New Genetic Groups Filter at MyHeritage

Recently MyHeritage released a new DNA match filter option for Genetic Groups.

Genetic Groups are different from ethnicity. Ethnicity looks at world founder populations and determines which populations you might be connected to genetically.

Genetic Groups, which I introduced here, is also connected to geography, but in a much more genealogically relevant way. Genetic Groups combines two things:

  • People you match and
  • Who are found in common geographics or genetic groups according to their genealogy

A genetic group might be people from Pennsylvania, where an ethnicity might be Germanic, which falls under North and West European. These two things could be derived from the same ancestor(s).

click any image to enlarge

How does that work? Well, the Pennsylvania Dutch were Germans. The Scotch-Irish, (or Scots-Irish if you prefer) were from Scotland and immigrated to Pennsylvania, Virginia, and North Carolina. These Pennsylvania groups could be either or both. You get the idea.

This is exactly why you need to be able to filter your matches by Genetic Groups.

If you shift the genetic group confidence slider level to low, you’ll see all of your genetic groups. In my case, the two genetic groups in the Netherlands are of particular interest.

My mother’s grandfather immigrated from Friesland in the 1860s as a child, so I should have Dutch cousins at roughly the fourth cousin level.

Filters

MyHeritage already includes several filters which can be used in combination with each other.

They recently added Genetic Groups.

If you click the dropdown for “All Genetic Groups,” you’ll see the group you’re looking for. Click on the group.

I selected Friesland which is the area where my Ferverda family originated.

My 1,375 pages of matches is now reduced to 26 pages, and my top three matches, other than my mother, are three Ferverda cousins. Viewing shared matches will be illuminating.

I can focus that list of matches even further by adding other filters.

In this case, let’s try the location filter and select “Netherlands” which is the location where the tester currently lives.

Because I didn’t clear the original Friesland filter and added the Netherlands location, I have two filters applied to my DNA match list.

These two filters reduce my matches to 16 pages of people who very likely match me because of our shared Dutch ancestry. I can hardly wait to sort through these.

I could hone this list even further by filtering by, maybe, a shared location or a shared surname, or maybe only people with trees. Let’s see what that does.

Selecting the following filters, in addition to the two already in place above, reduced the pages of matches accordingly:

  • Has Theory of Family Relativity – 1 match
  • Has Smart Matches – 0 matches
  • Has shared surname – 5 pages of matches (some of these are VERY interesting!)
  • Has shared place – 13 pages
  • Has tree – 15 pages

Clearly, I’m going to check the Theory of Family Relativity first, because MyHeritage has already done the heavy lifting for me by identifying candidate common ancestors.

Next, I’ll work on shared surnames and then shared places.

It helps a great deal that I have my mother’s DNA at MyHeritage too, because I can immediately see if the match is valid or by chance. A valid match on this line will match me and Mom, both. Many will also triangulate with other testers which will help me further identify people who match me on my Dutch side.

Clearing Filters

Don’t forget to clear your filters when you’re done.

Any enabled filter will be shown in darker black, but it’s still awfully easy to forget you have filters enabled. Be sure to clear them before doing something else. The Clear Filters button is at far right.

Relatives

I’m fortunate enough that my mother tested before she passed away. I can verify that my Dutch matches match her as well, confirming that they are identical by descent, not just by chance. If you can, test your parents or upload their results if they have tested elsewhere.

But what if your parent or parents aren’t available to test?

Testing or uploading tests of siblings or known close relatives like aunts, uncles or cousins are extremely useful too. You can see if the people you discover through filtering match the family members you would expect.

You can order a MyHeritage DNA test here or upload a DNA file from another vendor, for free, here. To use the advanced tools, there’s a $29 unlock fee, but that’s less than a DNA test. Need download/upload instructions – look here..

Have fun!

What are you discovering?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Be Sure Your DNA Tests Are Connected to Trees at MyHeritage

As I’ve been preparing for the free seminar, “Turning AutoClusters into Solutions at MyHeritage” on Monday, May 24th at 2 PM EDT (US), I realized something VERY important that I’d like to share with you – in advance.

By the way, to watch the presentation live, just click on the Facebook MyHeritage page, here a few minutes before 2. If you’re busy, MyHeritage will record the session and you can watch at your convenience.

Upload Family Tests

It’s always important to test family members, or upload DNA files to MyHeritage if they have already tested elsewhere. You can easily upload additional tests from other vendors to MyHeritage, here.

Need instructions for downloading from other vendors or uploading to MyHeritage? You can find step-by-step instructions, here.

One of your best clues will be who else your cluster members match. Known relatives are a huge clue!

I did all that, but I <ahem> neglected a really important step after the upload.

Connect the DNA Test to the Right Person in the Appropriate Tree

I have no idea how I managed to NOT do this, but I didn’t and I made this discovery while working on my clusters.

  • As I checked the DNA tests that I manage at MyHeritage, I realized that none of them had Theories of Family Relativity. Hmmm, that’s odd, because some of them are my close relatives, and I have Theories of Family Relativity. They should too, given that we are using the same tree.
  • Then, I verified that all of these tests were connected to my tree. Good, right?

Those two facts, together, didn’t make sense, so I investigated further and realized that somehow, I had managed to create a single entry for each person, disconnected from everyone else in my tree. That lone person is who the DNA kit was connected to, but not to anyone else in my tree.

How did I make that discovery?

More importantly, how can you check each of the tests that you manage to be sure they are connected appropriately?

Even if you’re SURE you’ve connected them, please check. I discovered that I had connected them, kind of. But not properly.

Let’s look at each step so you can check too.

Are Your Tests Connected?

Click to enlarge images

At the top of your account page, select Family Tree.

If you have uploaded multiple family trees, be sure to select the CORRECT family tree where the person should be connected.

If you are related to that person by blood, then connecting them to the proper place in YOUR family tree is best. If you are not related to them by blood, such as an in-law or spouse or someone else entirely, then you can either connect them to the proper place in your tree or upload a separate tree for them. For example, my spouse and I do not have children together, so there will never be anyone who shares both of our DNA or ancestors. I uploaded a separate tree for his family so his family can see tree members that are only relevant to him.

After you click on Family Tree, on the left side, you’ll see the tree name and down arrow. If you click on the down arrow, the active tree is displayed as orange, and the other trees you have uploaded are grey.

Be SURE the tree the person should be connected in is the active tree by clicking the appropriate tree.

Find the Person

At the far right-hand side of your tree page, type the name of the person whose test you’re managing, by the name listed on the test.

If the person is NOT connected to a family in your tree, you’ll see something like the view above that shows their name but no appropriate relationship. The item blurred out below Charlene’s name is the year she was born based on what was entered when the kit was uploaded.

If the person IS connected appropriately, you’ll see the correct relationship to you.

If your relative’s relationship is shown appropriately to you, next, click on that person’s name to be SURE you’ve connected the DNA kit to that person.

When you click on that person, you’ll see their name displayed in their position in the tree, along with the DNA symbol.

If you DON’T see a DNA symbol on their tree placard, this may mean you’re in the wrong tree. It definitely means there is no DNA kit attached to this person’s profile in this tree.

For example, my husband is in my tree and in his own tree, but his DNA is connected to him in his own tree, not “him” in my tree. His name in his tree has a DNA icon and his name in my tree does not. If I accidentally connected him to his name in my tree, he would have no genetic tree-based tools because his ancestors aren’t in my tree.

DNA Symbol But No Family

If you see a DNA symbol on their placard in the tree, but no parents or family members, you’ve probably done what I did. Poor Charlene was connected to her own card in my tree, but not the Charlene where she belonged. I had apparently created a quick placeholder for her and then forgot what I had done.

When I saw that Charlene had no family, the light bulb popped on and I immediately knew what had happened. Of course, that means you need to build your tree out to that cousin in order to connect them appropriately.

Connect Up

It’s easy to connect a DNA test kit to a profile in a tree.

Under DNA, click on “Manage DNA Kits.”

Click to enlarge images

You’ll see that the person has been assigned to a name. This is what threw me off, because they were connected to a name, but I had NOT connected that profile properly to her parents (and family) in the tree. I’m guessing I was in a hurry and figured I’d connect them properly later.

Again, be sure you’re displaying the appropriate tree before you complete this next step.

Click on the three little dots and you’ll see “Re-assign kit to a different person.” Click on that link.

Begin typing the name of the person whose DNA test kit you wish to attach to a profile.

You’ll see the right person, assuming you’ve added that person in your tree. Click on that person and then Save.

All done.

Easy peasy.

If the correct person isn’t in your tree yet, just build the tree from Charlene’s stand-alone profile to the proper ancestor.

Reap the Harvest!

Now, you’ll begin to reap ALL the rewards of having your relatives test. Their kits will receive matches, hints, Theories of Family Relativity and AutoClusters that you won’t, because they will match different people that you don’t.

You’ll be able to utilize their clusters from your side of their tree just as effectively as your own. In some cases, their tests will be more valuable than your own because they have DNA from your common ancestors that you didn’t inherit. This is especially true for people who are a generation or two closer to your common ancestor.

Whose tests can you upload, with permission of course?

Be sure those kits are properly connected.

See you all tomorrow on MyHeritage Facebook LIVE to learn about Turning AutoClusters into Solutions.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

FREE LIVE Presentation: Turning AutoClusters into Solutions at MyHeritage

You’re invited to join me for a FREE Facebook LIVE presentation on May 24th, at 2 PM EST.

We’ll be talking about tips and tricks to turn “AutoClusters into Solutions at MyHeritage.”

AutoClusters are a great tool and few of us are using them to their fullest potential. I know I wasn’t.

MyHeritage will be hosting this seminar on their Facebook page, LIVE.

I’ve done a few of these LIVE sessions before and they are SO MUCH FUN for everyone!!! They’re super popular too. We’ve had between 14,000 and 20,000 people view each one.

Want to Hear a Secret?

I’ve made three discoveries while preparing for this presentation – in the first cluster alone. I can barely stop. Who needs sleep anyway?

No, I’m really not kidding. My great-grandmother had a missing brother. We all assumed he died because we, today, couldn’t find hide nor hair of him.

Well, guess what – he’s not missing anymore. His descendants didn’t know where he came from, and we didn’t know where he went. It’s almost impossible to connect someone backward in time if you don’t have any geographic link at all.

AutoClusters ARE genetic links, from either end.

No Registration Required

You don’t need to sign up in advance. Just set a reminder and show up at the proper date and time. There’s enough “seating” for everyone, and no wait either. Can’t join us on May 24th at 2 PM EST? Don’t worry. MyHeritage records the sessions and you can watch them later.

Upload DNA Files Now!

I’m giving you this early heads-up so that you have time to upload your DNA file to MyHeritage, and the DNA of your close relatives whose tests you manage (with permission of course), if you haven’t yet done so. If you upload now, you’ll have access to all of the tools before the session.

Here’s what you need to do.

  1. Download your DNA file from either Ancestry, 23andMe, or FamilyTreeDNA. Step-by-step instructions for downloading your DNA file from each vendor can be found here.
  2. Upload your DNA file to MyHeritage. Step-by-step instructions for uploading to MyHeritage are found here.
  3. Upload or create a tree at MyHeritage or connect your relative’s DNA to their profile card in your existing tree.
  4. If you already have a fully paid data and records subscription plan at MyHeritage, you will receive all of the advanced tools, for free – including AutoClusters. You can try a free subscription if you don’t already have one, here.
  5. If you don’t have a data and records subscription plan, you’ll need to pay the $29 unlock for the advanced DNA tools, including AutoClusters, which is less expensive and quicker than testing again.

If you have close relatives who have tested elsewhere, you might want to ask them to transfer to MyHeritage as well. If they aren’t personally interested but will download their file, you can upload it and manage their DNA from your MyHeritage account.

You’ll find tools and matches at MyHeritage not available in other databases. MyHeritage is very popular in Europe. I’ve found some of my closest Dutch and German matches at MyHeritage, including in clusters.

Which is, of course, another reason to watch “Turning AutoClusters into Solutions at MyHeritage!”

Hope to see you there!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

A Triangulation Checklist Born From the Question; “Why NOT Use Close Relatives for Triangulation?”

One of my readers asked why we don’t use close relatives for triangulation.

This is a great question because not using close relatives for triangulation seems counter-intuitive.

I used to ask my kids and eventually my students and customers if they wanted the quick short answer or the longer educational answer.

The short answer is “because close relatives are too close to reliably form the third leg of the triangle.” Since you share so much DNA with close relatives, someone matching you who is identical by chance can also match them for exactly the same reason.

If you trust me and you’re good with that answer, wonderful. But I hope you’ll keep reading because there’s so much to consider, not to mention a few gotchas. I’ll share my methodology, techniques, and workarounds.

We’ll also discuss absolutely wonderful ways to utilize close relatives in the genetic genealogical process – just not for triangulation.

At the end of this article, I’ve provided a working triangulation checklist for you to use when evaluating your matches.

Let’s go!

The Step-by-Step Educational Answer😊

Some people see “evidence” they believe conflicts with the concept that you should not use close relatives for triangulation. I understand that, because I’ve gone down that rathole too, so I’m providing the “educational answer” that explains exactly WHY you should not use close relatives for triangulation – and what you should do.

Of course, we need to answer the question, “Who actually are close relatives?”

I’ll explain the best ways to best utilize close relatives in genetic genealogy, and why some matches are deceptive.

You’ll need to understand the underpinnings of DNA inheritance and also of how the different vendors handle DNA matching behind the scenes.

The purpose of autosomal DNA triangulation is to confirm that a segment is passed down from a particular ancestor to you and a specific set of your matches.

Triangulation, of course, implies 3, so at least three people must all match each other on a reasonably sized portion of the same DNA segment for triangulation to occur.

Matching just one person only provides you with one path to that common ancestor. It’s possible that you match that person due to a different ancestor that you aren’t aware of, or due to chance recombination of DNA.

It’s possible that your or your match inherited part of that DNA from your maternal side and part from your paternal side, meaning that you are matching that other person’s DNA by chance.

I wrote about identical by descent (IBD), which is an accurate genealogically meaningful match, and identical by chance (IBC) which is a false match, in the article Concepts – Identical by…Descent, State, Population and Chance.

I really want you to understand why close relatives really shouldn’t be used for triangulation, and HOW close relative matches should be used, so we’re going to discuss all of the factors that affect and influence this topic – both the obvious and little-understood.

  • Legitimate Matches
  • Inheritance and Triangulation
  • Parental Cross-Matching
  • Parental Phasing
  • Automatic Phasing at FamilyTreeDNA
  • Parental Phasing Caveats
  • Pedigree Collapse
  • Endogamy
  • How Many Identical-by-Chance Matches Will I Have?
  • DNA Doesn’t Skip Generations (Seriously, It Doesn’t)
  • Your Parents Have DNA That You Don’t (And How to Use It)
  • No DNA Match Doesn’t Mean You’re Not Related
  • Imputation
  • Ancestry Issues and Workarounds
  • Testing Close Relatives is VERY Useful – Just Not for Triangulation
  • Triangulated Matches
  • Building Triangulation Evidence – Ingredients and a Recipe
  • Aunts/Uncles
  • Siblings
  • How False Positives Work and How to Avoid Them
  • Distant Cousins Are Best for Triangulation & Here’s Why
  • Where Are We? A Triangulation Checklist for You!
  • The Bottom Line

Don’t worry, these sections are logical and concise. I considered making this into multiple articles, but I really want it in one place for you. I’ve created lots of graphics with examples to help out.

Let’s start by dispelling a myth.

DNA Doesn’t Skip Generations!

Recently, someone emailed to let me know that they had “stopped listening to me” in a presentation when I said that if a match did not also match one of your parents, it was a false match. That person informed me that they had worked on their tree for three years at Ancestry and they have “proof” of DNA skipping generations.

Nope, sorry. That really doesn’t happen, but there are circumstances when a person who doesn’t understand either how DNA works, or how the vendor they are using presents DNA results could misunderstand or misinterpret the results.

You can watch my presentation, RootsTech session, DNA Triangulation: What, Why and How, for free here. I’m thrilled that this session is now being used in courses at two different universities.

DNA really doesn’t skip generations. You CANNOT inherit DNA that your parents didn’t have.

Full stop.

Your children cannot inherit DNA from you that you don’t carry. If you don’t have that DNA, your children and their descendants can’t have it either, at least not from you. They of course do inherit DNA from their other parent.

I think historically, the “skipping generations” commentary was connected to traits. For example, Susie has dimples (or whatever) and so did her maternal grandmother, but her mother did not, so Susie’s dimples were said to have “skipped a generation.” Of course, we don’t know anything about Susie’s other grandparents, if Susie’s parents share ancestors, recessive/dominant genes or even how many genetic locations are involved with the inheritance of “dimples,” but I digress.

DNA skipping generations is a fallacy.

You cannot legitimately match someone that your parent does not, at least not through that parent’s side of the tree.

But here’s the caveat. You can’t match someone one of your parents doesn’t with the rare exception of:

  • Relatively recent pedigree collapse that occurs when you have the same ancestors on both sides of your tree, meaning your parents are related, AND
  • The process of recombination just happened to split and recombine a segment of DNA in segments too small for your match to match your parents individually, but large enough when recombined to match you.

We’ll talk about that more in a minute.

However, the person working with Ancestry trees can’t make this determination because Ancestry doesn’t provide segment information. Ancestry also handles DNA differently than other vendors, which we’ll also discuss shortly.

We’ll review all of this, but let’s start at the beginning and explain how to determine if our matches are legitimate, or not.

Legitimate Matches

Legitimate matches occur when the DNA of your ancestor is passed from that ancestor to their descendants, and eventually to you and a match in an unbroken pathway.

Unbroken means that every ancestor between you and that ancestor carried and then passed on the segment of the ancestor’s DNA that you carry today. The same is true for your match who carries the same segment of DNA from your common ancestor.

False positive matches occur when the DNA of a male and female combine randomly to look like a legitimate match to someone else.

Thankfully, there are ways to tell the difference.

Inheritance and Triangulation

Remember, you inherit two copies of each of your chromosomes 1-22, one copy from your mother and one from your father. You inherit half of the DNA that each parent carries, but it’s mixed together in you so the labs can’t readily tell which nucleotide, A, C, T, or G you received from which parent. I’m showing your maternal and paternal DNA in the graphic below, stacked neatly together in a column – but in reality, it could be AC in one position and CA in the next.

For matching all that matters is the nucleotide that matches your match is present in one of those two locations. In this case, A for your mother’s side and C for your father’s side. If you’re interested, you can read more about that in the article, Hit a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters.

You can see in this example that you inherited all As from your Mom and all Cs from your Dad.

  • A legitimate maternal match would match you on all As on this particular example segment.
  • A legitimate paternal match would match you on all Cs on this particular segment.
  • A false positive match will match you on some random combination of As and Cs that make it look like they match you legitimately, but they don’t.
  • A false positive match will NOT match either your mother or your father.

To be very clear, technically a false positive match DOES match your DNA – but they don’t match your DNA because you share a common ancestor with your match. They match you because random recombination on their side causes you to match each other by chance.

In other words, if part of your DNA came from your Mom’s side and part from your Dad’s but it randomly fell in the correct positional order, you’d still match someone whose DNA was from only their mother or father’s side. That’s exactly the situation shown above and below.

Looking at our example again, it’s evident that your identical by chance (IBC) match’s A locations (1, 3, 5, 7 & 9) will match your Mom. C locations (2, 4, 6 8, & 10) will match your Dad, but the nonmatching segments interleaved in-between that match alternating parents will prevent your match from matching either of your parents. In other words, out of 10 contiguous locations in our example, your IBC match has 5 As alternated with 5 Cs, so they won’t match either of your parents who have 10 As or 10 Cs in a row.

This recombination effect can work in either direction. Either or both matching people’s DNA could be randomly mixed causing them to match each other, but not their parents.

Regardless of whose DNA is zigzagging back and forth between maternal and paternal, the match is not genealogical and does not confirm a common ancestor.

This is exactly why triangulation works and is crucial.

If you legitimately match a third person, shown below, on your maternal side, they will match you, your first legitimate maternal match, and your Mom because they carry all As. But they WON’T match the person who is matching you because they are identical by chance, shown in grey below.

The only person your identical by chance match matches in this group is you because they match you because of the chance recombination of parental DNA.

That third person WILL also match all other legitimate maternal matches on this segment.

In the graphic above, we see that while the grey identical by chance person matches you because of the random combination of As from your mother and Cs from your father, your legitimate maternal matches won’t match your identical by chance match.

This is the first step in identifying false matches.

Parental Cross-Matching

Removing the identical by chance match, and adding in the parents of your legitimate maternal match, we see that your maternal match, above, matches you because you both have all As inherited from one parent, not from a combination of both parents.

We know that because we can see the DNA of both parents of both matches in this example.

The ideal situation occurs when two people match and they have both had their parents tested. We need to see if each person matches the other person’s parents.

We can see that you do NOT match your match’s father and your match does NOT match your father.

You do match your match’s mother and your match does match your mother. I refer to this as Parental Cross-matching.

Your legitimate maternal matches will also match each other and your mother if she is available for testing.

All the people in yellow match each other, while the two parents in gray do not match any of your matches. An entire group of legitimate maternal matches on this segment, no matter how many, will all match each other.

If another person matches you and the other yellow people, you’ll still need to see if you match their parents, because if not, that means they are matching you on all As because their two parents DNA combined just happened, by chance, to contribute an A in all of those positions.

In this last example, your new match, in green, matches you, your legitimate match and both of your mothers, BUT, none of the four yellow people match either of the new match’s parents. You can see that the new green match inherited their As from the DNA of their mother and father both, randomly zigzagging back and forth.

The four yellow matches phase parentally as we just proved with cross matching to parents. The new match at first glance appears to be a legitimate match because they match all of the yellow people – but they aren’t because the yellow people don’t match the green person’s parents.

To tell the difference between legitimate matches and identical by chance matches, you need two things, in order.

  • Parental matching known as parental phasing along with parental cross-matching, if possible, AND
  • Legitimate identical by descent (IBD) triangulated matches

If you have the ability to perform parental matching, called phasing, that’s the easiest first step in eliminating identical by chance matches. However, few match pairs will have parents for everyone. You can use triangulation without parental phasing if parents aren’t available.

Let’s talk about both, including when and how close relatives can and cannot be used.

Parental Phasing

The technique of confirming your match to be legitimate by your match also matching one of your parents is called parental phasing.

If we have the parents of both people in a match pair available for matching, we can easily tell if the match does NOT match either parent. That’s Parental Cross Matching. If either match does NOT match one of the other person’s parents, the match is identical by chance, also known as a false positive.

See how easy that was!

If you, for example, is the only person in your match pair to have parents available, then you can parentally phase the match on your side if your match matches your parents. However, because your match’s parents are unavailable, your match to them cannon tbe verified as legitimate on their side. So you are not phased to their parents.

If you only have one of your parents available for matching, and your match does not match that parent, you CANNOT presume that because your match does NOT match that parent, the match is a legitimate match for the other, missing, parent.

There are four possible match conditions:

  • Maternal match
  • Paternal match
  • Matches neither parent which means the match is identical by chance meaning a false positive
  • Matches both parents in the case of pedigree collapse or endogamy

If two matching people do match one parent of both matches (parental cross-matching), then the match is legitimate. In other words, if we match, I need to match one of your parents and you need to match one of mine.

It’s important to compare your matches’ DNA to generationally older direct family members such as parents or grandparents, if that’s possible. If your grandparents are available, it’s possible to phase your matches back another generation.

Automatic Phasing at FamilyTreeDNA

FamilyTreeDNA automatically phases your matches to your parents if you test that parent, create or upload a GEDCOM file, and link your test and theirs to your tree in the proper places.

FamilyTreeDNA‘s Family Matching assigns or “buckets” your matches maternally and paternally. Matches are assigned as maternal or paternal matches if one or both parents have tested.

Additionally, FamilyTreeDNA uses triangulated matches from other linked relatives within your tree even if your parents have not tested. If you don’t have your parents, the more people you identify and link to your tree in the proper place, the more people will be assigned to maternal and paternal buckets. FamilyTreeDNA is the only vendor that does this. I wrote about this process in the article, Triangulation in Action at Family Tree DNA.

Parental Phasing Caveats

There are very rare instances where parental phasing may be technically accurate, but not genealogically relevant. By this, I mean that a parent may actually match one of your matches due to endogamy or a population level match, even if it’s considered a false positive because it’s not relevant in a genealogical timeframe.

Conversely, a parent may not match when the segment is actually legitimate, but it’s quite rare and only when pedigree collapse has occurred in a very specific set of circumstances where both parents share a common ancestor.

Let’s take a look at that.

Pedigree Collapse

It’s not terribly uncommon in the not-too-distant past to find first cousins marrying each other, especially in rather closely-knit religious communities. I encounter this in Brethren, Mennonite and Amish families often where the community was small and out-marrying was frowned upon and highly discouraged. These families and sometimes entire church congregations migrated cross-country together for generations.

When pedigree collapse is present, meaning the mother and father share a common ancestor not far in the past, it is possible to inherit half of one segment from Mom and the other half from Dad where those halves originated with the same ancestral couple.

For example, let’s say the matching segment between you and your match is 12 cM in length, shown below. You inherited the blue segment from your Dad and the neighboring peach segment from Mom – shown just below the segment numbers. You received 6 cM from both parents.

Another person’s DNA does match you, shown in the bottom row, but they are not shown on the DNA match list of either of your parents. That’s because the DNA segments of the parents just happened to recombine in 6 cM pieces, respectively, which is below the 7 cM matching threshold of the vendor in this example.

If the person matched you at 12 cM where you inherited 8 cM from one parent and 4 from the other, that person would show on one parent’s match list, but not the other. They would not be on the parent’s match list who contributed only 4 cM simply because the DNA divided and recombined in that manner. They would match you on a longer segment than they match your parent at 8 cM which you might notice as “odd.”

Let’s look at another example.

click to enlarge image

If the matching segment is 20 cM, the person will match you and both of your parents on different pieces of the same segment, given that both segments are above 7 cM. In this case, your match who matches you at 20 cM will match each of your parents at 10 cM.

You would be able to tell that the end location of Dad’s segment is the same as the start location of Mom’s segment.

This is NOT common and is NOT the “go to” answer when you think someone “should” match your parent and does not. It may be worth considering in known pedigree collapse situations.

You can see why someone observing this phenomenon could “presume” that DNA skipped a generation because the person matches you on segments where they don’t match your parent. But DNA didn’t skip anything at all. This circumstance was caused by a combination of pedigree collapse, random division of DNA, then random recombination in the same location where that same DNA segment was divided earlier. Clearly, this sequence of events is not something that happens often.

If you’ve uploaded your DNA to GEDmatch, you can select the “Are your parents related?” function which scans your DNA file for runs of homozygosity (ROH) where your DNA is exactly the same in both parental locations for a significant distance. This suggests that because you inherited the exact same sequence from both parents, that your parents share an ancestor.

If your parents didn’t inherit the same segment of DNA from both parents, or the segment is too short, then they won’t show as “being related,” even if they do share a common ancestor.

Now, let’s look at the opposite situation. Parental phasing and ROH sometimes do occur when common ancestors are far back in time and the match is not genealogically relevant.

Endogamy

I often see non-genealogical matching occur when dealing with endogamy. Endogamy occurs when an entire population has been isolated genetically for a long time. In this circumstance, a substantial part of the population shares common DNA segments because there were few original population founders. Much of the present-day population carries that same DNA. Many people within that population would match on that segment. Think about the Jewish community and indigenous Americans.

Consider our original example, but this time where much of the endogamous population carries all As in these positions because one of the original founders carried that nucleotide sequence. Many people would match lots of other people regardless of whether they are a close relative or share a distant ancestor.

People with endogamous lines do share relatives, but that matching DNA segment originated in ancestors much further back in time. When dealing with endogamy, I use parental phasing as a first step, if possible, then focus on larger matches, generally 20 cM or greater. Smaller matches either aren’t relevant or you often can’t tell if/how they are.

At FamilyTreeDNA, people with endogamy will find many people bucketed on the “Both” tab meaning they triangulate with people linked on both sides of the tester’s tree.

An example of a Jewish person’s bucketed matches based on triangulation with relatives linked in their tree is shown above.

Your siblings, their children, and your children will be related on both your mother’s and father’s sides, but other people typically won’t be unless you have experienced either pedigree collapse where you are related both maternally and paternally through the same ancestors or you descend from an endogamous population.

How Many Identical-by-Chance Matches Will I Have?

If you have both parents available to test, and you’re not dealing with either pedigree collapse or endogamy, you’ll likely find that about 15-20% of your matches don’t match your parents on the same segment and are identical by chance.

With endogamy, you’ll have MANY more matches on your endogamous lines and you’ll have some irrelevant matches, often referred to as “false positive” matches even though they technically aren’t, even using parental phasing.

Your Parents Have DNA That You Don’t

Sometimes people are confused when reviewing their matches and their parent’s match to the same person, especially when they match someone and their parent matches them on a different or an additional segment.

If you match someone on a specific segment and your parents do not, that’s a false positive FOR THAT SEGMENT. Every segment has its own individual history and should be evaluated individually. You can match someone on two segments, one from each parent. Or three segments, one from each parent and one that’s identical by chance. Don’t assume.

Often, your match will match both you and your parent on the same segment – which is a legitimate parentally phased match.

But what if your match matches your parent on a different segment where they don’t match you? That’s a false positive match for you.

Keep in mind that it is possible for one of your matches to match your parent on a separate or an additional segment that IS legitimate. You simply didn’t inherit that particular segment from your parent.

That’s NOT the same situation as someone matching you that does NOT match one of your parents on the same segment – which is an identical by chance or false match.

Your parent having a match that does not match you is the reverse situation.

I have several situations where I match someone on one segment, and they match my parent on the same segment. Additionally, that person matches my parent on another segment that I did NOT inherit from that parent. That’s perfectly normal.

Remember, you only inherit half of your parent’s DNA, so you literally did NOT inherit the other half of their DNA. Your mother, for example, should have twice as many matches as you on her side because roughly half of her matches won’t match you.

That’s exactly why testing your parents and close family members is so critical. Their matches are as valid and relevant to your genealogy as your own. The same is true for other relatives, such as aunts and uncles with whom you share ALL of the same ancestors.

You need to work with your family member’s matches that you don’t share.

No DNA Match Doesn’t Mean You’re Not Related

Some people think that not matching someone on a DNA test is equivalent to saying they aren’t related. Not sharing DNA doesn’t mean you’re not related.

People are often disappointed when they don’t match someone they think they should and interpret that to mean that the testing company is telling them they “aren’t related.” They are upset and take issue with this characterization. But that’s not what it means.

Let’s analyze this a bit further.

First, not sharing DNA with a second cousin once removed (2C1R) or more distant does NOT mean you’re NOT related to that person. It simply means you don’t share any measurable DNA ABOVE THE VENDOR THRESHOLD.

All known second cousins match, but about 10% of third cousins don’t match, and so forth on up the line with each generation further back in time having fewer cousins that match each other.

If you have tested close relatives, check to see if that cousin matches your relatives.

Second, it’s possible to match through the “other” or unexpected parent. I certainly didn’t think this would be the case in my family, because my father is from Appalachia and my mother’s family is primarily from the Netherlands, Germany, Canada, and New England. But I was wrong.

All it took was one German son that settled in Appalachia, and voila, a match through my mother that I surely thought should have been through my father’s side. I have my mother’s DNA and sure enough, my match that I thought should be on my father’s side matches Mom on the same segment where they match me, along with several triangulated matches. Further research confirmed why.

I’ve also encountered situations where I legitimately match someone on both my mother’s and father’s side, on different segments.

Third, imputation can be important for people who don’t match and think they should. Imputation can also cause matching segment length to be overreported.

Ok, so what’s imputation and why do I care?

Imputation

Every DNA vendor today has to use some type of imputation.

Let me explain, in general, what imputation is and why vendors use it.

Over the years, DNA processing vendors who sell DNA chips to testing companies have changed their DNA chips pretty substantially. While genealogical autosomal tests test about 700,000 DNA locations, plus or minus, those locations have changed over time. Today, some of these chips only have 100,000 or so chip locations in common with chips either currently or previously utilized by other vendors.

The vendors who do NOT accept uploads, such as 23andMe or Ancestry, have to develop methods to make their newest customers on their DNA processing vendor’s latest chip compatible with their first customer who was tested on their oldest chip – and all iterations in-between.

Vendors who do accept transfers/uploads from other vendors have to equalize any number of vendors’ chips when their customers upload those files.

Imputation is the scientific way to achieve this cross-platform functionality and has been widely used in the industry since 2017.

Imputation, in essence, fills in the blanks between tested locations with the “most likely” DNA found in the human population based on what’s surrounding the blank location.

Think of the word C_T. There are a limited number of letters and words that are candidates for C_T. If you use the word in a sentence, your odds of accuracy increase dramatically. Think of a genetic string of nucleotides as a sentence.

Imputation can be incorrect and can cause both false positive and false negative matches.

For the most part, imputation does not affect close family matches as much as more distant matches. In other words, imputation is NOT going to cause close family members not to match.

Imputation may cause more distant family members not to match, or to have a false positive match when imputation is incorrect.

Imputation is actually MUCH less problematic than I initially expected.

The most likely effect of imputation is to cause a match to be just above or below the vendor threshold.

How can we minimize the effects of imputation?

  • Generally, the best result will be achieved if both people test at the same vendor where their DNA is processed on the same chip and less imputation is required.
  • Upload the results of both people to both MyHeritage and FamilyTreeDNA. If your match results are generally consistent at those vendors, imputation is not a factor.
  • GEDmatch does not use imputation but attempts to overcome files with low overlapping regions by allowing larger mismatch areas. I find their matches to be less accurate than at the various vendors.

Additionally, Ancestry has a few complicating factors.

Ancestry Issues

AncestryDNA is different in three ways.

  • Ancestry doesn’t provide segment information so it’s impossible to triangulate or identify the segment or chromosome where people match. There is no chromosome browser or triangulation tool.
  • Ancestry down-weights and removes some segments in areas where they feel that people are “too matchy.” You can read Ancestry’s white papers here and here.

These “personal pileup regions,” as they are known, can be important genealogically. In my case, these are my mother’s Acadian ancestors. Yes, this is an endogamous population and also suffers from pedigree collapse, but since this is only one of my mother’s great-grandparents, this match information is useful and should not be removed.

  • Ancestry doesn’t show matches in common if the shared segments are less than 20cM. Therefore, you may not see someone on a shared match list with a relative when they actually are a shared match.

If two people both match a third person on less than a 20 cM segment at Ancestry, the third person won’t appear on the other person’s shared match list. So, if I match John Doe on 19 cM of DNA, and I looked at the shared matches with my Dad, John Doe does NOT appear on the shared match list of me and my Dad – even though he is a match to both of us at 19 cM.

The only way to determine if John Doe is a shared match is to check my Dad’s and my match list individually, which means Dad and I will need to individually search for John Doe.

Caveat here – Ancestry’s search sometimes does not work correctly.

Might someone who doesn’t understand that the shared match list doesn’t show everyone who shares DNA with both people presume that the ancestral DNA of that ancestor “skipped a generation” because John Doe matches me with a known ancestor, and not Dad on our shared match list? I mean, wouldn’t you think that a shared match would be shown on a tab labeled “Shared Matches,” especially since there is no disclaimer?

Yes, people can be forgiven for believing that somehow DNA “skipped” a generation in this circumstance, especially if they are relatively inexperienced and they don’t understand Ancestry’s anomalies or know that they need to or how to search for matches individually.

Even if John Doe does match me and Dad both, we still need to confirm that it’s on the same segment AND it’s a legitimate match, not IBC. You can’t perform either of these functions at Ancestry, but you can elsewhere.

Ancestry WorkArounds

To obtain this functionality, people can upload their DNA files for free to both FamilyTreeDNA and MyHeritage, companies that do provide full shared DNA reporting (in common with) lists of ALL matches and do provide segment information with chromosome browsers. Furthermore, both provide triangulation in different ways.

Matching is free, but an inexpensive unlock is required at both vendors to access advanced tools such as Family Matching (bucketing) and triangulation at Family Tree DNA and phasing/triangulation at MyHeritage.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

MyHeritage actually brackets triangulated segments for customers on their chromosome browser, including parents, so you get triangulation and parental phasing at the same time if you and your parent have both tested or uploaded your DNA file to MyHeritage. You can upload, for free, here.

In this example, my mother is matching to me in red on the entire length of chromosome 18, of course, and three other maternal cousins triangulate with me and mother inside the bracketed portion of chromosome 18. Please note that if any one of the people included in the chromosome browser comparison do not triangulate, no bracket is drawn around any others who do triangulate. It’s all or nothing. I remove people one by one to see if people triangulate – or build one by one with my mother included.

I wrote about Triangulation in Action at MyHeritage, here.

People can also upload to GEDmatch, a third-party site. While GEDmatch is less reliable for matching, you can adjust your search thresholds which you cannot do at other vendors. I don’t recommend routinely working below 7 cM. I occasionally use GEDmatch to see if a pedigree collapse segment has recombined below another vendor’s segment matching threshold.

Do NOT check the box to prevent hard breaks when selecting the One-to-One comparison. Checking that box allows GEDmatch to combine smaller matching segments into mega-segments for matching.

I wrote about Triangulation in Action at GEDmatch, here.

Transferring/Uploading Your DNA 

If you want to transfer your DNA to one of these vendors, you must download the DNA file from one vendor and upload it to another. That process does NOT remove your DNA file from the vendor where you tested, unless you select that option entirely separately.

I wrote full step-by-step transfer/upload instructions for each vendor, here.

Testing Close Relatives Is VERY Useful – Just Not for Triangulation

Of course, your best bet if you don’t have your parents available to test is to test as many of your grandparents, great-aunts/uncles, aunts, and uncles as possible. Test your siblings as well, because they will have inherited some of the same and some different segments of DNA from your parents – which means they carry different pieces of your ancestors’ DNA.

Just because close relatives don’t make good triangulation candidates doesn’t mean they aren’t valuable. Close relatives are golden because when they DO share a match with you, you know where to start looking for a common ancestor, even if your relative matches that person on a different segment than you do.

Close relatives are also important because they will share pieces of your common ancestor’s DNA that you don’t. Their matches can unlock the answers to your genealogy questions.

Ok, back to triangulation.

Triangulated Matches

A triangulated match is, of course, when three people all descended from a common ancestor and match each other on the same segment of DNA.

That means all three people’s DNA matches each other on that same segment, confirming that the match is not by chance, and that segment did descend from a common ancestor or ancestral couple.

But, is this always true? You’re going to hate this answer…

“It depends.”

You knew that was coming, didn’t you! 😊

It depends on the circumstances and relationships of the three people involved.

  • One of those three people can match the other two by chance, not by descent, especially if two of those people are close relatives to each other.
  • Identical by chance means that one of you didn’t inherit that DNA from one single parent. That zigzag phenomenon.
  • Furthermore, triangulated DNA is only valid as far back as the closest common ancestor of any two of the three people.

Let’s explore some examples.

Building Triangulation Evidence – Ingredients and a Recipe

The strongest case of triangulation is when:

  • You and at least two additional cousins match on the same segment AND
  • Descend through different children of the common ancestral couple

Let’s look at a valid triangulated match.

In this first example, the magenta segment of DNA is at least partially shared by four of the six cousins and triangulates to their common great-grandfather. Let’s say that these cousins then match with two other people descended from different children of their great-great-great-grandparents on this same segment. Then the entire triangulation group will have confirmed that segment’s origin and push the descent of that segment back another two generations.

These people all coalesce into one line with their common great-grandparents.

I’m only showing 3 generations in this triangulated match, but the concept is the same no matter how many generations you reach back in time. Although, over time, segments inherited from any specific ancestor become smaller and smaller until they are no longer passed to the next generation.

In this pedigree chart, we’re only tracking the magenta DNA which is passed generation to generation in descendants.

Eventually, of course, those segments become smaller and indistinguishable as they either aren’t passed on at all or drop below vendor matching thresholds.

This chart shows the average amount of DNA you would carry from each generational ancestor. You inherit half of each parent’s DNA, but back further than that, you don’t receive exactly half of any ancestor’s DNA in any generation. Larger segments are generally cut in two and passed on partially, but smaller segments are often either passed on whole or not at all.

On average, you’ll carry 7 cM of your eight-times-great-grandparents. In reality, you may carry more or you may not carry any – and you are unlikely to carry the same segment as any random other descendants but we know it happens and you’ll find them if enough (or the right) descendants test.

Putting this another way, if you divide all of your approximate 7000 cM of DNA into 7 cM segments of equal length – you’ll have 1000 7 cM segments. So will every other descendant of your eight-times-great-grandparent. You can see how small the chances are of you both inheriting that same exact 7 cM segment through ten inheritance/transmission events, each. Yet it does happen.

I have several triangulated matches with descendants of Charles Dodson and his wife, Anne through multiple of their 9 (or so) children, ten generations back in my tree. Those triangulated matches range from 7-38 cM. It’s possible that those three largest matches at 38 cM could be related through multiple ancestors because we all have holes in our trees – including Anne’s surname.

Click to enlarge image

It helps immensely that Charles Dodson had several children who were quite prolific as well.

Of course, the further back in time, the more “proof” is necessary to eliminate other unknown common ancestors. This is exactly why matching through different children is important for triangulation and ancestor confirmation.

The method we use to confirm the common ancestor is that all of the descendants who match the tester on the same segment all also match each other. This greatly reduces the chances that these people are matching by chance. The more people in the triangulation group, the stronger the evidence. Of course, parental phasing or cross-matching, where available is an added confirmation bonus.

In our magenta inheritance example, we saw that three of the males and one of the females from three different descendants of the great-grandparents all carry at least a portion of that magenta segment of great-grandpa’s DNA.

Now, let’s take a look at a different scenario.

Why can’t siblings or close relatives be used as two of the three people needed for triangulation?

Aunts and Uncles

We know that the best way to determine if a match is valid is by parental phasing – your match also matching to one of your parents.

If both parents aren’t available, looking for close family matches in common with your match is the next hint that genealogists seek.

Let’s say that you and your match both match your aunt or uncle in common or their children.

You and your aunts or uncles matching DNA only pushes your common ancestor back to your grandparents.

At that point, your match is in essence matching to a segment that belongs to your grandparents. Your matches’ DNA, or your grandparents’ DNA could have randomly recombined and you and your aunt/cousins could be matching that third person by chance.

Ok, then, what about siblings?

Siblings

The most recent common ancestor (MRCA) of you and someone who also matches your sibling is your parents. Therefore, you and your sibling actually only count as one “person” in this scenario. In essence, it’s the DNA of your parent(s) that is matching that third person, so it’s not true triangulation. It’s the same situation as above with aunts/uncles, except the common ancestor is closer than your grandparents.

The DNA of your parents could have recombined in both siblings to look like a match to your match’s family. Or vice versa. Remember Parental Cross-Matching.

If you and a sibling inherited EXACTLY the same segment of your Mom’s and Dad’s DNA, and you match someone by chance – that person will match your sibling by chance as well.

In this example, you can see that both siblings 1 and 2 inherited the exact same segments of DNA at the same locations from both of their parents.

Of course, they also inherited segments at different locations that we’re not looking at that won’t match exactly between siblings, unless they are identical twins. But in this case, the inherited segments of both siblings will match someone whose DNA randomly combined with green or magenta dots in these positions to match a cross-section of both parents.

How False Positives Work and How to Avoid Them

We saw in our first example, displayed again above, what a valid triangulated match looks like. Now let’s expand this view and take a look more specifically at how false positive matches occur.

On the left-hand (blue) side of this graphic, we see four siblings that descend through their father from Great-grandpa who contributed that large magenta segment of DNA. That segment becomes reduced in descendants in subsequent generations.

In downstream generations, we can see gold, white and green segments being added to the DNA inherited by the four children from their ancestor’s spouses. Dad’s DNA is shown on the left side of each child, and Mom’s on the right.

  • Blue Children 1 and 2 inherited the same segments of DNA from Mom and Dad. Magenta from Dad and green from Mom.
  • Blue Child 3 inherited two magenta segments from Dad in positions 1 and 2 and one gold segment from Dad in position 3. They inherited all white segments from Mom.
  • Blue Child 4 inherited all gold segments from Dad and all white segments from Mom.

The family on the blue left-hand side is NOT related to the pink family shown at right. That’s important to remember.

I’ve intentionally constructed this graphic so that you can see several identical by chance (IBC) matches.

Child 5, the first pink sibling carries a white segment in position 1 from Dad and gold segments in positions 2 and 3 from Dad. From Mom, they inherited a green segment in position 1, magenta in position 2 and green in position 3.

IBC Match 1 – Looking at the blue siblings, we see that based on the DNA inherited from Pink Child 5’s parents, Pink Child 5 matches Blue Child 4 with white, gold and gold in positions 1-3, even though they weren’t inherited from the same parent in Blue Child 4. I circled this match in blue.

IBC Match 2 – Pink Child 5 also matches Blue Children 1 and 2 (red circles) because Pink Child 5 has green, magenta, and green in positions 1-3 and so do Blue Children 1 and 2. However, Blue Children 1 and 2 inherited the green and magenta segments from Mom and Dad respectively, not just from one parent.

Pink Child 5 matches Blue Children 1, 2 and 4, but not because they match by descent, but because their DNA zigzags back and forth between the blue children’s DNA contributed by both parents.

Therefore, while Pink Child 5 matches three of the Blue Children, they do not match either parent of the Blue Children.

IBC Match 3 – Pink Child 6 matches Blue Child 3 with white, magenta and gold in positions 1-3 based on the same colors of dots in those same positions found in Blue Child 3 – but inherited both paternally and maternally.

You can see that if we had the four parents available to test, that none of the Pink Children would match either the Blue Children’s mother or father and none of the Blue Children would match either of the Pink Children’s mother or father.

This is why we can’t use either siblings or close family relatives for triangulation.

Distant Cousins Are Best for Triangulation & Here’s Why

When triangulating with 3 people, the most recent common ancestor (MRCA) intersection of the closest two people is the place at which triangulation turns into only two lines being compared and ceases being triangulation. Triangle means 3.

If siblings are 2 of the 3 matching people, then their parents are essentially being compared to the third person.

If you, your aunt/uncle, and a third person match, your grandparents are the place in your tree where three lines converge into two.

The same holds true if you’re matching against a sibling pair on your match’s side, or a match and their aunt/uncle, etc.

The further back in your tree you can push that MRCA intersection, the more your triangulated match provides confirming evidence of a common ancestor and that the match is valid and not caused by random recombination.

That’s exactly what the descendants of Charles Dodson have been able to do through triangulation with multiple descendants from several of his children.

It’s also worth mentioning at this point that the reason autosomal DNA testing uses hundreds/thousands of base pairs in a comparison window and not 3 or 6 dots like in my example is that the probability of longer segments of DNA simply randomly matching by chance is reduced with length and SNP density which is the number of SNP locations tested within that cM range.

Hence a 7 cM/500 SNP minimum is the combined rule of thumb. At that level, roughly half of your matches will be valid and half will be identical by chance unless you’re dealing with endogamy. Then, raise your threshold accordingly.

Ok, So Where are We? A Triangulation Checklist for You!

I know this has been a relatively long educational article, but it’s important to really understand that testing close relatives is VERY important, but also why we can’t effectively use them for triangulation.

Here’s a handy-dandy summary matching/triangulation checklist for you to use as you work through your matches.

  • You inherit half of each of your parents’ DNA. There is no other place for you to obtain or inherit your DNA. There is no DNA fairy sprinkling you with DNA from another source:)
  • DNA does NOT skip generations, although in occasional rare circumstances, it may appear that this happened. In this situation, it’s incumbent upon you, the genealogist, to PROVE that an exception has occurred if you really believe it has. Those circumstances might be pedigree collapse or perhaps imputation. You’ll need to compare matches at vendors who provide a chromosome browser, triangulation, and full shared match list information. Never assume that you are the exception without hard and fast proof. We all know about assume, right?
  • Your siblings inherit half of your parents’ DNA too, but not the same exact half of your parent’s DNA that you other siblings did (unless they are identical twins.) You may inherit the exact same DNA from either or both of your parents on certain segments.
  • Your matches may match your parents on different or an additional segment that you did not inherit.
  • Every segment has an individual history. Evaluate every matching segment separately. One matching segment with someone could be maternal, one paternal, and one identical by chance.
  • You can confirm matches as valid if your match matches one of your parents, and you match one of your match’s parents. Parental Phasing is when your match matches your parent. Parental Cross-Matching is when you both match one of each other’s parents. To be complete, both people who match each other need to match one of the parents of the other person. This rule still holds even if you have a known common ancestor. I can’t even begin to tell you how many times I’ve been fooled.
  • 15-20% (or more with endogamy) of your matches will be identical by chance because either your DNA or your match’s DNA aligns in such a way that while they match you, they don’t match either of your parents.
  • Your siblings, aunts, and uncles will often inherit the same DNA as you – which means that identical by chance matches will also match them. That’s why we don’t use close family members for triangulation. We do utilize close family members to generate common match hints. (Remember the 20 cM shared match caveat at Ancestry)
  • While your siblings, aunts, and uncles are too close to use for triangulation, they are wonderful to identify ancestral matches. Some of their matches will match you as well, and some will not because your close family members inherited segments of your ancestor’s DNA that you did not. Everyone should test their oldest family members.
  • Triangulate your close family member’s matches separately from your own to shed more light on your ancestors.
  • Endogamy may interfere with parental phasing, meaning you may match because you and/or your match may have inherited some of the same DNA segment(s) from both sides of your tree and/or more DNA than might otherwise be expected.
  • Pedigree collapse needs to be considered when using parental phasing, especially when the same ancestor appears on both sides of your family tree. You may share more DNA with a match than expected.
  • Conversely, with pedigree collapse, your match may not match your parents, or vice versa, if a segment happens to have recombined in you in a way that drops the matching segments of your parents beneath the vendor’s match threshold.
  • While you will match all of your second cousins, you will only match approximately 90% of your third cousins and proportionally fewer as your relationship reaches further back in time.
  • Not being a DNA match with someone does NOT mean you’re NOT related to them, unless of course, you’re a second cousin (2C) or closer. It simply means you don’t carry any common ancestral segments above vendor thresholds.
  • At 2C or closer, if you’re not a DNA match, other alternative situations need to be considered – including the transfer/upload of the wrong person’s DNA file.
  • Imputation, a scientific process required of vendors may interfere with matching, especially in more distant relatives who have tested on different platforms.
  • Imputation artifacts will be less obvious when people are more closely related, meaning closer relatives can be expected to match on more and larger segments and imputation errors make less difference.
  • Imputation will not cause close relatives, meaning 2C or closer, to not match each other.
  • In addition to not supporting segment matching information, Ancestry down-weights some segments, removes some matching DNA, and does not show shared matches below 20cM, causing some people to misinterpret their lack of common matches in various ways.
  • To resolve questions about matching issues at Ancestry, testers can transfer/upload their DNA files to MyHeritage, FamilyTreeDNA, and GEDmatch and look for consistent matches on the same segment. Start and end locations may vary to some extent between vendors, but the segment size should be basically in the same location and roughly the same size.
  • GEDmatch does not use imputation but allows larger non-matching segments to combine as a single segment which sometimes causes extremely “generous” matches. GEDmatch matching is less reliable than FamilyTreeDNA or MyHeritage, but you can adjust the matching thresholds.
  • The best situation for matching is for both people to test at the same vendor who supports and provides segment data and a chromosome browser such as 23andMe, FamilyTreeDNA, or MyHeritage.
  • Siblings cannot be used for triangulation because the most recent common ancestor (MRCA) between you and your siblings is your parents. Therefore, the “three” people in the triangulation group is reduced to two lines immediately.
  • Uncles and aunts should not be used for triangulation because the most recent common ancestors between you and your aunts and uncles are your grandparents.
  • Conversely, you should not consider triangulating with siblings and close family members of your matches as proof of an ancestral relationship.
  • A triangulation group of 3 people is only confirmation as far back as when two of those people’s lines converge and reach a common ancestor.
  • Identical by chance (IBC) matching occurs when DNA from the maternal and paternal sides are mixed positionally in the child to resemble a maternal/paternal side match with someone else.
  • Identical by chance DNA admixture (when compared to a match) could have occurred in your parents or grandparent’s generation, or earlier, so the further back in time that people in a triangulation group reach, the more reliable the triangulation group is likely to be.
  • The larger the segments and/or the triangulation group, the stronger the evidence for a specific confirmed common ancestor.
  • Early families with a very large number of descendants may have many matching and triangulated members, even 9 or 10 generations later.
  • While exactly 50% of each ancestor’s DNA is not passed in each generation, on average, you will carry 7 cM of your ancestors 10 generations back in your tree. However, you may carry more, or none.
  • The percentage of matching descendants decreases with each generation beyond great-grandparents.
  • The ideal situation for triangulation is a significant number of people, greater than three, who match on the same reasonably sized segment (7 cM/500 SNP or larger) and descend from the same ancestor (or ancestral couple) through different children whose spouses in descendant generations are not also related.
  • This means that tree completion is an important factor in match/triangulation reliability.
  • Triangulating through different children of the ancestral couple makes it significantly less likely that a different unknown common ancestor is contributing that segment of DNA – like an unknown wife in a descendant generation.

Whew!!!

The Bottom Line

Here’s the bottom line.

  1. Don’t use close relatives to triangulate.
  2. Use parents for Parental Phasing.
  3. Use Parental Cross-Matching when possible.
  4. Use close relatives to look for shared common matches that may lead to triangulation possibilities.
  5. Triangulate your close relatives’ DNA in addition to your own for bonus genealogical information. They will match people that you don’t.
  6. For the most reliable triangulation results, use the most distant relatives possible, descended through different children of the common ancestral couple.
  7. Keep this checklist of best practices, cautions, and caveats handy and check the list as necessary when evaluating the strength of any match or triangulation group. It serves as a good reminder for what to check if something seems “off” or unusual.

Feel free to share and pass this article (and checklist) on to your genealogy buddies and matches as you explain triangulation and collaborate on your genealogy.

Have fun!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

RootsTech Connect 2021: Comprehensive DNA Session List

I wondered exactly how many DNA sessions were at RootsTech this year and which ones are the most popular.

Unfortunately, we couldn’t easily view a list of all the sessions, so I made my own. I wanted to be sure to include every session, including Tips and Tricks and vendor sessions that might only be available in their booths. I sifted through every menu and group and just kept finding more and more buried DNA treasures in different places.

I’m sharing this treasure chest with you below. And by the way, this took an entire day, because I’ve listed the YouTube direct link AND how many views each session had amassed today.

Two things first.

Sales Extended

The Family Tree DNA RootsTech Sales prices including upgrades are still available – here.

  • The FamilyTreeDNA autosomal Family Finder testis now only $49. Click here to purchase using coupon code RTCTFF.
  • FamilyTreeDNAis offering the advanced tool unlock for only $9 after a free transfer through March 7th. Click here to sign on, upload your DNA file if you’ve tested elsewhere, and then unlock using code RTCAU10.

MyHeritage has extended their RootsTech deals too.

  • MyHeritage has waived the unlock fee of $29 if you transfer your DNA kit from another vendor between now and March 7th. You can upload, free, here. You’ll get all of the advanced tools for free.
  • The MyHeritage DNA kit is on sale for $79, here.

Neither Ancestry nor 23andMe had show sales, but you can purchase at their regular prices.

All serious genealogists will want to test at or transfer to all 4 major vendors and test their Y DNA and mitochondrial DNA at FamilyTreeDNA.

RootsTech Sessions

As you know, RootsTech was shooting for TED talk format this year. Roughly 20-minute sessions. When everything was said and done, there were five categories of sessions:

  • Curated sessions are approximately 20-minute style presentations curated by RootsTech meaning that speakers had to submit. People whose sessions were accepted were encouraged to break longer sessions into a series of two or three 20-minute sessions.
  • Vendor booth videos could be loaded to their virtual boots without being curated by RootsTech, but curated videos by their employees could also be loaded in the vendor booths.
  • DNA Learning Center sessions were by invitation and provided by volunteers. They last generally between 10-20 minutes.
  • Tips and Tricks are also produced by volunteers and last from 1 to 15 minutes. They can be sponsored by a company and in some cases, smaller vendors and service providers utilized these to draw attention to their products and services.
  • 1-hour sessions tend to be advanced and not topics could be easily broken apart into a series.

Look at this amazing list of 129 DNA or DNA-related sessions that you can watch for free for the next year. Be sure to bookmark this article so you can refer back easily.

Please note that I started compiling this list for myself and I’ve shortened some of the session names. Then I realized that if I needed this, so do you.

Top 10 Most-Viewed Sessions

I didn’t know whether I should list these sessions by speaker name, or by the most views, so I’m doing a bit of both.

Drum roll please…

The top 10 most viewed sessions as of today are:

Speaker/Vendor Session Title Type Link Views
Libby Copeland How Home DNA Testing Has Redefined Family History Curated Session https://youtu.be/LsOEuvEcI4A 13,554
Nicole Dyer Organize Your DNA Matches in a Diagram Tips and Tricks https://youtu.be/UugdM8ATTVo 6175
Roberta Estes DNA Triangulation: What, Why, and How 1 hour https://youtu.be/nIb1zpNQspY 6106
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 1 Curated Session https://youtu.be/bB7VJeCR6Bs 5866
Amy Williams Ancestor Reconstruction: Why, How, Tools Curated Session https://youtu.be/0D6lAIyY_Nk 5637
Drew Smith Before You Test Basics Part 1 Curated Session https://youtu.be/wKhMRLpefDI 5079
Nicole Dyer How to Interpret a DNA Cluster Chart Tips and Tricks https://youtu.be/FI4DaWGX8bQ 4982
Nicole Dyer How to Evaluate a ThruLines Hypothesis Tips and Tricks https://youtu.be/ao2K6wBip7w 4823
Kimberly Brown Why Don’t I Match my Match’s Matches DNA Learning Center https://youtu.be/A8k31nRzKpc 4593
Rhett Dabling, Diahan Southard Understanding DNA Ethnicity Results Curated Session https://youtu.be/oEt7iQBPfyM 4287

Libby Copeland must be absolutely thrilled. I noticed that her session was featured over the weekend in a highly prominent location on the RootsTech website.

Sessions by Speaker

The list below includes the English language sessions by speaker. I apologize for not being able to discern which non-English sessions are about DNA.

Don’t let a smaller number of views discourage you. I’ve watched a few of these already and they are great. I suspect that sessions by more widely-known speakers or ones whose sessions were listed in the prime-real estate areas have more views, but what you need might be waiting just for you in another session. You don’t have to pick and choose and they are all here for you in one place.

Speaker/Vendor Session Title Type Link Views
Alison Wilde SCREEN Method: A DNA Match Note System that Really Helps DNA Learning Center https://youtu.be/WaNnh_v1rwE 791
Amber Brown Genealogist-on-Demand: The Help You Need on a Budget You Can Afford Curated Session https://youtu.be/9KjlD6GxiYs 256
Ammon Knaupp Pattern of Genetic Inheritance DNA Learning Center https://youtu.be/Opr7-uUad3o 824
Amy Williams Ancestor Reconstruction: Why, How, Tools Curated Session https://youtu.be/0D6lAIyY_Nk 5637
Amy Williams Reconstructing Parent DNA and Analyzing Relatives at HAPI-DNA, Part 1 Curated Session https://youtu.be/MZ9L6uPkKbo 1021
Amy Williams Reconstructing Parent DNA and Analyzing Relatives at HAPI-DNA, Part 2 Curated Session https://youtu.be/jZBVVvJmnaU 536
Ancestry DNA Matches Curated Session https://youtu.be/uk8EKXLQYzs 743
Ancestry ThruLines Curated Session https://youtu.be/RAwimOgNgUE 1240
Ancestry Ancestry DNA Communities: Bringing New Discoveries to Your Family History Research Curated Session https://youtu.be/depeGW7QUzU 422
Andre Kearns Helping African Americans Trace Slaveholding Ancestors Using DNA Curated Session https://youtu.be/mlnSU5UM-nQ 2211
Barb Groth I Found You: Methods for Finding Hidden Family Members Curated Session https://youtu.be/J93hxOe_KC8 1285
Beth Taylor DNA and Genealogy Basics DNA Learning Center https://youtu.be/-LKgkIqFhL4 967
Beth Taylor What Do I Do With Cousin Matches? DNA Learning Center https://youtu.be/LyGT9B6Mh00 1349
Beth Taylor Using DNA to Find Unknown Relatives DNA Learning Center https://youtu.be/WGJ8IfuTETY 2166
David Ouimette I Am Adopted – How Do I Use DNA to Find My Parents? Curated Session https://youtu.be/-jpKgKMLg_M 365
Debbie Kennett Secrets and Surprises: Uncovering Family History Mysteries through DNA Curated Session https://youtu.be/nDnrIWKmIuA 2899
Debbie Kennett Genetic Genealogy Meets CSI Curated Session https://youtu.be/sc-Y-RtpEAw 589
Diahan Southard What is a Centimorgan Tips and Tricks https://youtu.be/uQcfhPU5QhI 2923
Diahan Southard Using the Shared cM Project DNA Learning Center https://youtu.be/b66zfgnzL0U 3172
Diahan Southard Understanding Ethnicity Results DNA Learning Center https://youtu.be/8nCMrf-yJq0 1587
Diahan Southard Problems with Shared Centimorgans DNA Learning Center https://youtu.be/k7j-1yWwGcY 2494
Diahan Southard 4 Next Steps for Your DNA Curated Session https://youtu.be/poRyCaTXvNg 3378
Diahan Southard Your DNA Questions Answered Curated Session https://youtu.be/uUlZh_VYt7k 3454
Diahan Southard You Can Do the DNA – We Can Help Tips and Tricks https://youtu.be/V5VwNzcVGNM 763
Diahan Southard What is a DNA Match? Tips and Tricks https://youtu.be/Yt_GeffWhC0 314
Diahan Southard Diahan’s Tips for DNA Matches Tips and Tricks https://youtu.be/WokgGVRjwvk 3348
Diahan Southard Diahan’s Tips for Y DNA Tips and Tricks https://youtu.be/QyH69tk-Yiw 620
Diahan Southard Diahan’s Tips about mtDNA testing Tips and Tricks https://youtu.be/6d-FNY1gcmw 2142
Diahan Southard Diahan’s Tips about Ethnicity Results Tips and Tricks https://youtu.be/nZFj3zCucXA 1597
Diahan Southard Diahan’s Tips about Which DNA Test to Take Tips and Tricks https://youtu.be/t–4R8H8q0U 2043
Diahan Southard Diahan’s Tips about When Your Matches Don’s Respond Tips and Tricks https://youtu.be/LgHtM3nS60o 3009
Diahan Southard Three Next Steps: Using Known Matches Tips and Tricks https://youtu.be/z1SVq8ME42A 118
Diahan Southard Three Next Steps: MRCA/DNA and the Paper Trail Tips and Tricks https://youtu.be/JB0cVyk-Y4Q 80
Diahan Southard Three Next Steps: Start With Known Matches Tips and Tricks https://youtu.be/BSNhaQCNtAo 68
Diahan Southard Three Next Steps: Additional Tools Tips and Tricks https://youtu.be/PqNPBLQSBGY 140
Diahan Southard Three Next Steps: Ancestry ThruLines Tips and Tricks https://youtu.be/KWayyAO8p_c 335
Diahan Southard Three Next Steps: MyHeritage Theory of Relativity Tips and Tricks https://youtu.be/Et2TVholbAE 80
Diahan Southard Three Next Steps: Who to Test Tips and Tricks https://youtu.be/GyWOO1XDh6M 111
Diahan Southard Three Next Steps: Genetics vs Genealogy Tips and Tricks https://youtu.be/Vf0DC5eW_vA 294
Diahan Southard Three Next Steps: Centimorgan Definition Tips and Tricks https://youtu.be/nQF935V08AQ 201
Diahan Southard Three Next Steps: Shared Matches Tips and Tricks https://youtu.be/AYcR_pB6xgA 233
Diahan Southard Three Next Steps: Case Study – Finding an MRCA Tips and Tricks https://youtu.be/YnlA9goeF7w 256
Diahan Southard Three Next Steps: Why Use DNA Tips and Tricks https://youtu.be/v-o4nhPn8ww 266
Diahan Southard Three Next Steps: Finding Known Matches Tips and Tricks https://youtu.be/n3N9CnAPr18 688
Diana Elder Using DNA Ethnicity Estimates in Your Research Tips and Tricks https://youtu.be/aJgUK3TJqtA 1659
Diane Elder Using DNA in a Client Research Project to Solve a Family Mystery 1 hour https://youtu.be/ysGYV6SXxR8 1261
Donna Rutherford DNA and the Settlers of Taranaki, New Zealand Curated Session https://youtu.be/HQxFwie4774 214
Drew Smith Before You Test Basics Part 1 Curated Session https://youtu.be/wKhMRLpefDI 5079
Drew Smith Before You Test Basics Part 2 Curated Session https://youtu.be/Dopx04UHDpo 2769
Drew Smith Before You Test Basics Part 3 Curated Session https://youtu.be/XRd2IdtA-Ng 2360
Elena Fowler Whakawhanaungatanga Using DNA – It’s Complicated (Māori heritage) Curated Session https://youtu.be/6XTPMzVnUd8 470
Elena Fowler Whakawhanaungatanga Using DNA – FamilyTreeDNA (Māori heritage) Curated Session https://youtu.be/fM85tt5ad3A 269
Elena Fowler Whakawhanaungatanga Using DNA – Ancestry (Māori heritage) Curated Session https://youtu.be/-byO6FOfaH0 191
Esmee Mortimer-Taylor Living DNA: Anathea Ring – Her Story Tips and Tricks https://youtu.be/MTE4UFKyLRs 189
Esmee Mortimer-Taylor Living DNA: Coretta Scott King Academy – DNA Results Reveal Tips and Tricks https://youtu.be/CK1EYcuhqmc 82
Fonte Felipe Ethnic Filters and DNA Matches: The Way Forward to Finding Your Lineage Curated Session https://youtu.be/mt2Rv2lpj7o 553
FTDNA – Janine Cloud Big Y: What is it? Why Do I Need It? Curated Session https://youtu.be/jiDcjWk4cVI 2013
FTDNA – Sherman McRae Using DNA to Find Ancestors Lost in Slavery Curated Session https://youtu.be/i3VKwpmttBI 738
Jerome Spears Elusive Distant African Cousins: Using DNA, They Can Be Found Curated Session https://youtu.be/fAr-Z78f_SM 335
Karen Stanbary Ruling Out Instead of Ruling In: DNA and the GPS in Action 1 hour https://youtu.be/-WLhIHlSyLE 548
Katherine Borges DNA and Lineage Societies Tips and Tricks https://youtu.be/TBYGyLHHAOI 451
Kimberly Brown Why Don’t I Match my Match’s Matches DNA Learning Center https://youtu.be/A8k31nRzKpc 4593
Kitty Munson Cooper Basics of Unknown Parentage Research Using DNA Part 1 Curated Session https://youtu.be/2f3c7fJ74Ig 2931
Kitty Munson Cooper Basics of Unknown Parentage Research Using DNA Part 2 Curated Session https://youtu.be/G7h-LJPCywA 1222
Lauren Vasylyev Finding Cousins through DNA Curated Session https://youtu.be/UN7WocQzq78 1979
Lauren Vasylyev, Camille Andrus Finding Ancestors Through DNA Curated Session https://youtu.be/4rbYrRICzrQ 3919
Leah Larkin Untangling Endogamy Part 1 Curated Session https://youtu.be/0jtVghokdbg 2291
Leah Larkin Untangling Endogamy Part 2 Curated Session https://youtu.be/-rXLIZ0Ol-A 1441
Liba Casson-Budell Shining a Light on Jewish Genealogy Curated Session https://youtu.be/pHyVz94024Y 162
Libby Copeland How Home DNA Testing Has Redefined Family History Curated Session https://youtu.be/LsOEuvEcI4A 13,554
Linda Farrell Jumpstart your South African research Curated Session https://youtu.be/So7y9_PBRKc 339
Living DNA How to do a Living DNA Swab Tips and Tricks https://youtu.be/QkbxhqCw7Mo 50
Lynn Broderick Ethical Considerations Using DNA Results Curated Session https://youtu.be/WMcRiDxPy2k 249
Mags Gaulden Importance and Benefits of Y DNA Testing DNA Learning Center https://youtu.be/MVIiv0H7imI 1032
Maurice Gleeson Using Y -DNA to Research Your Surname Curated Session https://youtu.be/Ir4NeFH_aJs 1140
Melanie McComb Georgetown Memory Project: Preserving the Stories of the GU272 Curated Session https://youtu.be/Fv0gHzTHwPk 320
Michael Kennedy What Can You Do with Your DNA Test? DNA Learning Center https://youtu.be/rKOjvkqYBAM 616
Michelle Leonard Understanding X-Chromosome DNA Matching Curated Session https://youtu.be/n784kt-Xnqg 775
MyHeritage How to Analyze DNA Matches on MH Curated Session https://youtu.be/gHRvyQYrNds 1192
MyHeritage DNA – an Overview Curated Session https://youtu.be/AIRGjEOg_xo 389
MyHeritage Advanced DNA Tools Curated Session https://youtu.be/xfZUAjI5G_I 762
MyHeritage How to Get Started with Your DNA Matches Tips and Tricks https://youtu.be/rU_dq1vt6z4 1901
MyHeritage How to Filter and Sort Your DNA Matches Tips and Tricks https://youtu.be/aJ7dRwMTt90 1008
Nicole Dyer How to Interpret a DNA Cluster Chart Tips and Tricks https://youtu.be/FI4DaWGX8bQ 4982
Nicole Dyer How to Evaluate a ThruLines Hypothesis Tips and Tricks https://youtu.be/ao2K6wBip7w 4823
Nicole Dyer Organize Your DNA Matches in a Diagram Tips and Tricks https://youtu.be/UugdM8ATTVo 6175
Nicole Dyer Research in the Southern States Curated Session https://youtu.be/Pouw_yPrVSg 871
Olivia Fordiani Understanding Basic Genetic Genealogy DNA Learning Center https://youtu.be/-kbGOFiwH2s 810
Pamela Bailey Information Wanted: Reuniting an American Family Separated by Slavery Tips and Tricks https://youtu.be/DPCJ4K8_PZw 105
Patricia Coleman Getting Started with DNA Painter DNA Learning Center https://youtu.be/Yh_Bzj6Atck 1775
Patricia Coleman Adding MyHeritage Data to DNA Painter DNA Learning Center https://youtu.be/rP9yoCGjkLc 458
Patricia Coleman Adding 23andMe Data to DNA Painter DNA Learning Center https://youtu.be/pJBAwe6s0z0 365
Penny Walters Mixing DNA with Paper Trail DNA Learning Center https://youtu.be/PP4SjdKuiLQ 2693
Penny Walters Collaborating with DNA Matches When You’re Adopted DNA Learning Center https://youtu.be/9ioeCS22HlQ 1222
Penny Walters Differences in Ethnicity Between My 6 Children DNA Learning Center https://youtu.be/RsrXLcXRNfs 400
Penny Walters Differences in DNA Results Between My 6 Children DNA Learning Center https://youtu.be/drnzW3FXScI 815
Penny Walters Ethical Dilemmas in DNA Testing DNA Learning Center https://youtu.be/PRPoc0nB4Cs 437
Penny Walters Adoption – Background Context Curated Session https://youtu.be/qC1_Ln8WCNg 1054
Penny Walters Adoption – Utilizing DNA Testing to Construct a Bio Family Tree Curated Session https://youtu.be/zwJ5QofaGTE 941
Penny Walters Adoption – Ethical Dilemmas and Varied Consequences of Looking for Bio Family Curated Session https://youtu.be/ZLcHHTSfCIE 576
Penny Walters I Want My Mummy: Ancient and Modern Egypt Curated Session https://youtu.be/_HRO50RtzFk 311
Rebecca Whitman Koford BCG: Brief Step-by-Step Tour of the BCG Website Tips and Tricks https://youtu.be/YpV9bKG6sXk 317
Renate Yarborough Sanders DNA Understanding the Basics DNA Learning Center https://youtu.be/bX_flUQkBEA 2713
Renate Yarborough Sanders To Test or Not to Test DNA Learning Center https://youtu.be/58-qzvN4InU 1048
Rhett Dabling Finding Ancestral Homelands Through DNA Curated Session https://youtu.be/k9zixg4uL1I 505
Rhett Dabling, Diahan Southard Understanding DNA Ethnicity Results Curated Session https://youtu.be/oEt7iQBPfyM 4287
Richard Price Finding Biological Family Tips and Tricks https://youtu.be/L9C-SGVRZLM 101
Robert Kehrer Will They Share My DNA (Consent, policies, etc.) DNA Learning Center https://youtu.be/SUo-jpTaR1M 480
Robert Kehrer What is a Centimorgan? DNA Learning Center https://youtu.be/dopniLw8Fho 1194
Roberta Estes DNA Triangulation: What, Why and How 1 hour https://youtu.be/nIb1zpNQspY 6106
Roberta Estes Mother’s Ancestors DNA Learning Center https://youtu.be/uUh6WrVjUdQ 3074
Robin Olsen Wirthlin How Can DNA Help Me Find My Ancestors? Curated Session https://youtu.be/ZINiyKsw0io 1331
Robin Olsen Wirthlin DNA Tools Bell Curve Tips and Tricks https://youtu.be/SYorGgzY8VQ 1207
Robin Olsen Wirthlin DNA Process Trees Guide You in Using DNA in Family History Research Tips and Tricks https://youtu.be/vMOQA3dAm4k 1708
Shannon Combs-Bennett DNA Basics Made Easy DNA Learning Center https://youtu.be/4JcLJ66b0l4 1560
Shannon Combs-Bennett DNA Brick Walls DNA Learning Center https://youtu.be/vtFkT_PSHV0 450
Shannon Combs-Bennett Basics of Genetic Genealogy Part 1 Curated Session https://youtu.be/xEMbirtlBZo 2263
Shannon Combs-Bennett Basics of Genetic Genealogy Part 2 Curated Session https://youtu.be/zWMPja1haHg 1424
Steven Micheleti, Joanna Mountain Genetic Consequences of the Transatlantic Slave Trade Part 1 Curated Session https://youtu.be/xP90WuJpD9Q 2284
Steven Micheleti, Joanna Mountain Genetic Consequences of the Transatlantic Slave Trade Part 2 Curated Session https://youtu.be/McMNDs5sDaY 742
Thom Reed How Can Connecting with Ancestors Complete Us? Curated Session https://youtu.be/gCxr6W-tkoY 392
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 1 Curated Session https://youtu.be/bB7VJeCR6Bs 5866
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 2 Curated Session https://youtu.be/scOtMyFULGI 3008
Ugo Perego Strengths and Limitations of Genetic Testing for Family History DNA Learning Center https://youtu.be/XkBK1y-LVaE 480
Ugo Perego A Personal Genetic Journey DNA Learning Center https://youtu.be/Lv9CSU50xCc 844
Ugo Perego Discovering Native American Ancestry through DNA Curated Session https://youtu.be/L1cs748ctx0 884
Ugo Perego Mitochondrial DNA: Our Maternally-Inherited Family History Curated Session https://youtu.be/Z5bPTUzewKU 599
Vivs Laliberte Introduction to Y DNA DNA Learning Center https://youtu.be/rURyECV5j6U 752
Yetunde Moronke Abiola 6% Nigerian: Tracing my Missing Nigerian Ancestor Curated Session https://youtu.be/YNQt60xKgyg 494

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

MyHeritage DNA Transfer and Unlock FREE Through February 28th

You can always transfer your DNA file to MyHeritage and receive matches for free if you’ve tested at Ancestry, 23andMe, or FamilyTreeDNA.

A free DNA file upload at MyHeritage always includes matching, but the advanced tools normally require either a $29 one-time unlock fee, or a Complete Data Plan subscription which includes genealogical records and more. (You can try the subscription free for 14 days, here.)

Right now, and through February 28th, you can transfer your DNA for free AND the $29 unlock fee is forever waived for the kits you transfer during this timeframe.

Free Advanced Features

What advanced features will you receive, in addition to matching?

These are wonderful tools for unraveling your genealogy.

Perfect Timing with RootsTech

The timing is great, because this week with RootsTech happening virtually, absolutely everyone is thinking about genealogy. Your transfer can be complete and ready for you to utilize as you select DNA-focused classes.

Don’t forget, RootsTech is free too and lasts from February 25-27 this year. I wrote about RootsTech, here. You can still sign up and watch sessions at any time, on-demand, after the conference opens. You’ll find several presentations by MyHeritage staff and by other speakers about using their products.

I’ll be teaching a session about Triangulation in general, including information about MyHeritage as well as other vendors who offer this type of feature.

Transfer your DNA file to MyHeritage now by clicking here so you’ll be ready.

Need Help?

Need transfer instructions?

I wrote step-by-step instructions about how to download your file from other vendors and how to upload to MyHeritage, here.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books