation here. Triangulation occurs when 3 or more people (who aren’t extremely closely related like parents or siblings) all match each other on the same reasonably sized segment of DNA.

If you want to download your matches and work through this process in a spreadsheet, that’s an option too.

Size Matters

Small segments can be identical by chance instead of identical by descent.

  • “Identical by chance” means that you accidentally match someone because your DNA on that segment has been combined from both parents and causes it to match another person, making the segment “looks like” it comes from a common ancestor, when it really doesn’t. When DNA is sequenced, both your mother and father’s strands are sequenced, meaning that there’s no way to determine which came from whom. Think of a street with Mom’s side and Dad’s side with identical addresses on the houses on both sides. I wrote about that here.
  • “Identical by descent” means that the DNA is identical because it actually descends from a common ancestor. I discussed that concept in the article, We Match, But Are We Related.

Generally, we only utilize 7cM (centiMorgan) segments and above because at that level, about half of the segments are identical by descent and about half are identical by chance, known as false positives. By the time we move above 15 cM, most, but not all, matches are legitimate. You can read about segment size and accuracy here.

Using “In Common With” and the Matrix

“In Common With” is about who shares DNA. You can select someone you match to see who else you BOTH match. Just because you match two other people doesn’t necessarily mean that it’s on the same segment of DNA. In fact, you could match one person from your mother’s side and the other person from your father’s side.

First Steps match matrix.png

In this example, you match Person B due to ancestor John Doe and Person C due to ancestor Susie Smith. However, Person B also matches person C, but due to ancestor William West that they share and you don’t.

This example shows you THAT they match, but not HOW they match.

The only way to assure that the matches between the three people above are due to the same ancestor is to look at the segments with a chromosome browser and compare all 3 people to each other. Finding 3 people who match on the same segment, from the same side of your tree means that (assuming a reasonably large segment) you share a common ancestor.

Family Tree DNA has a nice matrix function that allows you to see which of your matches also match each other.

First steps matrix link

click to enlarge

The important distinction between the matrix and the chromosome browser is that the chromosome browser shows you where your matches match you, but those matches could be from both sides of your tree, unless they are bucketed. The matrix shows you if your matches also match each other, which is a huge clue that they are probably from the same side of your tree.

First Steps Family Tree DNA matrix.png

A matrix match is a significant clue in terms of who descends from which ancestors. For example, I know, based on who Amy matches, and who she doesn’t match, that she descends from the Ferverda side and that Charles, Rex and Maxine descend from ancestors on the Miller side.

Looking in the chromosome browser, I can tell that Cheryl, Don, Amy and I match on some common segments.

Matching multiple people on the same segment that descends from a common ancestor is called triangulation.

Let’s take a look at the MyHeritage triangulation tool.


Moving now to MyHeritage who provides us with an easy to use triangulation tool, we see the following when clicking on DNA matches on the DNA tab on the toolbar.

First Steps MyHeritage matches

click to enlarge

Cousin Cheryl is at MyHeritage too. By clicking on Review DNA Match, the purple button on the right, I can see who else I match in common with Cheryl, plus triangulation.

The list of people Cheryl and I both match is shown below, along with our relationships to each person.

First Steps MyHeritage triangulation

click to enlarge

I’ve selected 2 matches to illustrate.

The first match has a little purple icon to the right which means that Amy triangulates with me and Cheryl.

The second match, Rex, means that while we both match Rex, it’s not on the same segment. I know that without looking further because there is no triangulation button. We both match Rex, but Cheryl matches Rex on a different segment than I do.

Without additional genealogy work, using DNA alone, I can’t say whether or not Cheryl, Rex and I all share a common ancestor. As it turns out, we do. Rex is a known cousin who I tested. However, in an unknown situation, I would have to view the trees of those matches to make that determination.


Clicking on the purple triangulation icon for Amy shows me the segments that all 3 of us, me, Amy and Cheryl share in common as compared to me.

First Steps MyHeritage triangulation chromosome browser.png

Cheryl is red and Amy is yellow. The one segment bracketed with the rounded rectangle is the segment shared by all 3 of us.

Do we have a common ancestor? I know Cheryl and I do, but maybe I don’t know who Amy is. Let’s look at Amy’s tree which is also shown if I scroll down.

First Steps MyHeritage common ancestor.png

Amy didn’t have her tree built out far enough to show our common ancestor, but I immediately recognized the surname Ferveda found in her tree a couple of generations back. Darlene was the daughter of Donald Ferverda who was the son of Hiram Ferverda, my great-grandfather.

Hiram was the father of Cheryl’s father, Roscoe and my grandfather, John Ferverda.

First Steps Hiram Ferverda pedigree.png

Amy is my first cousin twice removed and that segment of DNA that I share with her is from either Hiram Ferverda or his wife Eva Miller.

Now, based on who else Amy matches, I can probably tell whether that segment descends from Hiram or Eva.

Viva triangulation!

Theory of Family Relativity

MyHeritage’s Theory of Family Relativity provides theories to people whose DNA matches regarding their common ancestor if MyHeritage can calculate how the 2 people are potentially related.

MyHeritage uses a combination of tools to make that connection, including:

  • DNA matches
  • Your tree
  • Your match’s tree
  • Other people’s trees at MyHeritage, FamilySearch and Geni if the common ancestor cannot be found in your tree compared against your DNA match’s MyHeritage
  • Documents in the MyHeritage data collection, such as census records, for example.

MyHeritage theory update

To view the Theories, click on the purple “View Theories” banner or “View theory” under the DNA match.

First Steps MyHeritage theory of relativity

click to enleage

The theory is displayed in summary format first.

MyHeritage view full theory

click to enlarge

You can click on the “View Full Theory” to see the detail and sources about how MyHeritage calculated various paths. I have up to 5 different theories that utilize separate resources.

MyHeritage review match

click to enlarge

A wonderful aspect of this feature is that MyHeritage shows you exactly the information they utilized and calculates a confidence factor as well.

All theories should be viewed as exactly that and should be evaluated critically for accuracy, taking into consideration sources and documentation.

I wrote about using Theories of Relativity, with instructions, here and here.

I love this tool and find the Theories mostly accurate.


Ancestry doesn’t offer a chromosome browser or triangulation but does offer a tree view for people that you match, so long as you have a subscription. In the past, a special “Light” subscription for DNA only was available for approximately $49 per year that provided access to the trees of your DNA matches and other DNA-related features. You could not order online and had to call support, sometimes asking for a supervisor in order to purchase that reduced-cost subscription. The “Light” subscription did not provide access to anything outside of DNA results, meaning documents, etc. I don’t know if this is still available.

After signing on, click on DNA matches on the DNA tab on the toolbar.

You’ll see the following match list.

First Steps Ancestry matches

click to enlarge

I’ve tested twice at Ancestry, the second time when they moved to their new chip, so I’m my own highest match. Click on any match name to view more.

First Steps Ancestry shared matches

click to enlarge

You’ll see information about common ancestors if you have some in your trees, plus the amount of shared DNA along with a link to Shared Matches.

I found one of the same cousins at Ancestry whose match we were viewing at MyHeritage, so let’s see what her match to me at Ancestry looks like.

Below are my shared matches with that cousin. The notes to the right are mine, not provided by Ancestry. I make extensive use of the notes fields provided by the vendors.

First Steps Ancestry shared matches with cousin

click to enlarge

On your match list, you can click on any match, then on Shared Matches to see who you both match in common. While Ancestry provides no chromosome browser, you can see the amount of DNA that you share and trees, if any exist.

Let’s look at a tree comparison when a common ancestor can be detected in a tree within the past 7 generations.

First Steps Ancestry view ThruLines.png

What’s missing of course is that I can’t see how we match because there’s no chromosome browser, nor can I see if my matches match each other.

Stitched Trees

What I can see, if I click on “View ThruLines” above or ThruLines on the DNA Summary page on the main DNA tab is all of the people I match who Ancestry THINKS we descend from a common ancestor. This ancestor information isn’t always taken from either person’s tree.

For example, if my match hadn’t included Hiram Ferverda in her tree, Ancestry would use other people’s trees to “stitch them together” such that the tester is shown to be descended from a common ancestor with me. Sometimes these stitched trees are accurate and sometimes they are not, although they have improved since they were first released. I wrote about ThruLines here.

First Steps Ancestry ThruLines tree

click to enlarge

In closer generations, especially if you are looking to connect with cousins, tree matching is a very valuable tool. In the graphic above, you can see all of the cousins who descend from Hiram Ferverda who have tested and DNA match to me. These DNA matches to me either descend from Hiram according to their trees, or Ancestry believes they descend from Hiram based on other people’s trees.

With more distant ancestors, other people’s trees are increasingly likely to be copied with no sources, so take them with a very large grain of salt (perchance the entire salt lick.) I use ThruLines as hints, not gospel, especially the further back in time the common ancestor. I wish they reached back another couple of generations. They are great hints and they end with the 7th generation where my brick walls tend to begin!


I haven’t mentioned 23andMe yet in this article. Genealogists do test there, especially adoptees who need to fish in every pond.

23andMe is often the 4th choice of the major 4 vendors for genealogy due to the following challenges:

  • No tree support, other than allowing you to link to a tree at FamilySearch or elsewhere. This means no tree matching.
  • Less than 2000 matches, meaning that every person is limited to a maximum of 2000 matches, minus however many of those 2000 don’t opt-in for genealogical matching. Given that 23andMe’s focus is increasingly health, my number of matches continues to decrease and is currently just over 1500. The good news is that those 1500 are my highest, meaning closest matches. The bad news is the genealogy is not 23andMe’s focus.

If you are an adoptee, a die-hard genealogist or specifically interested in ethnicity, then test at 23andMe. Otherwise all three of the other vendors would be better choices.

However, like the other vendors, 23andMe does have some features that are unique.

Their ethnicity predictions are acknowledged to be excellent. Ethnicity at 23andMe is called Ancestry Composition, and you’ll see that immediately when you sign in to your account.

First Steps 23andMe DNA Relatives.png

Your matches at 23andMe are found under DNA Relatives.

First Steps 23andMe tools

click to enlarge

At left, you’ll find filters and the search box.

Mom’s and Dad’s side filter matches if you’ve tested your parents, but it’s not like the Family Tree DNA bucketing that provides maternal and paternal side bucketing by utilizing through third cousins if your parents aren’t available for testing.

Family names aren’t your family names, but the top family names that match to you. Guess what my highest name is? Smith.

However, Ancestor Birthplaces are quite useful because you can sort by country. For example, my mother’s grandfather Ferverda was born in the Netherlands.

First Steps 23andMe country.png

If I click on Netherlands, I can see my 5 matches with ancestors born in the Netherlands. Of course, this doesn’t mean that I match because of my match’s Dutch ancestors, but it does provide me with a place to look for a common ancestor and I can proceed by seeing who I match in common with those matches. Unfortunately, without trees we’re left to rely on ancestor birthplaces and family surnames, if my matches have entered that information.

One of my Dutch matches also matches my Ferverda cousin. Given that connection, and that the Ferverda family immigrated from Holland in 1868, that’s a starting point.

MyHeritage has a similar features and they are much more prevalent in Europe.

By clicking on my Ferverda cousin, I can view the DNA we share, who we match in common, our common ethnicity and more. I have the option of comparing multiple people in the chromosome browser by clicking on “View DNA Comparison” and then selecting who I wish to compare.

First Steps 23andMe view DNA Comparison.png

By scrolling down instead of clicking on View DNA Comparison, I can view where my Ferverda cousin matches me on my chromosomes, shown below.

First STeps 23andMe chromosome browser.png

23andMe identifies completely identical segments which would be painted in dark purple, the legend at bottom left.

Adoptees love this feature because it would immediately differentiate between half and full siblings. Full siblings share approximately 25% of the exact DNA on both their maternal and paternal strands of DNA, while half siblings only share the DNA from one parent – assuming their parents aren’t closely related. I share no completely identical DNA with my Ferverda cousin, so no segments are painted dark purple.

23andMe and Ancestry Maps Show Where Your Matches Live

Another reason that adoptees and people searching for birth parents or unknown relatives like 23andMe is because of the map function.

After clicking on DNA Relatives, click on the Map function at the top of the page which displays the following map.

First Steps 23andMe map

click to enlarge

This isn’t a map of where your matches ancestors lived, but is where your matches THEMSELVES live. Furthermore, you can zoom in, click on the button and it displays the name of the individual and the city where they live or whatever they entered in the location field.

First Steps 23andMe your location on map.png

I entered a location in my profile and confirmed that the location indeed displays on my match’s maps by signing on to another family member’s account. What I saw is the display above. I’d wager that most testers don’t realize that their home location and photo, if entered, is being displayed to their matches.

I think sharing my ancestors’ locations is a wonderful, helpful, idea, but there is absolutely no reason whatsoever for anyone to know where I live and I feel it’s stalker-creepy and a safety risk.

First Steps 23andMe questions.png

If you enter a location in this field in your profile, it displays on the map.

If you test with 23andMe and you don’t want your location to display on this map to your matches, don’t answer any question that asks you where you call home or anything similar. I never answer any questions at 23andMe. They are known for asking you the same question repeatedly, in multiple locations and ways, until you relent and answer.

Ancestry has a similar map feature and they’ve also begun to ask you questions that are unrelated to genealogy.

Ancestry Map Shows Where Your Matches Live

At Ancestry, when you click to see your DNA matches, look to the right at the map link.

First Steps Ancestry map link.png

By clicking on this link, you can see the locations that people have entered into their profile.

First Steps Ancestry match map.png

As you can see, above, I don’t have a location entered and I am prompted for one. Note that Ancestry does specifically say that this location will be shown to your matches.

You can click on the Ancestry Profile link here, or go to your Personal Profile by click the dropdown under your user name in the upper right hand corner of any page.

This is important because if you DON’T want your location to show, you need to be sure there is nothing entered in the location field.

First Steps Ancestry profile.png

Under your profile, click “Edit.”

First Steps Ancestry edit profile.png

After clicking edit, complete the information you wish to have public or remove the information you do not.

First Steps Ancestry location in profile.png

Sometimes Your Answer is a Little More Complicated

This is a First Steps article. Sometimes the answer you seek might be a little more complicated. That’s why there are specialists who deal with this all day, everyday.

What issues might be more complex?

If you’re just starting out, don’t worry about these things for now. Just know when you run into something more complex or that doesn’t make sense, I’m here and so are others. Here’s a link to my Help page.

Getting Started

What do you need to get started?

  • You need to take a DNA test, or more specifically, multiple DNA tests. You can test at Ancestry or 23andMe and transfer your results to both Family Tree DNA and MyHeritage, or you can test directly at all vendors.

Neither Ancestry nor 23andMe accept uploads, meaning other vendors tests, but both MyHeritage and Family Tree DNA accept most file versions. Instructions for how to download and upload your DNA results are found below, by vendor:

Both MyHeritage and Family Tree DNA charge a minimal fee to unlock their advanced features such as chromosome browsers and ethnicity if you upload transfer files, but it’s less costly in both cases than testing directly. However, if you want the MyHeritage DNA plus Health or the Family Tree DNA Y DNA or Mitochondrial DNA tests, you must test directly at those companies for those tests.

  • It’s not required, but it would be in your best interest to build as much of a tree at all three vendors as you can. Every little bit helps.

Your first tree-building step should be to record what your family knows about your grandparents and great-grandparents, aunts and uncles. Here’s what my first step attempt looked like. It’s cringe-worthy now, but everyone has to start someplace. Just do it!

You can build a tree at either Ancestry or MyHeritage and download your tree for uploading at the other vendors. Or, you can build the tree using genealogy software on your computer and upload to all 3 places. I maintain my primary tree on my computer using RootsMagic. There are many options. MyHeritage even provides free tree builder software.

Both Ancestry and MyHeritage offer research/data subscriptions that provide you with hints to historical documents that increase what you know about your ancestors. The MyHeritage subscription can be tried for free. I have full subscriptions to both Ancestry and MyHeritage because they both include documents in their collections that the other does not.

Please be aware that document suggestions are hints and each one needs to be evaluated in the context of what you know and what’s reasonable. For example, if your ancestor was born in 1750, they are not included in the 1900 census, nor do women have children at age 70. People do have exactly the same names. FindAGrave information is entered by humans and is not always accurate. Just sayin’…

Evaluate critically and skeptically.

Ok, Let’s Go!

When your DNA results are ready, sign on to each vendor, look at your matches and use this article to begin to feel your way around. It’s exciting and the promise is immense. Feel free to share the link to this article on social media or with anyone else who might need help.

You are the cumulative product of your ancestors. What better way to get to know them than through their DNA that’s shared between you and your cousins!

What can you discover today?



I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

2018 – The Year of the Segment

Looking in the rear view mirror, what a year! Some days it’s been hard to catch your breath things have been moving so fast.

What were the major happenings, how did they affect genetic genealogy and what’s coming in 2019?

The SNiPPY Award

First of all, I’m giving an award this year. The SNiPPY.

Yea, I know it’s kinda hokey, but it’s my way of saying a huge thank you to someone in this field who has made a remarkable contribution and that deserves special recognition.

Who will it be this year?

Drum roll…….

The 2018 SNiPPY goes to…

DNAPainter – The 2018 SNiPPY award goes to DNAPainter, without question. Applause, everyone, applause! And congratulations to Jonny Perl, pictured below at Rootstech!

Jonny Perl created this wonderful, visual tool that allows you to paint your matches with people on your chromosomes, assigning the match to specific ancestors.

I’ve written about how to use the tool  with different vendors results and have discovered many different ways to utilize the painted segments. The DNA Painter User Group is here on Facebook. I use DNAPainter EVERY SINGLE DAY to solve a wide variety of challenges.

What else has happened this year? A lot!

Ancient DNA – Academic research seldom reports on Y and mitochondrial DNA today and is firmly focused on sequencing ancient DNA. Ancient genome sequencing has only recently been developed to a state where at least some remains can be successfully sequenced, but it’s going great guns now. Take a look at Jennifer Raff’s article in Forbes that discusses ancient DNA findings in the Americas, Europe, Southeast Asia and perhaps most surprising, a first generation descendant of a Neanderthal and a Denisovan.

From Early human dispersals within the Americas by Moreno-Mayer et al, Science 07 Dec 2018

Inroads were made into deeper understanding of human migration in the Americas as well in the paper Early human dispersals within the Americas by Moreno-Mayer et al.

I look for 2019 and on into the future to hold many more revelations thanks to ancient DNA sequencing as well as using those sequences to assist in understanding the migration patterns of ancient people that eventually became us.

Barbara Rae-Venter and the Golden State Killer Case

Using techniques that adoptees use to identify their close relatives and eventually, their parents, Barbara Rae-Venter assisted law enforcement with identifying the man, Joseph DeAngelo, accused (not yet convicted) of being the Golden State Killer (GSK).

A very large congratulations to Barbara, a retired patent attorney who is also a genealogist. Nature recognized Ms. Rae-Venter as one of 2018’s 10 People Who Mattered in Science.

DNA in the News

DNA is also represented on the 2018 Nature list by Viviane Slon, a palaeogeneticist who discovered an ancient half Neanderthal, half Denisovan individual and sequenced their DNA and He JianKui, a Chinese scientist who claims to have created a gene-edited baby which has sparked widespread controversy. As of the end of the year, He Jiankui’s research activities have been suspended and he is reportedly sequestered in his apartment, under guard, although the details are far from clear.

In 2013, 23andMe patented the technology for designer babies and I removed my kit from their research program. I was concerned at the time that this technology knife could cut two ways, both for good, eliminating fatal disease-causing mutations and also for ethically questionable practices, such as eugenics. I was told at the time that my fears were unfounded, because that “couldn’t be done.” Well, 5 years later, here we are. I expect the debate about the ethics and eventual regulation of gene-editing will rage globally for years to come.

Elizabeth Warren’s DNA was also in the news when she took a DNA test in response to political challenges. I wrote about what those results meant scientifically, here. This topic became highly volatile and politicized, with everyone seeming to have a very strongly held opinion. Regardless of where you fall on that opinion spectrum (and no, please do not post political comments as they will not be approved), the topic is likely to surface again in 2019 due to the fact that Elizabeth Warren has just today announced her intention to run for President. The good news is that DNA testing will likely be discussed, sparking curiosity in some people, perhaps encouraging them to test. The bad news is that some of the discussion may be unpleasant at best, and incorrect click-bait at worst. We’ve already had a rather unpleasant sampling of this.

Law Enforcement and Genetic Genealogy

The Golden State Killer case sparked widespread controversy about using GedMatch and potentially other genetic genealogy data bases to assist in catching people who have committed violent crimes, such as rape and murder.

GedMatch, the database used for the GSK case has made it very clear in their terms and conditions that DNA matches may be used for both adoptees seeking their families and for other uses, such as law enforcement seeking matches to DNA sequenced during a criminal investigation. Since April 2018, more than 15 cold case investigations have been solved using the same technique and results at GedMatch. Initially some people removed their DNA from GedMatch, but it appears that the overwhelming sentiment, based on uploads, is that people either aren’t concerned or welcome the opportunity for their DNA matches to assist apprehending criminals.

Parabon Nanolabs in May established a genetic genealogy division headed by CeCe Moore who has worked in the adoptee community for the past several years. The division specializes in DNA testing forensic samples and then assisting law enforcement with the associated genetic genealogy.

Currently, GedMatch is the only vendor supporting the use of forensic sample matching. Neither 23anMe nor Ancestry allow uploaded data, and MyHeritage and Family Tree DNA’s terms of service currently preclude this type of use.


Wow talk about coming onto the DNA world stage with a boom.

MyHeritage went from a somewhat wobbly DNA start about 2 years ago to rolling out a chromosome browser at the end of January and adding important features such as SmartMatching which matches your DNA and your family trees. Add triangulation to this mixture, along with record matching, and you’re got a #1 winning combination.

It was Gilad Japhet, the MyHeritage CEO who at Rootstech who christened 2018 “The Year of the Segment,” and I do believe he was right. Additionally, he announced that MyHeritage partnered with the adoption community by offering 15,000 free kits to adoptees.

In November, MyHeritage hosted MyHeritage LIVE, their first user conference in Oslo, Norway which focused on both their genealogical records offerings as well as DNA. This was a resounding success and I hope MyHeritage will continue to sponsor conferences and invest in DNA. You can test your DNA at MyHeritage or upload your results from other vendors (instructions here). You can follow my journey and the conference in Olso here, here, here, here and here.


GDPR caused a lot of misery, and I’m glad the implementation is behind us, but the the ripples will be affecting everyone for years to come.

GDPR, the European Data Protection Regulation which went into effect on May 25,  2018 has been a mixed and confusing bag for genetic genealogy. I think the concept of users being in charge and understanding what is happened with their data, and in this case, their data plus their DNA, is absolutely sound. The requirements however, were created without any consideration to this industry – which is small by comparison to the Googles and Facebooks of the world. However, the Googles and Facebooks of the world along with many larger vendors seem to have skated, at least somewhat.

Other companies shut their doors or restricted their offerings in other ways, such as World Families Network and Oxford Ancestors. Vendors such as Ancestry and Family Tree DNA had to make unpopular changes in how their users interface with their software – in essence making genetic genealogy more difficult without any corresponding positive return. The potential fines, 20 million plus Euro for any company holding data for EU residents made it unwise to ignore the mandates.

In the genetic genealogy space, the shuttering of both YSearch and MitoSearch was heartbreaking, because that was the only location where you could actually compare Y STR and mitochondrial HVR1/2 results. Not everyone uploaded their results, and the sites had not been updated in a number of years, but the closure due to GDPR was still a community loss.

Today,, a nonprofit comprised of genetic genealogists, is making strides in replacing that lost functionality, plus, hopefully more.

On to more positive events.

Family Tree DNA

In April, Family Tree DNA announced a new version of the Big Y test, the Big Y-500 in which at least 389 additional STR markers are included with the Big Y test, for free. If you’re lucky, you’ll receive between 389 and 439 new markers, depending on how many STR markers above 111 have quality reads. All customers are guaranteed a minimum of 500 STR markers in total. Matching was implemented in December.

These additional STR markers allow genealogists to assemble additional line marker mutations to more granularly identify specific male lineages. In other words, maybe I can finally figure out a line marker mutation that will differentiate my ancestor’s line from other sons of my founding ancestor😊

In June, Family Tree DNA announced that they had named more than 100,000 SNPs which means many haplogroup additions to the Y tree. Then, in September, Family Tree DNA published their Y haplotree, with locations, publicly for all to reference.

I was very pleased to see this development, because Family Tree DNA clearly has the largest Y database in the industry, by far, and now everyone can reap the benefits.

In October, Family Tree DNA published their mitochondrial tree publicly as well, with corresponding haplogroup locations. It’s nice that Family Tree DNA continues to be the science company.

You can test your Y DNA, mitochondrial or autosomal (Family Finder) at Family Tree DNA. They are the only vendor offering full Y and mitochondrial services complete with matching.

2018 Conferences

Of course, there are always the national conferences we’re familiar with, but more and more, online conferences are becoming available, as well as some sessions from the more traditional conferences.

I attended Rootstech in Salt Lake City in February (brrrr), which was lots of fun because I got to meet and visit with so many people including Mags Gaulden, above, who is a WikiTree volunteer and writes at Grandma’s Genes, but as a relatively expensive conference to attend, Rootstech was pretty miserable. Rootstech has reportedly made changes and I hope it’s much better for attendees in 2019. My attendance is very doubtful, although I vacillate back and forth.

On the other hand, the MyHeritage LIVE conference was amazing with both livestreamed and recorded sessions which are now available free here along with many others at Legacy Family Tree Webinars.

Family Tree University held a Virtual DNA Conference in June and those sessions, along with others, are available for subscribers to view.

The Virtual Genealogical Association was formed for those who find it difficult or impossible to participate in local associations. They too are focused on education via webinars.

Genetic Genealogy Ireland continues to provide their yearly conference sessions both livestreamed and recorded for free. These aren’t just for people with Irish genealogy. Everyone can benefit and I enjoy them immensely.

Bottom line, you can sit at home and educate yourself now. Technology is wonderful!

2019 Conferences

In 2019, I’ll be speaking at the National Genealogical Society Family History Conference, Journey of Discovery, in St. Charles, providing the Special Thursday Session titled “DNA: King Arthur’s Mighty Genetic Lightsaber” about how to use DNA to break through brick walls. I’ll also see attendees at Saturday lunch when I’ll be providing a fun session titled “Twists and Turns in the Genetic Road.” This is going to be a great conference with a wonderful lineup of speakers. Hope to see you there.

There may be more speaking engagements at conferences on my 2019 schedule, so stay tuned!

The Leeds Method

In September, Dana Leeds publicized The Leeds Method, another way of grouping your matches that clusters matches in a way that indicates your four grandparents.

I combine the Leeds method with DNAPainter. Great job Dana!

Genetic Affairs

In December, Genetic Affairs introduced an inexpensive subscription reporting and visual clustering methodology, but you can try it for free.

I love this grouping tool. I have already found connections I didn’t know existed previously. I suggest joining the Genetic Affairs User Group on Facebook.

I wrote an article in January about how to use the client to download the trees of all of your matches and sort to find specific surnames or locations of their ancestors.

However, in December, added another feature with their new DNAGedcom client just released that downloads your match information from all vendors, compiles it and then forms clusters. They have worked with Dana Leeds on this, so it’s a combination of the various methodologies discussed above. I have not worked with the new tool yet, as it has just been released, but Kitty Cooper has and writes about it here.  If you are interested in this approach, I would suggest joining the Facebook DNAGedcom User Group.


I have not had a chance to work with Rootsfinder beyond the very basics, but Rootsfinder provides genetic network displays for people that you match, as well as triangulated views. Genetic networks visualizations are great ways to discern patterns. The tool creates match or triangulation groups automatically for you.

Training videos are available at the website and you can join the Rootsfinder DNA Tools group at Facebook.

Chips and Imputation

Illumina, the chip maker that provides the DNA chips that most vendors use to test changed from the OmniExpress to the GSA chip during the past year. Older chips have been available, but won’t be forever.

The newer GSA chip is only partially compatible with the OmniExpress chip, providing limited overlap between the older and the new results. This has forced the vendors to use imputation to equalize the playing field between the chips, so to speak.

This has also caused a significant hardship for GedMatch who is now in the position of trying to match reasonably between many different chips that sometimes overlap minimally. GedMatch introduced Genesis as a sandbox beta version previously, but are now in the process of combining regular GedMatch and Genesis into one. Yes, there are problems and matching challenges. Patience is the key word as the various vendors and GedMatch adapt and improve their required migration to imputation.

DNA Central

In June Blaine Bettinger announced DNACentral, an online monthly or yearly subscription site as well as a monthly newsletter that covers news in the genetic genealogy industry.

Many educators in the industry have created seminars for DNACentral. I just finished recording “Getting the Most out of Y DNA” for Blaine.

Even though I work in this industry, I still subscribed – initially to show support for Blaine, thinking I might not get much out of the newsletter. I’m pleased to say that I was wrong. I enjoy the newsletter and will be watching sessions in the Course Library and the Monthly Webinars soon.

If you or someone you know is looking for “how to” videos for each vendor, DNACentral offers “Now What” courses for Ancestry, MyHeritage, 23andMe, Family Tree DNA and Living DNA in addition to topic specific sessions like the X chromosome, for example.

Social Media

2018 has seen a huge jump in social media usage which is both bad and good. The good news is that many new people are engaged. The bad news is that people often given faulty advice and for new people, it’s very difficult (nigh on impossible) to tell who is credible and who isn’t. I created a Help page for just this reason.

You can help with this issue by recommending subscribing to these three blogs, not just reading an article, to newbies or people seeking answers.

Always feel free to post links to my articles on any social media platform. Share, retweet, whatever it takes to get the words out!

The general genetic genealogy social media group I would recommend if I were to select only one would be Genetic Genealogy Tips and Techniques. It’s quite large but well-managed and remains positive.

I’m a member of many additional groups, several of which are vendor or interest specific.

Genetic Snakeoil

Now the bad news. Everyone had noticed the popularity of DNA testing – including shady characters.

Be careful, very VERY careful who you purchase products from and where you upload your DNA data.

If something is free, and you’re not within a well-known community, then YOU ARE THE PRODUCT. If it sounds too good to be true, it probably is. If it sounds shady or questionable, it’s probably that and more, or less.

If reputable people and vendors tell you that no, they really can’t determine your Native American tribe, for example, no other vendor can either. Just yesterday, a cousin sent me a link to a “tribe” in Canada that will, “for $50, we find one of your aboriginal ancestors and the nation stamps it.” On their list of aboriginal people we find one of my ancestors who, based on mitochondrial DNA tests, is clearly NOT aboriginal. Snake oil comes in lots of flavors with snake oil salesmen looking to prey on other people’s desires.

When considering DNA testing or transfers, make sure you fully understand the terms and conditions, where your DNA is going, who is doing what with it, and your recourse. Yes, read every single word of those terms and conditions. For more about legalities, check out Judy Russell’s blog.

Recommended Vendors

All those DNA tests look yummy-good, but in terms of vendors, I heartily recommend staying within the known credible vendors, as follows (in alphabetical order).

For genetic genealogy for ethnicity AND matching:

  • 23andMe
  • Ancestry
  • Family Tree DNA
  • GedMatch (not a vendor because they don’t test DNA, but a reputable third party)
  • MyHeritage

You can read about Which DNA Test is Best here although I need to update this article to reflect the 2018 additions by MyHeritage.

Understand that both 23andMe and Ancestry will sell your DNA if you consent and if you consent, you will not know who is using your DNA, where, or for what purposes. Neither Family Tree DNA, GedMatch, MyHeritage, Genographic Project, Insitome, Promethease nor LivingDNA sell your DNA.

The next group of vendors offers ethnicity without matching:

  • Genographic Project by National Geographic Society
  • Insitome
  • LivingDNA (currently working on matching, but not released yet)

Health (as a consumer, meaning you receive the results)

Medical (as a contributor, meaning you are contributing your DNA for research)

  • 23andMe
  • Ancestry
  • DNA.Land (not a testing vendor, doesn’t test DNA)

There are a few other niche vendors known for specific things within the genetic genealogy community, many of whom are mentioned in this article, but other than known vendors, buyer beware. If you don’t see them listed or discussed on my blog, there’s probably a reason.

What’s Coming in 2019

Just like we couldn’t have foreseen much of what happened in 2018, we don’t have access to a 2019 crystal ball, but it looks like 2019 is taking off like a rocket. We do know about a few things to look for:

  • MyHeritage is waiting to see if envelope and stamp DNA extractions are successful so that they can be added to their database.
  • is extracting (attempting to) and processing DNA from stamps and envelopes for several people in the community. Hopefully they will be successful.
  • LivingDNA has been working on matching since before I met with their representative in October of 2017 in Dublin. They are now in Beta testing for a few individuals, but they have also just changed their DNA processing chip – so how that will affect things and how soon they will have matching ready to roll out the door is unknown.
  • Ancestry did a 2018 ethnicity update, integrating ethnicity more tightly with Genetic Communities, offered genetic traits and made some minor improvements this year, along with adding one questionable feature – showing your matches the location where you live as recorded in your profile. (23andMe subsequently added the same feature.) Ancestry recently said that they are promising exciting new tools for 2019, but somehow I doubt that the chromosome browser that’s been on my Christmas list for years will be forthcoming. Fingers crossed for something new and really useful. In the mean time, we can download our DNA results and upload to MyHeritage, Family Tree DNA and GedMatch for segment matching, as well as utilize Ancestry’s internal matching tools. DNA+tree matching, those green leaf shared ancestor hints, is still their strongest feature.
  • The Family Tree DNA Conference for Project Administrators will be held March 22-24 in Houston this year, and I’m hopeful that they will have new tools and announcements at that event. I’m looking forward to seeing many old friends in Houston in March.

Here’s what I know for sure about 2019 – it’s going to be an amazing year. We as a community and also as individual genealogists will be making incredible discoveries and moving the ball forward. I can hardly wait to see what quandaries I’ve solved a year from now.

What mysteries do you want to unravel?

I’d like to offer a big thank you to everyone who made 2018 wonderful and a big toast to finding lots of new ancestors and breaking down those brick walls in 2019.

Happy New Year!!!



I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

When DNA Leads You Astray

I’m currently going through what I refer to as “the great purge.”

This occurs when you can’t stand the accumulated piles and boxes of “stuff” and the file drawers are full, so you set about throwing away and giving away. (Yes, I know you just cringed. Me too.)

The great news is that I’ve run across so much old (as in decades old) genealogy from when I first began this journey. I used to make lists of questions and a research “to do” list. I was much more organized then, but there were also fewer “squirrel moments” available online to distract me with “look here, no, over here, no, wait….”

Most of those questions on my old genealogy research lists have (thankfully) since been answered, slowly, one tiny piece of evidence at a time. Believe me, that feeling is very rewarding and while on a daily basis we may not think we’re making much progress; in the big picture – we’re slaying that dragon!

However, genealogy is also fraught with landmines. If I had NOT found the documentation before the days of DNA testing, I could easily have been led astray.

“What?”, you ask, but “DNA doesn’t lie.” No, it doesn’t, but it will sure let you kid yourself about some things.

DNA is a joker and has no problem allowing you to fool yourself and by virtue of that, others as well.

Joke’s On Me

Decades ago, Aunt Margaret told me that her grandmother’s mother was “a Rosenbalm from up on the Lee County (VA) border.”

Now, at that time, I had absolutely NO reason to doubt what she said. After all, it’s her grandmother, Margaret Claxton/Clarkson who she knew personally, who didn’t pass away until my aunt was in her teens. Plenty close enough to know who Margaret Claxton’s mother was. Right?

DNA Astray Rosenbalm

Erroneous pedigree chart. Rebecca Rosenbalm is NOT the mother of Elizabeth Claxton/Clarkson.

I filled Rebecca Rosenbalm’s name into the appropriate space on my pedigree chart, was happy and smugly smiling like a Cheshire cat, right up until I accidentally discovered that the information was just plain wrong.

Uh oh….

Time Rolls On

As records became increasingly available, both in transcribed fashion and online, Hancock County, TN death certificates eventually could be obtained, one way or another. Being a dutiful genealogist, I collected all relevant documents for my ancestors, contentedly filing them in the “well that’s done” category – that is right up until Margaret Clarkson Bolton’s death certificate stopped me dead in my tracks.

margaret clarkson bolton death


Margaret’s mother wasn’t listed as Rebecca Rosenbalm, nor Rebecca anyone. She was listed as Betsy Speaks. Or was it Spears? In our family, Betsy is short for Elizabeth.

Who the heck was Elizabeth Speaks, or Spears. This was one fine monkey wrench!

A trip to Hancock County, Tennessee was in order.

I dug through dusty deed and court records, sifted through the archives in basements and the old jail building where I just KNEW my ancestors had inhabited cells at one time or another.

Yes, my ancestor’s records really were in jail!

Records revealed that the woman in question was Elizabeth Speaks, not Spears, although the Spears family did live in the area and had “married in” to many local families. Nothing is ever simple and our ancestors do have a perverse sense of humor.

Elizabeth Speak(s) was the daughter of Charles Speak, and the Speak family lived a few miles across the border into Lee County, Virginia. This high mountain land borders two states and three counties, so records are scattered among them – not to mention two fires in the Hancock County courthouse make research challenging.


I asked my Aunt Margaret who was still living at the time about this apparent discrepancy and she told me that the Rosenbalms “up in Rose Hill, Virginia” told her that her grandmother, Margaret Claxton/Clarkson was kin to them, so Margaret had assumed (there’s that word again) that Margaret Claxton’s mother was their Rebecca Rosenbalm.


The Kernel of Truth

Like so many family stories, there is a kernel of truth, surrounded by a multitude errors. Distilling the grain of truth is the challenge of course.

Margaret Claxton’s mother was Elizabeth (Betsy) Speak and her father was Charles Speak. Charles Speak’s sister, Rebecca married William Henderson Rosenbalm in 1854, had 4 children and died in February 1859. So there indeed was a woman named Rebecca (Speaks) Rosenbalm who had died young and wasn’t well known.

Rebecca’s sister Frances “Fanny” Speak also married that same William Henderson Rosenbalm in November 1859, a few months after Rebecca had died. Fannie also had 4 children, one of which was also named Rebecca Rosenbalm. Do you see a trend here?

So, indeed there were 7 living Rosenbalm children who were first cousins to Elizabeth Speak who married Samuel Claxton and lived a dozen miles away, over the mountains and across the Powell River. Now a dozen miles might not sound like much today, but in the mountains during horse and wagon days – 10 miles wasn’t trivial and required a multi-day commitment for a visit. In other words, the next generation of the family knew of their cousins but didn’t know them well.

The following generation included my Aunt Margaret who was told by those cousins that she was related to them through the Rosenbalm family. While, that was true for the Rosenbalm cousins, it was not true for Aunt Margaret who was related to the Rosenbalms through their common Speak ancestor.

Here’s what the family tree really looks like, only showing the lines under discussion.

DNA astray correct pedigree

You can see why Aunt Margaret might not know specifics. She was actually several generations removed from the common ancestor. She knew THAT they were related, but not HOW they were related and there were several Rebecca’s in several branches of the family.

Why Does This Matter?

You’ve probably guessed by now that someplace in here, there’s a moral to this story, so here it is!

You may have already surmised that I have autosomal DNA matches to cousins through the Rosenbalm/Speaks line.

DNA astray pedigree match

This is one example, but there are more, some being double cousins meaning two of Nicholas Speak’s 11 children’s descendants have intermarried. Life is a lot more complex in those hills and hollers than people think – and unraveling the relationships, both paper and genetic (which are sometimes two different things) is challenging.

DNA astray chromosome 10.png

I match this fourth cousin once removed (4C1R) on a healthy 18 cM segment on chromosome 10.

Wrong Conclusions

Now, think back to where I was originally in my research. I knew that Margaret Claxton/Clarkson was my aunt’s grandmother. I knew nothing at all about the Speak family and had never heard that surname.

Had I ONLY been looking to confirm the Rosenbalm connection, I certainly would have confirmed that I’m related to the Rosenbalm family descendants with this match. Except the conclusion that I descend from a Rosenbalm ancestor would have been WRONG. What we share are the Speak ancestors.

So really, the DNA didn’t lie, but unless I dissected what the DNA match was really telling me carefully and methodically with NO PRECONCEIVED NOTIONS, I would have “confirmed” erroneous information. Or, at least I would have thought that I confirmed it.

I would actually have been doing something worse meaning convincing myself of “facts” that weren’t accurate, which means I would have then been spreading around those cancerous bad trees. Guaranteed, I do NOT want to be that person.


I can tell you here and now that I have found several matches that were foolers because I share multiple ancestors with a person that I match, even if those multiple ancestors aren’t known to either or both of us. Every single DNA segment has its own unique history. I match one individual on two segments, one segment through my mom and one segment through my dad. Fortunately, we’ve identified both ancestors now, but imaging my initial surprise and confusion, especially given that my parents don’t share any common ancestors, communities or locations.

We have to evaluate all of the evidence to confirm that the conclusion being drawn in accurate.

DNA astray painting

One of the sanity checks I use, in addition to triangulation, is to paint my matches with known ancestors on my chromosomes using DNAPainter. Here’s the match to my cousin, and it overlaps with other people who share the same ancestor couple. Several matches are obscured behind the black box. If I discover someone that I supposedly match from a different ancestor couple sharing this segment of my father’s DNA, that’s a red neon flashing sign that something is wrong and I need to figure out what and why.

Ignoring this problem and hoping it will go away doesn’t work. I’ve tried😊

Three possible things can be wrong:

  1. The segment is identical by chance, not by descent. With a segment of 18 cM, that’s extremely unlikely. Triangulation with other people on this same segment on the same parent’s side should eliminate most false matches over 7cM. The larger the match, the more likely it is NOT identical by chance, meaning that it IS identical by descent or genealogically relevant.
  2. The segment is accurately matched but the genealogy is confused – such as my Rosenbalm example. This can happen with multiple ancestors, or descent from the same family but through an unknown connection. Looking for other connections to this family and sorting through matches’ trees often provides hints that resolve this situation. In my case, I might have noticed that I matched other people who descended from Nicholas Speak, which would not have been the case had I descended through the Rosenbalm family.
  3. The third scenarios is that the genealogy is plain flat out wrong. Yea, I know this one hurts. Get the saw ready.

The Devil in the Details

Always evaluate your matches in light of what you don’t know, not in order to confirm what you think you know. Play the devil’s advocate – all the time. After all, the devil really is in the details.



I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Introducing The Triangulator

Goran Runfeldt, a fellow genetic genealogist, has developed a killer app. You’ve heard of “The Terminator?” Well, meet “The Triangulator.”

Goran developed the Family Finder Segment Triangulator tool to run, using a user script or browser extension, on the Family Tree DNA site, after you sign in to your personal page. So there is no downloading, no spreadsheets, nothing messy.

The Triangulator tool is still in beta, so while the documentation is rather sparse, the tool is extremely intuitive if you understand triangulation.

What is Triangulation?

If you don’t understand triangulation, what it is, how it differs from match groups, and why you would want to utilize triangulation, may I please suggest that you read the following articles before utilizing the tool.

Concepts – Why Genetic Genealogy and Triangulation?

Concepts – Match Groups and Triangulation

Triangulation for Autosomal DNA

In a nutshell, triangulation provides you with a tool to show that not only do person A and B match you, on the same segment, but that they also match each other.

This means that they are not matching you on the same segment number from opposite sides of your family, meaning one person matching you from your mother’s side, and one from your father’s side. If they match other, as well as you, that means that they both descend from the same side of your tree (assuming they are not both matching you identically by chance.)

Family Tree DNA shows you, utilizing the chromosome browser, that two people match you, and on the same segment, but they don’t (yet) inform you about triangulation, although they are working on a triangulation tool.

Chromosome Browser

In the following example, we have 5 known relatives to Barbara, whose background chromosome is black. As you can see, there are three possible triangulation points where at least two of the people match Barbara.

Just to be sure, I downloaded these matches to a spreadsheet to illustrate that these matches are not trivial in size – meaning based on their size, they certainly should be legitimate matches.

All three matching areas on this chromosome (grey, gold and blue) are large enough to be considered substantial, and when compared to the charts created by Philip Gammon in the Match-Maker-Breaker article, we see that there is almost no likelihood that these are false matches, or matches by chance. In that article, when phasing matches to parents, we demonstrated that 97% of the matches of 12cM or more and/or SNP density of 2800 or more phase to one or the other parent, meaning they are legitimate matches. At 15cM, 100% of a child’s matches also match a parent, except for the X chromosome.

All of these cousins descend from Barbara’s paternal side, from the same family line, so the chances are pretty good that they do all triangulate, but let’s see.

Installing the Triangulator

First, you’ll need to install the triangulator.

My choice is to utilize the tool in Chrome, as I had difficulties with Internet Explorer compatibility. Chrome works just fine.

Goran has provided installation instructions for various browsers here.

If you’re installing this tool in Chrome, be sure to sign in to the Chrome web store while using Chrome to install the free app, or the store will ask you to download Chrome.

The installation is super easy – just one click, literally.


Ok, now the hardest part is over and we can get busy triangulating right away.

Sign in to your account at Family Tree DNA, using the browser where you just installed the tool.

Click on your Family Finder matches.

You’ll notice something new right away, a new icon that says “dnagen tools” at the top of your Family Finder matches. That’s the Triangulator.

On your match list, select the people you want to triangulate, just like you were selecting the people to compare in the chromosome browser.

Your comparison list will be built, like always, on the lower left hand side of your screen.

To triangulate, instead of clicking on the Chromosome Browser button, you’re going to click on the new dnagentools icon.

You’ll see a little dropdown box that says “Triangulator.”

Just click on “Triangulator.”

That’s it.


You’ll see the progress bar as the tool calculates the relationships of the people you are triangulating to each other.

When the tool finishes, it switches to the Triangulated Segment tab, which is what everyone wants to see first, but you can always click on the Relationships tab to view the various relationships of the people you selected to each other.

All of the genetically estimated relationship of all of the people you’ve triangulated to every other person in the group are displayed.

Triangulated Segments

When the Triangulator is finished, you’ll see the “Triangulated Segments,” tab displayed, assuming some segments do triangulate, with a small image of the chromosome beneath each triangulated segment.  The area where the segments match to you is colored in orange and where the segments all triangulate is colored in red.

Additionally, the tool shows you the actual overlap range, the number of matching positions and the overlapping number of SNPs as well.

If you think you’ve died and gone to triangulation heaven, you have.

Downloadable Data

In order for you to easily transfer this information to your spreadsheets where you are triangulating your segments (you are, aren’t you???) and assigning segments to ancestors, Goran has provided a nifty tool for that too.

At the bottom, Goran has included downloads of:

  • All matching segments for these people
  • The triangulated segments for these people over the match threshold selected, which defaults to 5, same as the chromosome browser
  • The relationships of these people to each other

Yes, you can lower the threshold, but just remember that as you do, the chances of the segments being identical by chance increases.

The Answer to Our Problem – Triangulation is Critical

In case you’ve gotten all excited about triangulating and forgotten that we were in the middle of a story problem, let’s look at our answer.

If you recall, there were three candidate regions for triangulating between Barbara’s known cousins on chromosome 3.

However, the Triangulator only shows two triangulating segments, the first and third. That means that the second of these large segments does NOT triangulate. That means that one of these third cousins matches Barbara on that segment in one of these three ways:

  • By chance
  • Because the overlapping matching region is too small to be considered a match
  • One person matches from Barbara’s mother’s side and one from her father’s side – as unlikely as that seems with third cousins.

The most likely reason for non-triangulation is the third reason, given those large matching segment segment sizes.

While the first and third (grey and blue) segment match groups both triangulate, the middle (gold) region does not.

If you’re shocked, just remember that no matter how intuitive a match seems, and no matter how “sure” you are that two people from the same line of your family certainly must triangulate because they both match you on the same segment, without triangulation, you REALLY DON’T KNOW!

And you all know about assume, right? Been there, done that, got educated!

Triangulate removes the assume from the equation.

In this case, triangulation tells me that I need to look on Barbara’s mother’s side for a second common ancestor with either C. Lentz or W. Lentz.

Just so you know, I was suspicious of this result, but given that I have access directly to the kits of both C. and W. Lentz, because I tested them both, I verified that they don’t match each other on this segment, both at Family Tree DNA and at GedMatch.  So this is no mistake.


This triangulation tool is a “goodness of heart” free application shared with the genetic genealogy community, and while Goran is willing to share, he doesn’t really want his inbox to be swamped. In the tool, he provides the following support information.

Goran follows the ISOGG Facebook group, so posting questions there will provide answers for you, and maybe for someone else following along too.

What if I Haven’t Tested at Family Tree DNA?

The Triangulator tool requires chromosome segment data, thankfully provided by Family Tree DNA. Therefore, this tool is not available for use with Ancestry data at Ancestry. You can, however, download your Ancestry DNA file to Family Tree DNA. Not everyone who tests at each vendor uploads to other places, so be sure to fish in all of the ponds, one way or another.

You can read about which vendors’ files are compatible to transfer to Family Tree DNA (and other places too) in the article Autosomal DNA Transfers – Which Companies Accept Which Tests?

The following chart shows transfer Files Accepted at Family Tree DNA.

Vendor Fully Compatible Version Partially Compatible Version Incompatible Version
Ancestry V1 – until May 2016 V2 – after May 2016 to present
23andMe V3 – until Nov. 2013 V4 – Nov. 2013 – Aug. 2017 V5 – Aug. 2017 to present
MyHeritage All

Keep in mind that the current V5 version of the 23andMe test is not compatible at all at Family Tree DNA. The 23andMe V4 version, in use between November of 2013 and August of 2017 is only partially compatible, as is the Ancestry V2 version in use since May 2016.

If you upload partially compatible versions, you’ll receive your closest (meaning largest) matches, generally about 20-25 % of your matches that you would receive if you tested on the Family Tree DNA platform.  However, you’ll be missing most of your matches, and you never know where that match you desperately need is hiding.

Note that this isn’t an artificial restriction imposed by Family Tree DNA, it’s a function of the other vendor’s chips only being partially compatible with the DNA processing chip used by Family Tree DNA.

If you want to see all of your matches and all of your segments, purchase the Family Finder test at Family Tree DNA.

Thank You

A really big thank you to Goran and the user interface developer, Jonas, for this wonderful tool.



I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Glossary – DNA – Deoxyribonucleic Acid

What is DNA and why do I care?

Good questions. Let’s take a look at the answer in general, then why we use DNA for genealogy.

The Recipe for You

DNA, deoxyribonucleic acid, is the book of life for all organisms. In essence, it’s the recipe for you – and what makes you unique.

DNA is formed of strands that twist to form the familiar double helix pattern.

The two strands are joined together by one of 4 different nucleotides, one extending from each side to connect in the middle. The nucleotides are:

  • Cytosine – C
  • Guanine – G
  • Thymine – T
  • Adenine – A

The nucleotide names don’t really matter for genetic genealogy, but what does matter is that the sequence of these nucleotides when chained together is what encodes information on long structures called chromosomes. Each person carries 22 chromosomes, plus the 23rd chromosome pair which is gender specific.

Using DNA for Genetic Genealogy

There are four different kinds of DNA that genealogists use in different ways for obtaining ancestors’ information relevant to genetic genealogy. Thankfully, we have 4 different kinds of DNA available to us because of unique inheritance patterns for each kind of DNA – meaning we inherited different kinds of DNA from different ancestral paths. If one kind of DNA doesn’t work in a particular situation, chances are good that another type will.

Genetic genealogy makes use of 4 different types of DNA.

  • Y DNA – passed from males to male children, only (your father’s paternal line)
  • Mitochondrial DNA – passed from females to both genders of children, but only females pass it on (your mother’s matrilineal line)

Y and mitochondrial DNA inheritance paths are shown on a pedigree chart in the graphic below, with the blue boxes representing Y DNA and the red circles representing mitochondrial DNA inheritance.

In addition to Y and mitochondrial DNA, genetic genealogists also use two kinds of DNA that reflect inheritance from additional ancestral lines, in addition to the red and blue lines shown above – meaning the ancestral lines with no color.

  • Autosomal DNA – the 22 chromosomes that recombine during reproduction.
  • X Chromosome – always contributed by the mother, but only contributed by the father to female children – this is the 23rd chromosome pair which recombines with a unique inheritance pattern.  You can read more about that in the article, X Marks the Spot.

Receiving What Kind of DNA from Whom

While the Y and mitochondrial DNA have unique and very prescribed inheritance patterns as shown by the red arrows pointing to the blue Y chromosome below at far left, and the red mitochondrial circles at far right, the 22 autosomal chromosomes are contributed equally by each parent. In other words, for each chromosome, a child inherits half of each parent’s DNA. How the selection of which DNA is contributed to each child is unknown.

A child’s gender is determined by the parent’s contributions to the 23rd chromosome, not shown above. The following chart explains gender determination by the X and Y combinations of the 23rd chromosome.

Received from Mother Received from Father
Male child X Y
Female child X X

The Y chromosome is what makes males male.

No Y chromosome?  You’re a female.

However, this X chromosome inheritance pattern provides us with the ability to look at X matches for males and know immediately that they had to have come from his mother’s lineage – because males don’t inherit an X chromosome from their father.

Autosomal DNA and Genetic Genealogy

The 22 non-gender chromosomes recombine in each generation, with half of each chromosome being contributed by each parent, as shown in the illustrations above.

You can see that in the first generation, the child received one blue and one yellow, or one pink and one green, chromosome. In giving each child exactly half of their DNA, each parent contributes some amount of ancestral DNA from generations upstream, as you can see in the mother/father and son/daughter generations.

For example, each child receives, on average, 25% of each of their grandparent’s DNA – although they can receive somewhat more or less than 25%, depending on the random nature of recombination.

Therefore, genetic genealogy testing companies compare tester’s autosomal DNA with other testers and look for common segments contributed by common ancestors, resulting in autosomal matching.

When relatively large segments match between three or more relatives who are not immediate family, we can attribute that DNA to a common ancestor. Of course, the challenge, and the thrill, is to determine which common ancestor contributed that common DNA to our triangulated match group. It’s a great way to verify our research and to break down brick walls.

Let’s face it, you received ALL of your DNA from SOME combination of ancestors, and if you carry large enough pieces from any specific ancestor, we can, hopefully, identify the source of that DNA segment by looking at the genealogy of those we match on that segment.

It’s a great puzzle to unravel, and best of all, it’s the puzzle of you.

More Info

The great news is that you can utilize your Y DNA, mitochondrial DNA and autosomal DNA differently, to provide you with different kinds of information about different ancestors and genealogy lines.

If you’d like to read more about how the 4 Kinds of DNA can be used, please read the short article, 4 Kinds of DNA for Genetic Genealogy.

You can also enter any word or phrase into the search box in the upper right hand corner of this blog to find additional useful information about any topic.

If You Want to Test

If you’d like to learn more about the various kinds of DNA tests available, and which one or ones would be the best for you, please read the article, Which DNA Test is Best?



I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Concepts – Segment Size, Legitimate and False Matches

Matchmaker, matchmaker, make me a match!

One of the questions I often receive about autosomal DNA is, “What, EXACTLY, is a match?”  The answer at first glance seems evident, meaning when you and someone else are shown on each other’s match lists, but it really isn’t that simple.

What I’d like to discuss today is what actually constitutes a match – and the difference between legitimate or real matches and false matches, also called false positives.

Let’s look at a few definitions before we go any further.


  • A Match – when you and another person are found on each other’s match lists at a testing vendor. You may match that person on one or more segments of DNA.
  • Matching Segment – when a particular segment of DNA on a particular chromosome matches to another person. You may have multiple segment matches with someone, if they are closely related, or only one segment match if they are more distantly related.
  • False Match – also known as a false positive match. This occurs when you match someone that is not identical by descent (IBD), but identical by chance (IBC), meaning that your DNA and theirs just happened to match, as a happenstance function of your mother and father’s DNA aligning in such a way that you match the other person, but neither your mother or father match that person on that segment.
  • Legitimate Match – meaning a match that is a result of the DNA that you inherited from one of your parents. This is the opposite of a false positive match.  Legitimate matches are identical by descent (IBD.)  Some IBD matches are considered to be identical by population, (IBP) because they are a result of a particular DNA segment being present in a significant portion of a given population from which you and your match both descend. Ideally, legitimate matches are not IBP and are instead indicative of a more recent genealogical ancestor that can (potentially) be identified.

You can read about Identical by Descent and Identical by Chance here.

  • Endogamy – an occurrence in which people intermarry repeatedly with others in a closed community, effectively passing the same DNA around and around in descendants without introducing different/new DNA from non-related individuals. People from endogamous communities, such as Jewish and Amish groups, will share more DNA and more small segments of DNA than people who are not from endogamous communities.  Fully endogamous individuals have about three times as many autosomal matches as non-endogamous individuals.
  • False Negative Match – a situation where someone doesn’t match that should. False negatives are very difficult to discern.  We most often see them when a match is hovering at a match threshold and by lowing the threshold slightly, the match is then exposed.  False negative segments can sometimes be detected when comparing DNA of close relatives and can be caused by read errors that break a segment in two, resulting in two segments that are too small to be reported individually as a match.  False negatives can also be caused by population phasing which strips out segments that are deemed to be “too matchy” by Ancestry’s Timber algorithm.
  • Parental or Family Phasing – utilizing the DNA of your parents or other close family members to determine which side of the family a match derives from. Actual phasing means to determine which parts of your DNA come from which parent by comparing your DNA to at least one, if not both parents.  The results of phasing are that we can identify matches to family groups such as the Phased Family Finder results at Family Tree DNA that designate matches as maternal or paternal based on phased results for you and family members, up to third cousins.
  • Population Based Phasing – In another context, phasing can refer to academic phasing where some DNA that is population based is removed from an individual’s results before matching to others. Ancestry does this with their Timber program, effectively segmenting results and sometimes removing valid IBD segments.  This is not the type of phasing that we will be referring to in this article and parental/family phasing should not be confused with population/academic phasing.

IBD and IBC Match Examples

It’s important to understand the definitions of Identical by Descent and Identical by Chance.

I’ve created some easy examples.

Let’s say that a match is defined as any 10 DNA locations in a row that match.  To keep this comparison simple, I’m only showing 10 locations.

In the examples below, you are the first person, on the left, and your DNA strands are showing.  You have a pink strand that you inherited from Mom and a blue strand inherited from Dad.  Mom’s 10 locations are all filled with A and Dad’s locations are all filled with T.  Unfortunately, Mother Nature doesn’t keep your Mom’s and Dad’s strands on one side or the other, so their DNA is mixed together in you.  In other words, you can’t tell which parts of your DNA are whose.  However, for our example, we’re keeping them separate because it’s easier to understand that way.

Legitimate Match – Identical by Descent from Mother


In the example above, Person B, your match, has all As.  They will match you and your mother, both, meaning the match between you and person B is identical by descent.  This means you match them because you inherited the matching DNA from your mother. The matching DNA is bordered in black.

Legitimate Match – Identical by Descent from Father

In this second example, Person C has all T’s and matches both you and your Dad, meaning the match is identical by descent from your father’s side.


You can clearly see that you can have two different people match you on the same exact segment location, but not match each other.  Person B and Person C both match you on the same location, but they very clearly do not match each other because Person B carries your mother’s DNA and Person C carries your father’s DNA.  These three people (you, Person B and Person C) do NOT triangulate, because B and C do not match each other.  The article, “Concepts – Match Groups and Triangulation” provides more details on triangulation.

Triangulation is how we prove that individuals descend from a common ancestor.

If Person B and Person C both descended from your mother’s side and matched you, then they would both carry all As in those locations, and they would match you, your mother and each other.  In this case, they would triangulate with you and your mother.

False Positive or Identical by Chance Match

This third example shows that Person D does technically match you, because they have all As and Ts, but they match you by zigzagging back and forth between your Mom’s and Dad’s DNA strands.  Of course, there is no way for you to know this without matching Person D against both of your parents to see if they match either parent.  If your match does not match either parent, the match is a false positive, meaning it is not a legitimate match.  The match is identical by chance (IBC.)


One clue as to whether a match is IBC or IBD, even without your parents, is whether the person matches you and other close relatives on this same segment.  If not, then the match may be IBC. If the match also matches close relatives on this segment, then the match is very likely IBD.  Of course, the segment size matters too, which we’ll discuss momentarily.

If a person triangulates with 2 or more relatives who descend from the same ancestor, then the match is identical by descent, and not identical by chance.

False Negative Match

This last example shows a false negative.  The DNA of Person E had a read error at location 5, meaning that there are not 10 locations in a row that match.  This causes you and Person E to NOT be shown as a match, creating a false negative situation, because you actually do match if Person E hadn’t had the read error.


Of course, false negatives are by definition very hard to identify, because you can’t see them.

Comparisons to Your Parents

Legitimate matches will phase to your parents – meaning that you will match Person B on the same amount of a specific segment, or a smaller portion of that segment, as one of your parents.

False matches mean that you match the person, but neither of your parents matches that person, meaning that the segment in question is identical by chance, not by descent.

Comparing your matches to both of your parents is the easiest litmus paper test of whether your matches are legitimate or not.  Of course, the caveat is that you must have both of your parents available to fully phase your results.

Many of us don’t have both parents available to test, so let’s take a look at how often false positive matches really do occur.

False Positive Matches

How often do false matches really happen?

The answer to that question depends on the size of the segments you are comparing.

Very small segments, say at 1cM, are very likely to match randomly, because they are so small.  You can read more about SNPs and centiMorgans (cM) here.

As a rule of thumb, the larger the matching segment as measured in cM, with more SNPs in that segment:

  • The stronger the match is considered to be
  • The more likely the match is to be IBD and not IBC
  • The closer in time the common ancestor, facilitating the identification of said ancestor

Just in case we forget sometimes, identifying ancestors IS the purpose of genetic genealogy, although it seems like we sometimes get all geeked out by the science itself and process of matching!  (I can hear you thinking, “speak for yourself, Roberta.”)

It’s Just a Phase!!!

Let’s look at an example of phasing a child’s matches against those of their parents.

In our example, we have a non-endogamous female child (so they inherit an X chromosome from both parents) whose matches are being compared to her parents.

I’m utilizing files from Family Tree DNA. Ancestry does not provide segment data, so Ancestry files can’t be used.  At 23andMe, coordinating the security surrounding 3 individuals results and trying to make sure that the child and both parents all have access to the same individuals through sharing would be a nightmare, so the only vendor’s results you can reasonably utilize for phasing is Family Tree DNA.

You can download the matches for each person by chromosome segment by selecting the chromosome browser and the “Download All Matches to Excel (CSV Format)” at the top right above chromosome 1.


All segment matches 1cM and above will be downloaded into a CSV file, which I then save as an Excel spreadsheet.

I downloaded the files for both parents and the child. I deleted segments below 3cM.

About 75% of the rows in the files were segments below 3cM. In part, I deleted these segments due to the sheer size and the fact that the segment matching was a manual process.  In part, I did this because I already knew that segments below 3 cM weren’t terribly useful.

Rows Father Mother Child
Total 26,887 20,395 23,681
< 3 cM removed 20,461 15,025 17,784
Total Processed 6,426 5,370 5,897

Because I have the ability to phase these matches against both parents, I wanted to see how many of the matches in each category were indeed legitimate matches and how many were false positives, meaning identical by chance.

How does one go about doing that, exactly?

Downloading the Files

Let’s talk about how to make this process easy, at least as easy as possible.

Step one is downloading the chromosome browser matches for all 3 individuals, the child and both parents.

First, I downloaded the child’s chromosome browser match file and opened the spreadsheet.

Second, I downloaded the mother’s file, colored all of her rows pink, then appended the mother’s rows into the child’s spreadsheet.

Third, I did the same with the father’s file, coloring his rows blue.

After I had all three files in one spreadsheet, I sorted the columns by segment size and removed the segments below 3cM.

Next, I sorted the remaining items on the spreadsheet, in order, by column, as follows:

  • End
  • Start
  • Chromosome
  • Matchname


My resulting spreadsheet looked like this.  Sorting in the order prescribed provides you with the matches to each person in chromosome and segment order, facilitating easy (OK, relatively easy) visual comparison for matching segments.

I then colored all of the child’s NON-matching segments green so that I could see (and eventually filter the matchname column by) the green color indicating that they were NOT matches.  Do this only for the child, or the white (non-colored) rows.  The child’s matchname only gets colored green if there is no corresponding match to a parent for that same person on that same chromosome segment.


All of the child’s matches that DON’T have a corresponding parent match in pink or blue for that same person on that same segment will be colored green.  I’ve boxed the matches so you can see that they do match, and that they aren’t colored green.

In the above example, Donald and Gaff don’t match either parent, so they are all green.  Mess does match the father on some segments, so those segments are boxed, but the rest of Mess doesn’t match a parent, so is colored green.  Sarah doesn’t match any parent, so she is entirely green.

Yes, you do manually have to go through every row on this combined spreadsheet.

If you’re going to phase your matches against your parent or parents, you’ll want to know what to expect.  Just because you’ve seen one match does not mean you’ve seen them all.

What is a Match?

So, finally, the answer to the original question, “What is a Match?”  Yes, I know this was the long way around the block.

In the exercise above, we weren’t evaluating matches, we were just determining whether or not the child’s match also matched the parent on the same segment, but sometimes it’s not clear whether they do or do not match.


In the case of the second match with Mess on chromosome 11, above, the starting and ending locations, and the number of cM and segments are exactly the same, so it’s easy to determine that Mess matches both the child and the father on chromosome 11. All matches aren’t so straightforward.

Typical Match


This looks like your typical match for one person, in this case, Cecelia.  The child (white rows) matches Cecelia on three segments that don’t also match the child’s mother (pink rows.)  Those non-matching child’s rows are colored green in the match column.  The child matches Cecelia on two segments that also match the mother, on chromosome 20 and the X chromosome.  Those matching segments are boxed in black.

The segments in both of these matches have exact overlaps, meaning they start and end in exactly the same location, but that’s not always the case.

And for the record, matches that begin and/or end in the same location are NOT more likely to be legitimate matches than those that start and end in different locations.  Vendors use small buckets for matching, and if you fall into any part of the bucket, even if your match doesn’t entirely fill the bucket, the bucket is considered occupied.  So what you’re seeing are the “fuzzy” bucket boundaries.

(Over)Hanging Chad


In this case, Chad’s match overhangs on each end.  You can see that Chad’s match to the child begins at 52,722,923 before the mother’s match at 53,176,407.

At the end location, the child’s matching segment also extends beyond the mother’s, meaning the child matches Chad on a longer segment than the mother.  This means that the segment sections before 53,176,407 and after 61,495,890 are false negative matches, because Chad does not also match the child’s mother of these portions of the segment.

This segment still counts as a match though, because on the majority of the segment, Chad does match both the child and the mother.

Nested Match


This example shows a nested match, where the parent’s match to Randy begins before the child’s and ends after the child’s, meaning that the child’s matching DNA segment to Randy is entirely nested within the mother’s.  In other words, pieces got shaved off of both ends of this segment when the child was inheriting from her mother.

No Common Matches


Sometimes, the child and the parent will both match the same person, but there are no common segments.  Don’t read more into this than what it is.  The child’s matches to Mary are false matches.  We have no way to judge the mother’s matches, except for segment size probability, which we’ll discuss shortly.

Look Ma, No Parents


In this case, the child matches Don on 5 segments, including a reasonably large segment on chromosome 9, but there are no matches between Don and either parent.  I went back and looked at this to be sure I hadn’t missed something.

This could, possibly, be an instance of an unseen a false negative, meaning perhaps there is a read issue in the parent’s file on chromosome 9, precluding a match.  However, in this case, since Family Tree DNA does report matches down to 1cM, it would have to be an awfully large read error for that to occur.  Family Tree DNA does have quality control standards in place and each file must pass the quality threshold to be put into the matching data base.  So, in this case, I doubt that the problem is a false negative.

Just because there are multiple IBC matches to Don doesn’t mean any of those are incorrect.  It’s just the way that the DNA is inherited and it’s why this type of a match is called identical by chance – the key word being chance.

Split Match


This split match is very interesting.  If you look closely, you’ll notice that Diane matches Mom on the entire segment on chromosome 12, but the child’s match is broken into two.  However, the number of SNPs adds up to the same, and the number of cM is close.  This suggests that there is a read error in the child’s file forcing the child’s match to Diane into two pieces.

If the segments broken apart were smaller, under the match threshold, and there were no other higher matches on other segments, this match would not be shown and would fall into the False Negative category.  However, since that’s not the case, it’s a legitimate match and just falls into the “interesting” category.

The Deceptive Match


Don’t be fooled by seeing a family name in the match column and deciding it’s a legitimate match.  Harrold is a family surname and Mr. Harrold does not match either of the child’s parents, on any segment.  So not a legitimate match, no matter how much you want it to be!

Suspicious Match – Probably not Real


This technically is a match, because part of the DNA that Daryl matches between Mom and the child does overlap, from 111,236,840 to 113,275,838.  However, if you look at the entire match, you’ll notice that not a lot of that segment overlaps, and the number of cMs is already low in the child’s match.  There is no way to calculate the number of cMs and SNPs in the overlapping part of the segment, but suffice it to say that it’s smaller, and probably substantially smaller, than the 3.32 total match for the child.

It’s up to you whether you actually count this as a match or not.  I just hope this isn’t one of those matches you REALLY need.  However, in this case, the Mom’s match at 15.46 cM is 99% likely to be a legitimate match, so you really don’t need the child’s match at all!!!

So, Judge Judy, What’s the Verdict?

How did our parental phasing turn out?  What did we learn?  How many segments matched both the child and a parent, and how many were false matches?

In each cM Size category below, I’ve included the total number of child’s match rows found in that category, the number of parent/child matches, the percent of parent/child matches, the number of matches to the child that did NOT match the parent, and the percent of non-matches. A non-match means a false match.

So, what the verdict?


It’s interesting to note that we just approach the 50% mark for phased matches in the 7-7.99 cM bracket.

The bracket just beneath that, 6-6.99 shows only a 30% parent/child match rate, as does 5-5.99.  At 3 cM and 4 cM few matches phase to the parents, but some do, and could potentially be useful in groups of people descended from a known common ancestor and in conjunction with larger matches on other segments. Certainly segments at 3 cM and 4 cM alone aren’t very reliable or useful, but that doesn’t mean they couldn’t potentially be used in other contexts, nor are they always wrong. The smaller the segment, the less confidence we can have based on that segment alone, at least below 9-15cM.

Above the 50% match level, we quickly reach the 90th percentile in the 9-9.99 cM bracket, and above 10 cM, we’re virtually assured of a phased match, but not quite 100% of the time.

It isn’t until we reach the 16cM category that we actually reach the 100% bracket, and there is still an outlier found in the 18-18.99 cM group.

I went back and checked all of the 10 cM and over non-matches to verify that I had not made an error.  If I made errors, they were likely counting too many as NON-matches, and not the reverse, meaning I failed to visually identify matches.  However, with almost 6000 spreadsheet rows for the child, a few errors wouldn’t affect the totals significantly or even noticeably.

I hope that other people in non-endogamous populations will do the same type of double parent phasing and report on their results in the same type of format.  This experiment took about 2 days.

Furthermore, I would love to see this same type of experiment for endogamous families as well.


If you can phase your matches to either or both of your parents, absolutely, do.  This this exercise shows why, if you have only one parent to match against, you can’t just assume that anyone who doesn’t match you on your one parent’s side automatically matches you from the other parent. At least, not below about 15 cM.

Whether you can phase against your parent or not, this exercise should help you analyze your segment matches with an eye towards determining whether or not they are valid, and what different kinds of matches mean to your genealogy.

If nothing else, at least we can quantify the relatively likelihood, based on the size of the matching segment, in a non-endogamous population, a match would match a parent, if we had one to match against, meaning that they are a legitimate match.  Did you get all that?

In a nutshell, we can look at the Parent/Child Phased Match Chart produced by this exercise and say that our 8.5 cM match has about a 66% chance of being a legitimate match, and our 10.5 cM match has a 95% change of being a legitimate match.

You’re welcome.




I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Nine Autosomal Tools at Family Tree DNA

The introduction of the Phased Family Finder Matches has added a new way to view autosomal DNA results at Family Tree DNA and a powerful new tool to the genealogists toolbox.

The Phased Family Finder Matches are the 9th tool provided for autosomal test results by Family Tree DNA. Did you know where were 9?

Each of the different methodologies provides us with information in a unique way to assist in our relentless search for cousins, ancestors and our quests to break down brick walls.

That’s the good news.

The not-so-good news is that sometimes options are confusing, so I’d like to review each tool for viewing autosomal match information, including:

  • When to use each tool
  • How to use each tool
  • What the results mean to you
  • The unique benefits of each tool
  • The cautions and things you need to know about each tool including what they are not

The tools are:

  1. Regular Matching
  2. ICW (In Common With)
  3. Not ICW (Not In Common With)
  4. The Matrix
  5. Chromosome Browser
  6. Phased Family Matching
  7. Combined Advanced Matching
  8. MyOrigins Matching
  9. Spreadsheet Matching

You Have Options

Family Tree DNA provides their clients with options, for which I am eternally grateful. I don’t want any company deciding for me which matches are and are not important based on population phasing (as opposed to parental phasing), and then removing matches they feel are unimportant. For people who are not fully endogamous, but have endogamous lines, matches to those lines, which are valid matches, tend to get stripped away when a company employs population based phasing – and once those matches are gone, there is no recovery unless your match happens to transfer their results to either Family Tree DNA or GedMatch.

The great news is that the latest new option, Phased Family Matching, is focused on making easy visual comparisons of high quality parental matches which is especially useful for those who don’t want to dig deeply.

There are good options for everyone at all ranges of expertise, from beginners to those who like to work with spreadsheets and extract every teensy bit of information.

So let’s take a look at all of your matching options at Family Tree DNA. If you’re not taking advantage of all of them, you’re missing out. Each option is unique and offers something the other options don’t offer.

In case you’re curious, I’ll be bouncing back and forth between my kit, my mother’s kit and another family member’s kit because, based on their matches utilizing the various tools, different kits illustrate different points better.

Also, please note that you can click on any image to see a larger version.

Selecting Options

FF9 options

Your selection options for Family Finder are available on both your Dashboard page under the Family Finder heading, right in the middle of the page, and the dropdown myFTDNA menu, on the upper left, also under Family Finder.

Ok, let’s get started. 

#1 – Regular Matching

By regular matching, I’m referring to the matches you see when you click on the “Matches” tab on your main screen under Family Finder or in the dropdown box.

FF9 regular matching

Everyone uses this tool, but not everyone knows about the finer points of various options provided.

There’s a lot of information here folks. Are you systematically using this information to its full advantage?

Your matches are displayed in the highest match first order. All of the information we utilize regularly (or should) is present, including:

  • Relationship Range
  • Match Date
  • Shared CentiMorgans
  • Longest (shared) Block
  • X-Match
  • Known Relationship
  • Ancestral Surnames (double click to see entire list)
  • Notes
  • E-mail envelope icon
  • Family Tree
  • Parental “side” icon

The Expansion “+” at the right side of each match, shown below, shows us:

  • Tests Taken
  • mtDNA haplogroup
  • Y haplogroup

Clicking on your match’s profile (their picture) provides additional information, if they have provided that information:

  • Most distant maternal ancestor
  • Most distant paternal ancestor
  • Additional information in the “about me” field, sometimes including a website link

On the match page, you can search for matches either by their full name, first name, last name or click on the “Advanced Search” to search for ancestral surname. These search boxes can be found at the top right.

FF9 advanced search

The Advanced Search feature, underneath the search boxes at right, also provides you with the option of combining search criteria, by opening two drop down boxes at the top left of the screen.

FF9 search combo

Let’s say I want to see all of my matches on the X chromosome. I make that selection and the only people displayed as matches are those whom I match on the X chromosome.

You can see that in this case, there are 280 matches. If I have any Phased Family Matches, then you will see how many X matches I have on those tabs too.

The first selection box works in combination with the second selection box.

FF9 search combo 2

Now, let’s say I want to sort in Longest Block Order. That section sorts and displays the people who match me on the X chromosome in Longest Block Order.

FF9 longest block


  • Take the Family Finder test or transfer your results from either 23andMe (V3 only) or Ancestry (V1 only, currently.)
  • Match must be over the matching threshold of 9cM if shared cM are less than 20, or, the longest block must be at least 7.69 cM if the total shared cM is 20 or greater.

Power Features

  • The ability to customize your view by combining search, match and sort criteria.


  • It’s easy to forget that you’re ONLY working with X matches, for example, once you sort, and not all of your matches. Note the Reset Filter button above your matches which clears all of the sort and search criteria. Always reset, just to be on the safe side, before you initiate another sort.

FF9 reset filter

  • Please note that the search boxes and logic are in the process of being redesigned, per a conversation Michael Davila, Director of Product Development, on 7-20-2016. Currently, if you search for the name “Donald,” for example, and then do an “in common with” match to someone on the Donald match list, you’ll only see those individuals who are in common with “Donald,” meaning anyone without “Donald” as one of their names won’t show as a match. The logic will be revised shortly so that you will see everyone “in common with,” not just “Donald.” Just be aware of this today and don’t do an ICW with someone you’ve searched for in the search box until this is revised.

#2 – In Common With (ICW)

You can select anyone from your match list to see who you match in common with them.

This is an important feature because it gives me a very good clue as to who else may match me on that same genealogical line.

For example, cousin Donald is related on the paternal line. I can select Donald by clicking the box to the left of his profile which highlights his row in yellow. I can then select what I want to do with Don’s match.


You will see that Don is selected in the match selection box on the lower left, and the options for what I can do with Don are above the matches. Those options are:

  • Chromosome Browser
  • In Common With
  • Not in Common With

Let’s select “In Common With.”

Now, the matches displayed will ONLY be those that I match in common with Don, meaning that Donald and I both match these people.

FF9 ICW matches

As you can see, I’m displaying my matches in common with Don in longest block order. You can click on any of the header columns to display in reverse order.

There are a total of 82 matches in common with Don and of those, 50 are paternally assigned. We’ll talk about how parental “side” assignments happen in a minute.


  • None

Power Features

  • Can see at a glance which matches warrant further inspection and may (or may not) be from a common genealogical line.


  • An ICW match does NOT mean that the matching individual IS from the same common line – only genealogical research can provide that information.
  • An ICW matches does NOT mean that these three people, you, your match and someone who matches both of you is triangulated – meaning matching on the same segment. Only individual matching with each other provides that information.
  • It’s easy to forget that you’re not working with your entire match list, but a subset. You can see that Donald’s name appears in the box at the upper left, along with the function you performed (ICW) and the display order if you’ve selected any options from the second box.

# 3 – Not In Common With

Now, let’s say I want to see all of my X matches that are not in common with my mother, who is in the data base, which of course suggests that they are either on my father’s side or identical by chance. My father is not in the data base, and given that he died in 1963, there is no chance of testing him.

Keep in mind though that because X matches aren’t displayed unless you have another qualifying autosomal segment, that they are more likely to be valid matches than if they were displayed without another matching segment that qualifies as a match.

For those who don’t know, X matches have a unique inheritance pattern which can yield great clues as to which side of your tree (if you’re a male), and which ancestors on various sides of your tree X matches MUST come from (males and females both.) I wrote about this here, along with some tools to help you work with X matches.

To utilize the “Not In Common With” feature, I would select my mother and then select the “Not In Common With” option, above the matches.


I would then sort the results to see the X matches by clicking on the top of the column for X-Match – or by any other column that I wanted to see.


I have one very interesting not in common with match – and that’s with a Miller male that I would have assumed, based on the surname, was a match from my mother’s side. He’s obviously not, at least based on that X match. No assuming allowed!


  • None

Power Features

  • Can see at a glance which matches warrant further inspection and may be from a common genealogical line – or are NOT in common with a particular person.


  • Be sure to understand that “not in common with” means that you, the person you match and the list of people shown as a result of the “Not ICW” do not all match each other.  You DO match the person on your match list, but the list of “not in common with” matches are the people who DON’T match both of you.  Not in common with is the opposite of “in common with” where your match list does match you and the person you’re matching in common with.
  • The X and other chromosome matches may be inherited from different ancestors. Every matching segment needs to be analyzed separately.

#4 – The Matrix

Let’s say that I have a list of matches, perhaps a list of individuals that I found doing an ICW with my cousin, and I wonder if these people match each other. I can utilize the Matrix grid to see.

Going back to the ICW list with cousin Donald, let’s see if some of those people match each other on the Matrix.

Let’s pick 5 people.

I’m selecting Cheryl, Rex, Charles, Doug and Harold.

Margaret Lentz chart

I’m making these particular selections because I know that all of these people, except Harold, are related to my mother, Barbara, shown on the bottom row of the chart above.  This chart, borrowed from another article (William is not in this comparison), shows how Cheryl, Rex, Charles and Barbara who have all DNA tested are related to each other.  Some are related through the Miller line, some through the dual Lentz/Miller line, and some just from the Lentz line.  Doug is related through the Miller line only, and at least 4 generations upstream. Doug may also be related through multiple lines, but is not descended from the Lentz line.

The people I’ve selected for the matrix are not all related to each other, and they don’t all share one common ancestral line.

Harold is a wild card – I have no idea how he is related or who he is related to, so let’s see what we can determine.

FF9 Matrix choices

As you make selections on the Matrix page, up to 10 selections are added to the grid.

FF9 Matrix grid

You can see that Charles matches Cheryl and Harold.

You can see that Rex matches Charles and Cheryl and Harold.

You can see that Doug matches only Cheryl, but this isn’t surprising as the common line between Doug and the known cousins is at least 4 generations further back in time on the Miller line.

The known relationship are:

  • Don and Cheryl are siblings, descended from the Lentz/Miller.
  • Rex is a known cousin on the Miller/Lentz line
  • Charles is a known cousin on the Lentz line only
  • Doug is a known cousin on the Miller line only

Let me tell you what these matches indicate to me.

Given that Harold matches Rex and Charles and Cheryl, IF and that’s a very big IF, he descends from the same lines, then he would be related to both sides of this family, meaning both the Miller and Lentz lines.

  • He could be a downstream cousin after the Lentz and Miller lines married, meaning a descendant of Margaret Lentz and John David Miller, or other Miller/Lentz couples
  • He could be independently related to both lines upstream. They did intermarry.
  • He could be related to Charles or Rex through an entirely separate line that has nothing to do with Lentz or Miller.

So I have no exact answer, but this does tell me where to look. Maybe I could find additional known Lentz or Miller line descendants to add to the Matrix which would provide additional information.


  • None

Power Features

  • Can see at a glance which matches match each other as well.


  • Matrix matches do NOT mean that these individuals match on the same segments, it just means they do match on some segment. A matrix match is not triangulation.
  • Matrix matches can easily be from different lines to different ancestors. For example, Harold could match each one of three individuals that he matches on different ancestral lines that have nothing to do with their common Lentz or Miller line.

#5 – Chromosome Browser

I want to know if the 5 individuals that I selected to compare in the Matrix match me on any of the same segments.

I’m going back to my ICW list with cousin Donald.

I’ve selected my 5 individuals by clicking the box to the left of their profiles, and I’m going to select the chromosome browser.

FF9 chromosome browser choices

The chromosome browser shows you where these individuals match you.

Overlapping segments mean the people who overlap all match you on that segment, but overlapping segments do NOT mean they also match each other on these same segments.

Translated, this means they could be matching you on different sides of your family or are identical by chance. Remember, you have two sides to your chromosome, a Mom’s side and a Dad’s side, which are intermingled, and some people will match you by chance. You can read more about this here.

The chromosome browser shows you THAT they match you – it doesn’t tell you HOW they match you or if they match each other.

FF9 chromosome browser view2

The default view shows matches of 5cM or greater. You can select different thresholds at the top of the comparison list.

You’ll notice that all 5 of these people match me, but that only two of them match me on overlapping segments, on chromosome 3. Among those 5 people, only those who match me on the same segments have the opportunity to triangulate.

This gives you the opportunity to ask those two individuals if they also match each other on this same chromosome. In this case, I have access to both of those kits, and I can tell you that they do match each other on those segments, so they do triangulate mathematically. Since I know the common ancestor between myself, Cheryl and Rex, I can assign this segment to John David Miller and Margaret Lentz. That, of course, is the goal of autosomal matching – to identify the common ancestor of the individuals who match.

You also have the option to download the results of this chromosome browser match into a spreadsheet. That’s the left-most download option at the top of the chromosomes. We’ll talk about how to utilize spreadsheets last.

The middle option, “view in a table” shows you these results, one pair of individuals at a time, in a table.

This is me compared to Rex. You will have a separate table for each one of the individuals as compared to you. You switch between them at the bottom right.

FF9 chromosome browser table2

The last download option at the furthest right is for your entire list of matches and where they match you on your chromosomes.


  • None

Power Features

  • Can visually see where individuals and multiple people match you on your chromosomes, and where they overlap which suggests they may triangulate.


  • When two people match you on the same chromosome segment, this does not mean that they also match each other on that segment. Matching on overlapping segments is not triangulation, although it’s the first step to triangulation.
  • For triangulation, you will need to contact your matches to determine if they also match each other on the same segment where they both match you. You may also be able to deduce some family matching based on other known individuals from the same line that you also match on that same segment, if your match matches them on that segment too.
  • The chromosome browser is limited to 5 people at a time, compared to you. By utilizing spreadsheet matching, you can see all of your matches on a particular segment, together.

#6 – Phased Family Matching

Phased Family Matching is the newest tool introduced by Family Tree DNA. I wrote about it here. The icons assigned to matches make it easy to see at a glance which side of your family, maternal or paternal, or both, a match derives from.

ff9 parental iconPhased Family Matching allows you to link the DNA results of qualified relatives to your tree and by doing so, Family Tree DNA assigns matches to maternal or paternal buckets, or sometimes, both, as shown in the icon above.

This phased matching utilizes both parental phasing in addition to a slightly higher threshold to assure that the matches they assign to parental sides can be done so with confidence. In order to be assigned a maternal or paternal icon, your match must match you and your qualifying relative at 9cM or greater on at least one of the same segments over the matching threshold. This is different than an ICW match, which only tells you that you do match, not how you match or that it’s on the same segment.

Qualifying relatives, at this time, are parents, grandparents, uncles, aunts and first cousins. Additional relatives are planned in the near future.

Icons are ONLY placed based on phased match results that meet the criteria.

These icons are important because they indicate which side of your family a match is from with a great deal of precision and confidence – beyond that of regular matching.

This is best illustrated by an example.

Phased FF2

In this example, this individual has their father and mother both in the system. You can see that their father’s side is assigned a blue icon and their mother’s side is assigned a pink (red) icon. This means they match this person on only one side of their family.  A purple icon with both a male and female image means that this person is related to you on both sides of your family.  Full siblings, when both parents are in the system to phase against, would receive both icons.

This sibling is showing as matching them on both sides of their family, because both parents are available for phasing.

If only one parent was available, the father, for example, then the sibling would only shows the paternal icon. The maternal icon is NOT added by inference. In Phased Family Matching, nothing is added by inference – only by exact allele by allele matching on the same segment – which is the definition of parentally phased matching.

These icons are ONLY added as a result of a high quality phased matches at or above the phased match threshold of 9cM.

You can read more about the Family Matching System in the Family Tree DNA Learning Center, here.


  • You must have tested (or transferred a kit) for a qualifying relative. At this time qualifying relatives parents, grandparents, aunts, uncles and first cousins.
  • You must have uploaded a GEDCOM file or created a tree.
  • You must link the DNA of qualifying kits to that person your tree. I provided instructions for how to do this in this article.
  • You must match at the normal matching threshold to be on the match list, AND then match at or above the Phased Family Match threshold in the way described to be assigned an icon.
  • You must match on at least one full segment at or above 9cM.

Power Features

  • Can visually see which side of your family an individual is related to. You can be confident this match is by descent because they are phased to your parent or qualifying family member.


  • If someone does not have an icon assigned, it does NOT mean they are not related on that particular side of the family. It only means that the match is not strong enough to generate an icon.
  • If someone DOES match on a particular side of the family, you will still need to do additional matching and genealogy work to determine which ancestor they descend from.
  • If someone is assigned to one side of your family, it does NOT preclude the possibility that they have a smaller or weaker match to your other side of the family.
  • If you upload a new Gedcom file after linking DNA to people in your tree, you will overwrite your DNA links and will have to relink individuals.
  • Having an icon assigned indicates mathematical triangulation for the person who tested, their parents or close relative against whom they were phased and their match with the icon.  However, technically, it’s not triangulation in cases where very close relatives are involved.  For example, parents, aunts, uncles and siblings are too closely related to be considered the third leg of the triangulation stool.  First cousins, however, in my opinion, could be considered the third leg of the three needed for triangulation.  Of course when triangulation is involved, more than three is always better – the more the merrier and the more certain you can be that you have identified the correct ancestor, ancestral couple, or ancestral line to assign that particular triangulated segment to.

# 7 – Combined Advanced Matching

One of the comparison tools often missed by people is Combined Advanced Matching.

Combined matching is available through the “Tools and Apps” button, then select “Advanced Matching.”

Advanced Matching allows you to select various options in combination with each other.

For example, one of my favorites is to compare people within a project.

You can do this a number of ways.

In the case of my mother, I’ll select everyone she matches on the Family Finder test in the Miller-Brethren project. This is a very focused project with the goal of sorting the Miller families who were of the Brethren faith.

FF9 combined matching

You can see that she has several matches in that project.

You can select a variety of combinations, including any level of Y or mtDNA testing, Family Finder, X matching, projects and “last name begins with.”

One of the ways I utilize this feature often is within a surname project, for males in particular, I select one Y level of matching at a time, combined with Family Finder, “show only people I match on all tests” and then the project name. This is a quick way to determine whether someone matches someone on Family Finder that is also in a particular surname project. And when your surname is Smith, this tool is extremely valuable. This provides a least a hint as to the possible distance to a common ancestor between individuals.

Another favorite way to utilize this feature is for non-surname projects like the American Indian project. This is perfect for people who are hunting for others with Native roots that they match – and you can see their Y and mtDNA haplogroups as a bonus!


  • Must have joined the particular project if you want to use the project match feature within that project.

Power Features

  • The ability to combine matching criteria across products.
  • The ability to match within projects.
  • The ability to specify partial surnames.


  • If you match someone on both Family Finder and either Y or mtDNA haplogroups, this does NOT mean that your common Family Finder ancestor is on that haplogroup line. It might be a good place to begin looking. Check to see if you match on the Y or mtDNA products as well.
  • All matches have their haplogroup displayed, not just IF you also match that haplogroup, unless you’ve specified the Y or mtDNA options and then you would only see the people you match which would be in the same major haplogroup, although not always the same subgroup because not everyone tests at the same level.
  • Not all surname project administrators allow people who do not carry that surname in the present generation to join their projects.

# 8 – MyOrigins Matching

One tool missed by many is the MyOrigins matching by ethnicity. For many, especially if you have all European, for example, this tool isn’t terribly useful, but if you are of mixed heritage, this tool can be a wonderful source of information.

Your matches (who have authorized this type of matching) will be displayed, showing only if they match you on your major world categories.  Only your matching categories will show.  For example, if my match, Frances, also has African heritage and I do not, I won’t see Frances’s African percentage and vice versa.

FF9 myOrigins

In this example, the person who tested falls into the major categories of European and Middle Eastern. Their matches who fall into either of these same categories will be displayed in the Shared Origins box. You may not be terribly excited about this – unless you are mixed African, Asian, European and Native American – and you have “lost ancestors” you can’t find. In that case, you may be very excited to contact other matches with the same ethnic heritage.

When you first open your myOrigins page, you will be greeted with a choice to opt in (by clicking) or to opt out (by doing nothing) of allowing your ethnic matches to view the same ethnic groups you carry. Your matches will not be able to see your ethnic groups that they don’t have in common with you.

FF9 myorigins opt in

You can also access those options to view or change by clicking on Account Settings, Privacy and Sharing, and then you can view or change your selection under “My DNA Results.”

FF9 myorigins security


  • Must authorize Shared Origins matching.

Power Features

  • The ability to discern who among your matches shares a particular ethnicity, and to what degree.


  • Just because you share a particular ethnicity does NOT mean you match on the shared ethnic line. Your common ancestor with that person may be on an entirely unrelated line.

# 9 – Spreadsheet Matching

Family Tree DNA offers you the ability to download your entire list of matches, including the specific segments where your matches match you, to a spreadsheet.

This is the granddaddy of the tools and it’s a tool used by all serious genetic genealogists. It’s requires the most investment from you both in terms of understanding and work, but it also yields the most information.

The power of spreadsheet comparisons isn’t in the 5 people I pushed through to the chromosome browser, in and of themselves, but in the power of looking at the locations where all of your matches match you and known relatives on particular segments.

Utilizing the chromosome browser, we saw that chromosome 3 had an overlap match between Rex (green) and Cheryl (blue) as compared to my mother (background chromosome.)

FF9 chr 3

We see that same overlap between Cheryl and Rex when we download the match spreadsheet for those 5 people.

However, when we download all of my mother’s matches, we have a much more powerful view of that segment, below. The 2 segments we saw overlapping on the chromosome browser are shown in green. All of these people colored pink match my mother on some part of the 37cM segment she shares with Rex.

FF9 spreadsheet match

This small part of my master spreadsheet combines my own results, rows in white, with those of my mother, rows in pink.

In this case, I only match one of these individuals that mother also matches on the same segment – Rex. That’s fine. It just means that I didn’t receive the rest of that DNA from mother – meaning the portions of the segments that match Sam, Cheryl, Don, Christina and Sharon.

On the first two rows, I did receive part of that DNA from mother, 7.64 of the 37cMs that Rex matches to Mom at a threshold of 5cM.

We know that Cheryl, Don and Rex all share a common ancestor on mother’s father’s side three generations removed – meaning John David Miller and Margaret Lentz. By looking at Cheryl, Don and Rex’s matches as well, I know that several of her matches do triangulate with Cheryl, Don and/or Rex.

What I didn’t know was how Christina fit into the picture. She is a new match. Before the new Phased Family Matching, I would have had to go into each account, those of Rex, Cheryl and Don, all of which I manage, to be sure that Christina matched all of them individually in addition to Mom’s kit.

I don’t have to do that now, because I can utilize the phased Family Matching instead. The addition of the Family Matching tool has taken this from three additional steps, assuming I have access to all kits, which most people don’t, to one quick definitive step.

Cheryl and Don are both mother’s first cousins, so matches can be phased against them. I have linked both of them to mother’s kit so she how has several individuals who are phased to Don and Cheryl which generate paternal icons since Don and Cheryl are related to mother on her father’s side.

Now, instead of looking at all of the accounts individually, my first step is to see if Christina has a paternal icon, which, in this case, means she phased against either Don and/or Cheryl since those are the only two people linked to mother who qualify for phasing, today.

FF9 parental phased match

Look, Christina does have a paternal icon, so I can add “Dad” into the side column for Christine in the spreadsheet for mother’s matches AND I know Christina triangulates to Mom and either Cheryl or Don, which ever cousin she phased against.

FF9 Christina chr 3

I can see which cousin she phased against by looking at the chromosome browser and comparing mother against Cheryl, Don and Christina.  As it turns out, Christina, in green, above, phased against both Cheryl and Don whose results are in orange and blue.

It’s a great day in the neighborhood to be able to use these tools together.


  • Must download matches spreadsheet through the chromosome browser, adding new matches to your spreadsheet as they occur.
  • Must have a familiarity with Excel or another spreadsheet.
  • Must learn about matching, match groups and triangulation.

Power Features

  • The ability to control the threshold you wish to work with. For matches over the match threshold, Family Tree DNA provides all segment matches to 1cM with a total of 500 SNPs.
  • The ability to see trends and groups together.
  • The ability to view kits from all of your matches for more powerful matching.
  • The ability to combine your results with those of a parent (or sibling if parents not available) to see joint matching where it occurs.


  • There is a comparatively steep learning curve if you’re not familiar with using spreadsheets, but it’s well worth the effort if you are serious about proving ancestors through triangulation.


I’m extremely grateful for the full complement of tools available at Family Tree DNA.

They provide a range of solutions for users at all levels – people who just want to view their ethnicity or to utilize matches at the vendor site as well as those who want tools like a chromosome browser, projects, ICW, not ICW, the Matrix, ethnicity matching, combined advanced matching and chromosome browser downloads for those of us who want actual irrefutable proof.  No one has to use the more advanced tools, but they are there for those of us who want to utilize them.

I’m sorry, I’m not from Missouri, but I still want to see it for myself. I don’t want any vendor taking the “trust me” approach or doing me any favors by stripping out my data. I’m glad that Family Tree DNA gives us multiple options and doesn’t make one size fit all by using a large hammer and chisel.

The easier, more flexible and informative Family Tree DNA makes the tools, the easier it will be to convince people to test or download their data from other vendors. The more testers, the better our opportunity to find those elusive matches and through them, ancestors.

The Concepts Series

I’ve been writing a “Concepts” series of articles. Recent articles have been about how to utilize and work with autosomal matches on a spreadsheet.

You might want to read these Concepts articles if you’re serious about working with autosomal DNA.

Concepts – How Your Autosomal DNA Identifies Your Ancestors

Concepts – Identical by…Descent, State, Population and Chance

Concepts – CentiMorgans, SNPs and Pickin’ Crab

Concepts – Parental Phasing

Concepts – Downloading Autosomal Data from Family Tree DNA

Concepts – Managing Autosomal DNA Matches – Step 1 – Assigning Parental Sides

Please join me shortly for the next Concepts article – Step 2 – Who’s Related to Whom?

In the meantime:

  • Make full use of the autosomal tools available at Family Tree DNA.
  • Test additional relatives meaning parents, grandparents, aunts, uncles, half-siblings, siblings, any cousin you can identify and talk into testing.
  • Take test kits to family reunions and holiday gatherings. No, I’m not kidding.
  • Don’t forget Y or mtDNA which can provide valuable tools to identify which line you might have in common, or to quickly eliminate some lines that you don’t have in common. Some cousins will carry valuable Y or mtDNA of your direct ancestral lines – and that DNA is full of valuable and unique information as well.
  • Link the DNA kits of those individuals you know to their place in your tree.
  • Transfer family kits from other vendors.

The more relatives you can identify and link in the system, the better your chances for meaningful matches, confirming ancestral relations, and solving puzzles.

Have fun!!!



I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research