Search Techniques for Y and Mitochondrial DNA Test Candidates

I utilize DNA matches in various ways, some of which are a little unusual. In many cases, I mine autosomal DNA matches to search for people whose Y and mitochondrial DNA can provide descendants, including me and them, with additional insights into our common ancestors.

Y and mitochondrial DNA connects testers to their ancestors in ways that autosomal cannot. It’s a different type of DNA, not combined with the DNA of the other parent, so it’s not diluted and halved in each generation like autosomal DNA. Y and mitochondrial lines each descend from only one ancestral line, rich in historical information, with the ability to reach far back in time along with the ability to connect testers recently.

You First

The very first thing you can do to further your own research is to test yourself in three ways:

  • Autosomal DNA – Test at all 4 primary testing vendors, meaning FamilyTreeDNA, MyHeritage, Ancestry and 23andMe. The reason for testing at (or transferring to) multiple vendors is because they each have a unique focus and tools. Perhaps more importantly, they each have different people in their databases. Each testing company has benefits. FamilyTreeDNA has people who tested as long as 20 years ago and are no longer available for testing. MyHeritage has many European testers and you’ll find matches there that you won’t find elsewhere if your ancestors came from Europe. Ancestry has the largest database, but fewer advanced tools.
  • Full Sequence Mitochondrial DNA Available at FamilyTreeDNA, this test allows focus solely on your matrilineal line, meaning your mother’s mother’s mother’s line directly without confusion introduced by DNA from other lines.
  • Y DNA – For males only, also available at FamilyTreeDNA, provides focus on the direct patrilineal, or surname, line.

Obviously, if you haven’t upgraded your own Y and mitochondrial DNA tests to the highest level possible, the first thing you can do is to test or upgrade to the highest level where you receive the most refined amount of information.

(There’s a sale at FamilyTreeDNA right now, lasting until August 31, 2020, so it’s a great time to upgrade or order Y and mitochondrial. Check it out here.)

Different Kinds of DNA Serve Different Genealogical Purposes

Let’s look, briefly at how the various types of DNA tests benefit genealogy. Autosomal tests that you and family members can take will help you find other family members to test for specific Y and mitochondrial DNA lines.

Remember that you can test family members in addition to yourself, so if you’re a female, you may want to recruit your father or an uncle or brother to represent your patrilineal line DNA. If you’d like to read a brief article about the different types of DNA and their benefits, 4 Kinds of DNA for Genetic Genealogy is a good resource.

Y and Mito Pedigree.png

In this image, you can see that if you’re a male you can test for both your Y (blue-square) and mitochondrial DNA (red-circle) ancestral lines. If you’re a female, you can test only your mitochondrial DNA because females don’t have a Y chromosome. Both males and females, of course, can test (green) autosomal DNA which reveals a different type of connection to all of your ancestral lines, but with autosomal, you have to figure out which people match you on which lines.

Y and mitochondrial DNA provides you with a different type of information about laser-focused specific lines that you can’t obtain through autosomal testing, and reaches back in time far beyond the curtain when surnames were adopted.

personal pedigree

You personally can only test for the red-circle mitochondrial DNA line, and perhaps the blue-square Y DNA line if you’re a male. Unless you find family members to test for the Y and mitochondrial DNA of your ancestors, you’re leaving valuable information unresearched. That means all those colored boxes and squares that aren’t blue or red.

I’ve solved MANY brick walls using both Y and mitochondrial DNA, often in conjunction with autosomal.

Let’s take a look at each type of DNA testing a little more in-depth, so that you understand how each one works and why they are important to genealogy.

The Specifics

Y DNA – Y DNA descends through the direct male paternal line and is inherited by men only. You match against other Y DNA testers, hopefully finding surname links.

The Big Y test and upgrade at FamilyTreeDNA provides testers with all 111 traditional STR markers, plus another 589+ STRs available only in the Big Y test, plus a scan of the balance of the rest of the Y chromosome that is useful for genealogy. SNP results are increasingly being used for genealogy, in addition to STRs.

SNPs group men into genetic lineages and STRs help with defining and refining the closest generations when matching to each other. Often, the benefits of these two tests overlap, which is why I recommend that males test to the Big Y-700 level which provides 700+ STR markers plus all SNPs with mutations that define ancestral lineages.

Y DNA haplogroups, derived from SNPs, reveal the geographic part of the world where the lineage originated, such as Europe, the Americas, Asia and Africa, as well as a migration path across the continents based on where SNPs are and were historically found. Ancient DNA samples are being added to the database.

If you or a family member took an earlier Y DNA test, you can upgrade to the Big Y-700 today which provides you with matching for both the STR markers and separately, SNP markers, along with other genealogical tools.

You can order or upgrade your Y DNA here. Don’t forget family members accounts you may control. They may agree to have their kit upgraded too.

To upgrade, sign in to your account, and click on your desired upgrade level under Y DNA testing.

ymt y upgrade.png

Then click on upgrades.

ymt upgrade.png

I wrote about Y DNA in these recent articles:

I have more Y DNA articles planned for the future.

You can search for additional articles by going to the main page of this blog and enter “Y DNA” into the search box for additional articles already published.

Many features such as the matches maps, haplogroup origins and ancestral origins pages are the same for Y DNA results as mitochondrial DNA results. You can view mitochondrial articles here.

Mitochondrial DNA (mtDNA) – Mitochondrail DNA descends through the direct matrilineal line to both sexes of children. Everyone has mitochondrial DNA and it is inherited matrilineally by you from your mother, from her mother, from her mother, etc.

The FMS or full mitochondrial sequence DNA test tests the entire mitochondria that provides information about your direct matrilineal line. Family Tree DNA provides matching, which can sometimes lead to genealogical breakthroughs such as when I identified Lydia Brown, the mother of my Phoebe Crumley and then a couple years later, her mother, Phoebe Cole – via mitochondrial DNA. Those discoveries led us to her mother, Mary Mercy Kent, via genealogy records. All we needed was to punch our way through that initial brick wall – and mitochondrial DNA was our battering ram.

Additionally, you’ll receive a full haplogroup designation which allows you to look back in time before the advent of surnames and identifies the location where your ancestral line came from. For those seeking confirmation of Native American heritage, Y and mitochondrial DNA provides unquestionable proof and doesn’t wash out in time as autosomal DNA does.

Mitochondrial DNA includes haplogroups, matching and other genealogical tools.

You can order or upgrade you or a family member’s mitochondrial DNA here.

To upgrade, sign in to your account, and click on the desired upgrade level.

ymt mt upgrade

Then click on Upgrade if you’re upgrading or Add On if you’re ordering a new product for yourself.

ymt add ons upgrades.png

I wrote several mitochondrial DNA articles and compiled them into a summary article for your convenience.

Autosomal DNA – With autosomal DNA testing, you test once and there’s not an upgrade unless the vendor changes DNA testing platforms, which is rare. Each of the four vendors compares your DNA with all other people who’ve taken that test, or transferred from other companies. They match you with descendants from all of your ancestral lines. While the Y and mtDNA tests look back deeply in time as well as recently on one specific line, the autosomal tests are broad but not deep, spanning all ancestral lines, but limited to approximately 10 generations.

Each autosomal vendor has unique benefits and focus as well as shortcomings. I’ve listed the major points for each vendor relative to searching for Y and mitochondrial
DNA testing candidates. It’s important to understand the advantages of each vendor because it will help you understand the testers you are most likely to find in each database and may help focus your search.

FamilyTreeDNA’s Family Finder

  • Because FamilyTreeDNA archives customer’s DNA for 25 years, many people who tested Y or mitochondrial DNA 20 years ago and are now deceased upgraded to autosomal tests when they became available, or have been upgraded by family members since. These early testers often reach back another generation or so into the past to people born a century ago.
  • Advanced autosomal matching integrates with Y and mitochondrial DNA along with surname and other projects
  • Phased Family Matching provides the ability to link family members that match you to your tree which allows Family Tree DNA to group matches as paternal or maternal by utilizing matching segments to the same side of your family
  • Genetic Affairs, a third-party tool available for testers, builds common trees by reading the trees of your matches and comparing their trees with your own to identify common ancestors.
  • Genetic Affairs builds trees and pedigrees of your matches by searching for common ancestors in your MATCHES trees, even if you have no tree or don’t share those ancestors in your tree. This functionality includes Y and mitochondrial DNA if you have tested. This facilitates discovery of common ancestors of the people who you match, which may well lead you to ancestral discoveries as well.
  • Genetic Affairs offers clustering of your shared matches.
  • DNA file transfers are accepted from other vendors, free, with a $19 one time fee to unlock advanced tools.
  • Family Tree DNA has tested people worldwide, with a few location exceptions, since inception in the year 2000.
  • No direct triangulation, but Phased Family Matching provides maternal and paternal side triangulation when matches can be grouped into maternal and paternal sides.
  • Matches and segment match information are available for download.
  • The great thing about the advanced matching tool at Family Tree DNA is that it facilitates searching for people who match you on different kinds of tests, so it helps determine the potential closeness or distance of Y and mitochondrial relationships.

MyHeritage

Ancestry

  • Ancestry has the largest database, but did not begin testing until 2012 and did not test widely outside of the US/UK for some time. They now sell tests in 34 countries. Their testers are primarily focused in the US, Canada, England, Scotland, Ireland, and diaspora, with some overlap into Europe.
  • Ancestry offers ThruLines, a tool that connects testers whose DNA matches with common ancestors in their trees.
  • Ancestry does not provide a chromosome browser, a tool provided by the other three primary testing companies, nor do they provide triangulation or matching segment location information necessary to confirm that you match on the same segment with other people.
  • Ancestry has issued cease and desist orders to third party tools that perform functions such as clustering, autotrees, autopedigrees or downloading of matches. Ancestry does not provide these types of features for their users.
  • Ancestry does not accept transfers, so if you want to be in Ancestry’s database, you must test with Ancestry.
  • No Y or mitochondrial DNA testing available.
  • Match list is not available for download.

23andMe

  • The primary focus of 23andMe has always been health testing, so many people who test at 23andMe are not interested in genealogy.
  • 23andMe tests are sold in about 50 countries, but not worldwide.
  • 23andMe provides a chromosome browser, triangulation, segment information and a beta genetically constructed tree for close matches.
  • 23andMe does NOT support a genealogical tree either uploaded or created on their site, making tree comparisons impossible.
  • Genetic Affairs AutoCluster works at 23andMe, but AutoTree and AutoPedigree do not because 23andMe does not support trees.
  • 23andMe does make match files available for downloading.
  • No Y or mitochondrial DNA full testing or matching, but basic haplogroups are provided.
  • 23andMe caps matches at 2000, less any matches that have opted out of matching. My matches currently number 1770.
  • 23andMe does not accept transfers from other vendors, so if you want to be in their database, you must test with 23andMe.

Reaching Out to Find Testers

Unfortunately, we only carry the mitochondrial DNA of our mother and only men carry the Y DNA of their father. That means if we want to obtain that DNA information about our other family lines, we have to find people who descend appropriately from the ancestor in question and test that person.

I’ll share with you how I search for people who descend from each ancestor. After finding that person, I explain the situation, why the different kinds of tests are important, and offer a testing scholarship for the Y or mtDNA test at Family Tree DNA if they have not already taken that test. If they’ve tested their autosomal DNA elsewhere. I also explain that they can transfer their autosomal DNA file for free too and will receive new matches.

Here’s an article with links to upload/download instructions for each testing company. Feel free to share.

Each DNA testing company has different features, but you can use all of the companies to find people descended in the appropriate way from each ancestor. It’s easier if you know how to utilize each vendor’s tools to optimize your chances of success. I’m going to step you through the search process with hints and tips for each vendor.

Finding Y DNA and Mitochondrial DNA Candidates at FamilyTreeDNA

Because FamilyTreeDNA tests for both Y and mitochondrial DNA and has for 20 years, you stand a better chance of finding a candidate there who may have already tested, so that’s where I always begin.

Y DNA

Let’s say, for example, that I need to find a male descendant of my Ferverda line in order to ask them to test for Y DNA. The person can be descended from either a close relative, if I know of one, or a more distant relative that I don’t know, but need to find through searching other ways.

Search for Surnames and Projects at Family Tree DNA

First, search the FamilyTreeDNA website for your goal surname among existing testers, and then the appropriate surname project to see if your line has already tested.

ymt ferverda

On the main page, here, scroll down to until you see the prompt, above, and enter the surname. Be sure to consider alternate spellings too.

ymt ferverda search.png

In this case, I see that there is a Ferverda surname project with 18 people, and scrolling on down, that 4 people with this specific surname have tested.

ymt results.png

However, searching for an alternate spelling, the way it’s spelled in the Netherlands, I find that another 10 people have tested.

ymt ferwerda

Of course, some may be females, but they probably know males by that surname.

First, I’m going to check the Ferverda DNA project to see if a Ferverda male from my line has tested, and if so, to what level.

Click on the project link in the search results to see the DNA Project.

ymt admin.png

Note two things. First, the administrator’s name, as you may need this later. If you click on their name, their email address is displayed.

Second, click on DNA Results and select Y DNA if you’re presented with a choice. If the project has a public facing page, and most do, you’ll see something like the following information.

ymt project

Hey look, it’s my lucky day, given that both of these men descend from my ancestor. I happen to know that they have both taken the Big Y test, because I’m the project administrator, but you won’t know that. One way to get an idea is if they have less than the full 111 markers showing, they probably haven’t taken the Big Y, because a 111 upgrade is included in the Big Y test today.

You have three options at this point to contact one of these men:

  • See if the people are on your own autosomal DNA match list, or the match lists of kits from that family that you manage. If so, you can view their email address and contact them. If you haven’t yet tested autosomally, meaning the Family Finder test, at Family Tree DNA, you can transfer autosomal tests from elsewhere, for free, which means you will be viewing matches within hours or a couple days. Otherwise, you can order a Family Finder test, of course.
  • If the person with the Ferverda or Ferwerda surname is not on your Family Finder match list, reach out to the project administrator with a note to the person you want to contact and ask the administrator to forward your email to the project member.
  • If the administrator doesn’t answer, contact Family Tree DNA support and make the same request.

Checking Family Finder, one of those people is on my match list and I’m pretty sure it’s the right person, because when I click on his profile, not only does the haplogroup match the DNA project, but so does the ancestor.

ymt ferverda profile.png

Searching Family Finder

If there isn’t a DNA project match you can identify as your direct line ancestor, you can search your Family Finder matches for the surname to find a male with that surname. If your match has a tree, see if your ancestor or ancestral line is showing, then note whether they have taken a Y DNA test. They may have taken a Y test, but have not joined a project or not entered any “earliest known ancestor.” You can see which tests they’ve taken by looking at the little tabs above their profile on their tree, or on their profile card.

ymt ferverda tree

click to enlarge

Regardless, you’re now in touch with a potential contact.

Don’t dismiss females with that surname, or people who show that surname in their ancestral surname list. Women with the surname you’re looking for may have husbands, fathers, brothers or uncles who descend from the line you are seeking.

ymt search field.png

Utilize Genetic Affairs

My ace in the hole at FamilyTreeDNA is the Genetic Affairs AutoTree and AutoPedigree function.

Genetic Affairs is a third-party tool that you can use to assist with analysis of your matches at FamilyTreeDNA.

ymt genetic affairs

click to enlarge

At Genetic Affairs, selecting AutoTree generates trees where common ancestors of you and your matches, or your matches to each other, are displayed.

Your goal is to identify people descended from a common ancestor either directly paternally through all males for Y DNA or through all females to the current generation, which can be males, for mitochondrial DNA.

This article provides step-by-step instructions for the Genetic Affairs AutoTree and AutoPedigree functions.

Mitochondrial DNA

Mitochondrial DNA lineages are a bit more challenging because the surname changes every generation and DNA projects are unlikely to help.

The AutoTree/AutoPedigree report through Genetic Affairs serves the same purpose for mitochondrial DNA – building trees that intersect with a common ancestor. I generally drop the “minimum size of the largest DNA segment shared with the match” to 7 cM for this report. My goal running this report for this purpose isn’t to analyze autosomal DNA, but to find testing candidates based on how my matches descend from a specific ancestor, so I want to include as many matches as possible.

Family Finder Can Refine Y and mtDNA Information

In some cases, a Family Finder test can refine a potential relationship between two people who match on either Y DNA or mitochondrial. Additionally, you may want to encourage, or gift, specific matches with an upgrade to see if they continue to match you at higher testing levels.

Let’s say that two men match closely on a Y DNA test, but you’d like to know how far back the common ancestor lived.

ymt y matches.png

In this instance, you can see that the second match has taken a BIg Y and a Family Finder test, but the exact match (genetic distance of 0) has not. If the first individual cannot provide much genealogy, having them take a Family Finder test would help at least rule out a relationship through second cousins and would give you at least some idea how far back in time your common ancestor may have lived. If you do match on Family Finder, you receive an estimate of your relationship and can check the match level possibilities using the DNAPainter Shared cM Tool. If they upgrade to the Big Y-700 test, you may be able to differentiate your line from theirs, or confirm when and where a split occurred – or that there is no split.

This same autosomal testing scenario works for mitochondrial DNA.

For people who have taken both tests, Family Finder plus either Y or mitochondrial DNA, the Advanced Matching menu allows you to select combinations of tests and projects to query.

ymt advanced

click to enlarge

Finding Y and Mitochondrial DNA Candidates at MyHeritage

MyHeritage provides a wonderful tool called Theories of Family Relativity (TOFR) which finds common ancestors between you and your DNA matches, even if the ancestor is not in both trees, so long as a path exists between the two testers’ trees using other trees or research documents, such as census records. Of course, you’ll need to verify accuracy.

ymt tofr.png

At MyHeritage, select DNA Matches, then “Has Theory of Family Relativity.”

ymt mh ferverda

click to enlarge

You can see that I have 65 matches with a Theory of Family Relativity. Additionally, I can then search by surname.

ymt mh ferverda tree.png

click to enlarge

If I am looking for a Ferverda Y DNA candidate, I’ve found one thanks to this TOFR.

If you don’t find a tree where your match descends from your ancestor in the desired way, you can also widen the search by de-selecting Theories of Family Relativity and instead selecting SmartMatchs or shared surname combined with the name of your ancestor. There are many search and filter combinations available.

Let’s look at a mitochondrial DNA example where I’m searching for a descendant of Elizabeth Speaks who married Samuel Clarkson/Claxton.

ymt smartmatches

click to enlarge

In this case, I have one SmartMatch, which means that someone by the name of Elizabeth Speaks is found in my matches tree. I need to look to see if it’s the RIGHT Elizabeth Speaks and if my match descends through all females to the current generation. If so, I’ve found my mitochondrial DNA candidate and I can leave them a message.

You can also view SmartMatches (without a DNA match) from your own tree.

I can go to that person in my tree, click on their profile, and see how many SmartMatches I have. Clicking on 13 SmartMatches allows me to view those matches and I can click through to the connected trees.

ymt mt speaks.png

I can also click on “research this person” to discover more.

If you’re still not successful, don’t give up quite yet, because you can search in the records for trees that shows the person whom you seek. A SmartMatch is only created if the system thinks it’s the same person in both trees. Computers are far from perfect.

ymt mh trees

click to enlarge

Narrow the search as much as possible to make it easier to find the right individual, and then view the trees for descent in the proper manner.

Another wonderful tool at MyHeritage is the Genetic Affairs AutoCluster tool, built-in for MyHeritage users.

ymt mh cluster.png

The above cluster shows that one person carries the surname of Elizabeth’s husband. Viewing the accompanying spreadsheet for the AutoCluster run reveals that indeed, I’ve already identified a couple of matches as descendants of the desired ancestral couple. The spreadsheet shows links to their trees, my notes and more.

ymt cluster ss

Clusters show you where to look. Without the cluster, I had only identified two people as descendants of this ancestral couple. I found several more candidates to evaluate and two mitochondrial candidates are found in this cluster.

Finding Y and Mitochondrial DNA Candidates at 23andMe

23andMe is a little more tricky because they don’t support either uploaded or created user trees which makes finding descendants of a particular ancestor quite challenging.

However, 23andMe attempts to create a tree of your closer relatives genetically. which you can find under “DNA Relatives,” under the Ancestry tab, then “Family Tree” at the top.

I’ve added the names of my ancestors when I can figure out who the match is. Please note that this “created tree” is seldom exactly accurate, but there are often enough hints that you’ll be able to piece together at least some of the rest.

Here’s part of my “created” tree at 23andMe. I’m at far right.

ymt23 tree.png

click to enlarge

If you’re a genealogist, your eyes are going to glaze over about now, because the “people” aren’t in the correct locations – with maternal and paternal sides of the tree swapped. Also, please note, the locations in which they place people are estimates AND 23andMe does NOT take into account or provide for half-relationships.

That said, you can still obtain candidates for Y and mitochondrial DNA testing.

In this case, I’m searching for a mitochondrial DNA candidate for Evaline Miller, my grandfather’s mother or a Y DNA candidate for the Ferverda line.

I can tell by the surname of the male match, Ferverda, that he probably descends through a son, making him a Y DNA candidate.

Both Cheryl and Laura are possible mitochondrial DNA candidates for Evaline Miller, based on this tree, depending of course on how they actually do descend.

I can contact all of my matches, but in the event that they don’t answer, I’m not entirely out of luck. If I can determine EXACTLY how the match descends, and they descend appropriately for mitochondrial DNA, I can view the match to see at least a partial haplogroup. Since 23andMe only uses relatively close matches when constructing your tree, I’m relatively likely to recognize the names of the testers and may have them in my genealogy program.

By clicking on the Ferverda male, I can see that his Y haplogroup is I-Z58. That’s not nearly as refined as the Y DNA information at Family Tree DNA, but it’s something if I have nothing else and he doesn’t answer my query that would include the offer of a Y DNA test at Family Tree DNA.

ymt 23 hap

You can search at 23andMe by surname, but unless your match has entered their ancestral surnames and you recognize surnames that fit together, without a tree, unless your match answers your query, it’s very difficult to determine how you connect.

ymt 23 search.png

You can also view “Relatives in Common,” hoping to recognize someone you know as a common match.

ymt relatives in common

Please note that 23andMe does allow testers to enter a link to a tree, but few do.

ymt tree link.png

It’s worth checking, and be sure to enter your own tree link location.

Finding Y and Mitochondrial DNA Candidates at Ancestry

Ancestry’s ThruLines provides an excellent tool to find both Y and mitochondrial DNA participants.

Ancestry organizes their ThruLines by ancestor.

ymt thrulines

click to enlarge

Select your desired Ancestor, someone whose DNA you seek. Clearly, Y DNA candidates are very easy because you simply choose any male ancestor in the correct line with the surname and look for a male match with the appropriate surname.

In this case, I’m selecting Martha Ruth Dodson, because I need her mitochondrial DNA.

ymt dodson.png

By clicking on her “card” I then see my matches assigned to her ThruLine.

Ymt ancestry thruline

Obviously, for mitochondrial DNA, I’m looking for someone descended through all females, so Martha’s daughter, Elizabeth Estes’s son Robert won’t work, but her daughter, Louisa Vannoy, at left is the perfect candidate. Thankfully, my cousin whom I match, at bottom left is descended through all females to the current generation, which can be male or female, so is a mitochondrial DNA candidate.

Finding Y and Mitochondrial DNA Candidates in Trees in General

I’ve utilized the combination of trees and DNA matches at FamilyTreeDNA through Genetic Affairs, Ancestry and MyHeritage, but you can also simply search for people who descend from the same ancestor based on their tree alone at the vendors who support trees as part of genealogical records. This includes both Ancestry and MyHeritage but also sites like Geneanet which is becoming increasingly popular, especially in Europe. (I have not worked extensively with Geneanet yet but plan to take it for a test drive soon.)

My reason for utilizing DNA matches+trees first is that the person has already been introduced to the concept that DNA can help with genealogy, and has obviously embraced DNA testing at least once. Not only that, with the assist of a Theory of Family Relativity, ThruLine or genetic Affairs automation tools, it’s much easier to find appropriate candidates.

Finding Y and Mitochondrial DNA Candidates at WikiTree

If you reach beyond DNA testing companies, WikiTree provides a valuable feature which allows people to specify that they descend from a particular ancestor, and if they have DNA tested, how they descend – including Y DNA, mitochondrial DNA and autosomal.

Here’s an example on the profile of John Y. Estes at WikiTree, one of my Estes ancestors.

ymt wiki.png

If someone descends appropriately for either Y or mitochondrial DNA line, and has taken that test, their information is listed.

In this case, there are two Y DNA testers and two autosomal, but no mitochondrial DNA which would have descended from John’s mother, of course.

You can click on the little green arrow icon to see how any DNA tested person descends from the ancestor whose profile you are accessing.

ymt wiki compare

Of course, the same surname for males is a good indication that the man in question is descended from that paternal line, but check to be sure, because some males took their mother’s surname for various reasons.

Here’s my line-of-descent from John Y. Estes. I can click on anyone else whose DNA information is listed as well to see how they descend from John. If they descend from John through all females, then they obviously descend from his wife though all females too which means they are a mitochondrial DNA candidate for her.

ymt wiki relationship.png

click to enlarge

Clicking on autosomal testers may reveal someone appropriately descended from the ancestor in question.

You can then click on any ancestor shown to view their profile, and any DNA tested descendants.

By clicking on name of the descendant whose DNA test you are interested in, you’ll be able to view their profile. Look for the Collaboration section where you can send them a private message that will be delivered by email from WikiTree.

ymt collaborate

Finding Y and Mitochondrial DNA Candidates at GedMatch

One final avenue to find Y and mitochondrial DNA candidates is through GedMatch, It’s probably the least useful option, though, because the major vendors all have some sort of tree function, except for 23andMe, and for some reason, many people have not uploaded GEDCOM files (trees) to GEDmatch.

Therefore, if you can find someone on GedMatch that tested elsewhere perhaps, such as LivingDNA who also provides a base haplogroup, or 23andMe, and they uploaded a GEDCOM file (tree) to GedMatch, you can utilize the GEDmatch “Find common ancestors” automated tree-matching functionality.

gedmatch mrca matches

click to enlarge

GEDmatch produces a list of your matches with common ancestors in their trees, allowing you to select the appropriate ancestor or lineage.

I wrote step-by-step instructions in the article, GEDmatch Introduces Automated Tree Matching.

Additionally, GEDmatch includes the Genetic Affairs AutoCluster tool in their Tier1 subscription offering,

ymt gedmatch.png

Gedmatch users who know their Y and mitochondrial haplogroup can enter that information in their profile and it will be reflected on the autosomal match list.

ymt gedmatch hap

Summary Chart

In summary, each testing vendor has a different focus and unique tools that can be used to search for Y and mitochondrial DNA candidates. Additionally, two other resources, WikiTree and GEDmatch, although not DNA testing vendors, can lead to discovering Y and mtDNA candidates as well.

I’ve created a quick-reference chart.

  Family Tree DNA MyHeritage Ancestry 23andMe Wikitree GEDmatch
Y DNA Test Yes No No No, partial haplogroup provided No test, listed by ancestor No, user entered
mtDNA Test Yes No No No, partial haplogroup provided No test, listed by ancestor No, user entered
DNA Projects Yes No No No Some Some
Strengths other than mentioned categories 20 year worldwide customer base, phased family matching European focus, SmartMatches, wide variety of filters Largest autosomal database Genetic tree beta DNA by ancestor May include users not found elsewhere who tested outside the major companies
Drawbacks No direct triangulation or tree matching No Genetic Affairs AutoTree or AutoPedigree Can’t download matches, no triangulation, clusters, AutoTree, or AutoPedigree No trees, 2000 match limit “One tree” may be incorrect Few trees, no AutoTree or AutoPedigree
Clustering Genetic Affairs Included in advanced tools No, prohibited Genetic Affairs N/A Included in Tier1
Genetic Affairs AutoTree & AutoPedigree Yes No No No, no tree support N/A No
Tree matching between users No, through Genetic Affairs Theories of Family Relativity ThruLines No Not directly MRCA common ancestors in Tier1

Now it’s your turn. Which Y and mitochondrial DNA lines can you find today?

Happy Hunting!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Genetic Affairs: AutoPedigree Combines AutoTree with WATO to Identify Your Potential Tree Locations

July 2020 Update: Please note that Ancestry issues a cease-and-desist order against Genetic Affairs, and this tool no longer works at Ancestry. The great news is that it still works at the other vendors, and you can ask Ancestry matches to transfer, which is free.

If you’re an adoptee or searching for an unknown parent or ancestor, AutoPedigree is just what you’ve been waiting for.

By now, we’re all familiar with Genetic Affairs who launched in 2018 with their signature autocluster tool. AutoCluster groups your matches into clusters by who your matches match with each other, in addition to you.

browser autocluster

A year later, in December 2019, Genetic Affairs introduced AutoTree, automated tree reconstruction based on your matches trees at Ancestry and Family Finder at Family Tree DNA, even if you don’t have a tree.

Now, Genetic Affairs has introduced AutoPedigree, a combination of the AutoTree reconstruction technology combined with WATO, What Are the Odds, as seen here at DNAPainter. WATO is a statistical probability technique developed by the DNAGeek that allows users to review possible positions in a tree for where they best fit.

Here’s the progressive functionality of how the three Genetic Affairs tools, combined, function:

  • AutoCluster groups people based on if they match you and each other
  • AutoTree finds common ancestors for trees from each cluster
  • Next, AutoTree finds the trees of all matches combined, including from trees of your DNA matches not in clusters
  • AutoPedigree checks to see if a common ancestor tree meets the minimum requirement which is (at least) 3 matches of greater to or equal to 30-40 cM. If yes, an AutoPedigree with hypotheses is created based on the common ancestor of the matching people.
  • Combined AutoPedigrees then reviews all AutoTrees and AutoPedigrees that have common ancestors and combine them into larger trees.

Let’s look at examples, beginning with DNAPainter who first implemented a form of WATO.

DNA Painter

Let’s say you’re trying to figure out how you’re related to a group of people who descend from a specific ancestral couple. This is particularly useful for someone seeking unknown parents or other unknown relationships.

DNA tools are always from the perspective of the tester, the person whose kit is being utilized.

At DNAPainter, you manually create the pedigree chart beginning with a common couple and creating branches to all of their descendants that you match.

This example at DNAPainter shows the matches with their cM amounts in yellow boxes.

xAutoPedigree DNAPainter WATO2

The tester doesn’t know where they fit in this pedigree chart, so they add other known lines and create hypothesis placeholder possibilities in light blue.

In other words, if you’re searching for your mother and you were born in 1970, you know that your mother was likely born between 1925 (if she was 45 when she gave birth to you) and 1955 (if she was 15 when she gave birth to you.) Therefore, in the family you create, you’d search for parents who could have given birth to children during those years and create hypothetical children in those tree locations.

The WATO tool then utilizes the combination of expected cMs at that position to create scores for each hypothesis position based on how closely or distantly you match other members of that extended family.

The Shared cM Project, created and recently updated by Blaine Bettinger is used as the foundation for the expected centimorgan (cM) ranges of each relationship. DNAPainter has automated the possible relationships for any given matching cM amount, here.

In the graphic above, you can see that the best hypothesis is #2 with a score of 1, followed by #4 and #5 with scores of 3 each. Hypothesis 1 has a score of 63.8979 and hypothesis 3 has a score of 383.

You’ll need to scroll to the bottom to determine which of the various hypothesis are the more likely.

Autopedigree DNAPainter calculated probability

Using DNAPainter’s WATO implementation requires you to create the pedigree tree to test the hypothesis. The benefit of this is that you can construct the actual pedigree as known based on genealogical research. The down-side, of course, is that you have to do the research to current in each line to be able to create the pedigree accurately, and that’s a long and sometimes difficult manual process.

Genetic Affairs and WATO

Genetic Affairs takes a different approach to WATO. Genetic Affairs removes the need for hand entry by scanning your matches at Ancestry and Family Tree DNA, automatically creating pedigrees based on your matches’ trees. In addition, Genetic Affairs automatically creates multiple hypotheses. You may need to utilize both approaches, meaning Genetic Affairs and DNAPainter, depending on who has tested, tree completeness at the vendors, and other factors.

The great news is that you can import the Genetic Affairs reconstructed trees into DNAPainter’s WATO tool instead of creating the pedigrees from scratch. Of course, Genetic Affairs can only use the trees someone has entered. You, on the other hand, can create a more complete tree at DNAPainter.

Combining the two tools leverages the unique and best features of both.

Genetic Affairs AutoPedigree Options

Recently, Genetic Affairs released AutoPedigree, their new tool that utilizes the reconstructed AutoTrees+WATO to place the tester in the most likely region or locations in the reconstructed tree.

Let’s take a look at an example. I’m using my own kit to see what kind of results and hypotheses exist for where I fit in the tree reconstructed from my matches and their trees.

If you actually do have a tree, the AutoTree portion will simply be counted as an equal tree to everyone else’s trees, but AutoPedigree will ignore your tree, creating hypotheses as if it doesn’t exist. That’s great for adoptees who may have hypothetical trees in progress, because that tree is disregarded.

First, sign on to your account at Genetic Affairs and select the AutoPedigree option for either Ancestry or Family Tree DNA which reconstructs trees and generates hypotheses automatically. For AutoPedigree construction, you cannot combine the results from Ancestry and FamilyTreeDNA like you can when reconstructing trees alone. You’ll need to do an AutoPedigree run for each vendor. The good news is that while Ancestry has more testers and matches, FamilyTreeDNA has many testers stretching back 20 years or so in the past who passed away before testing became available at Ancestry. Often, their testers reach back a generation or two further. You can easily transfer Ancestry (and other) results to Family Tree DNA for free to obtain more matches – step-by-step instructions here.

At Genetic Affairs, you should also consider including half-relations, especially if you are dealing with an unknown parent situation. Selecting half-relationships generates very large trees, so you might want to do the first run without, then a second run with half relationships selected.

AutoPedigree options

Results

I ran the program and opened the resulting email with the zip file. Saving that file automatically unzips for me, displaying the following 5 files and folders.

Autopedigree cluster

Clicking on the AutoCluster HTML link reveals the now-familiar clusters, shown below.

Autopedigree clusters

I have a total of 26 clusters, only partially shown above. My first peach cluster and my 9th blue cluster are huge.

Autopedigree 26 clusters

That’s great news because it means that I have a lot to work with.

autopedigree folder

Next, you’ll want to click to open your AutoPedigree folder.

For each cluster, you’ll have a corresponding AutoPedigree file if an AutoPedigree can be generated from the trees of the people in that cluster.

My first cluster is simply too large to show successfully in blog format, so I’m selecting a smaller cluster, #21, shown below with the red arrow, with only 6 members. Why so small, you ask? In part, because I want to illustrate the fact that you really don’t need a lot of matches for the AutoPedigree tool to be useful.

Autopedigree multiple clusters

Note also that this entire group of clusters (blue through brown) has members in more than one cluster, indicated by the grey cells that mean someone is a member of at least 2 clusters. That tells me that I need to include the information from those clusters too in my analysis. Fortunately, Genetic Affairs realizes that and provides a combined AutoPedigree tool for that as well, which we will cover later in the article. Just note for now that the blue through brown clusters seem to be related to cluster 21.

Let’s look at cluster 21.

autopedigree cluster 21

In the AutoPedigree folder, you’ll see cluster files when there are trees available to create pedigrees for individual clusters. If you’re lucky, you’ll find 2 files for some clusters.

autopedigree ancestors

At the top of each cluster AutoPedigree file, Genetic Affairs shows you the home couple of the descendant group shown in the matches and their corresponding trees.

Autopedigree WATO chart

Image 1 – click to enlarge

I don’t expect you to be able to read everything in the above pedigree chart, just note the matches and arrows.

You can see three of my cousins who match, labeled with “Ancestry.” You also see branches that generate a viable hypothesis. When generating AutoPedigrees, Genetic Affairs truncates any branches that cannot result in a viable hypothesis for placing the tester in a viable location on the tree, so you may not see all matches.

Autopedigree hyp 1

Image 2 – click to enlarge

On the top branch, you’ll see hyp-1-child1 which is the first hypothesis, with the first child. Their child is hyp-2- child2, and their child is hyp-3-child3. The tester (me, in this case) cannot be the persons shown with red flags, called badges, based on how I match other people and other tree information such as birth and death dates.

Think of a stoplight, red=no, green are your best bets and the rest are yellow, meaning maybe. AutoPedigree makes no decisions, only shows you options, and calculated mathematically how probable each location is to be correct.

Remember, these “children,” meaning hypothesis 1-child 1 may or may not have actually existed. These relationships are hypothetical showing you that IF these people existed, where the tester could appear on the tree.

We know that I don’t fit on the branch above hypothesis 1, because I only match the descendant of Adam Lentz at 44.2 cM which is statistically too low for me to also inhabit that branch.

I’ve included half relationships, so we see hyp-7-child1-half too, which is a half-sibling.

The rankings for hypotheses 1, 2, and 7 all have red badges, meaning not possible, so they have a score of 0. Hypothesis 3 and 8 are possible, with a ranking of 16, respectively.

autopedigree my location

Image 3 – click to enlarge

Looking now at the next segment of the tree, you see that based on how I match my Deatsman and Hartman cousins, I can potentially fit in any portion of the tree with green badges (in the red boxes) or yellow badges.

You can also see where I actually fit in the tree. HOWEVER, that placement is from AutoTree, the tree reconstruction portion, based on the fact that I have a tree (or someone has a tree with me in it). My own tree is ignored for hypothesis generation for the AutoPedigree hypothesis generation portion.

Had my first cousins once removed through my grandfather John Ferverda’s brother, Roscoe, tested AND HAD A TREE, there would have been no question where I fit based on how I match them.

autopedigree cousins

As it turns out they did test, but provided no tree meaning that Genetic Affairs had no tree to work with.

Remember that I mentioned that my first cluster was huge. Many more matches mean that Genetic Affairs has more to work with. From that cluster, here’s an example of a hypothesis being accurate.

autopedigree correct

Image 4 – click to enlarge

You can see the hypothetical line beneath my own line, with hypothesis 104, 105, 106, 107, 108. The AutoTree portion of my tree is shown above, with my father and grandparents and my name in the green block. The AutoPedigree portion ignores my own tree, therefore generating the hypothesis that’s where I could fit with a rank of 2. And yes, that’s exactly where I fit in the tree.

In this case, there were some hypotheses ranked at 1, but they were incorrect, so be sure to evaluate all good (green) options, then yellow, in that order.

Genetic Affairs cannot work with 23andMe results for AutoPedigree because 23andMe doesn’t provide or support trees on their site. AutoClusters are integrated at MyHeritage, but not the AutoTree or AutoPedigree functions, and they cannot be run separately.

That leaves Family Tree DNA and Ancestry.

Combined AutoPedigree

After evaluating each of the AutoPedigrees generated for each cluster for which an AutoPedigree can be generated, click on the various cluster combined autopedigrees.

autopedigree combined

You can see that for cluster 1, I have 7 separate AutoPedigrees based on common ancestors that were different. I have 3 AutoPedigrees also for cluster 9, and 2 AutoPedigrees for 15, 21, and 24.

I have no AutoPedigrees for clusters 2, 3, 5, 6, 7, 8, 14, 17, 18, and 22.

Moving to the combined clusters, the numbers of which are NOT correlated to the clusters themselves, Genetic Affairs has searched trees and combined ancestors in various clusters together when common ancestors were found.

Autopedigree multiple clusters

Remember that I asked you to note that the above blue through brown clusters seem to have commonality between the clusters based on grey cell matches who are found in multiple groups? In fact, these people do share common ancestors, with a large combined AutoPedigree being generated from those multiple clusters.

I know you can’t read the tree in the image that follows. I’m only including it so you’ll see the scale of that portion of my tree that can be reconstructed from my matches with hypotheses of where I fit.

autopedigree huge

Image 5 – click to enlarge

These larger combined pedigrees are very useful to tie the clusters together and understand how you match numerous people who descend from the same larger ancestral group, further back in time.

Integration with DNAPainter

autopedigree wato file

Each AutoPedigree file and combined cluster AutoPedigree file in the AutoPedigree folder is provided in WATO format, allowing you to import them into DNAPainter’s WATO tool.

autopedigree dnapainter import

You can manually flesh out the trees based on actual genealogy in WATO at DNAPainter, manually add matches from GEDmatch, 23andMe or MyHeritage or matches from vendors where your matches trees may not exist but you know how your match connects to you.

Your AutoTree Ancestors

But wait, there’s more.

autopedigree ancestors folder

If you click on the Ancestors folder, you’ll see 5 options for tree generations 3-7.

autopedigree ancestor generations

My three-generation auto-generated reconstructed tree looks like this:

autopedigree my tree

Selecting the 5th generation level displays Jacob Lentz and Frederica Ruhle, the couple shown in the AutoCluster 21 and AutoPedigree examples earlier. The color-coding indicates the source of the ancestors in that position.

Autopedigree expanded tree

click to enlarge

You will also note that Genetic Affairs indicates how many matches I have that share this common ancestor along with which clusters to view for matches relevant to specific ancestors. How cool is this?!!

Remember that you can also import the genetic match information for each AutoTree cluster found at Family Tree DNA into DNAPainter to paint those matches on your chromosomes using DNAPainter’s Cluster Auto Painter.

If you run AutoCluster for matches at 23andMe, MyHeritage, or FamilyTreeDNA, all vendors who provide segment information, you can also import that cluster segment information into DNAPainter for chromosome painting.

However, from that list of vendors, you can only generate AutoTrees and AutoPedigrees at Family Tree DNA. Given this, it’s in your best interest for your matches to test at or upload their DNA (plus tree) to Family Tree DNA who supports trees AND provides segment information, both, and where you can run AutoTree and AutoPedigree.

Have you painted your clusters or generated AutoTrees? If you’re an adoptee or looking for an unknown parent or grandparent, the new AutoPedigree function is exactly what you need.

Documentation

Genetic Affairs provides complete instructions for AutoPedigree in this newsletter, along with a user manual here, and the Facebook Genetic Affairs User Group can be found here.

I wrote the introductory article, AutoClustering by Genetic Affairs, here, and Genetic Affairs Reconstructs Trees from Genetic Clusters – Even Without Your Tree or Common Ancestors, here. You can read about DNAPainter, here.

Transfer your DNA file, for free, from Ancestry to Family Tree DNA or MyHeritage, by following the easy instructions, here.

Have fun! Your ancestors are waiting.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

 

Free MyHeritage Video – Top Tips for Triangulating your DNA Matches With Roberta Estes

Yesterday’s Facebook LIVE presentation for MyHeritage was lots of fun for everyone, and now it’s available for anyone who might have missed it.

I must say, I was stunned that so many people tuned in. We had just under 5000 watching live, with just under 500 comments. There were literally people from all over the world – with perhaps the exception of the locations where it was the dead of night. A day later, there are already more than 9000 views. I hope everyone is enjoying the session.

It felt good to be connected, even if it was electronically. It was still “live.”

I saw people I knew saying “hey,” DNA matches, known cousins, longtime friends, and at least one person with a fairly rare surname from a location that I suspect shares one of my ancestors.

How cool is that?!

For people who are curious about how this works, I was too, so here’s a short explanation.

The Back Story

One day last week, MyHeritage invited me to create this seminar. I thought it would be nice – given that our lives are all disrupted right now.

They suggested half an hour to an hour, including Q&A time, but being just a tad over-zealous, mine went a little long. The entire session, plus Q&A was an hour and a quarter. It’s impossible to do triangulation justice in a short time because the presenter must first explain how and why triangulation works, and why it’s important. You can’t just dive into the middle of that pool.

Also, just to be very clear, I created this video as a volunteer – I wasn’t paid, and I’m not compensated for this or any other article either. I don’t write articles for money or in exchange for anything. If I do receive something, like a book to review that I did not purchase, I say so. My opinions are my own and not for sale.

Working as a member of a worldwide team is interesting, in part because of the time factor. Israel is 7 hours different from my time in the US, so our practice session on Sunday was quite late for their team members, Esther who you met online and Talya, working behind the scenes.

The underlying platform is a product called BeLive which records the session, provides the chat capability and interfaces with Facebook. This means that the computers, cameras and audio (headsets) of all of the people involved must all be compatible with BeLive, given that Esther and Talya are moderating and handling things like which screen is showing and moderating the chat questions. The speaker really can’t do any more than focus on their topic.

I had planned to use my laptop to present against the backdrop of my fireplace in the living room. If you’re going to have a few thousand people “over,” you might as well hostess in the nicest part of your home, right?

BeLive was challenging on my end, to put it mildly. My husband and I both spent several hours, as did Talya and Esther, trying to make things work. The camera and audio on my laptop worked just fine using other platforms, like Skype and Google Hangouts – but absolutely refused to work with BeLive. Even BeLive technical support was baffled. Nothing worked – although my husband, not to be bested by a computer, installed the desktop version of BeLive (which wasn’t supposed to be necessary), then uninstalled the plugins and reinstalled them, toggled the camera, and it magically began to work. But by that time, I had already changed courses.

Compounding the challenge, my laptop, in the midst of those efforts, just died – as in spontaneously went entirely black. No, the battery wasn’t dead, and no, I didn’t have confidence after that. I was afraid that “sudden death” would happen in the middle of the presentation. I always have to be vigilant, because Murphy lives with me and is ever-present, always lurking about.

I made the decision to shift to my desktop. It’s a newer system, but so new that it’s not entirely configured yet, I hadn’t yet used it for webinars, and I’m not completely familiar with how things work in that new environment either.

Thankfully, BeLive worked well on the desktop system and we were able to complete our practice run. It was past time for Talya and Esther to hit the hay, but I needed to clean my office, at least the part behind and beside me, where viewers could see.

So, if you’re wondering if my desk is always entirely clear, the answer would be a resounding “no.” I wasn’t about to have a messy office with company coming over😊

Actually, one of the things I liked when I watched the other MyHeritage Facebook LIVE sessions with Daniel Horowitz and Ran Snir was the homey nature. You know the presenters are recording from someplace in their house and I felt grateful to them for making that extra effort.

DNA Kits Aren’t Quarantined

You might not be able to visit grandma or your relatives, but you can still order DNA tests and have them delivered through the mail. Mother’s Day is May 10th. Order those DNA tests, here. Your gift to them and their DNA gift to you will continue solving family mysteries forever.

The Video

Now that you’ve learned more about the video production aspect than you ever wanted to know, you can watch the presentation online by clicking on the video, below. This part is super easy!

Note that it has been reported that this embedded link is not viewable in Firefox, so please use Chrome. If you do not see the video displayed below and can’t click to view, just click here.

Enjoy!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Top Tips for Triangulating Your DNA Matches with Roberta Estes – FREE – MyHeritage Facebook LIVE, April 27th

MyHeritage Facebook LIVE.png

Yes, I know this is last minute, but consider this seminar a surprise gift, jointly, from me and MyHeritage😊

Top Tips for Triangulating Your DNA Matches is free for everyone!

I’ll readily admit that presenting via Facebook LIVE is new to me, but we will make this work, I promise.

Tomorrow, Monday, April 27th, 2020 at 2 PM EST, on the MyHeritage Facebook page, I’ll be giving a free presentation, with Q&A, about triangulating your DNA matches at MyHeritage.

About Triangulation

Triangulation is both a tool and a process.

Have you wondered any of the following:

  • What is triangulation?
  • Why do I need to triangulate?
  • Why does triangulation work?
  • How do I triangulate?
  • How do I find matches to triangulate?
  • How does triangulation confirm ancestors?
  • How can I use triangulation in my genealogy?
  • Am I using all the tools to find triangulated matches?

If you’d like to learn more about any of those questions, or you’d like to join in for the fun and camaraderie, I’ll see you tomorrow at 2 PM EDT on the MyHeritage Facebook page.

Test or Transfer

If you haven’t yet tested your DNA with MyHeritage, or transferred your DNA to MyHeritage from elsewhere, now is the perfect time! You’ll find step-by-step transfer instructions, here.

Click here to purchase a DNA test, or here to upload a file from another vendor. You’ll have matches to triangulate before you know it!

See You Monday!!

Click here for the MyHeritage Facebook page where the Facebook LIVE event will take place Monday, April 27th, at 2 PM EST!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Concepts: Chromosome Browser – What Is It, How Do I Use It, and Why Do I Care?

The goal of genetic genealogy is to utilize DNA matches to verify known ancestors and identify unknown ancestors.

A chromosome browser is a tool that allows testers to visualize and compare their DNA on each chromosome with that of their genetic matches. How to utilize and interpret that information becomes a little more tricky.

I’ve had requests for one article with all the information in one place about chromosome browsers:

  • What they are
  • How and when to use them
  • Why you’d want to

I’ve included a feature comparison chart and educational resource list at the end.

I would suggest just reading through this article the first time, then following along with your own DNA results after you understand the basic landscape. Using your own results is the best way to learn anything.

What Does a Chromosome Browser Look Like?

Here’s an example of a match to my DNA at FamilyTreeDNA viewed on their chromosome browser.

browser example.png

On my first 16 chromosomes, shown above, my 1C1R (first cousin once removed,) Cheryl, matches me where the chromosomes are painted blue. My chromosome is represented by the grey background, and her matching portion by the blue overlay.

Cheryl matches me on some portion of all chromosomes except 2, 6, and 13, where we don’t match at all.

You can select any one person, like Cheryl, from your match list to view on a chromosome browser to see where they match you on your chromosomes, or you can choose multiple matches, as shown below.

browser multiple example.png

I selected my 7 closest matches that are not my immediate family, meaning not my parents or children. I’m the background grey chromosome, and each person’s match is painted on top of “my chromosome” in the location where they match me. You see 7 images of my grey chromosome 1, for example, because each of the 7 people being compared to me are shown stacked below one another.

Everyplace that Cheryl matches me is shown on the top image of each chromosome, and our matching segment is shown in blue. The same for the second red copy of the chromosome, representing Don’s match to me. Each person I’ve selected to match against is shown by their own respective color.

You’ll note that in some cases, two people match me in the same location. Those are the essential hints we are looking for. We’ll be discussing how to unravel, interpret, and use matches in the rest of this article.

browser MyHeritage example.png

The chromosome browser at MyHeritage looks quite similar. However, I have a different “top 7” matches because each vendor has people who test on their platform who don’t test or transfer elsewhere.

Each vendor that supports chromosome browsers (FamilyTreeDNA, MyHeritage, 23andMe, and GedMatch) provides their own implementation, of course, but the fundamentals of chromosome browsers, how they work and what they are telling us is universal.

Why Do I Need a Chromosome Browser?

“But,” you might say, “I don’t need to compare my DNA with my matches because the vendors already tell me that I match someone, which confirms that we are related and share a common ancestor.”

Well, not exactly. It’s not quite that straightforward.

Let’s take a look at:

  • How and why people match
  • What matches do and don’t tell you
  • Both with and without a chromosome browser

In part, whether you utilize a chromosome browser or not depends on which of the following you seek:

  • A broad-brush general answer; yes or no, I match someone, but either I don’t know how are related, or have to assume why. There’s that assume word again.
  • To actually confirm and prove your ancestry, getting every ounce of value out of your DNA test.

Not everyone’s goals are the same. Fortunately, we have an entire toolbox with a wide range of tools. Different tools are better suited for different tasks.

People seeking unknown parents should read the article, Identifying Unknown Parents and Individuals Using DNA Matching because the methodology for identifying unknown parents is somewhat different than working with genealogy. This article focuses on genealogy, although the foundation genetic principles are the same.

If you’re just opening your DNA results for the first time, the article, First Steps When Your DNA Results are Ready – Sticking Your Toe in the Genealogy Water would be a great place to start.

Before we discuss chromosome browsers further, we need to talk about DNA inheritance.

Your Parents

Every person has 2 copies of each of their 22 chromosomes – one copy contributed by their mother and one copy contributed by their father. A child receives exactly half of the autosomal DNA of each parent. The DNA of each parent combines somewhat randomly so that you receive one chromosome’s worth of DNA from each of your parents, which is half of each parent’s total.

On each chromosome, you receive some portion of the DNA that each parent received from their ancestors, but not exactly half of the DNA from each individual ancestor. In other words, it’s not sliced precisely in half, but served up in chunks called segments.

Sometimes you receive an entire segment of an ancestor’s DNA, sometimes none, and sometimes a portion that isn’t equal to half of your parent’s segment.

browser inheritance.png

This means that you don’t receive exactly half of the DNA of each of your grandparents, which would be 25% each. You might receive more like 22% from one maternal grandparent and 28% from the other maternal grandparent for a total of 50% of the DNA you inherit from your parents. The other 50% of your DNA comes from the other parent, of course. I wrote about that here.

There’s one tiny confounding detail. The DNA of your Mom and Dad is scrambled in you, meaning that the lab can’t discern scientifically which side is which and can’t tell which pieces of DNA came from Mom and which from Dad. Think of a genetic blender.

Our job, using genetic genealogy, is to figure out which side of our family people who match us descend from – which leads us to our common ancestor(s).

Parallel Roads

For the purposes of this discussion, you’ll need to understand that the two copies you receive of each chromosome, one from each parent, have the exact same “addresses.” Think of these as parallel streets or roads with identical addresses on each road.

browser street.png

In the example above, you can see Dad’s blue chromosome and Mom’s red chromosome as compared to me. Of course, children and parents match on the full length of each chromosome.

I’ve divided this chromosome into 6 blocks, for purposes of illustration, plus the centromere where we generally find no addresses used for genetic genealogy.

In the 500 block, we see that the address of 510 Main (red bar) could occur on either Dad’s chromosome, or Mom’s. With only an address and nothing more, you have no way to know whether your match with someone at 510 Main is on Mom’s or Dad’s side, because both streets have exactly the same addresses.

Therefore, if two people match you, at the same address on that chromosome, like 510 Main Street, they could be:

  • Both maternal matches, meaning both descended from your mother’s ancestors, and those two people will also match each other
  • Both paternal matches, meaning both descended from your father’s ancestors, and those two people will also match each other
  • One maternal and one paternal match, and those two people will not match each other

Well then, how do we know which side of the family a match descends from, and how do we know if we share a common ancestor?

Good question!

Identical by Descent

If you and another person match on a reasonably sized DNA segment, generally about 7 cM or above, your match is probably “identical by descent,” meaning not “identical by chance.” In this case, then yes, a match does confirm that you share a common ancestor.

Identical by descent (IBD) means you inherited the piece of DNA from a common ancestor, inherited through the relevant parent.

Identical by chance (IBC) means that your mom’s and dad’s DNA just happens to have been inherited by you randomly in a way that creates a sequence of DNA that matches that other person. I wrote about both IBD and IBC here.

MMB stats by cM 2

This chart, courtesy of statistician Philip Gammon, from the article Introducing the Match-Maker-Breaker Tool for Parental Phasing shows the percentage of time we expect matches of specific segment sizes to be valid, or identical by descent.

Identical by Chance

How does this work?

How is a match NOT identical by descent, meaning that it is identical by chance and therefore not a “real” or valid match, a situation also known as a false positive?

browser inheritance grid.png

The answer involves how DNA is inherited.

You receive a chromosome with a piece of DNA at every address from both parents. Of course, this means you have two pieces of DNA at each address. Therefore people will match you on either piece of DNA. People from your Dad’s side will match you on the pieces you inherited from him, and people from your Mom’s side will match you on the pieces you inherited from her.

However, both of those matches have the same address on their parallel streets as shown in the illustration, above. Your matches from your mom’s side will have all As, and those from your dad’s side will have all Ts.

The problem is that you have no way to know which pieces you inherited from Mom and from Dad – at least not without additional information.

You can see that for 10 contiguous locations (addresses), which create an example “segment” of your DNA, you inherited all As from your Mom and all Ts from your Dad. In order to match you, someone would either need to have an A or a T in one of their two inherited locations, because you have an A and a T, both. If the other person has a C or a G, there’s no match.

Your match inherited a specific sequence from their mother and father, just like you did. As you can see, even though they do match you because they have either an A or a T in all 10 locations – the As and Ts did not all descend from either their mother or father. Their random inheritance of Ts and As just happens to match you.

If your match’s parents have tested, you won’t match either of their parents nor will they match either of your parents, which tells you immediately that this match is by chance (IBC) and not by descent (IBD), meaning this segment did not come from a common ancestor. It’s identical by chance and, therefore, a false positive.

If We Match Someone Else In Common, Doesn’t That Prove Identical by Descent?

Nope, but I sure wish it did!

The vendors show you who else you and your match both match in common, which provides a SUGGESTION as to your common ancestor – assuming you know which common ancestor any of these people share with you.

browser icw.png

However, shared matches are absolutely NOT a guarantee that you, your match, and your common matches all share the same ancestor, unless you’re close family. Your shared match could match you or your match through different ancestors – or could be identical by chance.

How can we be more confident of what matching is actually telling us?

How can we sort this out?

Uncertainties and Remedies

Here’s are 9 things you DON’T know, based on matching alone, along with tips and techniques to learn more.

  1. If your match to Person A is below about 20cM, you’ll need to verify that it’s a legitimate IBD match (not IBC). You can achieve this by determining if Person A also matches one of your parents and if you match one of Person A’s parents, if parents have tested.

Not enough parents have tested? An alternative method is by determining if you and Person A both match known descendants of the candidate ancestors ON THE SAME SEGMENT. This is where the chromosome browser enters the picture.

In other words, at least three people who are confirmed to descend from your presumptive common ancestor, preferably through at least two different children, must match on a significant portion of the same segment.

Why is that? Because every segment has its own unique genealogical history. Each segment can and often does lead to different ancestors as you move further back in time.

In this example, I’m viewing Buster, David, and E., three cousins descended from the same ancestral couple, compared to me on my chromosome browser. I’m the background grey, and they show in color. You can see that all three of them match me on at least some significant portion of the same segment of chromosome 15.

browser 3 cousins.png

If those people also match each other, that’s called triangulation. Triangulation confirms descent from a common ancestral source.

In this case, I already know that these people are related on my paternal side. The fact that they all match my father’s DNA and are therefore all automatically assigned to my paternal matching tab at Family Tree DNA confirms my paper-trail genealogy.

I wrote detailed steps for triangulation at Family Tree DNA, here. In a nutshell, matching on the same segment to people who are bucketed to the same parent is an automated method of triangulation.

Of course, not everyone has the luxury of having their parents tested, so testing other family members, finding common segments, and assigning people to their proper location in your tree facilitates confirmation of your genealogy (and automating triangulation.)

The ONLY way you can determine if people match you on the same segment, and match each other, is having segment information available to you and utilizing a chromosome browser.

browser MyHeritage triangulation.png

In the example above, the MyHeritage triangulation tool brackets matches that match you (the background grey) and who are all triangulated, meaning they all also match each other. In this case, the portion where all three people match me AND each other is bracketed. I wrote about triangulation at MyHeritage here.

  1. If you match several people who descend from the same ancestor, John Doe, for example, on paper, you CANNOT presume that your match to all of those people is due to a segment of DNA descended from John Doe or his wife. You may not match any of those people BECAUSE OF or through segments inherited from John Doe or his wife. You need segment information and a chromosome browser to view the location of those matches.

Assuming these are legitimate IBD matches, you may share another common line, known or unknown, with some or all of those matches.

It’s easy to assume that because you match and share matches in common with other people who believe they are descended from that same ancestor:

  • That you’re all matching because of that ancestor.
  • Even on the same segments.

Neither of those presumptions can be made without additional information.

Trust me, you’ll get yourself in a heap o’ trouble if you assume. Been there, done that. T-shirt was ugly.

Let’s look at how this works.

browser venn.png

Here’s a Venn diagram showing me, in the middle, surrounded by three of my matches:

  • Match 1 – Periwinkle, descends from Lazarus Estes and Elizabeth Vannoy
  • Match 2 – Teal, descends from Joseph Bolton and Margaret Claxton
  • Match 3 – Mustard, descends from John Y. Estes and Rutha Dodson

Utilizing a chromosome browser, autocluster software, and other tools, we can determine if those matches also match each other on a common segment, which means they triangulate and confirm common ancestral descent.

Of course, those people could match each other due to a different ancestor, not necessarily the one I share with them nor the ancestors I think we match through.

If they/we do all match because they descend from a common ancestor, they can still match each other on different segments that don’t match me.

I’m in the center. All three people match me, and they also match each other, shown in the overlap intersections.

Note that the intersection between the periwinkle (Match 1) and teal (Match 2) people, who match each other, is due to the wives of the children of two of my ancestors. In other words, their match to each other has absolutely nothing to do with their match to me. This was an “aha’ moment for me when I first realized this was a possibility and happens far more than I ever suspected.

The intersection of the periwinkle (Match 1) and mustard (Match 3) matches is due to the Dodson line, but on a different segment than they both share with me. If they had matched each other and me on the same segment, we would be all triangulated, but we aren’t.

The source of the teal (Match 2) to mustard (Match 3) is unknown, but then again, Match 3’s tree is relatively incomplete.

Let’s take a look at autocluster software which assists greatly with automating the process of determining who matches each other, in addition to who matches you.

  1. Clustering technology, meaning the Leeds method as automated by Genetic Affairs and DNAGedcom help, but don’t, by themselves, resolve the quandary of HOW people match you and each other.

People in a colored cluster all match you and each other – but not necessarily on the same segment, AND, they can match each other because they are related through different ancestors not related to your ancestor. The benefit of autocluster software is that this process is automated. However, not all of your matches will qualify to be placed in clusters.

browser autocluster.png

My mustard cluster above includes the three people shown in the chromosome browser examples – and 12 more matches that can be now be researched because we know that they are all part of a group of people who all match me, and several of whom match each other too.

My matches may not match each other for a variety of reasons, including:

  • They are too far removed in time/generations and didn’t inherit any common ancestral DNA.
  • This cluster is comprised of some people matching me on different (perhaps intermarried) lines.
  • Some may be IBC matches.

Darker grey boxes indicate that those people should be in both clusters, meaning the red and mustard clusters, because they match people in two clusters. That’s another hint. Because of the grid nature of clusters, one person cannot be associated with more than 2 clusters, maximum. Therefore, people like first cousins who are closely related to the tester and could potentially be in many clusters are not as useful in clusters as they are when utilizing other tools.

  1. Clusters and chromosome browsers are much less complex than pedigree charts, especially when dealing with many people. I charted out the relationships of the three example matches from the Venn diagram. You can see that this gets messy quickly, and it’s much more challenging to visualize and understand than either the chromosome browser or autoclusters.

Having said that, the ultimate GOAL is to identify how each person is related to you and place them in their proper place in your tree. This, cumulatively with your matches, is what identifies and confirms ancestors – the overarching purpose of genealogy and genetic genealogy.

Let’s take a look at this particular colorized pedigree chart.

Browser pedigree.png

click to enlarge

The pedigree chart above shows the genetic relationship between me and the three matches shown in the Venn diagram.

Four descendants of 2 ancestral couples are shown, above; Joseph Bolton and Margaret Claxton, and John Y. Estes and Rutha Dodson. DNA tells me that all 3 people match me and also match each other.

The color of the square (above) is the color of DNA that represents the DNA segment that I received and match with these particular testers. This chart is NOT illustrating how much DNA is passed in each generation – we already know that every child inherits half of the DNA of each parent. This chart shows match/inheritance coloring for ONE MATCHING SEGMENT with each match, ONLY.

Let’s look at Joseph Bolton (blue) and Margaret Claxton (pink). I descend through their daughter, Ollie Bolton, who married William George Estes, my grandfather. The DNA segment that I share with blue Match 2 (bottom left) is a segment that I inherited from Joseph Bolton (blue). I also carry inherited DNA from Margaret Claxton too, but that’s not the segment that I share with Match 2, which is why the path from Joseph Bolton to me, in this case, is blue – and why Match 2 is blue. (Just so you are aware, I know this segment descends from Joseph Bolton, because I also match descendants of Joseph’s father on this segment – but that generation/mtach is not shown on this pedigree chart.)

If I were comparing to someone else who I match through Margaret Claxton, I would color the DNA from Margaret Claxton to me pink in that illustration. You don’t have to DO this with your pedigree chart, so don’t worry. I created this example to help you understand.

The colored dots shown on the squares indicate that various ancestors and living people do indeed carry DNA from specific ancestors, even though that’s not the segment that matches a particular person. In other words, the daughter, Ollie, of Joseph Bolton and Margaret Claxton carries 50% pink DNA, represented by the pink dot on blue Ollie Bolton, married to purple William George Estes.

Ollie Bolton and William George Estes had my father, who I’ve shown as half purple (Estes) and half blue (Bolton) because I share Bolton DNA with Match 2, and Estes DNA with Match 1. Obviously, everyone receives half of each parent’s DNA, but in this case, I’m showing the path DNA descended for a specific segment shared with a particular match.

I’ve represented myself with the 5 colors of DNA that I carry from these particular ancestors shown on the pedigree chart. I assuredly will match other people with DNA that we’ve both inherited from these ancestors. I may match these same matches shown with DNA that we both inherited from other ancestors – for example, I might match Match 2 on a different segment that we both inherited from Margaret Claxton. Match 2 is my second cousin, so it’s quite likely that we do indeed share multiple segments of DNA.

Looking at Match 3, who knows very little about their genealogy, I can tell, based on other matches, that we share Dodson DNA inherited through Rutha Dodson.

I need to check every person in my cluster, and that I share DNA with on these same segment addresses to see if they match on my paternal side and if they match each other.

  1. At Family Tree DNA, I will be able to garner more information about whether or not my matches match each other by using the Matrix tool as well as by utilizing Phased Family Matching.

At Family Tree DNA, I determined that these people all match in common with me and Match 1 by using the “In Common With” tool. You can read more about how to use “In Common With” matching, here.

browser paternal.png

Family Matching phases the matches, assigning or bucketed them maternally or paternally (blue and red icons above), indicating, when possible, if these matches occur on the same side of your family. I wrote about the concept of phasing, here, and Phased Family Matching here and here.

Please note that there is no longer a limit on how distantly related a match can be in order to be utilized in Phased Family Matching, so long as it’s over the phase-matching threshold and connected correctly in your tree.

browser family tree dna link tree.png

Bottom line, if you can figure out how you’re related to someone, just add them into your tree by creating a profile card and link their DNA match to them by simply dragging and dropping, as illustrated above.

Linking your matches allows Family Matching to maternally or paternally assign other matches that match both you and your tree-linked matches.

If your matches match you on the same segment on the same parental side, that’s segment triangulation, assuming the matches are IBD. Phased Family Matching does this automatically for you, where possible, based on who you have linked in your tree.

For matches that aren’t automatically bucketed, there’s another tool, the Matrix.

browser matrix.png

In situations where your matches aren’t “bucketed” either maternally or paternally, the Matrix tool allows you to select matches to determine whether your matches also match each other. It’s another way of clustering where you can select specific people to compare. Note that because they also match each other (blue square) does NOT mean it’s on the same segment(s) where they match you. Remember our Venn diagram.

browser matrix grid.png

  1. Just because you and your matches all match each other doesn’t mean that they are matching each other because of the same ancestor. In other words, your matches may match each other due to another or unknown ancestor. In our pedigree example, you can see that the three matches match each other in various ways.
browser pedigree match.png

click to enlarge

  • Match 1 and Match 2 match each other because they are related through the green Jones family, who is not related to me.
  • Match 2 and Match 3 don’t know why they match. They both match me, but not on the same segment they share with each other.
  • Match 1 and Match 3 match through the mustard Dodson line, but not on the same segment that matches me. If we all did match on the same segment, we would be triangulated, but we wouldn’t know why Match 3 was in this triangulation group.
  1. Looking at a downloaded segment file of your matches, available at all testing vendors who support segment information and a chromosome browser, you can’t determine without additional information whether your matches also match each other.

browser chr 15.png

Here’s a group of people, above, that we’ve been working with on chromosome 15.

My entire match-list shows many more matches on that segment of chromosome 15. Below are just a few.

browser chr 15 all

Looking at seven of these people in the chromosome browser, we can see visually that they all overlap on part of a segment on chromosome 15. It’s a lot easier to see the amount of overlap using a browser as opposed to the list. But you can only view 7 at a time in the browser, so the combination of both tools is quite useful. The downloaded spreadsheet shows you who to select to view for any particular segment.

browser chr 15 compare.png

The critical thing to remember is that some matches will be from tyour mother’s side and some from your father’s side.

Without additional information and advanced tools, there’s no way to tell the difference – unless they are bucketed using Phased Family Matching at Family Tree DNA or bracketed with a triangulation bracket at MyHeritage.

At MyHeritage, this assumes you know the shared ancestor of at least one person in the triangulation group which effectively assigns the match to the maternal or paternal side.

Looking at known relatives on either side, and seeing who they also match, is how to determine whether these people match paternally or maternally. In this example below, the blue people are bucketed paternally through Phased Family Matching, the pink maternally, and the white rows aren’t bucketed and therefore require additional evaluation.

browser chr 15 maternal paternal.png

Additional research shows that Jonathan is a maternal match, but Robert and Adam are identical by chance because they don’t match either of my parents on this segment. They might be valid matches on other segments, but not this one.

browser chr 15 compare maternal paternal.png

  1. Utilizing relatives who have tested is a huge benefit, and why we suggest that everyone test their closest upstream relatives (meaning not children or grandchildren.) Testing all siblings is recommended if both parents aren’t available to test, because every child received different parts of their parents’ DNA, so they will match different relatives.

After deleting segments under 7 cM, I combine the segment match download files of multiple family members (who agree to allow me to aggregate their matches into one file for analysis) so that I can create a master match file for a particular family group. Sorting by match name, I can identify people that several of my cousins’ match.

browser 4 groups.png

This example is from a spreadsheet where I’ve combined the results of about 10 collaborating cousins to determine if we can break through a collective brick wall. Sorted by match name, this table shows the first 4 common matches that appear on multiple cousin’s match lists. Remember that how these people match may have nothing to do with our brick wall – or it might.

Note that while the 4 matches, AB, AG, ag, and A. Wayne, appear in different cousins’ match lists, only one shares a common segment of DNA: AB triangulates with Buster and Iona. This is precisely WHY you need segment information, and a chromosome browser, to visualize these matches, and to confirm that they do share a common DNA segment descended from a specific ancestor.

These same people will probably appear in autocluster groups together as well. It’s worth noting, as illustrated in the download example, that it’s much more typical for “in common with” matches to match on different segments than on the same segment. 

  1. Keep in mind that you will match both your mother and father on every single chromosome for the entire length of each chromosome.

browser parent matching.png

Here’s my kit matching with my father, in blue, and mother, in red on chromosomes 1 and 2.

Given that I match both of my parents on the full chromosome, inheriting one copy of my chromosome from each parent, it’s impossible to tell by adding any person at random to the chromosome browser whether they match me maternally or paternally. Furthermore, many people aren’t fortunate enough to have parents available for testing.

To overcome that obstacle, you can compare to known or close relatives. In fact, your close relatives are genetic genealogy gold and serve as your match anchor. A match that matches you and your close relatives can be assigned either maternally or paternally. I wrote about that here.

browser parent plus buster.png

You can see that my cousin Buster matches me on chromosome 15, as do both of my parents, of course. At this point, I can’t tell from this information alone whether Buster matches on my mother’s or father’s side.

I can tell you that indeed, Buster does match my father on this same segment, but what if I don’t have the benefit of my father’s DNA test?

Genealogy tells me that Buster matches me on my paternal side, through Lazarus Estes and Elizabeth Vannoy. Given that Buster is a relatively close family member, I already know how Buster and I are related and that our DNA matches. That knowledge will help me identify and place other relatives in my tree who match us both on the same segment of DNA.

To trigger Phased Family Matching, I placed Buster in the proper place in my tree at Family Tree DNA and linked his DNA. His Y DNA also matches the Estes males, so no adoptions or misattributed parental events have occurred in the direct Estes patrilineal line.

browser family tree dna tree.png

I can confirm this relationship by checking to see if Buster matches known relatives on my father’s side of the family, including my father using the “in common with” tool.

Buster matches my father as well as several other known family members on that side of the family on the same segments of DNA.

browser paternal bucket.png

Note that I have a total of 397 matches in common with Buster, 140 of which have been paternally bucketed, 4 of which are both (my children and grandchildren), and 7 of which are maternal.

Those maternal matches represent an issue. It’s possible that those people are either identical by chance or that we share both a maternal and paternal ancestor. All 7 are relatively low matches, with longest blocks from 9 to 14 cM.

Clearly, with a total of 397 shared matches with Buster, not everyone that I match in common with Buster is assigned to a bucket. In fact, 246 are not. I will need to take a look at this group of people and evaluate them individually, their genealogy, clusters, the matrix, and through the chromosome browser to confirm individual matching segments.

There is no single perfect tool.

Every Segment Tells a Unique History

I need to check each of the 14 segments that I match with Buster because each segment has its own inheritance path and may well track back to different ancestors.

browser buster segments.png

It’s also possible that we have unknown common ancestors due to either adoptions, NPEs, or incorrect genealogy, not in the direct Estes patrilineal line, but someplace in our trees.

browser buster paint.png

The best way to investigate the history and genesis of each segment is by painting matching segments at DNAPainter. My matching segments with Buster are shown painted at DNAPainter, above. I wrote about DNAPainter, here.

browser overlap.png

By expanding each segment to show overlapping segments with other matches that I’ve painted and viewing who we match, we can visually see which ancestors that segment descends from and through.

browser dnapainter walk back.png

These roughly 30 individuals all descend from either Lazarus Estes and Elizabeth Vannoy (grey), Elizabeth’s parents (dark blue), or her grandparents (burgundy) on chromosome 15.

As more people match me (and Buster) on this segment, on my father’s side, perhaps we’ll push this segment back further in time to more distant ancestors. Eventually, we may well be able to break through our end-of-line brick wall using these same segments by looking for common upstream ancestors in our matches’ trees.

Arsenal of Tools

This combined arsenal of tools is incredibly exciting, but they all depend on having segment information available and understanding how to use and interpret segment and chromosome browser match information.

One of mine and Buster’s common segments tracks back to end-of-line James Moore, born about 1720, probably in Virginia, and another to Charles Hickerson born about 1724. It’s rewarding and exciting to be able to confirm these DNA segments to specific ancestors. These discoveries may lead to breaking through those brick walls eventually as more people match who share common ancestors with each other that aren’t in my tree.

This is exactly why we need and utilize segment information in a chromosome browser.

We can infer common ancestors from matches, but we can’t confirm segment descent without specific segment information and a chromosome browser. The best we can do, otherwise, is to presume that a preponderance of evidence and numerous matches equates to confirmation. True or not, we can’t push further back in time without knowing who else matches us on those same segments, and the identity of their common ancestors.

The more evidence we can amass for each ancestor and ancestral couple, the better, including:

  • Matches
  • Shared “In Common With” Matches, available at all vendors.
  • Phased Family Matching at Family Tree DNA assigns matches to maternal or paternal sides based on shared, linked DNA from known relatives.
  • The Matrix, a Family Tree DNA tool to determine if matches also match each other. Tester can select who to compare.
  • ThruLines from Ancestry is based on a DNA match and shared ancestors in trees, but no specific segment information or chromosome browser. I wrote about ThruLines here and here.
  • Theories of Family Relativity, aka TOFR, at MyHeritage, based on shared DNA matches, shared ancestors in trees and trees constructed between matches from various genealogical records and sources. MyHeritage includes a chromosome browser and triangulation tool. I wrote about TOFR here and here.
  • Triangulation available through Phased Family Matching at Family Tree DNA and the integrated triangulation tool at MyHeritage. Triangulation between only 3 people at a time is available at 23andMe, although 23andMe does not support trees. See triangulation article links in the Resource Articles section below.
  • AutoClusters at MyHeritage (cluster functionality included), at Genetic Affairs (autoclusters plus tree reconstruction) and at DNAGedcom (including triangulation).
  • Genealogical information. Please upload your trees to every vendor site.
  • Y DNA and mitochondrial DNA confirmation, when available, through Family Tree DNA. I wrote about the 4 Kinds of DNA for Genetic Genealogy, here and the importance of Y DNA confirmation here, and how not having that information can trip you up.
  • Compiled segment information at DNAPainter allows you to combine segment information from various vendors, paint your maternal and paternal chromosomes, and visually walk segments back in time. Article with DNAPainter instructions is found here.

Autosomal Tool Summary Table

In order to help you determine which tool you need to use, and when, I’ve compiled a summary table of the types of tools and when they are most advantageous. Of course, you’ll need to read and understand about each tool in the sections above. This table serves as a reminder checklist to be sure you’ve actually utilized each relevant tool where and how it’s appropriate.

Family Tree DNA MyHeritage Ancestry 23andMe GedMatch
DNA Matches Yes Yes Yes Yes, but only highest 2000 minus whoever does not opt -in Yes, limited matches for free, more with subscription (Tier 1)
Download DNA Segment Match Spreadsheet Yes Yes No, must use DNAGedcom for any download, and no chromosome segment information Yes Tier 1 required, can only download 1000 through visualization options
Segment Spreadsheet Benefits View all matches and sort by segment, target all people who match on specific segments for chromosome browser View all matches and sort by segment, target all people who match on specific segments for chromosome browser No segment information but matches might transfer elsewhere where segment information is available View up to 2000 matches if matches have opted in. If you have initiated contact with a match, they will not drop off match list. Can download highest 1000 matches, target people who match on specific segments
Spreadsheet Challenges Includes small segments, I delete less than 7cM segments before using No X chromosome included No spreadsheet and no segment information Maximum of 2000 matches, minus those not opted in Download limited to 1000 with Tier 1, download not available without subscription
Chromosome Segment Information Yes Yes No, only total and longest segment, no segment address Yes Yes
Chromosome Browser Yes, requires $19 unlock if transfer Yes, requires $29 unlock or subscription if transfer No Yes Yes, some features require Tier 1 subscription
X Chromosome Included Yes No No Yes Yes, separate
Chromosome Browser Benefit Visual view of 7 or fewer matches Visual view of 7 or fewer matches, triangulation included if ALL people match on same portion of common segment No browser Visual view of 5 or fewer matches Unlimited view of matches, multiple options through comparison tools
Chromosome Browser Challenges Can’t tell whether maternal or paternal matches without additional info if don’t select bucketed matches Can’t tell whether maternal or paternal without additional info if don’t triangulate or you don’t know your common ancestor with at least one person in triangulation group No browser Can’t tell whether maternal or paternal without other information Can’t tell whether maternal or paternal without other information
Shared “In Common With” Matches Yes Yes Yes Yes, if everyone opts in Yes
Triangulation Yes, Phased Family Matching, plus chromosome browser Yes, included in chromosome browser if all people being compared match on that segment No, and no browser Yes, but only for 3 people if “Shared DNA” = Yes on Relatives in Common Yes, through multiple comparison tools
Ability to Know if Matches Match Each Other (also see autoclusters) Yes, through Matrix tool or if match on common bucketed segment through Family Matching Yes, through triangulation tool if all match on common segment No Yes, can compare any person to any other person on your match list Yes, through comparison tool selections
Autoclusters Can select up to 10 people for Matrix grid, also available for entire match list through Genetic Affairs and DNAGedcom which work well Genetic Affairs clustering included free, DNAGedcom has difficulty due to timeouts No, but Genetic Affairs and DNAGedcom work well No, but Genetic Affairs and DNAGedcom work well Yes, Genetic Affairs included in Tier 1 for selected kits, DNAGedcom is in beta
Trees Can upload or create tree. Linking you and relatives who match to tree triggers Phased Family Matching Can upload or create tree. Link yourself and kits you manage assists Theories of Family Relativity Can upload or create tree. Link your DNA to your tree to generate ThruLines. Recent new feature allows linking of DNA matches to tree. No tree support but can provide a link to a tree elsewhere Upload your tree so your matches can view
Matching and Automated Tree Construction of DNA Matches who Share Common Ancestors with You Genetic Affairs for matches with common ancestors with you Not available Genetic Affairs for matches with common ancestors with you No tree support Not available
Matching and Automated Tree Construction for DNA Matches with Common Ancestors with Each Other, But Not With You Genetic Affairs for matches with common ancestors with each other, but not with you Not available Genetic Affairs for matches with common ancestors with each other, but not with you No tree support Not available
DNAPainter Segment Compilation and Painting Yes, bucketed Family Match file can be uploaded which benefits tester immensely. Will be able to paint ethnicity segments soon. Yes No segment info available, encourage your matches to upload elsewhere Yes, and can paint ethnicity segments from 23andMe, Yes, but only for individually copied matches or highest 1000.
Y DNA and Mitochondrial Matching Yes, both, includes multiple tools, deep testing and detailed matching No No No, base haplogroup only, no matching No, haplogroup only if field manually completed by tester when uploading autosomal DNA file

Transfer Your DNA

Transferring your DNA results to each vendor who supports segment information and accepts transfers is not only important, it’s also a great way to extend your testing collar. Every vendor has strengths along with people who are found there and in no other database.

Ancestry does not provide segment information nor a chromosome browser, nor accept uploads, but you have several options to transfer your DNA file for free to other vendors who offer tools.

23andMe does provide a chromosome browser but does not accept uploads. You can download your DNA file and transfer free to other vendors.

I wrote detailed upload/download and transfer instructions for each vendor, here.

Two vendors and one third party support transfers into their systems. The transfers include matching. Basic tools are free, but all vendors charge a minimal fee for unlocking advanced tools, which is significantly less expensive than retesting:

Third-party tools that work with your DNA results include:

All vendors provide different tools and have unique strengths. Be sure that your DNA is working as hard as possible for you by fishing in every pond and utilizing third party tools to their highest potential.

Resource Articles

Explanations and step by step explanations of what you will see and what to do, when you open your DNA results for the first time.

Original article about chromosomes having 2 sides and how they affect genetic genealogy.

This article explains what triangulation is for autosomal DNA.

Why some matches may not be valid, and how to tell the difference.

This article explains the difference between a match group, meaning a group of people who match you, and triangulation, where that group also matches each other. The concepts are sound, but this article relies heavily on spreadsheets, before autocluster tools were available.

Parental phasing means assigning segment matches to either your paternal or maternal side.

Updated, introductory article about triangulation, providing the foundation for a series of articles about how to utilize triangulation at each vendor (FamilyTreeDNA, MyHeritage, 23andMe, GEDmatch, DNAPainter) that supports triangulation.

These articles step you through triangulation at each vendor.

DNAPainter facilitates painting maternally and paternally phased, bucketed matches from FamilyTreeDNA, a method of triangulation.

Compiled articles with instructions and ideas for using DNAPainter.

Autoclustering tool instructions.

How and why The Leeds Method works.

Step by step instructions for when and how to use FamilyTreeDNA’s chromosome browser.

Close family members are the key to verifying matches and identifying common ancestors.

This article details how much DNA specific relationships between people can expect to share.

Overview of transfer information and links to instruction articles for each vendor, below.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags, and other items

Triangulation in Action at DNAPainter

Recently, I published the article, Hitting a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters. The “Home Run” article explains why you want to use a chromosome browser, what you’re seeing and what it means to you.

This article, and the rest in the “Triangulation in Action” series introduces triangulation at FamilyTreeDNA, MyHeritage, 23andMe, GedMatch and DNAPainter, explaining how to use triangulation to confirm descent from a common ancestor. You may want to read the introductory article first.

This first section, “What is Triangulation” is a generic tutorial. If you don’t need the tutorial, skip to the “Transfers” or “Triangulation at DNAPainter” section.

What is Triangulation?

Think of triangulation as a three-legged stool – a triangle. Triangulation requires three things:

  1. At least three (not closely related) people must match
  2. On the same reasonably sized segment of DNA and
  3. Descend from a common ancestor

Triangulation is the foundation of confirming descent from a common ancestor, and thereby assigning a specific segment to that ancestor. Without triangulation, you might just have a match to someone else by chance. You can confirm mathematical triangulation, numbers 1 and 2, above, without knowing the identity of the common ancestor.

Reasonably sized segments are generally considered to be 7cM or above on chromosomes 1-22 and 15cM or above for the X chromosome.

Boundaries

Triangulation means that all three, or more, people much match on a common segment. However, what you’re likely to see is that some people don’t match on the entire segment, meaning more or less than others as demonstrated in the following examples.

FTDNA Triangulation boundaries

You can see that I match 5 different cousins who I know descend from my father’s side on chromosome 15 above. “I” am the grey background against which everyone else is being compared.

I triangulate with these matches in different ways, forming multiple triangulation groups that I’ve discussed individually, below.

Triangulation Group 1

FTDNA triangulation 1

Group 1 – On the left group of matches, above, I triangulate with the blue, red and orange person on the amount of DNA that is common between all of them, shown in the black box. This is triangulation group 1.

Triangulation Group 2

FTDNA triangulation 2

Group 2 – However, if you look just at the blue and orange triangulated matches bracketed in green, I triangulate on slightly more. This group excludes the red person because their beginning point is not the same, or even close. This is triangulation group 2.

Triangulation Group 3 and 4

FTDNA triang 3

Group 3 – In the right group of matches, there are two large triangulation groups. Triangulation group 3 includes the common portions of blue, red, teal and orange matches.

Group 4 – Triangulation group 4 is the skinny group at right and includes the common portion of the blue, teal and dark blue matches.

Triangulation Groups 5 and 6

FTDNA triang 5

Group 5 – There are also two more triangulation groups. The larger green bracketed group includes only the blue and teal people because their end locations are to the right of the end locations of the red and orange matches. This is triangulation group 5.

Group 6 – The smaller green bracketed group includes only the blue and teal person because their start locations are before the dark blue person. This is triangulation group 6.

There’s actually one more triangulation group. Can you see it?

Triangulation Group 7

FTDNA triang 7

Group 7 – The tan group includes the red, teal and orange matches but only the areas where they all overlap. This excludes the top blue match because their start location is different. Triangulation group 7 only extends to the end of the red and orange matches, because those are the same locations, while the teal match extends further to the right. That extension is excluded, of course.

Slight Variations

Matches with only slight start and end differences are probably descended from the same ancestor, but we can’t say that for sure (at this point) so we only include actual mathematically matching segments in a triangulation group.

You can see that triangulation groups often overlap because group members share more or less DNA with each other. Normally we don’t bother to number the groups – we just look at the alignment. I numbered them for illustration purposes.

Shared or In-Common-With Matching

Triangulation is not the same thing as a 3-way shared “in-common-with” match. You may share DNA with those two people, but on entirely different segments from entirely different ancestors. If those other two people match each other, it can be on a segment where you don’t match either of them, and thanks to an ancestor that they share who isn’t in your line at all. Shared matches are a great hint, especially in addition to other information, but shared matches don’t necessarily mean triangulation although it’s a great place to start looking.

I have shared matches where I match one person on my maternal side, one on my paternal side, and they match each other through a completely different ancestor on an entirely different segment. However, we don’t triangulate because we don’t all match each other on the SAME segment of DNA. Yes, it can be confusing.

Just remember, each of your segments, and matches, has its own individual history.

Imputation Can Affect Matching

Over the years the chips on which our DNA is processed at the vendors have changed. Each new generation of chips tests a different number of markers, and sometimes different markers – with the overlaps between the entire suite of chips being less than optimal.

I can verify that most vendors use imputation to level the playing field, and even though two vendors have never verified that fact, I’m relatively certain that they all do. That’s the only way they could match to their own prior “only somewhat compatible” chip versions.

The net-net of this is that you may see some differences in matching segments at different vendors, even when you’re comparing the same people. Imputation generally “fills in the blanks,” but doesn’t create large swatches of non-existent DNA. I wrote about the concept of imputation here.

What I’d like for you to take away from this discussion is to be focused on the big picture – if and how people triangulate which is the function important to genealogy. Not if the start and end segments are exactly the same.

Triangulation Solutions

All vendors except Ancestry offer some type of triangulation.

If you and your Ancestry matches have uploaded to GedMatch, Family Tree DNA or MyHeritage, you can triangulate with them there. Otherwise, you can’t triangulate Ancestry results, so encourage your Ancestry matches to transfer.

I wrote more specifically about triangulation here and here.

Transfer your results in order to obtain the maximum number of matches possible. Every vendor has people in their data base that haven’t tested elsewhere.

Transfers

Have you tested family members, especially everyone in the older generations? You can transfer their kits from Ancestry or 23andMe if they’ve tested there to FamilyTreeDNA, MyHeritage and GedMatch.

Here’s how to transfer:

Now that we’ve reviewed triangulation at each vendor; FamilyTreeDNA, MyHeritage, 23andMe and GedMatch, let’s looking at utilizing triangulation at DNAPainter.

Triangulation at DNAPainter

Once you identify your ancestral segments with matches, or using triangulation, you can paint them on your maternal or paternal chromosomes utilizing DNAPainter.

The great aspect of DNAPainter is that you don’t have to triangulate in order to use DNAPainter. Just identifying matches as maternal or paternal allows you to visually see where on your maternal or paternal chromosomes your matches fall, in essence triangulating groups for you.

DNAPainter assigns colors to each ancestor and shows your match names, which I’ve disabled in this example for privacy. I’ve also optionally painted my ethnicity segments from 23andMe, which I discussed in this article.

Triangulation DNAPainter chr 22.png

Above, on chromosome 22, I’ve painted matches that I know descend from either my mother’s (pink) or father’s (blue) side. At DNAPainter, I DO have both a maternal and paternal chromosome, but they are only useful AFTER I figure out which side of my family a match comes from, or if I paint my Family Matching bucketed maternal and paternal matches in an upload file from Family Tree DNA. I wrote instructions for how to do that, here. The combination of Family Matching and DNAPainter is awesome!

Looking at the graphic above, I know that three separate people who match me descend from the bright pink ancestor on my maternal chromosome; Curtis Lore and his wife. I’ve assigned Curtis the bright pink color, and now every match that I paint assigned to Curtis and his wife is colored pink.

One person descends from Curtis’s parents, Anthony Lore and his wife Rachel Hill who I’ve assigned as green.

Until someone else matches me and descends either from Anthony Lore’s parents or Rachel Hill’s parents on this green segment, I won’t know which of those two ancestors, or both, provided (pieces of) that segment to me.

Anthony Lore and Rachel Hill are my great-great-grandparents and Curtis Lore is their son. Even if I only have 2 matches on this segment, one pink and one green, I would know that the green portion of my maternal chromosome 22 is attributed to Anthony and Rachel which means I inherited that green segment from my pink ancestor, Curtis Lore.

In order to determine the source of the two pink triangulated matches at far right, I’ll need to wait until someone from either Curtis’s line or his wife Nora Kirsch’s line match me on that same segment.

We build these groups of triangulated segments slowly, creating in essence a timeline on our chromosomes. It seems like it’s taking forever, but four generations distance with 2 separate triangulated segments really isn’t bad at all!

At DNAPainter, triangulation is as simple as painting your identified matches, either individually, one by one, or using the group import features. I would only recommend utilizing that feature at Family Tree DNA where their Family Matching software divides your matches into maternal and paternal, allowing DNAPainter to paint them on the correct chromosome. Otherwise, the segments are painted, but you can’t tell which side, maternal or paternal, they come from, so I don’t find painting all matches useful without some way to differentiate between maternal and paternal. After all, the point and power of a chromosome browser is to determine how each person is related, from which side, and from which ancestor.

In the article, DNAPainter Instructions and Resources, I compiled my various articles about the many ways to use DNAPainter, including an introduction.

Transfer

Be sure to test at or transfer to each vendor who provides segment information. Unfortunately, Ancestry does not, but you can transfer your ancestry results to Family Tree DNA, MyHeritage and GedMatch, each of which has unique features that the others don’t have. Transferring and matching is free at each vendor.

I wrote transfer instructions for each vendor, here.

Then, paint and triangulate all in one step at DNAPainter.

Have fun!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

DNA Testing Sales Decline: Reason and Reasons

If you’re involved in genetic genealogy, you’ve probably noticed the recent announcements by both 23andMe and Ancestry relative to workforce layoffs as a result of declining sales.

Layoffs

In January, 23andMe announced that it was laying off 100 people which equated to 14% of its staff.

Following suit, Ancestry this week announced that they are laying off 100 people, 6% of their work force. They discuss their way forward, here.

One shift of this type can be a blip, but two tends to attract attention because it *could* indicate a trend. Accordingly, several articles have been written about possible reasons why this might be occurring. You can read what TechCrunch says here, Business Insider here, and The Verge, here.

Depending on who you talk to and that person’s perspective, the downturn is being attributed to:

  • Market Saturation
  • No Repeat Sales
  • Privacy Concerns
  • FAD Over

Ok, So What’s Happening?

Between Ancestry and 23andMe alone, more than 26 million DNA tests have been sold, without counting the original DNA testing company, FamilyTreeDNA along with MyHeritage who probably have another 4 or 5 million between them.

Let’s say that’s a total of 30 million people in DNA databases that offer matching. The total population of the US is estimated to be about 329 million, including children, which means that one person in 10 or 11 people in the US has now tested. Of course, DNA testing reaches worldwide, but it’s an interesting comparison indicating how widespread DNA testing has become overall.

This slowing of new sales shouldn’t really surprise anyone. In July 2019, Illumina, the chip maker who supplies equipment and supplies to the majority of the consumer DNA testing industry said that the market was softening after a drop in their 2019 second quarter revenue.

Also last year, Ancestry and MyHeritage both announced health products, a move which would potentially generate a repeat sale from someone who has already tested their DNA for genealogy purposes. I suspected at the time this might be either a pre-emptive strike, or in response to slowed sales.

In November 2019, Family Tree DNA announced an extensive high-end health test through Tovana which tests the entire Exome, the portion of our DNA useful for medical and health analysis.

In a sense, this health focus too is trendy, but moves away from genealogy into an untapped area.

23andMe who, according to their website, has obtained $791 million in venture capital or equity funding has always been focused on medical research. In July of 2018 GlaxoSmithKline infused $300 million into 23andMe in exchange for access to DNA results of their 5 million customers who have opted-in to medical research, according to Genengnews. If you divide the 300 million investment by 5 million opted-in customers, 23andMe received $60 per DNA kit.

That 5 million number is low though, based on other statements by 23andMe which suggests they have 10 million total customers, 80% of which opt-in for medical research. That would be a total of 8 million DNA results available to investors.

Divide $791 million by 8 million kits and 23andMe, over the years, has received roughly $99 for each customer who has opted in to research.

We know who Ancestry has partnered with for research, but not how much Ancestry has received.

There’s very big money, huge money, in collaborating with Big Pharma and others. Given the revenue potential, it’s amazing that the other two vendors, Family Tree DNA and MyHeritage, haven’t followed suit, but they haven’t.

Additionally, in January, 23andMe sold the rights to a new drug it developed in-house as a potential treatment for inflammatory diseases for a reported (but unconfirmed by 23andMe) $5 million.

It’s ironic that two companies who just announced layoffs are the two who have partnered to sell access to their opted-in customers’ DNA results.

My Thoughts

I’ve been asked several times about my thoughts on this shift within the industry. I have refrained from saying much, because I think there has been way too much “hair on fire” clickbait reporting that is fanning the flames of fear, not only in the customer base, but in general.

I am sharing my thoughts, and while they are not entirely positive, in that there is clearly room for improvement, I want to emphasize that I am very upbeat about this industry as a whole, and this article ends very positively with suggestions for exactly that – so please read through.

Regardless of why, fewer new people are testing which of course results in fewer sales, and fewer new matches for us.

My suspicion is that each of the 4 reasons given above is accurate to some extent, and the cumulative effect plus a couple of other factors is the reason we’re seeing the downturn.

Let’s take a look at each one.

Market Saturation

Indeed, we’ve come a very long way from the time when DNA was a verboten topic on the old RootsWeb mailing lists and boards.

Early DNA adopters back then were accused of “cheating,” and worse. Our posts were deleted immediately. How times have changed!

As the technology matured, 23andMe began offering autosomal testing accompanied by cousin matching.

Ancestry initially stepped into the market with Y and mitochondrial DNA testing, but ultimately destroyed that database which included Y and mitochondrial DNA results from Relative Genetics, a company they had previously acquired. People in those databases, as well as who had irreplaceable samples in Sorenson, which Ancestry also purchased and subsequently took offline permanently have never forgotten.

Those genealogists have probably since tested at Ancestry, but they may be more inclined to test the rest of their family at places like Family Tree DNA and MyHeritage who have chromosome browsers and tools that support more serious researchers.

I think a contributing factor is that fewer “serious genealogists” are coming up in the ranks. The perception that all you need to do is enter a couple of generations and click on a few leaves, and you’re “done” misleads people as to the complexity and work involved in genealogical research. Not to mention how many of those hints are inaccurate and require analysis.

Having said that, I view each one of these people who are encouraged for the first time by an ad, even if it is misleading in its simplicity, as a potential candidate. We were all baby genealogists once, and some of us stayed for reasons known only to us. Maybe we have the genealogy gene😊

But yes, I would agree that the majority, by far, of serious genealogists have already tested someplace. What they have not done universally is transferred from 23andMe and Ancestry to the other companies that can help them, such as MyHeritage, FamilyTreeDNA and GEDmatch. If they had, the customer numbers at those companies would be higher. We all need to fish in every pond.

Advertising and Ethnicity

The DNA ads over the last few years have focused almost exclusively on ethnicity – the least reliable aspect of genetic genealogy – but also the “easiest” to understand if a customer takes their ethnicity percentages at face value. And of course, every consumer that purchases a test as a result of one of these ads does exactly that – spits or swabs, mails and opens their results to see what they “are” – full of excited anticipation.

Many people have absolutely no idea there’s more, like cousin matching – and many probably wouldn’t care.

The buying public who purchases due to these ads are clearly not early adopters, and most likely are not genealogists. One can hope that at least a few of them get hooked as a result, or at least enter a minimal tree.

Unfortunately, of the two companies experiencing layoffs, only Ancestry supports trees. Genealogy revolves around trees, pure and simple.

23andMe has literally had years to do so and has refused to natively support trees. Their FamilySearch link is not the same as supporting trees and tree matching. Their attempt at creating a genetic tree is laudable and has potential, but it’s not something that can be translated into a genealogical benefit for most people. I’m guessing that there aren’t any genealogists working for 23andMe, or they aren’t “heard” amid the vervre surrounding medical research.

All told, I’m not surprised that the two companies who are experiencing the layoffs are the two companies whose ads we saw most often focused on ethnicity, especially Ancestry. Who can forget the infamous kilt/leiderhosen ad that Ancestry ran? I still cringe.

Many people who test for ethnicity never sign on again – especially if they are unhappy with the results.

Ancestry and 23andMe spent a lot on ad campaigns, ramped up for the resulting sales, but now the ads are less effective, so not being run as much or at all. Sales are down. Who’s to say which came first, the chicken (fewer ads) or the egg (lower sales.)

This leads us to the next topic, add on sales.

No Repeat Sales

DNA testing, unless you have something else to offer customers is being positioned as a “one and done” sale, meaning that it’s a single purchase with no potential for additional revenue. While that’s offered as a reason for the downturn, it’s not exactly true for DNA test sales.

Ancestry clearly encourages customers to subscribe to their records database by withholding access to some DNA features without a subscription. For Ancestry, DNA is the bait for a yearly repeat sale of a subscription. Genealogists subscribe, of course, but people who aren’t genealogists don’t see the benefit.

Ancestry does not allow transfers into their database, which would provide for additional revenue opportunity. I suspect the reason is twofold. First, they want the direct testing revenue, but perhaps more importantly, in order to sell their customer’s DNA who have agreed to participate in research, or partner with research firms, those customers need to have tested on Ancestry’s custom chip. This holds true for 23andMe as well.

Through the 23andMe financial information in the earlier section, it’s clear that while the consumer only pays a one time fee to test, multiple research companies will pay over and over for access to that compiled consumer information.

Ancestry and 23andMe have the product, your opted-in DNA test that you paid for, and they can sell it over and over again. Hopefully, this revenue stream helps to fund development of genetic genealogical tools.

MyHeritage also provides access to advanced DNA tools by selling a subscription to their records database after a free trial. MyHeritage has integrated their DNA testing with genealogical records to provide their advanced Theories of Family Relativity tool, a huge boon to genealogists.

While Family Tree DNA doesn’t have a genealogical records database like Ancestry and MyHeritage, they provide Y DNA and mitochondrial DNA testing, in addition to the autosomal Family Finder test. If more people tested Y DNA and mitochondrial DNA, more genealogical walls would fall due to the unique inheritance path and the fact that neither Y nor mitochondrial DNA is admixed with DNA from the other parent.

Generally, only genealogists know about and are going to order Y DNA and mtDNA tests, or sponsor others to take them to learn more about their ancestral lines. These tests don’t provide yearly revenue like an ongoing subscription, but at least the fact that Family Tree DNA offers three different tests does provide the potential for at least some additional sales.

Both MyHeritage and FamilyTreeDNA encourage uploads, and neither sell, lease or share your DNA for medical testing. You can find upload instructions, here.

In summary of this section, all of the DNA testing companies do have some sort of additional (potential) revenue stream from DNA testing, so it’s not exactly “one and done.”

Health Testing Products

As for health testing, 23andMe has always offered some level of health information for their customers. Health and research has always been their primary focus. Health and genealogy was originally bundled into one test. Today, DNA ancestry tests with the health option at 23andMe cost more than a genealogy-only test and are two separate products.

MyHeritage also offers a genealogy only DNA test and a genealogy plus health DNA test.

In 2019, both Ancestry and MyHeritage added health testing to their menu as upgrades for existing customers.

In November 2019, FamilyTreeDNA announced an alliance with Tovana for their customers to order a full exome grade medical test and accompanying report. I recently received mine and am still reviewing the results – they are extensive.

It’s clear that all four companies see at least some level of consumer interest in health and traits as a lucrative next step.

Medical Research and DNA Sales

Both Ancestry and 23andMe are pursuing and have invested in relationships with research institutions or Big Pharma. I have concerns with how this is handled. You may not.

I’m supportive of medical research, but I’m concerned that most people have no idea of the magnitude and scope of the contracts between Ancestry and 23andMe with Big Pharma and others, in part, because the details are not public. Customers may also not be aware of exactly what they are opting in to, what it means or where their DNA/DNA results are going.

As a consumer, I want to know where my DNA is, who is using it, and for what purpose. I don’t want my DNA to wind up being used for a nefarious purpose or something I don’t approve of. Think Uighurs in China by way of example. BGI Genetics, headquartered in China but with an Americas division and facilities in Silicon Valley has been a major research institute for years. I want to know what my DNA is being used for, and by whom. The fact that the companies won’t provide their customers with that information makes me makes me immediately wonder why not.

I would like to be able to opt-in for specific studies, not blindly for every use that is profitable to the company involved, all without my knowledge. No blank checks. For example, I opted out of 23andMe research when they patented the technology for designer babies.

Furthermore, I feel that if someone is going to profit from my DNA, it should be me since I paid for the sequencing. At minimum, a person whose DNA is used in these studies should receive some guarantee that they will be provided with any drug in which their DNA is used for development, in particular if their insurance doesn’t pay and they cannot afford the drug.

Drug prices have risen exponentially in the US recently, with many people no longer able to afford their medications. For example, the price of insulin has tripled over the last decade, causing people to ration or cut back on their insulin, if not go without altogether. It would be the greatest of ironies if the very people whose DNA was sold and used to create a drug had no access to it.

Of course, Ancestry and 23andMe are not required to inform consumers of which studies their DNA or DNA results are used for, so we don’t know. Always read all of the terms and conditions, and all links when authorizing anything.

Both companies indicate that your DNA results are anonymized before being shared, but we now know that’s not really possible anymore, because it’s relatively easy to re-identify someone. This is exactly how adoptees identify their biological parents through genetic matches. Dr. Yaniv Erlich reported in the journal Science November 2018 that more than 60% of Europeans could be reidentified through a genealogy database of only 1.28 million individuals.

I think greater transparency and a change in policy favoring the consumer would go a long way to instilling more confidence in the outside research relationships that both Ancestry and 23andMe pursue and maintain. It would probably increase their participation level as well if people could select the research initiatives to which they want to contribute their DNA.

Privacy Concerns

The news has been full of articles about genetic privacy, especially in the months since the Golden State Killer case was solved. That was only April 2018, but it seems like eons ago.

Unfortunately, much of what has been widely reported is inaccurate. For example, no company has ever thrown the data base open for the FBI or anyone to rummage through like a closet full of clothes. However, headlines and commentary like that attract outrage and hundreds of thousands of clicks. In the news and media industry, “it’s all about eyeballs.”

In one case, an article I interviewed for extensively in an educational capacity was written accurately, but the headline was awful. The journalist in question replied that the editors write the headlines, not the reporters.

One instance of this type of issue would be pretty insignificant, but the news in this vein hasn’t abated, always simmering just below the surface waiting for something to fan the flames. Outrage sells.

For the most part, those within the genealogy community at least attempt to sort out what is accurate reporting and what is not, but those people are the ones who have already tested.

People outside the genealogy community just know that they’ve now seen repeated headlines reporting that their genetic privacy either has been, could be or might be breached, and they are suspicious and leery. I would be too. They have no idea what that actually means, what is actually occurring, where, or that they are probably far more at risk on social media sites.

These people are not genealogists, and now they look at ads and think to themselves, “yes, I’d like to do that, but…”

And they never go any further.

People are frightened and simply disconnect from the topic – without testing.

If, as a consumer, you see several articles or posts saying that <fill in car model> is really bad, when you consider a purchase, even if you initially like that model, you’ll remember all of those negative messages. You may never realize that the source was the competition which would cause you to interpret those negative comments in a completely different light.

I think that some of the well-intentioned statements made by companies to reassure their existing and potential customers have actually done more harm than good by reinforcing that there’s a widespread issue. “You’re safe with us” can easily be interpreted as, “there’s something to be afraid of.”

Added to that is the sensitive topic of adoptee and unknown parent searches.

Reunion stories are wonderfully touching, and we all love them, but you seldom see the other side of the coin. Not every story has a happy ending, and many don’t. Not every parent wants to be found for a variety of reasons. If you’re the child and don’t want to find your parents, don’t test, but it doesn’t work the other way around. A parent can often be identified by their relatives’ DNA matches to their child.

While most news coverage reflects positive adoptee reunion outcomes, that’s not universal, and almost every family has a few lurking skeletons. People know that. Some people are fearful of what they might discover about themselves or family members and are correspondingly resistant to DNA testing. Realizing you might discover that your father isn’t your biological father if you DNA test gives people pause. It’s a devastating discovery and some folks decide they’d rather not take that chance, even though they believe it’s not possible.

The genealogical search techniques for identifying unknown parents or close relatives and the technique used by law enforcement to identify unknown people, either bodies or perpetrators is exactly the same. If you are in one of the databases, who you match can provide a very big hint to someone hunting for the identify of an unknown person.

People who are not genealogists, adoptees or parents seeking to find children placed for adoption may be becoming less comfortable with this idea in general.

Of course, the ability for law enforcement to upload kits to GedMatch/Verogen and Family Tree DNA, under specific controlled conditions, has itself been an explosive and divisive topic within and outside of the genealogy community since April 2018.

These law enforcement kits are either cold case remains of victims, known as “Does,” or body fluids from the scenes of violent crimes, such as rape, murder and potentially child abduction and aggravated assault. To date, since the Golden State Killer identification, numerous cases have produced a “solve.” ISOGG, a volunteer organization, maintains a page of known cases solved, here.

GEDmatch encourages people to opt-in for law-enforcement matching, meaning that their kit can be seen as a match to kits uploaded by law enforcement agencies or companies working on behalf of law enforcement agencies. If a customer doesn’t opt-in, their kit can’t be seen as a match to a law enforcement kit.

Family Tree DNA initially opted-out all EU kits from law enforcement matching, due to GDPR, and provides the option for their customers to opt-out of law-enforcement matching.

Neither MyHeritage, Ancestry nor 23andMe cooperate with law enforcment under any circumstances and have stated that they will actively resist all subpoenaes in court.

ISOGG provides a FAQ on Investigative Genetic Genealogy, here.

The two sides of the argument have rather publicly waged war on each other in an ongoing battle to convince people of the merits of their side of the equation, including working with news organizations.

Unfortunately, this topic is akin to arguing over politics. No one changes their mind, and everyone winds up mad.

Notice I’m not linking any articles here, not even my own. I do not want to fan these flames, but I would be remiss if I didn’t mention that the topic of law enforcement usage itself, the on-going public genetic genealogy community war and resulting media coverage together have very probably contributed to the lagging sales. I’d also be remiss if I didn’t mention that while a great division of opinion exists, and many people are opposed, there are also many people who are extremely supportive.

All of this, combined, intentionally or not, has introduced FUD, fear, uncertainty and doubt – a very old disinformation “sales technique.”

In a sense, for consumers, this has been like watching pigs mud-wrestle.

As my dad used to say, “Never mud-wrestle with a pig. The pig enjoys it, you get muddy and the spectators can’t tell the difference.” The spectators in this case vote with their lack of spending and no one is a winner.

DNA Testing Was A FAD

Another theory is that genealogy DNA testing was just a FAD whose time has come and gone. I think the FAD was ethnicity testing, and that chicken has come home to roost.

Both 23andMe and Ancestry clearly geared up for testers attracted by their very successful ads. I was just recently on a cruise, and multiple times I heard people at another table discussing their ethnicity results from some unnamed company. They introduced the topic by saying, “I did my DNA.”

The discussion was almost always the same. Someone said that they thought their ethnicity was pretty accurate, someone else said theirs was awful, and the discussion went from there. Not one time did anyone ever mention a company name, DNA matching or any other functionality. I’m not even sure they understood there are different DNA testing companies.

If I was a novice listening-in, based on that discussion, I would have learned to doubt the accuracy of “doing my DNA.”

If most of the people who purchased ethnicity tests understood in advance that ethnicity testing truly is “just an estimate,” they probably wouldn’t have purchased in the first place. If they understood the limitations and had properly set expectations, perhaps they would not have been as unhappy and disenchanted with their results. I realize that’s not very good marketing, but I think that chicken coming home to roost is a very big part of what we’re seeing now.

The media has played this up too, with stories about how the ethnicity of identical twins doesn’t match. If people bother to read more than the headline, and IF it’s a reasonably accurate article, they’ll come to understand why and how that might occur. If not, what they’ll take away is that DNA testing is wrong and unreliable. So don’t bother.

Furthermore, most people don’t understand that ethnicity testing and cousin matching are two entirely different aspects of a DNA test. The “accuracy” of ethnicity is not related to the accuracy of cousin matching, but once someone questions the credibility of DNA testing – their lack of confidence is universal.

I would agree, the FAD is over – meaning lots of people testing primarily for ethnicity. I think the marketing challenge going forward is to show people that DNA testing can be useful for other things – and to make that easy.

Ethnicity was the low hanging fruit and it’s been picked.

Slowed Growth – Not Dead in the Water

The rate of growth has slowed. This does not by any stretch of the imagination mean that genetic genealogy or DNA testing is dead in the water. DNA fishes for us 365x24x7.

For example, just today, I received a message from 23andMe that 75 new relatives have joined 23andMe. I also received match notifications from Family Tree DNA and MyHeritage.  Hey – calorie-free treats!!!

These new matches are nothing to sneeze at. I remember when I was thrilled over ONE new match.

I have well over 100,000 matches if you combine my matches at the four vendors.

Without advanced tools like triangulation, Phased Family Matching, Theories of Family Relativity, ThruLines, DNAPainter, DNAgedcom and Genetic Affairs, I’d have absolutely no prayer of grouping and processing this number of matches for genealogy.

Even if I received no new matches for the next year, I’d still not be finished analyzing the autosomal matches I already have.

This Too Shall Pass

At least I hope it will.

I think people will still test, but the market has corrected. This level of testing is probably the “new normal.”

Neither Ancestry or 23andMe are spending the big ad dollars – or at least not as big.

In order for DNA testing companies to entice customers into purchasing subscriptions or add-on products, tools need to be developed or enhanced that encourage customers to return to the site over and over. This could come in the form of additional results or functionality calculated on their behalf.

That “on their behalf” point is important. Vendors need to focus on making DNA fun, and productive, not work. New tools, especially in the last year or two, have taken a big step in that direction. Make the customer wonder every day what gift is waiting for him or her that wasn’t there yesterday. Make DNA useful and fun!

I would call this “DNA crack.” 😊

Cooking Up DNA Crack!

In order to assist the vendors, I’ve compiled one general suggestion plus what I would consider to be the “Big 3 Wish List” for each of their DNA products in term of features or improvements that would encourage customers to either use or return to their sites. (You’re welcome.)

I don’t want this to appear negative, so I’ve also included the things I like most about each vendor.

If you have something to add, please feel free to comment in a positive fashion.

Family Tree DNA

I Love: Y and Mitochondrial DNA, Phased Family Matching, and DNA projects

General Suggestion – Fix chronic site loading issues which discourage customers

  • Tree Matching – fix the current issues with trees and implement tree matching for DNA matches
  • Triangulation – including by match group and segment
  • Clustering – some form of genetic networks

MyHeritage

I Love: Theories of Family Relativity, triangulation, wide variety of filters, SmartMatches and Record Matches

General – Clarify confusing subscription options in comparative grid format

  • Triangulation by group and segment
  • View DNA matches by ancestor
  • Improved Ethnicity

Ancestry

I Love: Database size, ThruLines, record and DNA hints (green leaves)

General – Focus on the customers’ needs and repeated requests

  • Accept uploads
  • Chromosome Browser (yes, I know this is a dead horse, but that doesn’t change the need)
  • Triangulation (dead horse’s brother)

23andMe

I Love: Triangulation, Ethnicity quality, ethnicity segments identified, painted and available for download

General – Focus on genealogy tools if you’re going to sell a genealogy test

  • Implement individual customer trees – not Family Search
  • Remove 2000 match limit (which is functionally less after 23andMe hides the people not opted into matching)
  • DNA + Tree Matching

Summary

In summary, we, as consumers need to maintain our composure, assuring others that no one’s hair is on fire and the sky really is not falling. We need to calmly educate as opposed to frighten.

Just the facts.

Other approaches don’t serve us in the end. Frightening people away may “win” the argumentative battle of the day, but we all lose the war if people are no longer willing to test.

This is much like a lifeboat – we all succeed together, or we all lose.

Everybody row!

As genealogists, we need to:

  • Focus on verifying ancestors and solving genealogy challenges
  • Sharing those victories with others, including family members
  • Encourage our relatives to test, and transfer so that their testing investment provides as much benefit as possible
  • Offer to help relatives with the various options on each vendor’s platform
  • Share the joy

People share exciting good news with others, especially on Facebook and social media platforms, and feel personally invested when you share new results with them. Collaboration bonds people.

A positive attitude, balanced perspective and excitement about common ancestors goes a very, very long was in terms of encouraging others.

We have more matches now than ever before, along with more and better tools. Matches are still rolling in, every single day.

New announcements are expected at Rootstech in a couple short weeks.

There’s so much opportunity and work to do.

The sky is not falling. It rained a bit.

The seas may have been stormy, but as a genealogist, the sun is out and a rising tide lifts us all.

Rising tide

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

DNAPainter: Painting “Bucketed” Family Tree DNA Maternal and Paternal Family Finder Matches in One Fell Swoop

DNAPainter has done it again, providing genealogists with a wonderful tool that facilitates separating your matches into maternal and paternal categories so that they can be painted on the proper chromosome – in one fell swoop no less.

Of course, the entire purpose of painting your chromosomes is to identify segments that descend from specific ancestors in order to push those lines back further in time genealogically. Identifying segments, confirming and breaking down brick walls is the name of the game.

DNA Painter New Import Tool

The new DNAPainter tool relies on Family Tree DNA’s Phased Family Matching which assigns your matches to maternal and paternal buckets. On your match list, at the top, you’ll see the following which indicates how many matches you have in total and how many people are assigned to each bucket.

DNAPainter FF import.png

Note that these are individual matches, not total matching segments – that number would be higher.

In order for Family Tree DNA to create bucketed matches for you, you’ll need to:

  • Either create a tree or upload a GEDCOM file
  • Attach your DNA kit to “you” in your tree
  • Attach all 4th cousins and closer with whom you match to their proper location on your tree

Yes, it appears that Family Tree DNA is now using 4th cousins, not just third cousins and closer, which provides for additional bucketed matches.

How reliable is bucketing?

Quite. Occasionally one of two issues arise which becomes evident if you actually compare the matches’ segments to the parent with whom they are bucketed:

  • One or more of your matches’ segments do match you and your parent, but additionally, one or more segments match you, but not your parent
  • The X chromosome is particularly susceptible to this issue, especially with lower cM matches
  • Occasionally, a match that is large enough to be bucketed isn’t, likely because no known, linked cousin shares that segment

Getting Started

Get started by creating or uploading your tree at Family Tree DNA.

DNAPainter mytree.png

After uploading your GEDCOM file or creating your tree at Family Tree DNA, click on the “matches” icon at the top of the tree to link yourself and your relatives to their proper places on your tree. Your matches will show in the box below the helix icon.

DNAPainter FF matches.png

I created an example “twin” for myself to use for teaching purposes by uploading a file from Ancestry, so I’m going to attach that person to my tree as my “Evil Twin.” (Under normal circumstances, I do not recommend uploading duplicate files of anyone.)

DNAPainter FF matches link.png

Just drag and drop the person on your match list on top of their place on the tree.

DNAPainter Ff sister.png

Here I am as my sister, Example Adoptee.

I’ve wished for a very, very long time that there was a way to obtain a list of segment matches sorted by maternal and paternal bucket without having to perform spreadsheet gymnastics, and now there is, at DNAPainter.

DNAPainter does the heavy-lifting so you don’t have to.

What Does DNAPainter Do with Bucketed Matches?

When you are finished uploading two files at DNAPainter, you’ll have:

  • Maternal groups of triangulated matches
  • Paternal groups of triangulated matches
  • Matches that could not be assigned based on the bucketing. Some (but not all) of these matches will be identical by chance – typically roughly 15-20% of your match list. You can read about identical by chance, here.

I’ll walk you through the painting process step by step.

First, you need to be sure your relatives are connected to your tree at Family Tree DNA so that you have matches assigned to your maternal and paternal buckets. The more relatives you connect, per the instructions in the previous section, the more matching people will be able to be placed into maternal or paternal buckets.

Painting Bucketed Matches at DNAPainter

I wrote basic articles about how to use DNAPainter here. If you’re unfamiliar with how to use DNAPainter or it’s new to you, now would be a good time to read those articles. This next section assumes that you’re using DNAPainter. If not, go ahead, register, and set up a profile. One profile is free for everyone, but multiple profiles require a subscription.

First, make a duplicate of the profile that you’re working with. This DNAPainter upload tool is in beta.

DNAPainter duplicate profile.png

Since I’m teaching and experimenting, I am using a fresh, new profile for this experiment. If it works successfully, I’ll duplicate my working profile, just in case something goes wrong or doesn’t generate the results I expect, and repeat these steps there.

Second, at Family Tree DNA, Download a fresh copy of your complete matching segment file. This “Download Segments” link is found at the top right of the chromosome browser page.

DNAPainter ff download segments.png

Third, download your matches at the bottom left of the actual matches page. This file hold information about your matches, such as which ones are bucketed, but no segment information. That’s in the other file.

DNAPainter csv.png

Name both of these files something you can easily identify and that tells them apart. I called the first one “Segments” in front of the file name and the second one “Matches” in front of the file name.

Fourth, at DNAPainter, you’ll need to import your entire downloaded segment file that you just downloaded from Family Tree DNA. I exclude segments under 7cM because they are about 50% identical by chance.

DNAPainter import instructions

click to enlarge

Select the segment file you just named and click on import.

DNAPainter both.png

At this point, your chromosomes at DNAPainter will look like this, assuming you’re using a new profile with nothing else painted.

Let’s expand chromosome 1 and see what it looks like.

DNAPainter chr 1 both.png

Note that all segments are painted over both chromosomes, meaning both the maternal and paternal copies of chromosome 1, partially shown above, because at this point, DNAPainter can’t tell which people match on the maternal and which people match on the paternal sides. The second “matches” file from Family Tree DNA has not yet been imported into DNAPainter, which tells DNAPainter which matches are on the maternal and which are on the paternal chromosomes.

If you’re not workign with a new profile, then you’ll also see the segments you’ve already painted. DNAPainter attempts to NOT paint segments that appear to have previously been painted.

Fifth, at DNAPainter, click on the “Import mat/pat info from ftDNA” link on the left which will provide you with a page to import the matches file information. This is the file that has maternal and paternal sides specified for bucketed matches. DNAPainter needs both the segment file, which you already imported, and the matches file.

DNAPainter import bucket

click to enlarge

After the second import, the “matches” file, my matches are magically redistributed onto their appropriate chromosomes based on the maternal and paternal bucketing information.

I love this tool!

At this point, you will have three groups of matches, assuming you have people assigned to your maternal and paternal buckets.

  • A “Shared” group for people who are related to both of your parents, or who aren’t designated as a bucketed match to either parent
  • Maternal group (pink chromosome)
  • Paternal group (blue chromosome)

It’s Soup!!!

I’m so excited. Now my matches are divided into maternal and paternal chromosome groups.

DNAPainter import complete.png

Just so you know, I changed the colors of my legend at DNAPainter using “edit group,” because all three groups were shades of pink after the import and I wanted to be able to see the difference clearly.

DNAPainter legend.png

Your Painted Chromosomes

Let’s take a look at what we have.

DNAPainter both, mat, pat.png

There’s still pink showing, meaning undetermined, which gets painted over both the maternal and paternal chromosomes, but there’s also a lot of magenta (maternal) and blue (paternal) showing now too as a result of bucketing.

Let’s look at chromosome 1.

DNAPainter chr 1 all.png

This detail, which is actually a summary, shows that the bucketed maternal (magenta) and paternal (blue) matches have actually covered most of the chromosome. There are still a few areas without coverage, but not many.

For a genealogist, this is beautiful!!!

How many matches were painted?

DNAPainter paternal total.png

DNAPainter maternal total.png

Expanding chromosome 1, and scrolling to the maternal portion, I can now see that I have several painted maternal segments, and almost the entire chromosome is covered.

Here’s the exciting part!

DNAPainter ch1 1 mat expanded.png

I stared the relatives I know, on the painting, above and on the pedigree chart, below. The green group descends through Hiram Ferverda and Eva Miller, the yellow group through Antoine Lore and Rachel Hill. The blue group is Acadian, upstream of Antoine Lore.

DNAPainter maternal pedigree.png

Those ancestors are shown by star color on my pedigree chart.

I can now focus on the genealogies of the other unstarred people to see if their genealogy can push those segments back further in time to older ancestors.

On my Dad’s side, the first part of chromosome 1 is equally as exciting.

DNAPainter chr 1 pat expanded.png

The yellow star only pushed this triangulated group back only to my grandparents, but the green star is from a cousin descended from my great-grandparents. The red star matches are even more exciting, because my common ancestor with Lawson is my brick wall – Marcus Younger and his wife, Susanna, surname unknown, parents of Mary Younger.

DNAPainter paternal pedigree.png

I need to really focus hard on this cluster of 12 people because THEIR common ancestors in their trees may well provide the key I need to push back another generation – through the brick wall. That is, after all, the goal of genetic genealogy.

Woohoooo!

Manual Spreadsheet Compare

Because I decided to torture myself one mid-winter day, and night, I wanted to see how much difference there is between the bucketed matches that I just painted and actual matches that I’ve identified by downloading my parents’ segment match files and mine and comparing them manually against each other. I removed any matches in my file that were not matches to my parent, in addition to me, then painted the rest.

I’ll import the resulting manual spreadsheet into the same experimental DNAPainter profile so we can view matches that were NOT painted previously. DNAPainter does not paint matches previously painted, if it can tell the difference. Since both of these files are from downloads, without the name of the matches being in any way modified, DNAPainter should be able to recognize everyone and only paint new segment matches.

Please note here that the PERSON unquestionably belongs bucketed to the parental side in question, but not all SEGMENTS necessarily match you and your parent. Some will not, and those are the segments that I removed from my spreadsheet.

DNAPainter manual spreadsheet example.png

Here’s a made-up example where I’ve combined my matches and my mother’s matches in one spreadsheet in order to facilitate this comparison. I colored my Mom’s matches green so they are easy to see when comparing to my own, then sorting by the match name.

Person 1 matches me and Mom both, at 10 cM on chromosome 1. Person 1 is assigned to my maternal side due to the matches above 9 cM, the lowest threshold at Family Tree DNA for bucketing.

In this example, we can see that Person 1 matches me and Mom (colored green), both, on the segment on chromosome 1. That match, bracketed by red, is a valid, phased, match and should be painted.

However, Person 1 also matches me, but NOT Mom on chromosome 2. Because Person 1 is bucketed to mother, this segment on chromosome 2 will also be painted to my maternal chromosome 2 using the DNAPainter import. The only way to sort this out is to do the comparison manually.

The same holds true for the X match shown. The two segments shown in red should NOT be painted, but they will be unless you are willing to compare you and your parents’ matches manually, you will just have to evaluate segments individually when you see that you’re working in a cluster where matches have been assigned through the mass import tool.

If you choose to compare the spreadsheets manually to assure that you’re not painting segments like the red ones above, DNAPainter provides instructions for you to create your own mass upload template, which is what I did after removing any segment matches of people that were not “in common” between me and mother on the same chromosomal segment, like the red ones, above.

Please note that if you delete the erroneous segments and later reimport your bucketed matches, they will appear again. I’m more inclined to leave them, making a note.

I did not do a manual comparison of my father’s side of the tree after discovering just how little difference was found on my mother’s side, and how much effort was involved in the manual comparison.

Creating a Mass Upload Template and File

DNAPainter custom mass upload.png

The instructions for creating your own mass upload file are provided by DNAPainter – please follow them exactly.

In my case, after doing the manual spreadsheet compare with my mother, only a total of 18 new segments were imported that were not previously identified by bucketing.

Three of those segments were over 15cM, but the rest were smaller. I expected there would be more. Family Tree DNA is clearly doing a great job with maternal and paternal bucketing assignments, but they can’t do it without known relatives that have also tested and are linked to your tree. The very small discrepancy is likely due to matches with cousins that I have not been able to link on my tree.

The great news is that because DNAPainter recognizes already-painted segments, I can repeat this anytime and just paint the new segments, without worrying about duplicates.

  • The information above pertains to segments that should have been painted, but weren’t.
  • The information below pertains to segments that were painted, but should not have been.

I did not keep track of how many segments I deleted that would have erroneously been painted. There were certainly more than 18, but not an overwhelming number. Enough though to let me know to be careful and confirm the segment match individually before using any of the mass uploaded matches for hypothesis or conclusions.

Given that this experiment went well, I created a copy of my “real” profile in order to do the same import and see what discoveries are waiting!

Before and After

Before I did the imports into my “real” file (after making a copy, of course,) I had painted 82% of my DNA using 1700 segments. Of course, each one of those segments in my original profile is identified with an ancestor, even if they aren’t very far back in time.

Although I didn’t paint matches in common with my mother before this mass import, each of my matches in common with my mother are in common with one or the other of my maternal grandparents – and by using other known matches I can likely push the identity of those segments further back in time.

Status Percent Segments Painted
Before mass Phased Family Match bucketed import 82 1700
After mass Phased Family Match bucketed import 88 7123
After additional manual matches with my mother added 88 7141

While I did receive 18 additional matching segments by utilizing the manually intensive spreadsheet matching and removal process, I did not receive enough more matches to justify the hours and hours of work. I won’t be doing that anymore with Family Tree DNA files since they have so graciously provided bucketing and DNAPainter can leverage that functionality.

Those hours will be much better spent focusing on unraveling the ancestors whose stories are told in clusters of triangulated matches.

I Love The Import Tool, But It’s Not Perfect

Keep in mind that the X chromosome needs a match of approximately twice the size of a regular chromosome to be as reliable. In other words, a 14 cM threshold for the X chromosome is roughly equivalent to a 7 cM match for any other chromosome. Said another way, a 7 cM match on the X is about equal to a 3.5 cM match on any other chromosome.

X matches are not created equal.

The SNP density on the X chromosome is about half that of the other chromosomes, making it virtually impossible to use the same matching criteria. I don’t encourage using matches of less than 500 SNPs unless you know you’re in a triangulated group and WITH at least a few larger, proven matches on that segment of the X chromosome.

Having said that, X matches, due to their unique inheritance path can persist for many generations and be extremely useful. You can read about working with the X chromosome here and here.

I noticed when I was comparing segments in the manual spreadsheet that I had to remove many X matches with people who had identical matches on other chromosomes with me and my mother. In other words, just because they matched my mother and me exactly on one chromosome, that phasing did not, by default, extend to matching on other segments.

I checked my manually curated file and discovered that I had a total of seven X matches that should have been, and were, painted because they matched me and Mom both.

DNAPainter X spreadsheet example.png

However, there were many that didn’t match me and Mom both, matching only me, that were painted because that person was bucketed (assigned) to my maternal side because a different segment phased to mother correctly.

On the X chromosome, here’s what happened.

DNAPainter maternal X.png

You can see that a lot more than 7 bright red matches were painted – 26 more to be exact. That’s because if an individual is bucketed on your maternal or paternal side, it’s presumed that all of the matching segments come from the same ancestor and are legitimate, meaning identical by descent and not by chance. They aren’t. Every single segment has an inheritance path and story of its own – and just because one segment triangulates does NOT mean that other segments that match that person will triangulate as well.

The X chromosome is the worst case scenario of course, because these 7 cM segments are actually as reliable as roughly 3.5 cM segments on any other chromosome, which is to say that more than 50% of them will be incorrect. However, some will be accurate and those will match me and mother both. 21% of the X matches to people who phased and triangulated on other chromosomes were accurate – 79% were not. Thankfully, we have phasing, bucketing and tools like this to be able to tell the difference so we can utilize the 21% that are accurate. No one wants to throw the baby out with the bath water, nor do we want to chase after phantoms.

Keep in mind that Phased Family Matching, like any other tool, is just that, a tool and needs some level of critical analysis.

Every Segment Has Its Own Story

We know that every single DNA segment has an independent inheritance path and story of its own. (Yes, I’ve said that several time now because it’s critically important so that you don’t wind up barking up the wrong tree, literally, pardon the pun.)

In the graphic above of my painted X chromosome matches, only the six matches with green stars are on the hand-curated match list. One had already been painted previously. The balance of the bright red matches were a part of the mass import and need to be deleted. Additionally, one of the accurate matches did not upload for some reason, so I’ll add that one manually.

I suggest that you go ahead and paint your bucketed segments, but understand that you may have a red herring or two in your crop of painted segment matches.

As you begin to work with these clusters of matches, check your matching segments with your parents (or other family members who were used in bucketing) and make sure that all the segments that have been painted by bulk upload actually match on all of the same segments.

If you have a parent that tested, there is no need to see if you and your match match other relatives on that same side. If your match does not match you and your parent on some significant overlapping portion of that same segment, the match is invalid. DNA does not “skip generations.”

If you don’t have a parent that has tested, your known relatives are your salvation, and the key to bucketed matches.

The great news is that you can easily see that a bulk match was painted from the coloring of the batch import. As you discover the relevant genealogy and confirm that all segments actually match your parent (or another family member, if you don’t have parents to test,) move the matching person to the appropriately colored ancestral group.

I further recommend that you hand curate the X chromosome using a spreadsheet. The nature of the X makes depending on phased matching too risky, especially with a tool like DNAPainter that can’t differentiate between a legitimate and non-legitimate match. The X chromosome matches are extraordinarily valuable because they can be useful in ways that other chromosomes can’t be due to the X’s unique inheritance path.

What About You?

If you don’t have your DNA at Family Tree DNA and you have tested elsewhere, you can transfer your DNA file for free, allowing you to see your matches and use many of the Family Tree DNA tools. However, to access the chromosome browser, which you’ll need for DNA painting, you’ll need to purchase the unlock for $19, but that’s still a lot less than retesting.

Here are transfer instructions for transferring your DNA file from 23andMe, Ancestry or MyHeritage.

If you have not purchased a Family Finder test at Family Tree DNA and don’t have a DNA file to transfer, you can order a test here.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Triangulation in Action at 23andMe

Recently, I published the article, Hitting a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters. The “Home Run” article explains why you want to use a chromosome browser, what you’re seeing and what it means to you.

This article, and the rest in the “Triangulation in Action” series introduces triangulation at FamilyTreeDNA, MyHeritage, 23andMe, GedMatch and DNAPainter, explaining how to use triangulation to confirm descent from a common ancestor. You may want to read the introductory article first.

This first section, “What is Triangulation” is a generic tutorial. If you don’t need the tutorial, skip to the “Triangulation at 23andMe” section.

What is Triangulation?

Think of triangulation as a three-legged stool – a triangle. Triangulation requires three things:

  1. At least three (not closely related) people must match
  2. On the same reasonably sized segment of DNA and
  3. Descend from a common ancestor

Triangulation is the foundation of confirming descent from a common ancestor, and thereby assigning a specific segment to that ancestor. Without triangulation, you might just have a match to someone else by chance. You can confirm mathematical triangulation, numbers 1 and 2, above, without knowing the identity of the common ancestor.

Reasonably sized segments are generally considered to be 7cM or above on chromosomes 1-22 and 15cM or above for the X chromosome.

Boundaries

Triangulation means that all three, or more, people much match on a common segment. However, what you’re likely to see is that some people don’t match on the entire segment, meaning more or less than others as demonstrated in the following examples.

FTDNA Triangulation boundaries

You can see that I match 5 different cousins who I know descend from my father’s side on chromosome 15 above. “I” am the grey background against which everyone else is being compared.

I triangulate with these matches in different ways, forming multiple triangulation groups that I’ve discussed individually, below.

Triangulation Group 1

FTDNA triangulation 1

Group 1 – On the left group of matches, above, I triangulate with the blue, red and orange person on the amount of DNA that is common between all of them, shown in the black box. This is triangulation group 1.

Triangulation Group 2

FTDNA triangulation 2

Group 2 – However, if you look just at the blue and orange triangulated matches bracketed in green, I triangulate on slightly more. This group excludes the red person because their beginning point is not the same, or even close. This is triangulation group 2.

Triangulation Group 3 and 4

FTDNA triang 3

Group 3 – In the right group of matches, there are two large triangulation groups. Triangulation group 3 includes the common portions of blue, red, teal and orange matches.

Group 4 – Triangulation group 4 is the skinny group at right and includes the common portion of the blue, teal and dark blue matches.

Triangulation Groups 5 and 6

FTDNA triang 5

Group 5 – There are also two more triangulation groups. The larger green bracketed group includes only the blue and teal people because their end locations are to the right of the end locations of the red and orange matches. This is triangulation group 5.

Group 6 – The smaller green bracketed group includes only the blue and teal person because their start locations are before the dark blue person. This is triangulation group 6.

There’s actually one more triangulation group. Can you see it?

Triangulation Group 7

FTDNA triang 7

Group 7 – The tan group includes the red, teal and orange matches but only the areas where they all overlap. This excludes the top blue match because their start location is different. Triangulation group 7 only extends to the end of the red and orange matches, because those are the same locations, while the teal match extends further to the right. That extension is excluded, of course.

Slight Variations

Matches with only slight start and end differences are probably descended from the same ancestor, but we can’t say that for sure (at this point) so we only include actual mathematically matching segments in a triangulation group.

You can see that triangulation groups often overlap because group members share more or less DNA with each other. Normally we don’t bother to number the groups – we just look at the alignment. I numbered them for illustration purposes.

Shared or In-Common-With Matching

Triangulation is not the same thing as a 3-way shared “in-common-with” match. You may share DNA with those two people, but on entirely different segments from entirely different ancestors. If those other two people match each other, it can be on a segment where you don’t match either of them, and thanks to an ancestor that they share who isn’t in your line at all. Shared matches are a great hint, especially in addition to other information, but shared matches don’t necessarily mean triangulation although it’s a great place to start looking.

I have shared matches where I match one person on my maternal side, one on my paternal side, and they match each other through a completely different ancestor on an entirely different segment. However, we don’t triangulate because we don’t all match each other on the SAME segment of DNA. Yes, it can be confusing.

Just remember, each of your segments, and matches, has its own individual history.

Imputation Can Affect Matching

Over the years the chips on which our DNA is processed at the vendors have changed. Each new generation of chips tests a different number of markers, and sometimes different markers – with the overlaps between the entire suite of chips being less than optimal.

I can verify that most vendors use imputation to level the playing field, and even though two vendors have never verified that fact, I’m relatively certain that they all do. That’s the only way they could match to their own prior “only somewhat compatible” chip versions.

The net-net of this is that you may see some differences in matching segments at different vendors, even when you’re comparing the same people. Imputation generally “fills in the blanks,” but doesn’t create large swatches of non-existent DNA. I wrote about the concept of imputation here.

What I’d like for you to take away from this discussion is to be focused on the big picture – if and how people triangulate which is the function important to genealogy. Not if the start and end segments are exactly the same.

Triangulation Solutions

Each of the major vendors, except Ancestry who does not have a chromosome browser, offers some type of triangulation solution, so let’s look at what each vendor offers. If you and your Ancestry matches have uploaded to GedMatch, Family Tree DNA or MyHeritage, you can triangulate with them there. Otherwise, you can’t triangulate Ancestry results, so encourage your Ancestry matches to transfer.

I wrote more specifically about triangulation here and here.

Let’s look at triangulation at 23andMe.

Triangulation at 23andMe

At 23andMe, click on “DNA Relatives” in the Ancestry dropdown at the top of your page.

Triangulation 23andMe DNA Relatives.png

You will then see your list of matches.

23andMe does offer a Mom’s side and Dad’s side option, but only if at least one of your parents has tested AND you and that parent BOTH elect to share with each other. It’s not automatic.

To view your relationship with someone on your match list, click on that person’s name. I selected a known relative on my father’s side, Stacy.

Scroll down to the “Relatives in Common” section where you will see your matches in common with the person you selected. Stacy and I have 284 matches in common.

Triangulation 23andMe shared DNA.png

You can view the relationships of the match to you, and also to the person you’ve selected.

“Yes,” in the shared DNA column indicates that you, the person you selected (Stacy) and this match share DNA on a common segment. In other words, you triangulate.

In this example, Stacy and I share a triangulated segment with my own V4 kit (of course), and with both James and Diana, but not with George or Everett. We both match James and Everett, just not on the same segment, so we don’t triangulate.

Let’s look at James. By clicking on “Yes,” I can view the chromosome browser.

Scrolling down, I see that Stacy (purple), me (background grey) and James (orange) share DNA on only one segment, on chromosome 17.

Triangulation 23andMe chromosome 17.png

That segment triangulates between the three of us. I know how I am related to Stacy, but not how I am related to James. I can tell via my matches and triangulation with James that our common segment descends to me through my Vannoy line.

Unfortunately, 23andMe does not support trees in the traditional way, but some people enter surnames and locations, and you can download some Family Search ancestors to 23andMe or place a link to a tree elsewhere. I wrote about that here.

Check your 23andMe matches for surnames, common locations and links to trees.

You can also download your 23andMe segment matches and their information by clicking on Download Aggregate Data at the bottom of your matches page. Segment matches tell you exactly where on each chromosome you match other people.

Triangulation 23andMe download.png

Segment matches is NOT the same thing as downloading your raw DNA data file to upload to another vendor. See the Transfer section for those instructions.

Other 23andMe Resources to Identify Common Ancestors

23andMe provides additional tools, noted below, with the links to instructional articles I’ve written.

Transfers

Have you tested family members, especially everyone in the older generations? You can transfer their kits from Ancestry or 23andMe if they have already tested there to MyHeritage, FamilyTreeDNA or GedMatch.

Here’s how to transfer:

I wrote recently about how to work with triangulation at FamilyTreeDNA. and MyHeritage. Join me soon for similar articles about how to work with triangulation at GedMatch and DNAPainter.

Most of all – have fun!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

2019: The Year and Decade of Change

2019 ends both a year and a decade. In the genealogy and genetic genealogy world, the overwhelmingly appropriate word to define both is “change.”

Everything has changed.

Millions more records are online now than ever before, both through the Big 3, being FamilySearch, MyHeritage and Ancestry, but also through multitudes of other sites preserving our history. Everyplace from National Archives to individual blogs celebrating history and ancestors.

All you need to do is google to find more than ever before.

I don’t know about you, but I’ve made more progress in the past decade that in all of the previous ones combined.

Just Beginning?

If you’re just beginning with genetic genealogy, welcome! I wrote this article just for you to see what to expect when your DNA results are returned.

If you’ve been working with genetic genealogy results for some time, or would like a great review of the landscape, let’s take this opportunity to take a look at how far we’ve come in the past year and decade.

It’s been quite a ride!

What Has Changed?

EVERYTHING

Literally.

A decade ago, we had Y and mitochondrial DNA, but just the beginning of the autosomal revolution in the genetic genealogy space.

In 2010, Family Tree DNA had been in business for a decade and offered both Y and mitochondrial DNA testing.

Ancestry offered a similar Y and mtDNA product, but not entirely the same markers, nor full sequence mitochondrial. Ancestry subsequently discontinued that testing and destroyed the matching database. Ancestry bought the Sorenson database that included Y, mitochondrial and autosomal, then destroyed that data base too.

23andMe was founded in 2006 and began autosomal testing in 2007 for health and genealogy. Genealogists piled on that bandwagon.

Family Tree DNA added autosomal to their menu in 2010, but Ancestry didn’t offer an autosomal product until 2012 and MyHeritage not until 2016. Both Ancestry and MyHeritage have launched massive marketing and ad campaigns to help people figure out “who they are,” and who their ancestors were too.

Family Tree DNA

2019 FTDNA

Family Tree DNA had a banner year with the Big Y-700 product, adding over 211,000 Y DNA SNPs in 2019 alone to total more than 438,000 by year end, many of which became newly defined haplogroups. You can read more here. Additionally, Family Tree DNA introduced the Block Tree and public Y and public mitochondrial DNA trees.

Anyone who ignores Y DNA testing does so at their own peril. Information produced by Y DNA testing (and for that matter, mitochondrial too) cannot be obtained any other way. I wrote about utilizing mitochondrial DNA here and a series about how to utilize Y DNA begins in a few days.

Family Tree DNA remains the premier commercial testing company to offer high resolution and full sequence testing and matching, which of course is the key to finding genealogy solutions.

In the autosomal space, Family Tree DNA is the only testing company to provide Phased Family Matching which uses your matches on both sides of your tree, assuming you link 3rd cousins or closer, to assign other testers to specific parental sides of your tree.

Family Tree DNA accepts free uploads from other testing companies with the unlock for advanced features only $19. You can read about that here and here.

MyHeritage

MyHeritage, the DNA testing dark horse, has come from behind from their late entry into the field in 2016 with focused Europeans ads and the purchase of Promethease in 2019. Their database stands at 3.7 million, not as many as either Ancestry or 23andMe, but for many people, including me – MyHeritage is much more useful, especially for my European lines. Not only is MyHeritage a genealogy company, piloted by Gilad Japhet, a passionate genealogist, but they have introduced easy-to-use advanced tools for consumers during 2019 to take the functionality lead in autosomal DNA.

2019 MyHeritage.png

You can read more about MyHeritage and their 2019 accomplishments, here.

As far as I’m concerned, the MyHeritage bases-loaded 4-product “Home Run” makes MyHeritage the best solution for genetic genealogy via either testing or transfer:

  • Triangulation – shows testers where 3 or more people match each other. You can read more, here.
  • Tree Matching – SmartMatching for both DNA testers and those who have not DNA tested
  • Theories of Family Relativity – a wonderful new tool introduced in February. You can read more here.
  • AutoClusters – Integrated cluster technology helps you to visualize which groups of people match each other.

One of their best features, Theories of Family Relativity connects the dots between people you DNA match with disparate trees and other documents, such as census. This helps you and others break down long-standing brick walls. You can read more, here.

MyHeritage encourages uploads from other testing companies with basic functions such as matching for free. Advanced features cost either a one-time unlock fee of $29 or are included with a full subscription which you can try for free, here. You can read about what is free and what isn’t, here.

You can develop a testing and upload strategy along with finding instructions for how to upload here and here.

23andMe

Today, 23andMe is best known for health, having recovered after having had their wings clipped a few years back by the FDA. They were the first to offer Health results, leveraging the genealogy marketspace to attract testers, but have recently been eclipsed by both Family Tree DNA with their high end full Exome Tovana test and MyHeritage with their Health upgrade which provides more information than 23andMe along with free genetic counseling if appropriate. Both the Family Tree DNA and MyHeritage tests are medically supervised, so can deliver more results.

23andMe has never fully embraced genetic genealogy by adding the ability to upload and compare trees. In 2019, they introduced a beta function to attempt to create a genetic tree on your behalf based on how your matches match you and each other.

2019 23andMe.png

These trees aren’t accurate today, nor are they deep, but they are a beginning – especially considering that they are not based on existing trees. You can read more here.

The best 23andMe feature for genealogy, as far as I’m concerned, is their ethnicity along with the fact that they actually provide testers with the locations of their ethnicity segments which can help testers immensely, especially with minority ancestry matching. You can read about how to do this for yourself, here.

23andMe generally does not allow uploads, probably because they need people to test on their custom-designed medical chip. Very rarely, once that I know of in 2018, they do allow uploads – but in the past, uploaders do not receive all of the genealogy features and benefits of testing.

You can however, download your DNA file from 23andMe and upload elsewhere, with instructions here.

Ancestry

Ancestry is widely known for their ethnicity ads which are extremely effective in recruiting new testers. That’s the great news. The results are frustrating to seasoned genealogists who get to deal with the fallout of confused people trying to figure out why their results don’t match their expectations and family stories. That’s the not-so-great news.

However, with more than 15 million testers, many of whom DO have genealogy trees, a serious genealogist can’t *NOT* test at Ancestry. Testers do need to be aware that not all features are available to DNA testers who don’t also subscribe to Ancestry’s genealogy subscriptions. For example, you can’t see your matches’ trees beyond a 5 generation preview without a subscription. You can read more about what you do and don’t receive, here.

Ancestry is the only one of the major companies that doesn’t provide a chromosome browser, despite pleas for years to do so, but they do provide ThruLines that show you other testers who match your DNA and show a common ancestor with you in their trees.

2019 Ancestry.png

ThruLines will also link partial trees – showing you ancestral descendants from the perspective of the ancestor in question, shown above. You can read about ThruLines, here.

Of course, without a chromosome browser, this match is only as good as the associated trees, and there is no way to prove the genealogical connection. It’s possible to all be wrong together, or to be related to some people through a completely different ancestor. Third party tools like Genetic Affairs and cluster technology help resolve these types of issues. You can read more, here.

You can’t upload DNA files from other testing companies to Ancestry, probably due to their custom medical chip. You can download your file from Ancestry and upload to other locations, with instructions here.

Selling Customers’ DNA

Neither Family Tree DNA, MyHeritage nor Gedmatch sell, lease or otherwise share their customers’ DNA, and all three state (minimally) they will not in the future without prior authorization.

All companies utilize their customers’ DNA internally to enhance and improve their products. That’s perfectly normal.

Both Ancestry and 23andMe sell consumers DNA to both known and unknown partners if customers opt-in to additional research. That’s the purpose of all those questions.

If you do agree or opt-in, and for those who tested prior to when the opt-in began, consumers don’t know who their DNA has been sold to, where it is or for what purposes it’s being utilized. Although anonymized (pseudonymized) before sale, autosomal results can easily be identified to the originating tester (if someone were inclined to do so) as demonstrated by adoptees identifying parents and law enforcement identifying both long deceased remains and criminal perpetrators of violent crimes. You can read more about re-identification here, although keep in mind that the re-identification frequency (%) would be much higher now than it was in 2018.

People are widely split on this issue. Whatever you decide, to opt-in or not, just be sure to do your homework first.

Always read the terms and conditions fully and carefully of anything having to do with genetics.

Genealogy

The bottom line to genetic genealogy is the genealogy aspect. Genealogists want to confirm ancestors and discover more about those ancestors. Some information can only be discovered via DNA testing today, distant Native heritage, for example, breaking through brick walls.

This technology, as it has advanced and more people have tested, has been a godsend for genealogists. The same techniques have allowed other people to locate unknown parents, grandparents and close relatives.

Adoptees

Not only are genealogists identifying people long in the past that are their ancestors, but adoptees and those seeking unknown parents are making discoveries much closer to home. MyHeritage has twice provided thousands of free DNA tests via their DNAQuest program to adoptees seeking their biological family with some amazing results.

The difference between genealogy, which looks back in time several generations, and parent or grand-parent searches is that unknown-parent searches use matches to come forward in time to identify parents, not backwards in time to identify distant ancestors in common.

Adoptee matching is about identifying descendants in common. According to Erlich et al in an October 2018 paper, here, about 60% of people with European ancestry could be identified. With the database growth since that time, that percentage has risen, I’m sure.

You can read more about the adoption search technique and how it is used, here.

Adoptee searches have spawned their own subculture of sorts, with researchers and search angels that specialize in making these connections. Do be aware that while many reunions are joyful, not all discoveries are positively received and the revelations can be traumatic for all parties involved.

There’s ying and yang involved, of course, and the exact same techniques used for identifying biological parents are also used to identify cold-case deceased victims of crime as well as violent criminals, meaning rapists and murderers.

Crimes Solved

The use of genetic genealogy and adoptee search techniques for identifying skeletal remains of crime victims, as well as identifying criminals in order that they can be arrested and removed from the population has resulted in a huge chasm and division in the genetic genealogy community.

These same issues have become popular topics in the press, often authored by people who have no experience in this field, don’t understand how these techniques are applied or function and/or are more interested in a sensational story than in the truth. The word click-bait springs to mind although certainly doesn’t apply equally to all.

Some testers are adamantly pro-usage of their DNA in order to identify victims and apprehend violent criminals. Other testers, not so much and some, on the other end of the spectrum are vehemently opposed. This is a highly personal topic with extremely strong emotions on both sides.

The first such case was the Golden State Killer, which has been followed in the past 18 months or so by another 100+ solved cases.

Regardless of whether or not people want their own DNA to be utilized to identify these criminals and victims, providing closure for families, I suspect the one thing we can all agree on is that we are grateful that these violent criminals no longer live among us and are no longer preying on innocent victims.

I wrote about the Golden State Killer, here, as well as other articles here, here, here and here.

In the genealogy community, various vendors have adopted quite different strategies relating to these kinds of searches, as follows:

  • Ancestry, 23andMe and MyHeritage – have committed to fight all access attempts by law enforcement, including court ordered subpoenas.
  • MyHeritage, Family Tree DNA and GedMatch allow uploads, so forensic kits, meaning kits from deceased remains or rape kits could be uploaded to search for matches, the same as any other kit. Law Enforcement uploads violate the MyHeritage terms of service. Both Family Tree DNA and GEDmatch have special law enforcement procedures in place. All three companies have measures in place to attempt to detect unauthorized forensic uploads.
  • Family Tree DNA has provided a specific Law Enforcement protocol and guidelines for forensic uploads, here. All EU customers were opted out earlier in 2019, but all new or existing non-EU customers need to opt out if they do not want their DNA results available for matching to law enforcement kits.
  • GEDmatch was recently sold to Verogen, a DNA forensics company, with information, here. Currently GEDMatch customers are opted-out of matching for law enforcement kits, but can opt-in. Verogen, upon purchase of GEDmatch, required all users to read the terms and conditions and either accept the terms or delete their kits. Users can also delete their kits or turn off/on law enforcement matching at any time.

New Concerns

Concerns in late 2019 have focused on the potential misuse of genetic matching to potentially target subsets of individuals by despotic regimes such as has been done by China to the Uighurs.

You can read about potential risks here, here and here, along with a recent DoD memo here.

Some issues spelled out in the papers can be resolved by vendors agreeing to cryptographically sign their files when customers download. Of course, this would require that everyone, meaning all vendors, play nice in the sandbox. So far, that hasn’t happened although I would expect that the vendors accepting uploads would welcome cryptographic signatures. That pretty much leaves Ancestry and 23andMe. I hope they will step up to the plate for the good of the industry as a whole.

Relative to the concerns voiced in the papers and by the DoD, I do not wish to understate any risks. There ARE certainly risks of family members being identified via DNA testing, which is, after all, the initial purpose even though the current (and future) uses were not foreseen initially.

In most cases, the cow has already left that barn. Even if someone new chooses not to test, the critical threshold is now past to prevent identification of individuals, at least within the US and/or European diaspora communities.

I do have concerns:

  • Websites where the owners are not known in the genealogical community could be collecting uploads for clandestine purposes. “Free” sites are extremely attractive to novices who tend to forget that if you’re not paying for the product, you ARE the product. Please be very cognizant and leery. Actually, just say no unless you’re positive.
  • Fearmongering and click-bait articles in general will prevent and are already causing knee-jerk reactions, causing potential testers to reject DNA testing outright, without doing any research or reading terms and conditions.
  • That Ancestry and 23andMe, the two major vendors who don’t accept uploads will refuse to add crypto-signatures to protect their customers who download files.

Every person needs to carefully make their own decisions about DNA testing and participating in sharing through third party sites.

Health

Not surprisingly, the DNA testing market space has cooled a bit this past year. This slowdown is likely due to a number of factors such as negative press and the fact that perhaps the genealogical market is becoming somewhat saturated. Although, I suspect that when vendors announce major new tools, their DNA kit sales spike accordingly.

Look at it this way, do you know any serious genealogists who haven’t DNA tested? Most are in all of the major databases, meaning Ancestry, 23andMe, FamilyTreeDNA, MyHeritage and GedMatch.

All of the testing companies mentioned above (except GEDmatch who is not a testing company) now have a Health offering, designed to offer existing and new customers additional value for their DNA testing dollar.

23andMe separated their genealogy and health offering years ago. Ancestry and MyHeritage now offer a Health upgrade. For existing customers, FamilyTreeDNA offers the Cadillac of health tests through Tovana.

I would guess it goes without saying here that if you really don’t want to know about potential health issues, don’t purchase these tests. The flip side is, of course, that most of the time, a genetic predisposition is nothing more and not a death sentence.

From my own perspective, I found the health tests to be informative, actionable and in some cases, they have been lifesaving for friends.

Whoever knew genealogy might save your life.

Innovative Third-Party Tools

Tools, and fads, come and go.

In the genetic genealogy space, over the years, tools have burst on the scene to disappear a few months later. However, the last few years have been won by third party tools developed by well-known and respected community members who have created tools to assist other genealogists.

As we close this decade, these are my picks of the tools that I use almost daily, have proven to be the most useful genealogically and that I feel I just “couldn’t live without.”

And yes, before you ask, some of these have a bit of a learning curve, but if you are serious about genealogy, these are all well worthwhile:

  • GedMatch – offers a wife variety of tools including triangulation, half versus fully identical segments and the ability to see who your matches also match. One of the tools I utilize regularly is segment search to see who else matches me on a specific segment, attached to an ancestor I’m researching. GedMatch, started by genealogists, has lasted more than a decade prior to the sale in December 2019.
  • Genetic Affairs – a barn-burning newcomer developed by Evert-Jan Blom in 2018 wins this years’ “Best” award from me, titled appropriately, the “SNiPPY.”.

Genetic Affairs 2019 SNiPPY Award.png

Genetic Affairs offers clustering, tree building between your matches even when YOU don’t have a tree. You can read more here.

2019 genetic affairs.png

Just today, Genetic Affairs released a new cluster interface with DNAPainter, example shown above.

  • DNAPainter – THE chromosome painter created by Jonny Perl just gets better and better, having added pedigree tree construction this year and other abilities. I wrote a composite instructional article, here.
  • DNAGedcom.com and Genetic.Families, affiliated with DNAAdoption.org – Rob Warthen in collaboration with others provides tools like clustering combined with triangulation. My favorite feature is the gathering of all direct ancestors of my matches’ trees at the various vendors where I’ve DNA tested which allows me to search for common surnames and locations, providing invaluable hints not otherwise available.

Promising Newcomer

  • MitoYDNA – a non-profit newcomer by folks affiliated with DNAAdoption and DNAGedcom is designed to replace YSearch and MitoSearch, both felled by the GDPR ax in 2018. This website allows people to upload their Y and mitochondrial DNA results and compare the values to each other, not just for matching, which you can do at Family Tree DNA, but also to see the values that do and don’t match and how they differ. I’ll be taking MitoYDNA for a test drive after the first of the year and will share the results with you.

The Future

What does the future hold? I almost hesitate to guess.

  • Artificial Intelligence Pedigree Chart – I think that in the not-too-distant future we’ll see the ability to provide testers with a “one and done” pedigree chart. In other words, you will test and receive at least some portion of your genealogy all tidily presented, red ribbon untied and scroll rolled out in front of you like you’re the guest on one of those genealogy TV shows.

Except it’s not a show and is a result of DNA testing, segment triangulation, trees and other tools which narrow your ancestors to only a few select possibilities.

Notice I said, “the ability to.” Just because we have the ability doesn’t mean a vendor will implement this functionality. In fact, just think about the massive businesses built upon the fact that we, as genealogists, have to SEARCH incessantly for these elusive answers. Would it be in the best interest of these companies to just GIVE you those answers when you test?

If not, then these types of answers will rest with third parties. However, there’s a hitch. Vendors generally don’t welcome third parties offering advanced tools and therefore block those tools, even though they are being used BY the customer or with their explicit authorization to massage their own data.

On the other hand, as a genealogist, I would welcome this feature with open arms – because as far as I’m concerned, the identification of that ancestor is just the first step. I get to know them by fleshing out their bones by utilizing those research records.

In fact, I’m willing to pony up to the table and I promise, oh-so-faithfully, to maintain my subscription lifelong if one of those vendors will just test me. Please, please, oh pretty-please put me to the test!

I guess you know what my New Year’s Wish is for this and upcoming years now too😊

What About You?

What do you think the high points of 2019 have been?

How about the decade?

What do you think the future holds?

Do you care to make any predictions?

Are you planning to focus on any particular goal or genealogy problem in 2020?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items