A Triangulation Checklist Born From the Question; “Why NOT Use Close Relatives for Triangulation?”

One of my readers asked why we don’t use close relatives for triangulation.

This is a great question because not using close relatives for triangulation seems counter-intuitive.

I used to ask my kids and eventually my students and customers if they wanted the quick short answer or the longer educational answer.

The short answer is “because close relatives are too close to reliably form the third leg of the triangle.” Since you share so much DNA with close relatives, someone matching you who is identical by chance can also match them for exactly the same reason.

If you trust me and you’re good with that answer, wonderful. But I hope you’ll keep reading because there’s so much to consider, not to mention a few gotchas. I’ll share my methodology, techniques, and workarounds.

We’ll also discuss absolutely wonderful ways to utilize close relatives in the genetic genealogical process – just not for triangulation.

At the end of this article, I’ve provided a working triangulation checklist for you to use when evaluating your matches.

Let’s go!

The Step-by-Step Educational Answer😊

Some people see “evidence” they believe conflicts with the concept that you should not use close relatives for triangulation. I understand that, because I’ve gone down that rathole too, so I’m providing the “educational answer” that explains exactly WHY you should not use close relatives for triangulation – and what you should do.

Of course, we need to answer the question, “Who actually are close relatives?”

I’ll explain the best ways to best utilize close relatives in genetic genealogy, and why some matches are deceptive.

You’ll need to understand the underpinnings of DNA inheritance and also of how the different vendors handle DNA matching behind the scenes.

The purpose of autosomal DNA triangulation is to confirm that a segment is passed down from a particular ancestor to you and a specific set of your matches.

Triangulation, of course, implies 3, so at least three people must all match each other on a reasonably sized portion of the same DNA segment for triangulation to occur.

Matching just one person only provides you with one path to that common ancestor. It’s possible that you match that person due to a different ancestor that you aren’t aware of, or due to chance recombination of DNA.

It’s possible that your or your match inherited part of that DNA from your maternal side and part from your paternal side, meaning that you are matching that other person’s DNA by chance.

I wrote about identical by descent (IBD), which is an accurate genealogically meaningful match, and identical by chance (IBC) which is a false match, in the article Concepts – Identical by…Descent, State, Population and Chance.

I really want you to understand why close relatives really shouldn’t be used for triangulation, and HOW close relative matches should be used, so we’re going to discuss all of the factors that affect and influence this topic – both the obvious and little-understood.

  • Legitimate Matches
  • Inheritance and Triangulation
  • Parental Cross-Matching
  • Parental Phasing
  • Automatic Phasing at FamilyTreeDNA
  • Parental Phasing Caveats
  • Pedigree Collapse
  • Endogamy
  • How Many Identical-by-Chance Matches Will I Have?
  • DNA Doesn’t Skip Generations (Seriously, It Doesn’t)
  • Your Parents Have DNA That You Don’t (And How to Use It)
  • No DNA Match Doesn’t Mean You’re Not Related
  • Imputation
  • Ancestry Issues and Workarounds
  • Testing Close Relatives is VERY Useful – Just Not for Triangulation
  • Triangulated Matches
  • Building Triangulation Evidence – Ingredients and a Recipe
  • Aunts/Uncles
  • Siblings
  • How False Positives Work and How to Avoid Them
  • Distant Cousins Are Best for Triangulation & Here’s Why
  • Where Are We? A Triangulation Checklist for You!
  • The Bottom Line

Don’t worry, these sections are logical and concise. I considered making this into multiple articles, but I really want it in one place for you. I’ve created lots of graphics with examples to help out.

Let’s start by dispelling a myth.

DNA Doesn’t Skip Generations!

Recently, someone emailed to let me know that they had “stopped listening to me” in a presentation when I said that if a match did not also match one of your parents, it was a false match. That person informed me that they had worked on their tree for three years at Ancestry and they have “proof” of DNA skipping generations.

Nope, sorry. That really doesn’t happen, but there are circumstances when a person who doesn’t understand either how DNA works, or how the vendor they are using presents DNA results could misunderstand or misinterpret the results.

You can watch my presentation, RootsTech session, DNA Triangulation: What, Why and How, for free here. I’m thrilled that this session is now being used in courses at two different universities.

DNA really doesn’t skip generations. You CANNOT inherit DNA that your parents didn’t have.

Full stop.

Your children cannot inherit DNA from you that you don’t carry. If you don’t have that DNA, your children and their descendants can’t have it either, at least not from you. They of course do inherit DNA from their other parent.

I think historically, the “skipping generations” commentary was connected to traits. For example, Susie has dimples (or whatever) and so did her maternal grandmother, but her mother did not, so Susie’s dimples were said to have “skipped a generation.” Of course, we don’t know anything about Susie’s other grandparents, if Susie’s parents share ancestors, recessive/dominant genes or even how many genetic locations are involved with the inheritance of “dimples,” but I digress.

DNA skipping generations is a fallacy.

You cannot legitimately match someone that your parent does not, at least not through that parent’s side of the tree.

But here’s the caveat. You can’t match someone one of your parents doesn’t with the rare exception of:

  • Relatively recent pedigree collapse that occurs when you have the same ancestors on both sides of your tree, meaning your parents are related, AND
  • The process of recombination just happened to split and recombine a segment of DNA in segments too small for your match to match your parents individually, but large enough when recombined to match you.

We’ll talk about that more in a minute.

However, the person working with Ancestry trees can’t make this determination because Ancestry doesn’t provide segment information. Ancestry also handles DNA differently than other vendors, which we’ll also discuss shortly.

We’ll review all of this, but let’s start at the beginning and explain how to determine if our matches are legitimate, or not.

Legitimate Matches

Legitimate matches occur when the DNA of your ancestor is passed from that ancestor to their descendants, and eventually to you and a match in an unbroken pathway.

Unbroken means that every ancestor between you and that ancestor carried and then passed on the segment of the ancestor’s DNA that you carry today. The same is true for your match who carries the same segment of DNA from your common ancestor.

False positive matches occur when the DNA of a male and female combine randomly to look like a legitimate match to someone else.

Thankfully, there are ways to tell the difference.

Inheritance and Triangulation

Remember, you inherit two copies of each of your chromosomes 1-22, one copy from your mother and one from your father. You inherit half of the DNA that each parent carries, but it’s mixed together in you so the labs can’t readily tell which nucleotide, A, C, T, or G you received from which parent. I’m showing your maternal and paternal DNA in the graphic below, stacked neatly together in a column – but in reality, it could be AC in one position and CA in the next.

For matching all that matters is the nucleotide that matches your match is present in one of those two locations. In this case, A for your mother’s side and C for your father’s side. If you’re interested, you can read more about that in the article, Hit a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters.

You can see in this example that you inherited all As from your Mom and all Cs from your Dad.

  • A legitimate maternal match would match you on all As on this particular example segment.
  • A legitimate paternal match would match you on all Cs on this particular segment.
  • A false positive match will match you on some random combination of As and Cs that make it look like they match you legitimately, but they don’t.
  • A false positive match will NOT match either your mother or your father.

To be very clear, technically a false positive match DOES match your DNA – but they don’t match your DNA because you share a common ancestor with your match. They match you because random recombination on their side causes you to match each other by chance.

In other words, if part of your DNA came from your Mom’s side and part from your Dad’s but it randomly fell in the correct positional order, you’d still match someone whose DNA was from only their mother or father’s side. That’s exactly the situation shown above and below.

Looking at our example again, it’s evident that your identical by chance (IBC) match’s A locations (1, 3, 5, 7 & 9) will match your Mom. C locations (2, 4, 6 8, & 10) will match your Dad, but the nonmatching segments interleaved in-between that match alternating parents will prevent your match from matching either of your parents. In other words, out of 10 contiguous locations in our example, your IBC match has 5 As alternated with 5 Cs, so they won’t match either of your parents who have 10 As or 10 Cs in a row.

This recombination effect can work in either direction. Either or both matching people’s DNA could be randomly mixed causing them to match each other, but not their parents.

Regardless of whose DNA is zigzagging back and forth between maternal and paternal, the match is not genealogical and does not confirm a common ancestor.

This is exactly why triangulation works and is crucial.

If you legitimately match a third person, shown below, on your maternal side, they will match you, your first legitimate maternal match, and your Mom because they carry all As. But they WON’T match the person who is matching you because they are identical by chance, shown in grey below.

The only person your identical by chance match matches in this group is you because they match you because of the chance recombination of parental DNA.

That third person WILL also match all other legitimate maternal matches on this segment.

In the graphic above, we see that while the grey identical by chance person matches you because of the random combination of As from your mother and Cs from your father, your legitimate maternal matches won’t match your identical by chance match.

This is the first step in identifying false matches.

Parental Cross-Matching

Removing the identical by chance match, and adding in the parents of your legitimate maternal match, we see that your maternal match, above, matches you because you both have all As inherited from one parent, not from a combination of both parents.

We know that because we can see the DNA of both parents of both matches in this example.

The ideal situation occurs when two people match and they have both had their parents tested. We need to see if each person matches the other person’s parents.

We can see that you do NOT match your match’s father and your match does NOT match your father.

You do match your match’s mother and your match does match your mother. I refer to this as Parental Cross-matching.

Your legitimate maternal matches will also match each other and your mother if she is available for testing.

All the people in yellow match each other, while the two parents in gray do not match any of your matches. An entire group of legitimate maternal matches on this segment, no matter how many, will all match each other.

If another person matches you and the other yellow people, you’ll still need to see if you match their parents, because if not, that means they are matching you on all As because their two parents DNA combined just happened, by chance, to contribute an A in all of those positions.

In this last example, your new match, in green, matches you, your legitimate match and both of your mothers, BUT, none of the four yellow people match either of the new match’s parents. You can see that the new green match inherited their As from the DNA of their mother and father both, randomly zigzagging back and forth.

The four yellow matches phase parentally as we just proved with cross matching to parents. The new match at first glance appears to be a legitimate match because they match all of the yellow people – but they aren’t because the yellow people don’t match the green person’s parents.

To tell the difference between legitimate matches and identical by chance matches, you need two things, in order.

  • Parental matching known as parental phasing along with parental cross-matching, if possible, AND
  • Legitimate identical by descent (IBD) triangulated matches

If you have the ability to perform parental matching, called phasing, that’s the easiest first step in eliminating identical by chance matches. However, few match pairs will have parents for everyone. You can use triangulation without parental phasing if parents aren’t available.

Let’s talk about both, including when and how close relatives can and cannot be used.

Parental Phasing

The technique of confirming your match to be legitimate by your match also matching one of your parents is called parental phasing.

If we have the parents of both people in a match pair available for matching, we can easily tell if the match does NOT match either parent. That’s Parental Cross Matching. If either match does NOT match one of the other person’s parents, the match is identical by chance, also known as a false positive.

See how easy that was!

If you, for example, is the only person in your match pair to have parents available, then you can parentally phase the match on your side if your match matches your parents. However, because your match’s parents are unavailable, your match to them cannon tbe verified as legitimate on their side. So you are not phased to their parents.

If you only have one of your parents available for matching, and your match does not match that parent, you CANNOT presume that because your match does NOT match that parent, the match is a legitimate match for the other, missing, parent.

There are four possible match conditions:

  • Maternal match
  • Paternal match
  • Matches neither parent which means the match is identical by chance meaning a false positive
  • Matches both parents in the case of pedigree collapse or endogamy

If two matching people do match one parent of both matches (parental cross-matching), then the match is legitimate. In other words, if we match, I need to match one of your parents and you need to match one of mine.

It’s important to compare your matches’ DNA to generationally older direct family members such as parents or grandparents, if that’s possible. If your grandparents are available, it’s possible to phase your matches back another generation.

Automatic Phasing at FamilyTreeDNA

FamilyTreeDNA automatically phases your matches to your parents if you test that parent, create or upload a GEDCOM file, and link your test and theirs to your tree in the proper places.

FamilyTreeDNA‘s Family Matching assigns or “buckets” your matches maternally and paternally. Matches are assigned as maternal or paternal matches if one or both parents have tested.

Additionally, FamilyTreeDNA uses triangulated matches from other linked relatives within your tree even if your parents have not tested. If you don’t have your parents, the more people you identify and link to your tree in the proper place, the more people will be assigned to maternal and paternal buckets. FamilyTreeDNA is the only vendor that does this. I wrote about this process in the article, Triangulation in Action at Family Tree DNA.

Parental Phasing Caveats

There are very rare instances where parental phasing may be technically accurate, but not genealogically relevant. By this, I mean that a parent may actually match one of your matches due to endogamy or a population level match, even if it’s considered a false positive because it’s not relevant in a genealogical timeframe.

Conversely, a parent may not match when the segment is actually legitimate, but it’s quite rare and only when pedigree collapse has occurred in a very specific set of circumstances where both parents share a common ancestor.

Let’s take a look at that.

Pedigree Collapse

It’s not terribly uncommon in the not-too-distant past to find first cousins marrying each other, especially in rather closely-knit religious communities. I encounter this in Brethren, Mennonite and Amish families often where the community was small and out-marrying was frowned upon and highly discouraged. These families and sometimes entire church congregations migrated cross-country together for generations.

When pedigree collapse is present, meaning the mother and father share a common ancestor not far in the past, it is possible to inherit half of one segment from Mom and the other half from Dad where those halves originated with the same ancestral couple.

For example, let’s say the matching segment between you and your match is 12 cM in length, shown below. You inherited the blue segment from your Dad and the neighboring peach segment from Mom – shown just below the segment numbers. You received 6 cM from both parents.

Another person’s DNA does match you, shown in the bottom row, but they are not shown on the DNA match list of either of your parents. That’s because the DNA segments of the parents just happened to recombine in 6 cM pieces, respectively, which is below the 7 cM matching threshold of the vendor in this example.

If the person matched you at 12 cM where you inherited 8 cM from one parent and 4 from the other, that person would show on one parent’s match list, but not the other. They would not be on the parent’s match list who contributed only 4 cM simply because the DNA divided and recombined in that manner. They would match you on a longer segment than they match your parent at 8 cM which you might notice as “odd.”

Let’s look at another example.

click to enlarge image

If the matching segment is 20 cM, the person will match you and both of your parents on different pieces of the same segment, given that both segments are above 7 cM. In this case, your match who matches you at 20 cM will match each of your parents at 10 cM.

You would be able to tell that the end location of Dad’s segment is the same as the start location of Mom’s segment.

This is NOT common and is NOT the “go to” answer when you think someone “should” match your parent and does not. It may be worth considering in known pedigree collapse situations.

You can see why someone observing this phenomenon could “presume” that DNA skipped a generation because the person matches you on segments where they don’t match your parent. But DNA didn’t skip anything at all. This circumstance was caused by a combination of pedigree collapse, random division of DNA, then random recombination in the same location where that same DNA segment was divided earlier. Clearly, this sequence of events is not something that happens often.

If you’ve uploaded your DNA to GEDmatch, you can select the “Are your parents related?” function which scans your DNA file for runs of homozygosity (ROH) where your DNA is exactly the same in both parental locations for a significant distance. This suggests that because you inherited the exact same sequence from both parents, that your parents share an ancestor.

If your parents didn’t inherit the same segment of DNA from both parents, or the segment is too short, then they won’t show as “being related,” even if they do share a common ancestor.

Now, let’s look at the opposite situation. Parental phasing and ROH sometimes do occur when common ancestors are far back in time and the match is not genealogically relevant.

Endogamy

I often see non-genealogical matching occur when dealing with endogamy. Endogamy occurs when an entire population has been isolated genetically for a long time. In this circumstance, a substantial part of the population shares common DNA segments because there were few original population founders. Much of the present-day population carries that same DNA. Many people within that population would match on that segment. Think about the Jewish community and indigenous Americans.

Consider our original example, but this time where much of the endogamous population carries all As in these positions because one of the original founders carried that nucleotide sequence. Many people would match lots of other people regardless of whether they are a close relative or share a distant ancestor.

People with endogamous lines do share relatives, but that matching DNA segment originated in ancestors much further back in time. When dealing with endogamy, I use parental phasing as a first step, if possible, then focus on larger matches, generally 20 cM or greater. Smaller matches either aren’t relevant or you often can’t tell if/how they are.

At FamilyTreeDNA, people with endogamy will find many people bucketed on the “Both” tab meaning they triangulate with people linked on both sides of the tester’s tree.

An example of a Jewish person’s bucketed matches based on triangulation with relatives linked in their tree is shown above.

Your siblings, their children, and your children will be related on both your mother’s and father’s sides, but other people typically won’t be unless you have experienced either pedigree collapse where you are related both maternally and paternally through the same ancestors or you descend from an endogamous population.

How Many Identical-by-Chance Matches Will I Have?

If you have both parents available to test, and you’re not dealing with either pedigree collapse or endogamy, you’ll likely find that about 15-20% of your matches don’t match your parents on the same segment and are identical by chance.

With endogamy, you’ll have MANY more matches on your endogamous lines and you’ll have some irrelevant matches, often referred to as “false positive” matches even though they technically aren’t, even using parental phasing.

Your Parents Have DNA That You Don’t

Sometimes people are confused when reviewing their matches and their parent’s match to the same person, especially when they match someone and their parent matches them on a different or an additional segment.

If you match someone on a specific segment and your parents do not, that’s a false positive FOR THAT SEGMENT. Every segment has its own individual history and should be evaluated individually. You can match someone on two segments, one from each parent. Or three segments, one from each parent and one that’s identical by chance. Don’t assume.

Often, your match will match both you and your parent on the same segment – which is a legitimate parentally phased match.

But what if your match matches your parent on a different segment where they don’t match you? That’s a false positive match for you.

Keep in mind that it is possible for one of your matches to match your parent on a separate or an additional segment that IS legitimate. You simply didn’t inherit that particular segment from your parent.

That’s NOT the same situation as someone matching you that does NOT match one of your parents on the same segment – which is an identical by chance or false match.

Your parent having a match that does not match you is the reverse situation.

I have several situations where I match someone on one segment, and they match my parent on the same segment. Additionally, that person matches my parent on another segment that I did NOT inherit from that parent. That’s perfectly normal.

Remember, you only inherit half of your parent’s DNA, so you literally did NOT inherit the other half of their DNA. Your mother, for example, should have twice as many matches as you on her side because roughly half of her matches won’t match you.

That’s exactly why testing your parents and close family members is so critical. Their matches are as valid and relevant to your genealogy as your own. The same is true for other relatives, such as aunts and uncles with whom you share ALL of the same ancestors.

You need to work with your family member’s matches that you don’t share.

No DNA Match Doesn’t Mean You’re Not Related

Some people think that not matching someone on a DNA test is equivalent to saying they aren’t related. Not sharing DNA doesn’t mean you’re not related.

People are often disappointed when they don’t match someone they think they should and interpret that to mean that the testing company is telling them they “aren’t related.” They are upset and take issue with this characterization. But that’s not what it means.

Let’s analyze this a bit further.

First, not sharing DNA with a second cousin once removed (2C1R) or more distant does NOT mean you’re NOT related to that person. It simply means you don’t share any measurable DNA ABOVE THE VENDOR THRESHOLD.

All known second cousins match, but about 10% of third cousins don’t match, and so forth on up the line with each generation further back in time having fewer cousins that match each other.

If you have tested close relatives, check to see if that cousin matches your relatives.

Second, it’s possible to match through the “other” or unexpected parent. I certainly didn’t think this would be the case in my family, because my father is from Appalachia and my mother’s family is primarily from the Netherlands, Germany, Canada, and New England. But I was wrong.

All it took was one German son that settled in Appalachia, and voila, a match through my mother that I surely thought should have been through my father’s side. I have my mother’s DNA and sure enough, my match that I thought should be on my father’s side matches Mom on the same segment where they match me, along with several triangulated matches. Further research confirmed why.

I’ve also encountered situations where I legitimately match someone on both my mother’s and father’s side, on different segments.

Third, imputation can be important for people who don’t match and think they should. Imputation can also cause matching segment length to be overreported.

Ok, so what’s imputation and why do I care?

Imputation

Every DNA vendor today has to use some type of imputation.

Let me explain, in general, what imputation is and why vendors use it.

Over the years, DNA processing vendors who sell DNA chips to testing companies have changed their DNA chips pretty substantially. While genealogical autosomal tests test about 700,000 DNA locations, plus or minus, those locations have changed over time. Today, some of these chips only have 100,000 or so chip locations in common with chips either currently or previously utilized by other vendors.

The vendors who do NOT accept uploads, such as 23andMe or Ancestry, have to develop methods to make their newest customers on their DNA processing vendor’s latest chip compatible with their first customer who was tested on their oldest chip – and all iterations in-between.

Vendors who do accept transfers/uploads from other vendors have to equalize any number of vendors’ chips when their customers upload those files.

Imputation is the scientific way to achieve this cross-platform functionality and has been widely used in the industry since 2017.

Imputation, in essence, fills in the blanks between tested locations with the “most likely” DNA found in the human population based on what’s surrounding the blank location.

Think of the word C_T. There are a limited number of letters and words that are candidates for C_T. If you use the word in a sentence, your odds of accuracy increase dramatically. Think of a genetic string of nucleotides as a sentence.

Imputation can be incorrect and can cause both false positive and false negative matches.

For the most part, imputation does not affect close family matches as much as more distant matches. In other words, imputation is NOT going to cause close family members not to match.

Imputation may cause more distant family members not to match, or to have a false positive match when imputation is incorrect.

Imputation is actually MUCH less problematic than I initially expected.

The most likely effect of imputation is to cause a match to be just above or below the vendor threshold.

How can we minimize the effects of imputation?

  • Generally, the best result will be achieved if both people test at the same vendor where their DNA is processed on the same chip and less imputation is required.
  • Upload the results of both people to both MyHeritage and FamilyTreeDNA. If your match results are generally consistent at those vendors, imputation is not a factor.
  • GEDmatch does not use imputation but attempts to overcome files with low overlapping regions by allowing larger mismatch areas. I find their matches to be less accurate than at the various vendors.

Additionally, Ancestry has a few complicating factors.

Ancestry Issues

AncestryDNA is different in three ways.

  • Ancestry doesn’t provide segment information so it’s impossible to triangulate or identify the segment or chromosome where people match. There is no chromosome browser or triangulation tool.
  • Ancestry down-weights and removes some segments in areas where they feel that people are “too matchy.” You can read Ancestry’s white papers here and here.

These “personal pileup regions,” as they are known, can be important genealogically. In my case, these are my mother’s Acadian ancestors. Yes, this is an endogamous population and also suffers from pedigree collapse, but since this is only one of my mother’s great-grandparents, this match information is useful and should not be removed.

  • Ancestry doesn’t show matches in common if the shared segments are less than 20cM. Therefore, you may not see someone on a shared match list with a relative when they actually are a shared match.

If two people both match a third person on less than a 20 cM segment at Ancestry, the third person won’t appear on the other person’s shared match list. So, if I match John Doe on 19 cM of DNA, and I looked at the shared matches with my Dad, John Doe does NOT appear on the shared match list of me and my Dad – even though he is a match to both of us at 19 cM.

The only way to determine if John Doe is a shared match is to check my Dad’s and my match list individually, which means Dad and I will need to individually search for John Doe.

Caveat here – Ancestry’s search sometimes does not work correctly.

Might someone who doesn’t understand that the shared match list doesn’t show everyone who shares DNA with both people presume that the ancestral DNA of that ancestor “skipped a generation” because John Doe matches me with a known ancestor, and not Dad on our shared match list? I mean, wouldn’t you think that a shared match would be shown on a tab labeled “Shared Matches,” especially since there is no disclaimer?

Yes, people can be forgiven for believing that somehow DNA “skipped” a generation in this circumstance, especially if they are relatively inexperienced and they don’t understand Ancestry’s anomalies or know that they need to or how to search for matches individually.

Even if John Doe does match me and Dad both, we still need to confirm that it’s on the same segment AND it’s a legitimate match, not IBC. You can’t perform either of these functions at Ancestry, but you can elsewhere.

Ancestry WorkArounds

To obtain this functionality, people can upload their DNA files for free to both FamilyTreeDNA and MyHeritage, companies that do provide full shared DNA reporting (in common with) lists of ALL matches and do provide segment information with chromosome browsers. Furthermore, both provide triangulation in different ways.

Matching is free, but an inexpensive unlock is required at both vendors to access advanced tools such as Family Matching (bucketing) and triangulation at Family Tree DNA and phasing/triangulation at MyHeritage.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

MyHeritage actually brackets triangulated segments for customers on their chromosome browser, including parents, so you get triangulation and parental phasing at the same time if you and your parent have both tested or uploaded your DNA file to MyHeritage. You can upload, for free, here.

In this example, my mother is matching to me in red on the entire length of chromosome 18, of course, and three other maternal cousins triangulate with me and mother inside the bracketed portion of chromosome 18. Please note that if any one of the people included in the chromosome browser comparison do not triangulate, no bracket is drawn around any others who do triangulate. It’s all or nothing. I remove people one by one to see if people triangulate – or build one by one with my mother included.

I wrote about Triangulation in Action at MyHeritage, here.

People can also upload to GEDmatch, a third-party site. While GEDmatch is less reliable for matching, you can adjust your search thresholds which you cannot do at other vendors. I don’t recommend routinely working below 7 cM. I occasionally use GEDmatch to see if a pedigree collapse segment has recombined below another vendor’s segment matching threshold.

Do NOT check the box to prevent hard breaks when selecting the One-to-One comparison. Checking that box allows GEDmatch to combine smaller matching segments into mega-segments for matching.

I wrote about Triangulation in Action at GEDmatch, here.

Transferring/Uploading Your DNA 

If you want to transfer your DNA to one of these vendors, you must download the DNA file from one vendor and upload it to another. That process does NOT remove your DNA file from the vendor where you tested, unless you select that option entirely separately.

I wrote full step-by-step transfer/upload instructions for each vendor, here.

Testing Close Relatives Is VERY Useful – Just Not for Triangulation

Of course, your best bet if you don’t have your parents available to test is to test as many of your grandparents, great-aunts/uncles, aunts, and uncles as possible. Test your siblings as well, because they will have inherited some of the same and some different segments of DNA from your parents – which means they carry different pieces of your ancestors’ DNA.

Just because close relatives don’t make good triangulation candidates doesn’t mean they aren’t valuable. Close relatives are golden because when they DO share a match with you, you know where to start looking for a common ancestor, even if your relative matches that person on a different segment than you do.

Close relatives are also important because they will share pieces of your common ancestor’s DNA that you don’t. Their matches can unlock the answers to your genealogy questions.

Ok, back to triangulation.

Triangulated Matches

A triangulated match is, of course, when three people all descended from a common ancestor and match each other on the same segment of DNA.

That means all three people’s DNA matches each other on that same segment, confirming that the match is not by chance, and that segment did descend from a common ancestor or ancestral couple.

But, is this always true? You’re going to hate this answer…

“It depends.”

You knew that was coming, didn’t you! 😊

It depends on the circumstances and relationships of the three people involved.

  • One of those three people can match the other two by chance, not by descent, especially if two of those people are close relatives to each other.
  • Identical by chance means that one of you didn’t inherit that DNA from one single parent. That zigzag phenomenon.
  • Furthermore, triangulated DNA is only valid as far back as the closest common ancestor of any two of the three people.

Let’s explore some examples.

Building Triangulation Evidence – Ingredients and a Recipe

The strongest case of triangulation is when:

  • You and at least two additional cousins match on the same segment AND
  • Descend through different children of the common ancestral couple

Let’s look at a valid triangulated match.

In this first example, the magenta segment of DNA is at least partially shared by four of the six cousins and triangulates to their common great-grandfather. Let’s say that these cousins then match with two other people descended from different children of their great-great-great-grandparents on this same segment. Then the entire triangulation group will have confirmed that segment’s origin and push the descent of that segment back another two generations.

These people all coalesce into one line with their common great-grandparents.

I’m only showing 3 generations in this triangulated match, but the concept is the same no matter how many generations you reach back in time. Although, over time, segments inherited from any specific ancestor become smaller and smaller until they are no longer passed to the next generation.

In this pedigree chart, we’re only tracking the magenta DNA which is passed generation to generation in descendants.

Eventually, of course, those segments become smaller and indistinguishable as they either aren’t passed on at all or drop below vendor matching thresholds.

This chart shows the average amount of DNA you would carry from each generational ancestor. You inherit half of each parent’s DNA, but back further than that, you don’t receive exactly half of any ancestor’s DNA in any generation. Larger segments are generally cut in two and passed on partially, but smaller segments are often either passed on whole or not at all.

On average, you’ll carry 7 cM of your eight-times-great-grandparents. In reality, you may carry more or you may not carry any – and you are unlikely to carry the same segment as any random other descendants but we know it happens and you’ll find them if enough (or the right) descendants test.

Putting this another way, if you divide all of your approximate 7000 cM of DNA into 7 cM segments of equal length – you’ll have 1000 7 cM segments. So will every other descendant of your eight-times-great-grandparent. You can see how small the chances are of you both inheriting that same exact 7 cM segment through ten inheritance/transmission events, each. Yet it does happen.

I have several triangulated matches with descendants of Charles Dodson and his wife, Anne through multiple of their 9 (or so) children, ten generations back in my tree. Those triangulated matches range from 7-38 cM. It’s possible that those three largest matches at 38 cM could be related through multiple ancestors because we all have holes in our trees – including Anne’s surname.

Click to enlarge image

It helps immensely that Charles Dodson had several children who were quite prolific as well.

Of course, the further back in time, the more “proof” is necessary to eliminate other unknown common ancestors. This is exactly why matching through different children is important for triangulation and ancestor confirmation.

The method we use to confirm the common ancestor is that all of the descendants who match the tester on the same segment all also match each other. This greatly reduces the chances that these people are matching by chance. The more people in the triangulation group, the stronger the evidence. Of course, parental phasing or cross-matching, where available is an added confirmation bonus.

In our magenta inheritance example, we saw that three of the males and one of the females from three different descendants of the great-grandparents all carry at least a portion of that magenta segment of great-grandpa’s DNA.

Now, let’s take a look at a different scenario.

Why can’t siblings or close relatives be used as two of the three people needed for triangulation?

Aunts and Uncles

We know that the best way to determine if a match is valid is by parental phasing – your match also matching to one of your parents.

If both parents aren’t available, looking for close family matches in common with your match is the next hint that genealogists seek.

Let’s say that you and your match both match your aunt or uncle in common or their children.

You and your aunts or uncles matching DNA only pushes your common ancestor back to your grandparents.

At that point, your match is in essence matching to a segment that belongs to your grandparents. Your matches’ DNA, or your grandparents’ DNA could have randomly recombined and you and your aunt/cousins could be matching that third person by chance.

Ok, then, what about siblings?

Siblings

The most recent common ancestor (MRCA) of you and someone who also matches your sibling is your parents. Therefore, you and your sibling actually only count as one “person” in this scenario. In essence, it’s the DNA of your parent(s) that is matching that third person, so it’s not true triangulation. It’s the same situation as above with aunts/uncles, except the common ancestor is closer than your grandparents.

The DNA of your parents could have recombined in both siblings to look like a match to your match’s family. Or vice versa. Remember Parental Cross-Matching.

If you and a sibling inherited EXACTLY the same segment of your Mom’s and Dad’s DNA, and you match someone by chance – that person will match your sibling by chance as well.

In this example, you can see that both siblings 1 and 2 inherited the exact same segments of DNA at the same locations from both of their parents.

Of course, they also inherited segments at different locations that we’re not looking at that won’t match exactly between siblings, unless they are identical twins. But in this case, the inherited segments of both siblings will match someone whose DNA randomly combined with green or magenta dots in these positions to match a cross-section of both parents.

How False Positives Work and How to Avoid Them

We saw in our first example, displayed again above, what a valid triangulated match looks like. Now let’s expand this view and take a look more specifically at how false positive matches occur.

On the left-hand (blue) side of this graphic, we see four siblings that descend through their father from Great-grandpa who contributed that large magenta segment of DNA. That segment becomes reduced in descendants in subsequent generations.

In downstream generations, we can see gold, white and green segments being added to the DNA inherited by the four children from their ancestor’s spouses. Dad’s DNA is shown on the left side of each child, and Mom’s on the right.

  • Blue Children 1 and 2 inherited the same segments of DNA from Mom and Dad. Magenta from Dad and green from Mom.
  • Blue Child 3 inherited two magenta segments from Dad in positions 1 and 2 and one gold segment from Dad in position 3. They inherited all white segments from Mom.
  • Blue Child 4 inherited all gold segments from Dad and all white segments from Mom.

The family on the blue left-hand side is NOT related to the pink family shown at right. That’s important to remember.

I’ve intentionally constructed this graphic so that you can see several identical by chance (IBC) matches.

Child 5, the first pink sibling carries a white segment in position 1 from Dad and gold segments in positions 2 and 3 from Dad. From Mom, they inherited a green segment in position 1, magenta in position 2 and green in position 3.

IBC Match 1 – Looking at the blue siblings, we see that based on the DNA inherited from Pink Child 5’s parents, Pink Child 5 matches Blue Child 4 with white, gold and gold in positions 1-3, even though they weren’t inherited from the same parent in Blue Child 4. I circled this match in blue.

IBC Match 2 – Pink Child 5 also matches Blue Children 1 and 2 (red circles) because Pink Child 5 has green, magenta, and green in positions 1-3 and so do Blue Children 1 and 2. However, Blue Children 1 and 2 inherited the green and magenta segments from Mom and Dad respectively, not just from one parent.

Pink Child 5 matches Blue Children 1, 2 and 4, but not because they match by descent, but because their DNA zigzags back and forth between the blue children’s DNA contributed by both parents.

Therefore, while Pink Child 5 matches three of the Blue Children, they do not match either parent of the Blue Children.

IBC Match 3 – Pink Child 6 matches Blue Child 3 with white, magenta and gold in positions 1-3 based on the same colors of dots in those same positions found in Blue Child 3 – but inherited both paternally and maternally.

You can see that if we had the four parents available to test, that none of the Pink Children would match either the Blue Children’s mother or father and none of the Blue Children would match either of the Pink Children’s mother or father.

This is why we can’t use either siblings or close family relatives for triangulation.

Distant Cousins Are Best for Triangulation & Here’s Why

When triangulating with 3 people, the most recent common ancestor (MRCA) intersection of the closest two people is the place at which triangulation turns into only two lines being compared and ceases being triangulation. Triangle means 3.

If siblings are 2 of the 3 matching people, then their parents are essentially being compared to the third person.

If you, your aunt/uncle, and a third person match, your grandparents are the place in your tree where three lines converge into two.

The same holds true if you’re matching against a sibling pair on your match’s side, or a match and their aunt/uncle, etc.

The further back in your tree you can push that MRCA intersection, the more your triangulated match provides confirming evidence of a common ancestor and that the match is valid and not caused by random recombination.

That’s exactly what the descendants of Charles Dodson have been able to do through triangulation with multiple descendants from several of his children.

It’s also worth mentioning at this point that the reason autosomal DNA testing uses hundreds/thousands of base pairs in a comparison window and not 3 or 6 dots like in my example is that the probability of longer segments of DNA simply randomly matching by chance is reduced with length and SNP density which is the number of SNP locations tested within that cM range.

Hence a 7 cM/500 SNP minimum is the combined rule of thumb. At that level, roughly half of your matches will be valid and half will be identical by chance unless you’re dealing with endogamy. Then, raise your threshold accordingly.

Ok, So Where are We? A Triangulation Checklist for You!

I know this has been a relatively long educational article, but it’s important to really understand that testing close relatives is VERY important, but also why we can’t effectively use them for triangulation.

Here’s a handy-dandy summary matching/triangulation checklist for you to use as you work through your matches.

  • You inherit half of each of your parents’ DNA. There is no other place for you to obtain or inherit your DNA. There is no DNA fairy sprinkling you with DNA from another source:)
  • DNA does NOT skip generations, although in occasional rare circumstances, it may appear that this happened. In this situation, it’s incumbent upon you, the genealogist, to PROVE that an exception has occurred if you really believe it has. Those circumstances might be pedigree collapse or perhaps imputation. You’ll need to compare matches at vendors who provide a chromosome browser, triangulation, and full shared match list information. Never assume that you are the exception without hard and fast proof. We all know about assume, right?
  • Your siblings inherit half of your parents’ DNA too, but not the same exact half of your parent’s DNA that you other siblings did (unless they are identical twins.) You may inherit the exact same DNA from either or both of your parents on certain segments.
  • Your matches may match your parents on different or an additional segment that you did not inherit.
  • Every segment has an individual history. Evaluate every matching segment separately. One matching segment with someone could be maternal, one paternal, and one identical by chance.
  • You can confirm matches as valid if your match matches one of your parents, and you match one of your match’s parents. Parental Phasing is when your match matches your parent. Parental Cross-Matching is when you both match one of each other’s parents. To be complete, both people who match each other need to match one of the parents of the other person. This rule still holds even if you have a known common ancestor. I can’t even begin to tell you how many times I’ve been fooled.
  • 15-20% (or more with endogamy) of your matches will be identical by chance because either your DNA or your match’s DNA aligns in such a way that while they match you, they don’t match either of your parents.
  • Your siblings, aunts, and uncles will often inherit the same DNA as you – which means that identical by chance matches will also match them. That’s why we don’t use close family members for triangulation. We do utilize close family members to generate common match hints. (Remember the 20 cM shared match caveat at Ancestry)
  • While your siblings, aunts, and uncles are too close to use for triangulation, they are wonderful to identify ancestral matches. Some of their matches will match you as well, and some will not because your close family members inherited segments of your ancestor’s DNA that you did not. Everyone should test their oldest family members.
  • Triangulate your close family member’s matches separately from your own to shed more light on your ancestors.
  • Endogamy may interfere with parental phasing, meaning you may match because you and/or your match may have inherited some of the same DNA segment(s) from both sides of your tree and/or more DNA than might otherwise be expected.
  • Pedigree collapse needs to be considered when using parental phasing, especially when the same ancestor appears on both sides of your family tree. You may share more DNA with a match than expected.
  • Conversely, with pedigree collapse, your match may not match your parents, or vice versa, if a segment happens to have recombined in you in a way that drops the matching segments of your parents beneath the vendor’s match threshold.
  • While you will match all of your second cousins, you will only match approximately 90% of your third cousins and proportionally fewer as your relationship reaches further back in time.
  • Not being a DNA match with someone does NOT mean you’re NOT related to them, unless of course, you’re a second cousin (2C) or closer. It simply means you don’t carry any common ancestral segments above vendor thresholds.
  • At 2C or closer, if you’re not a DNA match, other alternative situations need to be considered – including the transfer/upload of the wrong person’s DNA file.
  • Imputation, a scientific process required of vendors may interfere with matching, especially in more distant relatives who have tested on different platforms.
  • Imputation artifacts will be less obvious when people are more closely related, meaning closer relatives can be expected to match on more and larger segments and imputation errors make less difference.
  • Imputation will not cause close relatives, meaning 2C or closer, to not match each other.
  • In addition to not supporting segment matching information, Ancestry down-weights some segments, removes some matching DNA, and does not show shared matches below 20cM, causing some people to misinterpret their lack of common matches in various ways.
  • To resolve questions about matching issues at Ancestry, testers can transfer/upload their DNA files to MyHeritage, FamilyTreeDNA, and GEDmatch and look for consistent matches on the same segment. Start and end locations may vary to some extent between vendors, but the segment size should be basically in the same location and roughly the same size.
  • GEDmatch does not use imputation but allows larger non-matching segments to combine as a single segment which sometimes causes extremely “generous” matches. GEDmatch matching is less reliable than FamilyTreeDNA or MyHeritage, but you can adjust the matching thresholds.
  • The best situation for matching is for both people to test at the same vendor who supports and provides segment data and a chromosome browser such as 23andMe, FamilyTreeDNA, or MyHeritage.
  • Siblings cannot be used for triangulation because the most recent common ancestor (MRCA) between you and your siblings is your parents. Therefore, the “three” people in the triangulation group is reduced to two lines immediately.
  • Uncles and aunts should not be used for triangulation because the most recent common ancestors between you and your aunts and uncles are your grandparents.
  • Conversely, you should not consider triangulating with siblings and close family members of your matches as proof of an ancestral relationship.
  • A triangulation group of 3 people is only confirmation as far back as when two of those people’s lines converge and reach a common ancestor.
  • Identical by chance (IBC) matching occurs when DNA from the maternal and paternal sides are mixed positionally in the child to resemble a maternal/paternal side match with someone else.
  • Identical by chance DNA admixture (when compared to a match) could have occurred in your parents or grandparent’s generation, or earlier, so the further back in time that people in a triangulation group reach, the more reliable the triangulation group is likely to be.
  • The larger the segments and/or the triangulation group, the stronger the evidence for a specific confirmed common ancestor.
  • Early families with a very large number of descendants may have many matching and triangulated members, even 9 or 10 generations later.
  • While exactly 50% of each ancestor’s DNA is not passed in each generation, on average, you will carry 7 cM of your ancestors 10 generations back in your tree. However, you may carry more, or none.
  • The percentage of matching descendants decreases with each generation beyond great-grandparents.
  • The ideal situation for triangulation is a significant number of people, greater than three, who match on the same reasonably sized segment (7 cM/500 SNP or larger) and descend from the same ancestor (or ancestral couple) through different children whose spouses in descendant generations are not also related.
  • This means that tree completion is an important factor in match/triangulation reliability.
  • Triangulating through different children of the ancestral couple makes it significantly less likely that a different unknown common ancestor is contributing that segment of DNA – like an unknown wife in a descendant generation.

Whew!!!

The Bottom Line

Here’s the bottom line.

  1. Don’t use close relatives to triangulate.
  2. Use parents for Parental Phasing.
  3. Use Parental Cross-Matching when possible.
  4. Use close relatives to look for shared common matches that may lead to triangulation possibilities.
  5. Triangulate your close relatives’ DNA in addition to your own for bonus genealogical information. They will match people that you don’t.
  6. For the most reliable triangulation results, use the most distant relatives possible, descended through different children of the common ancestral couple.
  7. Keep this checklist of best practices, cautions, and caveats handy and check the list as necessary when evaluating the strength of any match or triangulation group. It serves as a good reminder for what to check if something seems “off” or unusual.

Feel free to share and pass this article (and checklist) on to your genealogy buddies and matches as you explain triangulation and collaborate on your genealogy.

Have fun!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

RootsTech Connect 2021: Comprehensive DNA Session List

I wondered exactly how many DNA sessions were at RootsTech this year and which ones are the most popular.

Unfortunately, we couldn’t easily view a list of all the sessions, so I made my own. I wanted to be sure to include every session, including Tips and Tricks and vendor sessions that might only be available in their booths. I sifted through every menu and group and just kept finding more and more buried DNA treasures in different places.

I’m sharing this treasure chest with you below. And by the way, this took an entire day, because I’ve listed the YouTube direct link AND how many views each session had amassed today.

Two things first.

Sales Extended

The Family Tree DNA RootsTech Sales prices including upgrades are still available – here.

  • The FamilyTreeDNA autosomal Family Finder testis now only $49. Click here to purchase using coupon code RTCTFF.
  • FamilyTreeDNAis offering the advanced tool unlock for only $9 after a free transfer through March 7th. Click here to sign on, upload your DNA file if you’ve tested elsewhere, and then unlock using code RTCAU10.

MyHeritage has extended their RootsTech deals too.

  • MyHeritage has waived the unlock fee of $29 if you transfer your DNA kit from another vendor between now and March 7th. You can upload, free, here. You’ll get all of the advanced tools for free.
  • The MyHeritage DNA kit is on sale for $79, here.

Neither Ancestry nor 23andMe had show sales, but you can purchase at their regular prices.

All serious genealogists will want to test at or transfer to all 4 major vendors and test their Y DNA and mitochondrial DNA at FamilyTreeDNA.

RootsTech Sessions

As you know, RootsTech was shooting for TED talk format this year. Roughly 20-minute sessions. When everything was said and done, there were five categories of sessions:

  • Curated sessions are approximately 20-minute style presentations curated by RootsTech meaning that speakers had to submit. People whose sessions were accepted were encouraged to break longer sessions into a series of two or three 20-minute sessions.
  • Vendor booth videos could be loaded to their virtual boots without being curated by RootsTech, but curated videos by their employees could also be loaded in the vendor booths.
  • DNA Learning Center sessions were by invitation and provided by volunteers. They last generally between 10-20 minutes.
  • Tips and Tricks are also produced by volunteers and last from 1 to 15 minutes. They can be sponsored by a company and in some cases, smaller vendors and service providers utilized these to draw attention to their products and services.
  • 1-hour sessions tend to be advanced and not topics could be easily broken apart into a series.

Look at this amazing list of 129 DNA or DNA-related sessions that you can watch for free for the next year. Be sure to bookmark this article so you can refer back easily.

Please note that I started compiling this list for myself and I’ve shortened some of the session names. Then I realized that if I needed this, so do you.

Top 10 Most-Viewed Sessions

I didn’t know whether I should list these sessions by speaker name, or by the most views, so I’m doing a bit of both.

Drum roll please…

The top 10 most viewed sessions as of today are:

Speaker/Vendor Session Title Type Link Views
Libby Copeland How Home DNA Testing Has Redefined Family History Curated Session https://youtu.be/LsOEuvEcI4A 13,554
Nicole Dyer Organize Your DNA Matches in a Diagram Tips and Tricks https://youtu.be/UugdM8ATTVo 6175
Roberta Estes DNA Triangulation: What, Why, and How 1 hour https://youtu.be/nIb1zpNQspY 6106
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 1 Curated Session https://youtu.be/bB7VJeCR6Bs 5866
Amy Williams Ancestor Reconstruction: Why, How, Tools Curated Session https://youtu.be/0D6lAIyY_Nk 5637
Drew Smith Before You Test Basics Part 1 Curated Session https://youtu.be/wKhMRLpefDI 5079
Nicole Dyer How to Interpret a DNA Cluster Chart Tips and Tricks https://youtu.be/FI4DaWGX8bQ 4982
Nicole Dyer How to Evaluate a ThruLines Hypothesis Tips and Tricks https://youtu.be/ao2K6wBip7w 4823
Kimberly Brown Why Don’t I Match my Match’s Matches DNA Learning Center https://youtu.be/A8k31nRzKpc 4593
Rhett Dabling, Diahan Southard Understanding DNA Ethnicity Results Curated Session https://youtu.be/oEt7iQBPfyM 4287

Libby Copeland must be absolutely thrilled. I noticed that her session was featured over the weekend in a highly prominent location on the RootsTech website.

Sessions by Speaker

The list below includes the English language sessions by speaker. I apologize for not being able to discern which non-English sessions are about DNA.

Don’t let a smaller number of views discourage you. I’ve watched a few of these already and they are great. I suspect that sessions by more widely-known speakers or ones whose sessions were listed in the prime-real estate areas have more views, but what you need might be waiting just for you in another session. You don’t have to pick and choose and they are all here for you in one place.

Speaker/Vendor Session Title Type Link Views
Alison Wilde SCREEN Method: A DNA Match Note System that Really Helps DNA Learning Center https://youtu.be/WaNnh_v1rwE 791
Amber Brown Genealogist-on-Demand: The Help You Need on a Budget You Can Afford Curated Session https://youtu.be/9KjlD6GxiYs 256
Ammon Knaupp Pattern of Genetic Inheritance DNA Learning Center https://youtu.be/Opr7-uUad3o 824
Amy Williams Ancestor Reconstruction: Why, How, Tools Curated Session https://youtu.be/0D6lAIyY_Nk 5637
Amy Williams Reconstructing Parent DNA and Analyzing Relatives at HAPI-DNA, Part 1 Curated Session https://youtu.be/MZ9L6uPkKbo 1021
Amy Williams Reconstructing Parent DNA and Analyzing Relatives at HAPI-DNA, Part 2 Curated Session https://youtu.be/jZBVVvJmnaU 536
Ancestry DNA Matches Curated Session https://youtu.be/uk8EKXLQYzs 743
Ancestry ThruLines Curated Session https://youtu.be/RAwimOgNgUE 1240
Ancestry Ancestry DNA Communities: Bringing New Discoveries to Your Family History Research Curated Session https://youtu.be/depeGW7QUzU 422
Andre Kearns Helping African Americans Trace Slaveholding Ancestors Using DNA Curated Session https://youtu.be/mlnSU5UM-nQ 2211
Barb Groth I Found You: Methods for Finding Hidden Family Members Curated Session https://youtu.be/J93hxOe_KC8 1285
Beth Taylor DNA and Genealogy Basics DNA Learning Center https://youtu.be/-LKgkIqFhL4 967
Beth Taylor What Do I Do With Cousin Matches? DNA Learning Center https://youtu.be/LyGT9B6Mh00 1349
Beth Taylor Using DNA to Find Unknown Relatives DNA Learning Center https://youtu.be/WGJ8IfuTETY 2166
David Ouimette I Am Adopted – How Do I Use DNA to Find My Parents? Curated Session https://youtu.be/-jpKgKMLg_M 365
Debbie Kennett Secrets and Surprises: Uncovering Family History Mysteries through DNA Curated Session https://youtu.be/nDnrIWKmIuA 2899
Debbie Kennett Genetic Genealogy Meets CSI Curated Session https://youtu.be/sc-Y-RtpEAw 589
Diahan Southard What is a Centimorgan Tips and Tricks https://youtu.be/uQcfhPU5QhI 2923
Diahan Southard Using the Shared cM Project DNA Learning Center https://youtu.be/b66zfgnzL0U 3172
Diahan Southard Understanding Ethnicity Results DNA Learning Center https://youtu.be/8nCMrf-yJq0 1587
Diahan Southard Problems with Shared Centimorgans DNA Learning Center https://youtu.be/k7j-1yWwGcY 2494
Diahan Southard 4 Next Steps for Your DNA Curated Session https://youtu.be/poRyCaTXvNg 3378
Diahan Southard Your DNA Questions Answered Curated Session https://youtu.be/uUlZh_VYt7k 3454
Diahan Southard You Can Do the DNA – We Can Help Tips and Tricks https://youtu.be/V5VwNzcVGNM 763
Diahan Southard What is a DNA Match? Tips and Tricks https://youtu.be/Yt_GeffWhC0 314
Diahan Southard Diahan’s Tips for DNA Matches Tips and Tricks https://youtu.be/WokgGVRjwvk 3348
Diahan Southard Diahan’s Tips for Y DNA Tips and Tricks https://youtu.be/QyH69tk-Yiw 620
Diahan Southard Diahan’s Tips about mtDNA testing Tips and Tricks https://youtu.be/6d-FNY1gcmw 2142
Diahan Southard Diahan’s Tips about Ethnicity Results Tips and Tricks https://youtu.be/nZFj3zCucXA 1597
Diahan Southard Diahan’s Tips about Which DNA Test to Take Tips and Tricks https://youtu.be/t–4R8H8q0U 2043
Diahan Southard Diahan’s Tips about When Your Matches Don’s Respond Tips and Tricks https://youtu.be/LgHtM3nS60o 3009
Diahan Southard Three Next Steps: Using Known Matches Tips and Tricks https://youtu.be/z1SVq8ME42A 118
Diahan Southard Three Next Steps: MRCA/DNA and the Paper Trail Tips and Tricks https://youtu.be/JB0cVyk-Y4Q 80
Diahan Southard Three Next Steps: Start With Known Matches Tips and Tricks https://youtu.be/BSNhaQCNtAo 68
Diahan Southard Three Next Steps: Additional Tools Tips and Tricks https://youtu.be/PqNPBLQSBGY 140
Diahan Southard Three Next Steps: Ancestry ThruLines Tips and Tricks https://youtu.be/KWayyAO8p_c 335
Diahan Southard Three Next Steps: MyHeritage Theory of Relativity Tips and Tricks https://youtu.be/Et2TVholbAE 80
Diahan Southard Three Next Steps: Who to Test Tips and Tricks https://youtu.be/GyWOO1XDh6M 111
Diahan Southard Three Next Steps: Genetics vs Genealogy Tips and Tricks https://youtu.be/Vf0DC5eW_vA 294
Diahan Southard Three Next Steps: Centimorgan Definition Tips and Tricks https://youtu.be/nQF935V08AQ 201
Diahan Southard Three Next Steps: Shared Matches Tips and Tricks https://youtu.be/AYcR_pB6xgA 233
Diahan Southard Three Next Steps: Case Study – Finding an MRCA Tips and Tricks https://youtu.be/YnlA9goeF7w 256
Diahan Southard Three Next Steps: Why Use DNA Tips and Tricks https://youtu.be/v-o4nhPn8ww 266
Diahan Southard Three Next Steps: Finding Known Matches Tips and Tricks https://youtu.be/n3N9CnAPr18 688
Diana Elder Using DNA Ethnicity Estimates in Your Research Tips and Tricks https://youtu.be/aJgUK3TJqtA 1659
Diane Elder Using DNA in a Client Research Project to Solve a Family Mystery 1 hour https://youtu.be/ysGYV6SXxR8 1261
Donna Rutherford DNA and the Settlers of Taranaki, New Zealand Curated Session https://youtu.be/HQxFwie4774 214
Drew Smith Before You Test Basics Part 1 Curated Session https://youtu.be/wKhMRLpefDI 5079
Drew Smith Before You Test Basics Part 2 Curated Session https://youtu.be/Dopx04UHDpo 2769
Drew Smith Before You Test Basics Part 3 Curated Session https://youtu.be/XRd2IdtA-Ng 2360
Elena Fowler Whakawhanaungatanga Using DNA – It’s Complicated (Māori heritage) Curated Session https://youtu.be/6XTPMzVnUd8 470
Elena Fowler Whakawhanaungatanga Using DNA – FamilyTreeDNA (Māori heritage) Curated Session https://youtu.be/fM85tt5ad3A 269
Elena Fowler Whakawhanaungatanga Using DNA – Ancestry (Māori heritage) Curated Session https://youtu.be/-byO6FOfaH0 191
Esmee Mortimer-Taylor Living DNA: Anathea Ring – Her Story Tips and Tricks https://youtu.be/MTE4UFKyLRs 189
Esmee Mortimer-Taylor Living DNA: Coretta Scott King Academy – DNA Results Reveal Tips and Tricks https://youtu.be/CK1EYcuhqmc 82
Fonte Felipe Ethnic Filters and DNA Matches: The Way Forward to Finding Your Lineage Curated Session https://youtu.be/mt2Rv2lpj7o 553
FTDNA – Janine Cloud Big Y: What is it? Why Do I Need It? Curated Session https://youtu.be/jiDcjWk4cVI 2013
FTDNA – Sherman McRae Using DNA to Find Ancestors Lost in Slavery Curated Session https://youtu.be/i3VKwpmttBI 738
Jerome Spears Elusive Distant African Cousins: Using DNA, They Can Be Found Curated Session https://youtu.be/fAr-Z78f_SM 335
Karen Stanbary Ruling Out Instead of Ruling In: DNA and the GPS in Action 1 hour https://youtu.be/-WLhIHlSyLE 548
Katherine Borges DNA and Lineage Societies Tips and Tricks https://youtu.be/TBYGyLHHAOI 451
Kimberly Brown Why Don’t I Match my Match’s Matches DNA Learning Center https://youtu.be/A8k31nRzKpc 4593
Kitty Munson Cooper Basics of Unknown Parentage Research Using DNA Part 1 Curated Session https://youtu.be/2f3c7fJ74Ig 2931
Kitty Munson Cooper Basics of Unknown Parentage Research Using DNA Part 2 Curated Session https://youtu.be/G7h-LJPCywA 1222
Lauren Vasylyev Finding Cousins through DNA Curated Session https://youtu.be/UN7WocQzq78 1979
Lauren Vasylyev, Camille Andrus Finding Ancestors Through DNA Curated Session https://youtu.be/4rbYrRICzrQ 3919
Leah Larkin Untangling Endogamy Part 1 Curated Session https://youtu.be/0jtVghokdbg 2291
Leah Larkin Untangling Endogamy Part 2 Curated Session https://youtu.be/-rXLIZ0Ol-A 1441
Liba Casson-Budell Shining a Light on Jewish Genealogy Curated Session https://youtu.be/pHyVz94024Y 162
Libby Copeland How Home DNA Testing Has Redefined Family History Curated Session https://youtu.be/LsOEuvEcI4A 13,554
Linda Farrell Jumpstart your South African research Curated Session https://youtu.be/So7y9_PBRKc 339
Living DNA How to do a Living DNA Swab Tips and Tricks https://youtu.be/QkbxhqCw7Mo 50
Lynn Broderick Ethical Considerations Using DNA Results Curated Session https://youtu.be/WMcRiDxPy2k 249
Mags Gaulden Importance and Benefits of Y DNA Testing DNA Learning Center https://youtu.be/MVIiv0H7imI 1032
Maurice Gleeson Using Y -DNA to Research Your Surname Curated Session https://youtu.be/Ir4NeFH_aJs 1140
Melanie McComb Georgetown Memory Project: Preserving the Stories of the GU272 Curated Session https://youtu.be/Fv0gHzTHwPk 320
Michael Kennedy What Can You Do with Your DNA Test? DNA Learning Center https://youtu.be/rKOjvkqYBAM 616
Michelle Leonard Understanding X-Chromosome DNA Matching Curated Session https://youtu.be/n784kt-Xnqg 775
MyHeritage How to Analyze DNA Matches on MH Curated Session https://youtu.be/gHRvyQYrNds 1192
MyHeritage DNA – an Overview Curated Session https://youtu.be/AIRGjEOg_xo 389
MyHeritage Advanced DNA Tools Curated Session https://youtu.be/xfZUAjI5G_I 762
MyHeritage How to Get Started with Your DNA Matches Tips and Tricks https://youtu.be/rU_dq1vt6z4 1901
MyHeritage How to Filter and Sort Your DNA Matches Tips and Tricks https://youtu.be/aJ7dRwMTt90 1008
Nicole Dyer How to Interpret a DNA Cluster Chart Tips and Tricks https://youtu.be/FI4DaWGX8bQ 4982
Nicole Dyer How to Evaluate a ThruLines Hypothesis Tips and Tricks https://youtu.be/ao2K6wBip7w 4823
Nicole Dyer Organize Your DNA Matches in a Diagram Tips and Tricks https://youtu.be/UugdM8ATTVo 6175
Nicole Dyer Research in the Southern States Curated Session https://youtu.be/Pouw_yPrVSg 871
Olivia Fordiani Understanding Basic Genetic Genealogy DNA Learning Center https://youtu.be/-kbGOFiwH2s 810
Pamela Bailey Information Wanted: Reuniting an American Family Separated by Slavery Tips and Tricks https://youtu.be/DPCJ4K8_PZw 105
Patricia Coleman Getting Started with DNA Painter DNA Learning Center https://youtu.be/Yh_Bzj6Atck 1775
Patricia Coleman Adding MyHeritage Data to DNA Painter DNA Learning Center https://youtu.be/rP9yoCGjkLc 458
Patricia Coleman Adding 23andMe Data to DNA Painter DNA Learning Center https://youtu.be/pJBAwe6s0z0 365
Penny Walters Mixing DNA with Paper Trail DNA Learning Center https://youtu.be/PP4SjdKuiLQ 2693
Penny Walters Collaborating with DNA Matches When You’re Adopted DNA Learning Center https://youtu.be/9ioeCS22HlQ 1222
Penny Walters Differences in Ethnicity Between My 6 Children DNA Learning Center https://youtu.be/RsrXLcXRNfs 400
Penny Walters Differences in DNA Results Between My 6 Children DNA Learning Center https://youtu.be/drnzW3FXScI 815
Penny Walters Ethical Dilemmas in DNA Testing DNA Learning Center https://youtu.be/PRPoc0nB4Cs 437
Penny Walters Adoption – Background Context Curated Session https://youtu.be/qC1_Ln8WCNg 1054
Penny Walters Adoption – Utilizing DNA Testing to Construct a Bio Family Tree Curated Session https://youtu.be/zwJ5QofaGTE 941
Penny Walters Adoption – Ethical Dilemmas and Varied Consequences of Looking for Bio Family Curated Session https://youtu.be/ZLcHHTSfCIE 576
Penny Walters I Want My Mummy: Ancient and Modern Egypt Curated Session https://youtu.be/_HRO50RtzFk 311
Rebecca Whitman Koford BCG: Brief Step-by-Step Tour of the BCG Website Tips and Tricks https://youtu.be/YpV9bKG6sXk 317
Renate Yarborough Sanders DNA Understanding the Basics DNA Learning Center https://youtu.be/bX_flUQkBEA 2713
Renate Yarborough Sanders To Test or Not to Test DNA Learning Center https://youtu.be/58-qzvN4InU 1048
Rhett Dabling Finding Ancestral Homelands Through DNA Curated Session https://youtu.be/k9zixg4uL1I 505
Rhett Dabling, Diahan Southard Understanding DNA Ethnicity Results Curated Session https://youtu.be/oEt7iQBPfyM 4287
Richard Price Finding Biological Family Tips and Tricks https://youtu.be/L9C-SGVRZLM 101
Robert Kehrer Will They Share My DNA (Consent, policies, etc.) DNA Learning Center https://youtu.be/SUo-jpTaR1M 480
Robert Kehrer What is a Centimorgan? DNA Learning Center https://youtu.be/dopniLw8Fho 1194
Roberta Estes DNA Triangulation: What, Why and How 1 hour https://youtu.be/nIb1zpNQspY 6106
Roberta Estes Mother’s Ancestors DNA Learning Center https://youtu.be/uUh6WrVjUdQ 3074
Robin Olsen Wirthlin How Can DNA Help Me Find My Ancestors? Curated Session https://youtu.be/ZINiyKsw0io 1331
Robin Olsen Wirthlin DNA Tools Bell Curve Tips and Tricks https://youtu.be/SYorGgzY8VQ 1207
Robin Olsen Wirthlin DNA Process Trees Guide You in Using DNA in Family History Research Tips and Tricks https://youtu.be/vMOQA3dAm4k 1708
Shannon Combs-Bennett DNA Basics Made Easy DNA Learning Center https://youtu.be/4JcLJ66b0l4 1560
Shannon Combs-Bennett DNA Brick Walls DNA Learning Center https://youtu.be/vtFkT_PSHV0 450
Shannon Combs-Bennett Basics of Genetic Genealogy Part 1 Curated Session https://youtu.be/xEMbirtlBZo 2263
Shannon Combs-Bennett Basics of Genetic Genealogy Part 2 Curated Session https://youtu.be/zWMPja1haHg 1424
Steven Micheleti, Joanna Mountain Genetic Consequences of the Transatlantic Slave Trade Part 1 Curated Session https://youtu.be/xP90WuJpD9Q 2284
Steven Micheleti, Joanna Mountain Genetic Consequences of the Transatlantic Slave Trade Part 2 Curated Session https://youtu.be/McMNDs5sDaY 742
Thom Reed How Can Connecting with Ancestors Complete Us? Curated Session https://youtu.be/gCxr6W-tkoY 392
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 1 Curated Session https://youtu.be/bB7VJeCR6Bs 5866
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 2 Curated Session https://youtu.be/scOtMyFULGI 3008
Ugo Perego Strengths and Limitations of Genetic Testing for Family History DNA Learning Center https://youtu.be/XkBK1y-LVaE 480
Ugo Perego A Personal Genetic Journey DNA Learning Center https://youtu.be/Lv9CSU50xCc 844
Ugo Perego Discovering Native American Ancestry through DNA Curated Session https://youtu.be/L1cs748ctx0 884
Ugo Perego Mitochondrial DNA: Our Maternally-Inherited Family History Curated Session https://youtu.be/Z5bPTUzewKU 599
Vivs Laliberte Introduction to Y DNA DNA Learning Center https://youtu.be/rURyECV5j6U 752
Yetunde Moronke Abiola 6% Nigerian: Tracing my Missing Nigerian Ancestor Curated Session https://youtu.be/YNQt60xKgyg 494

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Hit a Genetic Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters

Do you want to hit a home run with your DNA test, but find yourself a mite bewildered?

Yep, those matches can be somewhat confusing – especially if you don’t understand what’s going on. Do you have a nagging feeling that you might be missing something?

I’m going to explain chromosome matching, and its big sister, triangulation, step by step to remove any confusion, to help you sort through your matches and avoid imposters.

This article is one of the most challenging I’ve ever written – in part because it’s a concept that I’m so familiar with but can be, and is, misinterpreted so easily. I see mistakes and confusion daily, which means that resulting conclusions stand a good chance of being wrong.

I’ve tried to simplify these concepts by giving you easy-to-use memory tools.

There are three key phrases to remember, as memory-joggers when you work through your matches using a chromosome browser: double-sided, two faces and imposter. While these are “cute,” they are also quite useful.

When you’re having a confusing moment, think back to these memory-jogging key words and walk yourself through your matches using these steps.

These three concepts are the foundation of understanding your matches, accurately, as they pertain to your genealogy. Please feel free to share, link or forward this article to your friends and especially your family members (including distant cousins) who work with genetic genealogy. 

Now, it’s time to enjoy your double-sided, two-faced chromosomes and avoid those imposters:)

Are you ready? Grab a nice cup of coffee or tea and learn how to hit home runs!

Double-Sided – Yes, Really

Your chromosomes really are double sided, and two-faced too – and that’s a good thing!

However, it’s initially confusing because when we view our matches in a chromosome browser, it looks like we only have one “bar” or chromosome and our matches from both our maternal and paternal sides are both shown on our one single bar.

How can this be? We all have two copies of chromosome 1, one from each parent.

Chromosome 1 match.png

This is my chromosome 1, with my match showing in blue when compared to my chromosome, in gray, as the background.

However, I don’t know if this blue person matches me on my mother’s or father’s chromosome 1, both of which I inherited. It could be either. Or neither – meaning the dreaded imposter – especially that small blue piece at left.

What you’re seeing above is in essence both “sides” of my chromosome number 1, blended together, in one bar. That’s what I mean by double-sided.

There’s no way to tell which side or match is maternal and which is paternal without additional information – and misunderstanding leads to misinterpreting results.

Let’s straighten this out and talk about what matches do and don’t mean – and why they can be perplexing. Oh, and how to discover those imposters!

Your Three Matches

Let’s say you have three matches.

At Family Tree DNA, the example chromosome browser I’m using, or at any vendor with a chromosome browser, you select your matches which are viewed against your chromosomes. Your chromosomes are always the background, meaning in this case, the grey background.

Chromosome 1-4.png

  • This is NOT three copies each of your chromosomes 1, 2, 3 and 4.
  • This is NOT displaying your maternal and paternal copies of each chromosome pictured.
  • We CANNOT tell anything from this image alone relative to maternal and paternal side matches.
  • This IS showing three individual people matching you on your chromosome 1 and the same three people matching you in the same order on every chromosome in the picture.

Let’s look at what this means and why we want to utilize a chromosome browser.

I selected three matches that I know are not all related through the same parent so I can demonstrate how confusing matches can be sorted out. Throughout this article, I’ve tried to explain each concept in at least two ways.

Please note that I’m using only chromsomes 1-4 as examples, not because they are any more, or less, important than the other chromosomes, but because showing all 22 would not add any benefit to the discussion. The X chromosome has a separate inheritance path and I wrote about that here.

Let’s start with a basic question.

Why Would I Want to Use a Chromosome Browser?

Genealogists view matches on chromosome browsers because:

  • We want to see where our matches match us on our chromosomes
  • We’d like to identify our common ancestor with our match
  • We want to assign a matching segment to a specific ancestor or ancestral line, which confirmed those ancestors as ours
  • When multiple people match us on the same location on the chromosome browser, that’s a hint telling us that we need to scrutinize those matches more closely to determine if those people match us on our maternal or paternal side which is the first step in assigning that segment to an ancestor

Once we accurately assign a segment to an ancestor, when anyone else matches us (and those other people) on that same segment, we know which ancestral line they match through – which is a great head start in terms of identifying our common ancestor with our new match.

That’s a genetic genealogy home run!

Home Runs 

There are four bases in a genetic genealogy home run.

  1. Determine whether you actually match someone on the same segment
  2. Which is the first step in determining that you match a group of people on the same segment
  3. And that you descend from a common ancestor
  4. The fourth step, or the home run, is to determine which ancestor you have in common, assigning that segment to that ancestor

If you can’t see segment information, you can’t use a chromosome browser and you can’t confirm the match on that segment, nor can you assign that segment to a particular ancestor, or ancestral couple.

The entire purpose of genealogy is to identify and confirm ancestors. Genetic genealogy confirms the paper trail and breaks down even more brick walls.

But before you can do that, you have to understand what matches mean and how to use them.

The first step is to understand that our chromosomes are double-sided and you can’ t see both of your chromosomes at once!

Double Sided – You Can’t See Both of Your Chromosomes at Once

The confusing part of the chromosome browser is that it can only “see” your two chromosomes blended as one. They are both there, but you just can’t see them separately.

Here’s the important concept:

You have 2 copies of chromosomes 1 through 22 – one copy that you received from your mother and one from your father, but you can’t “see” them separately.

When your DNA is sequenced, your DNA from your parents’ chromosomes emerges as if it has been through a blender. Your mother’s chromosome 1 and your father’s chromosome 1 are blended together. That means that without additional information, the vendor can’t tell which matches are from your father’s side and which are from your mother’s side – and neither can you.

All the vendor can tell is that someone matches you on the blended version of your parents. This isn’t a negative reflection on the vendors, it’s just how the science works.

Chromosome 1.png

Applying this to chromosome 1, above, means that each segment from each person, the blue person, the red person and the teal person might match you on either one of your chromosomes – the paternal chromosome or the maternal chromosome – but because the DNA of your mother and father are blended – there’s no way without additional information to sort your chromosome 1 into a maternal and paternal “side.”

Hence, you’re viewing “one” copy of your combined chromosomes above, but it’s actually “two-sided” with both maternal and paternal matches displayed in the chromosome browser.

Parent-Child Matches

Let’s explain this another way.

Chromosome parent.png

The example above shows one of my parents matching me. Don’t be deceived by the color blue which is selected randomly. It could be either parent. We don’t know.

You can see that I match my parent on the entire length of chromosome 1, but there is no way for me to tell if I’m looking at my mother’s match or my father’s match, because both of my parents (and my children) will match me on exactly the same locations (all of them) on my chromosome 1.

Chromosome parent child.png

In fact, here is a combination of my children and my parents matching me on my chromosome 1.

To sort out who is matching on paternal and maternal chromosomes, or the double sides, I need more information. Let’s look at how inheritance works.

Stay with me!

Inheritance Example

Let’s take a look at how inheritance works visually, using an example segment on chromosome 1.

Chromosome inheritance.png

In the example above:

  • The first column shows addresses 1-10 on chromosome 1. In this illustration, we are only looking at positions, chromosome locations or addresses 1-10, but real chromosomes have tens of thousands of addresses. Think of your chromosome as a street with the same house numbers on both sides. One side is Mom’s and one side is Dad’s, but you can’t tell which is which by looking at the house numbers because the house numbers are identical on both sides of the street.
  • The DNA pieces, or nucleotides (T, A, C or G,) that you received from your Mom are shown in the column labeled Mom #1, meaning we’re looking at your mother’s pink chromosome #1 at addresses 1-10. In our example she has all As that live on her side of the street at addresses 1-10.
  • The DNA pieces that you received from your Dad are shown in the blue column and are all Cs living on his side of the street in locations 1-10.

In other words, the values that live in the Mom and Dad locations on your chromosome streets are different. Two different faces.

However, all that the laboratory equipment can see is that there are two values at address 1, A and C, in no particular order. The lab can’t tell which nucleotide came from which parent or which side of the street they live on.

The DNA sequencer knows that it found two values at each address, meaning that there are two DNA strands, but the output is jumbled, as shown in the First and Second read columns. The machine knows that you have an A and C at the first address, and a C and A at the second address, but it can’t put the sequence of all As together and the sequence of all Cs together. What the sequencer sees is entirely unordered.

This happens because your maternal and paternal DNA is mixed together during the extraction process.

Chromosome actual

Click to enlarge image.

Looking at the portion of chromosome 1 where the blue and teal people both match you – your actual blended values are shown overlayed on that segment, above. We don’t know why the blue and the teal people are matching you. They could be matching because they have all As (maternal), all Cs (paternal) or some combination of As and Cs (a false positive match that is identical by chance.)

There are only two ways to reassemble your nucleotides (T, A, C, and G) in order and then to identify the sides as maternal and paternal – phasing and matching.

As you read this next section, it does NOT mean that you must have a parent for a chromosome browser to be useful – but it does mean you need to understand these concepts.

There are two types of phasing.

Parental Phasing

  • Parental Phasing is when your DNA is compared against that of one or both parents and sorted based on that comparison.

Chromosome inheritance actual.png

Parental phasing requires that at least one parent’s DNA is available, has been sequenced and is available for matching.

In our example, Dad’s first 10 locations (that you inherited) on chromosome 1 are shown, at left, with your two values shown as the first and second reads. One of your read values came from your father and the other one came from your mother. In this case, the Cs came from your father. (I’m using A and C as examples, but the values could just as easily be T or G or any combination.)

When parental phasing occurs, the DNA of one of your parents is compared to yours. In this case, your Dad gave you a C in locations 1-10.

Now, the vendor can look at your DNA and assign your DNA to one parent or the other. There can be some complicating factors, like if both your parents have the same nucleotides, but let’s keep our example simple.

In our example above, you can see that I’ve colored portions of the first and second strands blue to represent that the C value at that address can be assigned through parental phasing to your father.

Conversely, because your mother’s DNA is NOT available in our example, we can’t compare your DNA to hers, but all is not lost. Because we know which nucleotides came from your father, the remaining nucleotides had to come from your mother. Hence, the As remain after the Cs are assigned to your father and belong to your mother. These remaining nucleotides can logically be recombined into your mother’s DNA – because we’ve subtracted Dad’s DNA.

I’ve reassembled Mom, in pink, at right.

Statistical/Academic Phasing

  • A second type of phasing uses something referred to as statistical or academic phasing.

Statistical phasing is less successful because it uses statistical calculations based on reference populations. In other words, it uses a “most likely” scenario.

By studying reference populations, we know scientifically that, generally, for our example addresses 1-10, we either see all As or all Cs grouped together.

Based on this knowledge, the Cs can then logically be grouped together on one “side” and As grouped together on the other “side,” but we still have no way to know which side is maternal or paternal for you. We only know that normally, in a specific population, we see all As or all Cs. After assigning strings or groups of nucleotides together, the algorithm then attempts to see which groups are found together, thereby assigning genetic “sides.” Assigning the wrong groups to the wrong side sometimes happens using statistical phasing and is called strand swap.

Once the DNA is assigned to physical “sides” without a parent or matching, we still can’t identify which side is paternal and which is maternal for you.

Statistical or academic phasing isn’t always accurate, in part because of the differences found in various reference populations and resulting admixture. Sometimes segments don’t match well with any population. As more people test and more reference populations become available, statistical/academic phasing improves. 23andMe uses academic phasing for ethnicity, resulting in a strand swap error for me. Ancestry uses academic phasing before matching.

By comparison to statistical or academic phasing, parental phasing with either or both parents is highly accurate which is why we test our parents and grandparents whenever possible. Even if the vendor doesn’t use our parents’ results, we certainly can!

If someone matches you and your parent too, you know that match is from that parent’s side of your tree.

Matching

The second methodology to sort your DNA into maternal and paternal sides is matching, either with or without your parents.

Matching to multiple known relatives on specific segments assigns those segments of your DNA to the common ancestor of those individuals.

In other words, when I match my first cousin, and our genealogy indicates that we share grandparents – assuming we match on the appropriate amount of DNA for the expected relationship – that match goes a long way to confirming our common ancestor(s).

The closer the relationship, the more comfortable we can be with the confirmation. For example, if you match someone at a parental level, they must be either your biological mother, father or child.

While parent, sibling and close relationships are relatively obvious, more distant relationships are not and can occur though unknown or multiple ancestors. In those cases, we need multiple matches through different children of that ancestor to reasonably confirm ancestral descent.

Ok, but how do we do that? Let’s start with some basics that can be confusing.

What are we really seeing when we look at a chromosome browser?

The Grey/Opaque Background is Your Chromosome

It’s important to realize that you will see as many images of your chromosome(s) as people you have selected to match against.

This means that if you’ve selected 3 people to match against your chromosomes, then you’ll see three images of your chromosome 1, three images of your chromosome 2, three images of your chromosome 3, three images of your chromosome 4, and so forth.

Remember, chromosomes are double-sided, so you don’t know whether these are maternal or paternal matches (or imposters.)

In the illustration below, I’ve selected three people to match against my chromosomes in the chromosome browser. One person is shown as a blue match, one as a red match, and one as a teal match. Where these three people match me on each chromosome is shown by the colored segments on the three separate images.

Chromosome 1.png

My chromosome 1 is shown above. These images are simply three people matching to my chromosome 1, stacked on top of each other, like cordwood.

The first image is for the blue person. The second image is for the red person. The third image is for the teal person.

If I selected another person, they would be assigned a different color (by the system) and a fourth stacked image would occur.

These stacked images of your chromosomes are NOT inherently maternal or paternal.

In other words, the blue person could match me maternally and the red person paternally, or any combination of maternal and paternal. Colors are not relevant – in other words colors are system assigned randomly.

Notice that portions of the blue and teal matches overlap at some of the same locations/addresses, which is immediately visible when using a chromosome browser. These areas of common matching are of particular interest.

Let’s look closer at how chromosome browser matching works.

What about those colorful bars?

Chromosome Browser Matching

When you look at your chromosome browser matches, you may see colored bars on several chromosomes. In the display for each chromosome, the same color will always be shown in the same order. Most people, unless very close relatives, won’t match you on every chromosome.

Below, we’re looking at three individuals matching on my chromosomes 1, 2, 3 and 4.

Chromosome browser.png

The blue person will be shown in location A on every chromosome at the top. You can see that the blue person does not match me on chromosome 2 but does match me on chromosomes 1, 3 and 4.

The red person will always be shown in the second position, B, on each chromosome. The red person does not match me on chromosomes 2 or 4.

The aqua person will always be shown in position C on each chromosome. The aqua person matches me on at least a small segment of chromosomes 1-4.

When you close the browser and select different people to match, the colors will change and the stacking order perhaps, but each person selected will always be consistently displayed in the same position on all of your chromosomes each time you view.

The Same Address – Stacked Matches

In the example above, we can see that several locations show stacked segments in the same location on the browser.

Chromosome browser locations.png

This means that on chromosome 1, the blue and green person both match me on at least part of the same addresses – the areas that overlap fully. Remember, we don’t know if that means the maternal side or the paternal side of the street. Each match could match on the same or different sides.

Said another way, blue could be maternal and teal could be paternal (or vice versa,) or both could be maternal or paternal. One or the other or both could be imposters, although with large segments that’s very unlikely.

On chromosome 4, blue and teal both match me on two common locations, but the teal person extends beyond the length of the matching blue segments.

Chromosome 3 is different because all three people match me at the same address. Even though the red and teal matching segments are longer, the shared portion of the segment between all three people, the length of the blue segment, is significant.

The fact that the stacked matches are in the same places on the chromosomes, directly above/below each other, DOES NOT mean the matches also match each other.

The only way to know whether these matches are both on one side of my tree is whether or not they match each other. Do they look the same or different? One face or two? We can’t tell from this view alone.

We need to evaluate!

Two Faces – Matching Can be Deceptive!

What do these matches mean? Let’s ask and answer a few questions.

  • Does a stacked match mean that one of these people match on my mother’s side and one on my father’s side?

They might, but stacked matches don’t MEAN that.

If one match is maternal, and one is paternal, they still appear at the same location on your chromosome browser because Mom and Dad each have a side of the street, meaning a chromosome that you inherited.

Remember in our example that even though they have the same street address, Dad has blue Cs and Mom has pink As living at that location. In other words, their faces look different. So unless Mom and Dad have the same DNA on that entire segment of addresses, 1-10, Mom and Dad won’t match each other.

Therefore, my maternal and paternal matches won’t match each other either on that segment either, unless:

  1. They are related to me through both of my parents and on that specific location.
  2. My mother and father are related to each other and their DNA is the same on that segment.
  3. There is significant endogamy that causes my parents to share DNA segments from their more distant ancestors, even though they are not related in the past few generations.
  4. The segments are small (segments less than 7cM are false matches roughly 50% of the time) and therefore the match is simply identical by chance. I wrote about that here. The chart showing valid cM match percentages is shown here, but to summarize, 7-8 cMs are valid roughly 46% of the time, 8-9 cM roughly 66%, 9-10 cM roughly 91%, 10-11 cM roughly 95, but 100 is not reached until about 20 cM and I have seen a few exceptions above that, especially when imputation is involved.

Chromosome inheritance match.png

In this inheritance example, we see that pink Match #1 is from Mom’s side and matches the DNA I inherited from pink Mom. Blue Match #2 is from Dad’s side and matches the DNA I inherited from blue Dad. But as you can see, Match #1 and Match #2 do not match each other.

Therefore, the address is only half the story (double-sided.)

What lives at the address is the other half. Mom and Dad have two separate faces!

Chromosome actual overlay

Click to enlarge image

Looking at our example of what our DNA in parental order really looks like on chromosome 1, we see that the blue person actually matches on my maternal side with all As, and the teal person on the paternal side with all Cs.

  • Does a stacked match on the chromosome browser mean that two people match each other?

Sometimes it happens, but not necessarily, as shown in our example above. The blue and teal person would not match each other. Remember, addresses (the street is double-sided) but the nucleotides that live at that address tell the real story. Think two different looking faces, Mom’s and Dad’s, peering out those windows.

If stacked matches match each other too – then they match me on the same parental side. If they don’t match each other, don’t be deceived just because they live at the same address. Remember – Mom’s and Dad’s two faces look different.

For example, if both the blue and teal person match me maternally, with all As, they would also match each other. The addresses match and the values that live at the address match too. They look exactly the same – so they both match me on either my maternal or paternal side – but it’s up to me to figure out which is which using genealogy.

Chromosome actual maternal.png

Click to enlarge image

When my matches do match each other on this segment, plus match me of course, it’s called triangulation.

Triangulation – Think of 3

If my two matches match each other on this segment, in addition to me, it’s called triangulation which is genealogically significant, assuming:

  1. That the triangulated people are not closely related. Triangulation with two siblings, for example, isn’t terribly significant because the common ancestor is only their parents. Same situation with a child and a parent.
  2. The triangulated segments are not small. Triangulation, like matching, on small segments can happen by chance.
  3. Enough people triangulate on the same segment that descends from a common ancestor to confirm the validity of the common ancestor’s identity, also confirming that the match is identical by descent, not identical by chance.

Chromosome inheritance triangulation.png

The key to determining whether my two matches both match me on my maternal side (above) or paternal side is whether they also match each other.

If so, assuming all three of the conditions above are true, we triangulate.

Next, let’s look at a three-person match on the same segment and how to determine if they triangulate.

Three Way Matching and Identifying Imposters

Chromosome 3 in our example is slightly different, because all three people match me on at least a portion of that segment, meaning at the same address. The red and teal segments line up directly under the blue segment – so the portion that I can potentially match identically to all 3 people is the length of the blue segment. It’s easy to get excited, but don’t get excited quite yet.

Chromosome 3 way match.png

Given that three people match me on the same street address/location, one of the following three situations must be true:

  • Situation 1- All three people match each other in addition to me, on that same segment, which means that all three of them match me on either the maternal or paternal side. This confirms that we are related on the same side, but not how or which side.

Chromosome paternal.png

In order to determine which side, maternal or paternal, I need to look at their and my genealogy. The blue arrows in these examples mean that I’ve determined these matches to all be on my father’s side utilizing a combination of genealogy plus DNA matching. If your parent is alive, this part is easy. If not, you’ll need to utilize common matching and/or triangulation with known relatives.

  • Situation 2 – Of these three people, Cheryl, the blue bar on top, matches me but does not match the other two. Charlene and David, the red and teal, match each other, plus me, but not Cheryl.

Chromosome maternal paternal.png

This means that at least either my maternal or paternal side is represented, given that Charlene and David also match each other. Until I can look at the identity of who matches, or their genealogy, I can’t tell which person or people descend from which side.

In this case, I’ve determined that Cheryl, my first cousin, with the pink arrow matches me on Mom’s side and Charlene and David, with the blue arrows, match me on Dad’s side. So both my maternal and paternal sides are represented – my maternal side with the pink arrow as well as my father’s side with the blue arrows.

If Cheryl was a more distant match, I would need additional triangulated matches to family members to confirm her match as legitimate and not a false positive or identical by chance.

  • Situation 3 – Of the three people, all three match me at the same addresses, but none of the three people match each other. How is this even possible?

Chromosome identical by chance.png

This situation seems very counter-intuitive since I have only 2 chromosomes, one from Mom and one from Dad – 2 sidesof the street. It is confusing until you realize that one match (Cheryl and me, pink arrow) would be maternal, one would be paternal (Charlene and me, blue arrow) and the third (David and me, red arrows) would have DNA that bounces back and forth between my maternal and paternal sides, meaning the match with David is identical by chance (IBC.)

This means the third person, David, would match me, but not the people that are actually maternal and paternal matches. Let’s take a look at how this works

Chromosome maternal paternal IBC.png

The addresses are the same, but the values that live at the addresses are not in this third scenario.

Maternal pink Match #1 is Cheryl, paternal blue Match #2 is Charlene.

In this example, Match #3, David, matches me because he has pink and blue at the same addresses that Mom and Dad have pink and blue, but he doesn’t have all pink (Mom) nor all blue (Dad), so he does NOT match either Cheryl or Charlene. This means that he is not a valid genealogical match – but is instead what is known as a false positive – identical by chance, not by descent. In essence, a wily genetic imposter waiting to fool unwary genealogists!

In his case, David is literally “two-faced” with parts of both values that live in the maternal house and the paternal house at those addresses. He is a “two-faced imposter” because he has elements of both but isn’t either maternal or paternal.

This is the perfect example of why matching and triangulating to known and confirmed family members is critical.

All three people, Cheryl, Charlene and David match me (double sided chromosomes), but none of them match each other (two legitimate faces – one from each parent’s side plus one imposter that doesn’t match either the legitimate maternal or paternal relatives on that segment.)

Remember Three Things

  1. Double-Sided – Mom and Dad both have the same addresses on both sides of each chromosome street.
  2. Two Legitimate Faces – The DNA values, nucleotides, will have a unique pattern for both your Mom and Dad (unless they are endogamous or related) and therefore, there are two legitimate matching patterns on each chromsome – one for Mom and one for Dad. Two legitimate and different faces peering out of the houses on Mom’s side and Dad’s side of the street.
  3. Two-Faced Imposters – those identical by chance matches which zig-zag back and forth between Mom and Dad’s DNA at any given address (segment), don’t match confirmed maternal and paternal relatives on the same segment, and are confusing imposters.

Are you ready to hit your home run?

What’s Next?

Now that we understand how matching and triangulation works and why, let’s put this to work at the vendors. Join me for my article in a few days, Triangulation in Action at Family Tree DNA, MyHeritage, 23andMe and GedMatch.

We will step through how triangulation works at each vendor. You’ll have matches at each vendor that you don’ t have elsewhere. If you haven’t transferred your DNA file yet, you still have time with the step by step instructions below:

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

First Steps When Your DNA Results are Ready – Sticking Your Toe in the Genealogy Water

First steps helix

Recently someone asked me what the first steps would be for a person who wasn’t terribly familiar with genealogy and had just received their DNA test results.

I wrote an article called DNA Results – First Glances at Ethnicity and Matching which was meant to show new folks what the various vendor interfaces look like. I was hoping this might whet their appetites for more, meaning that the tester might, just might, stick their toe into the genealogy waters😊

I’m hoping this article will help them get hooked! Maybe that’s you!

A Guide

This article can be read in one of two ways – as an overview, or, if you click the links, as a pretty thorough lesson. If you’re new, I strongly suggest reading it as an overview first, then a second time as a deeper dive. Use it as a guide to navigate your results as you get your feet wet.

I’ll be hotlinking to various articles I’ve written on lots of topics, so please take a look at details (eventually) by clicking on those links!

This article is meant as a guideline for what to do, and how to get started with your DNA matching results!

If you’re looking for ethnicity information, check out the First Glances article, plus here and here and here.

Concepts – Calculating Ethnicity Percentages provides you with guidelines for how to estimate your own ethnicity percentages based on your known genealogy and Ethnicity Testing – A Conundrum explains how ethnicity testing is done.

OK, let’s get started. Fun awaits!

The Goal

The goal for using DNA matching in genealogy depends on your interests.

  1. To discover cousins and family members that you don’t know. Some people are interested in finding and meeting relatives who might have known their grandparents or great-grandparents in the hope of discovering new family information or photos they didn’t know existed previously. I’ve been gifted with my great-grandparent’s pictures, so this strategy definitely works!
  2. To confirm ancestors. This approach presumes that you’ve done at least a little genealogy, enough to construct at least a rudimentary tree. Ancestors are “confirmed” when you DNA match multiple other people who descend from the same ancestor through multiple children. I wrote an article, Ancestors: What Constitutes Proof?, discussing how much evidence is enough to actually confirm an ancestor. Confirmation is based on a combination of both genealogical records and DNA matching and it varies depending on the circumstances.
  3. Adoptees and people with unknown parents seeking to discover the identities of those people aren’t initially looking at their own family tree – because they don’t have one yet. The genealogy of others can help them figure out the identity of those mystery people. I wrote about that technique in the article, Identifying Unknown Parents and Individuals Using DNA Matching.

DNAAdoption for Everyone

Educational resources for adoptees and non-adoptees alike can be found at www.dnaadoption.org. DNAAdoption is not just for adoptees and provides first rate education for everyone. They also provide trained and mentored search angels for adoptees who understand the search process along with the intricacies of navigating the emotional minefield of adoption and unknown parent searches.

First Look” classes for each vendor are free for everyone at DNAAdoption and are self-paced, downloadable onto your computer as a pdf file. Intro to DNA, Applied Autosomal DNA and Y DNA Basics classes are nominally priced at between $29 and $49 and I strongly recommend these. DNAAdoption is entirely non-profit, so your class fee or contribution supports their work. Additional resources can be found here and their 12 adoptee search steps here.

Ok, now let’s look at your results.

Matches are the Key

Regardless of your goal, your DNA matches are the key to finding answers, whether you want to make contact with close relatives, prove your more distant ancestors or you’re involved in an adoptee or unknown parent search.

Your DNA matches that of other people because each of you inherited a piece of DNA, called a segment, where many locations are identical. The length of that DNA segment is measured in centiMorgans and those locations are called SNPs, or single nucleotide polymorphisms. You can read about the definition of a centimorgan and how they are used in the article Concepts – CentiMorgans, SNPs and Pickin’Crab.

While the scientific details are great, they aren’t important initially. What is important is to understand that the more closely you match someone, the more closely you are related to them. You share more DNA with close relatives than more distant relatives.

For example, I share exactly half of my mother’s DNA, but only about 25% of each of my grandparents’ DNA. As the relationships move further back in time, I share less and less DNA with other people who descend from those same ancestors.

Informational Tools

Every vendor’s match page looks different, as was illustrated in the First Glances article, but regardless, you are looking for four basic pieces of information:

  • Who you match
  • How much DNA you share with your match
  • Who else you and your match share that DNA with, which suggests that you all share a common ancestor
  • Family trees to reveal the common ancestor between people who match each other

Every vendor has different ways of displaying this information, and not all vendors provide everything. For example, 23andMe does not support trees, although they allow you to link to one elsewhere. Ancestry does not provide a tool called a chromosome browser which allows you to see if you and others match on the same segment of DNA. Ancestry only tells you THAT you match, not HOW you match.

Each vendor has their strengths and shortcomings. As genealogists, we simply need to understand how to utilize the information available.

I’ll be using examples from all 4 major vendors:

Your matches are the most important information and everything else is based on those matches.

Family Tree DNA

I have tested many family members from both sides of my family at Family Tree DNA using the Family Finder autosomal test which makes my matches there incredibly useful because I can see which family members, in addition to me, my matches match.

Family Tree DNA assigns matches to maternal and paternal sides in a unique way, even if your parents haven’t tested, so long as some close relatives have tested. Let’s take a look.

First Steps Family Tree DNA matches.png

Sign on to your account and click to see your matches.

At the top of your Family Finder matches page, you’ll see three groups of things, shown below.

First Steps Family Tree DNA bucketing

Click to enlarge

A row of tools at the top titled Chromosome Browser, In Common With and Not in Common With.

A second row of tabs that include All, Paternal, Maternal and Both. These are the maternal and paternal tabs I mentioned, meaning that I have a total of 4645 matches, 988 of which are from my paternal side and 847 of which are from my maternal side.

Family Tree DNA assigns people to these “buckets” based on matches with third cousins or closer if you have them attached in your tree. This is why it’s critical to have a tree and test close relatives, especially people from earlier generations like aunts, uncles, great-aunts/uncles and their children if they are no longer living.

If you have one or both parents that can test, that’s a wonderful boon because anyone who matches you and one of your parents is automatically bucketed, or phased (scientific term) to that parent’s side of the tree. However, at Family Tree DNA, it’s not required to have a parent test to have some matches assigned to maternal or paternal sides. You just need to test third cousins or closer and attach them to the proper place in your tree.

How does bucketing work?

Maternal or Paternal “Side” Assignment, aka Bucketing

If I match a maternal first cousin, Cheryl, for example, and we both match John Doe on the same segment, John Doe is automatically assigned to my maternal bucket with a little maternal icon placed beside the match.

First Steps Family Tree DNA match info

Click to enlarge

Every vendor provides an estimated or predicted relationship based on a combination of total centiMorgans and the longest contiguous matching segment. The actual “linked relationship” is calculated based on where this person resides in your tree.

The common surnames at far right are a very nice features, but not every tester provides that information. When the testers do include surnames at Family Tree DNA, common surnames are bolded. Other vendors have similar features.

People with trees are shown near their profile picture with a blue pedigree icon. Clicking on the pedigree icon will show you their ancestors. Your matches estimated relationship to you indicates how far back you should expect to share an ancestor.

For example, first cousins share grandparents. Second cousins share great-grandparents. In general, the further back in time your common ancestor, the less DNA you can be expected to share.

You can view relationship information in chart form in my article here or utilize DNAPainter tools, here, to see the various possibilities for the different match levels.

Clicking on the pedigree chart of your match will show you their tree. In my tree, I’ve connected my parents in their proper places, along with Cheryl and Don, mother’s first cousins. (Yes, they’ve given permission for me to utilize their results, so they aren’t always blurred in images.)

Cheryl and Don are my first cousins once removed, meaning my mother is their first cousin and I’m one generation further down the tree. I’m showing the amount of DNA that I share with each of them in red in the format of total DNA shared and longest unbroken segment, taken from the match list. So 382-53 means I share a total of 382 cM and 53 cM is the longest matching block.

First Steps Family Tree DNA tree.png

The Chromosome Browser

Utilizing the chromosome browser, I can see exactly where I match both Don and Cheryl. It’s obvious that I match them on at least some different pieces of my DNA, because the total and longest segment amounts are different.

The reason it’s important to test lots of close relatives is because even siblings inherit different pieces of DNA from their parents, and they don’t pass the same DNA to their offspring either – so in each generation the amount of shared DNA is probably reduced. I say probably because sometimes segments are passed entirely and sometimes not at all, which is how we “lose” our ancestors’ DNA over the generations.

Here’s a matching example utilizing a chromosome browser.

First Steps Family Tree DNA chromosome browser.png

I clicked the checkboxes to the left of both Cheryl and Don on the match page, then the Chromosome Browser button, and now you can see, above, on chromosomes 1-16 where I match Cheryl (blue) and Don (red.)

In this view, both Don and Cheryl are being compared to me, since I’m the one signed in to my account and viewing my DNA matches. Therefore, one of the bars at each chromosome represents Don’s DNA match to me and one represents Cheryl’s. Cheryl is the first person and Don is the second. Person match colors (red and blue) are assigned arbitrarily by the system.

My grandfather and Cheryl/Don’s father, Roscoe, were siblings.

You can see that on some segments, my grandfather and Roscoe inherited the same segment of DNA from their parents, because today, my mother gave me that exact same segment that I share with both Don and Cheryl. Those segments are exactly identical and shown in the black boxes.

The only way for us to share this DNA today is for us to have shared a common ancestor who gave it to two of their children who passed it on to their descendants who DNA tested today.

On other segments, in red boxes, I share part of the same segments of DNA with Cheryl and Don, but someone along the line didn’t inherit all of that segment. For example on chromosome 3, in the red box, you can see that I share more with Cheryl (blue) than Don (red.)

In other cases, I share with either Don or Cheryl, but Don and Cheryl didn’t inherit that same segment of DNA from their father, so I don’t share with both of them. Those are the areas where you see only blue or only red.

On chromosome 12, you can see where it looks like Don’s and Cheryl’s segments butt up against each other. The DNA was clearly divided there. Don received one piece and Cheryl got the other. That’s known as a crossover and you can read about crossovers here, if you’d like.

It’s important to be able to view segment information to be able to see how others match in order to identify which common ancestor that DNA came from.

In Common With

You can use the “In Common With” tool to see who you match in common with any match. My first 6 matches in common with Cheryl are shown below. Note that they are already all bucketed to my maternal side.

First Steps Family Tree DNA in common with

click to enlarge

You can click on up to 7 individuals in the check box at left to show them on the chromosome browser at once to see if they match you on common segments.

Each matching segment has its own history and may descend from a different ancestor in your common tree.

First Steps 7 match chromosome browser

click to enlarge

If combinations of people do match me on a common segment, because these matches are all on my maternal side, they are triangulated and we know they have to descend from a common ancestor, assuming the segment is large enough. You can read about the concept of triangulation here. Triangulation occurs when 3 or more people (who aren’t extremely closely related like parents or siblings) all match each other on the same reasonably sized segment of DNA.

If you want to download your matches and work through this process in a spreadsheet, that’s an option too.

Size Matters

Small segments can be identical by chance instead of identical by descent.

  • “Identical by chance” means that you accidentally match someone because your DNA on that segment has been combined from both parents and causes it to match another person, making the segment “looks like” it comes from a common ancestor, when it really doesn’t. When DNA is sequenced, both your mother and father’s strands are sequenced, meaning that there’s no way to determine which came from whom. Think of a street with Mom’s side and Dad’s side with identical addresses on the houses on both sides. I wrote about that here.
  • “Identical by descent” means that the DNA is identical because it actually descends from a common ancestor. I discussed that concept in the article, We Match, But Are We Related.

Generally, we only utilize 7cM (centiMorgan) segments and above because at that level, about half of the segments are identical by descent and about half are identical by chance, known as false positives. By the time we move above 15 cM, most, but not all, matches are legitimate. You can read about segment size and accuracy here.

Using “In Common With” and the Matrix

“In Common With” is about who shares DNA. You can select someone you match to see who else you BOTH match. Just because you match two other people doesn’t necessarily mean that it’s on the same segment of DNA. In fact, you could match one person from your mother’s side and the other person from your father’s side.

First Steps match matrix.png

In this example, you match Person B due to ancestor John Doe and Person C due to ancestor Susie Smith. However, Person B also matches person C, but due to ancestor William West that they share and you don’t.

This example shows you THAT they match, but not HOW they match.

The only way to assure that the matches between the three people above are due to the same ancestor is to look at the segments with a chromosome browser and compare all 3 people to each other. Finding 3 people who match on the same segment, from the same side of your tree means that (assuming a reasonably large segment) you share a common ancestor.

Family Tree DNA has a nice matrix function that allows you to see which of your matches also match each other.

First steps matrix link

click to enlarge

The important distinction between the matrix and the chromosome browser is that the chromosome browser shows you where your matches match you, but those matches could be from both sides of your tree, unless they are bucketed. The matrix shows you if your matches also match each other, which is a huge clue that they are probably from the same side of your tree.

First Steps Family Tree DNA matrix.png

A matrix match is a significant clue in terms of who descends from which ancestors. For example, I know, based on who Amy matches, and who she doesn’t match, that she descends from the Ferverda side and that Charles, Rex and Maxine descend from ancestors on the Miller side.

Looking in the chromosome browser, I can tell that Cheryl, Don, Amy and I match on some common segments.

Matching multiple people on the same segment that descends from a common ancestor is called triangulation.

Let’s take a look at the MyHeritage triangulation tool.

MyHeritage

Moving now to MyHeritage who provides us with an easy to use triangulation tool, we see the following when clicking on DNA matches on the DNA tab on the toolbar.

First Steps MyHeritage matches

click to enlarge

Cousin Cheryl is at MyHeritage too. By clicking on Review DNA Match, the purple button on the right, I can see who else I match in common with Cheryl, plus triangulation.

The list of people Cheryl and I both match is shown below, along with our relationships to each person.

First Steps MyHeritage triangulation

click to enlarge

I’ve selected 2 matches to illustrate.

The first match has a little purple icon to the right which means that Amy triangulates with me and Cheryl.

The second match, Rex, means that while we both match Rex, it’s not on the same segment. I know that without looking further because there is no triangulation button. We both match Rex, but Cheryl matches Rex on a different segment than I do.

Without additional genealogy work, using DNA alone, I can’t say whether or not Cheryl, Rex and I all share a common ancestor. As it turns out, we do. Rex is a known cousin who I tested. However, in an unknown situation, I would have to view the trees of those matches to make that determination.

Triangulation

Clicking on the purple triangulation icon for Amy shows me the segments that all 3 of us, me, Amy and Cheryl share in common as compared to me.

First Steps MyHeritage triangulation chromosome browser.png

Cheryl is red and Amy is yellow. The one segment bracketed with the rounded rectangle is the segment shared by all 3 of us.

Do we have a common ancestor? I know Cheryl and I do, but maybe I don’t know who Amy is. Let’s look at Amy’s tree which is also shown if I scroll down.

First Steps MyHeritage common ancestor.png

Amy didn’t have her tree built out far enough to show our common ancestor, but I immediately recognized the surname Ferveda found in her tree a couple of generations back. Darlene was the daughter of Donald Ferverda who was the son of Hiram Ferverda, my great-grandfather.

Hiram was the father of Cheryl’s father, Roscoe and my grandfather, John Ferverda.

First Steps Hiram Ferverda pedigree.png

Amy is my first cousin twice removed and that segment of DNA that I share with her is from either Hiram Ferverda or his wife Eva Miller.

Now, based on who else Amy matches, I can probably tell whether that segment descends from Hiram or Eva.

Viva triangulation!

Theory of Family Relativity

MyHeritage’s Theory of Family Relativity provides theories to people whose DNA matches regarding their common ancestor if MyHeritage can calculate how the 2 people are potentially related.

MyHeritage uses a combination of tools to make that connection, including:

  • DNA matches
  • Your tree
  • Your match’s tree
  • Other people’s trees at MyHeritage, FamilySearch and Geni if the common ancestor cannot be found in your tree compared against your DNA match’s MyHeritage
  • Documents in the MyHeritage data collection, such as census records, for example.

MyHeritage theory update

To view the Theories, click on the purple “View Theories” banner or “View theory” under the DNA match.

First Steps MyHeritage theory of relativity

click to enleage

The theory is displayed in summary format first.

MyHeritage view full theory

click to enlarge

You can click on the “View Full Theory” to see the detail and sources about how MyHeritage calculated various paths. I have up to 5 different theories that utilize separate resources.

MyHeritage review match

click to enlarge

A wonderful aspect of this feature is that MyHeritage shows you exactly the information they utilized and calculates a confidence factor as well.

All theories should be viewed as exactly that and should be evaluated critically for accuracy, taking into consideration sources and documentation.

I wrote about using Theories of Relativity, with instructions, here and here.

I love this tool and find the Theories mostly accurate.

AncestryDNA

Ancestry doesn’t offer a chromosome browser or triangulation but does offer a tree view for people that you match, so long as you have a subscription. In the past, a special “Light” subscription for DNA only was available for approximately $49 per year that provided access to the trees of your DNA matches and other DNA-related features. You could not order online and had to call support, sometimes asking for a supervisor in order to purchase that reduced-cost subscription. The “Light” subscription did not provide access to anything outside of DNA results, meaning documents, etc. I don’t know if this is still available.

After signing on, click on DNA matches on the DNA tab on the toolbar.

You’ll see the following match list.

First Steps Ancestry matches

click to enlarge

I’ve tested twice at Ancestry, the second time when they moved to their new chip, so I’m my own highest match. Click on any match name to view more.

First Steps Ancestry shared matches

click to enlarge

You’ll see information about common ancestors if you have some in your trees, plus the amount of shared DNA along with a link to Shared Matches.

I found one of the same cousins at Ancestry whose match we were viewing at MyHeritage, so let’s see what her match to me at Ancestry looks like.

Below are my shared matches with that cousin. The notes to the right are mine, not provided by Ancestry. I make extensive use of the notes fields provided by the vendors.

First Steps Ancestry shared matches with cousin

click to enlarge

On your match list, you can click on any match, then on Shared Matches to see who you both match in common. While Ancestry provides no chromosome browser, you can see the amount of DNA that you share and trees, if any exist.

Let’s look at a tree comparison when a common ancestor can be detected in a tree within the past 7 generations.

First Steps Ancestry view ThruLines.png

What’s missing of course is that I can’t see how we match because there’s no chromosome browser, nor can I see if my matches match each other.

Stitched Trees

What I can see, if I click on “View ThruLines” above or ThruLines on the DNA Summary page on the main DNA tab is all of the people I match who Ancestry THINKS we descend from a common ancestor. This ancestor information isn’t always taken from either person’s tree.

For example, if my match hadn’t included Hiram Ferverda in her tree, Ancestry would use other people’s trees to “stitch them together” such that the tester is shown to be descended from a common ancestor with me. Sometimes these stitched trees are accurate and sometimes they are not, although they have improved since they were first released. I wrote about ThruLines here.

First Steps Ancestry ThruLines tree

click to enlarge

In closer generations, especially if you are looking to connect with cousins, tree matching is a very valuable tool. In the graphic above, you can see all of the cousins who descend from Hiram Ferverda who have tested and DNA match to me. These DNA matches to me either descend from Hiram according to their trees, or Ancestry believes they descend from Hiram based on other people’s trees.

With more distant ancestors, other people’s trees are increasingly likely to be copied with no sources, so take them with a very large grain of salt (perchance the entire salt lick.) I use ThruLines as hints, not gospel, especially the further back in time the common ancestor. I wish they reached back another couple of generations. They are great hints and they end with the 7th generation where my brick walls tend to begin!

23andMe

I haven’t mentioned 23andMe yet in this article. Genealogists do test there, especially adoptees who need to fish in every pond.

23andMe is often the 4th choice of the major 4 vendors for genealogy due to the following challenges:

  • No tree support, other than allowing you to link to a tree at FamilySearch or elsewhere. This means no tree matching.
  • Less than 2000 matches, meaning that every person is limited to a maximum of 2000 matches, minus however many of those 2000 don’t opt-in for genealogical matching. Given that 23andMe’s focus is increasingly health, my number of matches continues to decrease and is currently just over 1500. The good news is that those 1500 are my highest, meaning closest matches. The bad news is the genealogy is not 23andMe’s focus.

If you are an adoptee, a die-hard genealogist or specifically interested in ethnicity, then test at 23andMe. Otherwise all three of the other vendors would be better choices.

However, like the other vendors, 23andMe does have some features that are unique.

Their ethnicity predictions are acknowledged to be excellent. Ethnicity at 23andMe is called Ancestry Composition, and you’ll see that immediately when you sign in to your account.

First Steps 23andMe DNA Relatives.png

Your matches at 23andMe are found under DNA Relatives.

First Steps 23andMe tools

click to enlarge

At left, you’ll find filters and the search box.

Mom’s and Dad’s side filter matches if you’ve tested your parents, but it’s not like the Family Tree DNA bucketing that provides maternal and paternal side bucketing by utilizing through third cousins if your parents aren’t available for testing.

Family names aren’t your family names, but the top family names that match to you. Guess what my highest name is? Smith.

However, Ancestor Birthplaces are quite useful because you can sort by country. For example, my mother’s grandfather Ferverda was born in the Netherlands.

First Steps 23andMe country.png

If I click on Netherlands, I can see my 5 matches with ancestors born in the Netherlands. Of course, this doesn’t mean that I match because of my match’s Dutch ancestors, but it does provide me with a place to look for a common ancestor and I can proceed by seeing who I match in common with those matches. Unfortunately, without trees we’re left to rely on ancestor birthplaces and family surnames, if my matches have entered that information.

One of my Dutch matches also matches my Ferverda cousin. Given that connection, and that the Ferverda family immigrated from Holland in 1868, that’s a starting point.

MyHeritage has a similar features and they are much more prevalent in Europe.

By clicking on my Ferverda cousin, I can view the DNA we share, who we match in common, our common ethnicity and more. I have the option of comparing multiple people in the chromosome browser by clicking on “View DNA Comparison” and then selecting who I wish to compare.

First Steps 23andMe view DNA Comparison.png

By scrolling down instead of clicking on View DNA Comparison, I can view where my Ferverda cousin matches me on my chromosomes, shown below.

First STeps 23andMe chromosome browser.png

23andMe identifies completely identical segments which would be painted in dark purple, the legend at bottom left.

Adoptees love this feature because it would immediately differentiate between half and full siblings. Full siblings share approximately 25% of the exact DNA on both their maternal and paternal strands of DNA, while half siblings only share the DNA from one parent – assuming their parents aren’t closely related. I share no completely identical DNA with my Ferverda cousin, so no segments are painted dark purple.

23andMe and Ancestry Maps Show Where Your Matches Live

Another reason that adoptees and people searching for birth parents or unknown relatives like 23andMe is because of the map function.

After clicking on DNA Relatives, click on the Map function at the top of the page which displays the following map.

First Steps 23andMe map

click to enlarge

This isn’t a map of where your matches ancestors lived, but is where your matches THEMSELVES live. Furthermore, you can zoom in, click on the button and it displays the name of the individual and the city where they live or whatever they entered in the location field.

First Steps 23andMe your location on map.png

I entered a location in my profile and confirmed that the location indeed displays on my match’s maps by signing on to another family member’s account. What I saw is the display above. I’d wager that most testers don’t realize that their home location and photo, if entered, is being displayed to their matches.

I think sharing my ancestors’ locations is a wonderful, helpful, idea, but there is absolutely no reason whatsoever for anyone to know where I live and I feel it’s stalker-creepy and a safety risk.

First Steps 23andMe questions.png

If you enter a location in this field in your profile, it displays on the map.

If you test with 23andMe and you don’t want your location to display on this map to your matches, don’t answer any question that asks you where you call home or anything similar. I never answer any questions at 23andMe. They are known for asking you the same question repeatedly, in multiple locations and ways, until you relent and answer.

Ancestry has a similar map feature and they’ve also begun to ask you questions that are unrelated to genealogy.

Ancestry Map Shows Where Your Matches Live

At Ancestry, when you click to see your DNA matches, look to the right at the map link.

First Steps Ancestry map link.png

By clicking on this link, you can see the locations that people have entered into their profile.

First Steps Ancestry match map.png

As you can see, above, I don’t have a location entered and I am prompted for one. Note that Ancestry does specifically say that this location will be shown to your matches.

You can click on the Ancestry Profile link here, or go to your Personal Profile by click the dropdown under your user name in the upper right hand corner of any page.

This is important because if you DON’T want your location to show, you need to be sure there is nothing entered in the location field.

First Steps Ancestry profile.png

Under your profile, click “Edit.”

First Steps Ancestry edit profile.png

After clicking edit, complete the information you wish to have public or remove the information you do not.

First Steps Ancestry location in profile.png

Sometimes Your Answer is a Little More Complicated

This is a First Steps article. Sometimes the answer you seek might be a little more complicated. That’s why there are specialists who deal with this all day, everyday.

What issues might be more complex?

If you’re just starting out, don’t worry about these things for now. Just know when you run into something more complex or that doesn’t make sense, I’m here and so are others. Here’s a link to my Help page.

Getting Started

What do you need to get started?

  • You need to take a DNA test, or more specifically, multiple DNA tests. You can test at Ancestry or 23andMe and transfer your results to both Family Tree DNA and MyHeritage, or you can test directly at all vendors.

Neither Ancestry nor 23andMe accept uploads, meaning other vendors tests, but both MyHeritage and Family Tree DNA accept most file versions. Instructions for how to download and upload your DNA results are found below, by vendor:

Both MyHeritage and Family Tree DNA charge a minimal fee to unlock their advanced features such as chromosome browsers and ethnicity if you upload transfer files, but it’s less costly in both cases than testing directly. However, if you want the MyHeritage DNA plus Health or the Family Tree DNA Y DNA or Mitochondrial DNA tests, you must test directly at those companies for those tests.

  • It’s not required, but it would be in your best interest to build as much of a tree at all three vendors as you can. Every little bit helps.

Your first tree-building step should be to record what your family knows about your grandparents and great-grandparents, aunts and uncles. Here’s what my first step attempt looked like. It’s cringe-worthy now, but everyone has to start someplace. Just do it!

You can build a tree at either Ancestry or MyHeritage and download your tree for uploading at the other vendors. Or, you can build the tree using genealogy software on your computer and upload to all 3 places. I maintain my primary tree on my computer using RootsMagic. There are many options. MyHeritage even provides free tree builder software.

Both Ancestry and MyHeritage offer research/data subscriptions that provide you with hints to historical documents that increase what you know about your ancestors. The MyHeritage subscription can be tried for free. I have full subscriptions to both Ancestry and MyHeritage because they both include documents in their collections that the other does not.

Please be aware that document suggestions are hints and each one needs to be evaluated in the context of what you know and what’s reasonable. For example, if your ancestor was born in 1750, they are not included in the 1900 census, nor do women have children at age 70. People do have exactly the same names. FindAGrave information is entered by humans and is not always accurate. Just sayin’…

Evaluate critically and skeptically.

Ok, Let’s Go!

When your DNA results are ready, sign on to each vendor, look at your matches and use this article to begin to feel your way around. It’s exciting and the promise is immense. Feel free to share the link to this article on social media or with anyone else who might need help.

You are the cumulative product of your ancestors. What better way to get to know them than through their DNA that’s shared between you and your cousins!

What can you discover today?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Concepts – Endogamy and DNA Segments

Members of endogamous populations intermarry for generations, creating many segments that match, especially at small centiMorgan levels. These matching segments occur because they are members of the same population – not because they are genealogically related in a recent or genealogical time-frame.

Said another way, endogamous people are all related to each other in some way because they descend from a small original population whose descendants continued to intermarry without introducing people outside of the community into the genetic line. In other words, the DNA segments of the original population simply keep getting passed around, because there are no new segments being introduced.

If you only have 10 segments at a specific genetic location to begin with, in the original population – then the descendants of those original people can only have some combination of the DNA of those original people until another person is introduced into the mix.

Examples of endogamous populations are Ashkenazi Jews, Native Americans, Acadians, Mennonite, Amish and so forth.

If you have some family lines from an endogamous population, you’ll match with many members of that group. If you are fully endogamous, you will have significantly more matches than people from non-endogamous groups.

I suggest that you read my article, Concepts: The Faces of Endogamy to set the stage for this article.

In this article, I want to provide you with a visual example of what endogamy looks like in a chromosome browser. It doesn’t matter which vendor you use so long as you can drop the cM count to 1, so I’m using FamilyTreeDNA for this example.

I’ve used three people as examples:

  • Non-endogamous European
  • Ashkenazi Jewish
  • Native American (Sioux)

For all testers, I selected their closest match above 200 cM total plus the following 4 for a total of 5 people to compare in the chromosome browser. I have only shown chromosomes 1-8 because I’m trying to convey the concept, not exact details of each chromosome, and 8 chromosomes fit into one screen shot.

If you’re not familiar with the terminology, you can read about cM, centiMorgans, in the article “Concepts – CentiMorgans, SNPs, and Pickin’Crab.”

Let’s take a look at our 3 examples, one at a time.

Non-Endogamous European Individual

The tester is non-endogamous. Four of the 5 individuals are known family members, although none were target tested by the tester.

Endogamy non-endogamous.png

The tester’s matches at 1 cM are shown below:

Endogamy non-endogamous 1cM.png

Note that the grey hashed regions are regions not reported, so no one matches there.

Below, the same 5 matches shown at 7 cM where roughly half of the matches will be identical by chance. Identical by descent segments include identical by population. You can read about the various types of “identical by” segments in the article, “Concepts – Identical by…Descent, State, Population and Chance”.

Endogamy non-endogamous 7cM.png

Ashkenazi Jewish Individual

The tester, along with both of their parents have tested. None of the matches are known or identified relatives.

Endogamy Jewish.png

Even though none of these individuals can be identified, two are related on both sides, maternal and paternal, of the person who tested.

In the chromosome browser, at 1cM, we see the following:

Endogamy Jewish 1cM.png

At 7cM, the following:

Endogamy 7cM.png

Native American Individual

The tester is 15/16 Native from the Sioux tribe. It’s unlikely that their matches are entirely Native, meaning they are not entirely endogamous. None of the matches are known or identified family members.

Endogamy Native.png

At 1 cM shown below:

Endogamy Native 1cM.png

At 7 cM, below:

Endogamy Native 7cM.png

Side by Side

I’ve placed the three 1 cM charts side by side with the non-endogamous to the left, the Jewish in the center and the Native, at right.

endogamy side by side.png

It’s easy to see that the Jewish tester has more 1 cM segments than the non-endogamous tester, and the Native tester more than both of the others.

Summary Comparison Chart

The chart below shows the difference in total number of segments, number of segments between 1 and 6.99 cM, and number of segments at 7 cM or larger. I downloaded these results into a spreadsheet and counted the rows.

Total Segments Total segments at 1 – 6.99 cM Total at 7 or > cM % 7 or >
Non-Endogamous 98 70 28 29
Jewish 168 139 29 17
Native American 310 295 15 5

You’ll note that the non-endogamous individual only has 58% of the number of total segments compared to the Jewish individual, and 32% compared to the Native American individual. The Jewish individual has 54% of the number of segments that the Native person has.

I was initially surprised by the magnitude of this difference, but after thinking about it, I realized that the Native people have been endogamous for a lot longer in the Americas than the Ashkenazi Jewish people in Europe. At least 12,000 years compared to roughly 2000 years, or approximately (at least) 6 times longer. Furthermore, the Native people in the Americans were entirely isolated until the 1400s, with no possibility of outside admixture. Isolation lasted even longer in the tribes that were not coastal, such as the Sioux in the Dakotas.

Note that the Jewish person and non-endogamous person have almost as many 7cM segments as each other, but the Native person has roughly half as many when compared to the other two. That means that because I made my selection starting point based on total cM, and the Native person has a LOT more 1-6.99 cM segments than the others, at that level, there are fewer strong segment matches for the Native individual.

The Native person’s percentage of 7 cM or greater segments is a much smaller percentage of the total segments.

As a percentage, the 7 or greater cM segments are 29% of the non-endogamous person’s total, 17% of the Jewish person’s, but only 5% of the Native person’s total.

Endogamy not only makes a difference when comparing results, but the specific endogamous population along with their history, how heavily endogamous they are, and how long they have been endogamous appears to factor heavily into the comparison as well.

DNA Painter – Touring the Chromosome Garden

This is the third article in a series about DNA Painter. To know DNA Painter is to love DNA Painter! Trust me!

The first two articles are:

The Chromosome Sudoku article introduces you to DNA Painter, it’s purpose and how to use the tool. The Mining Vendor Data article illustrates exactly how to find the segments you can paint from each of the main autosomal testing vendors and GedMatch.

This article is a leisurely tour through my colorful chromosome garden so that, together, we can see examples of how to utilize the information that chromosome painting unveils.

Chromosome painting can do amazing things: walk you back generations, show visual phasing…and reveal that there’s a mistake someplace, too.

If you’re not willing to be wrong and reconsider, this might not be the field for you😊

Automatic Triangulation

Chromosome painting automatically mathematically triangulates your DNA and in a much easier way than the old spreadsheet method. In fact, triangulation just happens, effortlessly IF you can determine which side is maternal and which side is paternal. Of course, you’ll always want to check to be sure that your matches also match each other. if not, then that’s an indication that maybe one or both are identical by chance.

The definition of triangulation in this context means:

  • To find a common segment
  • Of reasonable size (generally 7cM or over)
  • That is confirmed to a common ancestor with at least two other individuals
  • Who are not close family

Close family generally means parents, siblings, sometimes grandparents, although parents and grandparents can certainly be used to verify that the match is valid. The best triangulation situation is when you match those two other people through a second child, meaning siblings of your ancestor.

Different matches, depending on the circumstances, have a different level of value to you as a genealogist. In other words, some are more solid than others.

The X chromosome has special matching and triangulation rules, so we’ll talk about that when we get to that section.

Don’t think of chromosome painting as “doing” triangulation, because triangulation is a bonus of chromosome painting, and it just happens, automatically, so long as you can confirm that the segment is from either your maternal or paternal line.

What does triangulation look like in DNA Painter?

Here’s what my painted chromosome 15 looks like.

Here, I’ve drawn boxes around the areas that are triangulated. Actually, I made a small mistake and omitted one grey bar that’s also part of a second triangulation group. Can you spot it? Hint – look at the grey bars at far right in the overlapping triangulation group boxes where the red arrow is pointing. The box below should extend upwards to incorporate part of that top grey bar too.

Triangulation are those several segments piled up on top of each other. It means they match you at the same address on either the maternal or paternal chromosome. That’s good, but it’s not the same as an official “pileup area.”

Ok, so what’s a pileup area?

Pileup Areas

Certain locations in the human genome have been designated as pileup regions based on the fact that many people will match on these segments, not necessarily because they share a common relatively recent ancestor, but instead because a particular segment has a very high frequency in the general human population, or in the population of a specific region. Translated, this means that the segment might not be relevant to genealogy.

But before going too far with this discussion, it doesn’t mean that matches in pileup regions aren’t relevant to genealogy – just consider it a caution sign.

Aside from chromosome 6, which includes the HLA region, I’ve always been rather suspicious of pileup regions, because they don’t seem to hold true for me. You can view a chart that I assembled of the known pileup regions here.

DNA Painter generously includes pileup region warnings, in essence, along a chromosome bar at the top indicating “shared” or “both.”

Please note that you can click to enlarge any image.

Pileups regions are indicated by the grey hashed region at right. In my case, on chromosome 1, the pileup region isn’t piled up at all, on either the paternal (blue) chromosome or the maternal (pink) chromosome.

As you can see, I have exactly one match on the maternal side (green) and one (gold) on the paternal side (with a smidgen of a second grey match) as well, with both extending significantly beyond the pileup region. There is no reason to suspect that these gold and green matches aren’t valid.

If I saw many more matches in a pileup region than elsewhere, or many small matches, or DNA that was supposed to be from multiple ancestors not in the same line, then I’d have to question whether a pileup region was responsible.

Stacked Segments

DNA Painter provides you with the opportunity to see which of your ancestors’ segments stack. Stacking is a very important concept of DNA painting.

Before we talk about stacking, notice that the legend for which segments are color coded to specific ancestors is located at right. You can also click on the little grey box beside “Shared or Both,” at left, to show the match names beside the segments.  This is very useful when trying to analyze the accuracy of the match.

I wish DNA Painter offered an option to paint the ancestor’s names beside the segments. Maybe in V2. It’s really difficult to complain about anything because this tool is both free and awesome.

I’m using Powerpoint to label this group of stacked matches for this example.

This is a situation where I know my pedigree chart really well, so I know immediately upon looking at this stacked segment group who this piece of DNA descends from.

Here’s my pedigree chart that corresponds to the stacked segment.

We attribute each DNA segment to a couple initially based on who we match. In this case, that’s William George Estes and Ollie Bolton, my grandparents. The DNA remains attributed to them until we have evidence of which individual person in the couple received that DNA from their ancestors and passed it on to their descendant.

Therefore, the pink people are the half of the couple who we now know (thanks to DNA Painter) did NOT contribute that DNA segment, because we can track the DNA directly through the yellow line until we’re once again to another genetic brick wall couple.

My father is listed at left, and the DNA path runs back to William Crumley the second and his unknown wife who is haplogroup H2a1, the yellow couple at far right. How cool is this? One of those ancestors (or a combined segment from both) has been passed intact to me today. This is not a trivial segment either at 23.3 cM. I would not expect a segment passed to 5th cousins to be that large, but it is!

Also, note that the grey segment of DNA from Lazarus Estes (1848-1918) and Elizabeth Vannoy (1847-1918) is sitting slightly to the left of the dark blue segment from William Crumley III, so part or all of the grey or blue segment may originate with a different ancestor. Perhaps we’ll know more when additional people test and match on this same segment.

Double Related

I have one person who is related to me through two different lines. I need a way to determine which line (or both) our common DNA segment descends from.

I painted the segment for both of our common ancestor couples. The pink is George Dodson (1702-1770) & Margaret Dagord. The bright blue segment is William Crumley III (1788-1859) & Lydia Brown.

Those two lines don’t converge, at least not that we know of.

Now, as I map additional people, I’ll watch this segment for a tie breaker match between the two ancestors. The gold is not a tie breaker because that’s my grandparents who are downstream of both the pink and blue ancestors.

Painted Ethnicity

23andMe does us the favor of painting our ethnicity segments and allowing us to download a file with those segments. Conversely, DNA Painter does us the favor of allowing us to paint that entire file at once.

I already know my two Native segments on chromosome 1 and 2 descend through my mother, because her DNA is Native in exactly the same location. In other words, in this case, my ethnicity segment does in fact phase to my mother, although that’s not always the case with ethnicity.

Multiple Acadian ancestors are also proven to be Native by both genealogical records and maternal and/or paternal haplogroups.

Therefore, I’ve painted my Native segments on my mother’s side in order to determine exactly from which ancestor(s) those Native segment descend.

Confirming Questionable Ancestors

One very long-standing mystery that seemed almost unsolvable was the identity of the parents of Elijah Vannoy (1784->1850). We know he was the son of one of 4 Vannoy brothers living in Wilkes County, NC. Two were eliminated by existing Bibles and other records, but the other two remained candidates in spite of sifting through every available record and resource. We were out of luck unless DNA came to the rescue. Y DNA confirmed that Elijah was descended from one of the Vannoy males, but didn’t shed light on which one.

I decided that the wives would be the key, since we knew the identity of all four wives, thankfully. Of course, that means we’d be using autosomal DNA to attempt to gather more information.

I entered one candidate couple at Ancestry as Elijah’s parents – the one I felt most likely based on tax records and other criteria – Daniel Vannoy and Sarah Hickerson.  I also entered Sarah’s parents, Charles Hickerson (c 1725-<1793) and Mary Lytle.

I began getting matches to people who descend from Charles Hickerson and Mary Lytle through children other than Sarah.

The grey segment is from a descendant of Lazarus Estes & Elizabeth Vannoy. The salmon segments are from descendants of Charles Hickerson and Mary Lytle.

These segments aren’t small, 12.8 and 16.1 cM, so I’m fairly confident that these multiple segments in combination with the Elizabeth Vannoy segment do indeed descend from Charles Hickerson and Mary Lytle.

At Ancestry, I have 5 matches to Charles Hickerson and Mary Lytle through three of their children. However, only two of the individuals has transferred their results to either Family Tree DNA, MyHeritage or GedMatch where segment information is available to customers.

Finally, the thirty year old mystery is solved!

Shifting, Sliding, Offset or Staggered Segment Groups

Occasionally, you can prove an entire large segment by groups of shifting or sliding segments, sometimes referred as offset or staggered segments.

The entire bright pink region is inherited from Jacob Lentz (1783-1870) and Fredericka Reuhl (1788-1863.) However, it’s not proven by one individual but by a combination of 6 people whose segments don’t all overlap with each other.  The top two do match very closely with me and each other, then the third spans the two groups. The bottom 3 and part of the middle segment match very closely as well.

I can conclude that the entire dark pink region from left to right descends from Jacob and Fredericka.

Two Matches – 7 Generations

Two matches is all it took to identify this segment back to George Dodson and Margaret Dagord.

The mustard match is to my grandparents (22cM), and the pink match is to George Dodson (1702-1770) and his wife (22cM) – 7 generations. These people also match each other.

Additional matches would make this evidence stronger, although a 22cM triangulated match is very significant alone. Future might also suggest ancestors further back in time.

First Chromosome Fully Mapped

I actually have chromosome 5 entirely mapped to confirmed ancestors. I’m so excited.

Uh Oh – Something’s Wrong

I found a stack that clearly indicates something is wrong.  The question is, what?

The mustard represents my paternal grandparents, so these segments could have come through either of them, although on the pedigree chart below, we can see that this came through my grandfathers line..

There is only a small overlap with the magenta (Nicholas Speak 1782-1852 and Sarah Faires 1786-1865) and green (James Crumley 1711-1764 and Catherine c1712-c1790,) which could be by chance given that the Nicholas segment is 7.5 cM, so I’m leaving the magenta out of the analysis.

However, the rest of these segments overlap each other significantly, even though they are stepped or staggered.

As you can see from the colors on the pedigree chat, it’s impossible for the green segment to descend from the same ancestor as the purple segment. The purple and orange confirm that branch of the tree, but the red cannot be from the same ancestor or the same line as the green ancestor.

I suspect that the purple and orange line is correct, because there are 4 segments from different people with the same ancestral line.

This means that we have one of the following situations with the red and green segments:

  • The smaller segments are incorrect, false positives, meaning matching by chance. The green segment is 14 cM, so quite large to match by chance. The red segment is 10 cM. Possible, but not probable.
  • The segments are population-based matches, so appear in all 3 lines. Possible, technically, but also not probable due to the segment size.
  • The segments are genuine matches, and one of the lines is also found in one of the other lines, upstream. This is possible, but this would have to be the case with both the red and green lines. To continue to weigh this possibility, I’ll be watching for similar situations with these same ancestors.
  • Some combination of the above.

I need more matches on this segment for further clarity.

Visual Phasing – Crossovers

A crossover point is where the DNA on one side of a demarcation line is descended from one ancestor and the DNA on the other side is descended from another ancestor, represented by the pink and blue halves of the segment, below.

Crossovers occur when the DNA is combined from two different ancestors when it is passed to the child. In other words, a chunk of mom’s ancestors’ DNA is contributed by mom and a chunk of dad’s ancestors’ DNA is contributed as well. The seam between different ancestor’s DNA pieces is called a crossover.

In this example, the brown lines confirmed by several testers to be from Henry Bolton (c1759-1846) and Nancy Mann (c1780-1841) is shown with a very specific left starting point, all in a vertical line. It looks for all the world like this is a crossover point. The DNA to the left would have been contributed by another, as yet unidentified, ancestor.

The gold lines above are matches from more recent generations.

Naming Those Unnamed Acadians

My Acadian ancestry is hopelessly intertwined, but chromosome painting may in fact provide me with some prayer of unraveling this ball of twine. Eventually.

When I know that someone is Acadian, but I can’t tell which of many lines I connect through, I add them as “Acadian Undetermined.”

There’s a lot of Acadian DNA, because it’s an endogamous population and they just keep passing the same segments around and around in a very limited population.

On my maternal chromosome, all of the olive green is “Acadian Undetermined.”  However, that blue segment in the stack is Rene de Forest (1670-1751) and Francoise Dugas (1678->1751).

In essence, this one match identified all of the DNA of the other people who are now simply a row in the Acadian Undetermined stack. Now I need to go back and peruse the trees of these individuals to determine if they descend form this line, or a common ancestor of this line, or if (some of) these matches are a matter of endogamy.

Endogamous matches can be population based, meaning that you do match each other, but it’s because you share so much of the same DNA because you have small pieces of many common ancestors – not because a particular segment comes from one specific ancestor. You can also share part of your DNA from Mom’s side and part from Dad’s side, because both of your parents descend from a common population and not because the entire segment comes from any particular ancestor.

On some long cold winter weekend, I’ll go through and map all of the trees of my Acadian matches to see what I can unravel. I just love matches with trees. You just can’t do something like this otherwise.

Of course, those Acadians (and other endogamous populations) can be tricky, no matter what, one click up from a needle in a haystack.

Acadian Endogamy Haystack on Steroids

At first, our haystack looks like we’ve solved the mystery of the identity of the stack.  However, we soon discover that maybe things aren’t as neat and tidy as we think.

Of course, the olive green is Acadian Undetermined, but the three other colored segments are:

  • Pink – Guillaume Blanchard (1650-1715/17) & Huguette Goujon (c1647-1717)
  • Brown/Pink – Francois Broussard (c1653-1716) & Catherine Richard (c1663-1748)
  • Coffee – Daniel Garceau (1707-1772) & Anne Doucet (1713-1791)

Looking at the pedigree chart, we find two of these couples in the same lineage, so all is good, until we find the third, pink, couple, at the bottom.

Clearly, this segment can’t be in two different lines at once, so we have a problem.  Or do we?

Working the pink troublesome lines on back, we make a discovery.

We find a Blanchard line consisting of Guilluame Blanchard born circa 1590 and Huguette Poirier also born circa 1690.

Interesting. Let’s compare the Guillaume Blanchard and Huguette Goujon line. Is this the same couple, but with a different surname for her?

No, as it turns out, Guillaume Blanchard that married Huguette Goujon was the grandson of Guilluame Blanchard and Huguette Poirier. That haystack segment of DNA was passed down through two different lines, it appears, to converge in three descendants – me, the descendant of the pink segment couple and the descendant of the brown/burgundy segment couple. This segment reaches back in time to the birth of either Guilluame Blanchard or Huguette Poirier in 1590, someplace in France, rode over on the ship to Port Royal in the very early 1600s, probably before Jamestown was settled, and has been kicking around in my ancestors and their descendants ever since.

This 18 or so cM ancestral segment is buried someplace at Port Royal, Nova Scotia, but lives on in me and several other people through at least two divergent lines.

The X Chromsome

Several vendors don’t report the X chromosome segments. I do use X segments from those who do, but I utilize a different threshold because the SNP density is about half of that on the other chromosomes. In essence, you need a match twice as large to be equivalent to a match on another chromosome..

Generally, I don’t rely on segments below 10 for anyone, and I generally only use segments over 14cM and no less than 500 SNPs.

Having just said that, I have painted a few smaller segments, because I know that if they are inaccurate, they are very easy to delete. They can remain in speculative mode. The default for DNAPainter and that’s what I use.

The great thing about the X chromosome is that because of it’s special inheritance path, you can sometimes push these segments another 2 generations back in time.

Let’s use an X chromosome match in conjunction with my X fan chart printed through Charting Companion.

On the paternal X, I inherited the gold segment from the couple, William George Estes (1873-1971) & Ollie Bolton (1874-1955.) However, since my father didn’t inherit an X from William George Estes (because my father inherited the Y from his father,) that X segment has to be from Ollie Bolton, and therefore from her parents Joseph Bolton (1853-1920) and Margaret Claxton (1851-1920.)

The segment from Lazarus Estes (1848-1918) and Elizabeth Vannoy (1847-1918) that’s 14 cM is false. It can’t descend from that couple. Same for the 7.5 cM from Jotham Brown (c1740-c1799) & Phoebe unk (c1747-c1803.) That segment’s false too. The green 48 cM segment from Samuel Claxton (1827-1876) and Elizabeth Speak (1832-1907)?  That segment’s good to go!

On my mother’s side, there’s a 7.8 cM Acadian Undetermined, which must be false, because Curtis Benjamin Lore (1856-1909) did not inherit an X chromosome from his Acadian father, Antoine Lore (1805-1862/67.)  Therefore, my X chromosome has no Acadian at all. I never realized that before, and it makes my X chromosome MUCH easier.

How about that light green 33cM segment from Antoine Lore (1805-1862/67) & Rachel Hill (1814/15-1870/80)? That segment must come from Rachel Hill, so it’s pushed back another generation to Joseph Hill (1790-1871) and Nabby Hall (1792-1874.)

I love the X chromosome because when you find a male in the line, you automatically get bumped two more generations back to his mother’s parents. It’s like the X prize for genetic genealogy, pardon the pun!

Adoptees

Some adoptees are lucky and receive close matches immediately. Others, not so much and the search is a long process.

If you’re an adoptee trying to figure out how your matches connect together, use in-common-match groupings to cluster matches together, then paint them in groups.  Utilize the overlapping segments in order to view their trees, looking for common surnames. Always start with the groups with the longest segments and the most matches. The larger the match, the more likely you are to be able to find a connection in a more recent generation. The more matches, the more likely you are to be able to spot a common surname (or two.)

Painting can speed this process significantly.

Much More Than Painting

I hope this tour through my colorful chromosomes has illustrated how much fun analysis can be. You’ll have so much fun that you won’t even realize you’re triangulating, phasing and all of those other difficult words.

If you have something you absolutely have to do, set an alarm – or you’ll forget all about it. Voice of experience here!

So, go and find some segments to paint so all of these exciting things can happen to you too!

How far back will you be able to identity a segment to a specific ancestor?  How about a triangulated segment? An X segment?

Have fun!!! Don’t forget to eat!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Concepts – The Faces of Endogamy

Recently, while checking Facebook, I saw this posting from my friend who researches in the same Native admixed group of families in North Carolina and Virginia that I do. Researchers have been trying for years to sort through these interrelated families. As I read Justin’s post, I realized, this is a great example of endogamy and often how it presents itself to genealogists.

I match a lot of people from the Indian Woods [Bertie County, NC] area via DNA, with names like Bunch, Butler, Mitchell, Bazemore, Castellow, and, of course, Collins. While it’s hard to narrow in on which family these matching segments come from, I can find ‘neighborhoods’ that fit the bill genetically. This [census entry] is from near Quitsna in 1860. You see Bunch, Collins, Castellow, Carter, and Mitchell in neighboring households.

Which begs the question, what is endogamy, do you have it and how can you tell?

Definition

Endogamy is the practice or custom or marrying within a specific group, population, geography or tribe.

Examples that come to mind are Ashkenazi Jews, Native Americans (before European and African admixture), Amish, Acadians and Mennonite communities.

Some groups marry within their own ranks due to religious practices. Jewish, Amish and Mennonite would fall under this umbrella. Some intermarry due to cultural practices, such as Acadians, although their endogamy could also partly be attributed to their staunch Catholic beliefs in a primarily non-Catholic region. Some people practice endogamy due to lack of other eligible partners such as Native Americans before contact with Europeans and Africans.  People who live on  islands or in villages whose populations were restricted geographically are prime candidates for endogamy.

In the case of Justin’s group of families who were probably admixed with Native, European and African ancestors, they intermarried because there were socially no other reasonable local options. In Virginia during that timeframe, mixed race marriages were illegal. Not only that, but you married who lived close by and who you knew – in essence the neighbors who were also your relatives.

Endogamy and Genetic Genealogy

In some cases, endogamy is good news for the genealogist. For example, if you’re working with Acadian records and know which Catholic church your ancestors attended. Assuming those church records still exist, you’re practically guaranteed that you’ll find the entire family because Acadians nearly always married within the Acadian community, and the entire Acadian community was Catholic. Catholics kept wonderful records. Even when the Acadians married a Native person, the Native spouse is almost always baptized and recorded with a non-Native name in the Catholic church records, which paved the way for a Catholic marriage.

In other cases, such as Justin’s admixed group, the Brethren who notoriously kept no church records or the Jewish people whose records were largely destroyed during the Holocaust, endogamy has the opposite effect – meaning that actual records are often beyond the reach of genealogists – but the DNA is not.

It’s in cases like this that people reach for DNA to help them find their families and connections.

What Does Endogamy Look Like?

If you know nothing about your heritage, how would you know whether you are endogamous or not? What does it look like? How do you recognize it?

The answer is…it depends. Unfortunately, there’s no endogamy button that lights up on your DNA results, but there are a range of substantial clues.  Let’s divide up the question into pieces that make sense and look at a variety of useful tools.

Full or Part?

First of all, fully and partly endogamous ancestry, and endogamy from different sources, has different signs and symptoms, so to speak.

A fully endogamous person, depending on their endogamy group, may have either strikingly more than average autosomal DNA matches, or very few.

Another factor will be geography, where you live, which serves to rule out some groups entirely. If you live in Australia, your ancestors may be European but they aren’t going to be Native American.

How many people in your endogamous group that have DNA tested is another factor that weighs very heavily in terms of what endogamy looks like, as is the age of the group. The older the group, generally the more descendants available to test although that’s not always the case. For example warfare, cultural genocide and disease wiped out many or most of the Native population in the United States, especially east of the Mississippi and particularly in the easternmost seaboard regions.

Because of the genocide perpetrated upon the Jewish people, followed by the scattering of survivors, Jewish descendants are inclined to test to find family connections. Jewish surnames may have been changed or not adopted in some cases until late, in the 1800s, and finding family after displacement was impossible in the 1940s for those who survived.

Let’s look at autosomal DNA matches for fully and partly endogamous individuals.

Jewish people, in particular Ashkenazi, generally have roughly three times as many matches as non-endogamous individuals.

Conversely, because very few Native people have tested, Native testers, especially non-admixed Native individuals, may have very few matches.

It’s ironic that my mother, the last person listed, with two endogamous lines, still has fewer matches than I do, the first person listed.  This is because my father has deep colonial roots with lots of descendants to test, and my mother has recent immigration in her family line – even though a quarter of her ancestry is endogamous.

To determine whether we are looking at endogamy, sometimes we need to look for other clues.

There are lots of ways to discover additional clues.

Surnames

Is there a trend among the surnames of your matches?

At the top of your Family Finder match page your three most common surnames are displayed.

A fully endogamous Jewish individual’s most common surnames are shown above. If you see Cohen among your most common surnames, you are probably Jewish, given that the Kohanim have special religious responsibilities within the Jewish faith.

Of course, especially with autosomal DNA, the person’s current surname may not be indicative, but there tends to be a discernable pattern with someone who is highly endogamous. When someone who is fully endogamous, such as the Jewish population, intermarries with other Jewish people, the surnames will likely still be recognizably Jewish.

Our Jewish individual’s first matching page, meaning his closest matches, includes the following surnames:

  • Cohen
  • Levi
  • Bernstein
  • Kohn
  • Goldstein

The Sioux individual only has 137 matches, but his first page of matches includes the following surnames:

  • Sunbear
  • Deer With Horns
  • Eagleman
  • Yelloweyes
  • Long Turkey
  • Fire
  • Bad Wound
  • Growing Thunder

These surnames are very suggestive of Native American ancestry in a tribe that did not adopt European surnames early in their history. In other words, not east of the Mississippi.

At Family Tree DNA, every person has the opportunity to list their family surnames and locations, so don’t just look at the tester’s surname, but at their family surnames and locations too. The Ancestral Surname column is located to the far right on the Family Finder matches page. If you can’t see all of the surnames, click on the person’s profile picture to see their entire profile and all of the surnames they have listed.

Please note that you can click to enlarge all graphics.

If you haven’t listed your family surnames, now would be a good time. You can do this by clicking on the orange “Manage Personal Information” link near your profile picture on the left of your personal page.

The orange link takes you to the account settings page. Click on the Genealogy tab, then on surnames. Be sure to click the orange “save” when you are finished.

Partial Endogamy

Let’s take a look at a case study of someone who is partially endogamous, meaning that they have endogamous lines, but aren’t fully endogamous. My mother, who is the partially endogamous individual with 1231 matches is a good example.

Mother is a conglomeration of immigrants. Her 8 great-grandparents break down as follows:

In mother’s case, a few different forces are working against each other. Let’s take a look.

The case of recent immigration from the Netherlands, in the 1850s, would serve to reduce mother’s matches because there has been little time in the US for descendants to accrue and test. Because people in the Netherlands tend to be very reluctant about DNA testing, very few have tested, also having the effect of reducing her number of matches.

Mother’s Dutch ancestors were Mennonites, an endogamous group within the Netherlands, which would further reduce her possibilities of having matches on these lines since she would be less likely to match the general population and more likely to match individuals within the endogamous group. If people from the Mennonite group tested, she would likely match many within that group. In other words, for her to find Dutch matches, people descended from the endogamous Dutch Mennonite population would need to test. At Family Tree DNA, there is a Low Mennonite Y DNA and Anabaptist autosomal DNA project both, but these groups tend to attract the Mennonites that migrated to Russia and Poland, not the group that stayed in the Netherlands. Another issue, at least in mother’s case, is that her Mennonite relatives “seem” to have been later converts, not part of the original Mennonite group – although it’s difficult to tell for sure in the records that exist.

Mother’s Kirsch and Drechsel ancestors were also recent immigrants in the 1850s, from Germany, with very few descendants in the US today. The villages from where her Kirsch ancestors immigrated, based on the church records, did tend to be rather endogamous.  However, that endogamy would only have reached back about 200 years, as far as the 30 Years’ War when that region was almost entirely, if not entirely, depopulated. So while there was recent endogamy, there (probably) wasn’t deep endogamy. Of course, it would require someone from those villages to test so mother could have matches before endogamy can relevant. DNA testing is not popular in Germany either.

Because of recent immigration, altogether one half of mother’s heritage would reduce her number of matches significantly. Recent immigrants simply have fewer descendants to test.

On the other hand, mother’s English line has been in the US for a long time, some since the Mayflower, so she could expect many matches from that line, although they are not endogamous. If you’re thinking to yourself that deep colonial ancestry can sometime mimic endogamy in terms of lots of matches, you’re right – but still not nearly to the level of a fully endogamous Jewish person.

Mother’s Acadian line has been settled in North America in Nova Scotia since the early 1600s, marrying within their own community, mixing with the Native people and then scattering in different directions after 1755 when they were forcibly removed. Acadians, however, tended to remain in their cultural groups, even after relocation. Many Acadian descendants DNA test and all Acadians descend from a limited and relatively well documented original population. That level of documentation is very unusual for endogamous groups. Acadian surnames are well known and are French. The best Acadian genealogical resource in is Karen Theriot’s comprehensive tree on Rootsweb in combination with the Mothers of Acadia DNA project at Family Tree DNA. I wish there was a similar Fathers of Acadia project.

Mother’s Brethren line is much less well documented due to a lack of church records. The Brethren community immigrated in the early 1700s from primarily Switzerland and Germany, was initially relatively small, lived in clusters in specific areas, traveled together and did not marry outside the Brethren faith. Therefore, Brethren heritage and names also tend to be rather specific, but not as recognizable as Acadian names. After all, the Brethren were German/Swiss and in mother’s case, she also has another 1/4th of her heritage that are recently immigrated Germans – so differentiating one German group from the other can be tricky. The only way to tell Brethren matches from other German matches is that the Brethren also tend to match each other.

In Common With

If you notice a group of similar appearing surnames, use the ICW (in common with) tool at Family Tree DNA to see who you match in common with those individuals. If you find that you match a whole group of people with similar surnames or geography, contact your matches and ask if they know any of the other matches and how they might be related. I always recommend beginning with your closest matches because your common ancestor is likely to be closer in time than people who match you more distantly.

In the ICW match example below, all of the matches who do show ancestral surnames include Acadian surnames and/or locations.

Acadians, of course, became Cajuns in Louisiana where one group settled after their displacement in Nova Scotia. The bolded surnames match surnames on the tester’s surname list.

The ICW tools work particular well if you know of or can identify one person who matches you within a group, or simply on one side of your family.

Don Worth’s Autosomal DNA Segment Analyzer is an excellent tool to genetically group your matches by chromosome. It’s then easy to use the chromosome browser at Family Tree DNA to see which of these people match you on the same segments. These tools work wonderfully together.

The group above is an Acadian match group. By hovering over the match names, you can see their ancestral surnames which make the Acadian connection immediately evident.

The Matrix

In addition to seeing the people you match in common with your matches by utilizing the ICW tool at Family Tree DNA, you can also utilize the Matrix tool to see if your matches also match each other. While this isn’t the same as triangulation, because it doesn’t tell you if they match each other on the same exact segment, it’s a wonderful tool, because in the absence of cooperation or communication from your matches to determine triangulation between multiple people, the Matrix is a very good secondary approach and often predicts triangulation accurately.

In the Matrix, above, the blue boxes indicates that these individuals (from your match list) also match each other.

For additional information on various autosomal tools available for your use, click here to read the article, Nine Autosomal Tools at Family Tree DNA.

MyOrigins

Everyone who takes the Family Finder test also receives their ethnicity estimates on the MyOrigins tab.

In the case of our Jewish friend, above, his MyOrigins map clearly shows his endogamous heritage. He does have some Middle Eastern region admixture, but I’ve seen Ashkenazi Jewish results that are 100% Ashkenazi Jewish.

The same situation exists with our Sioux individual, above. Heavily Native, removing any doubt about his ancestry.

However, mother’s European admixture blends her MyOrigins results into a colorful but unhelpful European map, at least in terms of determining whether she is endogamous or has endogamous lines.

European endogamous admixture, except for Jewish heritage, tends to not be remarkable enough to stand out as anything except European heritage utilizing ethnicity tools. In addition, keep in mind that DNA testing in France for genealogy is illegal, so often there is a distinct absence in that region that is a function of the lack of testing candidates. Acadians may not show up as French.

Ethnicity testing tends to be excellent at determining majority ethnicity, and determining differences between continental level ethnicity, but less helpful otherwise. In terms of endogamy, Jewish and Native American tend to be the two largest endogamous groups that are revealed by ethnicity testing – and for that purpose, ethnicity testing is wonderful.

Y and Mitochondrial DNA and Endogamy

Autosomal tools aren’t the only tools available to the genetic genealogist. In fact, if someone is 100% endogamous, or even half endogamous, chances are very good that either the Y DNA for males on the direct paternal line, or the mitochondrial DNA for males and females on the direct matrilineal line will be very informative.

On the pedigree chart above, the blue squares represent the Y DNA that the father contributes to only his sons and the red circles represent the mitochondrial DNA (mtDNA) that mothers contribute to both genders of their children, but is only passed on by the females.

By utilizing Y and mtDNA testing, you can obtain a direct periscope view back in time many generations, because the Y and mitochondrial DNA is preserved intact, except for an occasional mutation. Unlike autosomal DNA, the DNA of the other parent is not admixed with the Y or mitochondrial DNA. Therefore, the DNA that you’re looking at is the DNA of your ancestors, generations back in time, as opposed to autosomal DNA which can only reliably reach back 5 or 6 generations in terms of ethnicity because it gets halved in every generation and mixed with the DNA of the other parent.

With autosomal DNA, we can see THAT it exists, but not who it came from.  With Y and mtDNA DNA, we know exactly who in your tree that specific DNA came from

We do depend on occasional Y and mtDNA mutations to allow our lines to accrue enough mutations to differentiate us from others who aren’t related, but those mutations accrue very slowly over hundreds to thousands of years.

Our “clans,” over time, are defined by haplogroups and both our individual matches and our haplogroup or clan designation can be very useful. Your haplogroup will indicate whether you are European, Jewish, Asian, Native American or African on the Y and/or mtDNA line.

In cases of endogamous groups where the members are known to marry only within the group, Y and mtDNA can be especially helpful in identifying potential families of origin.  This is evident in the Mothers of Acadia DNA project as well a particular brick wall I’m working on in mother’s Brethren line. Success, of course, hinges on members of that population testing their Y or mtDNA and being available for comparison.

Always test your Y (males only) and mitochondrial DNA (males and females.) You don’t know what you don’t know, and sometimes those lines may just hold the key you’re looking for. It would be a shame to neglect the test with the answer, or at least a reasonably good hint! Stories of people discovering their ethnic heritage, at least for that line, by taking a Y or mtDNA test are legendary.

Jewish Y and Mitochondrial DNA

Fortunately, for genetic genealogists, Jewish people carry specific sub-haplogroups that are readily identified as Jewish, although carrying these subgroups don’t always mean you’re Jewish. “Jewish” is a religion as well as a culture that has been in existence as an endogamous group long enough in isolation in the diaspora areas to develop specific mutations that identify group members. Furthermore, the Jewish people originated in the Near East and are therefore relatively easy, relative to Y and mtDNA, to differentiate from the people native to the regions outside of the Near East where groups of Jewish people settled.

The first place to look for hints of your heritage is your main page at Family Tree DNA. First, note your haplogroups and any badges you may have in the upper right hand corner of your results page.

In this man’s case, the Cohen badge is this man’s first clue that he matches or closely matches the known DNA signature for Jewish Cohen men.

Both Y DNA and mitochondrial DNA results have multiple tabs that hold important information.

Two tabs, Haplogroup Origins and Ancestral Origins are especially important for participants to review.

The Haplogroup Origins tab shows a combination of academic research results identifying your haplogroup with locations, as well as some Ancestral Origins mixed in.

A Jewish Y DNA Haplogroup Origins page is shown above.

The Ancestral Origins page, below, reflects the location where your matches SAY their most distant direct matrilineal (for mtDNA) or patrilineal (for Y DNA) ancestors were found. Clearly, this information can be open to incorrect interpretation, and sometimes is. For example, people often don’t understand that “most distant maternal ancestor” means the direct line female on your mother’s mother’s mother’s side.  However, you’re not looking at any one entry. You are looking instead for trends.

The Ancestral Origins page for a Jewish man’s Y DNA is shown above.

The Haplogroup Origins page for Jewish mitochondrial DNA, below, looks much the same, with lots of Ashkenazi entries.

The mitochindrial Ancestral Origins results, below, generally become more granular and specific with the higher test levels. That’s because the more general results get weeded out a higher levels. Your closest matches at the highest level of testing are the most relevant to you, although sometimes people who tested at lower levels would be relevant, if they upgraded their tests.

Native American Y and Mitochondrial DNA

Native Americans, like Jewish people, are very fortunate in that they carry very specific sub-haplogroups for Y and mitochondrial DNA. The Native people had a very limited number of founders in the Americas when they originally arrived, between roughly 10,000 and 25,000 years ago, depending on which model you prefer to use. Descendants had no choice but to intermarry with each other for thousands of years before European and African contact brought new genes to the Native people.

Fortunately, because Y and mtDNA don’t mix with the other parents’ DNA, no matter how admixed the individual today, testers’ Y and mtDNA still shows exactly the origins of that lineage.

Native American Y DNA shows up as such on the Haplogroup Origins and Ancestral Origins tabs, as illustrated below.

The haplogroup assigned is shown along with a designation as Native on the Haplogroup Origins and Ancestral Origins pages. The haplogroup is assigned through DNA testing, but the Native designation and location is entered by the tester. Do be aware that some people record the fact that their “mother’s side” or “father’s side” is reported to have a Native ancestor, which is not (necessarily) the same as the matrilineal or patrilineal line. Their “mother’s side” and “father’s side” can have any number of both male and female ancestors.

If the tester’s haplogroup comes back as non-Native, the erroneous Native designation shows up in their matches Ancestral Origins page as “Native,” because that is what the tester initially entered.  I wrote about this situation here, but there isn’t much that can be done about this unless the tester either realizes their error or thinks to go back and change their designation from Native American when they realize the DNA does not support the family story, at least not on this particular line line. Erroneous labeling applies to both Y and mtDNA.

Native Y DNA falls within a subset of haplogroups C and Q. However, most subgroups of C and Q are NOT Native, but are European or Asian or in one case, a subgroup of haplogroup Q is Jewish. This does NOT means that the Jewish people and the Native people are related within many thousands of years. It means they had a common ancestor in Asia thousands of years ago that gave birth to both groups. In essence, one group of the original Q moved east and eventually into the Americas, and one moved west, winding up in Europe. Today, mutations (SNPs) have accrued to each group that very successfully differentiate them from one another. In order to determine whether your branch of C or Q is Native, you must take additional SNP tests which further identify your haplogroup – meaning which branch of haplogroup C or Q that you belong to.

Native Americans Y-DNA, to date, must fall into a subset of haplogroup C-P39, a subgroup of C-M217 or Q-M3, Q-M971/Z780 or possibly Q-B143 (ancient Saqquq in Greenland), according to The study of human Y chromosome variation through ancient DNA. Each of these branches also has sub-branches except for Q-B143 which may be extinct. This isn’t to say additional haplogroups or sub-haplogroups won’t be discovered in the future. In fact, haplogroup O is a very good candidate, but enough evidence doesn’t yet exist today to definitively state that haplogroup O is also Native.

STR marker testing, meaning panels of markers from 12-111, provides all participants with a major haplogroup estimate, such as C or Q. However, to confirm the Y DNA haplogroup subgroup further down the tree, one must take additional SNP testing. I wrote an article about the differences between STR markers and SNPs, if you’d like to read it, here and why you might want to SNP test, here.

Testers can purchase individual SNPs, such as the proven Native SNPs, which will prove or disprove Native ancestry, a panel of SNPs which have been combined to be cost efficient (for most haplogroups), or the Big Y test which scans the entire Y chromosome and provides additional matching.

When financially possible, the Big Y is always recommended. The Big Y results for the Sioux man showed 61 previously unknown SNPs. The Big Y test is a test of discovery, and is how we learn about new branches of the Y haplotree. You can see the most current version of the haplogroup C and Q trees on your Family Tree DNA results page or on the ISOGG tree.

Native mitochondrial DNA can be determined by full sequence testing the mitochondrial DNA. The mtPlus test only tests a smaller subset of the mtDNA and assigns a base haplogroup such as A. To confirm Native ancestry, one needs to take the full sequence mitochondrial test to obtain their full haplogroup designation which can only be determined by testing the full mitochondrial sequence.

Native mitochondrial haplogroups fall into base haplogroups A, B, C, D, X and M, with F as a possibility. The most recent paper on Native Mitochondrial DNA Discoveries can be found here and a site containing all known Native American mitochondrial DNA haplogroups is here.

Not Native or Jewish

Unfortunately, other endogamous groups aren’t as fortunate as Jewish and Native people, because they don’t have haplogroups or subgroups associated with their endogamy group. However, that doesn’t mean there aren’t a few other tools that can be useful.

Don’t forget about your Matches Maps. While your haplogroup may not be specific enough to identify your heritage, your matches may hold clues. Each individual tester is encouraged to enter the identity of their most distant ancestor in both their Y (if male) and mtDNA lines. Additionally, on the bottom of the Matches Map, testers can enter the location where that most distant ancestor is found. If you haven’t done that yet, this is a good time to do that too!

When looking at your Matches Map, clusters and distribution of your matches most distant ancestor locations are important.

This person’s matches, above, suggest that they might look at the history of Nova Scotia and French immigrants – and the history of Nova Scotia is synonymous with the Acadians but the waterway distribution can also signal French, but not Acadian. Native people are also associated with Nova Scotia and river travel. The person’s haplogroup would add to this story and focus on or eliminate some options.

This second example above, suggests the person look to the history of Norway and Sweden, although their ancestor, indicated by the white balloon, is from Germany. If the tester’s genealogy is stuck in the US, this grouping could be a significant clue relative to either recent or deeper history. Do they live in a region where Scandinavian people settled? What history connects the region where the ancestor is found with Scandinavia?

This third example, above, strongly suggests Acadian, given the matches restricted to Nova Scotia, and, as it turns out, this individual does have strong Acadian heritage. Again, their haplogroup is additionally informative and points directly to the European or Native side of the Acadian heritage for this particular line.

In Summary

Sometimes endogamy is up front and in your face, evident from the minute your DNA results are returned. Other times, endogamous lines in ethnically mixed individuals reveal themselves more subtly, like with my friend Justin. Fortunately, the different types of DNA tests and the different tools at our disposal each contain the potential for a different puzzle piece to be revealed. Many times, our DNA results need to be interpreted with some amount of historical context to reveal the story of our ancestors.

When I first discovered that my mother’s line was Acadian, my newly found cousin said to me, “If you’re related to one Acadian, you’re related to all Acadians.” He wasn’t kidding. For that very reason, endogamous genetic genealogy is tricky at best and frustrating at worst.

When possible, Y and mtDNA is the most definitive answer, because the centuries or millennia or intermarriage don’t affect Y and mtDNA. If you are Jewish or Native on the appropriate lines for testing, Y and mtDNA is very definitive. If you’re not Jewish or Native on your Y or mtDNA lines, check your matches for clues, including surnames, Haplogroup and Ancestral Origins, and your Matches Map.

Consider building a DNA pedigree chart that documents each of your ancestors’ Y and mtDNA for lines that aren’t revealed in your own test. The story of Y and mtDNA is not confused or watered down by admixture and is one of the most powerful, and overlooked, tools in the genealogist’s toolbox.

Autosomal DNA when dealing with endogamy can be quite challenging, even when working with well-documented Acadian genealogy – because you truly are related to everyone.  Trying to figure out which DNA segments go with, or descend from, which ancestors reaching back several generations is the ultimate jigsaw puzzle. Often, I work with a specific segment and see how far back I can track that segment in the ancestral line of me and my matches. On good days, we arrive at one common ancestor. On other days, we arrive at dead ends that are not a common ancestor – which means of course that we keep searching genealogically – or pick a different segment to work with.

When working with autosomal DNA of endogamous individuals (or endogamous lines of partially endogamous individuals,) I generally use a larger matching threshold than with non-endogamous, because we already know that these people will have segments that match because they descend from the same populations. In general, I ignore anything below 10cM and often below 15cM if I’m looking for a genealogical connection in the past few generations. If I’m simply mapping DNA to ancestors, then I use the smaller segments, down to either 7 or 5cM. If you want to read more about segments that are identical by chance (also known as false matches,) identical by population and identical by descent (genealogically relevant matches,) click here.

The good news about endogamy is that its evidence persists in the DNA of the population, literally almost forever, as long as that “population” exists in descendants – meaning you can find it!  In my case, my Acadian brick wall would have fallen much sooner had I know what endogamy looked like and what I was seeing actually meant.

A perfect example of persistent endogamy is that our Sioux male today, along with other nearly fully Native people, including people from South America, matches the ancient DNA of the Anzick child who died and was buried in Montana 12,500 years ago.

These people don’t just match on small segments, but at contemporary matching levels at Family Tree DNA and GedMatch, both.  One individual shows a match of 109 total cM and a single largest segment of DNA at 20.7 cM, a match that would indicate a contemporary relationship of between 3.5 and 4 generations distant – meaning 2nd to 3rd cousins. Clearly, that isn’t possible, but the DNA shared by Anzick Child and that individual today has been intact in the Native population for more than 12,500 years.

The DNA that Anzick Child carried is the same DNA that the Sioux people carry today – because there was no DNA from outside the founder population, no DNA to wash out the DNA carried by Anzick Child’s ancestors – the same exact ancestors of the Sioux and other Native or Native admixed people today.

While endogamy can sometimes be frustrating, the great news is that you will have found an entire population of relatives, a new “clan,” so to speak.  You’ll understand a lot more about your family history and you’ll have lots of new cousins!

Endogamy is both the blessing and the curse of genetic genealogy!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Andreas Kirsch (1774-1819) of Fussgoenheim, Bayern, Germany, 52 Ancestors #148

Andreas.

Such a beautiful name. I’ve loved it since I first saw the name as part of our family history, although that first time was in such a sad context.

When researching the Kirsch family in Ripley County, Indiana, I ran across a cemetery listing for the child, Andreas Kirsch, by himself in a long-abandoned cemetery. I wondered to myself, was this child “ours,” and why was he all alone?

The child, Andreas Kirsch, was born right after the immigrants, Philip Jacob Kirsch and Katharina Barbara Lemmert arrived in the US in 1848. Andreas was recorded in the 1850 census with his parents in Ripley County, Indiana, but died in 1851 or so, still a toddler. He is buried in the “Old Lutheran Cemetery” near Milan, the location of a Lutheran Church founded by German immigrants, probably a log cabin, long gone now and remembered by none.

Lutheran lost church cemetery

The only reminder is a few old gravestones, including Andreas’ now illegible marker. Andreas is buried alone, with no other family members close by. After the church was abandoned, the family attended church elsewhere, and eventually, the parents died and were buried near Aurora near where their son, Jacob Kirsch, lived.

Andreas Kirsch stone

Andreas was the youngest son of Philip Jacob Kirsch, whose father was an earlier Andreas Kirsch…a man who never left Germany. The younger Andreas was named after his grandfather nearly 30 years after the elder Andreas died.

fussgoenheim-sign

Andreas married Margaretha Elisabetha Kohler or Koehler sometime before December 1798 when their (probably first) child was born, also in Fussgoenheim. If this isn’t their first child, it’s the first child that we know survived. Unfortunately, the church records don’t appear to be complete.

Equally as unfortunately, there were multiple men named Andreas Kirsch living in Fussgoenheim at the same time, so figuring out who was who was challenging, to say the least. Family records failed me. It was church records that saved me. Fortunately, Germans recorded almost everything in the church records. If you missed a birth, you’d have another opportunity to glean information about the child’s parents when they married, or died, and perhaps at other times as well.

Philip Jacob Kirsch and his wife, Katharine Barbara Lemmert weren’t the only people from the Kirsch family to immigrate to Indiana. Philip Jacob Kirsch’s sister, Anna Margaretha Kirsch married Johann Martin Koehler and the two families immigrated together and settled in Ripley County, Indiana.

Another family who immigrated with the Kirschs, on the same ship, and is found living beside them in Ripley County in the 1850 census is the Andrew (Andreas in German) Weynacht family. The Weynacht’s are also found functioning as Godparents for Kirsch baptisms in Fussgoenheim. I’m not sure how, but the Weynacht family is surely related in one or perhaps several ways. Often children were named for their Godparent, so I wonder if Andreas Weynacht was the Godfather to baby Andreas Kirsch when he was born and christened in the now-forgotten Lutheran church in Ripley County, just weeks after these families arrived from Germany. So perhaps Andreas Kirsch was named after his grandfather with his name given by his godfather as well. At that time, it was the Godparents’ responsibility to raise the child if something happened to the parents.  This would have been very important to immigrants to a land where they knew no one nor the language.  All they had was their circle of immigrants.

The marriage record from the Fussgoenheim Lutheran Church of Andreas Kirsch’s daughter, Anna Margaretha Kirsch to Johann Martin Koehler in 1821 states that Andreas Kirsch is deceased by this time.

kirsch-anna-margaretha-to-johann-martin-koehler

Translated by Elke, a German interpreter and my friend, back in the 1980s, the record says:

Johann Martin Koehler, farmer, single, 24 years 11 months born and residing in Ellerstadt son of Philipp Jacob Koehler son of Peter Koehler farmer in Ellerstadt, present and consenting and his wife who died in Ellerstadt, Maria Katharina Merck and Anna Margaretha Kirsch, single, no profession 17 years 7 months born and residing here daughter of the deceased Andreas Kirsch and his surviving wife Elisabeth Koehler, present and consenting.

Witnesses Ludwig Merck (brother of Maria Katharina, his mother), farmer in Ellerstadt 10 years 6 months old uncle of the groom, Peer Merck, farmer, from here, 43 years old, uncle of the groom (his mother’s other brother) and Johannes Koob, farmer, from here 70 years old, uncle of the bride and Mathias Koob, farmer from here, cousin of the bride.

You might be wondering if Johann Martin Koehler who married Anna Margaretha Kirsch was related to Anna Margaretha’s mother, Margaretha Elisabetha Koehler. Why, as a matter of fact, yes. Johann Martin Koehler’s father was Philip Jacob Koehler, brother of Margaretha Elisabetha Koehler, making Anna Margaretha Kirsch and Johann Martin Koehler first cousins, shown in yellow below.

Are you getting the idea that these families in Mutterstadt were all heavily intermarried?

koehler-intermarriage-2

And because I wasn’t confused enough, the son of Anna Margaretha Kirsch and Johann Martin Koehler Sr., shown above in green as Johann Martin Koehler born in 1829, married his mother’s youngest sister, his aunt, Katharina Barbara Kirsch born in 1833. One of Anna Margaretha Kirsch and Johann Martin Koehler’s other children, Philip Jacob Koehler married Anna Elisabetha Kirsch, but she wasn’t as closely related. These families married and intermarried for generations, using the same names repeatedly, causing massive confusion trying to sort through the families and who belonged to whom.

Noting the relationships mentioned in the 1821 marriage record, if Johannes Koob, age 70, so born about 1751, was Anna Margaretha’s uncle, he had to be either a sibling of one of Anna Margaretha’s parents (Andreas Kirsch or Anna Margaretha Koehler) or the husband of a sibling of one of her parents.

We know that Anna Margaretha (Andreas’ wife) was a Koehler, not a Koob, so Johannes had to be the husband of one of Anna Margaretha’s aunts through either her mother, Margaretha Elisabetha Koehler, or father, Andreas Kirsch.

Checking the church records, I’ve only found 3 of Andreas Kirsch’s siblings. One is female, Maria Catharina Kirsch born Sept. 30, 1772 and I don’t know who she married.

The records shows that Margaetha Elisabetha Koehler had at least 7 sisters. Of those, Anna Elisabeth Koehler born October 3, 1781 married Johann Mathias Koob, born November 9, 1774. This could be one of the Koob men in question, although I don’t have marriages for 5 of the daughters. The Kirsch, Koob and Koehler families intermarried often and for generations.

A second record confirms that Andreas Kirsch married Margaretha Koehler. Philip Jacob Kirsch’s marriage record, shown from the original church record as follows:

Kirsch Lemmert 1829 marriage

It translates as:

Today the 22nd of December 1829 were married and blessed Philipp Jacob Kirsch from Fussgoenheim, the legitimate, unmarried son of the deceased couple, Andreas Kirsch and Margaretha Koehler and Katharina Barbara Lemmerth the legitimate unmarried daughter of the deceased local citizen Jacob Lemmerth and his surviving wife Gertrude Steiger, both of protestant religion.

This tells us that by 1829, both Andreas and his wife, Margaretha had passed away.

This marriage record and translation is further confirmed by this record at FamilySearch.

kirsch-lemmert-marriage

We know from Anna Margaretha Kirsch’s 1821 marriage record that her father, Andreas had already passed away by that time. We discover his death date through a record from Ancestry.

andreas-kirsch-death

Ancestry has select deaths and burials, 1582-1958 and Andreas Kirsch’s burial date is listed as May 22, 1819 in Fussgonheim with his wife listed as Margaretha Elisabetha Kohler. That’s now three independent confirmations that Andreas Kirsch’s wife was Margaretha Elisabeth Koehler.

Generally, burials are recorded in the church record, because that’s when the minister was involved. People died a day or two before they were buried.- never longer in the days before refrigeration, at least not unless it was winter.

Why Are These Three Records So Important?

There was a great amount of confusion surrounding who Andreas Kirsch married, and for good reason.

The church records show that the Andreas married to Margaretha Elisabetha Koehler died before 1821.  Andreas’ wife’s name is again confirmed by the 1829 marriage record, followed by discovering Andreas’ own 1819 death record.

However, a now deceased cousin and long-time researcher, Irene, showed the couple as Johannes Andreas Kirsch married to Anna Margaretha Koob, not Koehler.

Walter, another cousin, showed Andreas’ wife as Anna Margaretha Koob, his occupation as schmiedemeister – master smithy. Andreas is noted as Johannes II “der Junge” in Walter’s records, so there may be some generational confusion.

As it turns out, Walter wasn’t entirely wrong – but he wasn’t entirely right either. That couple did exist – but the husband wasn’t our Andreas Kirsch.

There was an Anna Margaretha Koob married to a Johannes Kirsch. Their son, Johannes Kirsch married Maria Catharina Koob born in 1802.

Anna Elisabetha Kirsch (1828-1876), daughter of Johannes Kirsch and Maria Catharina Koob (above) married Philip Jacob Koehler (1821-1873), son of Anna Margaretha Kirsch (1804-1888, daughter of our Andreas Kirsch and Margaretha Elisabetha Koehler) and Johann Martin Koehler (1765-1847/8), and moved with the immigrating group to Ripley County, Indiana. It’s no wonder people living more than 100 years later were confused.

Two additional cousins, Joyce from Indiana and Marliese, who still resided in Germany, also showed that Andreas was married to Anna Margaretha Koob, born in 1771 and who died in 1833, instead of to Margaretha Elizabetha Koehler. Marliese indicated that this information was from family records. The family history stated that the Kirsch brothers were married to Koob twin sisters.

The death record of Anna Margaretha Koob shows her husband as Johannes Kirsch Senior, not Andreas Kirsch – but I didn’t have this record yet at that time.

koob-anna-margaretha-1833-death

I began to wonder if I was losing my mind and if the original record I had was wrong – or for the wrong person with all of the same name confusion. However, the marriage record for Philip Jacob Kirsch and Katharina Barbara Lemmert clearly said that Andreas Kirsch was his father and Margaretha Elisabetha Koehler was his mother.  Philip Jacob and Katharina Barbara are my ancestors, and the Lemmert family was from Mutterstadt, so not heavily intermarried with the Kirsch line – meaning that mistaking this couple for any other couple was a remote possibility.  Furthermore, the church records indicate that they and their children all immigrated, and Katherina Barbara’s obituary in Indiana gives her birth location – so it’s unquestionably the same couple. Their 1829 marriage record is very clear, but still, I was doubting.

Mistakes do sometimes happen and at that point, it was 4 researchers who I respected with the same information, against one, me, with one church record. Was the church record somehow wrong?  Elke, my friend and interpreter said no, it wasn’t wrong, and dug harder and deeper and searched for more records, eventually finding the second  marriage record from 1821 that also indicated Andreas Kirsch’s wife was Margaretha Elisabetha Koehler.

Before additional records surfaced, given these conflicts, I struggled with knowing what to believe. Now, given three different church records that show Andreas as married to Margaretha Elisabetha Koehler, it would take a lot to convince me otherwise. I am so grateful for those German church records.

Of course, the repeated use of the same names make this puzzle even more difficult to unravel. It seems that all women were named either Maria, Katharina, Barbara or Elizabetha, sometimes with a Margaretha thrown in for good measure. Men almost always had the given name of Johann or Johannes and were generally called by their middle name, if they had one, which was the same as many of their cousins of course. You could have shouted “Andreas” or “Johannes” in the middle of the main street in Fussgoenheim, been heard to each end of town, and at least one person would probably have answered from each household.

DNA and Endogamy

To make this confusing situation even more difficult by rendering autosomal DNA useless, these families all resided in the small village of Fussgoenheim and the neighboring village of Ellerstadt, and were likely already very intermarried and had been for 200 years or so by the time our family immigrated. This is the very definition of endogamy.

Not to mention that Germans aren’t terribly enamored with DNA testing for genealogy. Most of the families in Germany feel they don’t need to DNA test because they have been there “forever.” No need to discover where you are “from” because you’re not “from” anyplace else.

One of the challenges in Fussgoenheim is that the church records are incomplete, leaving holes in the history and therefore out knowledge.  Limited numbers of families meant little choice in marriage partners. Young people had to live close enough to court, on foot – generally at church, school and at the girl’s parents home. You married your neighbors, who were also your relatives at some level. There was no other choice. Endogamy was the norm.

Y DNA

Autosomal DNA is probably too far removed generationally to be useful, not to mention the endogamy.  However, I’d love to find out for sure if a group of Kirsch/Koehler descendants would test.  Being an immigrant line, there are few descendants in the US, at least not as compared to lines descending from colonial immigrants in the 1600s.

On the other hand, Y DNA, were we able to obtain the Kirsch Y DNA, would be very useful. Y DNA provides us with a periscope to look back in time hundreds and thousands of years, since the Y chromosome is only inherited by men from their fathers. The Y chromosome is like looking backwards through time to see where your Kirsch ancestor came from, and when, meaning before Fussgoenheim. Yes, there was a “before Fussgoenheim,” believe it or not.

Andreas Kirsch (1774-1819) didn’t have a lot of sons.  Only two are confirmed as his sons and had male children.

  • Johann Adam Kirsch was born on December 5, 1798, married Maria Katherina Koob and died in 1863 in Fussgoenheim, noted as a deceased farmer. Family documents suggest he was one of the wealthiest farmers in the valley. Johann Adam had sons Andreas born in 1817, Valentine born in 1819, Johannes born in 1822 and Carl born in 1826, all in Fussgoenheim. It’s certainly possible that some of these men lived long and prospered, having sons who have Kirsch male descendants who live today.
  • Johann Wilhelm Kirsch married Katharina Barbara Koob. This person may not be a son of Andreas. The relationship is assumed because this couple acted as the godparents of the child of Philip Jacob Kirsch. This may NOT be a valid assumption. It’s unknown if Johann Wilhelm Kirsch had male children.
  • Philip Jacob Kirsch, the immigrant to Indiana did have several sons, all of whom immigrated with their parents to Indiana. Philip Jacob Kirsch born in 1830 never married. Johann William Kirsch married Caroline Kuntz, had two sons, but neither had sons that lived to adulthood, ending that male Kirsch line. Johannes, or John, born in 1835 married Mary Blatz in Ripley County, Indiana and moved to Marion County where he died in February 1927. John had sons Frank and Andrew Kirsch. Frank died in August, 1927 and left sons Albert and John Kirsch. Philip Jacob’s son, Jacob, had son Martin who had a son Edgar who had no children. Jacob also had son Edward who had son Deveraux “Devero” who had son William Kirsch, who has living male descendants today.

Summary

Fortunately, we finally confirmed who Andreas married – Margaretha Elisabetha Koehler. Andreas, if he is watching, is probably greatly relieved that we have him married to the correct wife now…or maybe he’s just amused.

Looking back, Marliese’s family in Germany reestablished communications with the Kirsch/Koehler family in Indiana during the 1930s and shared her family genealogical information. By that time, the Kirsch/Koehler families here had no information on the historical family back in Germany.

These families maintained some level of interaction, writing letters, for the next two generations. I think that the family genealogy information from Germany, much of it from family memory, was inadvertently in error relative to Andreas Kirsch’s wife. The German family members graciously shared their information with various researchers in the US, who shared it with others. Therefore, the original “remembered” information was incorrect in exactly the same way when gathered some 50 years later from descendants. I don’t know how the US researchers would have obtained the identically incorrect information otherwise. That was before the days of online trees that could easily be copied and even before the days of the LDS church’s microfilmed records, which is where I found the records for Elke to translate in the 1980s. Of course, there are even more records available today through FamilySearch and Ancestry.

Sadly, my Kirsch cousins have all passed on now. I would love to share this with them. I’m sure they would be grateful to learn that we know unquestionably, confirmed by three individual church records, who Andreas married. That was a brick wall and sticking point for a very long time.

Andreas did not live a long life. He was born in 1774 and died in 1819. Surely, at roughly 45 years of age, he didn’t die because he was elderly. Perhaps one day, we’ll obtain the actual death record from the church which may include his cause of death. Some churches were religious (pardon the pun) about recording as much information as possible, including causes of death and scriptures read at the funeral, and others recorded the bare minimum.

I’m grateful to know Andreas a little better. I like to think he was rooting for me as I searched for accurate records. I hope that someday, a record will be found to tell us a little more about his actual life – like his occupation, perhaps. Hope springs eternal!

For more information about Andreas Kirsch, please read Andreas Kirsch (1774-1819) Gets New and Improved Parents – 52 Ancestors #224.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

John Iron Moccasin, The Story of a Sioux Man

Occasionally, the project administrators of the American Indian project are presented with a rare opportunity to test an individual who is either full-blooded Native or nearly so. Recently, a Native Sioux man, John Iron Moccasin, born Earl White Weasel, stepped forward.

In order to facilitate testing, project members and others contributed funds with the agreement that we could publish John’s results and story. Now that the original tests are complete and we are publishing his results, we would like to upgrade John’s Y markers to 111 (from 37) and add the Big Y test – so if you’re inclined to contribute to the American Indian Project for this advanced testing – you can do so by clicking here.

But first, perhaps you’d like to hear John’s story. The results of the research into John’s history, both genealogically and genetically are fascinating. I hope you’ll get a cup of coffee or tea and enjoy this journey. Come along – we’re going on an adventure to South Dakota and we’ll be visiting the Sioux people!

In the Beginning…

A few months ago, John Iron Moccasin was talking to his friend and told her that he would like to share not only his oral history, but his genealogy and genetic history, with his daughter. He didn’t know how to go about doing either, but that friend, Pam, did, and she turned to me.

John was born as Earl White Weasel on Eagle Butte Reservation in South Dakota. He then lived at Cherry Creek Reservation in South Dakota. After adoption, he relocated to Pine Ridge Reservation, Kyle Reservation and then Oglala Reservation.

Unlike many adoptees, John always knew the identity of his birth parents and has given permission to use both his birth and adopted surnames. He takes pride in both, as well as his heritage. However, since John’s genetic genealogy is connected only with his biological parents, that’s where this article will focus.

Both of John’s biological parents belonged to the Cheyenne Sioux tribe. His birth father was Timothy Urban White Weasel and his birth mother was Martha Hale.

John is tribally enrolled with the Cheyenne Sioux based on his birth parents. John’s card shows his “degree of blood” to be at least 15/16ths.

Let’s take a look at tracking both John’s maternal and paternal ancestry. Many people ask how to work with Native records, and this article will follow my step-by-journey with both John’s traditional genealogy as well as his genetic genealogy, tracking each line back in time. But first, let’s look at the history of the Sioux people.

The Sioux

The Sioux are groups of Native American tribes and First Nations peoples in North America. The term can refer to any ethnic group within the Great Sioux Nation or to any of the nation’s many language dialects. The Sioux comprise three major divisions based on language divisions: the Dakota, Lakota, and Nakota.

The Santee Dakota reside in the extreme east of the Dakotas, Minnesota and northern Iowa. The Yankton and Yanktonai Dakota reside in the Minnesota River area. They are considered to be the middle Sioux, and have in the past been erroneously classified as Nakota. The actual Nakota are the Assiniboine and Stoney of Western Canada and Montana. The Lakota, also called Teton are the westernmost Sioux, known for their hunting and warrior culture.

The Treaty of Fort Laramie in 1868 established the Great Sioux Reservation, shown below, much of which has been whittled away today.

Today, the Sioux maintain many separate tribal governments scattered across several reservations, communities, and reserves in North Dakota, South Dakota, Nebraska, Minnesota, and Montana in the United States; and Manitoba and southern Saskatchewan in Canada.

sioux-map-today

By User:Nikater – Own work by Nikater, submitted to the public domain. Background map courtesy of Demis, http://www.demis.nl., Public Domain, https://commons.wikimedia.org/w/index.php?curid=2309029

The Dakota are first recorded to have resided at the source of the Mississippi River during the seventeenth century. The source of the Mississippi trickled out of Lake Itasca in present day South Clearwater, Minnesota. On the map below, you can see that location as well as Eagle Butte, to the west (larger white circle in South Dakota), some 300 or more miles as the crow flies, where John Iron Moccasin was born. The third location, Wilsall, Montana, on further west (red balloon), is where the remains of the 12,500 year old Anzick Child were found with Clovis tools.

im-lake-itasca

By 1700 some Sioux had migrated to present-day South Dakota. John’s Native ancestors were born in North Dakota, South Dakota, Montana, Nebraska and reportedly, Canada.

Late in the 17th century, the Dakota entered into an alliance with French merchants. The French were trying to gain advantage in the struggle for the North American fur trade against the English, who had recently established the Hudson’s Bay Company.

The first recorded encounter between the Sioux and the French occurred when Radisson and Groseilliers reached what is now Wisconsin during the winter of 1659-60. Later visiting French traders and missionaries included Claude-Jean Allouez, Daniel Greysolon Duluth, and Pierre-Charles Le Sueur who wintered with Dakota bands in early 1700. In 1736 a group of Sioux killed Jean Baptiste de La Vérendrye and twenty other men on an island in Lake of the Woods. However, trade with the French continued until after the French gave up North America in 1763.

For the most part, Sioux contact with Europeans was very limited until in the 1800s, and then, it turned deadly in a series of “wars” as the Sioux tried to protect their land and way of life. Europeans were equally as determined to eradicate the Indians, take their land and eliminate their way of life – and ultimately – they succeeded by containing the Sioux on reservations.

Records, other than oral history in the Sioux tongue, didn’t begin until Europeans began keeping them, so our earliest genealogical records of the Sioux only reach back into the 1800s. Thankfully, genetic records can reach back infinitely into time.

Let’s visit John Iron Moccasin’s ancestors, beginning with John’s paternal line.

The White Weasel Line

John’s father was Timothy Urban White Weasel, born August 1, 1939 to Oscar White Weasel and his wife, Esther (also called Estella) Ward. Timothy died March 28, 2004 in Eagle Butte, Dewey County, SD, the same location where he was born.

im-white-weasel

John’s grandfather, Oscar White Weasel is listed as a farmer in the 1930 census in Ziebach County, South Dakota, in Township 8, district 59 as a full blood Sioux male with a note “74-5,” speaking Sioux, as is his wife, Esther, age 24. They have been married 5 years and have two children, Margie age 4 & 9/12 and Beatrice, age 2 & 5/12th. Oscar is a veteran.

Please note that you can click to enlarge any graphic.

im-1930-white-weasel

This means John’s grandfather was born about 1898 and his grandmother about 1906. It should be noted that many traditional Native people have only a general idea of when they were born.

The US Department of Veterans Affairs Death File shows that Oscar Weasel was born on Feb. 22, 1898 and died on February 12, 1979. His military service was from March 28, 1917 to May 12, 1919.

The 1940 census from the same location shows Oscar J. White Weasel, age 42, wife Esther M., age 38, both Indian, both born in South Dakota, both educated through 7th grade, with 5 children including baby Urban J. White Weasel, age 7/12th. They live in Cherry Creek in Ziebach County, SD in the same place they lived in 1935.

im-1940-white-weasel

The Rapid City, SD obituary index shows that two obituaries for Oscar exist.

Weasel, Oscar J. 80 12 Feb 1979 Fort Meade, SD BHN 14 Feb 1979 p.31

16 Feb 1979 p.5

BHN means that Oscar is buried in the Black Hills National Cemetery. Find-A-Grave shows that he is buried in Section C, site 455 and that he was a PFC in WWI.

im-oscar-white-weasel-stone

im-black-hillsThe Social Security Claims Index shows that Oscar’s wife was Esther Ward and their child that filed the claim is Beatrice Louise Janis.

The 1927 Indian Census of the Cheyenne River Sioux Agency provides a little more information.

Joseph, also known as Oscar White Weasel is listed as born in 1898 and with two numbers instead of an English name. 322986 and 328110. I suspect these are the governmental identification numbers assigned to his parents when they were paid from the settlement fund – although one of those numbers could he his. His wife is listed as born in 1903 and as Mrs. Joseph White Weasel, nee Esther Ward, and she has one number listed in place of English name, 359087. Their daughter Margie is listed as born in 1925 and has no number listed by her name. There are no additional White Weasel individuals listed.

The 1925 Indian Census (below) shows us that he is listed as Joseph with Oscar penciled in above the name, with the number 322986 beside his name – which is evidently his number.

im-1925-census-white-weasel

The numbers probably related to the numbers assigned to Indians on the Dawes Rolls resulting from the Dawes Act of 1887 which allotted tribal lands in severalty to individual tribal members in exchange for Native Americans becoming US citizens and giving up some forms of tribal self-government.

In the South Dakota 1925 census, Joseph White Weasel is listed as married in 1924 and as Catholic. The South Dakota Marriages lists them as having married on October 18, 1924 in Cherry Creek.

im-white-weasel-marriage

Many of the Native people were “converted” to Catholicism by missionaries. The French were Catholic and the traders in this region and throughout the Great Lakes were French.

The 1900 federal census (below) lists Joseph White Weasel, born in 1898 as the son of Charley White Weasel born in April of 1866 in South Dakota. They are living on the Cheyenne River Indian Reservation, district 48 in Dewey, County, South Dakota. Joseph’s mother is “Follows” and she was born in July of 1869 in Montana, as were both children. They have been married 12 years, had 5 children, and 2 are living. Joseph’s older brother is Wakes (probably Makes) Believe his (probably he’s) Running. Charley is listed as “Indian Police” and Follows is listed as “Ration Indian.” They have not attended school, cannot read or write and do not speak English.

im-1900-census-white-weasel

The bottom of the census document includes an area called “special inquiries relating to Indians.”

im-1900-census-special-inquiries-white-weasel

This entire family is listed as Sioux, with no white blood. The mother and father of both Charley and Follows are listed as Sioux as well. They are not polygamous and they lived in a fixed, as opposed to moveable, structure. In other words, a “house” of some sort, not a teepee.

Polygamy was considered a grave sin by most Christian religions, and clearly someone still practicing the Native ways, which includes both polygamy and living in teepees, was highly encouraged to abandon those practices.

Note in the Indian census as late as 1902, some households are still listed with wife 1 and wife 2. It’s impossible to tell which child was born to which wife.

im-1902-2-wives

Also note that the Native name and English name may have nothing to do with each other. They are not always literal translations. Please also note that Follows Him, above, is not the same person as Follows.

Christianity, and specifically Catholicism, along with “civility,” meant taking English names and living in established locations in structures. These behaviors were strongly encouraged and then forced upon the Native people with the Indian Citizenship Act of 1924 when their children were sent to “boarding schools” to learn the white ways, renamed, and it became illegal to practice the Native ways, including spiritual practices, powwows and speaking their own language. These restrictions lasted until the Native American Languages Act of 1990 which once again allowed Native people to speak their own language and the 1978 American Indian Religious Freedom Act allowing Native people once again to hold events such as powwows and practice their own belief system.  Unfortunately, the half century plus between 1924 and 1978/1990 successfully eroded and destroyed much of the Native cultural heritage.

Follows continues to be listed in the Indian census documents. 1895 is shown below.

im-1895-census-white-weasel

The 1897 Indian census (below) shows Follows and White Weasel with Makes Believe he is Running and a new child, aged 2. This child is not yet named, which makes sense in the Indian culture because children are not named until they “earn” a name of some sort. In some tribes, names are changed as new names are earned.

im-1897-census-white-weasel

The family is also shown in the Indian Census of 1899 (below) where Joseph has been named, in 1900, in 1902 when Lucy has been born, in 1903, in 1904, in 1906 when Lucy is no longer with them, and in 1907.

im-1899-census-white-weasel

The June 30, 1909 Indian Census shows Follows, age 40, but White Weasel is gone and she is shown with both sons, below.

im-1909-census-white-weasel

The 1910 federal census shows a Louise Weasel on the Cheyenne River Indian Reservation, with sons Peter age 17 and Oscar, age 11. I don’t know if this is the same family with white names, or this is a different family. I suspect that Follows has been “renamed” Louise for the federal census document.

im-1910-census-white-weasel

The 1910 Indian census shows Follows with both boys again as well as in 1911, 1913, 1914, 1915, 1917.  In 1918, Follows is shown with only Joseph.

I cannot find either Follows or Joseph (Oscar) White Weasel in the 1920 census, although he was clearly living because he married in 1924. It’s unclear when Follows died.

The Ward Line

im-white-weasel

John’s grandmother, Esther Ward is listed as Esther White Weasel born in 1904 on the 1945 South Dakota Census, with both of her parents born in South Dakota.

On the 1910 federal census, Esther Ward is 6 years old living with her father, Alfred Ward, age 32, married 13 years, and his wife Nellie age 28. They have another daughter, Mary, age 12 and (apparently) a son, Alec Chasing Hawk, age 2. Alec’s father is listed as having been born in Montana and mother South Dakota, white everyone else and their parents are listed as born in South Dakota – so Alec is a bit of an enigma. They also live with a man I would presume to be Alfred Ward’s’s father, although he could be Nellie’s father, as he is listed only as “father” but generally that is the relationship to the head of the household. Jerome Chasing Hawk, age 78, so born in about 1832, widowed, Sioux, a Ration Indian. However, we later discover that Alfred Ward’s father is Clarence “Roan Bear” Ward and his mother is Estella DuPris, so the identity of Jerome Chasing Hawk is quite a mystery.

Ration Indian means that they are receiving rations from the Bureau of Indian affairs, often in exchange for land traded by the tribe.

Alfred raises stock and both Alfred and Nellie can read and write, but Jerome cannot.

im-1910-census-ward

In the special inquiries section, Alfred Ward is listed as ¾ Indian and ¼ white, married once, not living in polygamy, received an allotment in 1908 and is living on his own land.

Nellie is listed as full Indian, received an allotment in 1909 and has been married once.

Jerome Chasing Hawk is listed as full, married twice, not living in polygamy, and received an allotment in 1903. He is not living on his own land.

The 1900 federal census shows Chasing Hawk, a widower, as the father-in-law of Dirt Kettle, whose wife is Woman Eagle. Chasing Hawk is 68 and was born in May of 1832 in South Dakota. His father was born in an unknown location and his mother was born in North Dakota. He is a Ration Indian and does not read, write or speak English. In the special inquiries section, Chasing Hawk is noted with other name as “Cetan, unknown” and that he is full Native.

im-1900-census-chasing-hawk

I did not solve the mystery of Chasing Hawk’s relationship to this family.

If Alfred Ward is indeed ¼ white, then John Iron Moccasin is 1/32nd white, assuming all other ancestors were full Native.

The 1900 federal census shows Alfred Ward, age 22, with wife Pretty Voice, age 16 and daughter Irelia Ward, age 1.

Pretty Voice appears to be Nellie’s Native name.

im-1900-census-ward

In the special inquiries section, Alfred is listed with both parents being Sioux, but listed as half white. Pretty Voice is listed as Sioux, all Indian with no white. He can speak English, she cannot. Alfred is shown in the photo below.

im-alfred-ward

On the 1925 Indian Census Roll, Alfred and Pretty Voice are both shown. He has number 246235 or 246285 next to his name and she has 248261 beside her name. They have 3 children.

im-1925-census-ward

On the 1931 Indian Census Roll, Joseph White Weasel is listed with his wife, Esther, with their roll numbers and the identification numbers of their allotment, annuity and identification numbers.

im-1931-census-white-weasel

On the 1895 Indian census, Pretty Voice is listed as the child of Hump and White Calf is listed as Hump’s wife, although we will see in a minute why that may not mean that White Calf is Pretty Voice’s mother.

im-1895-census-hump

This is a very interesting development, because Hump and White Calf are also in John Iron Moccasin’s mother’s line, as are Clarence Ward and Estella DuPris.

im-white-weasel

The 1886 Indian Census shows Hump, age 45, with wife Beautiful Hail, age 26, and daughter Pretty Voice age 3 and Her Voice, age 2. This strongly suggests that Pretty Voice’s mother was Beautiful Hail and not White Calf.

im-1886-census-hump

The 1891 Indian Census labeled “Sioux of different bands” shows Hump, age 43, his wife designated only as “Mrs.” age 21, With Pretty Voice, age 9, Sun age 6 and Hope or Hoop age 2.

The 1892 Indian Census shows that Hump, age 42, married to White Calf, with daughter Pretty Voice, age 11, Sun age 8 and Hope age 2. Her Voice is not with the family, so presumably has died.

im-1892-census-hump

Pretty Voice is reported on another tree maintained by YanktonSiouxTribe, who indicates they are a professional genealogist, to be the daughter of Chief Hump, friend and mentor to Crazy Horse. YanktonSiouxTribe reports that Pretty Voice married Alfred Ward, son of Roan Bear also known as Clarence Ward and Estella Dupris, the daughter of Fred Dupris and Good Elk Woman whose photo is shown below.

im-good-elk-woman

Good Elk Woman

In the 1895 Indian Census, Alfred Ward is shown living with his parents, Clarence Ward and Estelle Ward, ages 44 and 40, respectively. They would have been born in 1851 and 1855. Clarence and Estelle’s youngest son, Willie, is also John’s ancestor through his mother’s line, having married Hope (Dora) Hump.

im-1895-census-ward

It’s interesting to note in reviewing the Indian census records that in the mid-1890s, many Native people did not have an English name. Some had both, but far less than half in this tribe. However, by the 1920 federal census, they all had white names.

The 1900 census shows us that Clarence Ward was born in July of 1850 in Nebraska and his parents were both born in South Dakota. He is listed as Missionary R and his wife is listed as a Ration Indian. The “R” is noted beside a number of occupations, so I would presume he is a missionary and the R may indicate “ration Indian” as well. They have been married 21 years and she has had 5 children, 4 of whom are living.

im-1900-census-ward-2

In the special inquiries section, Clarence is listed as Sioux, as are his parents. Estella and her parents are also listed as Sioux, but she is listed as one half Native.

im-1900-census-ward-special

In 1920, Clarence Ward was living, age 67, no occupation, wife Stella, age 64. Both were born in South Dakota and are living on the Cheyenne River Indian Reservation in SD.

im-1920-census-ward

Clarence is reported to have died in 1933.

Stella, or Estella DuPris, was born in August 1854 to Frederick DuPris and Good Elk Woman and died on July 6, 1927. Stella married Clarence Ward (shown below), who was born in 1851 in Nebraska.

im-clarence-ward

In the 1886 Indian Census, Clarence is shown as 35, Estelle as 31 and Alfred as 9.

im-1886-census-ward

The 1900 Federal census shows Clarence as a Missionary, Estelle as born in South Dakota, her father born in France and her mother born in South Dakota.

DuPris Line

im-dupris

Stella’s father, Frederick Dupris, was born in 1813 in Quebec City, Quebec and died in 1898. He had 10 children with Good Elk Woman between 1845 and 1870. He died on June 16, 1898 in South Dakota. Good Elk Woman, also known as Mary Ann DuPris, died on February 13, 1900.

im-dupris-and-good-elk-woman

Photo of Fred DuPris and his wife, Good Elk Woman and Son, Xavier Dupris, courtesy, South Dakota Historical Society.

In case there is any question about whether Fred DuPris was 100% white, the 1900 census lists his son, Fred Dupris as Sioux, father white, mother Sioux and he being one half Native. This, of course, indicates that Fred Sr. was all white.

im-1900-census-dupris

In the Indian Census of 1894, Good Elk Woman is listed as age 68 and is living with her daughter.

im-1894-census-good-elk-woman

Good Elk Woman was the daughter of One Iron Horn born about 1805 in South Dakota and Red Dressing born about 1810. Good Elk Woman was originally married to hereditary chief, Henry Makes Room and had a son, Henry Makes Room Junior.

The following information was provided by Calvin Dupree.

“The First Dupree Into South Dakota”

Frederick Dupuis came from Longueil, Quebec to Kaskaskia, Illinois and from there to the Cheyenne River area. One Dupuis brother, Pierre (known as Peter), went on up into Montana where he married an Assiniboin Sioux woman.

A French-Canadian, Fred Dupuis arrived at Fort Pierre in 1838 and was in employee of the American Fur Company under Pierre Choteau, Jr. Letters from the winter of 1861 were written to Charles Primeau from Fred Dupuis by M. C. Rousseau at the mouth of Cherry Creek. The letters were concerned with reports of the Indian bands and the number of buffalo robes Fred was sending in and a list of the materials he needed for trading and maintaining his small outpost at the mouth of Cherry Creek. The trader (Fred) was concerned that the buffalo were becoming scarce and that the Indians and their horses were “poor”.

By 1860, we must assume that Fred was married and busy with the affairs of a husband and father. He married a Minniconjou, Good Elk Woman, who became Mary Ann Dupuis. She had one son, Henry Makes Room, from a previous marriage who was adopted by Fred. Mary was the daughter of One Iron Horn and Red Dressing. Some elders in the family remember that Mary was from Cherry Creek. Mary and Fred had nine children. They were: Peter; Maggie (Fisherman); Esther (Ward); Edward; David Xavier; Alma (Blue Eyes); Fred, Jr.; Josephine (Vollin); Vetal; and Marcella (Carlin). “Not one of whom could speak English, with the exception of Edward, who was a student at Hampton, Va.”

After being an independent trader for some time (and probably as the buffalo dwindled and the Indians were put on reservations) Fred became a stock grower. He built the family home in a beautiful wooded flat on the north side of the Cheyenne River, thirty-five miles west of where it emptied into the Missouri. The patriarchal home was described as being 20 feet by 60 feet, and built of cottonwood logs. As each son or daughter married, a new small log house (called a tipi by the family) was built. These homes had dirt floor and gumbo roofs and were placed in a row near the main house. In addition there were usually a dozen tipis nearby, pitched by the full blood relatives of Mary Dupuis. The living arrangement was truly communal; the women had a large vegetable garden; the men worked the stock; all the cooking and eating was done in one cabin. One of the women baked all the bread, another cooked the meat and vegetables, and another made coffee and served the food. Three times a day 52 people ate together, along with any strangers or friends who might happen along.

The Dupuis home was known as a place for sharing good times and good food in the true Indian way. This was the era of government ration dispensing and all 52 of the family members collected their share which was hauled home in wagons from Fort Bennett, even though Old Fred was reputed to be wealthy with “several thousand head of cattle and 500 horses, a small herd of domesticated buffalo and a large amount of other property.”

The marriage of Marcella Dupuis, Old Fred’s youngest daughter, to Douglas F. Carlin, a non-Indian, of Pierre must have been a noteworthy event since newspapers from Deadwood and Pierre covered the event. Mr. Carlin was noted as the issue clerk at Cheyenne Agency. The ceremony was performed at the Dupuis home on the Cheyenne River with many important persons from the city, including the Pierre City Council, and unknown numbers of Sioux present. Forty fat steers were to be roasted. All the wedding gifts were put on exhibition after the supper, the most impressive being five hundred head of cattle and fifty ponies from Old Fred, father of the bride, and a decorated buffalo robe from sisters of the bride. The Sioux dancing continued for three days with the only interruption being a pause for more eating every three hours.

The Dupuis family’s contribution to saving the buffalo.

In 1883 (or possibly earlier) Old Fred and some of his sons and possibly Basil Clement (Claymore) went on a hunt for some buffalo calves in order to start a herd. By this time the great “surrounds” of the past were over and I can imagine that the desire to preserve at least a few of these animals, so necessary and so sacred to the Indian people, was strong. The group headed northwest from the Cheyenne River and was gone for many months and in Montana, or near Slim Buttes (reports differ), they located a small herd. They finally secured five calves (one report says nine), which were loaded into wagons brought along for that purpose. The calves were taken back to Cheyenne River.

By 1888 from this small start the Dupuis had nine pure-blood buffaloes. By the time of Old Fred’s death in 1898 the herd had grown considerably, and was purchased by James (Scotty) Philip of Fort Pierre. By 1918 (the herd) had increased to approximately 500 head. The State of South Dakota purchased 46 of these buffalo and transferred them to the State Game Park in Fall River County. Hearsay has it that Scotty Philip sold buffalo to other states and parks also, spreading the original Dupuis stock back into many areas where the buffalo once roamed free by the millions.

Old Fred died in 1898 at about age 80. Then, as now, a death was the occasion for sharing through a Give-Away of all the deceased’s belongings. From Aunt Molly Dupris Annis Rivers, Old Fred’s grand-daughter, I have heard the colorful story of how some of the Dupuis wealth was distributed. It is said that according to Lakota custom, any one who happened by was entitled to a gift and this even included a group of Crow Indians, traditional enemies of the Sioux since anyone can remember. The Crows were invited to join the other guests as they filed by a horse whose saddle bags had been filled with silver dollars. Each person took a silver dollar until they were gone; the next person in line was given the saddle, and the last person received the horse. And in this way, and probably by several other methods, Old Fred’s money and property were shared with the people. None of his oft mentioned wealth was inherited by any of his family.

Records indicate that Good Elk Woman, Mary Dupuis, died in 1900 at the home of her daughter, Mrs. Tom (Alma) Blue Eyes. One can only wonder about her life after Old Fred died, just as one wonders about her years of living, first as a child at Cherry Creek, then as a young wife of Makes Room and finally as Mary Ann Dupuis, mother of nine half French and half Lakota children. No stories about Mary have come down to me. Her life during the early time of tragedy and defeat for the Indian people cannot have been an easy one.

Old Fred and Mary, and many of their descendants, are buried in the Dupuis Cemetery on the hill above the river flat where their family home once was. Nearby is the old ”Buffalo Church”.

Old Fred and Mary may be gone, but South Dakota will not forget them. Dupree Creek runs into Rudy Creek and then into the Cheyenne River near the old home site, and the (town) of Dupree is located about 40 miles north of Cherry Creek where Old Fred carried on his fur trading. Just west of the Dupuis cemetery and the old church, in a draw filled with wild plums and chokecherries, the Dupree Spring (called the Circle P Spring, or Garrett Spring today) still furnishes clear, sweet water.

Imagine the hundreds of trips made to this spring, winter and summer, to haul water for the Dupuis family living down the hill by the river in the 1800’s.

The name, though changed from Dupuis to Dupris and in some cases to Dupree, has been carried all over South Dakota and to probably every state in the U.S. by their hundreds of descendants.

Calvin Dupree is the son of Adelia Fielder and Jonas E. Dupris; son of Sarah Red Horse and Frank Dupris; son of Harriet Cadotte and Xavier (David) Dupuis; son of Mary Ann Good Elk Woman and Frederick Dupuis. Calvin Dupree is presently a member of the faculty of Education at the University of Lethbridge in Alberta, Canada.

According to Suzanne DuPree, a descendant, Fred DuPris (in later generations spelled DePree), and Good Elk Woman are buried in the DuPris Memorial Cemetery on the hill above the river flat where their family one was once location, near the old “Buffalo Church.”

FindAGrave lists Fred DuPris’s birth date as September 5, 1819 and his death as July 16, 1898. His wife, Mary Ann, born as Good Elk Woman, is shown as being born in 1824 and passing over on February 13, 1900. The maps below are from FindAGrave.

im-dupris-cemetery

im-dupris-cemetery-2

The Sioux Chief, Hump’s Line

John descends from Chief Hump twice, apparently through two different wives; Beautiful Hail and White Calf. John Iron Moccasin’s family information indicates that Hump had 4 wives: Good Voice/Good Woman, Brings Her, Stands As A Woman and Bessie/White Calf Woman. The census provides information about Beautiful Hail and White Calf, but we have no further information about Humps’s other two wives.

im-hump-2

Hump, also known as Thomas Hump, lived until December 11, 1908 where he died in Cherry Creek, SD.

im-hump-photo

Photo courtesy of the South Dakota State Historical Society

Born in Montana, Hump became a leader of the Cherry Creek Band of Minneconjou Sioux. In 1876 he fought in the Battle of the Rosebud against Gen. Crook, shown below in the wood engraving below depicting the Sioux charging Colonel Royall’s attachment on June 17th.

im-hump-battle-of-the-rosebud

Hump also fought on Calhoun Hill in the Battle of the Little Big Horn with Crazy Horse, Gall and others against Custer and the 7th Calvary on June 25th where he received a bullet wound in his leg, according to the National Park Service.

im-hump-calhoun-hill

The Lakota Museum and Cultural Center tells us the following about Hump.

Etokeah, a Minniconjou Lakota war chief, was a great leader. He is especially known for his skills during the 19th Century Lakota-US Government battles. His exact birth date and facts of parentage were not recorded. However, he first came into public notice in 1866. Then, he led the charge against Captain William Fetterman’s soldiers outside Fort Phil Kearney in Wyoming.

Hump did not sign the Treaty of Fort Laramie in 1866. Because of his action, he was deemed a hostile or “non-treaty” chief by the US Government. He was a comrade-in-arms of Crazy Horse, Red Cloud and other great Sioux chiefs of the period. In 1876, he led his warriors into battle against Generals George Crook and George Custer.

After the defeat of the Sioux in the 1880s, he briefly lived in Canada. He eventually returned to the United States but remained hostile to the whites. In company with most of the Sioux, his band was intrigued by the Ghost Dance religion, which culminated in the massacre at Wounded Knee Creek in 1890.

Although Hump seems never to have become a true believer, he did lead his people in the Ghost Dance raids until early December of 1890. The US Army was alarmed by the Ghost Dance, and they sent emissaries to all of the major chiefs.

Captain Ezra Ewers – an old friend – was sent to speak with Hump. Ewers convinced Hump of the futility in armed resistance. At this point, Hump separated his band from the Dancers and led them to the Pine Ridge Agency.

As Hump was breaking camp, refugees from Sitting Bull’s group arrived and related how their leader had been killed during an arrest attempt. Sitting Bull’s people were eager to find allies as they sought revenge. Hump refused to help, and the refugees set out to join Big Foot near Wounded Knee Creek.

After the infamous massacre and subsequent events in 1890, Hump and several other Sioux chiefs went to Washington, D.C. They pleaded for fair treatment of their people.

Some of their requests were honored; however, the chiefs failed to gain concessions in other important areas. Reservation confinement continued, effectively ending the old way of life.

Hump died at Cherry Creek, South Dakota on the Cheyenne River Sioux Reservation in December 1908 at the age of 70. He is buried in the Episcopal Cemetery near there.

According to records provided by John Iron Moccasin’s family, Hump’s father was Iron Bull “TaTankaMaza”, and his mother was Ziti “Yellow Lodge”. Hump was born about 1848 when his father was 28 and his mother was 21.

im-hump-with-wives

This photo was taken ca. 1879 by photographer by L.A. Huffman. The notation is that the photo is of Hump and his favorite wives. One of these women could well have been Beautiful Hail given that she appears to have had children in both 1882 and 1883 with Hump. He does look to be significantly older than the women.

Hump is shown with other Sioux leaders in this 1891 photograph.

im-sioux-1891

1891 Sioux Delegation LA-NA-DA-Kota

Front Row Seated; L to R: High Hawk, Fire Lightning, Little Wound, Two Strike, Young Man Afraid of His Horses, Spotted Elk (Oglala), Big Road; (2nd row standing) F.D. Lewis, He Dog, Spotted Horse, American Horse, Maj Gen Sword, Louis Shangreaux, Bat Pourier; (3rd row, standing) Dave Zephier, Hump, High Pipe, Fast Thunder, Rev. Charles Cook, and P.T. Johnson. Denver Public Library

In the 1900 federal census of the Cheyenne River Indian Reservation, district 48 in Sterling County, SD, the last census in which Hump was alive, he is shown on the census as having been married 20 years, born in April 1850 in Montana, with both of his parents born in the same place. He is a Ration Indian and he does not read, write or speak English. In the special inquiries section, he is listed as Sioux, his father as Sioux Cheyenne and his mother as Sioux. He is listed as entirely Native and in this census, is not listed as polygamous.

im-1900-census-hump

His wife is listed on the next page as White Calf to whom he has been married for 20 years, so dating back to 1880. Of course, as suggested by the picture taken circa 1879 and the 1886 census in which Hump is married to 26 year old Beautiful Hail, White Calf was not his only wife. Given that Pretty Voice appeared in the census in 1876 with Beautiful Hail as a young child, I would presume that Beautiful Hail is Pretty Voice’s mother.

im-1900-census-white-calf

Dora, who was born in 1891, is not shown living with Hump. I cannot find her elsewhere on the census. However, remember that Native people changed their names. Hope is listed as being born in July of 1889 in Montana.

In the 1917 Indian Census, Hope Hump is also listed as Dora, age 26, married to Willie Ward who was born in 1889. This shows us that Dora is Hope or Hoop Hump on the earlier census records.

im-1917-census-hump

According to the 1900 census, Hope was born in July of 1889 in Montana, as were both of her parents. She does not read, write or speak English. She is 100% Sioux.

The following information was provided by http://files.usgwarchives.org/sd/ziebach/history/chap16-2.txt

Born in Montana in 1848 or 1850, Hump became a leader of the Cherry Creek band of Minneconjou Sioux.   In 1876 he fought in the Battle of the Rose bud against General George Crook and in the Battle of the Little Big Horn.

He later joined Sitting Bull’s band and other exiles in Canada.  Being considered American Indians, the exiles received no rations from the Canadian government. By 1881 the buffalo and other game were disappearing and the exiles returned to Fort Buford where they surrendered. They were taken to Fort Yates by steamboat. Later the Minneconjou under Hump and Fool Heart and the Sans Arc, led by Spotted Eagle and Circle Bear, were taken down the Missouri River to the Cheyenne River Agency, near their traditional camping grounds along the Cherry Creek and Cheyenne River.  They arrived at the Cheyenne River by May of 1882 and many of the Minneconjou settled near Cherry Creek, 50 miles west of the agency.

Hump and Big Foot became the most influential men on the Cheyenne River.  The Cherry Creek/Hump Band greatly opposed the land agreements of 1888 and 1889.  In 1890, the Ghost Dance found its greatest following in the Cherry Creek camps.

After Sitting Bull was killed on the Grand River, many of his followers fled south and camped a few miles above the junction of the Cherry Creek and Cheyenne River.  When the army at Fort Bennett moved to suppress the Ghost Dancing, Hump used his influence against the Ghost Dance. In the dead of winter he rode with two men from the garrison and two other scouts, 40 miles to persuade the Sitting Bull camp to surrender and move to Fort Bennett.  Those who did not surrender joined Spotted Elk, also known as Big Foot. When his band later fled toward Pine Ridge, they were met by the Army at Wounded Knee.

Hump was given 500 heifers for his service to the United States Government. These he turned loose, to share with his people. The heifers wandered near Leslie and many died of pinkeye.

Hump continued to work for his tribe until his death in 1908. He is buried in Cherry Creek.

HUMP

Told by John Hump

Hump (Thomas) was born in 1850 to Mashes His Nails/Iron Bull and Ziti/Mrs. Iron Bull (1827-1917) in Montana.

Hump’s brother, Little Crow, had been born in 1844. Hump’s sister, White Cow, married Fish (d. 1919) and had a son, James Fish (b. 1889) and a daughter. They lived on Rosebud.

Hump grew up in Montana. He had three or four wives, some of whom lived in Montana and were Crow.

While the Indians still roved in bands, he started to gather them together, to settle down and become ‘civilized’. Hump came down the Missouri River when the Army brought them to the Cheyenne River on boats. Their stock were driven over land.  Bertha Lyman Hump’s mother’s family came from Montana with Hump’s band.

Hump even joined the Army to work toward settling down. He was a scout from December of 1890 until June of 1891. He was discharged at Fort Bennett.

There were three Hump Flats. One east of Bridger, one by Iron Lightning and one across from Cherry Creek. All are so named because he lived on them. On the way to Montana for a visit, Hump camped with Iron Lightning on the Moreau River. At that time they chose their allotments. Iron Lightning community was later named for Iron Lightning after he moved there.

Hump had several wives. His son, by Good Voice/Good Woman, was Samuel Helper/ Stand by of Oglala, born in 1876.

Hump’s wife, White Calf/Bessie (d. 1915) was the mother of Pretty Voice/Nellie (b. 1882: Mrs. Alfred Ward); Important Woman/Sarah (b.1884: Mrs. Silas Yellow Owl); Spotted Bear who died in infancy; Dora (b.1891: Mrs. William Ward); Didn’t Drop/Nelson Hump, born in 1898 (no issue); William Miles Hump, born in 1900 and died in 1917 at Dupree, (no issue); and John Hump, born in 1904.

JOHN HUMP

John Hump was born at Cherry Creek, four years before his father’s death in 1908. Hump is buried at the Episcopal Cemetery in Cherry Creek.  John went to Carson Day School, Pierre Indian School and Rapid City Indian School.  In 1935 or 1936, he married Bertha Lyman, daughter of Ed Lyman. John transferred his heir ship lands from the Moreau River to Red Scaffold.

John and Bertha lived on the flat south of the (Cherry) creek, on her folks’ allotments. In 1954/1957 they moved north to their present home.  John went into the cattle business on the Rehab program. John and

Bertha’s sons, Duane and Darrell, now run the ranch.

Darrell is married to Alvina Runs After and Duane is married to Doris Halfred.

im-white-calf

The 1910 census taken at Cherry Creek station shows us that White Calf’s mother was Roan Hair, age 72, so born about 1838. She shows the birth of only one child.

im-1910-census-roan-hair

The special inquiries section tells us that she is Teton Sioux, full Native, married once, not polygamous, lived in an aboriginal dwelling and received her allotment in 1903.

Roan Hair is shown in the Indian census of the Cheyenne River Sioux in 1896 as the wife of Ragged, both age 56.

im-1896-census-ragged

Four years later, in 1901, they are shown again.

im-1904-census-ragged

Hump died on December 10, 1908 and is buried in the Episcopal Cemetery in Cherry Creek, SD.

im-hump-stone

Hump’s Memorial at FindAGrave adds some additional information not found elsewhere.

Native American Chief. Sioux name “Etokeah.” Although very little is known about Hump’s early life, he eventually rose to become a Chief among the Miniconjou Sioux and was an active participant in the Red Cloud war. With Crazy Horse at the Rosebud Battle against George Crook, Hump led his Miniconjou Sioux, helping stop the column in their trek to meet Custer prior to the Little Big Horn. At the Little Big Horn, when the alarm was sounded, Hump jumped onto an unknown mount, and it which threw him to the ground. Hump rushed, mounted another horse and charged toward the soldiers. His horse was shot from under him and a bullet entered above the horse’s knee and went further into Hump’s hip. Hump was strained there due to the wound and did not participate in the main battle. Later, Hump went to Canada, and his band returned to the United States, the last of all the bands to return. On the reservation when other tribes had adopted white dress and housing, Hump’s band settled at Cherry Creek in South Dakota and maintained the old ways using lodges and traditional clothing. On the reservation when the authority of other chiefs wained, Hump continued to assert leadership over his band. Some said that Hump was feared by the whites even more than Sitting Bull. When the Ghost Dance religion surfaced among the Sioux, the military did not dare arrest Hump. Instead, they reassigned Captain Ezra Ewers, a trusted friend of the chief, to Fort Bennet in South Dakota. Ewers rode the 60 miles to Hump’s camp at Cherry Creek. Impressed with Ewer’s courage, Hump listened to his message and avoided the Ghost Dance religion. After the Wounded Knee Massacre, Hump along with other prominent Sioux went to Washington, DC pleading for a peaceful end to the tragedy. Interestingly enough, it was also Hump who taught the basic lessons of warfare to his better-known student, Crazy Horse. His grave is located on the west edge of the town of Cherry Creek.

This photo of Cherry Creek, probably in the early 1900s, shows both traditional teepees and more stationary buildings. This lends understanding to the special inquiries section of the census, and shows us what “fixed” dwellings look like as compared to “moveable.”

im-cherry-creek

The Hale Line

John’s mother was the daughter of Isabelle Ward and Robert Hale.

im-white-weasel

South Dakota Marriage records show that Robert Clifford Hale, age 23, married Isabel Ward on May 3, 1946. Both lived in Cherry Creek, SD.

im-hale-marriage

Robert died on August 1, 2008. His photo and obituary are shown below.

im-robert-clifford-hale

Death: Aug. 1, 2008 Sturgis Meade County South Dakota, USA
Robert “Bob” Clifford Hale, who lived in Cherry Creek, had the Lakota name Min A’ Kyan, which translates to Flies Over the Sea. While he may not have flown over the sea, he did ride the sea as a sailor in the U.S. Navy during World War II. Bob, at age 85, died Friday, Aug. 1, 2008, at the Fort Meade Veterans Hospital near Sturgis. He is survived by Larry (Delia) Hale, Theresa Hale, Herbert Hale and Cleo Hale, all of Cherry Creek, Martha (Erick) Hernandez of Chicago, Ill., Richard Hale of Rapid City, Connie (James) Bear Stops of Red Scaffold and Lavinia Hale-Eagle Chasing of Eagle Butte; grandchildren, Maude Hale, Denise and Richard Crow Ghost, Dawn Kills Crow, Angelic and Willard Demery of Cherry Creek, Amber and Alton Blacktail Deer Sr. of Manderson, Timothy Jr., Earl and Mary Iron Moccasin of Rosebud, Teno, Taun and Krista Bear Stops of Red Scaffold, Rhiana, Richard Jr. and Joshua Hale of Cherry Creek, Angel Prendergast and Aberham White Weasel of Rapid City, Maxine Flying By, Marsha Eagle Chasing of Eagle Butte, Sarah, Elizabeth, Mark and Posey Garter of Albuquerque, N.M., and Clinton and Kyle Harrison of Takini. Also surviving are his great great grandchildren, Morgan and Jasmine Hale, Eric Jarvis and Dewey Kills Crow, Kyra, Danieal and Alyssa Hayes, Adrienne and Royce Jr. Marrow Bone, Eric, Jarvis, Dewey, Drake and Autumn Kills Crow, Shantay Crow Ghost, Alton Blacktail Deer Jr., La’tia, Tyree and Lashae Bear Stops, D’Nica Ducheneaux, Tretyn Red Elk, Sage Bowker, Sarah Patryas, Jordan and Sierra Iron Moccasin, and Kleigh, Dawnelle and Deaconn Garter. Robert was preceded in death by his parents, Joseph and Ellen Hale; sisters, Claira Hale-Fritz, Myrtle Hale-Little Shield, Don’ta Black Tail Bear, Drazen Black Tail Bear, Mary Isabbella Kills Crow, Clifford Merle Hale; brothers, Martin and Wilson Hale; one daughter, Charmaine Hale Harrison; and his paternal grandparents. Funeral services for Robert were Saturday, Aug. 9, at the new Community Building in Cherry Creek. Ted Knife, Erick Hernandez and Elmer Zimmerman officiated. Hernandez read Matthew 7:7. Special music was provided by Buzzy Yellow Hawk, Daryl Whipple, the Tiospaye Singers, Michelle White Wolf and the Mennonite Singers. Harvey Eagle Horse played the Honor Song. Casketbearers were Bob’s grandsons, Joshua Hale, Taun Bear Stops, Timothy White Weasel Hr., Clinton Harrison, Posey Garter, Maris Reindall, Richard Hale Jr., Teno Bear Stops, Eric V. Kills Crow, Kyle Harrison, Mark Garter and Danny Hayes Sr. Honorary bears included all military veterans and all Bob’s other friends and relatives. Burial was at the UCC Cemetery in Cherry Creek under the direction of Oster Funeral home of Mobridge. Mobridge Tribune Wednesday, August 13, 2008

The US Department of Veteran’s Affairs BIRLS Death File lists Robert Hale’s birth and death dates and his service branch as Navy from July 24, 1942 to November 27, 1942.

The Social Security death index shows that Robert was born on Sept. 7, 1922.

I cannot find this family in 1920, 1930 or 1940 in the census, nor in the Indian census. It’s possible that the parents and siblings names are incorrect or nicknames.

Robert’s parents were given as Joseph Hale and Ellen in his obituary. John’s mother reports that Joseph Hale’s name was Joseph “Blows on Himself” and that this is the end of that line because they migrated from Canada on “the big trail.” I found nothing about this family at Ancestry or utilizing Google. It’s possible that the family was not living as a nuclear family as a recognizable unit.

The 1940 census shows a Joseph Hale, age 48, widowed, an Indian, as an inmate in the Davison County, South Dakota Jail, but we don’t know if this is the same Joseph Hale.  However, this is the only Joseph Hale in South Dakota, or for that matter, in that part of the country.

im-1940-census-hale

This Joseph was widowed, an Indian and born on an Indian Reservation, so it may well be the correct Joseph. It would be interesting to see if any court records still exist relative to this case.

I found scanty information on the following individuals from the obituary listing them as siblings of Robert Clifford Hale.

  • Claira Hale – married Elmer Fritz on February 27, 1962 , born about 1926.
  • Mytrle Hale – Myrtle Faye Hale married Theophil Little Shield and died in SD at age 65.
  • Don’ta Black Tail Bear – nothing
  • Drazen Black Tail Bear – nothing
  • Mary Isabella Hale Kills Crow – nothing
  • Clifford Merle Hale – nothing
  • Martin Hale – if the same Martin, died in 1935 of appendicitis, age 20.
  • Wilson Hale born about 1921 married Eunice Eagle Horse. He died in 1950 in Ziebach County. In the 1940 census he is living with the Straight Head family which would make sense if his mother was deceased and his father was in jail.

The Second Ward Line

im-white-weasel

John Iron Moccasin’s grandmother on his mother’s side was Isabella Ward, born in 1925 or 1927.

The 1930 Federal census shows Isabella Ward, age 5, living with her parents in Ziebach County, SD. Her mother, Dora is listed as a full blood and her father, William, a mixed blood, all born in South Dakota and Sioux.

im-1930-census-ward

Her father is listed as a farmer.

We’ve already met Dora (Hope) Hump, daughter of Chief Hump and probably White Calf and William Ward, son of Clarence “Roan Bear” Ward and Estella Dupris.

DNA Results

Now for the most exciting part – the DNA results. Do John’s DNA results bear out his genealogy?

John’s tribal card says that he is at least 15/16th Native. That is accurate, given that he is 1/16th French on both his mother and father’s sides, from the same ancestor.

In percentages, for autosomal DNA, that translates into 6.25% white and 93.75% Native.

When I’m working with descendants of tribes located east of the Mississippi, I understand that they are very likely heavily admixed with (primarily) European males, and significantly so prior to 1800 and in most cases, prior to 1700. However, the Sioux are somewhat different. Except for occasional traders and missionaries, they essentially escaped the widespread influence of Europeans until the 1800s. With few exceptions, I would not expect to find earlier mixing with Europeans, meaning English, French or Spanish, or Africans.

Because of the history of the Sioux tribe, the sheer number of Sioux across a wide geography, and the lack of early European admixture, John’s DNA represents an opportunity to obtain a genetic view of a people not significantly admixed.

Endogamy

We know from John’s family tree that he shares at least 3 ancestors and possibly 4 on both his mother’s and father’s side of the family. Those ancestors are 4 generations up the tree from John.

im-white-weasel

In most cases, one’s great-great-grandparents would each contribute, on average, 6.25% of your DNA. In John’s case, he received a double dose of the DNA of each of those ancestors. If John received the exact same DNA from those ancestors, from both sides, he would still only have 6.25 % of their DNA. This is very unlikely, because normally siblings share part of their parent’s DNA, but not all of it. Conversely, it would be very unlikely for John to inherit none of the same DNA from that ancestor from both lines. Therefore, it’s most likely that instead of 6.25% of the DNA from that each ancestor who is found twice at 4 generations, he would carry about 9.38% of their DNA, or about half a generation closer than one would expect.

And that goes for all 3 common ancestors. We’re not sure which of Hump’s wives gave birth to which children, so this could also apply to Hump’s wife, a 4th ancestor.

Furthermore, these individuals in the tribes are likely already very heavily inter-married and related to each other, long before any records. There were only a limited number of people to select as mates, and all of those people also descended from the same ancestors, who were part of a very small foundation population that migrated from Asia some 10,000 to 25,000 years ago, depending on which model you subscribe to.

Therefore, endogamy and pedigree collapse where one shares common known ancestors would be a phenomenon that has occurred since the time of Anzick Child, and before.

John’s Tests

We tested John’s DNA at Family Tree DNA where his Y, mitochondrial and autosomal DNA was tested. John’s Y DNA shows us the deep ancestry of the White Weasel line. The mitochondrial shows us the deep ancestry of Dora (Hope or Hoop) Hump, daughter of Hump, presumably through wife, White Calf.

John’s autosomal DNA shows us an overall ethnicity view, plus matches to autosomal cousins. Let’s see what we have.

Autosomal Results

John’s myOrigins results show that he is roughly 17% European and the rest a combination of Native and Asian that together represents 84%.

im-myorigins

One of the aspects that I find most interesting is that the portion of Europe that shows a genetic link is Finland, not France where 6.25% of John’s paper trail ancestry is from.

Finland is particularly interesting in light of the result of the Clovis Anzick Child burial found in Montana that dates from about 12,500 years ago. We have the Anzick Child’s results in the Family Tree DNA data base, compliments of both Felix Immanuel and Family Tree DNA.

The Anzick child’s myOrigins results are shown below.

im-anzick-myorigins

The Anzick Child’s DNA ethnic results are very similar to John’s. Anzick Child matches the reference population for Finland at 11%, where John matches at 17%.

Furthermore, John Iron Moccasin is one of 110 people in the data base today that actually match the Anzick Child’s DNA at contemporary levels.

The match threshold at Family Tree DNA today is:

  • No minimum number of shared cM required, but if the cM total is less than 20, then at least one segment must be 9cM or larger.
  • If the longest block of shared DNA is greater than 9cM, the match will show regardless of total shared cM or the number of matching segments.

Lowering the match threshold to 3cM, we can see several small segments that match between John and the Anzick Child.

im-anzick-browser-5cm

I downloaded their common matching segments.

Chromosome Start Location End Location centiMorgans (cM) # of Matching SNPs
1 4282649 5290332 2.56 500
2 98863262 101324606 1.69 600
2 112439588 114460466 1.71 500
2 169362301 170609544 2.27 500
3 8964806 10632877 3.03 600
3 14230971 16121247 2.83 600
3 46655067 53174054 1.28 1000
4 12866760 14721835 1.85 500
5 78642903 80323930 1.64 500
5 158757557 162829228 3.82 1000
6 34609507 36812814 2.88 600
6 127839067 130105402 2 500
7 76597648 78055762 2.84 500
7 99319352 101758792 2.05 600
8 10455449 12975017 2.68 700
8 30301880 34206702 3.45 799
9 26018352 27374204 2.37 500
9 104470303 106854637 3.76 777
10 71258510 72644677 1.46 600
10 102514460 106018240 2.65 800
10 110936823 113553555 3.83 700
11 32265994 34530393 3.35 700
11 91619854 94670011 3.71 800
11 102068510 103853340 1.76 500
12 27332778 29165805 1.66 500
12 96875639 99784589 2.74 700
13 55048728 58723000 1.66 600
13 78707414 80906921 1.34 500
14 22564888 24752111 3.59 800
14 68418807 70225737 1.65 500
14 76767325 78038237 1.71 500
16 12528330 14375990 5.49 659
18 33126219 35069488 1.37 500
19 8284870 13355259 7.87 1278
20 45913972 47494552 3.17 500

Their largest matching segments are on chromosome 19 for 7.87 cM and on 16 for 5.49 cM.

The genetic connection between the Anzick Child and John Iron Moccasin is evident. John’s tribe is descended from the same people as the Anzick Child who was buried in present day Montana. John’s ancestors, Hump, Roan Hair and Follows were all born in Montana, and the Sioux homelands stretched across this entire region.

This begs the question of whether John is simply lucky to have inherited these segments, or if they are found widely in the Native, particularly Sioux, population as a whole.

To help answer this question, I looked at John’s closest 4 matches along with the Anzick Child in the chromosome browser, compared to John’s DNA.

im-anzick-match-compare

At 5cM there is no overlap with John’s closest matches and the Anzick Child, whose DNA is shown in green, above. However, dropping the threshold to 3, below, shows overlap with Thomas’s closest match on chromosome 19 at 4.98 cM and other chromosomes in smaller amounts. This would suggest that perhaps the DNA that is the same as the Anzick Child’s does not repose in the entire tribal population.

im-match-compare-3cm

Let’s take a look another way.

John and the Anzick Child at GedMatch

At GedMatch, John matches the Anzick Child on slightly different segments than at Family Tree DNA. It’s not unusual for different vendors to produce slightly different results. In this case, the match on chromosome 16 is absent altogether, and there are larger segment matches on chromosomes 8 and 14 using a 5cM and 500 SNP threshold.  Chromosome 22 shows a match not present at Family Tree DNA.

im-anzick-gedmatch

I was curious to see how many people matched John on his segments shared with the Anzick Child.

John matches a total of 2119 people at GedMatch at 5cM and 500 SNPs.

John’s results for his two largest segments, chromosome 16 (at FTDNA) and 19 were different. Chromosome 16, the smaller match, was generally unremarkable, but his chromosome 19 was a different story, carrying many names and surnames that I recognize.

Let’s take a look at the triangulation tool and see what we find there. We are looking for anyone who triangulates with both John and Anzick Child. This tool reports every triangulated match in excess of 5cM.

im-chr-16

Using the triangulation tool, no one triangulates, meaning matches both John and the Anzick child, on either chromosome 16 or 19. This suggests that all of John’s matches showing are on the “other” chromosome and that this chromosome segment is fairly rare.

If one of John’s parents were to test, we could identify which of John’s parents was matching Anzick, so we would know which side of John’s family these individuals are matching on these segments, assuming these matches are not identical by chance.

Out of curiosity, I triangulated Anzick Child’s kit to see if there were any triangulated groups. There were, but none that included John.

At GedMatch, let’s use the “Are Your Parents Related?” utility. We know that John’s parents are related, but are any of the segments that came from both parents the same segment that is found in John’s Anzick match? The match threshold at GedMatch for this tool is 7cM and 700 SNPs, so the only segment that would qualify would be this segment on chromosome 19, shown above in green.

19 8284870 13355259 7.87 1278

The “Are Your Parents Related?” tool at GedMatch shows the following results.

im-parents-related

im-parents-related-2

im-parents-related-3

im-parents-related-4

According to GedMatch, this segment of chromosome 19 was not contributed by both of John’s parents, so this portion of the Anzick DNA is not found universally in the entire Native population in that region.

One last look at John’s DNA by comparing to the Ancient group contributed at GedMatch shows no segments 4cM or above that match with any ancient specimen other than the Clovis (Anzick) Child, including no match to the Paleo Eskimo in Greenland from 4,000 years ago and no match to Kennewick Man. The tiny orange bars represent matching segments at 400 SNPs and 4cM.

im-ancient

John’s Mitochondrial DNA

John’s mitochondrial DNA comes directly from his matrilineal line, meaning from his mother, her mother, her mother, on up the tree until you run out of direct line mothers.

im-white-weasel

In this case, that person winds up being Hump’s wife. We think that person is probably  White Calf, but it could be one of Hump’s other wives. We just don’t know for sure given that Hump was polygamous.

Mitochondrial DNA is passed intact in each generation, doesn’t get combined with the father’s DNA so it’s a direct line back in time.

Johns’s mitochondrial haplogroup is clearly Native, C4c1.

im-y-hap-q

Haplogroup C4c1 was originally reported in the Suswap by Ripan Malhi; in the Chippewa Creek and in Jasper House, Alberta Canada, in 2015 by Roberta Estes from the American Indian project.

At the HVR1 level, John has 62 exact matches, but he has no matches at the HVR2 or full sequence levels. This means that of the people who have tested at that level, he has more than 4 differences at the full sequence level. Translated, this means they don’t share common ancestors in hundreds to thousands of years.

Only 8 of John’s HVR1 matches have tested at the full sequence level, unfortunately.

Of those, the earliest ancestors are Spanish, indicating that they are probably from either the American southwest, or further south, and their haplogroup C ancestor was eventually associated with the Spanish. One is from New Mexico. One is from Michigan.

Few of John’s matches have entered the location of their most distant ancestor, but those who have provided that information are shown below at the HVR1 level, understanding that a common ancestor at that level could predate the migration into the Americas.

im-mtdna-match-map

Utilizing the information provided through the Genographic project, we find the following information about haplogroup C4c1.

im-c4c1-geno

This provides very interesting geographic distribution information, but it also begs the question of how haplogroup C4c1 was found in Germany or Sweden. Of course, we are relying on participant-reported information and it’s certainly possible that two individuals misunderstood the directions. It’s also possible that one or both are legitimate. I have wondered for a long time about a link between the northern Scandinavian populations, especially subarctic, and the Native subarctic populations in North America.

According to Dr. Doron Behar in the supplement to his paper titled, “A Copernican” Reassessment of the Human Mitochondrial DNA Tree from its Root,” haplogroup C4c1 was born about 10,095 years ago with a standard deviation of 4550 years, meaning the range of time in which C4c1 was born in likely 5,545 to 14,645 years ago. Clearly, there is enough latitude in this date range for some C4c1 to be found in either Asia or Europe, and C4c1 to be found in the Americas as well. If this is indeed the case, one would expect for the variants of C4c1 found on the differing continents to contain a significant difference in mutations, exceeding the 4 mutations allowed for genealogical matching purposes at Family Tree DNA.

To date, there has been no ancient DNA recovered bearing this haplogroup.

Other Mitochondrial Results

Individuals descending from several of John’s maternal lines would be perfect candidates to test for the mitochondrial DNA of those lines. One must descend from these women through all females to the current generation:

  • Follows
  • Esther Ward – Nellie “Pretty Voice” – Beautiful Hail or White Calf
  • Ellen (wife of Joseph Hale)

Testing a female descended through Pretty Voice, mother of Esther Ward, would determine whether or not White Calf was the mother of Pretty Voice, or if it was another woman, probably Beautiful Hail.

John’s Y DNA

John inherited his Y DNA chromosome from Charley White Weasel.

im-white-weasel

John’s Y haplogroup is Q-M242, a Native haplogroup.

im-y-hap-q

John tested to the 67 marker level, but has no matches at 67 markers. At 12, 25 and 37 markers, he matches a gentleman whose ancestor was from Fort Thomson, SD who also tested at 67 markers. That is John’s only match, so apparently John carries some unusual mutations in his Y DNA as well that are probably isolated to people from the Sioux tribe or their ancestors in the past a few hundred to thousands of years.

im-y-matches-map

On the map above, John’s match is shown and on the map below, John’s white balloon is shown where he was born in relation to that of his red balloon match.

im-y-matches-map-2

To obtain additional information about John’s Y DNA haplogroup, the Big Y test would need to be run on his sample. By running the Big Y, we could obtain a more granular haplogroup, meaning further down the tree, and we could also see who matches him more distantly, meaning further back in time. That information could well provide us with information indicating which groups of Native people John is most closely related to. That suggests a migration route or pathway and tells us about social interactions at some level hundreds to thousands of years in the past.

Anzick Child’s Y DNA haplogroup is Q-L54, a subgroup of Q-M242, shown on the haplotree below. You can also see that many subgroups below L54 have been discovered.

im-hap-q-tree

I strongly suspect that John’s haplogroup would be Q-L54 or a subgroup further downstream. I’m betting on a subgroup, meaning that mutations have occurred in John’s line that define a newer, younger haplogroup since the time that Anzick Child and John shared a common ancestor.

Other Y Line Results

I was hopeful that I would find results for John’s Ward or Hale line in the projects at Family Tree DNA, but I did not. I checked in the American Indian project for Hump, with the hope that one of his descendants has tested as well, but did not find that Hump is yet represented in the data base. Of course, anyone paternally descended from Hump’s father, Iron Bull or his father, Black Buffalo would carry the same Y DNA.

If anyone descends from these direct Y lines, please do let us know.

Summary

What we have been able to discover about John’s ancestry both through traditional genealogy and genetic genealogy has been both amazing and fascinating.

John now knows that he is connected to the Anzick Child, the Ancient One. John’s ancestors and Anzick’s were one and the same. Some 12,500 years later, John was born on the same land where his ancestors have literally lived “forever.”

Anzick has given John a wonderful gift, and John has given that gift to the rest of us. We continue to learn through both John and Anzick’s contributions. Thank you to both.

What’s Next?

I would very much like to upgrade John’s Y DNA to 111 markers and order a Big Y test while the holiday sale is in effect. If you would like to contribute to these tests of discovery, please donate to the American Indian project general fund at this link. If we raise more than we need for John’s tests, we have implemented an application process for other Native people. Every donation helps, and helps to build our knowledge base – so please contribute if you can.

Acknowledgements

My gratitude to the following people:

John Iron Moccasin for testing, providing family information and allowing us to work with and publish his results.

John’s mother, Martha Hale, for providing the original genealogical information, below.

im-original-pedigree

Johns’ friend, Pam, for bringing us this opportunity.

John’s wife, Carolyn, for coordinating information.

Family Tree DNA for testing and facilitating the Ancient DNA Project, the American Indian Project and various Native American haplogroup projects.

nat-geo-logoThe National Geographic Society Genographic Project for providing data base access to the project administrators of the American Indian Project as Affiliate Researchers

Project members and others for contributions to facilitate John’s testing.

My American Indian project co-administrators, Marie Rundquist and Dr. David Pike for their never-failing support.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Autosomal DNA Matching Confidence Spectrum

Are you confused about DNA matches and what they mean…different kinds of matches…from different vendors and combined results between vendors.  Do you feel like lions and tigers and bears…oh my?  You’re not alone.

As the vendors add more tools, I’ve noticed recently that along with those tools has come a significant amount of confusion surrounding matches and what they mean.  Add to this issue confusion about the terminology being used within the industry to describe various kinds of matches.  Combined, we now have a verbiage or terminology issue and we have confusion regarding the actual matches and what they mean.  So, as people talk, what they mean, what they are trying to communicate and what they do say can be interpreted quite widely.  Is it any wonder so many people are confused?

I reached out within the community to others who I know are working with autosomal results on a daily basis and often engaged in pioneering research to see how they are categorizing these results and how they are referring to them.

I want to thank Jim Bartlett, Blaine Bettinger, Tim Janzen and David Pike (in surname alphabetical order) for their input and discussion about these topics.  I hope that this article goes a long way towards sorting through the various kinds of matches and what they can and do mean to genetic genealogists – and what they are being called.  To be clear, the article is mine and I have quoted them specifically when applicable.

But first, let’s talk about goals.

Goals

One thing that has become apparent over the past few months is that your goals may well affect how you interpret data.  For example, if you are an adoptee, you’re going to be looking first at your closest matches and your largest segments.  Distant matches and small segments are irrelevant at least until you work with the big pieces.  The theory of low hanging fruit, of course.

If your goal is to verify and generally validate your existing genealogy, you may be perfectly happy with Ancestry’s Circles.  Ancestry Circles aren’t proof, as many people think, but if you’re looking for low hanging fruit and “probably” versus “positively,” Ancestry Circles may be the answer for you.

If you didn’t stop reading after the last sentence, then I’m guessing that “probably” isn’t your style.

If your goal is to prove each ancestor and/or map their segments to your DNA, you’re not going to be at all happy with Ancestry’s lack of segment data – so your confidence and happiness level is going to be greatly different than someone who is just looking to find themselves in circles with other descendants of the same ancestor and go merrily on their way.

If you have already connected the dots on most of your ancestry for the past 4 or 5 generations, and you’re working primarily with colonial ancestors and those born before 1700, you may be profoundly interested in small segment data, while someone else decides to eliminate that same data on their spreadsheet to eliminate clutter.  One person’s clutter is another’s goldmine.

While, technically, the different types of tests and matches carry a different technical confidence level, your personal confidence ranking will be influenced by your own goals and by some secondary factors like how many other people match on a particular segment.

Let’s start by talking about the different kinds of matching.  I’ve been working with my Crumley line, so I’ll be utilizing examples from that project.

Individual Matching, Group Matching and Triangulation

There is a difference between individual matching, group matching and triangulation.  In fact, there is a whole spectrum of matching to be considered.

Individual Matching

Individual matching is when someone matches you.

confidence individual match

That’s great, but one match out of context generally isn’t worth much.  There’s that word, generally, because if there is one thing that is almost always true, it’s that there is an exception to every rule and that exception often has to do with context.  For example, if you’re looking for parents and siblings, then one match is all you need.

If this match happens to be to my first cousin, that alone confirms several things for me, assuming there is not a secondary relationship.  First, it confirms my relationship with my parent and my parent’s descent from their parents, since I couldn’t be matching my first cousin (at first cousin level) if all of the lines between me and the cousin weren’t intact.

confidence cousins

However, if the match is to someone I don’t know, and it’s not a close relative, like the 2nd to 4th cousins shown in the match above, then it’s meaningless without additional information.  Most of your matches will be more distant.  Let’s face it, you have a lot more distant cousins than close cousins.  Many ancestors, especially before about 1900, were indeed, prolific, at least by today’s standards.

So, at this point, your match list looks like this:

confidence match list

Bridget looks pretty lonely.  Let’s see what we can do about that.

Matching Additional People

The first question is “do you share a common ancestor with that individual?”  If yes, then that is a really big hint – but it’s not proof of anything – unless they are a close relative match like we discussed above.

Why isn’t a single match enough for proof?

You could be related to this person through more than one ancestral line – and that happens far more than I initially thought.  I did an analysis some time back and discovered that about 15% of the time, I can confirm a secondary genealogical line that is not related to the first line in my tree.  There were another 7% that were probable – meaning that I can’t identify a second common ancestor with certainty, but the surname and location is the same and a connection is likely.  Another 8% were from endogamous lines, like Acadians, so I’m sure there are multiple lines involved.  And of those matches (minus the Acadians), about 10% look to have 3 genealogical lines, not just two.  The message here – never assume.

When you find one match and identify one common genealogical line, you can’t assume that is how you are genetically related on the segment in question.

Ideally, at this point, you will find a third person who shares the common ancestor and their DNA matches, or triangulates, between you and your original match to prove the connection.  But, circumstances are not always ideal.

What is Triangualtion?

Triangulation on the continuum of confidence is the highest confidence level achievable, outside of close relative matching which is evident by itself without triangulation.

Triangulation is when you match two people who share a common ancestor and all three of you match each other on that same segment.  This means that segment descended to all three of you from that common ancestor.

This is what a match group would look like if Jerry matches both John and Bridget.

confidence example 1 match group

Example 1 – Match Group

The classic definition of triangulation is when three people, A, B and C all match each other on the same segment and share a known, identifiable common ancestor.  Above, we only have two.  We don’t know yet if John matches Bridget.

A matches B
A matches C
B matches C

This is what an exact triangulation group would look like between Jerry, John and Bridget.  Most triangulation matches aren’t exact, meaning the start and/or end segment might be different, but some are exact.

confidence example 2 triangulation group

Example 2 – Triangulation Group

It’s not always possible to prove all three.  Sometimes you can see that Jerry matches Bridget and Jerry matches John, but you have no access to John or Bridget’s kits to verify that they also match each other.  If you are at Family Tree DNA, you can run the ICW (in common with) tool to see if John and Bridget do match each other – but that tool does not confirm that they match on the same segment.

If the individuals involved have uploaded their kits to GedMatch, you have the ability to triangulate because you can see the kit numbers of your matches and you can then run them against each other to verify that they do indeed match each other as well.  Not everyone uploads their kits to GedMatch, so you may wind up with a hybrid combination of triangulated groups (like example 2, above) and matching groups (like example 1, above) on your own personal spreadsheet.

Matching groups (that are not triangulated) are referred to by different names within the community.  Tim Janzen refers to them as clusters of cousins, Blaine as pseudo triangulation and I have called them triangulation groups in the past if any three within the group are proven to be triangulated. Be careful when you’re discussing this, because matching groups are often misstated as triangulated groups.  You’ll want to clarify.

Creating a Match List

Sometimes triangulation options aren’t available to us.  For example, at Family Tree DNA, we can see who matches us, and we can see if they match each other utilizing the ICW tool, but we can’t see specifically where they match each other.  This is considered a match group.  This type of matching is also where a great deal of confusion is introduced because these people do match each other, but they are NOT (yet) triangulated.

What we know is that all of these people are on YOUR match list, but we don’t know that they are on each other’s match lists.  They could be matching you on different sides of your DNA or, if smaller segments, they might be IBC (identical by chance.)

You can run the ICW (in common with) tool at Family Tree DNA for every match you have.  The ICW tool is a good way to see who matches both people in question.  Hopefully, some of your matches will have uploaded trees and you can peruse for common ancestors.

The ICW tool is the little crossed arrows and it shows you who you and that person also match in common.

confidence match list ftdna

You can run the ICW tool in conjunction with the ancestral surname in question, showing only individuals who you have matches in common with who have the Crumley surname (for example) in their ancestral surname list.  This is a huge timesaver and narrows your scope of search immediately.  By clicking on the ICW tool for Ms. Bridget,  you see the list, below of those who match both the person whose account we are signed into and Ms. Bridget, below.

confidence icw ftdna

Another way to find common matches to any individual is to search by either the current surname or ancestral surnames.  The ancestral surname search checks the surnames entered by other participants and shows them in the results box.

In the example above, all of these individuals have Crumley listed in their surnames.  You can see that I’ve sorted by ancestral surname – as Crumley is in that search box.

Now, your match lists looks like this relative to the Crumley line.  Some people included trees and you can find your common ancestor on their tree, or through communications with them directly.  In other cases, no tree but the common surname appears in the surname match list.  You may want to note those results on your match list as well.

confidence match list 2

Of course, the next step is to compare these individuals in a matrix to see who matches who and the chromosome browser to see where they match you, which we’ll discuss momentarily.

Group Matching

The next type of matching is when you have a group of people who match each other, but not necessarily on the same segment of DNA.  These matching groups are very important, especially when you know there is a shared ancestor involved – but they don’t indicate that the people share the same segment, nor that all (or any) of their shared segments are from this particular ancestor.  Triangulation is the only thing that accomplishes proof positive.

This ICW matrix shows some of the Crumley participants who have tested and who matches whom.

confidence icw grid

You can display this grid by matching total cM or by known relationship (assuming the individuals have entered this information) or by predicted relationship range.  The total cMs shared is more important for me in evaluating how closely this person might be related to the other individual.

The Chromosome Browser

The chromosome browser at Family Tree DNA shows matches from the perspective of any one individual.  This means that the background display of the 22 Chromosomes (plus X) is the person all of the matches are comparing against. If you’re signed in to your account, then you are the black background chromosomes, and everyone is being compared against your DNA.  I’m only showing the first 6 chromosomes below.

confidence chromosome browser

You can see where up to 5 individuals match the person you’re comparing them to.  In this case, it looks like they may share a common segment on chromosome 2 among several descendants.  Of course, you’d need to check each of these individuals to insure that they match each other on this same segment to confirm that indeed, it did come from a common ancestor.  That’s triangulation.

When you see a grouping of matches of individuals known to descend from a common ancestor on the same chromosome, it’s very likely that you have a match group (cluster of cousins, pseudo triangulation group) and they will all match each other on that same segment if you have the opportunity to triangulate them, but it’s not absolute.

For example, below we have a reconstructed chromosome 8 of James Crumley, the common ancestor of a large group of people shown based on matches.  In other words, each colored segment represents a match between two people.  I have a lot more confidence in the matches shown with the arrows than the single or less frequent matches.

confidence chromosome 8 match group'

This pseudo triangulation is really very important, because it’s not just a match, and it’s not triangulation.  The more people you have that match you on this segment and that have the same ancestor, the more likely that this segment will triangulate.  This is also where much of the confusion is coming from, because matching groups of multiple descendants on the same segments almost always do triangulate so they have been being called triangulation groups, even when they have not all been triangulated to each other.  Very occasionally, you will find a group of several people with a common ancestor who triangulate to each other on this common segment, except one of a group doesn’t triangulate to one other, but otherwise, they all triangulate to others.

confidence triangulation issue

This situation has to be an error of some sort, because if all of these people match each other, including B, then B really must match D.  Our group discussed this, and Jim Bartlett pointed out that these problem matches are often near the vendor matching threshold (or your threshold if you’re using GedMatch) and if the threshold is lowered a bit, they continue to match.  They may also be a marginal match on the edge, so to speak or they may have a read error at a critical location in their kit.

What “in common with” matching does is to increase your confidence that these are indeed ancestral matches, a cousin cluster, but it’s not yet triangulation.

Ancestry Matches

Ancestry has added another level of matching into the mix.  The difference is, of course, that you can’t see any segment data at all, at Ancestry, so you don’t have anything other than the fact that you do match the other person and if you have a shakey leaf hint, you also share a common ancestor in your trees.

confidence ancestry matches

When three people match each other on any segment (meaning this does not infer a common segment match) and also share a common ancestor in a tree, they qualify to be a DNA Circle.  However, there is other criteria that is weighted and not every group of 3 individuals who match and share an ancestor becomes a DNA Circle.  However, many do and many Circles have significantly more than three individuals.

confidence Phoebe Crumley circle

This DNA Circle is for Phebe Crumley, one of my Crumley ancestors.  In this grouping, I match one close family group of 5 people, and one individual, Alyssa, all of whom share Phebe Crumley in their trees.  As luck would have it, the family group has also tested at Family Tree DNA and has downloaded their results to GedMatch, but as it stands here at Ancestry, with DNA Circle data only…the only thing I can do is to add them to my match list.

confidence match list 3

In case you’re wondering, the reason I only added three of the 5 family members of the Abija group to my match list is because two are children of one of the members and their Crumley DNA is represented through their parent.

While a small DNA Circle like Phebe Crumley’s can be incorrect, because the individuals can indeed be sharing the DNA of a different ancestor, a larger group gives you more confidence that the relationship to that group of people is actually through the common ancestor whose circle you are a member of.  In the example Circle shown below, I match 6 individuals out of a total of 21 individuals who are all interrelated and share Henry Bolton in their tree.

Confidence Henry Bolton circle

New Ancestor Discoveries

Ancestry introduced New Ancestor Discoveries (NADs) a few months ago.  This tool is, unfortunately, misnamed – and although this is a good concept for finding people whose DNA you share, but whose tree you don’t – it’s not mature yet.

The name causes people to misinterpret the “ancestors” given to them as genuinely theirs.  So far, I’ve had a total of 11 NADS and most have been easily proven false.

Here’s how NADs work.  Let’s say there is a DNA Circle, John Doe, of 3 people and you match two of them.  The assumption is that John Doe is also your ancestor because you share the DNA of his descendants.  This is a critically flawed assumption.  For example, in one case, my ancestors sister’s husband is shown as my “new ancestor discovery” because I share DNA with his descendants (through his wife, my ancestor’s sister.)  Like I said, not mature yet.

I have discussed this repeatedly, so let’s just suffice it to say for this discussion, that there is absolutely no confidence in NADs and they aren’t relevant.

Shared Matches

Ancestry recently added a Shared Matches function.

For each person that you match at Ancestry, that is a 4th cousin or closer and who has a high confidence match ranking, you can click on shared matches to see who you and they both match in common.

confidence ancestry shared matches

This does NOT mean you match these people through the same ancestor.  This does NOT mean you match them on the same segment.  I wrote about how I’ve used this tool, but without additional data, like segment data, you can’t do much more with this.

What I have done is to build a grid similar to the Family Tree DNA matrix where I’ve attempted to see who matches whom and if there is someone(s) within that group that I can identify as specifically descending from the same ancestor.  This is, unfortunately, extremely high maintenance for a very low return.  I might add someone to my match list if they matched a group (or circle) or people that match me, whose common ancestor I can clearly identify.

Shared Matches are the lowest item on the confidence chart – which is not to say they are useless.  They can provide hints that you can follow up on with more precise tools.

Let’s move to the highest confidence tool, triangulation groups.

Triangulation Groups

Of course, the next step, either at 23andMe, Family Tree DNA, through GedMatch, or some combination of each, is to compare the actual segments of the individuals involved.  This means, especially at Ancestry where you have no tools, that you need to develop a successful begging technique to convince your matches to download their data to GedMatch or Family Tree DNA, or both.  Most people don’t, but some will and that may be the someone you need.

You have three triangulation options:

  1. If you are working with the Family Inheritance Advanced at 23andMe, you can compare each of your matches with each other. I would still invite my matches to download to GedMatch so you can compare them with people who did not test at 23andMe.
  2. If you are working with a group of people at Family Tree DNA, you can ask them to run themselves against each other to see if they also match on the same segment that they both match you on. If you are a project administrator on a project where they are all members, you can do this cross-check matching yourself. You can also ask them to download their results to GedMatch.
  3. If your matches will download their results to GedMatch, you can run each individual against any other individual to confirm their common segment matches with you and with each other.

In reality, you will likely wind up with a mixture of matches on your match list and not everyone will upload to GedMatch.

Confirming that segments create a three way match when you share a common ancestor constitutes proof that you share that common ancestor and that particular DNA has been passed down from that ancestor to you.

confidence match list 4

I’ve built this confidence table relative to matches first found at Family Tree DNA, adding matches from Ancestry and following them to GedMatch.  Fortunately, the Abija group has tested at all 3 companies and also uploaded their results to GedMatch.  Some of my favorite cousins!

Spectrum of Confidence

Blaine Bettinger built this slide that sums up the tools and where they fall on the confidence range alone, without considerations of your goals and technical factors such as segment size.  Thanks Blaine for allowing me to share it here.

confidence level Blaine

These tools and techniques fall onto a spectrum of confidence, which I’ve tried to put into perspective, below.

confidence level highest to lowest

I really debated how to best show these.  Unfortunately, there is almost always some level of judgment involved. In some cases, like triangulation at the 3 vendors, the highest level is equivalent, but in other cases, like the medium range, it really is a spectrum from lowest to highest within that grouping.

Now, let’s take a look at our matches that we’ve added to our match list in confidence order.

confidence match list 5

As you would expect, those who triangulated with each other using some chromosome browser and share a common ancestor are the highest confidence matches – those 5 with a red Y.  These are followed by matches who match me and each other but not on the same segment (or at least we don’t know that), so they don’t triangulate, at least not yet.

I didn’t include any low confidence matches in this table, but of the lowest ones that are included, the shakey leaf matches at Ancestry that won’t answer inquiries and the matches at FTDNA who do share a common surname but didn’t download their information to be triangulated are the least confident of the group.  However, even those lower confidence matches on this chart are medium, meaning at Ancestry they are in a Circle and at FTDNA, they do match and share a common surname.  At Family Tree DNA, they may eventually fall into a triangulation group of other descendants who triangulate.

Caveats

As always, there are some gotchas.  As someone said in something I read recently, “autosomal DNA is messy.”

Endogamy

Endogamous populations are just a mess.  The problem is that literally, everyone is related to everyone, because the founder population DNA has just been passed around and around for generations with little or no new DNA being introduced.

Therefore, people who descend from endogamous populations often show to be much more closely related than they are in a genealogical timeframe.

Secondly, we have the issue pointed out by David Pike, and that is when you really don’t know where a particular segment came from, because the segment matches both the parents, or in some cases, multiple grandparents.  So, which grandparent did that actual segment that descended to the grandchild descend from?

For people who are from the same core population on both parent’s side, close matches are often your only “sure thing” and beyond that, hopefully you have your parents (at least one parent) available to match against, because that’s the only way of even beginning to sort into family groups.  This is known as phasing against your parents and while it’s a great tool for everyone to use – it’s essential to people who descend from endogamous groups. Endogamy makes genetic genealogy difficult.

In other cases, where you do have endogamy in your line, but only in one of your lines, endogamy can actually help you, because you will immediately know based on who those people match in addition to you (preferably on the same segment) which group they descend from.  I can’t tell you how many rows I have on my spreadsheet that are labeled with the word “Acadian,” “Brethren” and “Mennonite.”  I note the common ancestor we can find, but in reality, who knows which upstream ancestor in the endogamous population the DNA originated with.

Now, the bad news is that Ancestry runs a routine that removes DNA that they feel is too matchy in your results, and most of my Acadian matches disappeared when Ancestry implemented their form of population based phasing.

Identical by Population

There is sometimes a fine line between a match that’s from an ancestor one generation further back than you can go, and a match from generations ago via DNA found at a comparatively high percentage in a particular population.  You can’t tell the difference.  All you know is that you can’t assign that segment to an ancestor, and you may know it does phase against a parent, so it’s valid, meaning not IBC or identical by chance.

Yes, identical by population segment matching is a distinct problem with endogamy, but it can also be problematic with people from the same region of the world but not members of endogamous populations.  Endogamy is a term for the timeframe we’re familiar with.  We don’t know what happened before we know what happened.

From time to time, you’ll begin to see something “odd” happened where a group of segments that you already have triangulated to one ancestor will then begin to triangulate to a second ancestor.  I’m not talking about the normal two groups for every address – one from your Mom’s side and one from your Dad’s.  I’m talking, for example, when my Mom’s DNA in a particular area begins to triangulate to one ancestral group from Germany and one from France.  These clearly aren’t the same ancestors, and we know that one particular “spot” or segment range that I received from her DNA can only come from one ancestor.  But these segment matches look to be breaking that rule.

I created the example below to illustrate this phenomenon.  Notice that the top and bottom 3 all match nicely to me and to each other and share a common ancestor, although not the same common ancestor for the two groups.  However, the range significantly overlaps.  And then there is the match to Mary Ann in the middle whose common ancestor to me is unknown.

confidence IBP example

Generally, we see these on smaller segment groups, and this is indicative that you may be seeing an identical by population group.  Many people lump these IBP (identical by population) groups in with IBC, identical by chance, but they aren’t.  The difference is that the DNA in an IBP group truly is coming from your ancestors – it’s just that two distinct groups of ancestors have the same DNA because at some point, they shared a common ancestor.  This is the issue that “academic phasing” (as opposed to parental phasing) is trying to address.  This is what Ancestry calls “pileup areas” and attempts to weed out of your results.  It’s difficult to determine where the legitimate mathematical line is relative to genealogically useful matches versus ones that aren’t.  And as far as I’m concerned, knowing that my match is “European” or “Native” or “African” even if I can’t go any further is still useful.

Think about this, if every European has between 1 and 4% Neanderthal DNA from just a few Neanderthal individuals that lived more than 20,000 years ago in Europe – why wouldn’t we occasionally trip over some common DNA from long ago that found its way into two different family lines.

When I find these multiple groupings, which is actually relatively rare, I note them and just keep on matching and triangulating, although I don’t use these segments to draw any conclusions until a much larger triangulated segment match with an identified ancestor comes into play.  Confidence increases with larger segments.

This multiple grouping phenomenon is a hint of a story I don’t know – and may never know.  Just because I don’t quite know how to interpret it today doesn’t mean it isn’t valid.  In time, maybe its full story will be revealed.

ROH – Runs of Homozygosity

Autosomal DNA tests test someplace over 500,000 locations, depending on the vendor you select.  At each of those locations, you find a value of either T, A, C or G, representing a specific nucleotide.  Sometimes, you find runs of the same nucleotide, so you will find an entire group of all T, for example.  If either of your parents have all Ts in the same location, then you will match anyone with any combination of T and anything else.

confidence homozygosity example

In the example above, you can see that you inherited T from both your Mom and Dad.  Endogamy maybe?

Sally, although she will technically show as a match, doesn’t really “match” you.  It’s just a fluke that her DNA matches your DNA by hopping back and forth between her Mom’s and Dad’s DNA.  This is not a match my descent, but by chance, or IBC (identical by chance.)  There is no way for you to know this, except by also comparing your results to Sally’s parents – another example of parental phasing.  You won’t match Sally’s parents on this segment, so the segment is IBC.

Now let’s look at Joe.  Joe matches you legitimately, but you can’t tell by just looking at this whether Joe matches you on your Mom’s or Dad’s side.  Unfortunately, because no one’s DNA comes with a zipper or two sides of the street labeled Mom and Dad – the only way to determine how Joe matches you is to either phase against Joe’s parents or see who else Joe matches that you match, preferable on the same segment – in other words – create either a match or ICW group, or triangulation.

Segment Size

Everyone is in agreement about one thing.  Large segments are never IBC, identical by chance.  And I hate to use words like never, so today, interpret never to mean “not yet found.”  I’ve seen that large segment number be defined both 13cM and 15cM and “almost never” over 10cM.  There is currently discussion surrounding the X chromosome and false positives at about this threshold, but the jury is still out on this one.

Most medium segments hold true too.  Medium segment matches to multiple people with the same ancestors almost always hold true.  In fact, I don’t personally know of one that didn’t, but that isn’t to say it hasn’t happened.

By medium segments, most people say 7cM and above.  Some say 5cM and above with multiple matching individuals.

As the segment size decreases, the confidence level decreases too, but can be increased by either multiple matches on that segment from a common proven ancestor or, of course, triangulation.  Phasing against your parent also assures that the match is not IBD.  As you can see, there are tools and techniques to increase your confidence when dealing with small segments, and to eliminate IBC segments.

The issue of small segments, how and when they can be utilized is still unresolved.  Some people simply delete them.  I feel that is throwing the baby away with the bathwater and small segments that triangulate from a common ancestor and that don’t find themselves in the middle of a pileup region that is identical by population or that is known to be overly matchy (near the center of chromosome 6, for example) can be utilized.  In some cases, these segments are proven because that same small segment section is also proven against matches that are much larger in a few descendants.

Tim Janzen says that he is more inclined to look at the number of SNPs instead of the segment size, and his comfort number is 500 SNPs or above.

The flip side of this is, as David Pike mentioned, that the fewer locations you have in a row, the greater the chance that you can randomly match, or that you can have runs of heterozygosity.

No one in our discussion group felt that all small segments were useless, although the jury is still out in terms of consensus about what exactly defines a small segment and when they are legitimate and/or useful.  Everyone of us wants to work towards answers, because for those of us who are dealing with colonial ancestors and have already picked the available low hanging fruit, those tantalizing small segments may be all that is left of the ancestor we so desperately need to identify.

For example, I put together this chart detailing my matching DNA by generation. Interesting, I did a similar chart originally almost exactly three years ago and although it has seemed slow day by day, I made a lot of progress when a couple of brick walls fell, in particular, my Dutch wall thanks to Yvette Hoitink.

If you look at the green group of numbers, that is the amount of shared DNA to be expected at each level.  The number of shared cMs drops dramatically between the 5th and 6th generation from 13 cM which would be considered a reasonable matching level (according to the above discussion) at the 5th generation, and 3.32 cM at the 6th generation level, which is a small segment by anyone’s definition.

confidence segment size vs generation

The 6th generation was born roughly in 1760, and if you look to the white grouping to the right of the green group, you can see that my percentage of known ancestors is 84% in the 5th generation, 80% in the 6th generation, but drops quickly after that to 39, 22 and 3%, respectively.  So, the exact place where I need the most help is also the exact place where the expected amount of DNA drops from 13 to 3.32 cM.  This means, that if anyone ever wants to solve those genealogical puzzles in that timeframe utilizing genetic genealogy, we had better figure out how to utilize those small segments effectively – because it may well be all we have except for the occasional larger sticky segment that is passed intact from an ancestor many generations past.

From my perspective, it’s a crying shame that Ancestry gives us no segment data and it’s sad that 23andMe only gives us 5cM and above.  It’s a blessing that we can select our own threshold at GedMatch.  I’m extremely grateful that FTDNA shows us the small segment matches to 1cM and 500 SNPs if we also match on 20cM total and at least one segment over 7cM.  That’s a good compromise, because small segments are more likely to be legitimate if we have a legitimate match on a larger segment and a known ancestor.  We already discussed that the larger the matching segment, the more likely it is to be valid. I would like to see Family Tree DNA lower the matching threshold within projects.  Surname projects imply that a group of people will be expected to match, so I’d really like to be able to see those lower threshold matches.

I’m hopeful that Family Tree DNA will continue to provide small segment information to us.  People who don’t want to learn how to use or be bothered with small segments don’t have to.  Delete is perfectly legitimate option, but without the data, those of us who are interested in researching how to best utilize these segments, can’t.  And when we don’t have data to use, we all lose.  So, thank you Family Tree DNA.

Coming Full Circle

This discussion brings us full circle once again to goals.

Goals change over time.

My initial reason for testing, the first day an autosomal test could be ordered, was to see if my half-brother was my half-brother.  Obviously for that, I didn’t need matching to other people or triangulation.  The answer was either yes or no, we do match at the half-sibling level, or we don’t.

He wasn’t.  But by then, he was terminally ill, and I never told him.  It certainly explained why I wasn’t a transplant match for him.

My next goal, almost immediately, was to determine which if either my brother or I were the child of my father.  For that, we did need matching to other people, and preferably close cousins – the closer the better.  Autosomal DNA testing was new at that time, and I had to recruit cousins.  Bless those who took pity on me and tested, because I was truly desperate to know.

Suffice it to say that the wait was a roller coaster ride of emotion.

If I was not my father’s child, I had just done 30+ years of someone else’s genealogy – not a revelation I relished, at all.

I was my father’s child.  My brother wasn’t.  I was glad I never told him the first part, because I didn’t have to tell him this part either.

My goal at that point changed to more of a general interest nature as more cousins tested and we matched, verifying different lineages that has been unable to be verified by Y or mtDNA testing.

Then one day, something magical happened.

One of my Y lines, Marcus Younger, whose Y line is a result of a NPE, nonparental event, or said differently, an undocumented adoption, received amazing information.  The paternal Younger family line we believed Marcus descended from, he didn’t.  However, autosomal DNA confirmed that even though he is not the paternal child of that line, he is still autosomally related to that line, sharing a common ancestor – suggesting that he may have been born of a Younger female and given that surname, while carrying the Y DNA of his biological father, who remains unidentified.

Amazingly, the next day, a match popped up that matched me and another Younger relative.  This match descended not from the Younger line, but from Marcus Younger’s wife’s alleged surname family.  I suddenly realized that not only was autosomal DNA interesting for confirming your tree – it could also be used to break down long-standing brick walls.  That’s where I’ve been focused ever since.

That’s a very different goal from where I began, and my current goal utilizes the tools in a very different way than my earlier goals.  Confidence levels matter now, a great deal, where that first day, all I wanted was a yes or no.

Today, my goal, other than breaking down brick walls, is for genetic genealogy to become automated and much easier but without taking away our options or keeping us so “safe” that we have no tools (Ancestry).

The process that will allow us to refine genetic genealogy and group individuals and matches utilizing trees on our desktops will ultimately be the key to unraveling those distant connections.  The data is there, we just have to learn how to use it most effectively, and the key, other than software, is collaboration with many cousins.

Aside from science and technology, the other wonderful aspect of autosomal DNA testing is that is has the potential to unite and often, reunite families who didn’t even know they were families.  I’ve seen this over and over now and I still marvel at this miracle given to us by our ancestors – their DNA.

So, regardless of where you fall on the goals and matching confidence spectrum in terms of genetic genealogy, keep encouraging others to test and keep reaching out and sharing – because it takes a village to recreate an ancestor!  No one can do it alone, and the more people who test and share, the better all of our chances become to achieve whatever genetic genealogy goals we have.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research