DNA: In Search of…Signs of Endogamy

This is the fourth in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to ancestors further back in time as well.

In this article, we discuss endogamy – how to determine if you have it, from what population, and how to follow the road signs.

After introductions, we will be covering the following topics:

  • Pedigree collapse and endogamy
  • Endogamous groups
  • The challenge(s) of endogamy
  • Endogamy and unknown close relatives (parents, grandparents)
  • Ethnicity and Populations
  • Matches
  • AutoClusters
  • Endogamous Relationships
  • Endogamous DNA Segments
  • “Are Your Parents Related?” Tool
  • Surnames
  • Projects
  • Locations
  • Y DNA, Mitochondrial DNA, and Endogamy
  • Endogamy Tools Summary Tables
    • Summary of Endogamy Tools by Vendor
    • Summary of Endogamous Populations Identified by Each Tool
    • Summary of Tools to Assist People Seeking Unknown Parents and Grandparents

What Is Endogamy and Why Does It Matter?

Endogamy occurs when a group or population of people intermarry among themselves for an extended period of time, without the introduction of many or any people from outside of that population.

The effect of this continual intermarriage is that the founders’ DNA simply gets passed around and around, eventually in small segments.

That happens because there is no “other” DNA to draw from within the population. Knowing or determining that you have endogamy helps make sense of DNA matching patterns, and those patterns can lead you to unknown relatives, both close and distant.

This Article

This article serves two purposes.

  • This article is educational and relevant for all researchers. We discuss endogamy using multiple tools and examples from known endogamous people and populations.
  • In order to be able to discern endogamy when we don’t know who our parents or grandparents are, we need to know what signs and signals to look for, and why, which is based on what endogamy looks like in people who know their heritage.

There’s no crystal ball – no definitive “one-way” arrow, but there are a series of indications that suggest endogamy.

Depending on the endogamous population you’re dealing with, those signs aren’t always the same.

If you’re sighing now, I understand – but that’s exactly WHY I wrote this article.

We’re covering a lot of ground, but these road markers are invaluable diagnostic tools.

I’ve previously written about endogamy in the articles:

Let’s start with definitions.

Pedigree Collapse and Endogamy

Pedigree collapse isn’t the same as endogamy. Pedigree collapse is when you have ancestors that repeat in your tree.

In this example, the parents of our DNA tester are first cousins, which means the tester shares great-grandparents on both sides and, of course, the same ancestors from there on back in their tree.

This also means they share more of those ancestors’ DNA than they would normally share.

John Smith and Mary Johnson are both in the tree twice, in the same position as great-grandparents. Normally, Tester Smith would carry approximately 12.5% of each of his great-grandparents’ DNA, assuming for illustration purposes that exactly 50% of each ancestor’s DNA is passed in each generation. In this case, due to pedigree collapse, 25% of Tester Smith’s DNA descends from John Smith, and another 25% descends from Mary Johnson, double what it would normally be. 25% is the amount of DNA contribution normally inherited from grandparents, not great-grandparents.

While we may find first cousin marriages a bit eyebrow-raising today, they were quite common in the past. Both laws and customs varied with the country, time, social norms, and religion.

Pedigree Collapse and Endogamy is NOT the Same

You might think that pedigree collapse and endogamy is one and the same, but there’s a difference. Pedigree collapse can lead to endogamy, but it takes more than one instance of pedigree collapse to morph into endogamy within a population. Population is the key word for endogamy.

The main difference is that pedigree collapse occurs with known ancestors in more recent generations for one person, while endogamy is longer-term and systemic in a group of people.

Picture a group of people, all descended from Tester Smith’s great-grandparents intermarrying. Now you have the beginnings of endogamy. A couple hundred or a few hundred years later, you have true endogamy.

In other words, endogamy is pedigree collapse on a larger scale – think of a village or a church.

My ancestors’ village of Schnait, in Germany, is shown above in 1685. One church and maybe 30 or 40 homes. According to church and other records, the same families had inhabited this village, and region, for generations. It’s a sure bet that both pedigree collapse and endogamy existed in this small community.

If pedigree collapse happens over and over again because there are no other people within the community to marry, then you have endogamy. In other words, with endogamy, you assuredly DO have historical pedigree collapse, generally back in time, often before you can identify those specific ancestors – because everyone descends from the same set of founders.

Endogamy Doesn’t Necessarily Indicate Recent Pedigree Collapse

With deep, historic endogamy, you don’t necessarily have recent pedigree collapse, and in fact, many people do not. Jewish people are a good example of this phenomenon. They shared ancestors for hundreds or thousands of years, depending on which group we are referring to, but in recent, known, generations, many Jewish people aren’t related. Still, their DNA often matches each other.

The good news is that there are telltale signs and signals of endogamy.

The bad news is that not all of these are obvious, meaning as an aid to people seeking clues about unknown close relatives, and other “signs” aren’t what they are believed to be.

Let’s step through each endogamy identifier, or “hint,” and then we will review how we can best utilize this information.

First, let’s take a look at groups that are considered to be endogamous.

Endogamous Groups

Jewish PeopleSpecifically groups that were isolated from other groups of Jewish (and other) people; Ashkenazi (Germany, Northern France, and diaspora), Sephardic (Spanish, Iberia, and diaspora), Mizrahi (Israel, Middle Eastern, and diaspora,) Ethiopian Jews, and possibly Jews from other locations such as Mountain Jews from Kazakhstan and the Caucasus.

AcadiansDescendants of about 60 French families who settled in “Acadia” beginning about 1604, primarily on the island of Nova Scotia, and intermarried among themselves and with the Mi’kmaq people. Expelled by the English in 1755, they were scattered in groups to various diasporic regions where they continued to intermarry and where their descendants are found today. Some Acadians became the Cajuns of Louisiana.

Anabaptist Protestant FaithsAmish, Mennonite, and Brethren (Dunkards) and their offshoots are Protestant religious sects founded in Europe in the 14th, 15th, and 16th centuries on the principle of baptizing only adults or people who are old enough to choose to follow the faith, or rebaptizing people who had been previously baptized as children. These Anabaptist faiths tend to marry within their own group or church and often expel those who marry outside of the faith. Many emigrated to the American colonies and elsewhere, seeking religious freedom. Occasionally those groups would locate in close proximity and intermarry, but not marry outside of other Anabaptist denominations.

Native American (Indigenous) People – all indigenous peoples found in North and South America before European colonization descended from a small number of original founders who probably arrived at multiple times.

Indigenous Pacific Islanders – Including indigenous peoples of Australia, New Zealand, and Hawaii prior to colonization. They are probably equally as endogamous as Native American people, but I don’t have specific examples to share.

Villages – European or other villages with little inflow or whose residents were restricted from leaving over hundreds of years.

Other groups may have significant multiple lines of pedigree collapse and therefore become endogamous over time. Some people from Newfoundland, French Canadians, and Mormons (Church of Jesus Christ of Latter-Day Saints) come to mind.

Endogamy is a process that occurs over time.

Endogamy and Unknown Relatives

If you know who your relatives are, you may already know you’re from an endogamous population, but if you’re searching for close relatives, it’s helpful to be able to determine if you have endogamous heritage, at least in recent generations.

If you know nothing about either parent, some of these tools won’t help you, at least not initially, but others will. However, as you add to your knowledge base, the other tools will become more useful.

If you know the identity of one parent, this process becomes at least somewhat easier.

In future articles, we will search specifically for parents and each of your four grandparents. In this article, I’ll review each of the diagnostic tools and techniques you can use to determine if you have endogamy, and perhaps pinpoint the source.

The Challenge

People with endogamous heritage are related in multiple, unknown ways, over many generations. They may also be related in known ways in recent generations.

If both of your parents share the SAME endogamous culture or group of relatives:

  • You may have significantly more autosomal DNA matches than people without endogamy, unless that group of people is under-sampled. Jewish people have significantly more matches, but Native people have fewer due to under-sampling.
  • You may experience a higher-than-normal cM (centiMorgan) total for estimated relationships, especially more distant relationships, 3C and beyond.
  • You will have many matches related to you on both your maternal and paternal sides.
  • Parts of your autosomal DNA will be the same on both your mother’s and father’s sides, meaning your DNA will be fully identical in some locations. (I’ll explain more in a minute.)

If either (or both) of your parents are from an endogamous population, you:

  • Will, in some cases, carry identifying Y and mitochondrial DNA that points to a specific endogamous group. This is true for Native people, can be true for Jewish people and Pacific Islanders, but is not true for Anabaptist people.

One Size Does NOT Fit All

Please note that there is no “one size fits all.”

Each or any of these tools may provide relevant hints, depending on:

  • Your heritage
  • How many other people have tested from the relevant population group
  • How many close or distant relatives have tested
  • If your parents share the same heritage
  • Your unique DNA inheritance pattern
  • If your parents, individually, were fully endogamous or only partly endogamous, and how far back generationally that endogamy occurred

For example, in my own genealogy, my maternal grandmother’s father was Acadian on his father’s side. While I’m not fully endogamous, I have significantly more matches through that line proportionally than on my other lines.

I have Brethren endogamy on my mother’s side via her paternal grandmother.

Endogamous ancestors are shown with red stars on my mother’s pedigree chart, above. However, please note that her maternal and paternal endogamous ancestors are not from the same endogamous population.

However, I STILL have fewer matches on my mother’s side in total than on my father’s side because my mother has recent Dutch and recent German immigrants which reduces her total number of matches. Neither of those lines have had as much time to produce descendants in the US, and Europe is under-sampled when compared with the US where more people tend to take DNA tests because they are searching for where they came from.

My father’s ancestors have been in the US since it was a British Colony, and I have many more cousins who have tested on his side than mother’s.

If you looked at my pedigree chart and thought to yourself, “that’s messy,” you’d be right.

The “endogamy means more matches” axiom does not hold true for me, comparatively, between my parents – in part because my mother’s German and Dutch lines are such recent immigrants.

The number of matches alone isn’t going to tell this story.

We are going to need to look at several pieces and parts for more information. Let’s start with ethnicity.

Ethnicity and Populations

Ethnicity can be a double-edged sword. It can tell you exactly nothing you couldn’t discern by looking in the mirror, or, conversely, it can be a wealth of information.

Ethnicity reveals the parts of the world where your ancestors originated. When searching for recent ancestors, you’re most interested in majority ethnicity, meaning the 50% of your DNA that you received from each of your parents.

Ethnicity results at each vendor are easy to find and relatively easy to understand.

This individual at FamilyTreeDNA is 100% Ashkenazi Jewish.

If they were 50% Jewish, we could then estimate, and that’s an important word, that either one of their parents was fully Jewish, and not the other, or that two of their grandparents were Jewish, although not necessarily on the same side.

On the other hand, my mother’s ethnicity, shown below, has nothing remarkable that would point to any majority endogamous population, yet she has two.

The only hint of endogamy from ethnicity would be her ~1% Americas, and that isn’t relevant for finding close relatives. However, minority ancestry is very relevant for identifying Native ancestors, which I wrote about, here.

You can correlate or track your ethnicity segments to specific ancestors, which I discussed in the article, Native American & Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments, here.

Since I wrote that article, FamilyTreeDNA has added the feature of ethnicity or population Chromosome Painting, based on where each of your populations fall on your chromosomes.

In this example on chromosome 1, I have European ancestry (blue,) except for the pink Native segment, which occurs on the following segment in the same location on my mother’s chromosome 1 as well.

Both 23andMe, and FamilyTreeDNA provide chromosome painting AND the associated segment information so you can identify the relevant ancestors.

Ancestry is in the process of rolling out an ethnicity painting feature, BUT, it has no segment or associated matching information. While it’s interesting eye candy, it’s not terribly useful beyond the ethnicity information that Ancestry already provides. However, Jonny Perl at DNAPainter has devised a way to estimate Ancestry’s start and stop locations, here. Way to go Jonny!

Now all you need to do is convince your Ancestry matches to upload their DNA file to one of the three databases, FamilyTreeDNA, MyHeritage, and GEDMatch, that accept transfers, aka uploads. This allows matching with segment data so that you can identify who matches you on that segment, track your ancestors, and paint your ancestral segments at DNAPainter.

I provided step-by-step instructions, here, for downloading your raw DNA file from each vendor in order to upload the file to another vendor.

Ethnicity Sides

Three of the four DNA testing vendors, 23andMe, FamilyTreeDNA, and recently, Ancestry, attempt to phase your ethnicity DNA, meaning to assign it to one parental “side” or the other – both in total and on each chromosome.

Here’s Ancestry’s SideView, where your DNA is estimated to belong to parent 1 and parent 2. I detailed how to determine which side is which, here, and while that article was written specifically pertaining to Ancestry’s SideView, the technique is relevant for all the vendors who attempt to divide your DNA into parents, a technique known as phasing.

I say “attempt” because phasing may or may not be accurate, meaning the top chromosome may not always be parent 1, and the bottom chromosome may not always be chromosome 2.

Here’s an example at 23andMe.

See the two yellow segments. They are both assigned as Native. I happen to know one is from the mother and one is from the father, yet they are both displayed on the “top” chromosome, which one would interpret to be the same parent.

I am absolutely positive this is not the case because this is a close family member, and I have the DNA of the parent who contributed the Native segment on chromosome 1, on the top chromosome. That parent does not have a Native segment on chromosome 2 to contribute. So that Native segment had to be contributed by the other parent, but it’s also shown on the top chromosome.

The DNA segments circled in purple belong together on the same “side” and were contributed to the tester by the same parent. The Native segment on chromosome 2 abuts a purple African segment, suggesting perhaps that the ancestor who contributed that segment was mixed between those ethnicities. In the US, that suggests enslavement.

The other African segments, circled, are shown on the second chromosome in each pair.

To be clear, parent 1 is not assigned by the vendors to either mother or father and will differ by person. Your parent 1, or the parent on the top chromosome may be your mother and another person’s parent 1 may be their father.

As shown in this example, parents can vary by chromosome, a phenomenon known as “strand swap.” Occasionally, the DNA can even be swapped within a chromosome assignment.

You can, however, get an idea of the division of your DNA at any specific location. As shown above, you can only have a maximum of two populations of DNA on any one chromosome location.

In our example above, this person’s majority ancestry is European (blue.) On each chromosome where we find a minority segment, the opposite chromosome in the same location is European, meaning blue.

Let’s look at another example.

At FamilyTreeDNA, the person whose ethnicity painting is shown below has a Native American (pink) ancestor on their father’s side. FamilyTreeDNA has correctly phased or identified their Native segments as all belonging to the second chromosome in each pair.

Looking at chromosome 18, for example, most of their father’s chromosome is Native American (pink). The other parent’s chromosome is European (dark blue) at those same locations.

If one of the parents was of one ethnicity, and the other parent is a completely different ethnicity, then one bar of each chromosome would be all pink, for example, and one would be entirely blue, representing the other ethnicity.

Phasing ethnicity or populations to maternal and paternal sides is not foolproof, and each chromosome is phased individually.

Ethnicity can, in some cases, give you a really good idea of what you’re dealing with in terms of heritage and endogamy.

If someone had an Ashkenazi Jewish father and European mother, for example, one copy of each chromosome would be yellow (Ashkenazi Jewish), and one would be blue (European.)

However, if each of their parents were half European Jewish and half European (not Jewish), then their different colored segments would be scattered across their entire set of chromosomes.

In this case, both of the tester’s parents are mixed – European Jewish (green) and Western Europe (blue.) We know both parents are admixed from the same two populations because in some locations, both parents contributed blue (Western Europe), and in other locations, both contributed Jewish (green) segments.

Both MyHeritage and Ancestry provide a secondary tool that’s connected to ethnicity, but different and generally in more recent times.

Ancestry’s DNA Communities

While your ethnicity may not point to anything terribly exciting in terms of endogamy, Genetic Communities might. Ancestry says that a DNA Community is a group of people who share DNA because their relatives recently lived in the same place at the same time, and that communities are much smaller than ethnicity regions and reach back only about 50-300 years.

Based on the ancestors’ locations in the trees of me and my matches, Ancestry has determined that I’m connected to two communities. In my case, the blue group is clearly my father’s line. The orange group could be either parent, or even a combination of both.

My endogamous Brethren could be showing up in Maryland, Pennsylvania, and Ohio, but it’s uncertain, in part, because my father’s ancestral lines are found in Virginia, West Virginia, and Maryland too.

These aren’t useful for me, but they may be more useful for fully endogamous people, especially in conjunction with ethnicity.

My Acadian cousin’s European ethnicity isn’t informative.

However, viewing his DNA Communities puts his French heritage into perspective, especially combined with his match surnames.

I wrote about DNA Communities when it was introduced with the name Genetic Communities, here.

MyHeritage’s Genetic Groups

MyHeritage also provides a similar feature that shows where my matches’ ancestors lived in the same locations as mine.

One difference, though, is that testers can adjust their ethnicity results confidence level from high, above, to low, below where one of my Genetic Groups overlaps my ethnicity in the Netherlands.

You can also sort your matches by Genetic Groups.

The results show you not only who is in the group, but how many of your matches are in that group too, which provides perspective.

I wrote about Genetic Groups, here.

Next, let’s look at how endogamy affects your matches.

Matches

The number of matches that a person has who is from an entirely endogamous community and a person with no endogamy may be quite different.

FamilyTreeDNA provides a Family Matching feature that triangulates your matches and assigns them to your paternal or maternal side by using known matches that you have linked to their profile cards in your tree. You must link people for the Family Matching feature known as “bucketing” to be enabled.

The people you link are then processed for shared matches on the same chromosome segment(s). Triangulated individuals are then deposited in your maternal, paternal, and both buckets.

Obviously, your two parents are the best people to link, but if they haven’t tested (or uploaded their DNA file from another vendor) and you have other known relatives, link them using the Family Tree tab at the top of your personal page.

I uploaded my Ancestry V4 kit to use as an example for linking. Let’s pretend that’s my sister. If I had not already linked my Ancestry V4 kit to “my sister’s” profile card, I’d want to do that and link other known individuals the same way. Just drag and drop the match to the correct profile card.

Note that a full or half sibling will be listed as such at FamilyTreeDNA, but an identical twin will show as a potential parent/child match to you. You’re much more likely to find a parent than an identical twin, but just be aware.

I’ve created a table of FamilyTreeDNA bucketed match results, by category, comparing the number of matches in endogamous categories with non-endogamous.

Total Matches Maternal Matches Paternal Matches Both % Both % DNA Unassigned
100% Jewish 34,637 11,329 10,416 4,806 13.9 23.3
100% Jewish 32,973 10,700 9,858 4,606 14 23.7
100% Jewish 32,255 9,060 10,970 3,892 12 25.8
75% Jewish 24,232 11,846 Only mother linked Only mother linked Only mother linked
100% Acadian 8093 3826 2299 1062 13 11
100% Acadian 7828 3763 1825 923 11.8 17
Not Endogamous 6760 3845 1909 13 0.19 14.5
Not Endogamous 7723 1470 3317 6 0.08 38
100% Native American 1,115 Unlinked Unlinked Unlinked
100% Native American 885 290 Unknown Can’t calculate without at least one link on both sides

The 100% Jewish, Acadian, and Not Endogamous testers both have linked their parents, so their matches, if valid (meaning not identical by chance, which I discussed here,) will match them plus one or the other parent.

One person is 75% Jewish and has only linked their Jewish mother.

The Native people have not tested their parents, and the first Native person has not linked anyone in their tree. The second Native person has only linked a few maternal matches, but their mother has not tested. They are seeking their father.

It’s very difficult to find people who are fully Native as testers. Furthermore, Native people are under-sampled. If anyone knows of fully Native (or other endogamous) people who have tested and linked their parents or known relatives in their trees, and will allow me to use their total match numbers anonymously, please let me know.

As you can see, Jewish, Acadian, and Native people are 100% endogamous, but many more Jewish people than Native people have tested, so you CAN’T judge endogamy by the total number of matches alone.

In fact, in order:

  • Fully Jewish testers have about 4-5 times as many matches as the Acadian and Non-endogamous testers
  • Acadian and Non-endogamous testers have about 5-6 times as many matches as the Native American testers
  • Fully Jewish people have about 30 times more matches than the Native American testers

If a person’s endogamy with a particular population is only on their maternal or paternal side, they won’t have a significant number of people related to both sides, meaning few people will fall into the “Both” bucket. People that will always be found in the ”Both” bucket are full siblings and their descendants, along with descendants of the tester, assuming their match is linked to their profiles in the tester’s tree.

In the case of our Jewish testers, you can easily see that the “Both” bucket is very high. The Acadians are also higher than one would reasonably expect without endogamy. A non-endogamous person might have a few matches on both sides, assuming the parents are not related to each other.

A high number of “Both” matches is a very good indicator of endogamy within the same population on both parents’ sides.

The percentage of people who are assigned to the “Both” bucket is between 11% and 14% in the endogamous groups, and less than 1% in the non-endogamous group, so statistically not relevant.

As demonstrated by the Native people compared to the Jewish testers, the total number of matches can be deceiving.

However, being related to both parents, as indicated by the “Both” bucket, unless you have pedigree collapse, is a good indicator of endogamy.

Of course, if you don’t know who your relatives are, you can’t link them in your tree, so this type of “hunt” won’t generally help people seeking their close family members.

However, you may notice that you’re matching people PLUS both of their parents. If that’s the case, start asking questions of those matches about their heritage.

A very high number of total matches, as compared to non-endogamous people, combined with some other hints might well point to Jewish heritage.

I included the % DNA Unassigned category because this category, when both parents are linked, is the percentage of matches by chance, meaning the match doesn’t match either of the tester’s parents. All of the people with people listed in “Both” categories have linked both of their parents, not just maternal and paternal relatives.

Matching Location at MyHeritage

MyHeritage provides a matching function by location. Please note that it’s the location of the tester, but that may still be quite useful.

The locations are shown in the most-matches to least-matches order. Clicking on the location shows the people who match you who are from that location. This would be the most useful in situations where recent immigration has occurred. In my case, my great-grandfather from the Netherlands arrived in the 1860s, and my German ancestors arrived in the 1850s. Neither of those groups are endogamous, though, unless it would be on a village level.

AutoClusters

Let’s shift to Genetic Affairs, a third-party tool available to everyone.

Using their AutoCluster function, Genetic Affairs clusters your matches together who match both each other and you.

This is an example of the first few clusters in my AutoCluster. You can see that I have several colored clusters of various sizes, but none are huge.

Compare that to the following endogamous cluster, sample courtesy of EJ Blom at Genetic Affairs.

If your AutoCluster at Genetic Affairs looks something like this, a huge orange blob in the upper left hand corner, you’re dealing with endogamy.

Please also note that the size of your cluster is also a function of both the number of testers and the match threshold you select. I always begin by using the defaults. I wrote about using Genetic Affairs, here.

If you tested at or transferred to MyHeritage, they too license AutoClusters, but have optimized the algorithm to tease out endogamous matches so that their Jewish customers, in particular, don’t wind up with a huge orange block of interrelated people.

You won’t see the “endogamy signature” huge cluster in the corner, so you’re less likely to be able to discern endogamy from a MyHeritage cluster alone.

The commonality between these Jewish clusters at MyHeritage is that they all tend to be rather uniform in size and small, with lots of grey connecting almost all the blocks.

Grey cells indicate people who match people in two colored groups. In other words, there is often no clear division in clusters between the mother’s side and the father’s side in Jewish clusters.

In non-endogamous situations, even if you can’t identify the parents, the clusters should still fall into two sides, meaning a group of clusters for each parent’s side that are not related to each other.

You can read more about Genetic Affairs clusters and their tools, here. DNAGedcom.com also provides a clustering tool.

Endogamous Relationships

Endogamous estimated relationships are sometimes high. Please note the word, “sometimes.”

Using the Shared cM Project tool relationship chart, here, at DNAPainter, people with heavy endogamy will discover that estimated relationships MAY be on the high side, or the relationships may, perhaps, be estimated too “close” in time. That’s especially true for more distant relationships, but surprisingly, it’s not always true. The randomness of inheritance still comes into play, and so do potential unknown relatives. Hence, the words “may” are bolded and underscored.

Unfortunately, it’s often stated as “conventional wisdom” that Jewish matches are “always” high, and first cousins appear as siblings. Let’s see what the actual data says.

At DNAPainter, you can either enter the amount of shared DNA (cM), or the percent of shared DNA, or just use the chart provided.

I’ve assembled a compilation of close relationships in kits that I have access to or from people who were generous enough to share their results for this article.

I’ve used Jewish results, which is a highly endogamous population, compared with non-endogamous testers.

The “Jewish Actual” column reports the total amount of shared DNA with that person. In other words, someone to their grandparent. The Average Range is the average plus the range from DNAPainter. The Percent Difference is the % difference between the actual number and the DNAPainter average.

You’ll see fully Jewish testers, at left, matching with their family members, and a Non-endogamous person, at right, matching with their same relative.

Relationship Jewish Actual Percent Difference than Average Average -Range Non-endogamous Actual Percent Difference than Average
Grandparent 2141 22 1754 (984-2482) 1742 <1 lower
Grandparent 1902 8.5 1754 (984-2482) 1973 12
Sibling 3039 16 2613 (1613-3488) 2515 3.5 lower
Sibling 2724 4 2613 (1613-3488) 2761 5.5
Half-Sibling 2184 24 1759 (1160-2436) 2127 21
Half-Sibling 2128 21 1759 (1160-2436) 2352 34
Aunt/Uncle 2066 18.5 1741 (1201-2282) 1849 6
Aunt/Uncle 2031 16.5 1741 (1201-2282) 2097 20
1C 1119 29 866 (396-1397) 959 11
1C 909 5 866 (396-1397) 789 9 lower
1C1R 514 19 433 (102-980) 467 8
1C1R 459 6 433 (102-980) 395 9 lower

These totals are from FamilyTreeDNA except one from GEDMatch (one Jewish Half-sibling).

Totals may vary by vendor, even when matching with the same person. 23andMe includes the X segments in the total cMs and also counts fully identical segments twice. MyHeritage imputation seems to err on the generous side.

However, in these dozen examples:

  • You can see that the Jewish actual amount of DNA shared is always more than the average in the estimate.
  • The red means the overage is more than 100 cM larger.
  • The percentage difference is probably more meaningful because 100 cM is a smaller percentage of a 1754 grandparent connection than compared to a 433 cM 1C1R.

However, you can’t tell anything about endogamy by just looking at any one sample, because:

  • Some of the Non-Endogamous matches are high too. That’s just the way of random inheritance.
  • All of the actual Jewish match numbers are within the published ranges, but on the high side.

Furthermore, it can get more complex.

Half Endogamous

I requested assistance from Jewish genealogy researchers, and a lovely lady, Sharon, reached out, compiled her segment information, and shared it with me, granting permission to share with you. A HUGE thank you to Sharon!

Sharon is half-Jewish via one parent, and her half-sibling is fully Jewish. Their half-sibling match to each other at Ancestry is 1756 cM with a longest segment of 164 cM.

How does Jewish matching vary if you’re half-Jewish versus fully Jewish? Let’s look at 21 people who match both Sharon and her fully Jewish half-sibling.

Sharon shared the differences in 21 known Jewish matches with her and her half-sibling. I’ve added the Relationship Estimate Range from DNAPainter and colorized the highest of the two matches in yellow. Bolding in the total cM column shows a value above the average range for that relationship.

Total Matching cMs is on the left, with Longest Segment on the right.

While this is clearly not a scientific study, it is a representative sample.

The fully Jewish sibling carries more Jewish DNA, which is available for other Jewish matches to match as a function of endogamy (identical by chance/population), so I would have expected the fully Jewish sibling to match most if not all Jewish testers at a higher level than the half-Jewish sibling.

However, that’s not universally what we see.

The fully Jewish sibling is not always the sibling with the highest number of matches to the other Jewish testers, although the half-Jewish tester has the larger “Longest Segment” more often than not.

Approximately two-thirds of the time (13/21), the fully Jewish person does have a higher total matching cM, but about one-third of the time (8/21), the half-Jewish sibling has a higher matching cM.

About one-fourth of the time (5/21), the fully Jewish sibling has the longest matching segment, and about two-thirds of the time (13/21), the half-Jewish sibling does. In three cases, or about 14% of the time, the longest segment is equal which may indicate that it’s the same segment.

Because of endogamy, Jewish matches are more likely to have:

  • Larger than average total cM for the specific relationship
  • More and smaller matching segments

However, as we have seen, neither of those are definitive, nor always true. Jewish matches and relationships are not always overestimated.

Ancestry and Timber

Please note that Ancestry downweights some matches by removing some segments using their Timber algorithm. Based on my matches and other accounts that I manage, Ancestry does not downweight in the 2-3rd cousin category, which is 90 cM and above, but they do begin downweighting in the 3-4th cousin category, below 90 cM, where my “Extended Family” category begins.

If you’ve tested at Ancestry, you can check for yourself.

By clicking on the amount of DNA you share with your match on your match list at Ancestry, shown above, you will be taken to another page where you will be able to view the unweighted shared DNA with that match, meaning the amount of DNA shared before the downweighting and removal of some segments, shown below.

Given the downweighting, and the information in the spreadsheet provided by Sharon, it doesn’t appear that any of those matches would have been in a category to be downweighted.

Therefore, for these and other close matches, Timber wouldn’t be a factor, but would potentially be in more distant matches.

Endogamous Segments

Endogamous matches tend to have smaller and more segments. Small amounts of matching DNA tend to skew the total DNA cM upwards.

How and why does this happen?

Ancestral DNA from further back in time tends to be broken into smaller segments.

Sometimes, especially in endogamous situations, two smaller segments, at one time separated from each other, manage to join back together again and form a match, but the match is only due to ancestral segments – not because of a recent ancestor.

Please note that different vendors have different minimum matching cM thresholds, so smaller matches may not be available at all vendors. Remember that factors like Timber and imputation can affect matching as well.

Let’s take a look at an example. I’ve created a chart where two ancestors have their blue and pink DNA broken into 4 cM segments.

They have children, a blue child and a pink child, and the two children, shown above, each inherited the same blue 4 cM segment and the same pink 4 cM segment from their respective parents. The other unlabeled pink and blue segments are not inherited by these two children, so those unlabeled segments are irrelevant in this example.

The parents may have had other children who inherited those same 4 cM labeled pink and blue segments as well, and if not, the parents’ siblings were probably passing at least some of the same DNA down to their descendants too.

The blue and pink children had children, and their children had children – for several generations.

Time passed, and their descendants became an endogamous community. Those pink and blue 4 cM segments may at some time be lost during recombination in the descendants of each of their children, shown by “Lost pink” and “Lost blue.”

However, because there is only a very limited amount of DNA within the endogamous community, their descendants may regain those same segments again from their “other parent” during recombination, downstream.

In each generation, the DNA of the descendant carrying the original blue or pink DNA segment is recombined with their partner. Given that the partners are both members of the same endogamous community, the two people may have the same pink and/or blue DNA segments. If one parent doesn’t carry the pink 4 cM segment, for example, their offspring may receive that ancestral pink segment from the other parent.

They could potentially, and sometimes do, receive that ancestral segment from both parents.

In our example, the descendants of the blue child, at left, lost the pink 4 cM segment in generation 3, but a few generations later, in generation 11, that descendant child inherited that same pink 4 cM segment from their other parent. Therefore, both the 4 cM blue and 4 cM pink segments are now available to be inherited by the descendants in that line. I’ve shown the opposite scenario in the generational inheritance at right where the blue segment is lost and regained.

Once rejoined, that pink and blue segment can be passed along together for generations.

The important part, though, is that once those two segments butt up against each other again during recombination, they aren’t just two separate 4 cM segments, but one segment that is 8 cM long – that is now equal to or above the vendors’ matching threshold.

This is why people descended from endogamous populations often have the following matching characteristics:

  • More matches
  • Many smaller segment matches
  • Their total cM is often broken into more, smaller segments

What does more, smaller segments, look like, exactly?

More, Smaller Segments

All of our vendors except Ancestry have a chromosome browser for their customers to compare their DNA to that of their matches visually.

Let’s take a look at some examples of what endogamous and non-endogamous matches look like.

For example, here’s a screen shot of a random Jewish second cousin match – 298 cM total, divided into 12 segments, with a longest segment of 58 cM,

A second Jewish 2C with 323 cM total, across 19 segments, with a 69 cM longest block.

A fully Acadian 2C match with 600 cM total, across 27 segments, with a longest segment of 69 cM.

A second Acadian 2C with 332 cM total, across 20 segments, with a longest segment of 42 cM.

Next, a non-endogamous 2C match with 217 cM, across 7 segments, with a longest segment of 72 cM.

Here’s another non-endogamous 2C example, with 169 shared cM, across 6 segments, with a longest segment of 70 cM.

Here’s the second cousin data in a summary table. The take-away from this is the proportion of total segments

Tester Population Total cM Longest Block Total Segments
Jewish 2C 298 58 12
Jewish 2C 323 69 19
Acadian 2C 600 69 27
Acadian 2C 332 42 20
Non-endogamous 2C 217 72 7
Non-endogamous 2C 169 70 6

You can see more examples and comparisons between Native American, Jewish and non-endogamous DNA individuals in the article, Concepts – Endogamy and DNA Segments.

I suspect that a savvy mathematician could predict endogamy based on longest block and total segment information.

Lara Diamond, a mathematician, who writes at Lara’s Jewnealogy might be up for this challenge. She just published compiled matching and segment information in her Ashkenazic Shared DNA Survey Results for those who are interested. You can also contribute to Laura’s data, here.

Endogamy, Segments, and Distant Relationships

While not relevant to searching for close relatives, heavily endogamous matches 3C and more distant, to quote one of my Jewish friends, “dissolve into a quagmire of endogamy and are exceedingly difficult to unravel.”

In my own Acadian endogamous line, I often simply have to label them “Acadian” because the DNA tracks back to so many ancestors in different lines. In other words, I can’t tell which ancestor the match is actually pointing to because the same DNA segments or segments is/are carried by several ancestors and their descendants due to founder effect.

The difference with the Acadians is that we can actually identify many or most of them, at least at some point in time. As my cousin, Paul LeBlanc, once said, if you’re related to one Acadian, you’re related to all Acadians. Then he proceeded to tell me that he and I are related 137 different ways. My head hurts!

It’s no wonder that endogamy is incredibly difficult beyond the first few generations when it turns into something like multi-colored jello soup.

“Are Your Parents Related?” Tool

There’s another tool that you can utilize to determine if your parents are related to each other.

To determine if your parents are related to each other, you need to know about ROH, or Runs of Homozygosity (ROH).

ROH means that the DNA on both strands or copies of the same chromosome is identical.

For a few locations in a row, ROH can easily happen just by chance, but the longer the segment, the less likely that commonality occurs simply by chance.

The good news is that you don’t need to know the identity of either of your parents. You don’t need either of your parent’s DNA tests – just your own. You’ll need to upload your DNA file to GEDmatch, which is free.

Click on “Are your parents related?”

GEDMatch analyzes your DNA to see if any of your DNA, above a reasonable matching threshold, is identical on both strands, indicating that you inherited the exact same DNA from both of your parents.

A legitimate match, meaning one that’s not by chance, will include many contiguous matching locations, generally a minimum of 500 SNPs or locations in a row. GEDmatch’s minimum threshold for identifying identical ancestral DNA (ROH) is 200 cM.

Here’s my result, including the graphic for the first two chromosomes. Notice the tiny green bars that show identical by chance tiny sliver segments.

I have no significant identical DNA, meaning my parents are not related to each other.

Next, let’s look at an endogamous example where there are small, completely identical segments across a person’s chromosome

This person’s Acadian parents are related to each other, but distantly.

Next, let’s look at a Jewish person’s results.

You’ll notice larger green matching ROH, but not over 200 contiguous SNPs and 7 cM.

GEDMatch reports that this Jewish person’s parents are probably not related within recent generations, but it’s clear that they do share DNA in common.

People whose parents are distantly related have relatively small, scattered matching segments. However, if you’re seeing larger ROH segments that would be large enough to match in a genealogical setting, meaning multiple greater than 7 cM and 500 SNPs,, you may be dealing with a different type of situation where cousins have married in recent generations. The larger the matching segments, generally, the closer in time.

Blogger Kitty Cooper wrote an article, here, about discovering that your parents are related at the first cousin level, and what their GEDMatch “Are Your Parents Related” results look like.

Let’s look for more clues.

Surnames

There MAY be an endogamy clue in the surnames of the people you match.

Viewing surnames is easier if you download your match list, which you can do at every vendor except Ancestry. I’m not referring to the segment data, but the information about your matches themselves.

I provided instructions in the recent article, How to Download Your DNA Match Lists and Segment Files, here.

If you suspect endogamy for any reason, look at your closest matches and see if there is a discernable trend in the surnames, or locations, or any commonality between your matches to each other.

For example, Jewish, Acadian, and Native surnames may be recognizable, as may locations.

You can evaluate in either or both of two ways:

  • The surnames of your closest matches. Closest matches listed first will be your default match order.
  • Your most frequently occurring surnames, minus extremely common names like Smith, Jones, etc., unless they are also in your closest matches. To utilize this type of matching, sort the spreadsheet in surname order and then scan or count the number of people with each surname.

Here are some examples from our testers.

Jewish – Closest surname matches.

  • Roth
  • Weiss
  • Goldman
  • Schonwald
  • Levi
  • Cohen
  • Slavin
  • Goodman
  • Sender
  • Trebatch

Acadian – Closest surname matches.

  • Bergeron
  • Hebert
  • Bergeron
  • Marcum
  • Muise
  • Legere
  • Gaudet
  • Perry
  • Verlander
  • Trombley

Native American – Closest surname matches.

  • Ortega
  • Begay
  • Valentine
  • Hayes
  • Montoya
  • Sun Bear
  • Martin
  • Tsosie
  • Chiquito
  • Yazzie

You may recognize these categories of surnames immediately.

If not, Google is your friend. Eliminate common surnames, then Google for a few together at a time and see what emerges.

The most unusual surnames are likely your best bets.

Projects

Another way to get some idea of what groups people with these surnames might belong to is to enter the surname in the FamilyTreeDNA surname search.

Go to the main FamilyTreeDNA page, but DO NOT sign on.

Scroll down until you see this image.

Type the surname into the search box. You’ll see how many people have tested with that surname, along with projects where project administrators have included that surname indicating that the project may be of interest to at least some people with that surname.

Here’s a portion of the project list for Cohen, a traditional Jewish surname.

These results are for Muise, an Acadian surname.

Clicking through to relevant surname projects, and potentially contacting the volunteer project administrator can go a very long way in helping you gather and sift information. Clearly, they have an interest in this topic.

For example, here’s the Muise surname in the Acadian AmerIndian project. Two great hints here – Acadian heritage and Halifax, Nova Scotia.

Repeat for the balance of surnames on your list to look for commonalities, including locations on the public project pages.

Locations

Some of the vendor match files include location information. Each person on your match list will have the opportunity at the vendor where they tested to include location information in a variety of ways, either for their ancestors or themselves.

Where possible, it’s easiest to sort or scan the download file for this type of information.

Ancestry does not provide or facilitate a match list, but you can still create your own for your closest 20 or 30 matches in a spreadsheet.

MyHeritage provides common surname and ancestral location information for every match. How cool is that!

Y DNA, Mitochondrial DNA, and Endogamy

Haplogroups for both Y and mitochondrial DNA can indicate and sometimes confirm endogamy. In other cases, the haplogroup won’t help, but the matches and their location information just might.

FamilyTreeDNA is the only vendor that provides Y DNA and mitochondrial DNA tests that include highly granular haplogroups along with matches and additional tools.

23andMe provides high-level haplogroups which may or may not be adequate to pinpoint a haplogroup that indicates endogamy.

Of course, only males carry Y DNA that tracks to the direct paternal (surname) line, but everyone carries their mother’s mitochondrial DNA that represents their mother’s mother’s mother’s, or direct matrilineal line.

Some haplogroups are known to be closely associated with particular ethnicities or populations, like Native Americans, Pacific Islanders, and some Jewish people.

Haplogroups reach back in time before genealogy and can give us a sense of community that’s not available by either looking in the mirror or through traditional records.

This Native American man is a member of high-level haplogroup Q-M242. However, some men who carry this haplogroup are not Native, but are of European or Middle Eastern origin.

I entered the haplogroup in the FamilyTreeDNA Discover tool, which I wrote about, here.

Checking the information about this haplogroup reveals that their common ancestor descended from an Asian man about 30,000 years ago.

The migration path in the Americans explains why this person would have an endogamous heritage.

Our tester would receive a much more refined haplogroup if he upgraded to the Big Y test at FamilyTreeDNA, which would remove all doubt.

However, even without additional testing, information about his matches at FamilyTreeDNA may be very illuminating.

The Q-M242 Native man’s Y DNA matches men with more granular haplogroups, shown above, at left. On the Haplogroup Origins report, you can see that these people have all selected the “US (Native American)” country option.

Another useful tool would be to check the public Y haplotree, here, and the public mitochondrial tree here, for self-reported ancestor location information for a specific haplogroup.

Here’s an example of mitochondrial haplogroup A2 and a few subclades on the public mitochondrial tree. You can see that the haplogroup is found in Mexico, the US (Native,) Canada, and many additional Caribbean, South, and Central American countries.

Of course, Y DNA and mitochondrial DNA (mtDNA) tell a laser-focused story of one specific line, each. The great news, if you’re seeking information about your mother or father, the Y is your father’s direct paternal (surname) line, and mitochondrial is your mother’s direct matrilineal line.

Y and mitochondrial DNA results combined with ethnicity, autosomal matching, and the wide range of other tools that open doors, you will be able to reveal a great deal of information about whether you have endogamous heritage or not – and if so, from where.

I’ve provided a resource for stepping through and interpreting your Y DNA results, here, and mitochondrial DNA, here.

Discover for Y DNA Only

If you’re a female, you may feel left out of Y DNA testing and what it can tell you about your heritage. However, there’s a back door.

You can utilize the Y DNA haplogroups of your closest autosomal matches at both FamilyTreeDNA and 23andMe to reveal information

Haplogroup information is available in the download files for both vendors, in addition to the Family Finder table view, below, at FamilyTreeDNA, or on your individual matches profile cards at both 23andMe and FamilyTreeDNA.

You can enter any Y DNA haplogroup in the FamilyTreeDNA Discover tool, here.

You’ll be treated to:

  • Your Haplogroup Story – how many testers have this haplogroup (so far), where the haplogroup is from, and the haplogroup’s age. In this case, the haplogroup was born in the Netherlands about 250 years ago, give or take 200 years. I know that it was 1806 or earlier based on the common ancestor of the men who tested.
  • Country Frequency – heat map of where the haplogroup is found in the world.
  • Notable Connections – famous and infamous (this haplogroup’s closest notable person is Leo Tolstoy).
  • Migration Map – migration path out of Africa and through the rest of the world.
  • Ancient Connections – ancient burials. His closest ancient match is from about 1000 years ago in Ukraine. Their shared ancestor lived about 2000 years ago.
  • Suggested Projects – based on the surname, projects that other matches have joined, and haplogroups.
  • Scientific Details – age estimates, confidence intervals, graphs, and the mutations that define this haplogroup.

I wrote about the Discover tool in the article, FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages.

Endogamy Tools Summary Tables

Endogamy is a tough nut sometimes, especially if you’re starting from scratch. In order to make this topic a bit easier and to create a reference tool for you, I’ve created three summary tables.

  • Various endogamy-related tools available at each vendor which will or may assist with evaluating endogamy
  • Tools and their ability to detect endogamy in different groups
  • Tools best suited to assist people seeking information about unknown parents or grandparents

Summary of Endogamy Tools by Vendor

Please note that GEDMatch is not a DNA testing vendor, but they accept uploads and do have some tools that the testing vendors do not.

 Tool 23andMe Ancestry FamilyTreeDNA MyHeritage GEDMatch
Ethnicity Yes Yes Yes Yes Use the vendors
Ethnicity Painting Yes + segments Yes, limited Yes + segments Yes
Ethnicity Phasing Yes Partial Yes No
DNA Communities No Yes No No
Genetic Groups No No No Yes
Family Matching aka Bucketing No No Yes No
Chromosome Browser Yes No Yes Yes Yes
AutoClusters Through Genetic Affairs No Through Genetic Affairs Yes, included Yes, with subscription
Match List Download Yes, restricted # of matches No Yes Yes Yes
Projects No No Yes No
Y DNA High-level haplogroup only No Yes, full haplogroup with Big Y, matching, tools, Discover No
Mitochondrial DNA High-level haplogroup only No Yes, full haplogroup with mtFull, matching, tools No
Public Y Tree No No Yes No
Public Mito Tree No No Yes No
Discover Y DNA – public No No Yes No
ROH No No No No Yes

Summary of Endogamous Populations Identified by Each Tool

The following chart provides a guideline for which tools are useful for the following types of endogamous groups. Bolded tools require that both parents be descended from the same endogamous group, but several other tools give more definitive results with higher amounts of endogamy.

Y and mitochondrial DNA testing are not affected by admixture, autosomal DNA or anything from the “other” parent.

Tool Jewish Acadian Anabaptist Native Other/General
Ethnicity Yes No No Yes Pacific Islander
Ethnicity Painting Yes No No Yes Pacific Islander
Ethnicity Phasing Yes, if different No No Yes, if different Pacific Islander, if different
DNA Communities Yes Possibly Possibly Yes Pacific Islander
Genetic Groups Yes Possibly Possibly Yes Pacific Islander
Family Matching aka Bucketing Yes Yes Possibly Yes Pacific Islander
Chromosome Browser Possibly Possibly Yes, once segments or ancestors identified Possibly Pacific Islander, possibly
Total Matches Yes, compared to non-endogamous No No No No, unknown
AutoClusters Yes Yes Uncertain, probably Yes Pacific Islander
Estimated Relationships High Not always Sometimes No Sometimes Uncertain, probably
Relationship Range High Possibly, sometimes Possibly Possibly Possibly Pacific Islander, possibly
More, Smaller Segments Yes Yes Probably Yes Pacific Islander, probably
Parents Related Some but minimal Possibly Uncertain Probably similar to Jewish Uncertain, Possibly
Surnames Probably Probably Probably Not Possibly Possibly
Locations Possibly Probably Probably Not Probably Probably Pacific Islander
Projects Probably Probably Possibly Possibly Probably Pacific Islander
Y DNA Yes, often Yes, often No Yes Pacific Islander
Mitochondrial DNA Yes, often Sometimes No Yes Pacific Islander
Y public tree Probably not alone No No Yes Pacific Islander
MtDNA public tree Probably not No No Yes Pacific Islander
Y DNA Discover Yes Possibly Probably not, maybe projects Yes Pacific Islander

Summary of Endogamy Tools to Assist People Seeking Unknown Parents and Grandparents

This table provides a summary of when each of the various tools can be useful to:

  • People seeking unknown close relatives
  • People who already know who their close relatives are, but are seeking additional information or clues about their genealogy

I considered rating these on a 1 to 10 scale, but the relative usefulness of these tools is dependent on many factors, so different tools will be more or less useful to different people.

For example, ethnicity is very useful if someone is admixed from different populations, or even 100% of a specific endogamous population. It’s less useful if the tester is 100% European, regardless of whether they are seeking close relatives or not. Conversely, even “vanilla” ethnicity can be used to rule out majority or recent admixture with many populations.

Tools Unknown Close Relative Seekers Known Close Relatives – Enhance Genealogy
Ethnicity Yes, to identify or rule out populations Yes
Ethnicity Painting Yes, possibly, depending on population Yes, possibly, depending on population
Ethnicity Phasing Yes, possibly, depending on population Yes, possibly, depending on population
DNA Communities Yes, possibly, depending on population Yes, possibly, depending on population
Genetic Groups Possibly, depending on population Possibly, depending on population
Family Matching aka Bucketing Not if parents are entirely unknown, but yes if one parent is known Yes
Chromosome Browser Unlikely Yes
AutoClusters Yes Yes, especially at MyHeritage if Jewish
Estimated Relationships High Not No
Relationship Range High Not reliably No
More, Smaller Segments Unlikely Unlikely other than confirmation
Match List Download Yes Yes
Surnames Yes Yes
Locations Yes Yes
Projects Yes Yes
Y DNA Yes, males only, direct paternal line, identifies surname lineage Yes, males only, direct paternal line, identifies and correctly places surname lineage
Mitochondrial DNA Yes, both sexes, direct matrilineal line only Yes, both sexes, direct matrilineal line only
Public Y Tree Yes for locations Yes for locations
Public Mito Tree Yes for locations Yes for locations
Discover Y DNA Yes, for heritage information Yes, for heritage information
Parents Related – ROH Possibly Less useful

Acknowledgments

A HUGE thank you to several people who contributed images and information in order to provide accurate and expanded information on the topic of endogamy. Many did not want to be mentioned by name, but you know who you are!!!

If you have information to add, please post in the comments.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

In Search of…Vendor Features, Strengths, and Testing Strategies

This is the third in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied to ancestors further back in time too.

In this article, we are going to discuss your goals and why testing or uploading to multiple vendors is advantageous – even if you could potentially solve the initial mystery at one vendor. Of course, the vendor you test with first might not be the vendor where the mystery will be solved, and data from multiple vendors might just be the combination you need.

Testing Strategy – You Might Get Lucky

I recommended in the first article that you go ahead and test at the different vendors.

Some people asked why, and specifically, why you wouldn’t just test at one vendor with the largest database first, then proceed to the others if you needed to.

That’s a great question, and I want to discuss the pros and cons in this article more specifically.

Clearly, that is one strategy, but the approach you select might differ based on a variety of considerations:

  • You may only be interested in obtaining the name of the person you are seeking – or – you may be interested in finding out as much as possible.
  • You may find that your best match at one company is decidedly unhelpful, and may even block you or your efforts, while someone elsewhere may be exactly the opposite.
  • Solving your mystery may be difficult and painful at one vendor, but the answer may be infinitely easier at a different vendor where the answer may literally be waiting.
  • There may not be enough, or the right information, or matches, at any one vendor, but the puzzle may be solvable by combining information from multiple vendors and tests. Every little bit helps.
  • You may have a sense of urgency, especially if you hope to meet the person and you’re searching for parents, siblings or grandparents who may be aging.
  • You may be cost-sensitive and cannot afford more than one test at a time. Fortunately, our upload strategy helps with that too. Also, watch for vendor sales or bundles.

From the time you order your DNA test, it will be about 6-8 weeks, give or take a week or two in either direction, before you receive results.

When those results arrive, you might get lucky, and the answer you seek is immediately evident with no additional work and just waiting for you at the first testing company.

If that’s the case, you got lucky and hit the jackpot. If you’re searching for both parents, that means you still have one parent to go.

Unidentified grandparents can be a little more difficult, because there are four of them to sort between.

If you discover a sibling or half-sibling, you still need to figure out who your common parent is. Sometimes X, Y, and mitochondrial DNA provides an immediate answer and is invaluable in these situations.

It’s more likely that you’ll find a group of somewhat more distant relatives. You may be able to figure out who your common grandparents or great-grandparents are, but not your parent(s) initially. Often, the closer generation or two is actually the most difficult because you’re dealing with contemporary records which are not publicly available, fewer descendants, and the topic may be very uncomfortable for some people. It’s also complicated because you’re often not dealing with “full” relationships, but “half,” as in half-sibling, half-niece, half-1C, etc.

You may spend a substantial amount of time trying to solve this puzzle at the first vendor before ordering your next test.

That second test will also take about 6-8 weeks, give or take. I recommend that you order the first two autosomal tests, now.

Order Your First Two Autosomal Tests

The two testing companies with the largest autosomal databases for comparison, Ancestry, and 23andMe, DO NOT accept DNA file uploads from other companies, so you’ll need to test with each individually.

Fortunately, you CAN transfer your autosomal DNA tests to both MyHeritage and FamilyTreeDNA, for free.

You will have different matches at each company. Some people will be far more responsive and helpful than others.

I recommend that you go ahead and order both the Ancestry and 23andMe tests initially, then upload the first one that comes back with results to both FamilyTreeDNA and MyHeritage. Complete, step-by-step download/upload instructions can be found here.

You can also upload your DNA file to a fifth company, Living DNA, but they are significantly smaller and heavily focused on England and Great Britain. However, if that’s where you’re searching, this might be where you find important matches.

You can also upload to GEDMatch, a popular third-party database, but since you’re going to be in the databases of the four major testing companies, there is little to be gained at GEDMatch in terms of people who have not tested at one of the major companies. Do NOT upload to GEDMatch INSTEAD of testing or uploading to the four major sites, as GEDMatch only has a small fraction of the testers in each of the vendor databases.

What GEDMatch does offer is a chromosome browser – something that Ancestry does NOT offer, along with other clustering tools which you may find useful. I recommend GEDMatch in addition to the others, if needed or desired.

Ordering Y and Mitochondrial DNA Tests

We reviewed the basics of the different kinds of DNA, here.

Some people have asked why, if autosomal DNA shows relatives on all of your lines, would one would want to order specific tests that focus on just one line?

It just so happens that the two lines that Y and mitochondrial DNA test ARE the two lines you’re seeking – direct maternal – your mother (and her mother), and direct paternal, your father (and his father.)

These two tests are different kinds of DNA tests, testing a different type of DNA, and provide very focused information, and matches, not available from autosomal DNA tests.

For men, Y DNA can reveal your father’s surname, which can be an invaluable clue in narrowing paternal candidates. Knowing that my brother’s Y DNA matched several men with the surname of Priest made me jump for joy when he matched a woman of that same last name at another vendor.

Here’s a quote from one of the members of a Y DNA project where I’m the volunteer administrator:

“Thank you for your help understanding and using all 4 kinds of my DNA results. By piecing the parts together, I identified my father. Specifically, without Y DNA testing, and the Big Y test, I would not have figured out my parental connection, and then that my paternal line had been assigned to the wrong family. STR testing gave me the correct surname, but the Big Y test showed me exactly where I fit, and disproved that other line. I’m now in touch with my father, and we both know who our relatives are – two things that would have never happened otherwise.”

If you fall into the category of, “I want to know everything I can now,” then order both Y and mitochondrial DNA tests initially, along with those two autosomal tests.

You will need to order Y (males only) and mitochondrial DNA tests separately from the autosomal Family Finder test, although you should order on the same account as your Family Finder test at FamilyTreeDNA.

If you take the Family Finder autosomal test at FamilyTreeDNA or upload your autosomal results from another vendor, you can simply select to add the Y and mitochondrial DNA tests to your account, and they will send you a swab kit.

Conversely, you can order either a Y or mitochondrial DNA test, and then add a Family Finder or upload a DNA file if you’ve already taken an autosomal DNA test to that account too. Note – these might not be current prices – check here for sales.

You will want all 3 of your tests on the same account so that you can use the Advanced Matches feature.

Using Advanced Matches, you’ll be able to view people who match you on combinations of multiple kinds of tests.

For example, if you’re a male, you can see if your Y DNA matches also match you on the Family Finder autosomal test, and if so, how closely?

Here’s an example.

In this case, I requested matches to men with 111 markers who also match the tester on the Family Finder test. I discovered both a father and a full sibling, plus a few more distant matches. There were ten total combined matches to work with, but I’ve only shown five for illustration purposes.

This information is worth its weight in gold.

Is the Big Y Test Worth It?

People ask if the Big Y test is really worth the extra money.

The answer is, “it depends.”

If all you’re looking for are matching surnames, then the answer is probably no. A 37 or 111 marker test will probably suffice. Eventually, you’ll probably want to do the Big Y, though.

If you’re looking for exact placement on the tree, with an estimated distance to other men who have taken that test, then the answer is, “absolutely.” I wish the Big Y test had been available back when I was hunting for my brother’s biological family.

The Big Y test provides a VERY specific haplogroup and places you very accurately in your location on the Y DNA tree, along with other men of your line, assuming they have tested. You may find the surname, as well as being placed within a generation or a few of current in that family line.

Additionally, the Discover page provides estimates of how far in the past you share a common ancestor with other people that share the same haplogroup. This can be a HUGE boon to a male trying to figure out his surname line and how closely in time he’s related to his matches.

Big Y NPE Examples

Y DNA SNP mutations tested with the Big Y test accrue a mutation about every generation, or so. Sometimes we see mutations in every generation.

Here’s an example from my Campbell line. Haplogroups are listed in the top three rows.

I created this spreadsheet, but FamilyTreeDNA provides a block tree for Big Y testers. I’ve added the genealogy of the testers, with the various Big Y testers at the bottom and common ancestors above, in bold.

We have two red NPE lines showing. The MacFarlane tester matches M. Campbell VERY closely, and two Clark males match W. Campbell and other Campbells quite closely. We utilized autosomal plus the Y results to determine where the unknown parentage events occurred. Today, if you’re a Clark or MacFarlane male, or a male by any other surname who was fathered by a Y chromosome Campbell male (by any surname), you’ll know exactly where you fit in this group of testers on your direct paternal line.

Y DNA is important because men often match other men with the same surname, which is a HUGE clue, especially in combination with autosomal DNA results. I say “often,” because it’s possible that no one in your line has tested, or that your father’s surname is not his biological surname either.

Y and mitochondrial DNA matches can be HUGELY beneficial pieces of information either by confirming a close autosomal relationship on that line, or eliminating the possibility.

Lineage-Specific Population Information

In addition to matching other people, both Y and mitochondrial DNA tests provide you with lineage-specific population or “ethnicity” information for this specific line which helps you focus your research.

For example, if you view the Y DNA Haplogroup Origins shown for this tester, you’ll discover that these matches are Jewish.

The tester might not be Jewish on any other genealogical line, but they definitely have Jewish ancestry on their Y DNA, paternal, line.

The same holds true for mitochondrial DNA as well. The main difference with mitochondrial DNA is that the surname changes with each generation, haplogroups today (pre-Million Mito) are less specific, and fewer people have been tested.

Y and Mitochondrial DNA Benefits

Knowing your Y and mitochondrial DNA haplogroups not only arm you with information about yourself, they provide you with matching tools and an avenue to include or exclude people as your direct line paternal or maternal ancestors.

Your Y and mitochondrial DNA can also provide CRITICALLY IMPORTANT information about whether that direct line ancestor belonged to an endogamous population, and where they came from.

For example, both Jewish and Native populations are endogamous populations, meaning highly intermarried for many generations into the past.

Knowing that helps you adjust your autosomal relationship analysis.

Why Order Multiple Tests Initially Instead of Waiting?

If you’ve been adding elapsed time, two autosomal tests (Ancestry and 23andMe), two uploads (to FamilyTreeDNA and MyHeritage,) a Y DNA test, and a mitochondrial DNA test, if all purchased serially, one following the other, means you’ll be waiting approximately 6-8 months.

Do you want to wait 6-8 months for all of your results? Can you afford to?

Part of this answer has to do with what, exactly, you’re seeking, and how patient you are.

Only you can answer that question.

A Name or Information?

Are you seeking the name or identity of a person, or are you seeking information about that person?

Most people don’t just want to put a name to the person they are seeking – they want to learn about them and the rest of the family that door opens.

You will have different matches at each company. Even after you identify the person you seek, the people you match may have trees you can view, with family photos and other important information. (Remember, you can’t see living people in trees.) Your matches may have first-person information about your relative and may know them if they are living, or have known them.

Furthermore, you may have the opportunity to meet that person. Time delayed may not be able to be recovered or regained.

One cousin that I assisted discovered that his father had died just six weeks before he broke through that wall and made the connection.

Working with data from all vendors simultaneously will allow you to combine that data and utilize it together. Using your “best” matches at each company, augmented by X, Y, and/or mitochondrial DNA, can make MUCH shorter work of this search.

Your closest autosomal matches are the most important and insightful. In this series, I will be working with the top 15 autosomal results at each vendor, at least initially. This approach provides me with the best chance of meaningful close relationship discoveries.

Data and Vendor Results Integration

Here’s a table of my two closest maternal and paternal matches at the four major vendors. I can assign these to maternal or paternal sides, because I know the identity of my parents, and I know some of these people. If an adoptee was doing this, the top 4 could all be from one parent, which is why we work with the top 15 or so matches.

Vendor Closest Maternal Closest Paternal Comments
Ancestry 1C, 1C1R Half-1C, 2C I recognized both of the maternal and neither of the paternal.
23andMe 2C, 2C 1C1R, half-gr-niece Recognized both maternal, one paternal
MyHeritage Mother uploaded, 1C Half-niece, half-1C Recognized both maternal, one paternal
FamilyTreeDNA Mother tested, 1C1R Parent/child, half-gr-niece uploaded Recognized all 4

To be clear, I tested my mother’s mitochondrial DNA before she passed away, but because FamilyTreeDNA archives DNA samples for 25 years, as the owner/manager of her DNA kit, I was able to order the Family Finder test after she had passed away. Her tests are invaluable today.

Then, years later, I uploaded her results to MyHeritage.

If I was an adopted child searching for my mother, I would find her results in both databases today. She’ll never be at either 23andMe or Ancestry because she passed away before she could test there and they don’t accept uploads.

Looking at the other vendors, my half-niece at MyHeritage is my paternal half-sibling’s daughter. My half-sibling is deceased, so this is as close as I’ll ever get to matching her.

At 23andMe, the half-great-niece is my half-siblings grandchild.

It’s interesting that I have no matches to descendants of my other half-sibling, who is also deceased. Maybe I should ask if any of his children or grandchildren have tested. Hmmmm…..

You can see that I stand a MUCH BETTER chance of figuring out close relatives using the combined closest matches of all four databases instead of the top matches from just one database. It doesn’t matter if the database is large if the right person or people didn’t test there.

Combine Resources

I’ll be providing analysis methodologies for working with results from all of the vendors together, just in case your answer is not immediately obvious. Taking multiple DNA tests facilitates using all of these tools immediately, not months later. Solving the puzzle sooner means you may not miss valuable opportunities.

You may also discover that the door slams shut with some people, or they may not respond to your queries, but another match may be unbelievably helpful. Don’t limit your possibilities.

Let’s take a look at the strengths of each vendor.

Vendor Strengths and Things to Know

Every vendor has product strengths and idiosyncracies that the others do not. All vendors provide matches and shared matches. Each vendor provides ethnicity tools which certainly can be useful, but the features differ and will be covered elsewhere.

  • AncestryAncestry has the largest autosomal database and includes ThruLines, but no Y or mitochondrial DNA testing, no clusters, no chromosome browser, no triangulation, and no X chromosome matching or reporting. Ancestry provides genealogical records, advanced tools, and full tree access to your matches’ trees with an Ancestry subscription. Ancestry does not allow downloading your match list or segment match information, but the other vendors do.
  • 23andMe 23andMe has the second largest database. They provide triangulation and genetic trees that include your closest matches. Many people test at 23andMe for health and wellness information, so 23andMe has people in their database who are not specifically interested in genealogy and probably won’t have tested elsewhere, but may be invaluable to your search. 23andMe provides Y and mtDNA high-level haplogroups only, but no matching or other haplogroup information. If you purchase a new test or have a V5 ancestry+health current test, you can expand your matches from a limit of 1500 to about 5000 with an annual membership. For seeking close relatives, you don’t need those features, but you may want them for genealogy. 23andMe is the only vendor that limits their customers’ matches.
  • MyHeritageMyHeritage has the third largest database that includes lots of European testers. MyHeritage provides triangulation, Theories of Family Relativity, and an integrated cluster tool* but does not report X matches and does not offer Y or mitochondrial DNA testing. MyHeritage accepts autosomal DNA file uploads from other testing companies for free and provides access to advanced DNA features for a one-time unlock fee. MyHeritage includes genealogical records and full feature access to advanced DNA tools with a Complete Subscription. (Free 15 days trial subscription, here.)
  • FamilyTreeDNA Family Finder (autosomal)FamilyTreeDNA is the oldest DNA testing company, meaning their database includes people who initially tested 20+ years ago and have since passed away. This, in essence, gets you one generation further back in time, with the possibility of stronger matches. Their Family Matching feature buckets and triangulates your matches, assigning them to your maternal or paternal sides if you link known matches to their proper place in your tree, even if your parents have not tested. FamilyTreeDNA accepts uploads from other testing companies for free and provides advanced DNA features for a one time unlock fee.
  • FamilyTreeDNAFamilyTreeDNA is the only company that offers both Y and mitochondrial DNA testing products that include matching, integration with autosomal test results, and other tools. These two tests are lineage-specific and don’t have to be sorted from your other ancestral lines.

I wrote about using Y DNA results, here.

I wrote about using mitochondrial DNA results, here.

*Third parties such as Genetic Affairs provide clustering tools for both 23andMe and FamilyTreeDNA. Clustering is integrated at MyHeritage. Ancestry does not provide a tool for nor allow third-party clustering. If the answer you seek isn’t immediately evident, Genetic Affairs clustering tools group people together who are related to each other, and you, and create both genetic and genealogical trees based on shared matches. You can read more about their tools, here.

Fish in all the Ponds and Use All the Bait Possible

Here’s the testing and upload strategy I recommend, based on the above discussion and considerations. The bottom line is this – if you want as much information as possible, as quickly as possible, order the four tests in red initially. Then transfer the first autosomal test results you receive to the two companies identified in blue. Optionally, GEDMatch may have tools you want to work with, but they aren’t a testing company.

What When Ancestry 23andMe MyHeritage FamilyTreeDNA
Order autosomal Initially X X    
Order Y 111 or Big-Y DNA test if male Initially       X
Order mitochondrial DNA test Initially if desired       X
Upload free autosomal When Ancestry or 23andMe results are available     X X
Unlock Advanced Tools When you upload     $29 $19
Optional GEDMatch free upload If desired, can subscribe for advanced tools

When you upload an autosomal DNA file to a vendor site, only upload one file per site, per tester. Otherwise, multiple tests simply glom up everyone’s match list with multiple matches to the same person.

Multiple vendor sites will hopefully provide multiple close matches, which increase your opportunity to discover INFORMATION about your family, not just the identity of the person you seek.

Or maybe you prefer to wait and order these DNA tests serially, waiting until one set of results is back and you’re finished working with them before ordering the next one. If so, that means you’re a MUCH more patient person than me. 😊

Our next article in this series will be about endogamy, how to know if it applies to you, and what that means to your search.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA DISCOVER™ Launches – Including Y DNA Haplogroup Ages

FamilyTreeDNA just released an amazing new group of public Y DNA tools.

Yes, a group of tools – not just one.

The new Discover tools, which you can access here, aren’t just for people who have tested at FamilyTreeDNA . You don’t need an account and it’s free for everyone. All you need is a Y DNA haplogroup – from any source.

I’m going to introduce each tool briefly because you’re going to want to run right over and try Discover for yourself. In fact, you might follow along with this article.

Y DNA Haplogroup Aging

The new Discover page provides seven beta tools, including Y DNA haplogroup aging.

Haplogroup aging is THE single most requested feature – and it’s here!

Discover also scales for mobile devices.

Free Beta Tool

Beta means that FamilyTreeDNA is seeking your feedback to determine which of these tools will be incorporated into their regular product, so expect a survey.

If you’d like changes or something additional, please let FamilyTreeDNA know via the survey, their support line, email or Chat function.

OK, let’s get started!

Enter Your Haplogroup

Enter your Y DNA haplogroup, or the haplogroup you’re interested in viewing.

If you’re a male who has tested with FamilyTreeDNA , sign on to your home page and locate your haplogroup badge at the lower right corner.

If you’re a female, you may be able to test a male relative or find a haplogroup relevant to your genealogy by visiting your surname group project page to locate the haplogroup for your ancestor.

I’ll use one of my genealogy lines as an example.

In this case, several Y DNA testers appear under my ancestor, James Crumley, in the Crumley DNA project.

Within this group of testers, we have two different Big Y haplogroups, and several estimated haplogroups from testers who have not upgraded to the Big Y.

If you’re a male who has tested at either 23andMe or LivingDNA, you can enter your Y DNA haplogroup from that source as well. Those vendors provide high-level haplogroups.

The great thing about the new Discover tool is that no matter what haplogroup you enter, there’s something for you to enjoy.

I’m going to use haplogroup I-FT272214, the haplogroup of my ancestor, James Crumley, confirmed through multiple descendants. His son John’s descendants carry haplogroup I-BY165368 in addition to I-FT272214, which is why there are two detailed haplogroups displayed for this grouping within the Crumley haplogroup project, in addition to the less-refined I-M223.

Getting Started

When you click on Discover, you’ll be asked to register briefly, agree to terms, and provide your email address.

Click “View my report” and your haplogroup report will appear.

Y DNA Haplogroup Report

For any haplogroup you enter, you’ll receive a haplogroup report that includes 7 separate pages, shown by tabs at the top of your report.

Click any image to enlarge

The first page you’ll see is the Haplogroup Report.

On the first page, you’ll find Haplogroup aging. The TMRCA (time to most recent common ancestor) is provided, plus more!

The report says that haplogroup I-FT272214 was “born,” meaning the mutation that defines this haplogroup, occurred about 300 years ago, plus or minus 150 years.

James Crumley was born about 1710. We know his sons carry haplogroup I-FT272214, but we don’t know when that mutation occurred because we don’t have upstream testers. We don’t know who his parents were.

Three hundred years before the birth of our Crumley tester would be about 1670, so roughly James Crumley’s father’s generation, which makes sense.

James’ son John’s descendants have an additional mutation, so that makes sense too. SNP mutations are known to occur approximately every 80 years, on average. Of course, you know what average means…may not fit any specific situation exactly.

The next upstream haplogroup is I-BY100549 which occurred roughly 500 years ago, plus or minus 150 years. (Hint – if you want to view a haplogroup report for this upstream haplogroup, just click on the haplogroup name.)

There are 5 SNP confirmed descendants of haplogroup I-FT272214 claiming origins in England, all of whom are in the Crumley DNA project.

Haplogroup descendants mean this haplogroup and any other haplogroups formed on the tree beneath this haplogroup.

Share

If you scroll down a bit, you can see the share button on each page. If you think this is fun, you can share through a variety of social media resources, email, or copy the link.

Sharing is a good way to get family members and others interested in both genealogy and genetic genealogy. Light the spark!

I’m going to be sharing with collaborative family genealogy groups on Facebook and Twitter. I can also share with people who may not be genealogists, but who will think these findings are interesting.

If you keep scrolling under the share button or click on “Discover More” you can order Y DNA tests if you’re a biological male and haven’t already taken one. The more refined your haplogroup, the more relevant your information will be on the Discover page as well as on your personal page.

Scrolling even further down provides information about methods and sources.

Country Frequency

The next tab is Country Frequency showing the locations where testers with this haplogroup indicate that their earliest known ancestors are found.

The Crumley haplogroup has only 5 people, which is less than 1% of the people with ancestors from England.

However, taking a look at haplogroup R-M222 with many more testers, we see something a bit different.

Ireland is where R-M222 is found most frequently. 17% of the men who report their ancestors are from Ireland belong to haplogroup R-M222.

Note that this percentage also includes haplogroups downstream of haplogroup R-M222.

Mousing over any other location provides that same information for that area as well.

Seeing where the ancestors of your haplogroup matches are from can be extremely informative. The more refined your haplogroup, the more useful these tools will be for you. Big Y testers will benefit the most.

Notable Connections

On the next page, you’ll discover which notable people have haplogroups either close to you…or maybe quite distant.

Your first Notable Connection will be the one closest to your haplogroup that FamilyTreeDNA was able to identify in their database. In some cases, the individual has tested, but in many cases, descendants of a common ancestor tested.

In this case, Bill Gates is our closest notable person. Our common haplogroup, meaning the intersection of Bill Gates’s haplogroup and my Crumley cousin’s haplogroup is I-L1195. The SNP mutation that defines haplogroup I-L1145 occurred about 4600 years ago. Both my Crumley cousin and Bill Gates descend from that man.

If you’re curious and want to learn more about your common haplogroup, remember, you can enter that haplogroup into the Discover tool. Kind of like genetic time travel. But let’s finish this one first.

Remember that CE means current era, or the number of years since the year “zero,” which doesn’t technically exist but functions as the beginning of the current era. Bill Gates was born in 1955 CE

BCE means “before current era,” meaning the number of years before the year “zero.” So 2600 BCE is approximately 4600 years ago.

Click through each dot for a fun look at who you’re “related to” and how distantly.

This tool is just for fun and reinforces the fact that at some level, we’re all related to each other.

Maybe you’re aware of more notables that could be added to the Discover pages.

Migration Map

The next tab provides brand spanking new migration maps that show the exodus of the various haplogroups out of Africa, through the Middle East, and in this case, into Europe.

Additionally, the little shovel icons show the ancient DNA sites that date to the haplogroup age for the haplogroup shown on the map, or younger. In our case, that’s haplogroup I-M223 (red arrow) that was formed about 16,000 years ago in Europe, near the red circle, at left. These haplogroup ancient sites (shovels) would all date to 16,000 years ago or younger, meaning they lived between 16,000 years ago and now.

Click to enlarge

By clicking on a shovel icon, more information is provided. It’s very interesting that I-L1145, the common haplogroup with Bill Gates is found in ancient DNA in Cardiff, Wales.

This is getting VERY interesting. Let’s look at the rest of the Ancient Connections.

Ancient Connections

Our closest Ancient Connection in time is Gen Scot 24 (so name in an academic paper) who lived in the Western Isles of Scotland.

These ancient connections are more likely cousins than direct ancestors, but of course, we can’t say for sure. We do know that the first man to develop haplogroup I-L126, about 2500 years ago, is an ancestor to both Gen Scot 24 and our Crumley ancestor.

Gen Scot 24 has been dated to 1445-1268 BCE which is about 3400 years ago, which could actually be older than the haplogroup age. Remember that both dating types are ranges, carbon dating is not 100% accurate, and ancient DNA can be difficult to sequence. Haplogroup ages are refined as more branches are discovered and the tree grows.

The convergence of these different technologies in a way that allows us to view the past in the context of our ancestors is truly amazing.

All of our Crumley cousin’s ancient relatives are found in Ireland or Scotland with the exception of the one found in Wales. I think, between this information and the haplogroup formation dates, it’s safe to say that our Crumley ancestors have been in either Scotland or Ireland for the past 4600 years, at least. And someone took a side trip to Wales, probably settled and died there.

Of course, now I need to research what was happening in Ireland and Scotland 4600 years ago because I know my ancestors were involved.

Suggested Projects

I’m EXTREMELY pleased to see suggested projects for this haplogroup based on which projects haplogroup members have joined.

You can click on any of the panels to read more about the project. Remember that not everyone joins a project because of their Y DNA line. Many projects accept people who are autosomally related or descend from the family through the mitochondrial line, the direct mother’s line.

Still, seeing the Crumley surname project would be a great “hint” all by itself if I didn’t already have that information.

Scientific Details

The Scientific Details page actually has three tabs.

The first tab is Age Estimate.

The Age Estimate tab provides more information about the haplogroup age or TMRCA (Time to Most Recent Common Ancestor) calculations. For haplogroup I-FT272214, the most likely creation date, meaning when the SNP occurred, is about 1709, which just happens to align well with the birth of James Crumley about 1710.

However, anyplace in the dark blue band would fall within a 68% confidence interval (CI). That would put the most likely years that the haplogroup-defining SNP mutation took place between 1634 and 1773. At the lower end of the frequency spectrum, there’s a 99% likelihood that the common ancestor was born between 1451 and 1874. That means we’re 99% certain that the haplogroup defining SNP occurred between those dates. The broader the date range, the more certain we can be that the results fall into that range.

The next page, Variants, provides the “normal” or ancestral variant and the derived or mutated variant or SNP (Single Nucleotide Polymorphism) in the position that defines haplogroup I-FT272214.

The third tab displays FamilyTreeDNA‘s public Y DNA Tree with this haplogroup highlighted. On the tree, we can see this haplogroup, downstream haplogroups as well as upstream, along with their country flags.

Your Personal Page

If you have already taken a DNA test at FamilyTreeDNA, you can find the new Discover tool conveniently located under “Additional Tests and Tools.”

If you are a male and haven’t yet tested, then you’ll want to order a Y DNA test or upgrade to the Big Y for the most refined haplogroup possible.

Big Y tests and testers are why the Y DNA tree now has more than 50,000 branches and 460,000 variants. Testing fuels growth and growth fuels new tools and possibilities for genealogists.

What Do You Think?

Do you like these tools?

What have you learned? Have you shared this with your family members? What did they have to say? Maybe we can get Uncle Charley interested after all!

Let me know how you’re using these tools and how they are helping you interpret your Y DNA results and assist your genealogy.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches DNA Monkey Wrenches https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA Keynote, RootsTech Wrap + Special Show Pricing Still Available

Am I ever whipped. My two live Sessions that were actually a series of three classes each took place on Friday. Yes, that means I presented 6 sessions on Friday, complete with a couple of Zoom gremlins, of course. It’s the nature of the time we live in.

RootsTech tried something new that they’ve never done before. The Zoom class sessions were restricted to 500 attendees each. RootsTech was concerned about disappointed attendees when the room was full and they couldn’t get in, so we live-streamed three of my sessions to Facebook in addition to the 500 Zoom seats.

As of this evening, 6,800 of you have viewed the Facebook video, “Associating Autosomal DNA Segments With Ancestors.” I’m stunned, and touched. Thank you, thank you. Here’s the Facebook link, and here’s the RootsTech YouTube link.

My afternoon sessions, “What Can I DO With Ancestral DNA Segments?” can be viewed here at RootsTech or here on YouTube.

I must admit, I’m really, REALLY looking forward to being together again because RootsTech without the socializing and in-person Expo Hall just isn’t the same. Still, be sure to take a virtual walk through the Expo Hall, here. There’s lots of content in the vendors” booths and it will remain available for all of 2022, until the beginning of RootsTech 2023..

Between prep for my classes and presenting, I didn’t have a lot of time to watch other sessions, but I was able to catch the FamilyTreeDNA keynote and their 2022 Product Sneak Peek. Both were quite worthwhile.

However, I just realized that FamilyTreeDNA’s special show pricing promo codes are still valid for the next two days.

 Special Prices Are Still Available

Every single test that FamilyTreeDNA offers, including UPGRADES, is on sale right now by using special RootsTech promo codes. These prices are good for two more days, through March 7th, so if you want to purchase a Y DNA test, mitochondrial, or Family Finder autosomal test, or upgrade, click here to see the prices only available at RootsTech (and to you through my blog.) It’s not too late, but it will be soon.

To order, click here to sign on or place your order.

FamilyTreeDNA’s Keynote

FamilyTreeDNA’s keynote was titled FamilyTreeDNA: 22 Years of Breaking Down Brick Walls.

I really enjoyed this session, in part because I’ve been a part of the genetic genealogy revolution and evolution from the beginning. Not only that, but I know every single person they interviewed for this video, and have for years. If you’ve been participating in genetic genealogy for some time, you’ll know many of these people too. For a minute, it was almost as good as visiting in person.

I’m going to share a few highlights from the session, but I’m also going to include information NOT in the video. I was one of the early project administrators, so I’ve been along for the ride for just a few months shy of 22 years.

FamilyTreeDNA was the first US company to enter the DNA testing space, the first to offer Y DNA testing, and the only one of the early companies that remains viable today. FamilyTreeDNA was the result of Bennett Greenspan’s dream – but initially, he was only dreaming small. Just like any other genealogist – he was dreaming about breaking down a brick wall which he explains in the video.

I’m so VERY grateful that Bennett had that dream, and persisted, because it means that now millions of us can do the same – and will into the future.

Bennett tells this better than anyone else, along with his partner, Max Blankfeld.

“Some people were fascinated,” Bennett said.

Yep, that’s for sure! I certainly was.

“Among the first genetic genealogists in the world.”

“Frontier of the genetic genealogy revolution.”

Indeed, we were and still are. Today’s genetic genealogy industry wouldn’t even exist were it not for FamilyTreeDNA and their early testers.

I love Max Blankfeld’s story of their first office, and you will too.

This IS the quintessential story of entrepreneurship.

In 2004, when FamilyTreeDNA was only four years old, they hosted the very first annual international project administrator’s conference. At that time, it was believed that the only people that would be interested in learning at that level and would attend a DNA conference would be project administrators who were managing surname and regional projects. How times have changed! This week at RootsTech, we probably had more people viewing DNA sessions than people that had tested altogether in 2004. I purchased kit number 30,087 on December 28, 2004, and kit 50,000 a year later on New Year’s Eve right at midnight!

In April 2005, Nat Geo partnered with FamilyTreeDNA and founded the Genographic Project which was scheduled to last for 5 years. They were hoping to attract 100,000 people who would be willing to test their DNA to discover their roots – and along with that – our human roots. The Genographic Project would run for an incredible 15 years.

In 2005 when the second Project Administrator’s conference was held at the National Geographic Society headquarters in Washington DC, I don’t think any of us realized the historic nature of the moment we were participating in.

I remember walking from my hotel, ironically named “Helix,” to that iconic building. I had spent my childhood reading those yellow magazines at school and dreaming of far-away places. As an adult, I had been a life-long subscriber. Never, in my wildest dreams did I imagine ever visiting Nat Geo and walking the marble Explorer’s Hall with the portraits of the founders and early explorers hanging above and keeping a watchful eye on us. We would not disappoint them.

That 100,000 participation goal was quickly reached, within weeks, and surpassed, leading us all to walk the road towards the building that housed the Explorer’s Hall, Explorers’ in Residence, and so much more.

We were all explorers, pioneers, adventurers seeking to use the DNA from our ancestors in the past to identify who they were. Using futuristic technology tools like a mirror to look backward into the dim recesses of the past.

The archaeology being unearthed and studied was no longer at the ends of the earth but within our own bodies. The final frontier. Reaching out to explore meant reaching inward, and backward in time, using the most progressive technology of the day.

Most of the administrators in attendance, all volunteers, were on a first-name basis with each other and also with Max, Bennett, and the scientists.

Here, Bennett with a member of the science team from the University of Arizona describes future research goals. Every year FamilyTreeDNA has improved its products in numerous ways.

Today, that small startup business has its own ground-breaking state-of-the-art lab. More than 10,000 DNA projects are still administered by passionate volunteer administrators who focus on what they seek – such as the history of their surname or a specific haplogroup. Their world-class lab allows FamilyTreeDNA to focus on research and science in addition to DNA processing. The lab allows constant improvement so their three types of genetic genealogy products, Y, mitochondrial and autosomal DNA.

Those three types of tests combine to provide genealogical insights and solutions. The more the science improves, the more solutions can and will be found.

If you watch the video, you’ll see 6 people who have solved particularly difficult and thorny problems. We are all long-time project administrators, all participate on a daily basis in this field and community – and all have an undying love for both genealogy and genetic genealogy.

You’ll recognize most of these people, including yours truly.

  • I talk about my mother’s heritage, unveiled through mitochondrial DNA.
  • Rob Warthen speaks about receiving a random phone call from another genealogist as his introduction to genetic genealogy. Later, he purchased a DNA test for his girlfriend, an adoptee, for Christmas and sweetened the deal by offering to “go where you’re from” for vacation. He didn’t realize why she was moved to tears – that test revealed the first piece of information she had ever known about her history. DNA changed her and Rob’s life. He eventually identified her birth parents – and went on to found both DNAAdoption.org and DNAGedcom.
  • Richard Hill was adopted and began his search in his 30s, but it would be DNA that ended his search. His moving story is told in his book, Finding Family: My Search for Roots and the Secrets in My DNA.
  • Mags Gaulden, professional genealogist and founder of Grandma’s Genes and MitoYDNA.org tells about her 91-year-old adopted client who had given up all hope of discovering her roots. Back in the 1950s, there was literally nothing in her client’s adoption file. She was reconciled to the fact that “I would never know who I was.” Mags simply could not accept that and 2 years later, Mags found her parents’ names.

  • Lara Diamond’s family was decimated during the holocaust. Lara’s family thought everyone in her grandfather’s family had been killed, but in 2013, autosomal DNA testing let her to her grandfather’s aunt who was not killed in the holocaust as everyone thought. The aunt and first cousin were living in Detroit. Lara went from almost no family to a family reunion, shown above. She says she finally met “people who look like me.”
  • Katherine Borges founded ISOGG.org, the International Society of Genetic Genealogy in 2005, following the first genetic genealogy conference in late 2004 where she realized that the genealogy community desperately needed education – beginning with DNA terms. I remember her jokingly standing in the hallway saying that she understood three words, “a, and and the.” While that’s cute today, it was real at that time because DNA was a foreign language, technology, and concept to genealogy. In fact, for years we were banned from discussing the topic on RootsWeb. The consummate genetic genealogist, Katherine carries DNA kits in her purse, even to Scotland!

Bennett says that he’s excited about the future, for the next generation of molecular scientific achievements. It was Bennett that greenlit the Million Mito project. Bennett’s challenge as a genetic genealogy/business owner was to advance the science that led to products while making enough money to be able to continue advancing the science. It was a fine line, but Max and Bennett navigated those waters quite well.

Apparently, Max, Bennett, and the FamilyTreeDNA customers weren’t the only people who believe that.

In January 2021, myDNA acquired and merged with FamilyTreeDNA. Max and Bennett remain involved as board members.

Dr.Lior Rauchberger, CEO of myDNA which includes FamilyTreeDNA

Dr. Lior Rauchberger, the CEO of the merged enterprise believes in the power of genetics, including genetic genealogy, and is continuing to make investments in FamilyTreeDNA products – including new features. There have already been improvements in 2021 and in the presentation by Katy Rowe, the Product Manager for the FamilyTreeDNA products, she explains what is coming this year.

I hope you enjoyed this retrospective on the past 22 years and are looking forward to crossing new frontiers, and breaking down those brick walls, in the coming decades.

Sneak Peek at FamilyTreeDNA – New Features and Upcoming Releases

You can watch Katy Rowe’s Sneak Peek video about what’s coming, here.

Of course, while other companies need to split their focus between traditional genealogy research records and DNA, FamilyTreeDNA does not. Their only focus is genetics. They plan to make advances in every aspect of their products.

FamilyTreeDNA announced a new Help Center which you can access, here. I found lots of short videos and other helpful items. I had no idea it existed.

In 2021, customers began being able to order a combined Family Finder and myDNA test to provide insights into genealogy along with health and wellness

Wellness includes nutrition and fitness insights.

Existing customers either are or will be able to order the myDNA upgrade to their existing test. The ability to upgrade is being rolled out by groups. I haven’t had my turn yet, but when I do, I’ll test and let you know what I think. Trust me, I’m not terribly interested in how many squats I can do anymore, because I already know that number is zero, but I am very interested in nutrition and diet. I’d like to stay healthy enough to research my ancestors for a long time to come.

FamilyTreeDNA announced that over 72,000 men have taken the Big Y test which has resulted in the Y DNA tree of mankind surpassing 50,000 branches.

This is utterly amazing when you consider how far we’ve come since 2002. This also means that a very high number of men, paired with at least one other man, actually form a new branch on the Y haplotree.

The “age” of tester’s Y DNA haplogroups is now often within the 500-year range – clearly genealogical in nature. Furthermore, many leaf-tip haplogroups as defined by the Big Y SNPs are much closer than that and can differentiate between branches of a known family. The Big Y-700 is now the go-to test for Y DNA and genealogy.

Of course, all these new branches necessitate new maps and haplogroup information. These will be released shortly and will provide users with the ability to see the paths together, which is the view you see here, or track individual lines. The same is true for mitochondrial DNA as well.

Y DNA tree branch ages will be forthcoming soon too. I think this is the #1 most requested feature.

On the Mitochondrial DNA side of the house, the Million Mito project has led to a significant rewrite of the MitoTree. As you know, I’m a Million Mito team member.

Here’s Dr. Paul Maier’s branch, for example. You can see that in the current version of the Phylotree, there is one blue branch and lots of “child” branches beneath that. Of course, when we’re measuring the tree from “Eve,” the end tip leaf branches look small, but it’s there that our genealogy resides.

In the new version, yet to be released, there is much more granularity in the branches of U5a2b2a.

To put this another way, in today’s tree, haplogroup U5a2b2a is about 5,000 years old, but the newly defined branches bring the formation of Paul’s (new) haplogroup into the range of about 500 years. Similar in nature to the Y DNA tree and significantly more useful for genealogical purposes. If you have not taken a mitochondrial DNA full sequence test, please order one now. Maybe your DNA will help define a new branch on the tree plus reveal new information about your genealogy.

Stay tuned on this one. You know the Million Mito Project is near and dear to my heart.

2022 will also see much-needed improvements in the tree structure and user experience, as well as the matches pages.

There are a lot of exciting things on FamilyTreeDNA’s plate and I’m excited to see these new features and functions roll out over the next few months.

Just the Beginning

The three days of RootsTech 2022 may be over, but the content isn’t.

In fact, it’s just the beginning of being able to access valuable information at your convenience. The vendor booths will remain in the Expo Hall until RootsTech 2023, so for a full year, plus the individual instructor’s sessions will remain available for three years.

In a few days, after I take a break, I’ll publish a full list of DNA sessions, along with links for your convenience.

Thank You Shout Outs

I want to say a HUGE thank you to RootsTech for hosting the conference and making it free. I specifically want to express my gratitude to the many, many people working diligently behind the scenes during the last year, and frantically during the past three days.

Another huge thank you to the speakers and vendors whose efforts provide the content for the conference.

And special thanks to you for loving genealogy, taking your time to watch and learn, and for reading this blog.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA from 459 Ancient British Isles Burials Reveals Relationships – Does Yours Match?

In December 2021, two major papers were released that focused on the ancient DNA of burials from Great Britain. The paper, A high-resolution picture of kinship practices in an Early Neolithic tomb by Fowler et al provided a genetic analysis of 35 individuals from a Cotswold Neolithic burial who were found to be a multi-generational family unit. In Large-scale migration into Britain during the Middle to Late Bronze Age by Patterson et, the authors generated genome-wide data for 793 ancient burials from the British Isles and continental Europe to determine who settled Great Britain, from where, and when.

Of course, the very first thing genealogists want to know is, “Am I related?”

If we are related, it’s far too distant for the reach of autosomal DNA, but Y DNA and mitochondrial DNA might just be very interesting. If you haven’t yet tested your mother’s line mitochondrial DNA for males and females both, and paternal line Y DNA for males only, you’re in luck because you can purchase those tests here.

These two papers combined provide a significant window into the past in Great Britain; England, Scotland, Wales, and nearby islands.

First, let’s take a look at the Cotswold region.

The Cotswolds

Ancient DNA was retrieved from a cairn burial in the Cotswolds, a hilly region of Southwest England.

By Saffron Blaze – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15675403

Even today, the paused-in-time stone houses, fences, and ancient gardens harken back to earlier times.

By Peter K Burian – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=70384620

Stunningly beautiful and historically important, the Cotswolds is a protected landscape that includes Neolithic burial chambers (3950-2450 BCE), Bronze and Iron Age forts, Roman villas, and eventually, the Celtic pathway known as Fosse Way.

The Hazelton North Long-Tomb Burial Site

The Fowler paper explores the kinship practices and relationships between the Cotswolds burials.

Click to enlarge images

The North Hazelton site was endangered due to repeated plowing in a farmer’s field. Excavation of the tomb occurred in 1981. A book was published in 1990 with a pdf file available at that link. The photo from 1979 on page 3 shows that the burial cairn only looks to be a slight rise in the field.

You can see on the map below from the UK Megalithic site map that there are many other locations in close proximity to the Hazelton North site, some with similarly arranged burials.

The paper’s authors state that there are 100 long cairns within 50 km of Hazelton North, and one only 80 meters away. Excavation in those tombs, along with archaeological evaluation would be needed to determine the ages of the cairns, if burial practices were the same or similar, and if any of the individuals were related to each other or the individuals in the North Hazelton cairn. In other words, were these separate cemeteries of an extended family, or disconnected burial grounds of different groups of people over time.

While the North Hazelton site no longer exists, as it was entirely excavated, on the same page, you can see photos before excavation, along with the main chamber which now resides in the Corinium Museum in Cirencester, just a few kilometers away.

The Fowler team analyzed 35 individuals who lived about 5,700 years ago, at least 100 years after cattle and cereal cultivation was introduced to Britain along with the construction of megalithic monuments. Stonehenge, the most well-known megalith, is located about 90 miles away and is estimated to be about 5,100 years old. The burials from Stonehenge indicate that they were primarily Early European Farmers (EEF) from Anatolia who first moved to Iberia, then on to Britain.

The remains analyzed in this paper were excavated from the Hazelton North Megalithic long-cairn type tomb.

The tomb was built between 5,695 and 5,650 years ago, with the stonework of the north passage collapsing and sealing off the north chamber between 5,660 and 5,630 years ago. All burials stopped in this location about 5,620 years ago, so the site was only in use for about 80 years.

The tomb seems to have been built with multiple passages in anticipation of planned burials by genealogical association. The arrangement of burials was determined by kinship, at least until the passage wall of the North chamber collapsed. The southern and northern chambers each housed two females’ descendants, respectively. While the male progenitor was significant in that this entire tomb was clearly his family tomb, the arrangement of the burials within the chambers suggests that the women were socially significant in the community, and to their families as well.

Osteological analysis reveals at least 41 individuals, 22 of whom were adults. Strontium isotope analysis indicates that most of the individuals had spent time in their childhood at least 40 km away. Authors of a 2015 paper interpret this to mean that the population as a whole was not sedentary, meaning that they may have moved with their livestock from place to place, perhaps based on seasons. Of course, this also calls into question what happened if an individual died while the group was not in the location of the burial cairn.

Of those individuals, 27 people were part of a 5-generation family with many interrelationships.

Of the 15 intergenerational genetic transmissions, all were through men, meaning every third, fourth or fifth generation individual was connected to the original patriarch through only males, suggesting that patrilineal descent determined who was buried in a Neolithic tomb. This also tells us that patrilineal social practices were persistent.

26 of 35 people with genetic data were male. Male burials in other Cotswold tombs outnumber females 1.6 to 1. The remains of some women must have been treated differently.

No adult lineage daughters were present in the tomb, although two infant daughters were, suggesting that adult daughters were out-married, outside of either the community or this specific family lineage. They would have been buried in their husband’s tomb, just as these women were buried here.

The male progenitor reproduced with 4 females, producing 14 adult sons who were buried in the tomb. All four females were buried in the tomb, in two chambers, suggesting that women, at least high-status women were buried with their partners and not in their father’s tomb.

The lineages of two of those women were buried in the same half of the tomb over all generations, suggesting maternal lineages were socially important.

The burials included four men who did not descend from the male progenitors of the clan lineage but DID descend from women who also had children with the progenitors. The authors state that this suggests that the progenitor men adopted the four children of their mates into their lineage, but it also raises the possibility that the progenitor men were not aware that those four men were not their descendants.

Multiple reproductive partners of men were not related to each other, but multiple reproductive partners of women were.

Eight individuals found within the tomb were not closely related to the main lineages. This could mean that they were partners of men who did not reproduce, or who had only adult daughters. It could also mean they were socially important, but not biologically related to either each other nor the tomb’s family members whose DNA was sampled.

Of those who are related, inbreeding had been avoided meaning the parents of individuals were not related to each other based on runs of homozygosity (ROH).

Some of the remains from the north chamber had been gnawed by scavengers, apparently before burial, and three cremations were buried at the entrance including an infant, a child, and an adult. This might answer the question of what happened if someone died while the group was away from the burial site.

Individuals in the north tomb exhibited osteoarthritis typical of other burials in southern England, and signs of nutritional stress in childhood.

The south chamber burials were more co-mingled and dispersed among neighboring compartments.

In the Guardian article, World’s oldest family tree revealed in 5,700-year-old Cotswolds tomb, a genetic pedigree chart was drawn based on the burials, their relationship to each other, and burial locations.

As discussed in this PNAS paper, Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society, other Neolithic tomb burials in Europe were also reflective of a kinship system.

The question remains, where did the Cotswold settlers come from? Who were they descended from and related to? The second paper provides insights to that question.

Who Migrated into Britain, and When?

Patterson et al tell us that their DNA analysis of 793 individuals increased the data from the Middle (1550-1150 BCE) to Late Bronze (1150-750 BCE) and Iron Age (70-BCE-43CE) in Britain by 12-fold, and from Western and Central Europe by 3.5 times.

They also reveal that present-day people from England and Wales carry more ancestry derived from Early European Farmers than people from the Early Bronze Age.

The DNA contributed from Early European Farmers (EEF) increased over time in people in the southern portion of Britain and Wales, which includes the Cotswold region, but did not increase in northern Britain (Scotland,) nor in Kent. Specifically, from 31% in the Early Bronze Age to 34% in the Middle Bronze Age to 35% in the Late Bronze Age to 38% in the Iron Age.

While the EEF DNA increased over time in the Southwest area of Britain, it decreased in other regions. This means that the increase could not be explained by migration from northern continental Europe in the medieval period because those early migrants carried even less Early European Farmer ancestry than the inhabitants of Southwest Britain. Therefore, if those two populations had admixed, the results would be progressively lower EEF in Southwest Britain, not higher.

To fully evaluate this data, the team sequenced earlier samples from both Britain and mainland Europe in addition to the Cotswold burials, targeting 1.2 million SNP locations.

In addition to DNA sequencing, they also utilized radiocarbon dating to confirm the age of the remains.

Results for low-coverage individuals, meaning those with less than 30,000 SNPs scanned at least once, were removed from the data set.

123 individuals were identified as related to each other from 48 families within the third degree. Third-degree relatives share approximately 12.5% of their DNA and would include first cousins, great-grandparents/children, granduncles/aunts, half uncles/aunts/nieces/nephews.

Lactase persistence, the ability to digest the lactose in milk was significantly higher in this population than in either the rest of Britain or Central and Western Europe by a factor of 5 or greater.

The DNA of the Cotswold burial groups and others found from this early timeframe in Southwest Britain and Wales is most similar to ancient burials from France.

A Eupedia megalithic culture page shows a map of various major megalithic sites in both Europe and the British Isles.

Based on charts in Figure 4 of the paper, the location in Europe with the highest percentage of EEF about 4300 years ago (2300 BCE) was the Iberian Peninsula – Spain and Portugal, a location that neighbors France. Lactase persistence began increasing about that time and dramatically rose about 3500 years ago (1500 BCE.)

Y DNA haplogroup R-L21/M529 went from 0% in the Neolithic era (3950-2450 BCE,) or about 5950-4450 years ago) in Britain to 90% in all of Britain in the Early Bronze Era (2450-1550 BCE or 4450-3550 years ago), then dropped slowly to about 70% in the Iron Age in Western England and Wales, then 50% in western Britain and Wales and 20% in Central and Eastern Britain in the Modern Era.

You can read more about this research in this Phys.org article: Geneticists’ new research on ancient Britain contains insights on language, ancestry, kinship, milk, and more about Megalithic burials in France in this Smithsonian Magazine article: Europe’s Megalithic Monuments Originated in France and Spread by Sea Routes, new Study Suggests.

Are You Connected?

The paper authors made the resequenced Y DNA and mitochondrial DNA information available for analysis.

Of course, we all want to know if we are connected with these people, especially if our families have origins in the British Isles.

The R&D team at FamilyTreeDNA downloaded the Y DNA and mitochondrial DNA sequences and linked them to mapped locations. They also correlated samples to Y DNA and mitochondrial DNA haplogroups and linked them to their respective public trees here and here. The Y DNA sometimes contained additional SNP information which allowed a more granular haplogroup to be assigned.

I want to specifically thank Goran Runfeldt, head of R&D, for making this valuable information available and useful for genealogists by downloading, reformatting, and mapping the data, and Michael Sager, phylogeneticist in the FamilyTreeDNA lab, for reanalyzing the Y DNA results and refining them beyond the papers.

Now, let’s get to the best part.

The Map

This map shows the locations of 459 ancient British Isles burials included in the papers, both in the Cotswolds and throughout the rest of Great Britain.

There are significantly more mitochondrial DNA haplogroups represented than Y DNA. Of course, everyone, males and females both have mitochondrial DNA, so everyone can test, but only males carry Y DNA.

The next map shows the distribution of the base mitochondrial haplogroups.

  • H=light green (181 samples)
  • U=rust (70 samples)
  • K=burgundy (68 samples)
  • J=yellow (46 samples)
  • T=dark green (43 samples)
  • V=grey (16 samples)
  • X=dark teal (9 samples)
  • I=orange (6 samples)
  • W=purple (6 samples)
  • N=brown (2 samples)

The most common mitochondrial haplogroup found is H which is unsurprising given that H is the most common haplogroup in Europe as well.

It’s interesting to note that there is no clear haplogroup distribution pattern for either Y DNA or mitochondrial  DNA, with the exception of the North Hazelton burials themselves as outlined in the paper.

There were only three ancient major Y DNA haplogroups discovered.

  • R=green (179 samples)
  • I=gold (50 samples)
  • G=blue (5 samples)

225 total samples were female and had no Y chromosome. A few male Y chromosomes were not recoverable.

Of course, some samples on the maps fall directly beneath other samples, so it’s difficult to discern multiple samples from the same location.

For that, and for more granular haplogroups, we need to refer to the data itself.

How to Use the Data

Each sample is identified by:

  • A sample ID from the papers
  • Sex
  • Location with a google map link.
  • Age calibrated to BCE, before current era, which means roughly how many years before about the year 1 that someone lived. To determine approximately how long ago one of these people lived, add 2000 to the BCE date. For example, 3500 BCE equates to 5500 years ago.
  • Y DNA haplogroup for male samples where recoverable, linked to FamilyTreeDNA’s public Y DNA haplotree.
  • Mitochondrial DNA haplogroup for all but 2 samples where mitochondrial results were not recoverable, linked to FamilyTreeDNA’s public mitochondrial DNA haplotree.

If you have tested your full sequence mitochondrial DNA, you can use the browser search function (ctrl+F) on a PC to search for your haplogroup. For example. Searching for haplogroup H61 produces 5 results. Click on the sample locations to view where they were found. Are they in close proximity to each other? In the same burial?

Four were found at the same location in the Channel Islands, and one in Kent. Where is your ancestor from?

For Y DNA, you can search for your haplogroup, but if you’ve taken the Big Y test and don’t find your specific haplogroup, you might want to use the Y DNA tree to search for successive upstream haplogroups to see where your closest ancient match might be found. Of course, if you’re haplogroup G, it’s pretty easy to just take a look without searching for each individual haplogroup. Just search for “G-“.

For each sample, be sure to click on the haplogroup name itself to view its location on the tree and where else in the world this haplogroup is found. Let’s look at a couple of examples.

Sample: I26628 (Female)
Location: Channel Islands, Alderney, Longis Common
Age: 756-416 calBCE
mtDNA: H61

Mitochondrial haplogroup H61, above, is fairly rare and currently found sparsely in several countries including England, Germany, Hungary, Belarus, Ireland, Netherlands, the UK, and France. The flags indicate the location of FamilyTreeDNA testers’ earliest known ancestor of their mitochondrial, meaning direct matrilineal, line.

Click on the haplogroup link to view the results in the Y or mtDNA trees.

Next, let’s look at a Y DNA sample.

Sample: I16427 (Male)
Location: Channel Islands, Guernsey, Vale, Le Déhus
Age: 4234-3979 calBCE
Y-DNA: I-M423
mtDNA: X2b-T226C

Haplogroup I-M423 itself is found most frequently in Germany, Poland, Ukraine, Scotland and Ireland, but note that it also has 648 downstream branches defined. You may match I-M423 by virtue of belonging to a downstream branch.

Do you match any of these ancient samples, and where were your ancestors from?

Sample: I26630 (Male)
Location: Channel Islands, Alderney, Longis Common
Age: 749-403 calBCE
mtDNA: H61

Sample: I16430 (Female)
Location: Channel Islands, Alderney, Longis Common
Age: 337-52 calBCE
mtDNA: H61

Sample: I16505 (Female)
Location: Channel Islands, Alderney, Longis Common
Age: 174-45 calBCE
mtDNA: H61

Sample: I26629 (Female)
Location: Channel Islands, Alderney, Longis Common
Age: 170 calBCE – 90 calCE
mtDNA: U5a1b1

Sample: I16437 (Female)
Location: Channel Islands, Guernsey, Vale, Le Déhus
Age: 4241-4050 calBCE
mtDNA: K1b1a1

Sample: I16444 (Male)
Location: Channel Islands, Guernsey, Vale, Le Déhus
Age: 4228-3968 calBCE
Y-DNA: I-FT376000
mtDNA: J1c1b1

Sample: I16429 (Male)
Location: Channel Islands, Guernsey, Vale, Le Déhus
Age: 3088-2914 calBCE
mtDNA: K1

Sample: I16425 (Female)
Location: Channel Islands, Guernsey, Vale, Le Déhus
Age: 3083-2912 calBCE
mtDNA: K1a4a1

Sample: I16438 (Male)
Location: Channel Islands, Guernsey, Vale, Le Déhus
Age: 2567-2301 calBCE
Y-DNA: I-L623
mtDNA: J1c8

Sample: I16436 (Male)
Location: Channel Islands, Herm, The Common
Age: 3954-3773 calBCE
Y-DNA: I-CTS7213
mtDNA: HV

Sample: I16435 (Male)
Location: Channel Islands, Herm, The Common
Age: 3646-3527 calBCE
mtDNA: H

Sample: I16597 (Male)
Location: England, Bedfordshire, Broom Quarry
Age: 404-209 calBCE
Y-DNA: R-DF49
mtDNA: H1-C16355T

Sample: I21293 (Female)
Location: England, Bedfordshire, Broom Quarry
Age: 425-200 BCE
mtDNA: J1c1b

Sample: I11151 (Male)
Location: England, Bedfordshire, Broom Quarry
Age: 379-197 calBCE
Y-DNA: R-FT44983
mtDNA: K1a-T195C!

Sample: I11150 (Male)
Location: England, Bedfordshire, Broom Quarry
Age: 381-197 calBCE
Y-DNA: R-FT335377
mtDNA: H15a1

Sample: I19047 (Male)
Location: England, Cambridgeshire, Babraham Research Campus (ARC05), ARES site
Age: 1-50 CE
Y-DNA: R-M269
mtDNA: H2a

Sample: I19045 (Male)
Location: England, Cambridgeshire, Marshall’s Jaguar Land Rover New Showroom (JLU15)
Age: 388-206 calBCE
Y-DNA: G-S23438
mtDNA: U4a2

Sample: I19046 (Male)
Location: England, Cambridgeshire, Marshall’s Jaguar Land Rover New Showroom (JLU15)
Age: 383-197 calBCE
Y-DNA: R-P312
mtDNA: H1t

Sample: I19044 (Male)
Location: England, Cambridgeshire, Marshall’s Jaguar Land Rover New Showroom (JLU15)
Age: 381-199 calBCE
Y-DNA: R-FT50512
mtDNA: K1a-T195C!

Sample: I11152 (Male)
Location: England, Cambridgeshire, Over
Age: 355-59 calBCE
Y-DNA: G-Z16775
mtDNA: U3a1

Sample: I11149 (Male)
Location: England, Cambridgeshire, Teversham (Marshall’s) Evaluation
Age: 733-397 calBCE
Y-DNA: R-Z156
mtDNA: V

Sample: I11154 (Female)
Location: England, Cambridgeshire, Trumpington Meadows
Age: 743-404 calBCE
mtDNA: H5a1

Sample: I13729 (Female)
Location: England, Cambridgeshire, Trumpington Meadows
Age: 512-236 calBCE
mtDNA: H1ag1

Sample: I11153 (Male)
Location: England, Cambridgeshire, Trumpington Meadows
Age: 405-209 calBCE
Y-DNA: R-FGC33066
mtDNA: H3b

Sample: I13727 (Female)
Location: England, Cambridgeshire, Trumpington Meadows
Age: 389-208 calBCE
mtDNA: T1a1

Sample: I13728 (Male)
Location: England, Cambridgeshire, Trumpington Meadows
Age: 381-179 calBCE
Y-DNA: R-P312
mtDNA: T2a1a

Sample: I13687 (Female)
Location: England, Cambridgeshire, Trumpington Meadows
Age: 368-173 calBCE
mtDNA: W1c

Sample: I11156 (Male)
Location: England, Cambridgeshire, Whittlesey, Bradley Fen
Age: 382-200 calBCE
Y-DNA: R-CTS8704
mtDNA: J1c3

Sample: I11997 (Male)
Location: England, Cambridgeshire, Whittlesey, Bradley Fen
Age: 377-197 calBCE
Y-DNA: R-FGC36434
mtDNA: X2b-T226C

Sample: I16620 (Female)
Location: England, Co. Durham, Hartlepool, Catcote
Age: 340 BCE – 6 CE
mtDNA: H1bs

Sample: I12790 (Female)
Location: England, Cornwall, Newquay, Tregunnel
Age: 400-100 BCE
mtDNA: H2a1

Sample: I12793 (Male)
Location: England, Cornwall, Newquay, Tregunnel
Age: 400-100 BCE
Y-DNA: R-L21
mtDNA: H2a1

Sample: I12792 (Female)
Location: England, Cornwall, Newquay, Tregunnel
Age: 400-100 BCE
mtDNA: H2a1

Sample: I16387 (Male)
Location: England, Cornwall, Newquay, Trethellan Farm
Age: 300 BCE – 100 CE
Y-DNA: R-P312
mtDNA: N/A

Sample: I16456 (Female)
Location: England, Cornwall, Newquay, Trethellan Farm
Age: 300 BCE – 100 CE
mtDNA: T1a1’3

Sample: I16455 (Male)
Location: England, Cornwall, Newquay, Trethellan Farm
Age: 300 BCE – 100 CE
Y-DNA: R-Z290
mtDNA: T1

Sample: I16386 (Female)
Location: England, Cornwall, Newquay, Trethellan Farm
Age: 300 BCE – 100 CE
mtDNA: T1a1

Sample: I16458 (Male)
Location: England, Cornwall, Newquay, Trethellan Farm
Age: 300 BCE – 100 CE
Y-DNA: R-L21
mtDNA: T2c1d-T152C!

Sample: I16457 (Female)
Location: England, Cornwall, Newquay, Trethellan Farm
Age: 300 BCE – 100 CE
mtDNA: T1a1

Sample: I16450 (Male)
Location: England, Cornwall, Newquay, Trethellan Farm
Age: 300 BCE – 100 CE
Y-DNA: R-FT32396
mtDNA: T1a1

Sample: I16424 (Female)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 2285-2036 calBCE
mtDNA: R1b

Sample: I6769 (Male)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 754-416 calBCE
Y-DNA: R-BY168376
mtDNA: H6a1b2

Sample: I16380 (Male)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 800 BCE – 43 CE
Y-DNA: R-ZP298
mtDNA: U4b1a1a1

Sample: I16388 (Female)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 800 BCE – 43 CE
mtDNA: J1c1

Sample: I16440 (Male)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 800 BCE – 43 CE
Y-DNA: R-P312
mtDNA: T2c1d-T152C!

Sample: I16441 (Female)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 800 BCE – 43 CE
mtDNA: J1c2e

Sample: I16442 (Female)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 800 BCE – 43 CE
mtDNA: U4b1a1a1

Sample: I16439 (Female)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 800 BCE – 43 CE
mtDNA: T2c1d-T152C!

Sample: I12772 (Male)
Location: England, Cornwall, Padstow, St. Merryn, Harlyn Bay
Age: 800 BCE – 43 CE
Y-DNA: G-CTS2230
mtDNA: T2c1d-T152C!

Sample: I16453 (Male)
Location: England, Cornwall, St. Mawes, Tregear Vean
Age: 800-1 BCE
Y-DNA: I-M253
mtDNA: U5a2a1

Sample: I16454 (Male)
Location: England, Cornwall, St. Merryn, Constantine Island
Age: 1381-1056 calBCE
Y-DNA: R-Z290
mtDNA: U5b2b2

Sample: I20997 (Male)
Location: England, Cumbria, Ulverston, Birkrigg Common
Age: 2450-1800 BCE
Y-DNA: R-A286
mtDNA: X2b4a

Sample: I12776 (Female)
Location: England, Derbyshire, Brassington, Carsington Pasture Cave
Age: 1918-1750 calBCE
mtDNA: U4a2c

Sample: I12774 (Male)
Location: England, Derbyshire, Brassington, Carsington Pasture Cave
Age: 758-416 calBCE
Y-DNA: R-P312
mtDNA: H10b

Sample: I12771 (Male)
Location: England, Derbyshire, Brassington, Carsington Pasture Cave
Age: 513-210 calBCE
Y-DNA: R-FT5780
mtDNA: U5b2a2a

Sample: I12778 (Male)
Location: England, Derbyshire, Brassington, Carsington Pasture Cave
Age: 381-203 calBCE
Y-DNA: R-DF5
mtDNA: H4a1a2

Sample: I3014 (Female)
Location: England, Derbyshire, Brassington, Carsington Pasture Cave
Age: 377-177 calBCE
mtDNA: H

Sample: I12775 (Male)
Location: England, Derbyshire, Brassington, Carsington Pasture Cave
Age: 361-177 calBCE
Y-DNA: R-BY9405
mtDNA: U5a1b1e

Sample: I12770 (Female)
Location: England, Derbyshire, Brassington, Carsington Pasture Cave
Age: 390-171 calBCE
mtDNA: H3b1b1

Sample: I12779 (Female)
Location: England, Derbyshire, Brassington, Carsington Pasture Cave
Age: 370-197 calBCE
mtDNA: T2b4c

Sample: I20620 (Female)
Location: England, Derbyshire, Fin Cop
Age: 382-204 calBCE
mtDNA: T2a1b1

Sample: I20627 (Female)
Location: England, Derbyshire, Fin Cop
Age: 376-203 calBCE
mtDNA: V2b

Sample: I20623 (Female)
Location: England, Derbyshire, Fin Cop
Age: 400-150 BCE
mtDNA: V2b

Sample: I20624 (Male)
Location: England, Derbyshire, Fin Cop
Age: 356-108 calBCE
Y-DNA: R-M269
mtDNA: U2e1a1

Sample: I20622 (Male)
Location: England, Derbyshire, Fin Cop
Age: 357-60 calBCE
Y-DNA: I-Y3713
mtDNA: T2c1d1

Sample: I20634 (Male)
Location: England, Derbyshire, Fin Cop
Age: 400-50 BCE
Y-DNA: R-M269
mtDNA: K2b1a1a

Sample: I20630 (Male)
Location: England, Derbyshire, Fin Cop
Age: 400-50 BCE
Y-DNA: R-L21
mtDNA: H1au1b

Sample: I20632 (Male)
Location: England, Derbyshire, Fin Cop
Age: 400-50 BCE
Y-DNA: R-P310
mtDNA: V2b

Sample: I20621 (Female)
Location: England, Derbyshire, Fin Cop
Age: 400-50 BCE
mtDNA: T2c1d1

Sample: I20631 (Female)
Location: England, Derbyshire, Fin Cop
Age: 400-50 BCE
mtDNA: V2b

Sample: I20628 (Male)
Location: England, Derbyshire, Fin Cop
Age: 351-52 calBCE
Y-DNA: R-DF13
mtDNA: I2a

Sample: I20626 (Male)
Location: England, Derbyshire, Fin Cop
Age: 346-53 calBCE
Y-DNA: I-P222
mtDNA: H7b

Sample: I20625 (Male)
Location: England, Derbyshire, Fin Cop
Age: 343-49 calBCE
Y-DNA: R-P310
mtDNA: T1a1

Sample: I27382 (Male)
Location: England, Dorset, Long Bredy, Bottle Knap
Age: 774-540 calBCE
Y-DNA: R-BY116228
mtDNA: H1

Sample: I27383 (Female)
Location: England, Dorset, Long Bredy, Bottle Knap
Age: 750-411 calBCE
mtDNA: U4c1

Sample: I27381 (Female)
Location: England, Dorset, Long Bredy, Bottle Knap
Age: 748-406 calBCE
mtDNA: U4c1

Sample: I20615 (Female)
Location: England, Dorset, Worth Matravers, Football Field
Age: 100 BCE – 50 CE
mtDNA: H1i

Sample: I22065 (Male)
Location: England, East Riding of Yorkshire, Burstwick
Age: 351-55 calBCE
Y-DNA: R-P312
mtDNA: H

Sample: I22052 (Female)
Location: England, East Riding of Yorkshire, East Coast Pipeline (field 16)
Age: 344-52 calBCE
mtDNA: U2e2a1a

Sample: I22060 (Male)
Location: England, East Riding of Yorkshire, East Coast Pipeline (field 9)
Age: 343-1 calBCE
Y-DNA: R-BY154824
mtDNA: H4a1a3a

Sample: I0527 (Female)
Location: England, East Riding of Yorkshire, East Riding, North Ferriby, Melton Quarry
Age: 400-100 BCE
mtDNA: U2e1

Sample: I0525 (Female)
Location: England, East Riding of Yorkshire, Melton
Age: 100 BCE – 50 CE
mtDNA: U2e1e

Sample: I7629 (Male)
Location: England, East Riding of Yorkshire, North Ferriby, Melton Quarry
Age: 1201-933 calBCE
Y-DNA: R-DF13
mtDNA: H17

Sample: I5503 (Female)
Location: England, East Riding of Yorkshire, Nunburnholme Wold
Age: 334-42 calBCE
mtDNA: U5b1c2

Sample: I5502 (Male)
Location: England, East Riding of Yorkshire, Nunburnholme Wold
Age: 196-4 calBCE
Y-DNA: R-FT96564
mtDNA: H3

Sample: I11033 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 717-395 calBCE
mtDNA: H2a3b

Sample: I14100 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 409-229 calBCE
Y-DNA: R-DF13
mtDNA: J1c9

Sample: I12412 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 387-205 calBCE
mtDNA: K1c1a

Sample: I5507 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 387-206 calBCE
mtDNA: H2a3b

Sample: I5506 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 358-111 calBCE
mtDNA: K1c1a

Sample: I5504 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: T1a1

Sample: I5505 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-L21
mtDNA: V16

Sample: I14103 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: H53

Sample: I5510 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: K1c1a

Sample: I13755 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: H2a3b

Sample: I5509 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-PH4760
mtDNA: K1c1a

Sample: I13758 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-L2
mtDNA: H2a3b

Sample: I14107 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-CTS6919
mtDNA: K1c1a

Sample: I13760 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-DF13
mtDNA: H2a3b

Sample: I13751 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: H2a3b

Sample: I13754 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-P312
mtDNA: U5b2b3

Sample: I13757 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: T2c1d1a

Sample: I13756 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: K1c1a

Sample: I13753 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-Z251
mtDNA: H2a3b

Sample: I14099 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: H2a3b

Sample: I14101 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: H2a3b

Sample: I14105 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-P312
mtDNA: H2a3b

Sample: I14102 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-FT84170
mtDNA: K1c1a

Sample: I14108 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: V2a

Sample: I14104 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-DF13
mtDNA: H

Sample: I13759 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-BY3865
mtDNA: H2a3b

Sample: I11034 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: H2a3b

Sample: I12411 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: H2a3b

Sample: I12415 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: J1c9

Sample: I12413 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-BY50764
mtDNA: H2a3b

Sample: I12414 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
mtDNA: H2a3b

Sample: I5508 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-BY11863
mtDNA: J1c9

Sample: I5511 (Male)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 400-50 BCE
Y-DNA: R-DF63
mtDNA: J1c9

Sample: I13752 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 346-53 calBCE
mtDNA: J1c9

Sample: I14106 (Female)
Location: England, East Riding of Yorkshire, Pocklington (Burnby Lane)
Age: 176 calBCE – 6 calCE
mtDNA: K1c1a

Sample: I18606 (Male)
Location: England, East Riding of Yorkshire, Thornholme, East Coast Pipeline (field 10)
Age: 1919-1742 calBCE
Y-DNA: R-DF13
mtDNA: K1b1a1

Sample: I19220 (Female)
Location: England, East Riding of Yorkshire, Thornholme, East Coast Pipeline (field 10)
Age: 1894-1695 calBCE
mtDNA: H3g1

Sample: I14326 (Female)
Location: England, East Riding of Yorkshire, Thornholme, East Coast Pipeline (field 13)
Age: 3074-2892 calBCE
mtDNA: H1c

Sample: I22056 (Female)
Location: England, East Riding of Yorkshire, Thornholme, East Coast Pipeline (field 16)
Age: 391-201 calBCE
mtDNA: H4a1a3a

Sample: I22055 (Female)
Location: England, East Riding of Yorkshire, Thornholme, East Coast Pipeline (field 16)
Age: 391-201 calBCE
mtDNA: K1b1a1c1

Sample: I14327 (Male)
Location: England, East Riding of Yorkshire, Thornholme, East Coast Pipeline (field 16)
Age: 340-47 calBCE
Y-DNA: R-BY41416
mtDNA: H5

Sample: I22064 (Female)
Location: England, East Riding of Yorkshire, Thornholme, East Coast Pipeline (field 16)
Age: 105 calBCE – 64 calCE
mtDNA: H4a1a3a

Sample: I22057 (Female)
Location: England, East Riding of Yorkshire, Thornholme, East Coast Pipeline (field 16)
Age: 104 calBCE – 65 calCE
mtDNA: H2a1k

Sample: I22062 (Male)
Location: England, East Riding of Yorkshire, Thornholme, Town Pasture
Age: 50 calBCE – 116 calCE
Y-DNA: R-BY23382
mtDNA: K1a-T195C!

Sample: I12931 (Male)
Location: England, Gloucestershire, Bishop’s Cleeve, Cleevelands
Age: 50-200 CE
Y-DNA: I-L160
mtDNA: H6a2

Sample: I12927 (Male)
Location: England, Gloucestershire, Bishop’s Cleeve, Cleevelands
Age: 50-200 CE
Y-DNA: R-PR1289
mtDNA: U5b3b1

Sample: I12932 (Female)
Location: England, Gloucestershire, Bishop’s Cleeve, Cleevelands
Age: 50-200 CE
mtDNA: H1bs

Sample: I12791 (Male)
Location: England, Gloucestershire, Bourton-on-the-water, Greystones Farm
Age: 200-1 BCE
Y-DNA: I-BY17900
mtDNA: H1e1a

Sample: I12785 (Male)
Location: England, Gloucestershire, Bourton-on-the-water, Greystones Farm
Age: 200-1 BCE
Y-DNA: R-DF21
mtDNA: J1c1b2

Sample: I12926 (Male)
Location: England, Gloucestershire, Fairford, Saxon Way
Age: 400-100 BCE
Y-DNA: R-L21
mtDNA: H2a2a2

Sample: I21392 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: 3710–3630 calBCE
Y-DNA: I-M284
mtDNA: J2b1a

Sample: I12439 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: N/A
Y-DNA: I-Y3709
mtDNA: K1b1a

Sample: I30304 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: N/A
Y-DNA: I-L1195
mtDNA: K1b1a

Sample: I13888 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: N/A
mtDNA: K1b1a

Sample: I21388 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: N/A
Y-DNA: I-Y3709
mtDNA: U8b1b

Sample: I13892 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: 3910–3630 calBCE
Y-DNA: I-Y3709
mtDNA: T2e1

Sample: I30334 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: N/A
mtDNA: K1a3a1

Sample: I21390 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: 3950–3630 calBCE
mtDNA: U8b1b

Sample: I30300 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: N/A
Y-DNA: I-Y3709
mtDNA: N1b1b

Sample: I13899 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North chamber
Age: N/A
Y-DNA: I-Y3712
mtDNA: U3a1

Sample: I13893 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North entrance
Age: 3650–3380 calBCE
Y-DNA: I-Y3709
mtDNA: K1a4

Sample: I13897 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North entrance
Age: 3500–3340 calBCE
Y-DNA: I-Y3712
mtDNA: V

Sample: I13898 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North entrance
Age: 3700–3530 calBCE
Y-DNA: I-Y3709
mtDNA: K1a3a1

Sample: I12437 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, North entrance
Age: 3790–3510 calBCE
Y-DNA: I-Y3709
mtDNA: K1a3a1

Sample: I21389 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber
Age: 3720-3520 calBCE
Y-DNA: I-Y3709
mtDNA: H1

Sample: I30311 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber
Age: N/A
Y-DNA: I-Y3709
mtDNA: U5b1-T16189C!-T16192C!

Sample: I21387 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber
Age: N/A
mtDNA: K1d

Sample: I12440 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber
Age: N/A
Y-DNA: I-Y3709
mtDNA: K2b1

Sample: I30302 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber
Age: N/A
mtDNA: K2b1

Sample: I13889 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber
Age: N/A
mtDNA: K1b1a1d

Sample: I13896 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber
Age: N/A
mtDNA: J1c1b1

Sample: I21395 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber, south entrance
Age: N/A
Y-DNA: I-Y3709
mtDNA: J1c1b1

Sample: I13891 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber, south passage
Age: N/A
Y-DNA: I-Y3709
mtDNA: U5b1-T16189C!-T16192C!

Sample: I12438 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South chamber, south passage
Age: N/A
Y-DNA: I-L1195
mtDNA: W5

Sample: I30293 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, South entrance
Age: N/A
mtDNA: U5b1-T16189C!

Sample: I30332 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South entrance
Age: N/A
Y-DNA: I-CTS616
mtDNA: N/A

Sample: I21385 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South entrance
Age: N/A
Y-DNA: I-FT344600
mtDNA: K1d

Sample: I13895 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South entrance
Age: N/A
Y-DNA: I-Y3709
mtDNA: U8b1b

Sample: I30301 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South entrance
Age: N/A
Y-DNA: I-Y3712
mtDNA: U5a2d

Sample: I20818 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South entrance, south passage
Age: 3970–3640 calBCE
Y-DNA: I-Y3712
mtDNA: J1c1

Sample: I13890 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South passage
Age: N/A
Y-DNA: I-L1193
mtDNA: T2e1

Sample: I21393 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South passage
Age: N/A
Y-DNA: I-L1195
mtDNA: K1b1a

Sample: I20821 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South passage
Age: N/A
Y-DNA: I-Y3709
mtDNA: H5

Sample: I30299 (Male)
Location: England, Gloucestershire, Hazleton North Long Cairn, South passage
Age: N/A
Y-DNA: I-Y3709
mtDNA: K2b1

Sample: I21391 (Female)
Location: England, Gloucestershire, Hazleton North Long Cairn, Uncertain
Age: N/A
mtDNA: K1b1a1

Sample: I12786 (Male)
Location: England, Gloucestershire, Lechlade-on-Thames, Lechlade Memorial Hall/Skate Park
Age: 2289-2052 calBCE
Y-DNA: R-DF13
mtDNA: J1c2

Sample: I12935 (Male)
Location: England, Gloucestershire, Lechlade-on-Thames, Lechlade Memorial Hall/Skate Park
Age: 2200-1900 BCE
Y-DNA: R-DF21
mtDNA: H1ah2

Sample: I12783 (Male)
Location: England, Gloucestershire, Lechlade-on-Thames, Lechlade Memorial Hall/Skate Park
Age: 783-541 calBCE
Y-DNA: R-DF21
mtDNA: J1c5

Sample: I12787 (Female)
Location: England, Gloucestershire, Lechlade-on-Thames, Lechlade Memorial Hall/Skate Park
Age: 539-387 calBCE
mtDNA: H2a2a1

Sample: I13717 (Female)
Location: England, Hampshire, Barton-Stacey Pipeline
Age: 398-208 calBCE
mtDNA: U5a1a1

Sample: I16611 (Male)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 401-208 calBCE
Y-DNA: R-Z16539
mtDNA: H1c

Sample: I17261 (Male)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 372-175 calBCE
Y-DNA: R-DF63
mtDNA: R0a

Sample: I20987 (Male)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 450-1 BCE
Y-DNA: R-DF63
mtDNA: U5b2b3

Sample: I20985 (Female)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 450-1 BCE
mtDNA: U4a3a

Sample: I17262 (Female)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 357-57 calBCE
mtDNA: T2b

Sample: I20983 (Female)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 450-1 BCE
mtDNA: H3b-G16129A!

Sample: I20986 (Female)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 450-1 BCE
mtDNA: HV0-T195C!

Sample: I20982 (Male)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 450-1 BCE
Y-DNA: R-L20
mtDNA: J1c3

Sample: I20984 (Female)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 450-1 BCE
mtDNA: H1j6

Sample: I16609 (Male)
Location: England, Hampshire, Middle Wallop, Suddern Farm
Age: 341-46 calBCE
mtDNA: J1c2e

Sample: I16612 (Female)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 658-397 calBCE
mtDNA: H3

Sample: I17267 (Female)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 450-100 BCE
mtDNA: V

Sample: I20988 (Male)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 450-100 BCE
Y-DNA: I-Y3713
mtDNA: T2b19

Sample: I17264 (Male)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 450-100 BCE
Y-DNA: R-BY4297
mtDNA: U2e1f1

Sample: I20990 (Female)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 362-171 calBCE
mtDNA: J1c1b1a

Sample: I17266 (Female)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 355-60 calBCE
mtDNA: U5b1b1-T16192C!

Sample: I20989 (Male)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 354-59 calBCE
Y-DNA: R-P312
mtDNA: K1c1

Sample: I16613 (Male)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 351-54 calBCE
mtDNA: J1b1a1

Sample: I17263 (Female)
Location: England, Hampshire, Nether Wallop, Danebury
Age: 346-52 calBCE
mtDNA: J1c1c

Sample: I17260 (Male)
Location: England, Hampshire, Stockbridge, New Buildings
Age: 800-400 BCE
Y-DNA: R-S1051
mtDNA: U5a1a2a

Sample: I17259 (Male)
Location: England, Hampshire, Stockbridge, New Buildings
Age: 725-400 calBCE
Y-DNA: I-S16030
mtDNA: H5a1

Sample: I17258 (Female)
Location: England, Hampshire, Stockbridge, New Buildings
Age: 542-396 calBCE
mtDNA: K1a2

Sample: I19042 (Female)
Location: England, Hampshire, Winnall Down
Age: 715-48 calBCE
mtDNA: T2b33

Sample: I19043 (Female)
Location: England, Hampshire, Winnall Down
Age: 400-100 BCE
mtDNA: J1c1

Sample: I19037 (Female)
Location: England, Hampshire, Winnall Down
Age: 400-100 BCE
mtDNA: J1b1a1b

Sample: I19040 (Female)
Location: England, Hampshire, Winnall Down
Age: 400-100 BCE
mtDNA: H1m

Sample: I14742 (Male)
Location: England, Kent, Cliffs End Farm
Age: 1011-860 calBCE
Y-DNA: R-P312
mtDNA: H1-T16189C!

Sample: I14377 (Female)
Location: England, Kent, Cliffs End Farm
Age: 1014-836 calBCE
mtDNA: U5b1b1d

Sample: I14864 (Female)
Location: England, Kent, Cliffs End Farm
Age: 983-816 calBCE
mtDNA: T2b

Sample: I14862 (Female)
Location: England, Kent, Cliffs End Farm
Age: 982-812 calBCE
mtDNA: H1

Sample: I14865 (Female)
Location: England, Kent, Cliffs End Farm
Age: 967-811 calBCE
mtDNA: H

Sample: I14861 (Male)
Location: England, Kent, Cliffs End Farm
Age: 912-808 calBCE
Y-DNA: R-FGC23071
mtDNA: V

Sample: I14358 (Male)
Location: England, Kent, Cliffs End Farm
Age: 912-807 calBCE
Y-DNA: R-L21
mtDNA: H3

Sample: I14379 (Female)
Location: England, Kent, Cliffs End Farm
Age: 903-807 calBCE
mtDNA: T2c1d-T152C!

Sample: I14745 (Female)
Location: England, Kent, Cliffs End Farm
Age: 900-798 calBCE
mtDNA: X2b

Sample: I14743 (Male)
Location: England, Kent, Cliffs End Farm
Age: 779-524 calBCE
Y-DNA: R-L151
mtDNA: I4a

Sample: I14381 (Female)
Location: England, Kent, Cliffs End Farm
Age: 727-400 calBCE
mtDNA: U5b2b1a1

Sample: I14857 (Female)
Location: England, Kent, Cliffs End Farm
Age: 719-384 calBCE
mtDNA: H3an

Sample: I14747 (Female)
Location: England, Kent, Cliffs End Farm
Age: 514-391 calBCE
mtDNA: H3

Sample: I14378 (Female)
Location: England, Kent, Cliffs End Farm
Age: 400-208 calBCE
mtDNA: I2

Sample: I14858 (Female)
Location: England, Kent, Cliffs End Farm
Age: 396-207 calBCE
mtDNA: J1c1

Sample: I14380 (Male)
Location: England, Kent, Cliffs End Farm
Age: 387-203 calBCE
Y-DNA: R-FTB53005
mtDNA: T2e1

Sample: I14860 (Female)
Location: England, Kent, Cliffs End Farm
Age: 386-198 calBCE
mtDNA: X2b-T226C

Sample: I14859 (Male)
Location: England, Kent, Cliffs End Farm
Age: 377-203 calBCE
Y-DNA: R-P312
mtDNA: H7d3

Sample: I14866 (Male)
Location: England, Kent, Cliffs End Farm
Age: 372-197 calBCE
Y-DNA: I-BY152642
mtDNA: H1at1

Sample: I14863 (Female)
Location: England, Kent, Cliffs End Farm
Age: 360-201 calBCE
mtDNA: U5b1b1-T16192C!

Sample: I13714 (Male)
Location: England, Kent, East Kent Access Road
Age: 1533-1417 calBCE
Y-DNA: R-CTS6919
mtDNA: H1c8

Sample: I19915 (Female)
Location: England, Kent, East Kent Access Road
Age: 1519-1422 calBCE
mtDNA: K1c1

Sample: I19913 (Female)
Location: England, Kent, East Kent Access Road
Age: 1408-1226 calBCE
mtDNA: J1c2e

Sample: I13710 (Male)
Location: England, Kent, East Kent Access Road
Age: 1411-1203 calBCE
Y-DNA: R-DF63
mtDNA: I4a

Sample: I13711 (Male)
Location: England, Kent, East Kent Access Road
Age: 1048-920 calBCE
Y-DNA: R-BY28644
mtDNA: H61

Sample: I13712 (Male)
Location: England, Kent, East Kent Access Road
Age: 1011-916 calBCE
Y-DNA: R-DF13
mtDNA: U5b2b3a

Sample: I13713 (Male)
Location: England, Kent, East Kent Access Road
Age: 1055-837 calBCE
Y-DNA: R-L21
mtDNA: H1c

Sample: I19872 (Female)
Location: England, Kent, East Kent Access Road
Age: 403-209 calBCE
mtDNA: H13a1a1

Sample: I13732 (Male)
Location: England, Kent, East Kent Access Road
Age: 401-208 calBCE
Y-DNA: R-A7835
mtDNA: U5b2c1

Sample: I19873 (Male)
Location: England, Kent, East Kent Access Road
Age: 400-200 BCE
Y-DNA: R-BY3616
mtDNA: U5b2b

Sample: I13615 (Male)
Location: England, Kent, East Kent Access Road
Age: 400-200 BCE
Y-DNA: R-DF13
mtDNA: H1c

Sample: I19907 (Female)
Location: England, Kent, East Kent Access Road
Age: 400-200 BCE
mtDNA: U2e1a1

Sample: I19910 (Female)
Location: England, Kent, East Kent Access Road
Age: 400-200 BCE
mtDNA: U4a2

Sample: I19911 (Male)
Location: England, Kent, East Kent Access Road
Age: 400-200 BCE
Y-DNA: R-DF13
mtDNA: K1a4a1

Sample: I19874 (Female)
Location: England, Kent, East Kent Access Road
Age: 400-200 BCE
mtDNA: H1ax

Sample: I19908 (Female)
Location: England, Kent, East Kent Access Road
Age: 400-200 BCE
mtDNA: K2b1a

Sample: I13731 (Male)
Location: England, Kent, East Kent Access Road
Age: 393-206 calBCE
Y-DNA: R-DF13
mtDNA: U5a1a1g

Sample: I13730 (Male)
Location: England, Kent, East Kent Access Road
Age: 390-202 calBCE
Y-DNA: R-S5668
mtDNA: H1bb

Sample: I19914 (Female)
Location: England, Kent, East Kent Access Road
Age: 387-200 calBCE
mtDNA: H3g1

Sample: I19909 (Male)
Location: England, Kent, East Kent Access Road
Age: 381-197 calBCE
Y-DNA: R-BY9003
mtDNA: T1a1-C152T!!

Sample: I19912 (Female)
Location: England, Kent, East Kent Access Road
Age: 368-173 calBCE
mtDNA: H1bs

Sample: I13616 (Female)
Location: England, Kent, East Kent Access Road
Age: 356-49 calBCE
mtDNA: H1b1-T16362C

Sample: I19870 (Female)
Location: England, Kent, East Kent Access Road
Age: 200-1 BCE
mtDNA: T1a1

Sample: I19869 (Female)
Location: England, Kent, East Kent Access Road
Age: 175 calBCE – 8 calCE
mtDNA: T1a1

Sample: I1774 (Male)
Location: England, Kent, Isle of Sheppey, Neats Court
Age: 1879-1627 calBCE
Y-DNA: R-M269
mtDNA: U4b1a2

Sample: I13716 (Female)
Location: England, Kent, Margetts Pit
Age: 1391-1129 calBCE
mtDNA: H11a

Sample: I13617 (Female)
Location: England, Kent, Margetts Pit
Age: 1214-1052 calBCE
mtDNA: H

Sample: I18599 (Female)
Location: England, Kent, Sittingbourne, Highsted
Age: 43 calBCE – 110 calCE
mtDNA: H

Sample: I3083 (Male)
Location: England, London, River Thames, Putney Foreshore
Age: 387-201 calBCE
Y-DNA: R-P310
mtDNA: R

Sample: I16463 (Male)
Location: England, North Yorkshire, Cockerham, Elbolton Cave
Age: 4000-3500 BCE
Y-DNA: I-L1195
mtDNA: H4a1a2

Sample: I16403 (Male)
Location: England, North Yorkshire, Cockerham, Elbolton Cave
Age: 1600-1350 BCE
Y-DNA: R-DF13
mtDNA: K2a

Sample: I16394 (Male)
Location: England, North Yorkshire, Grassington, 3 Barrow Sites
Age: 2400-1600 BCE
Y-DNA: R-P297
mtDNA: K1c1

Sample: I16395 (Female)
Location: England, North Yorkshire, Grassington, 3 Barrow Sites
Age: 2400-1600 BCE
mtDNA: U5b1

Sample: I16396 (Female)
Location: England, North Yorkshire, Grassington, 3 Barrow Sites
Age: 2400-1600 BCE
mtDNA: K1a4a1

Sample: I16400 (Male)
Location: England, North Yorkshire, Grassington, 3 Barrow Sites
Age: 2400-1500 BCE
Y-DNA: R-Z290
mtDNA: U3a1

Sample: I3035 (Male)
Location: England, North Yorkshire, Ingleborough Hill, Fox Holes Cave
Age: 4000-3500 BCE
Y-DNA: R-A7208
mtDNA: H5a1

Sample: I12936 (Female)
Location: England, North Yorkshire, Raven Scar Cave
Age: 1090-900 BCE
mtDNA: J1c5f

Sample: I16469 (Male)
Location: England, North Yorkshire, Raven Scar Cave
Age: 1090-900 BCE
Y-DNA: R-P312
mtDNA: H3-T152C!

Sample: I16467 (Male)
Location: England, North Yorkshire, Raven Scar Cave
Age: 1090-900 BCE
Y-DNA: R-M269
mtDNA: U5a1g1

Sample: I16459 (Unknown sex)
Location: England, North Yorkshire, Raven Scar Cave
Age: 1090-900 BCE
mtDNA: H

Sample: I19587 (Male)
Location: England, North Yorkshire, Scorton Quarry
Age: 195 calBCE – 7 calCE
Y-DNA: G-L140
mtDNA: K2a

Sample: I14097 (Male)
Location: England, North Yorkshire, Scorton Quarry
Age: 162 calBCE – 26 calCE
Y-DNA: R-P310
mtDNA: H66a1

Sample: I14096 (Male)
Location: England, North Yorkshire, Scorton Quarry
Age: 101 calBCE – 59 calCE
Y-DNA: R-FTA11009
mtDNA: H4a1a2a

Sample: I20583 (Male)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 387-201 calBCE
Y-DNA: R-BY175423
mtDNA: K1a4a1

Sample: I20582 (Female)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 368-165 calBCE
mtDNA: H10

Sample: I21272 (Male)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 400-100 BCE
Y-DNA: R-S5488
mtDNA: V

Sample: I21276 (Female)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 400-100 BCE
mtDNA: K1a4a1

Sample: I21277 (Male)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 400-100 BCE
Y-DNA: R-DF13
mtDNA: K1a4a1

Sample: I21274 (Female)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 400-100 BCE
mtDNA: K1a4a1

Sample: I21275 (Female)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 400-100 BCE
mtDNA: K1a4a1

Sample: I21271 (Female)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 400-100 BCE
mtDNA: W1c

Sample: I20584 (Female)
Location: England, Oxfordshire, Stanton Harcourt, Gravelly Guy
Age: 355-54 calBCE
mtDNA: K1a4a1

Sample: I14808 (Female)
Location: England, Oxfordshire, Thame
Age: 401-209 calBCE
mtDNA: H1

Sample: I14802 (Female)
Location: England, Oxfordshire, Thame
Age: 393-206 calBCE
mtDNA: X2d

Sample: I14807 (Male)
Location: England, Oxfordshire, Thame
Age: 391-204 calBCE
Y-DNA: R-DF49
mtDNA: T1a1

Sample: I14804 (Female)
Location: England, Oxfordshire, Thame
Age: 387-201 calBCE
mtDNA: H1o

Sample: I14806 (Female)
Location: England, Oxfordshire, Thame
Age: 386-198 calBCE
mtDNA: H1bb

Sample: I14800 (Male)
Location: England, Oxfordshire, Thame
Age: 382-197 calBCE
Y-DNA: R-Z253
mtDNA: J2b1

Sample: I14803 (Male)
Location: England, Oxfordshire, Thame
Age: 370-175 calBCE
Y-DNA: R-P312
mtDNA: H2a1

Sample: I14801 (Female)
Location: England, Oxfordshire, Thame
Age: 362-163 calBCE
mtDNA: X2b-T226C

Sample: I14809 (Male)
Location: England, Oxfordshire, Thame
Age: 358-108 calBCE
Y-DNA: R-P312
mtDNA: V7

Sample: I2446 (Female)
Location: England, Oxfordshire, Yarnton
Age: 2454-2139 calBCE
mtDNA: K1b1a1

Sample: I2448 (Male)
Location: England, Oxfordshire, Yarnton
Age: 1500-1000 BCE
Y-DNA: R-DF63
mtDNA: U8a2

Sample: I20585 (Female)
Location: England, Oxfordshire, Yarnton
Age: 800-400 BCE
mtDNA: K1c1

Sample: I21180 (Male)
Location: England, Oxfordshire, Yarnton
Age: 396-209 calBCE
Y-DNA: R-DF13
mtDNA: H7a1

Sample: I19209 (Male)
Location: England, Oxfordshire, Yarnton
Age: 400-200 BCE
mtDNA: H

Sample: I19211 (Male)
Location: England, Oxfordshire, Yarnton
Age: 400-200 BCE
Y-DNA: R-L21
mtDNA: H1

Sample: I20589 (Male)
Location: England, Oxfordshire, Yarnton
Age: 400-200 BCE
Y-DNA: R-Z52
mtDNA: V

Sample: I20586 (Male)
Location: England, Oxfordshire, Yarnton
Age: 400-200 BCE
Y-DNA: R-L21
mtDNA: J2b1a

Sample: I21178 (Female)
Location: England, Oxfordshire, Yarnton
Age: 400-200 BCE
mtDNA: T2b3-C151T

Sample: I21182 (Male)
Location: England, Oxfordshire, Yarnton
Age: 400-200 BCE
Y-DNA: R-BY15941
mtDNA: J1c2

Sample: I21181 (Male)
Location: England, Oxfordshire, Yarnton
Age: 400-200 BCE
Y-DNA: R-DF13
mtDNA: H3

Sample: I20587 (Male)
Location: England, Oxfordshire, Yarnton
Age: 389-208 calBCE
Y-DNA: R-DF63
mtDNA: K1a2a

Sample: I19207 (Male)
Location: England, Oxfordshire, Yarnton
Age: 382-205 calBCE
Y-DNA: R-M269
mtDNA: H

Sample: I21179 (Female)
Location: England, Oxfordshire, Yarnton
Age: 381-201 calBCE
mtDNA: T2b

Sample: I20588 (Male)
Location: England, Oxfordshire, Yarnton
Age: 366-197 calBCE
Y-DNA: G-BY27899
mtDNA: V

Sample: I19210 (Female)
Location: England, Oxfordshire, Yarnton
Age: 355-118 calBCE
mtDNA: H1cg

Sample: I3019 (Male)
Location: England, Somerset, Cheddar, Totty Pot
Age: 4000-2400 BCE
Y-DNA: R-P310
mtDNA: H4a1a-T195C!

Sample: I16591 (Male)
Location: England, Somerset, Christon, Dibbles Farm
Age: 408-232 calBCE
Y-DNA: R-Z290
mtDNA: H13a1a1

Sample: I11148 (Female)
Location: England, Somerset, Christon, Dibbles Farm
Age: 407-211 calBCE
mtDNA: U6d1

Sample: I13685 (Female)
Location: England, Somerset, Christon, Dibbles Farm
Age: 400-208 calBCE
mtDNA: U5a1b1e

Sample: I11147 (Female)
Location: England, Somerset, Christon, Dibbles Farm
Age: 392-204 calBCE
mtDNA: U5a1b1e

Sample: I16592 (Male)
Location: England, Somerset, Christon, Dibbles Farm
Age: 387-199 calBCE
Y-DNA: R-FGC19329
mtDNA: U5a1b1e

Sample: I17014 (Male)
Location: England, Somerset, Christon, Dibbles Farm
Age: 381-179 calBCE
Y-DNA: R-DF63
mtDNA: U5b1b1d

Sample: I17015 (Female)
Location: England, Somerset, Christon, Dibbles Farm
Age: 380-197 calBCE
mtDNA: H2a2a1

Sample: I17016 (Male)
Location: England, Somerset, Christon, Dibbles Farm
Age: 377-178 calBCE
Y-DNA: R-BY3231
mtDNA: U2e1a1

Sample: I17017 (Female)
Location: England, Somerset, Christon, Dibbles Farm
Age: 196 calBCE – 5 calCE
mtDNA: U5b1-T16189C!

Sample: I19653 (Male)
Location: England, Somerset, Ham Hill
Age: 400-200 BCE
Y-DNA: R-L151
mtDNA: H1n6

Sample: I19856 (Female)
Location: England, Somerset, Ham Hill
Age: 400-200 BCE
mtDNA: R2’JT

Sample: I19654 (Female)
Location: England, Somerset, Ham Hill
Age: 400-200 BCE
mtDNA: H1c3a

Sample: I19652 (Female)
Location: England, Somerset, Ham Hill
Age: 395-205 calBCE
mtDNA: J1c2a2

Sample: I19656 (Male)
Location: England, Somerset, Ham Hill
Age: 387-198 calBCE
Y-DNA: R-DF13
mtDNA: H5’36

Sample: I16593 (Female)
Location: England, Somerset, Ham Hill
Age: 382-197 calBCE
mtDNA: H7b

Sample: I13680 (Male)
Location: England, Somerset, Ham Hill
Age: 366-176 calBCE
Y-DNA: R-L21
mtDNA: U5a2a1

Sample: I19655 (Female)
Location: England, Somerset, Ham Hill
Age: 400-100 BCE
mtDNA: H1c3a

Sample: I19855 (Male)
Location: England, Somerset, Ham Hill
Age: 400-100 BCE
Y-DNA: R-L21
mtDNA: H1ak1

Sample: I19854 (Female)
Location: England, Somerset, Ham Hill
Age: 400-100 BCE
mtDNA: J1c2a2

Sample: I11993 (Female)
Location: England, Somerset, Ham Hill
Age: 400-100 BCE
mtDNA: J1c2a2

Sample: I11994 (Female)
Location: England, Somerset, Ham Hill
Age: 400-100 BCE
mtDNA: U5a2c3a

Sample: I19657 (Female)
Location: England, Somerset, Ham Hill
Age: 356-59 calBCE
mtDNA: H5s

Sample: I21315 (Male)
Location: England, Somerset, Ham Hill
Age: 173 calBCE – 5 calCE
Y-DNA: R-M269
mtDNA: T1a1’3

Sample: I13684 (Female)
Location: England, Somerset, Meare Lake Village West
Age: 541-391 calBCE
mtDNA: W1-T119C

Sample: I11146 (Male)
Location: England, Somerset, Meare Lake Village West
Age: 400-200 BCE
Y-DNA: R-P310
mtDNA: J1c1c

Sample: I13682 (Male)
Location: England, Somerset, Mells Down, Kingsdown Camp
Age: 793-544 calBCE
Y-DNA: R-BY168376
mtDNA: H5a1

Sample: I6748 (Male)
Location: England, Somerset, Mendip, Hay Wood Cave
Age: 3956-3769 calBCE
mtDNA: H

Sample: I11145 (Male)
Location: England, Somerset, North Perrott, North Perrott Manor
Age: 166 calBCE – 14 calCE
Y-DNA: R-Z251
mtDNA: H1q

Sample: I11144 (Male)
Location: England, Somerset, North Perrott, North Perrott Manor
Age: 149 calBCE – 65 calCE
Y-DNA: R-A9857
mtDNA: H5’36

Sample: I5365 (Female)
Location: England, Somerset, Priddy
Age: 103 calBCE – 107 calCE
mtDNA: U5a1b1e

Sample: I11995 (Female)
Location: England, Somerset, South Cadbury, Cadbury Castle
Age: 742-399 calBCE
mtDNA: H2a5

Sample: I21303 (Female)
Location: England, Somerset, South Cadbury, Cadbury Castle
Age: 153 calBCE – 25 calCE
mtDNA: H2a5

Sample: I21302 (Male)
Location: England, Somerset, South Cadbury, Cadbury Castle
Age: 46 calBCE – 117 calCE
Y-DNA: R-DF13
mtDNA: K1a-T195C!

Sample: I6776 (Male)
Location: England, Somerset, Storgoursey, Wick Barrow
Age: 2400-2000 BCE
Y-DNA: R-P312
mtDNA: R

Sample: I21306 (Male)
Location: England, Somerset, Tickenham, Diamond Cottage
Age: 2200-1400 BCE
Y-DNA: R-BY31082
mtDNA: H1an1

Sample: I21305 (Male)
Location: England, Somerset, Weston-super-Mare, Grove Park Road
Age: 800 BCE – 100 CE
Y-DNA: R-DF13
mtDNA: H1

Sample: I16596 (Male)
Location: England, Somerset, Worlebury
Age: 400-50 BCE
mtDNA: H3b-G16129A!

Sample: I13681 (Male)
Location: England, Somerset, Worlebury
Age: 400-50 BCE
mtDNA: H3b-G16129A!

Sample: I11143 (Male)
Location: England, Somerset, Worlebury
Age: 352-53 calBCE
Y-DNA: R-FT5780
mtDNA: H3b-G16129A!

Sample: I13726 (Male)
Location: England, Somerset, Worlebury
Age: 351-52 calBCE
Y-DNA: R-BY23964
mtDNA: H13a1a1

Sample: I11991 (Male)
Location: England, Somerset, Worlebury
Age: 349-50 calBCE
Y-DNA: R-DF13
mtDNA: H3b-G16129A!

Sample: I11992 (Male)
Location: England, Somerset, Worlebury
Age: 343-50 calBCE
Y-DNA: R-DF13
mtDNA: H3b-G16129A!

Sample: I11142 (Male)
Location: England, Somerset, Worlebury
Age: 197-44 calBCE
Y-DNA: R-PR1289
mtDNA: H3b-G16129A!

Sample: I16619 (Male)
Location: England, Sussex, Brighton, Bevendean
Age: 361-106 calBCE
mtDNA: H49

Sample: I16617 (Female)
Location: England, Sussex, Brighton, Black Rock
Age: 777-516 calBCE
mtDNA: H4a1a1a

Sample: I16615 (Female)
Location: England, Sussex, Brighton, Coldean Lane, Varley Hall
Age: 1259-912 calBCE
mtDNA: K1c1

Sample: I14543 (Female)
Location: England, Sussex, Brighton, Ditchling Road
Age: 2450-1600 BCE
mtDNA: K1a4a1g

Sample: I16616 (Female)
Location: England, Sussex, Brighton, Mile Oak
Age: 1410-1227 calBCE
mtDNA: H13a1a1

Sample: I14552 (Male)
Location: England, Sussex, Brighton, Moulsecoomb
Age: 92 calBCE – 110 calCE
Y-DNA: R-P312
mtDNA: J1c2

Sample: I14553 (Male)
Location: England, Sussex, Brighton, Roedean Crescent
Age: 1954-1749 calBCE
Y-DNA: R-S15808
mtDNA: H5c

Sample: I14551 (Female)
Location: England, Sussex, Brighton, Slonk Hill
Age: 514-234 calBCE
mtDNA: H6a1a

Sample: I7632 (Male)
Location: England, Sussex, Brighton, Slonk Hill
Age: 391-203 calBCE
Y-DNA: R-CTS4528
mtDNA: H1

Sample: I14550 (Female)
Location: England, Sussex, Brighton, Slonk Hill
Age: 700 BCE – 900 CE
mtDNA: H3-T152C!

Sample: I16618 (Female)
Location: England, Sussex, Brighton, Surrendon Road
Age: 787-544 calBCE
mtDNA: K1a4

Sample: I14549 (Female)
Location: England, Sussex, Brighton, Woodingdean
Age: 401-208 calBCE
mtDNA: H1

Sample: I27379 (Male)
Location: England, Sussex, North Bersted
Age: 174-51 calBCE
Y-DNA: R-FGC56332
mtDNA: H7d

Sample: I27380 (Male)
Location: England, Sussex, Westbourne, ‘Racton Man’
Age: 2453-2146 cal BCE
Y-DNA: R-Z290
mtDNA: H3k1

Sample: I2611 (Male)
Location: England, Tyne and Wear, Blaydon, Summerhill
Age: 3092-2905 calBCE
Y-DNA: R-L21
mtDNA: U5a2d1

Sample: I14837 (Female)
Location: England, West Yorkshire, Dalton Parlours
Age: 381 calBCE – 6 calCE
mtDNA: K1a4a1c

Sample: I14347 (Male)
Location: England, West Yorkshire, Wattle Syke
Age: 371-176 calBCE
Y-DNA: R-DF23
mtDNA: K2a

Sample: I14348 (Female)
Location: England, West Yorkshire, Wattle Syke
Age: 368-173 calBCE
mtDNA: U3a1c

Sample: I14353 (Male)
Location: England, West Yorkshire, Wattle Syke
Age: 349-51 calBCE
Y-DNA: R-L21
mtDNA: U5b2a1a1

Sample: I14352 (Female)
Location: England, West Yorkshire, Wattle Syke
Age: 193-6 calBCE
mtDNA: K2a

Sample: I14351 (Female)
Location: England, West Yorkshire, Wattle Syke
Age: 193-6 calBCE
mtDNA: K2a

Sample: I14359 (Male)
Location: England, West Yorkshire, Wattle Syke
Age: 200 BCE – 100 CE
mtDNA: J1c1

Sample: I14360 (Female)
Location: England, West Yorkshire, Wattle Syke
Age: 151 calBCE – 62 calCE
mtDNA: J1c1

Sample: I14200 (Male)
Location: England, Wiltshire, Amesbury Down
Age: 2470-2239 calBCE
Y-DNA: R-L151
mtDNA: K1b1a

Sample: I2565 (Male)
Location: England, Wiltshire, Amesbury Down
Age: 2456-2146 calBCE
Y-DNA: R-L21
mtDNA: W1-T119C

Sample: I2419 (Female)
Location: England, Wiltshire, Amesbury Down
Age: 2393-2144 calBCE
mtDNA: H1

Sample: I2598 (Male)
Location: England, Wiltshire, Amesbury Down
Age: 2139-1950 calBCE
Y-DNA: R-P310
mtDNA: H

Sample: I19287 (Female)
Location: England, Wiltshire, Amesbury Down
Age: 761-422 calBCE
mtDNA: K1b1a

Sample: I16602 (Female)
Location: England, Wiltshire, Amesbury Down
Age: 734-403 calBCE
mtDNA: H1aq

Sample: I16600 (Male)
Location: England, Wiltshire, Amesbury Down
Age: 713-381 calBCE
Y-DNA: R-P310
mtDNA: T2b1

Sample: I16599 (Male)
Location: England, Wiltshire, Amesbury Down
Age: 411-208 calBCE
Y-DNA: R-DF13
mtDNA: T2b1

Sample: I16601 (Female)
Location: England, Wiltshire, Amesbury Down
Age: 343-43 calBCE
mtDNA: H17

Sample: I21309 (Male)
Location: England, Wiltshire, Battlesbury Bowl
Age: 354-57 calBCE
Y-DNA: R-FGC33840
mtDNA: X2b-T226C

Sample: I21307 (Male)
Location: England, Wiltshire, Battlesbury Bowl
Age: 346-52 calBCE
Y-DNA: R-P310
mtDNA: H7d

Sample: I21310 (Female)
Location: England, Wiltshire, Battlesbury Bowl
Age: 386 calBCE – 58 calCE
mtDNA: U4c1

Sample: I21311 (Female)
Location: England, Wiltshire, Battlesbury Bowl
Age: 336-49 calBCE
mtDNA: H16-T152C!

Sample: I21308 (Male)
Location: England, Wiltshire, Battlesbury Bowl
Age: 356 calBCE – 110 calCE
Y-DNA: R-P312
mtDNA: J1c1b

Sample: I21313 (Male)
Location: England, Wiltshire, Casterley Camp
Age: 354-57 calBCE
Y-DNA: R-P312
mtDNA: H3g

Sample: I21312 (Male)
Location: England, Wiltshire, Casterley Camp
Age: 343-51 calBCE
Y-DNA: R-BY129194
mtDNA: J1b1a1

Sample: I21314 (Female)
Location: England, Wiltshire, Casterley Camp
Age: 342-51 calBCE
mtDNA: V23

Sample: I16595 (Female)
Location: England, Wiltshire, Longbridge Deverill, Cow Down
Age: 387-204 calBCE
mtDNA: T2b9

Sample: I12608 (Female)
Location: England, Wiltshire, Potterne, Blackberry Field
Age: 1055-904 calBCE
mtDNA: H3ap

Sample: I12614 (Female)
Location: England, Wiltshire, Potterne, Blackberry Field
Age: 1100-800 BCE
mtDNA: K1a1b1

Sample: I12612 (Female)
Location: England, Wiltshire, Potterne, Blackberry Field
Age: 1100-800 BCE
mtDNA: U1a1a

Sample: I12611 (Female)
Location: England, Wiltshire, Potterne, Blackberry Field
Age: 1100-800 BCE
mtDNA: I2

Sample: I12613 (Female)
Location: England, Wiltshire, Potterne, Blackberry Field
Age: 1100-800 BCE
mtDNA: H1

Sample: I12624 (Female)
Location: England, Wiltshire, Potterne, Blackberry Field
Age: 900-800 BCE
mtDNA: H3

Sample: I12610 (Male)
Location: England, Wiltshire, Potterne, Blackberry Field
Age: 765-489 calBCE
Y-DNA: R-M269
mtDNA: J1c1

Sample: I19858 (Male)
Location: England, Wiltshire, Rowbarrow
Age: 1532-1431 calBCE
Y-DNA: R-Z290
mtDNA: J2b1a

Sample: I19857 (Male)
Location: England, Wiltshire, Rowbarrow
Age: 1518-1425 calBCE
Y-DNA: R-L617
mtDNA: J2b1a

Sample: I19859 (Male)
Location: England, Wiltshire, Rowbarrow
Age: 1504-1403 calBCE
Y-DNA: I-S2497
mtDNA: H3

Sample: I19860 (Female)
Location: England, Wiltshire, Rowbarrow
Age: 1503-1401 calBCE
mtDNA: T2b21

Sample: I19867 (Female)
Location: England, Wiltshire, Rowbarrow
Age: 780-541 calBCE
mtDNA: H3-T16311C!

Sample: I19861 (Female)
Location: England, Wiltshire, Rowbarrow
Age: 779-541 calBCE
mtDNA: U2e2a1c

Sample: I13688 (Female)
Location: England, Wiltshire, Rowbarrow
Age: 775-516 calBCE
mtDNA: H1-C16239T

Sample: I19868 (Male)
Location: England, Wiltshire, Rowbarrow
Age: 771-476 calBCE
Y-DNA: R-DF13
mtDNA: T2e1a

Sample: I19862 (Female)
Location: England, Wiltshire, Rowbarrow
Age: 767-423 calBCE
mtDNA: H5a1f

Sample: I13689 (Male)
Location: England, Wiltshire, Rowbarrow
Age: 753-411 calBCE
Y-DNA: R-BY4297
mtDNA: K1a3a

Sample: I13690 (Male)
Location: England, Wiltshire, Rowbarrow
Age: 750-408 calBCE
mtDNA: H1b3

Sample: I19863 (Male)
Location: England, Wiltshire, Rowbarrow
Age: 460-382 calBCE
Y-DNA: R-DF13
mtDNA: N1a1a1a2

Sample: I4949 (Male)
Location: England, Wiltshire, Winterbourne Monkton, North Millbarrow
Age: 3624-3376 calBCE
Y-DNA: I-M284
mtDNA: T2b

Sample: I8582 (Female)
Location: Isle of Man, Rushen, Strandhall
Age: 2195-1973 calBCE
mtDNA: H2a1e1

Sample: I12312 (Male)
Location: Scotland, Argyll and Bute, Isle of Ulva, Ulva Cave
Age: 3751-3636 calBCE
Y-DNA: I-P214
mtDNA: K1a-T195C!

Sample: I12314 (Female)
Location: Scotland, Argyll and Bute, Oban, Carding Mill Bay II
Age: 3647-3533 calBCE
mtDNA: T2b

Sample: I12313 (Female)
Location: Scotland, Argyll and Bute, Oban, Carding Mill Bay II
Age: 3700-3350 BCE
mtDNA: T2b

Sample: I12317 (Male)
Location: Scotland, Argyll and Bute, Oban, Carding Mill Bay II
Age: 3629-3377 calBCE
Y-DNA: I-A8742
mtDNA: H5

Sample: I2658 (Male)
Location: Scotland, Argyll and Bute, Oban, Macarthur Cave
Age: 4000-3700 BCE
mtDNA: W1-T119C

Sample: I3137 (Male)
Location: Scotland, Argyll and Bute, Oban, Raschoille Cave
Age: 3800-3000 BCE
Y-DNA: I-S2599
mtDNA: HV0-T195C!

Sample: I3139 (Female)
Location: Scotland, Argyll and Bute, Oban, Raschoille Cave
Age: 3800-3000 BCE
mtDNA: H45

Sample: I16498 (Female)
Location: Scotland, East Lothian, Broxmouth
Age: 750-404 calBCE
mtDNA: H2a1

Sample: I2692 (Female)
Location: Scotland, East Lothian, Broxmouth
Age: 727-396 calBCE
mtDNA: H2a1

Sample: I16422 (Male)
Location: Scotland, East Lothian, Broxmouth
Age: 364-121 calBCE
Y-DNA: R-L151
mtDNA: H3-T152C!

Sample: I2695 (Male)
Location: Scotland, East Lothian, Broxmouth
Age: 364-121 calBCE
Y-DNA: R-P312
mtDNA: H2a1

Sample: I2694 (Female)
Location: Scotland, East Lothian, Broxmouth
Age: 361-110 calBCE
mtDNA: H1ak1

Sample: I2696 (Female)
Location: Scotland, East Lothian, Broxmouth
Age: 355-55 calBCE
mtDNA: U5a2b4a

Sample: I16503 (Male)
Location: Scotland, East Lothian, Broxmouth
Age: 349-51 calBCE
Y-DNA: R-Z30597
mtDNA: H1ak1

Sample: I16416 (Male)
Location: Scotland, East Lothian, Broxmouth
Age: 346-51 calBCE
Y-DNA: R-Z30597
mtDNA: H3-T152C!

Sample: I2693 (Male)
Location: Scotland, East Lothian, Broxmouth
Age: 197 calBCE – 1 calCE
Y-DNA: R-P310
mtDNA: H3-T152C!

Sample: I16504 (Male)
Location: Scotland, East Lothian, Broxmouth
Age: 42 calBCE – 116 calCE
Y-DNA: R-DF13
mtDNA: H1as

Sample: I16448 (Female)
Location: Scotland, East Lothian, Innerwick, Thurston Mains
Age: 2337-2138 calBCE
mtDNA: K1b1a1

Sample: I5471 (Female)
Location: Scotland, East Lothian, Innerwick, Thurston Mains
Age: 2269-1985 calBCE
mtDNA: H1c3a

Sample: I2413 (Female)
Location: Scotland, East Lothian, Innerwick, Thurston Mains
Age: 2114-1900 calBCE
mtDNA: H1a1

Sample: I16499 (Male)
Location: Scotland, East Lothian, North Berwick, Law Road
Age: 337-43 calBCE
Y-DNA: R-ZP18
mtDNA: I2a

Sample: I16495 (Female)
Location: Scotland, East Lothian, North Berwick, Law Road
Age: 196 calBCE – 3 calCE
mtDNA: H6a1a8

Sample: I16418 (Male)
Location: Scotland, East Lothian, North Berwick, Law Road
Age: 97 calBCE – 107 calCE
Y-DNA: I-L1195
mtDNA: U5a1d2a

Sample: I16413 (Female)
Location: Scotland, East Lothian, North Berwick, Law Road
Age: 44 calBCE – 117 calCE
mtDNA: H6a1a8

Sample: I2569 (Male)
Location: Scotland, Eweford Cottages
Age: 2140-1901 calBCE
Y-DNA: R-P312
mtDNA: K1a3a

Sample: I3567 (Male)
Location: Scotland, Highland, Applecross
Age: 173 calBCE – 8 calCE
Y-DNA: R-FT221759
mtDNA: J1c3b

Sample: I3566 (Male)
Location: Scotland, Highland, Applecross
Age: 170 calBCE – 10 calCE
Y-DNA: R-L21
mtDNA: H13a1a

Sample: I3568 (Male)
Location: Scotland, Highland, Applecross
Age: 42 calBCE – 119 calCE
Y-DNA: R-A277
mtDNA: H7a1

Sample: I19286 (Male)
Location: Scotland, Highland, Embo
Age: 3331-3022 calBCE
Y-DNA: I-M170
mtDNA: J1c1

Sample: I2824 (Male)
Location: Scotland, Isle of Harris, Northton
Age: 41 calBCE – 121 calCE
Y-DNA: R-M269
mtDNA: H13a1a

Sample: I2656 (Male)
Location: Scotland, Longniddry, Grainfoot
Age: 1283-940 calBCE
Y-DNA: R-P312
mtDNA: H2a2a2

Sample: I2983 (Female)
Location: Scotland, Orkney, Bu
Age: 399-207 calBCE
mtDNA: U2e2a1c

Sample: I2982 (Male)
Location: Scotland, Orkney, Bu
Age: 395-207 calBCE
Y-DNA: R-Z16400
mtDNA: H7a1

Sample: I2799 (Male)
Location: Scotland, Orkney, Howe of Howe
Age: 152 calBCE – 22 calCE
Y-DNA: R-DF49
mtDNA: H1

Sample: I2629 (Male)
Location: Scotland, Orkney, Isbister
Age: 3350-2350 BCE
Y-DNA: I-L161
mtDNA: J1c1b

Sample: I2796 (Male)
Location: Scotland, Orkney, Point of Cott
Age: 3706-3536 calBCE
Y-DNA: I-FGC7113
mtDNA: H3

Sample: I5474 (Female)
Location: Scotland, Scottish Borders, Cumledge (Auchencraw Park)
Age: 151 calBCE – 77 calCE
mtDNA: K1a26

Sample: I2699 (Male)
Location: Scotland, South Uist, Hornish Point
Age: 159 calBCE – 26 calCE
mtDNA: V10

Sample: I16412 (Male)
Location: Scotland, Stirling, Coneypark Cairn (Cist 1)
Age: 2134-2056 calBCE
Y-DNA: I-CTS616
mtDNA: R

Sample: I27384 (Male)
Location: Scotland, West Lothian, House of Binns
Age: 90 calBCE – 110 calCE
Y-DNA: R-L21
mtDNA: H2a2a1g

Sample: I27385 (Male)
Location: Scotland, West Lothian, House of Binns
Age: 43 calBCE – 117 calCE
Y-DNA: R-L1066
mtDNA: T2b19

Sample: I16475 (Male)
Location: Wales, Clwyd, Dinorben
Age: 550-1 BCE
Y-DNA: R-P312
mtDNA: X2b

Sample: I16514 (Female)
Location: Wales, Clwyd, Dinorben
Age: 550-1 BCE
mtDNA: HV0

Sample: I16410 (Female)
Location: Wales, Clwyd, Dinorben
Age: 550-1 BCE
mtDNA: T2b

Sample: I16479 (Unknown sex)
Location: Wales, Conwy, Llandudno, Little Ormes Head, Ogof Rhiwledyn
Age: 1500-1100 BCE
mtDNA: H

Sample: I16491 (Male)
Location: Wales, Denbighshire, Llanferres, Orchid Cave
Age: 2876-2680 calBCE
Y-DNA: I-L1195
mtDNA: U5b2b

Sample: I6771 (Female)
Location: Wales, Glamorgan, Llantwit Major, Llanmaes
Age: 169 calBCE – 2 calCE
mtDNA: U4b1a

Sample: I16471 (Female)
Location: Wales, Glamorgan, Llantwit Major, Llanmaes
Age: 200 BCE – 50 CE
mtDNA: H2a

Sample: I16405 (Male)
Location: Wales, Glamorgan, RAF St Athan
Age: 397-205 calBCE
Y-DNA: R-DF13
mtDNA: K1a-T195C!

Sample: I5440 (Male)
Location: Wales, Glamorgan, St. Fagan’s
Age: 1500-1322 calBCE
Y-DNA: R-L151
mtDNA: K1c1

Sample: I2574 (Female)
Location: Wales, North Wales, Llandudno, Great Orme
Age: 1417-1226 calBCE
mtDNA: U5a1a2b

Sample: I16476 (Female)
Location: Wales, West Glamorgan, Gower Peninsula, Port Eynon, Culver Hole Cave
Age: 1600-1200 BCE
mtDNA: H24

Sample: I16488 (Male)
Location: Wales, West Glamorgan, Gower Peninsula, Port Eynon, Culver Hole Cave
Age: 1201-1015 calBCE
Y-DNA: R-L21
mtDNA: U5a1b1

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA for Native American Genealogy – Hot Off the Press!

Drum roll please…my new book, DNA for Native American Genealogy, was just released today, published by Genealogical.com.

I’m so excited! I expected publication around the holidays. What a pleasant surprise.

This 190-page book has been a labor of love, almost a year in the making. There’s a lot.

  • Vendor Tools – The book incorporates information about how to make the best use of the autosomal DNA tools offered by all 4 of the major testing vendors; FamilyTreeDNA, MyHeritage, Ancestry, and 23andMe.
  • Chromosome Painting – I’ve detailed how to use DNAPainter to identify which ancestor(s) your Native heritage descends from by painting your population/ethnicity segments provided by FamilyTreeDNA and 23andMe.
  • Y and Mitochondrial DNA – I’ve described how and when to utilize the important Y and mitochondrial DNA tests, for you and other family members.
  • Maps – Everyone wants to know about ancient DNA. I’ve included ancient DNA information complete with maps of ancient DNA sites by major Native haplogroups, gathered from many academic papers, as well as mapped contemporary DNA locations.
  • Haplogroups – Locations in the Americas, by haplogroup, where individual haplogroups and subgroups are found. Some haplogroups are regional in nature. If you happen to have one of these haplogroups, that’s a BIG HINT about where your ancestor lived.
  • Tribes – Want to know, by tribe, which haplogroups have been identified? Got you covered there too.
  • Checklist – I’ve provided a checklist type of roadmap for you to follow, along with an extensive glossary.
  • Questions – I’ve answered lots of frequently asked questions. For example – what about joining a tribe? I’ve explained how tribes work in the US and Canada, complete with links for relevant forms and further information.

But wait, there’s more…

New Revelations!!!

There is scientific evidence suggesting that two haplogroups not previously identified as Native are actually found in very low frequencies in the Native population. Not only do I describe these haplogroups, but I provide their locations on a map.

I hope other people will test and come forward with similar results in these same haplogroups to further solidify this finding.

It’s important to understand the criteria required for including these haplogroups as (potentially) Native. In general, they:

  • Must be found multiple times outside of a family group
  • Must be unexplained by any other scenario
  • Must be well-documented both genetically as well as using traditional genealogical records
  • Must be otherwise absent in the surrounding populations

This part of the research for the book was absolutely fascinating to me.

Description

Here’s the book description at Genealogical.com:

DNA for Native American Genealogy is the first book to offer detailed information and advice specifically aimed at family historians interested in fleshing out their Native American family tree through DNA testing.

Figuring out how to incorporate DNA testing into your Native American genealogy research can be difficult and daunting. What types of DNA tests are available, and which vendors offer them? What other tools are available? How is Native American DNA determined or recognized in your DNA? What information about your Native American ancestors can DNA testing uncover? This book addresses those questions and much more.

Included are step-by-step instructions, with illustrations, on how to use DNA testing at the four major DNA testing companies to further your genealogy and confirm or identify your Native American ancestors. Among the many other topics covered are the following:

    • Tribes in the United States and First Nations in Canada
    • Ethnicity
    • Chromosome painting
    • Population Genetics and how ethnicity is assigned
    • Genetic groups and communities
    • Y DNA paternal direct line male testing for you and your family members
    • Mitochondrial DNA maternal direct line testing for you and your family members
    • Autosomal DNA matching and ethnicity comparisons
    • Creating a DNA pedigree chart
    • Native American haplogroups, by region and tribe
    • Ancient and contemporary Native American DNA

Special features include numerous charts and maps; a roadmap and checklist giving you clear instructions on how to proceed; and a glossary to help you decipher the technical language associated with DNA testing.

Purchase the Book and Participate

I’ve included answers to questions that I’ve received repeatedly for many years about Native American heritage and DNA. Why Native DNA might show in your DNA, why it might not – along with alternate ways to seek that information.

You can order DNA for Native American Genealogy, here.

For customers in Canada and outside the US, you can use the Amazon link, here, to reduce the high shipping/customs costs.

I hope you’ll use the information in the book to determine the appropriate tests for your situation and fully utilize the tools available to genealogists today to either confirm those family rumors, put them to rest – or maybe discover a previously unknown Native ancestor.

Please feel free to share this article with anyone who might be interested.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Free Webinar: 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA

I recorded 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA for Legacy Family Tree Webinars.

Webinars are free for the first week. After that, you’ll need a subscription.

If you subscribe to Legacy Family Tree, here, you’ll also receive the downloadable 24-page syllabus and you can watch any of the 1500+ webinars available at Legacy Family Tree Webinars anytime.

In 10 Ways to Find Your Native American Ancestor Using Y, Mitochondrial and Autosomal DNA, I covered the following features and how to use them for your genealogy:

  • Ethnicity – why it works and why it sometimes doesn’t
  • Ethnicity – how it works
  • Your Chromosomes – Mom and Dad
  • Ethnicity at AncestryDNA, 23andMe, FamilyTreeDNA and MyHeritage DNA
  • Genetic Communities at AncestryDNA
  • Genetic Groups at MyHeritage DNA
  • Painted ethnicity segments at 23andMe and FamilyTreeDNA
  • Painting ethnicity segments at DNAPainter – and why you want to
  • Shared ethnicity segments with your matches at AncestryDNA, 23andMe, FamilyTreeDNA and MyHeritage DNA
  • Downloading matches and segment files
  • Techniques to pinpoint Native Ancestors in your tree
  • Y DNA, Native ancestors and haplogroups
  • Mitochondrial DNA, Native ancestors and haplogroups
  • Creating a plan to find your Native ancestor
  • Strategies for finding test candidates
  • Your Ancestor DNA Pedigree Chart
  • Success!!!

If you haven’t yet tested at or uploaded your DNA to both FamilyTreeDNA and MyHeritage, you can find upload/download instructions, here, so that you can take advantage of the unique tools at all vendors.

Hope you enjoy the webinar and find those elusive ancestors!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

Books

Genealogy Research

Where Did My Mitochondrial DNA Haplogroup Come From?

Mother’s Day is approaching, so I’m writing articles about mitochondrial DNA inspired by the most common questions in the Mitochondrial DNA for Genealogy Facebook group. I’ll be adding these articles to the Mitochondrial DNA Resource page, here.

FamilyTreeDNA has already started their Mother’s Day sale where both the mitochondrial DNA test and Family Finder are both on sale. Take a look.

I can’t believe how much the prices have dropped over the years – as the technology has improved. I took the full sequence mitochondrial DNA test when it was first offered and I think it was something like $800, as was the first autosomal test I ordered lo those many years ago.

Today, these tests are $139 and $59, respectively, and are critical tools for everyone’s genealogy.

Where Did My Mitochondrial DNA Haplogroup Come From?

This is one of the most common questions about mitochondrial DNA. Everyone wants to know something about their haplogroup.

The answer is multi-faceted and depends on the question you’re actually trying to answer.

There are really two flavors of this question:

  • Where did my ancestors come from in a genealogical timeframe?
  • Where did my ancestors come from before I can find them in genealogical records?

Clearly, the timeframes involved vary to some extent, because when records end varies for each ancestral line. Generally speaking, genealogy records don’t extend back beyond 500 years or so. Whenever your genealogy records end, that’s where your haplogroup and match information becomes critically important to your research.

Fortunately, we have tools to answer both types of questions which actually form a continuum.

Some answers rely on having taken a mitochondrial DNA test at FamilyTreeDNA and some don’t.

  • We’ll discuss finding haplogroup information for people who have taken a (preferably full sequence) mitochondrial DNA test at FamilyTreeDNA.
  • We’ll discuss how people who have obtained their haplogroups through autosomal testing at other vendors can find information.
  • We’ll talk about finding haplogroup information when other family members have tested who carry the mitochondrial DNA of ancestors that you do not.

Tools exist for each of these situations.

Genealogical Timeframe

If you’re trying to answer the question of where other people who carry your haplogroup are found in the world, that question can be further subdivided:

  • Where are the earliest known matrilineal ancestors of my mitochondrial DNA matches located?
  • Where are other mitochondrial DNA testers who carry my haplogroup, even if I don’t match them, found in the world?

Let’s start at FamilyTreeDNA and then move to public resources.

FamilyTreeDNA

Mitochondrial DNA Tests

FamilyTreeDNA provides a great deal of information for people who have taken a mitochondrial DNA test. We’ll step through each tab on a tester’s personal page that’s relevant to haplogroups.

To find the location of your matches’ most distant ancestors, you need to have taken the mitochondrial DNA test at FamilyTreeDNA in order to obtain results and matches. I know this might seem like an obvious statement, but you’d be surprised how many people don’t realize that there are separate tests for Y and mitochondrial DNA.

Your most detailed, and therefore most accurate and specific results will result from taking the Full Sequence test, called the mtFull test and sometimes abbreviated as FMS (full mitochondrial sequence.)

Taking a full sequence test means you’ve tested all three different regions of the mitochondria, HVR1, HVR2, and the Coding Region. Don’t worry about those details. Today, the Full Sequence test is the only test you can order, but people who tested earlier could order a partial test. Those people can easily upgrade today.

click on images to enlarge

You can see, in the upper right-hand corner of the mitochondrial section of my personal page, above, that I’ve taken both tests. The “Plus” test is the HVR1 and HVR2 portion of the test.

If you haven’t taken any mitochondrial DNA test, then the mitochondrial section doesn’t show on your personal page.

If your Plus and Full buttons are both greyed out, that means you took the HVR1 level test only, and you can click on either button to upgrade.

If your “Full” button is greyed out, that means you haven’t tested at that level and you can click on the Full button to upgrade.

Entering Ancestor Information is Important

Genealogy is a collaborative sport and entering information about our ancestors is important – both for our own genealogy and for other testers too.

Your matches may or may not enter their ancestor’s information in all three locations where it can be useful:

  • Earliest Known Ancestor (found under the dropdown beneath your name in the upper right-hand corner of your personal page, then “Account Settings,” then “Genealogy,” then “Earliest Known Ancestors”)
  • Matches Map (found on your Y or mtDNA personal page tab or “Update Location” on Earliest Known Ancestors tab)
  • Uploading or creating a tree (found under myTree at the very top of your personal page)

Please enter your information by following the notes above, or you can follow the step-by-step instructions, here. You’ll be glad you did.

Your Haplogroup

You’ll find your haplogroup name under the Badges section of your personal page as well as at the top of the mtDNA section.

click all images to enlarge

The mtDNA section at FamilyTreeDNA has five tabs that each provides different pieces of the puzzle of where your ancestors, and therefore your haplogroups, came from.

Checking all of these tabs in the mtDNA section of your results is critical to gather every piece of evidence provided by your matches and the scientists as well. Let’s take a look at each one and what they reveal about your haplogroup.

Let’s start with your matches.

Matches

On the matches page, you’ll only be matched with people who carry the same haplogroup – or at least the same base haplogroup.

The haplogroup level of your matches depends on the level of test they have taken. In other words, if your match has only taken the HVR1 level test, and they only have a base haplogroup of J, then you’ll only see them, and their haplogroup J, on your HVR1 match page. If they have tested at a higher level and you match them at the HVR1 level, you’ll see the most specific haplogroup possible as determined by the level they tested.

The (default) match page shows your matches at the highest-level test you have tested. In my case, that’s the “HVR1, HVR2, Coding Region” because I’ve taken the full sequence test which tests the entire mitochondria.

At the full sequence level match page, I’ll only see people who match me on the same extended haplogroup. In my case, that’s J1c2f.

Viewing your matches’ Earliest Known Ancestor shows where their ancestors were located, which provides clues as to where your common haplogroup was found in the world at that time. Based on those results, the geographic distribution, what you know about your own ancestors, and how far back in time, your matches’ information may be an important clue about your own ancestry.

Generally, the closer your matches, meaning the fewer mutations difference, the closer in time you share a common ancestor. I say “generally,” because mutations don’t happen on a time schedule and can happen in any generation.

The number of mutations is shown in the column “Genetic Distance.” Genetic Distance is the number of mutations difference between you and your match. So a 3 in the GD column means 3 mutations difference. A GD of 0 is an exact match. At the HVR1 and HVR2 levels, no genetic distance is provided because only exact matches are shown at those levels.

The little blue pedigree icons on the Matches page indicate people who have created or uploaded trees. You’ll definitely want to take a look at those. Sometimes you’ll discover that your matches have added more generations in their tree than is shown in the Earliest Known Ancestor field.

Is Taking the Full Sequence Test Important?

Why is taking the full sequence test important? Looking at my HVR1 matches, below, provides the perfect example.

This shows my first four HVR1-only matches. In other words, these people match me on a small subset of my mitochondrial DNA. About 1000 locations of the total 16,569 are tested in the HVR1 region. You can see that utilizing the HVR1 region, only, the people I match exactly in that region have different extended, or full haplogroups, assigned when taking the full sequence test.

Crystal and Katherine have both taken the full sequence test as indicated by FMS (full mitochondrial sequence,) and they are both haplogroup J1c2f, but Peter is haplogroup J1c2g – a different haplogroup.

Peter is shown as an exact match to me at the HVR1 level, but he has a different full haplogroup, so he won’t be shown as a match at the HVR1/HVR2/Coding Region (full sequence) level.

Crystal and Katherine will match me at the full sequence level if we have three or fewer mutations difference in total.

Susan has only tested to the HVR1 level, so she can only be assigned to haplogroup J from those 1000 locations. That tells us that (at least) one of mutations that defines haplogroup J resides in the HVR1 region.

At the HVR1 matching level, I’ll be matched with everyone I match exactly so long as they are in haplogroup J, the common denominator haplogroup of everyone at that level.

If Susan were to test at the full sequence level, she would obtain a full haplogroup and I might continue to match her at the full sequence level if she is haplogroup J1c2f and matches me with three or fewer mutations difference. At the full sequence level, I’ll only match people who match my haplogroup exactly and match at a genetic distance of 0, 1, 2 or 3.

Now, let’s look at the Ancestral Origins tab.

Ancestral Origins

The Ancestral Origins tab is organized by Country within match level. In the example above, I’ve shown exact matches or GD=0.

The match total on the Ancestral Origins tab shows the number of people whose ancestors were from various locations – as entered by the testers.

The most common places for my full sequence exact matches are in Norway and Sweden. That’s interesting because my ancestor was found in Germany in the 1600s.

There is also a comments column, to the right, not shown here, which may hold additional information of interest such as “Ashkenazi” or “Sicily” or “Canary Islands.”

The Country Total column is interesting too because it tells you how many people are in the database who have indicated that location as ancestral. The Match Percentage column is pretty much irrelevant unless your haplogroup is extremely rare.

Matches Map

The matches map falls into the “picture is worth 1000 words category.”

This is the map of the earliest known matrilineal ancestor locations of my full sequence matches.

My ancestor is the white pin in Germany. Red=exact match, orange=1 mutation difference, yellow=2 mutations difference. I have no GD=3 matches showing.

By clicking on any pin, you can see additional information about the ancestor of the tester.

You can also select an option on the map to view lower testing levels, such as my HVR1 matches shown below.

While some people are tempted to ignore the HVR1 or HVR2 Matches Maps, I don’t.

If the question you’re trying to answer is where your haplogroup came from, viewing the map of where people are located who may match you more distantly in time is useful. While we know for sure that some of these people have different full haplogroups, we also know that they are all members of haplogroup J plus some subclade. Therefore, these matches shared a common haplogroup J ancestor.

J subgroups are clearly European but some are found in Anatolia, the path out of Africa to Europe, although that could be a function of back-migration.

When looking at match maps, keep two things in mind:

  • The information is provided by testers. It’s possible for them to misunderstand what is meant by providing the information for their earliest known “direct maternal ancestor.” I can’t tell you how many male names I’ve seen here. Clearly, the tester misunderstood the purpose and what was being asked – because men don’t pass mitochondrial DNA to their offspring. Check the pins for surnames that seem to fit the pin location, and that pins have been accurately placed.
  • Testing bias. In other words, lots of people have tested in the US as compared to Europe, and probably more people in the UK than say, Turkey. Testing is still illegal in France.

Haplogroup Origins

While the Ancestral Origins tab is organized by the locations of your matches ancestors, the Haplogroup Origins tab is focused on your haplogroup by match level only.

In many cases, the numbers will match your Ancestral Origins exactly, but for other test levels, the numbers will be different.

For example, at the HVR1/HVR2 level, I can easily see at a glance the locations where my haplogroup is found, and the number of my matches in those various locations.

This page is reflective of where the haplogroup itself is found, according to your matches.

There may be other people with the same haplogroup that you don’t match and won’t be reflected on this page.  We’ll see them either in projects or on the Public Mitochondrial Tree in following sections.

Migration Map

The migration map tab shows the path between Mitochondrial Eve who lived in African about 145,000 years ago and your haplogroup today. For haplogroups J, Eve’s descendant left African and traveled through the Middle East and on into Southwest Asia before turning left and migrating throughout Europe.

Clearly, the vast majority of this migration occurred before genealogy, but not all, or you wouldn’t be here today.

Thousands of my ancestors brought my mitochondrial DNA from Africa through Anatolia, through Europe, to Scandinavia, and back to Germany – then on to the US where it continued being passed on for five more generations before reaching me.

Additional Features – Other Tools

On your personal page, scroll down below your Mitochondrial DNA results area and you’ll see Public Haplotrees under the Other Tools tab.

This tree is available to FamilyTreeDNA customers as well as the public.

Public Mitochondrial DNA Haplotree

The public mitochondrial haplotree provided by FamilyTreeDNA includes location information and is available to everyone, customer or not, for free. Please note that only full sequence results were used to construct this tree, so partial results, meaning haplogroups of people who tested at the HVR1/2 levels only, are not included because the haplogroup cannot be refined at that level.

If you’ve received a haplogroup from a different test at another vendor, you can use this public tool to obtain location information. FamilyTreeDNA has the single largest repository of mitochondrial tests in the world, having tested customers for 21 years, and they have made this tree with location information available for everyone.

If you are a customer, you can sign in and access this tree from your account, above.

If you access the haplotree in this manner, be sure to select the mtDNA tree, not the Y DNA tree which is the default.

Or you can simply access the mtDNA the same way as the public, below.

Go to the main FamilyTreeDNA page by clicking here.

On the main page, scroll to the very bottom – yes, just keep scrolling.

At the very bottom, in the footer, you’ll see “Community.” (Hint, if you don’t see Community at the very bottom of this page, you’re probably signed in to your account.)

Click on “mtDNA Haplotree.”

Next, you’ll see the beginning, or root, of the mitochondrial DNA tree, with the RSRS at the top of the page. The tree structure and haplogroups are defined at Phylotree Build 17, here. All of the main daughter haplogroups, such as “J,” are displayed beneath or you can select them across the top.

Enter the haplogroup name in the “Branch Name” field in the upper right. For me, that’s J1c2f.

I don’t match all of the J1c2f people in the database, because there more total country designations shown here (82) than I have full sequence matches with locations provided (50 from my Ancestral Origins page.)

If you click on the three dots at right, you’ll see a Country Report which provides details for this haplogroup and downstream haplogroups, if there are any. I wrote about that, in detail, here.

There are no “J1c2f plus a daughter” haplogroups defined today, so there is nothing listed downstream.

However, that’s not always the case. There may be a downstream clade that you’re not a member of, meaning you don’t carry that haplogroup-defining mutation.

Or, you may have tested someplace that provides you with a partial haplogroup, so you don’t know if you have a subclade or not. You can still glean useful information from partial haplogroups.

Partial Haplogroups From Autosomal Tests

There’s nothing “wrong” with partial haplogroups. It’s nice to know at least some history about your matrilineal ancestry. What you don’t receive, of course, aside from matching, is more recent, genealogical, information.

Both 23andMe and LivingDNA provide autosomal customers with partial mitochondrial haplogroups. Both of these vendors tend to be accurate as far as they go, as opposed to other vendors, who shall remain unnamed, that are often inaccurate.

Autosomal tests don’t specifically test the mitochondrial DNA directly like a full sequence mitochondrial DNA test does, but they do use “probes” that scan specific haplogroup defining locations. Of course, each of the autosomal chips has a finite number of locations and every location that is used for either mitochondrial or Y DNA haplogroups is a space the vendors can’t use for autosomal locations.

Therefore, customers receive partial haplogroups.

In my case, I’ve received J1c at LivingDNA and J1c2 at 23andMe.

Both vendors provide basic information about your haplogroup, along with migration maps. Wikipedia also provides basic haplogroup information. Google is your friend – “mitochondrial haplogroup J Wikipedia.”

DNA Projects

Most haplogroups have a DNA project at FamilyTreeDNA. Note that these projects are administered by volunteers, so your mileage will vary in terms of participant grouping, along with whether or not results or maps are displayed. You can just google for “mitochondrial haplogroup J DNA project at FamilyTreeDNA” and you’ll find the project or perhaps multiple projects to select from. Some haplogroups have a main “J” project and perhaps a subproject, like “J1c,” for example.

You can join the project, either from this page if you’ve tested at FamilyTreeDNA, or from your personal page via the “myProjects” tab at the top of your personal page.

If you’re looking for public haplogroup information, click on “DNA Results.”

If the Haplogroup J DNA testers have joined this project, authorized displaying their results in projects, and provided ancestor information, you will be able to see that on the “Results” page. Projects are often grouped by haplogroup subgroup. Please note that the default page display size is 25, so scroll to the bottom to see how many pages are in the project. Multiply that number times 25 (182 pages total X 25 = 4550) and change the page display size to that number (4550, in this case.)

One of the most useful tools for haplogroup discovery is the project map which offers the same subgroups as the project groupings.

You can select “All” on the dropdown to display the locations of the earliest known ancestors of everyone in this haplogroup project, or you can select a subclade. This map is displaying haplogroup J1c2 as an example of my partial haplogroup.

The Public Mitochondrial Tree and Partial Haplogroups

To find more comprehensive information for partial haplogroups, I can use the free mitochondrial tree at FamilyTreeDNA. While projects only reflect information for people who have joined those particular projects, the tree provides more comprehensive information.

Anyone with a partial haplogroup can still learn a great deal. Like with any haplogroup, you can view where tester’s ancestors lived in the world.

In this case, it doesn’t matter whether I’m looking at partial haplogroups J1c or J1c2, there are many subgroups that I could potentially belong to.

In fact, haplogroup J1c has subclades through J1c17, so there are pages and pages of haplogroup subclade candidates.

Does a Full Haplogroup Really Matter?

How much difference can there be? Is J1c or J1c2 good enough? Good questions.

It depends – on what you want to know.

  • For general interest, perhaps.
  • For genealogy, no.

Genealogists need the most granular results possible to obtain the most information possible. You don’t know what you don’t know. But how much might that be, aside from full sequence matches?

There’s a significant difference in the country details of haplogroup J1c, J1c2 and J1c2f. I created a chart of the top 10 locations, and how many people’s ancestors are found there for J1c, J1c2, and J1c2f.

Wow, that’s a big difference.

How accurately do J1c and J1c2 results reflect the locations in my full J1c2f haplogroup? I color-coded the results and removed the locations from J1c and J1c2 that are not reflected in J1c2f.

As it turns out, the 5 most frequent locations in J1c and the top 3 locations in J1c2 aren’t even in the top 10 of J1c2f. Obtaining a full haplogroup is important.

Current and Past Populations

It’s worth noting that where a current population is found is not always indicative of where an ancestral population was found.

Of course, with genealogy, we can look back a few generations by seeing where the ancestors of our close and distant matches were found.

My earliest known ancestor is found in a marriage record in 1647 in Wirbenz, Germany when she was 26 years old. However, the majority of my exact mitochondrial DNA matches are not found in Germany, or even in Europe, but in Scandinavia. I’m sure there’s a story there to be told, possibly related to the Thirty Years’ War which began in 1618 and devastated Germany. The early German records where she lived were destroyed.

Even in the abbreviated genealogical timeframe where records and surnames exist, as compared to the history of mankind and womankind, we can see examples of population migration and shift with weather, warfare, and opportunity.

We can’t peer further back in time, at least not without ancient DNA, except by a combination of general history, haplogroup inference, and noting where branching from our mother clade occurred.

We know that people move. Sometimes populations were small and the entire population moved to a new location.

Sometimes, the entire population didn’t move, the but descendants of the migrating group survived to take DNA tests, while the population remaining in the original location has no present-day descendants.

Sometimes descendants of both groups survived.

Of course, throughout history, mutations continued to occur in all lines, forming new genetic branches – haplogroups.

Thank goodness they did, because mutations, or lack thereof, are incredibly important clues to genealogy as well as being our breadcrumbs back into the mists of distant time. Those haplogroup-defining mutations are the umbilical cord that allows us to connect with those distant ancestors.

These tools, especially used together, are the best way to answer the question, “Where did my Mitochondrial DNA Haplogroup Come From?”

Where did your haplogroup come from?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

Y DNA Resources and Repository

I’ve created a Y DNA resource page with the information in this article, here, as a permanent location where you can find Y DNA information in one place – including:

  • Step-by-step guides about how to utilize Y DNA for your genealogy
  • Educational articles and links to the latest webinars
  • Articles about the science behind Y DNA
  • Ancient DNA
  • Success stories

Please feel free to share this resource or any of the links to individual articles with friends, genealogy groups, or on social media.

If you haven’t already taken a Y DNA test, and you’re a male (only males have a Y chromosome,) you can order one here. If you also purchase the Family Finder, autosomal test, those results can be used to search together.

What is Y DNA?

Y DNA is passed directly from fathers to their sons, as illustrated by the blue arrow, above. Daughters do not inherit the Y chromosome. The Y chromosome is what makes males, male.

Every son receives a Y chromosome from his father, who received it from his father, and so forth, on up the direct patrilineal line.

Comparatively, mitochondrial DNA, the pink arrow, is received by both sexes of children from the mother through the direct matrilineal line.

Autosomal DNA, the green arrow, is a combination of randomly inherited DNA from many ancestors that is inherited by both sexes of children from both parents. This article explains a bit more.

Y DNA has Unique Properties

The Y chromosome is never admixed with DNA from the mother, so the Y chromosome that the son receives is identical to the father’s Y chromosome except for occasional minor mutations that take place every few generations.

This lack of mixture with the mother’s DNA plus the occasional mutation is what makes the Y chromosome similar enough to match against other men from the same ancestors for hundreds or thousands of years back in time, and different enough to be useful for genealogy. The mutations can be tracked within extended families.

In western cultures, the Y chromosome path of inheritance is usually the same as the surname, which means that the Y chromosome is uniquely positioned to identify the direct biological patrilineal lineage of males.

Two different types of Y DNA tests can be ordered that work together to refine Y DNA results and connect testers to other men with common ancestors.

FamilyTreeDNA provides STR tests with their 37, 67 and 111 marker test panels, and comprehensive STR plus SNP testing with their Big Y-700 test.

click to enlarge

STR markers are used for genealogy matching, while SNP markers work with STR markers to refine genealogy further, plus provide a detailed haplogroup.

Think of a haplogroup as a genetic clan that tells you which genetic family group you belong to – both today and historically, before the advent of surnames.

This article, What is a Haplogroup? explains the basic concept of how haplogroups are determined.

In addition to the Y DNA test itself, Family Tree DNA provides matching to other testers in their database plus a group of comprehensive tools, shown on the dashboard above, to help testers utilize their results to their fullest potential.

You can order or upgrade a Y DNA test, here. If you also purchase the Family Finder, autosomal test, those results can be used to search together.

Step-by-Step – Using Your Y DNA Results

Let’s take a look at all of the features, functions, and tools that are available on your FamilyTreeDNA personal page.

What do those words mean? Here you go!

Come along while I step through evaluating Big Y test results.

Big Y Testing and Results

Why would you want to take a Big Y test and how can it help you?

While the Big Y-500 has been superseded by the Big Y-700 test today, you will still be interested in some of the underlying technology. STR matching still works the same way.

The Big Y-500 provided more than 500 STR markers and the Big Y-700 provides more than 700 – both significantly more than the 111 panel. The only way to receive these additional markers is by purchasing the Big Y test.

I have to tell you – I was skeptical when the Big Y-700 was introduced as the next step above the Big Y-500. I almost didn’t upgrade any kits – but I’m so very glad that I did. I’m not skeptical anymore.

This Y DNA tree rocks. A new visual format with your matches listed on their branches. Take a look!

Educational Articles

I’ve been writing about DNA for years and have selected several articles that you may find useful.

What kinds of information are available if you take a Y DNA test, and how can you use it for genealogy?

What if your father isn’t available to take a DNA test? How can you determine who else to test that will reveal your father’s Y DNA information?

Family Tree DNA shows the difference in the number of mutations between two men as “genetic distance.” Learn what that means and how it’s figured in this article.

Of course, there were changes right after I published the original Genetic Distance article. The only guarantees in life are death, taxes, and that something will change immediately after you publish.

Sometimes when we take DNA tests, or others do, we discover the unexpected. That’s always a possibility. Here’s the story of my brother who wasn’t my biological brother. If you’d like to read more about Dave’s story, type “Dear Dave” into the search box on my blog. Read the articles in publication order, and not without a box of Kleenex.

Often, what surprise matches mean is that you need to dig further.

The words paternal and patrilineal aren’t the same thing. Paternal refers to the paternal half of your family, where patrilineal is the direct father to father line.

Just because you don’t have any surname matches doesn’t necessarily mean it’s because of what you’re thinking.

Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) aren’t the same thing and are used differently in genealogy.

Piecing together your ancestor’s Y DNA from descendants.

Haplogroups are something like our pedigree charts.

What does it mean when you have a zero for a marker value?

There’s more than one way to break down that brick wall. Here’s how I figured out which of 4 sons was my ancestor.

Just because you match the right line autosomally doesn’t mean it’s because you descend from the male child you think is your ancestor. Females gave their surnames to children born outside of a legal marriage which can lead to massive confusion. This is absolutely why you need to test the Y DNA of every single ancestral line.

When the direct patrilineal line isn’t the line you’re expecting.

You can now tell by looking at the flags on the haplotree where other people’s ancestral lines on your branch are from. This is especially useful if you’ve taken the Big Y test and can tell you if you’re hunting in the right location.

If you’re just now testing or tested in 2018 or after, you don’t need to read this article unless you’re interested in the improvements to the Big Y test over the years.

2019 was a banner year for discovery. 2020 was even more so, keeping up an amazing pace. I need to write a 2020 update article.

What is a terminal SNP? Hint – it’s not fatal😊

How the TIP calculator works and how to best interpret the results. Note that this tool is due for an update that incorporates more markers and SNP results too.

You can view the location of the Y DNA and mitochondrial DNA ancestors of people whose ethnicity you match.

Tools and Techniques

This free public tree is amazing, showing locations of each haplogroup and totals by haplogroup and country, including downstream branches.

Need to search for and find Y DNA candidates when you don’t know anyone from that line? Here’s how.

Yes, it’s still possible to resolve this issue using autosomal DNA. Non-matching Y DNA isn’t the end of the road, just a fork.

Science Meets Genealogy – Including Ancient DNA

Haplogroup C was an unexpected find in the Americas and reaches into South America.

Haplogroup C is found in several North American tribes.

Haplogroup C is found as far east as Nova Scotia.

Test by test, we made progress.

New testers, new branches. The research continues.

The discovery of haplogroup A00 was truly amazing when it occurred – the base of the phylotree in Africa.

The press release about the discovery of haplogroup A00.

In 2018, a living branch of A00 was discovered in Africa, and in 2020, an ancient DNA branch.

Did you know that haplogroups weren’t always known by their SNP names?

This brought the total of SNPs discovered by Family Tree DNA in mid-2018 to 153,000. I should contact the Research Center to see how many they have named at the end of 2020.

An academic paper split ancient haplogroup D, but then the phylogenetic research team at FamilyTreeDNA split it twice more! This might not sound exciting until you realize this redefines what we know about early man, in Africa and as he emerged from Africa.

Ancient DNA splits haplogroup P after analyzing the remains of two Jehai people from West Malaysia.

For years I doubted Kennewick Man’s DNA would ever be sequenced, but it finally was. Kennewick Man’s mitochondrial DNA haplogroup is X2a and his Y DNA was confirmed to Q-M3 in 2015.

Compare your own DNA to Vikings!

Twenty-seven Icelandic Viking skeletons tell a very interesting story.

Irish ancestors? Check your DNA and see if you match.

Ancestors from Hungary or Italy? Take a look. These remains have matches to people in various places throughout Europe.

The Y DNA story is no place near finished. Dr. Miguel Vilar, former Lead Scientist for National Geographic’s Genographic Project provides additional analysis and adds a theory.

Webinars

Y DNA Webinar at Legacy Family Tree Webinars – a 90-minute webinar for those who prefer watching to learn! It’s not free, but you can subscribe here.

Success Stories and Genealogy Discoveries

Almost everyone has their own Y DNA story of discovery. Because the Y DNA follows the surname line, Y DNA testing often helps push those lines back a generation, or two, or four. When STR markers fail to be enough, we can turn to the Big Y-700 test which provides SNP markers down to the very tip of the leaves in the Y DNA tree. Often, but not always, family-defining SNP branches will occur which are much more stable and reliable than STR mutations – although SNPs and STRs should be used together.

Methodologies to find ancestral lines to test, or maybe descendants who have already tested.

DNA testing reveals an unexpected mystery several hundred years old.

When I write each of my “52 Ancestor” stories, I include genetic information, for the ancestor and their descendants, when I can. Jacob was special because, in addition to being able to identify his autosomal DNA, his Y DNA matches the ancient DNA of the Yamnaya people. You can read about his Y DNA story in Jakob Lenz (1748-1821), Vinedresser.

Please feel free to add your success stories in the comments.

What About You?

You never know what you’re going to discover when you test your Y DNA. If you’re a female, you’ll need to find a male that descends from the line you want to test via all males to take the Y DNA test on your behalf. Of course, if you want to test your father’s line, your father, or a brother through that father, or your uncle, your father’s brother, would be good candidates.

What will you be able to discover? Who will the earliest known ancestor with that same surname be among your matches? Will you be able to break down a long-standing brick wall? You’ll never know if you don’t test.

You can click here to upgrade an existing test or order a Y DNA test.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books