Duplicate Copies of Parental Chromosomes – Uniparental Disomy

Recently, three articles were been published that discuss a phenomenon where unsuspecting individuals have two copies one parent’s chromosome, and no copy of the other parent’s chromosome. This is called Uniparental Disomy.

Since then, online I’ve seen this phenomenon being offered as a reason for all kinds of things – which just isn’t the case.

I’m sure in part it’s because people either haven’t actually read the articles, or they don’t understand what’s being said.

I’m going to explain this briefly and then tell you how you can find out if this situation actually DOES apply to you.

Uniparental Disomy in Brief

Here are a few summary bullet points about uniparental disomy:

  • Uniparental disomy is found on ONLY ONE CHROMOSOME in roughly 1 in 2000 people in the reference samples utilized at 23andMe.
  • This is not a new discovery, per se. It was known and previously believed to occur in 1 of 3,500 births, but that frequency has been updated to 1 in 2,000 in the paper.
  • Uniparental disomy was found in 1 of 50,000 people on TWO CHROMOSOMES.
  • This is NOT the reason you have more maternal or paternal matches, in general. Legitimate reasons for more matches on one parent’s line include the fact that one family or another historically has more or fewer descendants, more or fewer dead ends, recent immigrants, ancestors from regions where DNA testing is not popular and/or endogamous populations.
  • The people included in the research were trios where the tester and their parents have all 3 tested.
  • Many/most people with uniparental disomy have no known health issues.
  • The testers have in some cases been associated with some conditions, as described in the paper and supplemental information.
  • Of the people who carry this condition, more people carry a double maternal chromosome than a double paternal chromosome.
  • Uniparental disomy occurs more on chromosome 16 than any other chromosome, twice as often as the second highest, chromosome 7, with 40 and 20 occurrences each, respectively. Chromosome 18 had none. No, no one knows why.
  • It’s not necessary for the entire chromosome to be duplicated. In some cases, only part of the chromosome is improperly combined.

Articles

This Atlantic article provides an overview:

This academic paper in Cell is referenced in The Atlantic article and is where the meat of the information is found. Be sure to look at the supplemental files too.

Much of the data for the article was from 23andMe who discussed this study in their blog here.

What About You?

Do you have a chromosome that has experienced uniparental disomy? Probably not, but there’s a very easy way for you to find out.

If you have a duplicate chromosome, or portion of a chromosome from one parent, the genetic genealogy “indicator” that you’ll see is called ROH, or Run of Homozygosity. This condition occurs in situations where you have a duplicate chromosome, or where your parents are related to each other

  1. The first question to ask yourself is whether or not your parents are related to each other. If so, you will have some ROH segments.
  2. The second question is whether you have an entire duplicated chromosome when your parents aren’t related.

In order to answer both questions, we use the tool at GedMatch called “Are your parents related?”

Are Your Parents Related to Each Other?

You’ll need to establish an account at GedMatch and upload your DNA results from one of the testing vendors.

Here are instructions for how to download from the various vendors:

Using the “Are your parents related” Tool

To use this tool at GedMatch, after your uploaded kit is finished processing, click on “Are your parents related?” and enter the kit number of the person you want to evaluate. I’m assuming for this discussion that person is you.

Parents related.png

Normally, we use this tool to determine if someone’s parents are related to each other. We find this occurring in endogamous populations or where cousins married in the past few generations, as happened rather routinely in history.

In those situations, across all of a person’s chromosomes (not just one), we find relatively small segments of common DNA inherited by the person on both their maternal and paternal copies of each chromosome.

Parents are related.png

These matching areas are called ROH or “runs of homozygosity” meaning that the DNA is identical on both chromosomes for short segments, as shown above in the regions where the top bars are solid green and the bottom bar is solid blue.

The legend for reading the graphic is shown below.

Parents related legend.png

The chromosomes of a person whose parents are not related is shown below. Notice that there are no significant green bars on top, and no blue bars on the bottom.

Parents not related.png

Simple chance alone is responsible for tiny segments that are identical, like those tiny green slivers, but not larger segments over 7cM as shown in the first example and marked by blue on the bottom.

For someone that has a fully duplicated chromosome, meaning uniparental disomy, we see something different.

A Duplicate Chromosome

For someone that has a duplicate parental chromosome, all of their chromosomes look normal except that one entire chromosome, or a very large segment, is entirely identical.

Below is an example of a person whose chromosome 7 is duplicated. The rest of this person’s chromosomes looked like the image above with only tiny green slivers.

Parents uniparental disomy.png

If you have a duplicate chromosome, you’re rare, one in every 2,000 people in the populations studied.

If you have two identical chromosomes, you’re hen’s teeth rare – 1 in 50,000.

If you have uniparental disomy, you probably have no idea. You can also experience uniparental disomy when most of, but not all of a single chromosome is duplicated.

If you have duplicate parental chromosomes, you’ll match people on both sides of your family normally on all of your OTHER non-duplicate chromosomes. On your duplicate chromosome, you’ll only match people from the parent whose chromosome is duplicated.

In other words, this is NOT why you seem to be missing matches from one side of your family generally. You’ll need to look at other reasons to explain that.

If you have a duplicate chromosome, or large segment of a duplicate chromosome, leave a comment.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

 

 

Hit a Genetic Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters

Do you want to hit a home run with your DNA test, but find yourself a mite bewildered?

Yep, those matches can be somewhat confusing – especially if you don’t understand what’s going on. Do you have a nagging feeling that you might be missing something?

I’m going to explain chromosome matching, and its big sister, triangulation, step by step to remove any confusion, to help you sort through your matches and avoid imposters.

This article is one of the most challenging I’ve ever written – in part because it’s a concept that I’m so familiar with but can be, and is, misinterpreted so easily. I see mistakes and confusion daily, which means that resulting conclusions stand a good chance of being wrong.

I’ve tried to simplify these concepts by giving you easy-to-use memory tools.

There are three key phrases to remember, as memory-joggers when you work through your matches using a chromosome browser: double-sided, two faces and imposter. While these are “cute,” they are also quite useful.

When you’re having a confusing moment, think back to these memory-jogging key words and walk yourself through your matches using these steps.

These three concepts are the foundation of understanding your matches, accurately, as they pertain to your genealogy. Please feel free to share, link or forward this article to your friends and especially your family members (including distant cousins) who work with genetic genealogy. 

Now, it’s time to enjoy your double-sided, two-faced chromosomes and avoid those imposters:)

Are you ready? Grab a nice cup of coffee or tea and learn how to hit home runs!

Double-Sided – Yes, Really

Your chromosomes really are double sided, and two-faced too – and that’s a good thing!

However, it’s initially confusing because when we view our matches in a chromosome browser, it looks like we only have one “bar” or chromosome and our matches from both our maternal and paternal sides are both shown on our one single bar.

How can this be? We all have two copies of chromosome 1, one from each parent.

Chromosome 1 match.png

This is my chromosome 1, with my match showing in blue when compared to my chromosome, in gray, as the background.

However, I don’t know if this blue person matches me on my mother’s or father’s chromosome 1, both of which I inherited. It could be either. Or neither – meaning the dreaded imposter – especially that small blue piece at left.

What you’re seeing above is in essence both “sides” of my chromosome number 1, blended together, in one bar. That’s what I mean by double-sided.

There’s no way to tell which side or match is maternal and which is paternal without additional information – and misunderstanding leads to misinterpreting results.

Let’s straighten this out and talk about what matches do and don’t mean – and why they can be perplexing. Oh, and how to discover those imposters!

Your Three Matches

Let’s say you have three matches.

At Family Tree DNA, the example chromosome browser I’m using, or at any vendor with a chromosome browser, you select your matches which are viewed against your chromosomes. Your chromosomes are always the background, meaning in this case, the grey background.

Chromosome 1-4.png

  • This is NOT three copies each of your chromosomes 1, 2, 3 and 4.
  • This is NOT displaying your maternal and paternal copies of each chromosome pictured.
  • We CANNOT tell anything from this image alone relative to maternal and paternal side matches.
  • This IS showing three individual people matching you on your chromosome 1 and the same three people matching you in the same order on every chromosome in the picture.

Let’s look at what this means and why we want to utilize a chromosome browser.

I selected three matches that I know are not all related through the same parent so I can demonstrate how confusing matches can be sorted out. Throughout this article, I’ve tried to explain each concept in at least two ways.

Please note that I’m using only chromsomes 1-4 as examples, not because they are any more, or less, important than the other chromosomes, but because showing all 22 would not add any benefit to the discussion. The X chromosome has a separate inheritance path and I wrote about that here.

Let’s start with a basic question.

Why Would I Want to Use a Chromosome Browser?

Genealogists view matches on chromosome browsers because:

  • We want to see where our matches match us on our chromosomes
  • We’d like to identify our common ancestor with our match
  • We want to assign a matching segment to a specific ancestor or ancestral line, which confirmed those ancestors as ours
  • When multiple people match us on the same location on the chromosome browser, that’s a hint telling us that we need to scrutinize those matches more closely to determine if those people match us on our maternal or paternal side which is the first step in assigning that segment to an ancestor

Once we accurately assign a segment to an ancestor, when anyone else matches us (and those other people) on that same segment, we know which ancestral line they match through – which is a great head start in terms of identifying our common ancestor with our new match.

That’s a genetic genealogy home run!

Home Runs 

There are four bases in a genetic genealogy home run.

  1. Determine whether you actually match someone on the same segment
  2. Which is the first step in determining that you match a group of people on the same segment
  3. And that you descend from a common ancestor
  4. The fourth step, or the home run, is to determine which ancestor you have in common, assigning that segment to that ancestor

If you can’t see segment information, you can’t use a chromosome browser and you can’t confirm the match on that segment, nor can you assign that segment to a particular ancestor, or ancestral couple.

The entire purpose of genealogy is to identify and confirm ancestors. Genetic genealogy confirms the paper trail and breaks down even more brick walls.

But before you can do that, you have to understand what matches mean and how to use them.

The first step is to understand that our chromosomes are double-sided and you can’ t see both of your chromosomes at once!

Double Sided – You Can’t See Both of Your Chromosomes at Once

The confusing part of the chromosome browser is that it can only “see” your two chromosomes blended as one. They are both there, but you just can’t see them separately.

Here’s the important concept:

You have 2 copies of chromosomes 1 through 22 – one copy that you received from your mother and one from your father, but you can’t “see” them separately.

When your DNA is sequenced, your DNA from your parents’ chromosomes emerges as if it has been through a blender. Your mother’s chromosome 1 and your father’s chromosome 1 are blended together. That means that without additional information, the vendor can’t tell which matches are from your father’s side and which are from your mother’s side – and neither can you.

All the vendor can tell is that someone matches you on the blended version of your parents. This isn’t a negative reflection on the vendors, it’s just how the science works.

Chromosome 1.png

Applying this to chromosome 1, above, means that each segment from each person, the blue person, the red person and the teal person might match you on either one of your chromosomes – the paternal chromosome or the maternal chromosome – but because the DNA of your mother and father are blended – there’s no way without additional information to sort your chromosome 1 into a maternal and paternal “side.”

Hence, you’re viewing “one” copy of your combined chromosomes above, but it’s actually “two-sided” with both maternal and paternal matches displayed in the chromosome browser.

Parent-Child Matches

Let’s explain this another way.

Chromosome parent.png

The example above shows one of my parents matching me. Don’t be deceived by the color blue which is selected randomly. It could be either parent. We don’t know.

You can see that I match my parent on the entire length of chromosome 1, but there is no way for me to tell if I’m looking at my mother’s match or my father’s match, because both of my parents (and my children) will match me on exactly the same locations (all of them) on my chromosome 1.

Chromosome parent child.png

In fact, here is a combination of my children and my parents matching me on my chromosome 1.

To sort out who is matching on paternal and maternal chromosomes, or the double sides, I need more information. Let’s look at how inheritance works.

Stay with me!

Inheritance Example

Let’s take a look at how inheritance works visually, using an example segment on chromosome 1.

Chromosome inheritance.png

In the example above:

  • The first column shows addresses 1-10 on chromosome 1. In this illustration, we are only looking at positions, chromosome locations or addresses 1-10, but real chromosomes have tens of thousands of addresses. Think of your chromosome as a street with the same house numbers on both sides. One side is Mom’s and one side is Dad’s, but you can’t tell which is which by looking at the house numbers because the house numbers are identical on both sides of the street.
  • The DNA pieces, or nucleotides (T, A, C or G,) that you received from your Mom are shown in the column labeled Mom #1, meaning we’re looking at your mother’s pink chromosome #1 at addresses 1-10. In our example she has all As that live on her side of the street at addresses 1-10.
  • The DNA pieces that you received from your Dad are shown in the blue column and are all Cs living on his side of the street in locations 1-10.

In other words, the values that live in the Mom and Dad locations on your chromosome streets are different. Two different faces.

However, all that the laboratory equipment can see is that there are two values at address 1, A and C, in no particular order. The lab can’t tell which nucleotide came from which parent or which side of the street they live on.

The DNA sequencer knows that it found two values at each address, meaning that there are two DNA strands, but the output is jumbled, as shown in the First and Second read columns. The machine knows that you have an A and C at the first address, and a C and A at the second address, but it can’t put the sequence of all As together and the sequence of all Cs together. What the sequencer sees is entirely unordered.

This happens because your maternal and paternal DNA is mixed together during the extraction process.

Chromosome actual

Click to enlarge image.

Looking at the portion of chromosome 1 where the blue and teal people both match you – your actual blended values are shown overlayed on that segment, above. We don’t know why the blue and the teal people are matching you. They could be matching because they have all As (maternal), all Cs (paternal) or some combination of As and Cs (a false positive match that is identical by chance.)

There are only two ways to reassemble your nucleotides (T, A, C, and G) in order and then to identify the sides as maternal and paternal – phasing and matching.

As you read this next section, it does NOT mean that you must have a parent for a chromosome browser to be useful – but it does mean you need to understand these concepts.

There are two types of phasing.

Parental Phasing

  • Parental Phasing is when your DNA is compared against that of one or both parents and sorted based on that comparison.

Chromosome inheritance actual.png

Parental phasing requires that at least one parent’s DNA is available, has been sequenced and is available for matching.

In our example, Dad’s first 10 locations (that you inherited) on chromosome 1 are shown, at left, with your two values shown as the first and second reads. One of your read values came from your father and the other one came from your mother. In this case, the Cs came from your father. (I’m using A and C as examples, but the values could just as easily be T or G or any combination.)

When parental phasing occurs, the DNA of one of your parents is compared to yours. In this case, your Dad gave you a C in locations 1-10.

Now, the vendor can look at your DNA and assign your DNA to one parent or the other. There can be some complicating factors, like if both your parents have the same nucleotides, but let’s keep our example simple.

In our example above, you can see that I’ve colored portions of the first and second strands blue to represent that the C value at that address can be assigned through parental phasing to your father.

Conversely, because your mother’s DNA is NOT available in our example, we can’t compare your DNA to hers, but all is not lost. Because we know which nucleotides came from your father, the remaining nucleotides had to come from your mother. Hence, the As remain after the Cs are assigned to your father and belong to your mother. These remaining nucleotides can logically be recombined into your mother’s DNA – because we’ve subtracted Dad’s DNA.

I’ve reassembled Mom, in pink, at right.

Statistical/Academic Phasing

  • A second type of phasing uses something referred to as statistical or academic phasing.

Statistical phasing is less successful because it uses statistical calculations based on reference populations. In other words, it uses a “most likely” scenario.

By studying reference populations, we know scientifically that, generally, for our example addresses 1-10, we either see all As or all Cs grouped together.

Based on this knowledge, the Cs can then logically be grouped together on one “side” and As grouped together on the other “side,” but we still have no way to know which side is maternal or paternal for you. We only know that normally, in a specific population, we see all As or all Cs. After assigning strings or groups of nucleotides together, the algorithm then attempts to see which groups are found together, thereby assigning genetic “sides.” Assigning the wrong groups to the wrong side sometimes happens using statistical phasing and is called strand swap.

Once the DNA is assigned to physical “sides” without a parent or matching, we still can’t identify which side is paternal and which is maternal for you.

Statistical or academic phasing isn’t always accurate, in part because of the differences found in various reference populations and resulting admixture. Sometimes segments don’t match well with any population. As more people test and more reference populations become available, statistical/academic phasing improves. 23andMe uses academic phasing for ethnicity, resulting in a strand swap error for me. Ancestry uses academic phasing before matching.

By comparison to statistical or academic phasing, parental phasing with either or both parents is highly accurate which is why we test our parents and grandparents whenever possible. Even if the vendor doesn’t use our parents’ results, we certainly can!

If someone matches you and your parent too, you know that match is from that parent’s side of your tree.

Matching

The second methodology to sort your DNA into maternal and paternal sides is matching, either with or without your parents.

Matching to multiple known relatives on specific segments assigns those segments of your DNA to the common ancestor of those individuals.

In other words, when I match my first cousin, and our genealogy indicates that we share grandparents – assuming we match on the appropriate amount of DNA for the expected relationship – that match goes a long way to confirming our common ancestor(s).

The closer the relationship, the more comfortable we can be with the confirmation. For example, if you match someone at a parental level, they must be either your biological mother, father or child.

While parent, sibling and close relationships are relatively obvious, more distant relationships are not and can occur though unknown or multiple ancestors. In those cases, we need multiple matches through different children of that ancestor to reasonably confirm ancestral descent.

Ok, but how do we do that? Let’s start with some basics that can be confusing.

What are we really seeing when we look at a chromosome browser?

The Grey/Opaque Background is Your Chromosome

It’s important to realize that you will see as many images of your chromosome(s) as people you have selected to match against.

This means that if you’ve selected 3 people to match against your chromosomes, then you’ll see three images of your chromosome 1, three images of your chromosome 2, three images of your chromosome 3, three images of your chromosome 4, and so forth.

Remember, chromosomes are double-sided, so you don’t know whether these are maternal or paternal matches (or imposters.)

In the illustration below, I’ve selected three people to match against my chromosomes in the chromosome browser. One person is shown as a blue match, one as a red match, and one as a teal match. Where these three people match me on each chromosome is shown by the colored segments on the three separate images.

Chromosome 1.png

My chromosome 1 is shown above. These images are simply three people matching to my chromosome 1, stacked on top of each other, like cordwood.

The first image is for the blue person. The second image is for the red person. The third image is for the teal person.

If I selected another person, they would be assigned a different color (by the system) and a fourth stacked image would occur.

These stacked images of your chromosomes are NOT inherently maternal or paternal.

In other words, the blue person could match me maternally and the red person paternally, or any combination of maternal and paternal. Colors are not relevant – in other words colors are system assigned randomly.

Notice that portions of the blue and teal matches overlap at some of the same locations/addresses, which is immediately visible when using a chromosome browser. These areas of common matching are of particular interest.

Let’s look closer at how chromosome browser matching works.

What about those colorful bars?

Chromosome Browser Matching

When you look at your chromosome browser matches, you may see colored bars on several chromosomes. In the display for each chromosome, the same color will always be shown in the same order. Most people, unless very close relatives, won’t match you on every chromosome.

Below, we’re looking at three individuals matching on my chromosomes 1, 2, 3 and 4.

Chromosome browser.png

The blue person will be shown in location A on every chromosome at the top. You can see that the blue person does not match me on chromosome 2 but does match me on chromosomes 1, 3 and 4.

The red person will always be shown in the second position, B, on each chromosome. The red person does not match me on chromosomes 2 or 4.

The aqua person will always be shown in position C on each chromosome. The aqua person matches me on at least a small segment of chromosomes 1-4.

When you close the browser and select different people to match, the colors will change and the stacking order perhaps, but each person selected will always be consistently displayed in the same position on all of your chromosomes each time you view.

The Same Address – Stacked Matches

In the example above, we can see that several locations show stacked segments in the same location on the browser.

Chromosome browser locations.png

This means that on chromosome 1, the blue and green person both match me on at least part of the same addresses – the areas that overlap fully. Remember, we don’t know if that means the maternal side or the paternal side of the street. Each match could match on the same or different sides.

Said another way, blue could be maternal and teal could be paternal (or vice versa,) or both could be maternal or paternal. One or the other or both could be imposters, although with large segments that’s very unlikely.

On chromosome 4, blue and teal both match me on two common locations, but the teal person extends beyond the length of the matching blue segments.

Chromosome 3 is different because all three people match me at the same address. Even though the red and teal matching segments are longer, the shared portion of the segment between all three people, the length of the blue segment, is significant.

The fact that the stacked matches are in the same places on the chromosomes, directly above/below each other, DOES NOT mean the matches also match each other.

The only way to know whether these matches are both on one side of my tree is whether or not they match each other. Do they look the same or different? One face or two? We can’t tell from this view alone.

We need to evaluate!

Two Faces – Matching Can be Deceptive!

What do these matches mean? Let’s ask and answer a few questions.

  • Does a stacked match mean that one of these people match on my mother’s side and one on my father’s side?

They might, but stacked matches don’t MEAN that.

If one match is maternal, and one is paternal, they still appear at the same location on your chromosome browser because Mom and Dad each have a side of the street, meaning a chromosome that you inherited.

Remember in our example that even though they have the same street address, Dad has blue Cs and Mom has pink As living at that location. In other words, their faces look different. So unless Mom and Dad have the same DNA on that entire segment of addresses, 1-10, Mom and Dad won’t match each other.

Therefore, my maternal and paternal matches won’t match each other either on that segment either, unless:

  1. They are related to me through both of my parents and on that specific location.
  2. My mother and father are related to each other and their DNA is the same on that segment.
  3. There is significant endogamy that causes my parents to share DNA segments from their more distant ancestors, even though they are not related in the past few generations.
  4. The segments are small (segments less than 7cM are false matches roughly 50% of the time) and therefore the match is simply identical by chance. I wrote about that here. The chart showing valid cM match percentages is shown here, but to summarize, 7-8 cMs are valid roughly 46% of the time, 8-9 cM roughly 66%, 9-10 cM roughly 91%, 10-11 cM roughly 95, but 100 is not reached until about 20 cM and I have seen a few exceptions above that, especially when imputation is involved.

Chromosome inheritance match.png

In this inheritance example, we see that pink Match #1 is from Mom’s side and matches the DNA I inherited from pink Mom. Blue Match #2 is from Dad’s side and matches the DNA I inherited from blue Dad. But as you can see, Match #1 and Match #2 do not match each other.

Therefore, the address is only half the story (double-sided.)

What lives at the address is the other half. Mom and Dad have two separate faces!

Chromosome actual overlay

Click to enlarge image

Looking at our example of what our DNA in parental order really looks like on chromosome 1, we see that the blue person actually matches on my maternal side with all As, and the teal person on the paternal side with all Cs.

  • Does a stacked match on the chromosome browser mean that two people match each other?

Sometimes it happens, but not necessarily, as shown in our example above. The blue and teal person would not match each other. Remember, addresses (the street is double-sided) but the nucleotides that live at that address tell the real story. Think two different looking faces, Mom’s and Dad’s, peering out those windows.

If stacked matches match each other too – then they match me on the same parental side. If they don’t match each other, don’t be deceived just because they live at the same address. Remember – Mom’s and Dad’s two faces look different.

For example, if both the blue and teal person match me maternally, with all As, they would also match each other. The addresses match and the values that live at the address match too. They look exactly the same – so they both match me on either my maternal or paternal side – but it’s up to me to figure out which is which using genealogy.

Chromosome actual maternal.png

Click to enlarge image

When my matches do match each other on this segment, plus match me of course, it’s called triangulation.

Triangulation – Think of 3

If my two matches match each other on this segment, in addition to me, it’s called triangulation which is genealogically significant, assuming:

  1. That the triangulated people are not closely related. Triangulation with two siblings, for example, isn’t terribly significant because the common ancestor is only their parents. Same situation with a child and a parent.
  2. The triangulated segments are not small. Triangulation, like matching, on small segments can happen by chance.
  3. Enough people triangulate on the same segment that descends from a common ancestor to confirm the validity of the common ancestor’s identity, also confirming that the match is identical by descent, not identical by chance.

Chromosome inheritance triangulation.png

The key to determining whether my two matches both match me on my maternal side (above) or paternal side is whether they also match each other.

If so, assuming all three of the conditions above are true, we triangulate.

Next, let’s look at a three-person match on the same segment and how to determine if they triangulate.

Three Way Matching and Identifying Imposters

Chromosome 3 in our example is slightly different, because all three people match me on at least a portion of that segment, meaning at the same address. The red and teal segments line up directly under the blue segment – so the portion that I can potentially match identically to all 3 people is the length of the blue segment. It’s easy to get excited, but don’t get excited quite yet.

Chromosome 3 way match.png

Given that three people match me on the same street address/location, one of the following three situations must be true:

  • Situation 1- All three people match each other in addition to me, on that same segment, which means that all three of them match me on either the maternal or paternal side. This confirms that we are related on the same side, but not how or which side.

Chromosome paternal.png

In order to determine which side, maternal or paternal, I need to look at their and my genealogy. The blue arrows in these examples mean that I’ve determined these matches to all be on my father’s side utilizing a combination of genealogy plus DNA matching. If your parent is alive, this part is easy. If not, you’ll need to utilize common matching and/or triangulation with known relatives.

  • Situation 2 – Of these three people, Cheryl, the blue bar on top, matches me but does not match the other two. Charlene and David, the red and teal, match each other, plus me, but not Cheryl.

Chromosome maternal paternal.png

This means that at least either my maternal or paternal side is represented, given that Charlene and David also match each other. Until I can look at the identity of who matches, or their genealogy, I can’t tell which person or people descend from which side.

In this case, I’ve determined that Cheryl, my first cousin, with the pink arrow matches me on Mom’s side and Charlene and David, with the blue arrows, match me on Dad’s side. So both my maternal and paternal sides are represented – my maternal side with the pink arrow as well as my father’s side with the blue arrows.

If Cheryl was a more distant match, I would need additional triangulated matches to family members to confirm her match as legitimate and not a false positive or identical by chance.

  • Situation 3 – Of the three people, all three match me at the same addresses, but none of the three people match each other. How is this even possible?

Chromosome identical by chance.png

This situation seems very counter-intuitive since I have only 2 chromosomes, one from Mom and one from Dad – 2 sidesof the street. It is confusing until you realize that one match (Cheryl and me, pink arrow) would be maternal, one would be paternal (Charlene and me, blue arrow) and the third (David and me, red arrows) would have DNA that bounces back and forth between my maternal and paternal sides, meaning the match with David is identical by chance (IBC.)

This means the third person, David, would match me, but not the people that are actually maternal and paternal matches. Let’s take a look at how this works

Chromosome maternal paternal IBC.png

The addresses are the same, but the values that live at the addresses are not in this third scenario.

Maternal pink Match #1 is Cheryl, paternal blue Match #2 is Charlene.

In this example, Match #3, David, matches me because he has pink and blue at the same addresses that Mom and Dad have pink and blue, but he doesn’t have all pink (Mom) nor all blue (Dad), so he does NOT match either Cheryl or Charlene. This means that he is not a valid genealogical match – but is instead what is known as a false positive – identical by chance, not by descent. In essence, a wily genetic imposter waiting to fool unwary genealogists!

In his case, David is literally “two-faced” with parts of both values that live in the maternal house and the paternal house at those addresses. He is a “two-faced imposter” because he has elements of both but isn’t either maternal or paternal.

This is the perfect example of why matching and triangulating to known and confirmed family members is critical.

All three people, Cheryl, Charlene and David match me (double sided chromosomes), but none of them match each other (two legitimate faces – one from each parent’s side plus one imposter that doesn’t match either the legitimate maternal or paternal relatives on that segment.)

Remember Three Things

  1. Double-Sided – Mom and Dad both have the same addresses on both sides of each chromosome street.
  2. Two Legitimate Faces – The DNA values, nucleotides, will have a unique pattern for both your Mom and Dad (unless they are endogamous or related) and therefore, there are two legitimate matching patterns on each chromsome – one for Mom and one for Dad. Two legitimate and different faces peering out of the houses on Mom’s side and Dad’s side of the street.
  3. Two-Faced Imposters – those identical by chance matches which zig-zag back and forth between Mom and Dad’s DNA at any given address (segment), don’t match confirmed maternal and paternal relatives on the same segment, and are confusing imposters.

Are you ready to hit your home run?

What’s Next?

Now that we understand how matching and triangulation works and why, let’s put this to work at the vendors. Join me for my article in a few days, Triangulation in Action at Family Tree DNA, MyHeritage, 23andMe and GedMatch.

We will step through how triangulation works at each vendor. You’ll have matches at each vendor that you don’ t have elsewhere. If you haven’t transferred your DNA file yet, you still have time with the step by step instructions below:

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Phoebe: Board of Trustee Member at 16 – 52 Ancestors #257

Phoebe JCF Photo.jpg

I’m just going to have to ask your forbearance. This is my granddaughter, Phoebe, who at the age of 16 has just been appointed to an advisory board of trustees for a nonprofit organization, Jackson Community Foundation. No, that’s not a typo. She’s only 16, and it’s no small nonprofit.

I’m proud as punch, as you’ve already figured out, I’m sure.

I’m the grandma and that’s my job.

However, Phoebe truly is remarkable. I know every grandma thinks that, so this is exactly why I’m asking forbearance.

You see, this almost wasn’t a happy story. In fact, it almost never happened at all.

We Nearly Lost Her

I’m holding Phoebe, my first grandchild, in the photo below, immediately after she was born, just before I realized she was turning blue. Actually, her hands already look blue in this photo. The nurse was unconcerned and told me this was “normal,” but I knew otherwise and let’s just say I became very assertive very quickly. By the time I waylaid a nurse, any nurse, Phoebe’s lips were blue.

There was no time to lose. When that second nurse realized what was happening, Phoebe was quickly whisked away into neo-natal intensive care where she spent the next week or so. She was not absorbing oxygen and nearly died.

Phoebe born.jpg

We were terrified.

This was a tough time for our family, in many ways. For her parents and me too. I had already lost one newborn baby, and this was eerily similar – way too close for comfort. Years before, I held my own baby as she passed away.

Thankfully, Phoebe improved and clearly survived, but that wouldn’t have been the case without modern medical care. A few decades ago, she would only have been one of those anonymous blank spaces in the census – a child only suggested by their absence and not known by their presence. Except, for us, as for those families, she would never have been anonymous. She would always have been a hole in our hearts.

Homecoming

A week or so later, she came home from the hospital.

Phoebe newborn quilt.jpg

Here’s Phoebe being held by her aunt the day she came home from the hospital – with her “welcome to the world” quilt from Grandma.

I made each of my grandchildren a quilt when they were born. That’s just the first of many quilts I’ve made them. I’m so glad they love grandma’s quilts – and now they like to quilt with grandma too.

I started quilting when I was young with scraps from making my own clothes when I was about the age Phoebe is now.

Phoebe and me as teen.png

Here are photos of Phoebe and me at about the same age. I fought to straighten my hair. Phoebe embraces her lovely curls.

My first professional photo wouldn’t be taken until I was 26 and out of college.

Phoebe is light years ahead of me and just sparkles with energy and enthusiasm!

Phoebe with daughter.png

Phoebe with my daughter at about the same age.

The Wedding

When Phoebe was three months old, my daughter made Phoebe a tiny dress to match the wedding décor, and Phoebe was in her grandmother’s wedding.

Phoebe at my wedding.jpg

Of course, Phoebe has no memory of that day, but I surely do!

Phoebe wedding 3 months.jpg

Fortunately, we took photos, because this wedding photo would be the only full family photo we would ever have.

Phoebe family wedding photo.jpg

These pictures make me cry today, for the loss, but also for the love. My mother and brother are both gone now.

Phoebe my wedding dress.png

This spring, Phoebe standing in the bedroom with my mother’s furniture, trying my wedding gown on.

Phoebe my wedding dress with sister.png

Someday, it will be hers to wear if she chooses.

Phoebe and Mawmaw

In our family, until this generation, grandmothers were called Mawmaw. Sadly, Phoebe also has no memory of my mother, Mawmaw.

Phoebe with Mawmaw.jpg

This is one of only a couple photos of Phoebe with my mother. This was Phoebe’s first Christmas and the only one with her great-grandmother.

Here’s Phoebe’s photo beside my mom’s high school graduation picture.

Phoebe with Mom.png

Making Memories

As Phoebe began to grow up, we started making family memories, like this one at Disney World.

Phoebe at Disney.jpg

And yes, as any good grandparent would do, Phoebe went to the Bippity-Bop Boutique and magically became transformed into a Princess. That boutique is a goldmine designed to mine the bank accounts of grandparents which it does VERY successfully, I might add.

Our family events seem to be punctuated by quilts.

Phoebe Princess quilt.jpg

I finished this quilt for Phoebe at Disney so she could have her very own special princess quilt to go with the one-of-a-kind special princess dress I made for her to wear at Disney. I was concerned that she would be upset that she didn’t have a more traditional princess dress like the other young princesses, but she wasn’t, and loved her unique “grandma princess dress.”

Phoebe Tinkerbell dress.jpg

What a great adventure.

Phoebe fountain.jpg

Even if it was beastly hot.

Phoebe facepaint.jpg

Phoebe got to wear both lipstick and nail polish for the first time! She was so excited, and then facepainting too.

Phoebe grandpa shark.jpg

There are just no words for some things, but grandpa makes scary things not so much!

Phoebe Disney family.jpg

I’m not sure who these other family members are. I must have missed something in my genealogy.

Grandma’s Princess

Planning for college or not, she’s still my Princess – even though she’s old enough to drive the chariot now. How did that happen anyway?

Princess Phoebe.jpg

For the next couple of years after Disney, we had princess everything!

Phoebe with princess jewelry.jpg

At least that made gift shopping easy.

Phoebe princess hat.jpg

Now that’s some hat. Even the English would be jealous!

But something was in the offing that was even better than being a princess.

Becoming a Big Sister

Phoebe big sister.jpg

Phoebe became a big sister!

Phoebe grandpa big sister.jpg

We nearly lost this baby too, for an entirely different reason. We didn’t realize it at the time, but this child was in constant pain for months.

Phoebe with baby sister.jpg

Phoebe loves her sister, even though her sister didn’t always love to be carried around like a baby doll!

Phoebe sister first steps.jpg

A year and a risky, life-saving surgery later, Phoebe was there for her sister’s first steps, with Dad and Grandpa. What an exciting red-letter day.

Phoebe with Disney dress.jpg

After that, Grandma made Disney dresses and goodies for both girls.

Phoebe sister with Disney dress.jpg

It was difficult to take photos of Phoebe’s sister, because once she started walking, and running, she never slowed down!

Phoebe bedtime yoga.png

The girls are inseparable. Here, they are doing “bedtime yoga” to quiet down before bedtime, under grandma’s quilts. I love it that their parents share these wonderful photos with me!

Sports

Phoebe began to engage in sports from a young age. She ran her first (partial) race with her dad when she was 3.

Phoebe first marathon.jpg

He’s pinning her runner identification on. A rite of passage in this family. Phoebe was so excited.

Phoebe first run.jpg

You can see her in the brightly colored clothing right up front, in the center. Unfortunately, she got run over by another runner, fell and bumped her head on the concrete, but got back up, crying, but carried on. Her Dad picked her up, which made her unhappy.

Phoebe with Dad.jpg

Dad carried her part of the way, first in his arms, then on his shoulders as he ran. She was on top of the world there.

Sometimes, it’s not about winning but being present in the moment.

Phoebe and gymnastics.jpg

Phoebe has always loved all kinds of sports. Gymnastics, horseback riding, volleyball, soccer, basketball, karate,swimming and I’m sure I’ve forgotten something.

Phoebe and soccer.jpg

I love the look of intensity on her face. She’s a dedicated athlete.

Phoebe and kids.jpg

Phoebe has always been a team player and enjoys working with young people, volunteering her time at various camps and events including coaching soccer.

Essential Lessons

Phoebe jewelry.jpg

Grandma teaching Phoebe the essentials of life. How to select jewelry. Next, we moved on to chocolate and dessert😊

Phoebe dessert.jpg

Hey, a grandma’s gotta do what a grandma’s gotta do!

Phoebe missing tooth

And you’ve got to show grandma your missing tooth.

Not only that, but she lost that first tooth after tripping over another dancer at a recital. Afterwards, she proudly rushed off the stage displaying her prize tooth gripped tightly in her hand! She didn’t miss a beat dancing! No one would ever have known what happened – but she also didn’t lose the tooth. Great recovery!

Phoebe recital.jpg

Who can resist those eyes? Not me, that’s for sure.

Phoebe red shoes.jpg

Not sure exactly how, but somehow she wound up in Kansas. You don’t suppose she clicked do you?

Phoebe fabric shopping.jpg

We’ve now graduated to fabric shopping for quilts with grandma! Yes!

Phoebe, Nora and Quilts

My mother only quilted at Missionary Circle, but this quilt made by her grandmother, Nora Kirsch Lore, represented the State of Indiana in the 1933 Chicago World’s fair.

climbing vine quilt

Nora is Phoebe’s 3 times great-grandmother.

Phoebe with Nora.png

Here’s Phoebe beside Nora at age 22 in 1888 when she was married.

Maintaining the family tradition, Phoebe likes to quilt with Grandma now.

Phoebe planning college quilt.jpg

Sometimes the hardest part of quilting is making decisions. Here, Phoebe’s planning blocks for a college quilt.

Farms are Fun

Phoebe and goat.jpg

Phoebe has lots of interests, farm animals among them. Somehow, I think that runs in her blood.

Peewee.jpg

My daughter with our orphan goat, Peewee, when my kids were growing up. Peewee wore diapers in the house and wore a yellow sweater to town for walks on a leash.

Phoebe pumpkins.jpg

Phoebe doesn’t know it, but on the farm at home, my dad used to plant pumpkins every year just so the grandkids could grow and select their own pumpkin for carving. She would have loved that, and him. I’m sure he’s watching over her now.

Phoebe and sister in labyrinth.jpg

Grandma doesn’t exactly have a farm, but I do have a labyrinth.

Phoebe buckets.jpg

Our ancestors carried water and also maple sap in buckets like these.

Phoebe sawing.jpg

I think she’s moved on to chain saws now.

Phoebe horse and boots.jpg

Perhaps Phoebe has her grandmother’s “boot” gene.

Phoebe and unicorn.jpg

Phoebe is no one-trick pony, um, I mean, unicorn, though. Not one bit.

Music

Phoebe Mississippi.jpg

Phoebe loves music. All kinds of music.

Phoebe drums.jpg

Phoebe and the family drum corps.

From a very young age, she was attracted to any musical instrument.

Phoebe tongue.jpg

You know, how you hold your tongue really DOES matter!

Phoebe guitar.jpg

Phoebe plays a number of instruments, but loves to play the piano. For hours on end.

Phoebe piano with sister.jpg

Alone or with someone. Sometimes her sister sings along.

Phoebe and piano.jpg

Phoebe was playing with the Jackson Symphony Orchestra and winning state-wide championships before she was 12. The first year she won, she was actually competing in the youngest category that began at 13 – and they didn’t know exactly what to do because she was actually “too young” to win. The prize was money and a scholarship.

Phoebe and Dad by piano.jpg

Sometimes her dad had to come directly from work to be at her recitals and events. I love this picture of them together!

Phoebe piano professional.jpg

This was probably actually Phoebe’s first “professional” picture.

Phoebe piano competition.jpg

I have miles and miles of footage of Phoebe playing soul-searing, breathtaking music. Songs were even composed for her to play at university competitions.

Phoebe award.jpg

Phoebe accepting a state-wide award with her teacher.

Phoebe trophy.jpg

You’ll excuse me if I call Phoebe a child prodigy, because she is – and I am, after all, the grandmother. I will, however, spare you the videos, although you’d probably enjoy them😊

Phoebe did not get her musical talent from me.

Phoebe with Edith.png

Phoebe’s great-great-grandmother, Edith Lore Ferverda played the piano beautifully, accompanying a great many dance recitals as my mother performed.

Genetics

PHoebe swabbing.jpg

As Phoebe has continued to mature, she developed an interest in science. Here, she’s swabbing for DNA testing.

I have NO IDEA where she got the idea to do something like that😊

Granddaughter DNA 2016

Next, Phoebe wanted to sequence DNA. Here, she’s in the lab at Michigan State University doing just that with strawberries.

We’ve spent hours reviewing where her DNA segments originated – because she is lucky enough to have the autosomal DNA of 3 grandparents and one great-grandparent, plus several aunts and uncles.

Phoebe’s DNA as compared to mine. The blue areas on her chromosomes are what she inherited from me.

Phoebe me DNA

Nothing makes genetics personal like your own family members and the power of visual examples.

Just a Normal Teen

Phoebe easter eggs.jpg

Amid all of this serious stuff, Phoebe is just a normal fun-loving teen.

Phoebe balloons.jpg

Cutting up with her friends.

Phoebe dinosaur.jpg

Petting dinosaurs.

Phoebe chickens.jpg

Making friends with chickens!

Phoebe snow.jpg

Playing in the snow. Her sister is hidden behind the tree and just caused it to dump on Phoebe.

Phoebe rock.jpg

This young woman perseveres and conquers what she sets her mind on.

Phoebe victory rock.jpg

Phoebe Branches Out

Now in the second half of her teen years, Phoebe is branching out and finding her wings – or maybe her voice.

Phoebe tree.jpg

Yes, Phoebe still hikes and climbs trees. One of my favorite photos, a lucky shot.

However, when on the ground, Phoebe has taken a shine to the stage. She has danced for years, but the theater bug has bitten her recently.

Phoebe play.jpg

I was convinced that Phoebe was going to be a geneticist, but she has since developed an interest in the arts, aside from piano performances. She also sings, dances and now acts in community theater.

Phoebe stage.jpg

Of course, my mother performed professionally – so maybe Phoebe comes by that ability naturally.

Barbara Ferverda dancing 1944 2 pro

Must have “skipped a generation,” or two, because I guarantee you, I have absolutely no talent there.

Phoebe Mom DNA.png

Is Phoebe’s dancing and theatrical ability handed down on the red segments above, passed down to Phoebe from my mother, through my blue segments? If so, those genes didn’t express in my generation.

Public Service

While Phoebe was recently appointed to the board of trustees, this is not her first time working as a public servant.

Phoebe volunteers at the Dahlem Outdoor Environmental Education Center and has been a volunteer assistant camp counselor since she was 13. She has been attending since she was 5. It’s one of her favorite places.

Phoebe moose.jpg

Phoebe’s on the committee for the annual Goblin Walk Fundraiser. She’s a moose, above, in brown, and a hummingbird in the blue/green sweatshirt, below.

PHoebe hummingbird.jpg

Beauty

Phoebe sees beauty everyplace and in everything.

Phoebe photographer.jpg

She has a great eye for color and detail and enjoys photography in grandma’s garden.

Phoebe taller than grandma.jpg

Phoebe was quite pleased with herself the day she realized she was taller than grandma.

What Phoebe doesn’t realize is that the white and purple phlox blooming beside us is from her great-grandparent’s farm. Yes, Mawmaw and Pawpaw are with us in subtle ways.

I dug the Phlox and brought it home the day Dad passed away. A few years later, it moved along with me to a new house and is now migrating to my children’s gardens a quarter century later.

Our ancestors are with us, not only in our DNA, abilities and appearance but in other subtle ways too.

Someday, I hope these same plants, or their descendants, will grow in Phoebe’s own garden. In the mean time, I’ll be the steward of the plants because she has a lot of cultivating to do.

The future is bright and full of promise. Whatever Phoebe’s life choices, I’m privileged to witness this remarkable young woman develop her potential, find her grounding, fledge the nest and fly on her own.

I have no doubt that Phoebe will leave this earth a better place than she found it.

Phoebe 6 generations.png

Her ancestors would be very, very proud of her. This one already is!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Lineage Societies: Requirements and DNA

I’ve been hesitant to rock this boat, hoping this ship would right itself, but I’ve decided that this vessel needs to be swayed a bit with the hope of providing encouragement and perhaps positive motivation for change.

Based on my ancestors, I qualify to join multiple lineage societies, including both the DAR and the Mayflower Society.

I checked the qualifications for both, and did not apply to the DAR, but did inquire about membership to the Mayflower Association for several reasons:

  • 2020 is the 400th anniversary of Plymouth Colony, meaning there should be lots going on next year.
  • I descend from Pilgrims; William Brewster, Patience Brewster, William’s wife Mary Brewster, Stephen Hopkins and Gyles Hopkins.
  • I felt that my expertise might be beneficial to the organization, in multiple ways, especially given the upcoming opportunities to recruit new members in 2020.

The first thing I ran into was a brick wall, not an ancestral brick wall, but an organizational one.

Birth Certificates

Lineage societies require your birth certificate.

Birth certificates are the most personal document you will ever have. Birth certificates are utilized for passports and are the premier document, meaning the most highly prized, for identity theft. Once compromised, you can never obtain a different birth certificate. It’s not like a credit card that you can cancel and have reissued.

Furthermore, you don’t actually need a birth certificate if you have tested the appropriate parent – and I have.

In fact, here’s my predicted relationship to my deceased mother at Family Tree DNA.

Lineage me mother.png

My mother is deceased, so her identity can no longer be compromized. I don’t have any problem providing her birth and death certificates in addition to an obituary that states that I’m her daughter – plus the genetic evidence of course. In fact, I could join the Mayflower DNA Project, and as administrators, they could see that relationship for themselves.

Furthermore, birth certificates are sometimes wrong – very wrong.

When Birth Certificates are Wrong

Birth certificates are wrong or misleading in the following circumstances:

  • People who are adopted and don’t know it
  • People who are adopted and know who their relevant biological parent is but have no access to a birth certificate showing their biological parents
  • People whose parent is not who they believe it is

In some circumstances, the child’s birth certificate isn’t incorrect, but the lineage may be incorrect when people’s ancestors beyond their parents are not the recorded individuals. Yes, I’m referring to the dreaded NPE, non-paternal event or not parent expected. You can read more about that here.

Aside from the issues above, there’s the issue of security when storing the birth certificate and privacy associated with the parents named on the birth certificate, especially if they are living.

Security and Privacy

Let’s take the issue of privacy first. Let’s say, for example, that an applicant’s parents weren’t married. The relevant parent is the applicant’s mother, not the father, so the identity of the father (or lack thereof) is irrelevant for lineage society membership.

The father’s privacy is compromised, along with the fact that the society now knows that the applicant’s parents weren’t married at the time the applicant was born. That’s entirely irrelevant to the application, and an invasion of the privacy of all 3 people involved.

Requiring applicants to submit a birth certificate, especially when genetic forms of identification are now readily available, forces the applicant to disclose information not relevant to joining a lineage society.

Frankly, anything beyond confirming an applicant’s connection to the relevant parent is none of anyone’s business.

Second, the applicant has absolutely no idea who is going to have access to their birth certificate in the future, once submitted, where it will be stored and security precautions taken, if any.

When inquiring about birth certificates at the Mayflower Society, I was told then are kept in locked cabinets but would probably be scanned soon.

While I’m sure this was supposed to make me feel better, it struck terror into my heart.

Often, organizations are slow to adopt technology as a whole, and when they do, they often aren’t aware of and don’t utilize safety and security precautions. Organizations owe it to their membership to stay current with security requirements and maintain up-do-date security measures. So, while I was already concerned enough about who has access to the filing cabinet key, I’m terrified about savvy hackers taking blatant advantage of an ill-secured or unsecured computer.

The sad part is that today, this is really a moot point because with DNA, many times we don’t need birth certificates for proof – and the only reason to continue doing what has always been done is ignorance, inertia and resistance to change.

Adoptees

Because birth certificates without genetic evidence are considered as the only accepted proof of a relationship to the applicant’s parents, this means that many adoptees have joined believing they are a linear descendant of the ancestor in question. Legally, they are.

Each organization needs to consider whether they want to honor linear paper descent as membership criteria or whether they are looking for linear biological descent. Or perhaps both.

Today, some adoptees who discover their biological parents would be eligible if they had not been adopted – but they are not eligible for membership because they don’t have a birth certificate with the biological parent’s name as their parent.

This creates an awkward situation, at best.

People who should be able to join, can’t, because of the birth certificate issue. And some people who are not biological descendants can join with no problem.

Is this the intention?

This is not small consideration. According to the University of Oregon, 5 million living people in the US are adopted, with 2-4% of all families having adopted, and 2.5% of children under the age of 18 being adoptees.

Y DNA

The DAR requires direct linear descent from a Revolutionary War Veteran. Like with the Mayflower Society, I won’t provide my birth certificate, so I’m not eligible to join.

The DAR has for many years accepted Y DNA at 37 markers as a portion of proof. According to this document, one close relative of the application must match the Y DNA of a descendant of an already “proven” patriot exactly at 37 markers.

This protocol is flawed in multiple ways.

Let’s say we have 2 men who descend from a common patrilineal ancestor, but we’re not sure which ancestor.

Today the Y DNA of these men matches at some level. STR mutations do not occur on a schedule and the reality of when/how often mutations occur varies widely. It’s certainly possible, and even likely, that in the roughly 9 generations, using a 25-year generation, since that patriot was born, that a marker mutation occurred. That would disqualify the applicant from using DNA evidence.

Conversely, if I’m a male Estes applicant and I want to apply to the DAR based on my descent from George Estes, my Y DNA may match the descendants of George at some level whether or not I’m descended from George or George’s brother, father or uncle. Y DNA really can only disprove a direct paternal relationship, not prove it.

In other words, there’s no or little analysis involved, simply a rule that doesn’t make sense.

Lineage chart

Click to enlarge

Let’s take a look at this example.

George Estes is the patriot, born in 1761. George had 3 brothers, Josiah, Bartlett and Winston.

George’s father, Moses II, had two brothers, John and William, who also had sons.

I’ve shown only one son’s line for both John and William, and I’ve named each man’s descendants the same name as his – for clarity.

John R. Estes, descendant of George was our original tester, and therefore, every other person who applies and submits Y DNA MUST match John R. Estes exactly at 37 markers.

George’s other descendant, George, comes along, but he does not match John R. exactly, having had one mutation someplace in the line between the patriot and George the tester’s birth. Therefore, George the tester’s Y DNA cannot be used – even though he is a descendant of George the patriot.

Based on my experience, it’s more likely that they won’t match at 37 markers, after 8 or 9 generations, than they will. That’s certainly the case in the Estes surname project.

In reality, in colonial families, everyone named their sons after their father, grandfather and often, brothers – so the names in all of these generations are likely to be the same, meaning John, William, George and Moses would likely be sprinkled in each generation of every line – causing confusion when attempting to genealogically connect back to the right Estes ancestor.

We see in our example chart, that by chance, William actually does match John R. exactly at 37 markers, even though George doesn’t. Therefore, if William was trying to use DNA to prove descent from George, even though that’s inaccurate, the Y DNA evidence would be allowed. So would Winston, descendant of George’s brother.

The only three that were accurate, based on the full 37 match rule is John, who does not descend from George, Josiah who was adopted and Bartlett who does descend from the same Estes line, but has too many mutations at that level to be considered a match to John R. Estes at all.

In other words, the only real descendant of the patriot is excluded, where 2 men not descended from the patriot would be included if they thought they descended from George.

Furthermore, one can be descended from George through a daughter and still qualify for DAR membership. If I believed, due to the Estes surname and other evidence, like a mention of a grandchild by name in George’s estate, that I descended from George’s son, but I actually descend through George’s daughter who was not married and gave her child the Estes surname – I would still technically qualify to join but the non-matching Y DNA would disqualify me today.

Another issue is if the original tester had been adopted or descended from a non-Estes male, every future tester would be compared to the wrong Y DNA and while the incorrect Y DNA would continue to be the reference sample for the patriot – even after it could be proven that was inaccurate due to multiple matching tests from multiple sons of George.

Rules without thoughtful analysis simply don’t work well. We know a whole lot more today than when these rules were put in place.

Parental Autosomal DNA is Definitive

Parental autosomal DNA is definitive unless you are dealing with an identical twin.

In addition to the actual match itself, you can see that parents and children match on the entire length of every chromosome.

Lineage parent child chromosome browser.png

Here’s my Mom’s chromosome browser match with me. There is no question that we are parent and child. Furthermore, looking at DNAPainter’s shared cM project tool, we can see that there is no other relationship that has the same match level as a parent/child relationship. My match with my mother is 3384 cM.

Lineage DNAPainter.png

Could someone go to a great deal of trouble to change a siblings name to their name or change their child’s name to their parent’s name to “fake” the identities of the people involved? Yes, they could if they had proper access to all accounts.

However, I can do exactly the same thing with a paper birth certificate, even with a seal.

My DNA test matching my mother, in conjunction with my mother’s birth and death certificates, in addition to her obituary identifying me as a child is about the most definitive evidence you could ever produce – far, far, more reliable than a birth certificate which would state that my mother is my mother even if I’m adopted.

This scenario works for adoptees as well in multiple scenarios, such as full siblings who clearly share both parents. In this case, if the non-adopted sibling is a lineage society member, then based on a DNA match at the full sibling level, the adopted individual should qualify for membership too. This isn’t the only example, just the first one that came to mind.

Thoughtful analysis and understanding of DNA is required.

Distant DNA is Not Black and White

While a parent-child autosomal relationship is evident, other autosomal relationships require analysis by someone experienced with that type of evaluation.

Furthermore, Y DNA can be deceptive as well, because the extent of what Y DNA can tell you is that two men descend from a common ancestor, not which common ancestor, nor how long ago, with very few exceptions. The exception would be when the actual Revolutionary War veteran experienced a SNP mutation that his sons have, but his brothers don’t.

However, no lineage societies that I know of utilize Y DNA SNP or even autosomal DNA evidence – even at the most basic level of parent/child.

With increasingly advanced testing, analysis versus line-in-the-sand rules needs to be implemented.

If lineage societies are going to utilize DNA testing, they need to stay current with technology and utilize best practices of genetic evidence.

Lineage Society Suggestions

Lineage societies need to re-evaluate their goals with applicants’ privacy and security in mind, in addition to how they can utilize genetic and other evidence to replace the existing birth certificate requirement – both in terms of traditional applicants like myself, as well as adoptees.

I have the following suggestions to be implemented as steps in a comprehensive solution:

  • Decide as a matter of policy whether applicants are allowed to join based on their paper trail descendancy, or their biological descendancy, or both. Paper trail only, meaning no additional evidence would be considered, would allow membership by children adopted into descendant families, but not children adopted out of descendant families. If genetic descendants are accepted, this allows children adopted out of descendant families to join once the relationship is discovered. If both types of membership are embraced, that avoids the issue of how to handle people who have already joined and subsequently discover they or their ancestors are/were adopted.
  • Determine the course of action when a line discovers that their Y DNA does not match that of the ancestor in question, especially given that the person could still potentially be a linear descendant through a female who gave the child her (the patriot’s) surname.
  • Obsolete the requirement for birth certificates at all when possible. If a DNA test proving a relationship can be substituted in lieu of a birth certificate, accept that as the preferred form of evidence.
  • Obsolete the requirement to physically submit any applicant’s birth certificate. Two individuals viewing a certificate with the relevant parent’s information exposed, and the non-relevant parent obscured, should suffice when no other avenue can be utilized. This eliminates the storage and privacy issues and requirements.
  • Implement a system that records the fact that current members and applicants have submitted a paper birth certificate that includes the parent of interest, then shred the existing birth certificates for anyone living. Without proof of death, this is presumed to be anyone under 100 years of age.
  • Allow additional proofs like parents’ obituaries instead of children’s birth certificates. This can easily be verified using publicly available sources such as Newspapers.com., etc.
  • Utilize Y DNA primarily to eliminate a line, and only when the descendants don’t match at 111 markers or are a completely different base haplogroup, such as haplogroup C versus R. Evaluate Y DNA matches along with other evidence, specifically looking for a mutation trail, if appropriate.
  • Remove the out-of-date requirement for future descendants to be required to match the Y DNA of an already “paper proven” ancestor. Paper can easily be wrong.
  • Revamp the DNA policies and procedures to incorporate qualified analysis. Provide guidelines instead of rules.
  • Retain a competent genetic genealogist to analyze applications that include DNA evidence, understanding that a CG, certified genealogist, certificate has no bearing on or evidence of the competence of that individual in DNA analysis. There is no genetic genealogy certification and many people who consult in the autosomal space are not experienced in the Y and mitochondrial DNA arenas.

The Alternate Future

Many older genealogical organizations are struggling for life. For the Mayflower Society, 2020 is a banner year. I hope they take advantage of the opportunity by not hobbling themselves with out-of-date requirements that are unnecessarily risky to applicants.

Younger people won’t join otherwise. Out of date and unreasonably burdensome membership requirements will cause membership to shrink over time until the organization shrivels and dies, going the way of the dinosaurs.

I would like to join multiple lineage organizations, but that won’t happen until the organizations update their policies to utilize widely and inexpensively available technology, along with associated best practices.

If you’d like to see these suggested changes implemented, and especially if you would be willing to help, make your voices heard to lineage societies, especially if you are already a member.

These organizations play an important role in the preservation of the records and information of our ancestors. I hope they choose to adapt.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Crossovers: Frequency and Inheritance Statistics – Male Versus Female Matters

Recently, a reader asked if I had any crossover statistics.

They were asking about the number of crossovers, meaning divisions on each chromosome, of the parent’s DNA when a child is created. In other words, how many segments of your maternal and paternal grandparent’s DNA do you inherit from your mother and father – and are those numbers somehow different?

Why would someone ask that question, and how is it relevant for genealogists?

What is a Crossover and Why is it Important?

We know that every child receives half of their autosomal DNA from their father, and half from their mother. Conversely that means that each parent can only give their child half of their own DNA that they received from their parents. Therefore, each parent has to combine some of the DNA from their father’s chromosome and their mother’s chromosome into a new chromosome that they contribute to their child.

Crossovers are breakpoints that are created when the DNA of the person’s parents is divided into pieces before being recombined into a new chromosome and passed on to the person’s child.

I’m going to use the following real-life scenario to illustrate.

Crossover pedigree.png

The colors of the people above are reflected on the chromosome below where the DNA of the blue daughter, and her red and green parents are compared to the DNA of the tester. The tester is shown as the gray background chromosomes in the chromosome browser. The backgroud person is whose results we are looking at.

My granddaughter has tested her DNA, as have her parents and 3 of her 4 grandparents along with 2 great-grandparents, shown as red and green in the diagram above.

Here’s an example utilizing the FamilyTreeDNA chromosome browser.

Crossover example chr 1.png

On my granddaughter’s chromosome 1, on the chromosome brower above, we see two perfect examples of crossovers.

There’s no need to compare her DNA against that of her parent, the son in the chart above, because we already know she matches the full length of every chromosome with both of her parents.

However, when comparing my granddaughter’s DNA against the grandmother (blue) and her grandmother’s parents, the great-grandmother shown in red and great-grandfather shown in green, we can see that the granddaughter received her blue segments from the grandmother.

The grandmother had to receive that entire blue segment from either her mother, in red, or her father, in green. So, every blue segment must have an exactly matching red segment, green segment or combination of both.

The first red box at left shows that the blue segment was inherited partially from the grandmother’s red mother and green father. We know that because the tester matches the red great-grandmother on part of that blue segment and the green great-grandfather on a different part of the entire blue segment that the tester inherited from her blue grandmother.

The middle colored region, not boxed, shows the entire blue segment was inherited from the red great-grandmother and the blue grandmother passed that intact through her son to her granddaughter.

The third larger red boxed area encompassing the entire tested region to the right of the centromere was inherited by the granddaughter from her grandmother (blue segment) but it was originally from the blue grandmother’s red mother and green father.

The Crossover

The areas on this chromosome where the blue is divided between the red and green, meaning where the red and green butt up against each other is called a crossover. It’s literally where the DNA of the blue daughter crosses over between DNA contributed by her red mother and green father.

Crossover segments.png

In other words, the crossover where the DNA divided between the blue grandmother’s parents when the grandmother’s son was created is shown by the dark arrows above. The son gave his daughter that exact same segment from his mother and it’s only by comparing the tester’s DNA against her great-grandparents that we can see the crossover.

Crossover 4 generations.png

What we’re really seeing is that the segments inherited by the grandmother from her parents two different chromosomes were combined into one segment that the grandmother gave to her son. The son inherited the green piece and the red piece on his maternal chromosome, which he gave intact to his daughter, which is why the daughter matches her grandmother on that entire blue segment and matches her great-grandparents on the red and green pieces of their individual DNA.

Inferred Matching Segments

Crossover untested grandfather.png

The entirely uncolored regions are where the tester does not match her blue grandmother and where she would match her grandfather, who has not tested, instead of her blue grandmother.

The testers father only received his DNA from his mother and father, and if his daughter does not match his mother, then she must match his untested father on that segment.

Looking at the Big Inheritance Picture

The tester’s full autosomal match between the blue grandmother, red great-grandmother and green great-grandfather is shown below.

Crossover autosomes.png

In light of the discussion that follows, it’s worth noting that chromosomes 4 and 20 (orange arrows) were passed intact from the blue grandmother to the tester through two meiosis (inheritance) events. We know this because the tester matches the green great-grandfather’s DNA entirely on these two chromosomes that he passed to his blue daughter, her son and then the tester.

Let’s track this for chromosomes 4 and 20:

  • Meiosis 1 –The tester matches her blue grandmother, so we know that there was no crossover on that segment between the father and the tester.
  • Meiosis 2 – The tester matches her green great-grandfather along the entire chromosome, proving that it was passed intact from the grandmother to the tester’s father, her son.
  • What we don’t know is whether there were any crossovers between the green great-grandfather when he passed his parent or parents DNA to the blue grandmother, his daughter. In order to determine that, we would need at least one of the green great-grandfather’s parents, which we don’t have. We don’t know if the green great-grandfather passed on his maternal or paternal copy of his chromosome, or parts of each to the blue great-grandmother, his daughter.

Meiosis Events and the Tree

So let’s look at these meiosis or inheritance events in a different way, beginning at the bottom with the pink tester and counting backwards, or up the tree.

Crossover meiosis events.png

By inference, we know that chromosomes 11, 16 and 22 (purple arrows) were also passed intact, but not from the blue grandmother. The tester’s father passed his father’s chromosome intact to his daughter. That’s the untested grandfather again. We know this because the tester does not match her blue grandmother at all on either of these three chromosomes, so the tester must match her untested grandfather instead, because those are the only two sources of DNA for the tester’s father.

A Blip, or Not?

If you’ve noticed that chromosome 14 looks unusual, in that the tester matches her grandmother’s blue segment, but not either of her great-grandparents, which is impossible, give yourself extra points for your good eye.

In this case, the green great-grandfather’s kit was a transfer kit in which that portion of chromosome 14 was not included or did not read accurately. Given that the red great-grandmother’s kit DID read in that region and does not match the tester, we know that chromosome 14 would actually have a matching green segment exactly the size of the blue segment.

However, in another situation where we didn’t know of an issue with the transfer kit, it is also possible that the granddaughter matched a small segment of the blue grandmother’s DNA where they were identical by chance. In that case, chromosome 14 would actually have been passed to the tester intact from her father’s father, who is untested.

Every Segment has a Story

Looking at this matching pattern and our ability to determine the source of the DNA back several generations, originating from great-grandparents, I hope you’re beginning to get a sense of why understanding crossovers better is important to genealogists.

Every single segment has a story and that story is comprised of crossovers where the DNA of our ancestors is combined in their offspring. Today, we see the evidence of these historical genetic meiosis or division/recombination events in the start and end points of matches to our genetic cousins. Every start and end point represents a crossover sometime in the past.

What else can we tell about these events and how often they occur?

Of the 22 autosomes, not counting the X chromosome which has a unique inheritance pattern, 17 chromosomes experienced at least one crossover.

What does this mean to me as a genealogist and how can I interpret this type of information?

Philip Gammon

You may remember our statistician friend Philip Gammon. Philip and I have collaborated before authoring the following articles where Philip did the heavy lifting.

I discussed crossovers in the article Concepts – DNA Recombination and Crossovers, also in collaboration with Philip, and showed several examples in a Four Generation Inheritance Study.

If you haven’t read those articles, now might be a good time to do so, as they set the stage for understanding the rest of this article.

The frequency of chromosome segment divisions and their resulting crossovers are key to understanding how recombination occurs, which is key to understanding how far back in time a common ancestor between you and a match can expect to be found.

In other words, everything we think we know about relationships, especially more distant relationships, is predicated on the rate that crossovers occur.

The Concepts article references the Chowdhury paper and revealed that females average about 42 crossovers per child and males average about 27 but these quantities refer to the total number of crossovers on all 22 autosomes and reveal nothing about the distribution of the number of crossovers at the individual chromosome level.

Philip Gammon has been taking a closer look at this particular issue and has done some very interesting crossover simulations by chromosome, which are different sizes, as he reports beginning here.

Crossover Statistics by Philip Gammon

For chromosomes there is surprisingly little information available regarding the variation in the number of crossovers experienced during meiosis, the process of cell division that results in the production of ova and sperm cells. In the scientific literature I have been able to find only one reference that provides a table showing a frequency distribution for the number of crossovers by chromosome.

The paper Broad-Scale Recombination Patterns Underlying Proper Disjunction in Humans by Fledel-Alon et al in 2009 contains this information tucked away at the back of the “Supplementary methods, figures, and tables” section. It was likely not produced with genetic genealogists in mind but could be of great interest to some. The columns X0 to X8 refer to the number of crossovers on each chromosome that were measured in parental transmissions. Separate tables are shown for male and female transmissions because the rates between the two sexes differ significantly. Note that it’s the gender of the parent that matters, not the child. The sample size is quite small, containing only 288 occurrences for each gender.

A few years ago I stumbled across a paper titled Escape from crossover interference increases with maternal age by Campbell et al 2015. This study investigated the properties of crossover placement utilising family groups contained within the database of the direct-to-consumer genetic testing company 23andMe. In total more than 645,000 well-supported crossover events were able to be identified. Although this study didn’t directly report the observed frequency distribution of crossovers per chromosome, it did produce a table of parameters that accurately described the distribution of inter-crossover distances for each chromosome.

By introducing these parameters into a model that I had developed to implement the equations described by Housworth and Stahl in their 2003 paper Crossover Interference in Humans I was able to derive tables depicting the frequency of crossovers. The following results were produced for each chromosome by running 100,000 simulations in my crossover model:

Crossover transmissions from female to child.png

Transmissions from female parent to child, above.

Crossover transmissions male to child.png

Transmissions from male parent to child.

To be sure that we understand what these tables are revealing let’s look at the first row of the female table. The most frequent outcome for chromosome #1 is that there will be three crossovers and this occurs 27% of the time. There were instances when up to 10 crossovers were observed in a single meiosis but these were extremely rare. Cells that are blank recorded no observations in the 100,000 simulations. On average there are 3.36 crossovers observed on chromosome #1 in female to child transmissions i.e. the female chromosome #1 is 3.36 Morgans (336 centimorgans) in genetic length.

Blaine Bettinger has since examined crossover statistics using crowdsourced data in The Recombination Project: Analyzing Recombination Frequencies Using Crowdsourced Data, but only for females. His sample size was 250 maternal transmissions and Table 2 in the report presents the results in the same format as the tables above. There is a remarkable degree of conformity between Blaine’s measurements and the output from my simulation model and also to the earlier Fledel-Alon et al study.

The diagrams below are a typical representation of the chromosomes inherited by a child.

Crossovers inherited from mother.jpg

The red and orange (above) are the set of chromosomes inherited from the mother and the aqua and green (below) from the father. The locations where the colours change identify the crossover points.

It’s worth noting that all chromosomes have a chance of being passed from parent to child without recombination. These probabilities are found in the column for zero crossovers.

In the picture above the mother has passed on two red chromosomes (#14 and #20) without recombination from one of the maternal grandparents. No yellow chromosomes were passed intact.

Similarly, below, the father has passed on a total of five chromosomes that have no crossover points. Blue chromosomes #15, #18 and #21 were passed on intact from one paternal grandparent and green chromosomes #4 and #20 from the other.

Crossovers inherited from father.jpg

It’s quite a rare event for one of the larger chromosomes to be passed on without recombination (only a 1.4% probability for chromosome #1 in female transmissions) but occurs far more frequently in the smaller chromosomes. In fact, the male chromosome #21 is passed on intact more often (50.6% of the time) than containing DNA from both of the father’s parents.

However, there is nothing especially significant about chromosome #21.

The same could be said for any region of similar genetic length on any of the autosomes i.e. the first 52 cM of chromosome #1 or the middle 52 cM of chromosome #10 etc. From my simulations I have observed that on average 2.8 autosomes are passed down from a mother to child without a crossover and an average of 5.1 autosomes from a father to child.

In total (from both parents), 94% of offspring will inherit between 4 and 12 chromosomes containing DNA exclusively from a single grandparent. In the 100,000 simulations the child always inherited at least one chromosome without recombination.

Back to Roberta

If you have 3 generations who have tested, you can view the crossovers in the grandchild as compared to either one or two grandparents.

If the child doesn’t match one grandparent, even if their other grandparent through that parent hasn’t tested, you can certainly infer that any DNA where the grandchild doesn’t match the available grandparent comes from the non-tested “other” grandparent on that side.

Let’s Look at Real-Life Examples

Using the example of my 2 granddaughters, both of their parents and 3 of their 4 grandparents have tested, so I was able to measure the crossovers that my granddaughters experienced from all 4 of their grandparents.

Maternal Crossovers Granddaughter 1 Granddaughter 2 Average
Chromosome 1 6 2 3.36
Chromosome 2 4 2 3.17
Chromosome 3 3 2 2.71
Chromosome 4 2 2 2.59
Chromosome 5 2 1 2.49
Chromosome 6 4 2 2.36
Chromosome 7 3 1 2.23
Chromosome 8 2 2 2.11
Chromosome 9 3 1 1.95
Chromosome 10 4 2 2.08
Chromosome 11 3 0 1.93
Chromosome 12 3 3 2.00
Chromosome 13 1 1 1.52
Chromosome 14 3 1 1.38
Chromosome 15 4 1 1.44
Chromosome 16 2 2 1.58
Chromosome 17 2 2 1.53
Chromosome 18 2 0 1.40
Chromosome 19 2 1 1.18
Chromosome 20 0 1 1.19
Chromosome 21 0 1 0.74
Chromosome 22 1 0 0.78
Total 56 30 41.71

Looking at these results, it’s easy to see just how different inheritance between two full siblings can be. Granddaughter 1 has 56 crossovers through her mother, significantly more than the average of 41.71. Granddaughter 2 has 30, significantly less than average.

The average of the 2 girls is 43, very close to the total average of 41.71.

Note that one child received 2 chromosomes intact from her mother, and the other received 3.

Paternal Crossovers Granddaughter 1 Granddaughter 2 Average
Chromosome 1 2 2 1.98
Chromosome 2 3 2 1.85
Chromosome 3 2 2 1.64
Chromosome 4 0 1 1.46
Chromosome 5 1 2 1.46
Chromosome 6 2 1 1.41
Chromosome 7 1 2 1.36
Chromosome 8 1 1 1.23
Chromosome 9 1 3 1.26
Chromosome 10 3 2 1.30
Chromosome 11 0 1 1.20
Chromosome 12 1 1 1.32
Chromosome 13 2 1 1.02
Chromosome 14 1 0 0.97
Chromosome 15 1 2 1.01
Chromosome 16 0 1 1.02
Chromosome 17 0 0 1.06
Chromosome 18 1 1 0.98
Chromosome 19 1 1 1.00
Chromosome 20 0 0 0.99
Chromosome 21 0 0 0.52
Chromosome 22 0 0 0.63
Total 23 26 26.65

Granddaughter 2 had slightly more paternal crossovers than did granddaughter 1.

One child received 7 chromosomes intact from her father, and the other received 5.

Chromosome Granddaughter 1 Maternal Granddaughter 1 Paternal
Chromosome 1 6 2
Chromosome 2 4 3
Chromosome 3 3 2
Chromosome 4 2 0
Chromosome 5 2 1
Chromosome 6 4 2
Chromosome 7 3 1
Chromosome 8 2 1
Chromosome 9 3 1
Chromosome 10 4 3
Chromosome 11 3 0
Chromosome 12 3 1
Chromosome 13 1 2
Chromosome 14 3 1
Chromosome 15 4 1
Chromosome 16 2 0
Chromosome 17 2 0
Chromosome 18 2 1
Chromosome 19 2 1
Chromosome 20 0 0
Chromosome 21 0 0
Chromosome 22 1 0
Total 56 23

Comparing each child’s maternal and paternal crossovers side by side, we can see that Granddaughter 1 has more than double the number of maternal as compared to paternal crossovers, while Granddaughter 2 only had slightly more.

Chromosome Granddaughter 2 Maternal Granddaughter 2 Paternal
Chromosome 1 2 2
Chromosome 2 2 2
Chromosome 3 2 2
Chromosome 4 2 1
Chromosome 5 1 2
Chromosome 6 2 1
Chromosome 7 1 2
Chromosome 8 2 1
Chromosome 9 1 3
Chromosome 10 2 2
Chromosome 11 0 1
Chromosome 12 3 1
Chromosome 13 1 1
Chromosome 14 1 0
Chromosome 15 1 2
Chromosome 16 2 1
Chromosome 17 2 0
Chromosome 18 0 1
Chromosome 19 1 1
Chromosome 20 1 0
Chromosome 21 1 0
Chromosome 22 0 0
Total 30 26

Granddaughter 2 has closer to the same number of maternal and paternal of crossovers, but about 8% more maternal.

Comparing Maternal and Paternal Crossover Rates

Given that males clearly have a much, much lower crossover rate, according to the Philip’s chart as well as the evidence in just these two individual cases, over time, we would expect to see the DNA segments significantly LESS broken up in male to male transmissions, especially an entire line of male to male transmissions, as compared to female to female linear transmissions. This means we can expect to see larger intact shared segments in a male to male transmission line as compared to a female to female transmission line.

  G1 Mat G2 Mat Mat Avg G1 Pat G2 Pat Pat Avg
Gen 1 56 30 41.71 23 26 26.65
Gen 2 112 60 83.42 46 52 53.30
Gen 3 168 90 125.13 69 78 79.95
Gen 4 224 120 166.84 92 104 106.60

Using the Transmission rates for Granddaughter 1, Granddaughter 2, and the average calculated by Philip, it’s easy to see the cumulative expected average number of crossovers vary dramatically in every generation.

By the 4th generation, the maternal crossovers seen in someone entirely maternally descended at the rate of Grandchild 1 would equal 224 crossovers meaning that the descendant’s DNA would be divided that many times, while the same number of paternal linear divisions at 4 generations would only equal 92.

Yet today, we would never look at 2 people’s DNA, one with 224 crossovers compared to one with 92 crossovers and even consider the possibility that they are both only three generations descended from an ancestor, counting the parents as generation 1.

What Does This Mean?

The number of males and females in a specific line clearly has a direct influence on the number of crossovers experienced, and what we can expect to see as a result in terms of average segment size of inherited segments in a specific number of generations.

Using Granddaughter 1’s maternal crossover rate as an example, in 4 generations, chromosome 1 would have incurred a total of 24 crossovers, so the DNA would be divided into in 25 pieces. At the paternal rate, only 8 crossovers so the DNA would be in 9 pieces.

Chromosome 1 is a total of 267 centimorgans in length, so dividing 267 cM by 25 would mean the average segment would only be 10.68 cM for the maternal transmission, while the average segment divided by 9 would be 29.67 cM in length for the paternal transmission.

Given that the longest matching segment is a portion of the estimated relationship calculation, the difference between a 10.68 cM maternal linear segment match and a 29.67 paternal linear cM segment match is significant.

While I used the highest and lowest maternal and paternal rates of the granddaughters, the average would be 19 and 29, respectively – still a significant difference.

Maternal and Paternal Crossover Average Segment Size

Each person has an autosomal total of 3374 cM on chromosomes 1-22, excluding the X chromosome, that is being compared to other testers. Applying these calculations to all 22 autosomes using the maternal and paternal averages for 4 generations, dividing into the 3374 total we find the following average segment centiMorgan matches:

Crossovers average segment size.png

Keep in mind, of course, that the chart above represents 3 generations in a row of either maternal or paternal crossovers, but even one generation is significant.

The average size segment of a grandparent’s DNA that a child receives from their mother is 80.89 cM where the average segment of a grandparent’s DNA inherited from their father is 1.57 times larger at 126.6 cM.

Keep the maternal versus paternal inheritance path in mind as you evaluate matches to cousins with identified common ancestors, especially if the path is entirely or mostly maternal or paternal which would skew the cumulative average. You can easily tell, for example, that matches who descend paternally from a common ancestor and carry the surname are likely to carry more DNA from that common male ancestor than someone who descends from a mixed or directly maternal line.

For unknown matches, just keep in mind that the average that vendors calculate and use to predict relationships, because they can’t and don’t have “inside knowledge” about the inheritance path, may or may not be either accurate or average. They do the best they can do with the information they have at hand.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Mitochondrial DNA Resources – Everything You Need to Know

Mitochondrial DNA Resources

Recently, I wrote a multi-part series about mitochondrial DNA – start to finish – everything you need to know.

I’ve assembled several articles in one place, and I’ll add any new articles here as well.

Please feel free to share this resource or any of the links to individual articles with friends, genealogy groups or on social media.

What the Difference Between Mitochondrial and Other Types of DNA?

Mitochondrial DNA is inherited directly from your matrilineal line, only, meaning your mother’s mother’s mother’s mother – on up your family tree until you run out of direct line mothers that you’ve identified. The great news is even if you don’t know the identities of those people in your tree, you carry their mitochondrial DNA which can help identify them.

Here’s a short article about the different kinds of DNA that can be used for genealogy.

Why Mitochondrial DNA?

Let’s start out with why someone might want to test their mitochondrial DNA.

After you purchase a DNA test, swab, return the kit and when the lab finishes processing your test, you’ll receive your results on your personal page at FamilyTreeDNA, the only company that tests mitochondrial DNA at the full sequence level and provides matching with tens of thousands of other testers.

What About Those Results?

People want to understand how to use all of the different information provided to testers. These articles provide a step-by-step primer.

Mitochondrial DNA personal page update

Sign in to your Family Tree DNA account and use these articles as a guideline to step through your results on your personal page.

We begin with an overview. What is mitochondrial DNA, how it is inherited and why is it useful for genealogy?

Next, we look at your results and decode what all the numbers mean. It’s easy, really!

Our ancestors lived in clans, and our mitochondrial DNA has its own versions of clans too – called haplogroups. Your full haplogroup can be very informative.

Sometimes there’s more than meets the eye. Here are my own tips and techniques for more than doubling the usefulness of your matches.

You’ll want to wring every possible advantage out of your tests, so be sure to join relevant projects and use them to their fullest extent.

Do you know how to utilize advanced matching? It’s a very powerful tool. If not, you will after these articles.

Mitochondrial DNA Information for Everyone

FamilyTreeDNA maintains an extensive public mitochondrial DNA tree, complete with countries of origin for all branches. You don’t need to have tested to enjoy the public tree.

However, if you have tested, take a look to see where the earliest known ancestors of your haplogroup matches are located based on the country flags.

Mitochondrial resources haplotree

These are mine. Where are yours?

What Can Mitochondrial DNA Do for You?

Some people mistakenly think that mitochondrial DNA isn’t useful for genealogy. I’m here to testify that it’s not only useful, it’s amazing! Here are three stories from my own genealogy about how I’ve used mitochondrial DNA to learn more about my ancestors and in some cases, break right through brick walls.

It’s not only your own mitochondrial DNA that’s important, but other family members too.

My cousin tested her mitochondrial DNA to discover that her direct matrilineal ancestor was Native American, much to her surprise. The great news is that her ancestor is my ancestor too!

Searching for Native American Ancestors?

If you’re searching for Native American or particular ancestors, mitochondrial DNA can tell you specifically if your mitochondrial DNA, or that of your ancestors (if you test a direct matrilineal descendant,) is Native, African, European, Jewish or Asian. Furthermore, your matches provide clues as to what country your ancestor might be from and sometimes which regions too.

Did you know that people from different parts of the world have distinctive haplogroups?

You can discover your ancestors’ origins through their mitochondrial DNA.

You can even utilize autosomal segment information to track back in time to the ancestor you seek. Then you can obtain that ancestor’s mitochondrial DNA by selectively testing their descendants or finding people who have already tested that descend from that ancestor. Here’s how.

You never know what you’re going to discover when you test your mitochondrial DNA. I discovered that although my earliest known matrilineal ancestor is found in Germany, her ancestors were from Scandinavia. My cousin discovered that our common ancestor is Mi’kmaq.

What secrets will your mitochondrial DNA reveal?

You can test or upgrade your mitochondrial DNA by clicking here.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Native American & Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments

Ethnicity is always a ticklish subject. On one hand we say to be leery of ethnicity estimates, but on the other hand, we all want to know who our ancestors were and where they came from. Many people hope to prove or disprove specific theories or stories about distant ancestors.

Reasons to be cautious about ethnicity estimates include:

  • Within continents, like Europe, it’s very difficult to discern ethnicity at the “country” level because of thousands of years of migration across regions where borders exist today. Ethnicity estimates within Europe can be significantly different than known and proven genealogy.
  • “Countries,” in Europe, political constructs, are the same size as many states in the US – and differentiation between those populations is almost impossible to accurately discern. Think of trying to figure out the difference between the populations of Indiana and Illinois, for example. Yet we want to be able to tell the difference between ancestors that came from France and Germany, for example.

Ethnicity states over Europe

  • All small amounts of ethnicity, even at the continental level, under 2-5%, can be noise and might be incorrect. That’s particularly true of trace amounts, 1% or less. However, that’s not always the case – which is why companies provide those small percentages. When hunting ancestors in the distant past, that small amount of ethnicity may be the only clue we have as to where they reside at detectable levels in our genome.

Noise in this case is defined as:

  • A statistical anomaly
  • A chance combination of your DNA from both parents that matches a reference population
  • Issues with the reference population itself, specifically admixture
  • Perhaps combinations of the above

You can read about the challenges with ethnicity here and here.

On the Other Hand

Having restated the appropriate caveats, on the other hand, we can utilize legitimate segments of our DNA to identify where our ancestors came from – at the continental level.

I’m actually specifically referring to Native American admixture which is the example I’ll be using, but this process applies equally as well to other minority or continental level admixture as well. Minority, in this sense means minority ethnicity to you.

Native American ethnicity shows distinctly differently from African and European. Sometimes some segments of DNA that we inherit from Native American ancestors are reported as Asian, specifically Siberian, Northern or Eastern Asian.

Remember that the Native American people arrived as a small group via Beringia, a now flooded land bridge that once connected Siberia with Alaska.

beringia map

By Erika Tamm et al – Tamm E, Kivisild T, Reidla M, Metspalu M, Smith DG, et al. (2007) Beringian Standstill and Spread of Native American Founders. PLoS ONE 2(9): e829. doi:10.1371/journal.pone.0000829. Also available from PubMed Central., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=16975303

After that time, the Native American/First Nations peoples were isolated from Asia, for the most part, and entirely from Europe until European exploration resulted in the beginning of sustained European settlement, and admixture beginning in the late 1400s and 1500s in the Americas.

Family Inheritance

Testing multiple family members is extremely useful when working with your own personal minority heritage. This approach assumes that you’d like to identify your matches that share that genetic heritage because they share the same minority DNA that you do. Of course, that means you two share the same ancestor at some time in the past. Their genealogy, or your combined information, may hold the clue to identifying your ancestor.

In my family, my daughter has Native American segments that she inherited from me that I inherited from my mother.

Finding the same segment identified as Native American in several successive generations eliminates the possibility that the chance combination of DNA from your father and mother is “appearing” as Native, when it isn’t.

We can use segment information to our benefit, especially if we don’t know exactly who contributed that DNA – meaning which ancestor.

We need to find a way to utilize those Native or other minority segments genealogically.

23andMe

Today, the only DNA testing vendor that provides consumers with a segment identification of our ethnicity predictions is 23andMe.

If you have tested at 23andMe, sign in and click on Ancestry on the top tab, then select Ancestry Composition.

Minority ethnicity ancestry composition.png

Scroll down until you see your painted chromosomes.

Minority ethnicity chromosome painting.png

By clicking on the region at left that you want to see, the rest of the regions are greyed out and only that region is displayed on your chromosomes, at right.

Minority ethnicity Native.png

According to 23andMe, I have two Native segments, one each on chromosomes 1 and 2. They show these segments on opposite chromosomes, meaning one (the top for example) would be maternal or paternal, and the bottom one would be the opposite. But 23andMe apparently could not tell for sure because neither my mother nor father have tested there. This placement also turned out to be incorrect. The above image was my initial V3 test at 23andMe. My later V4 results were different.

Versions May Differ

Please note that your ethnicity predictions may be different based on which test you took which is dictated by when you took the test. The image above is my V3 test that was in use at 23andMe between 2010 and November 2013, and the image below is my V4 test in use between November 2013 and August 2017.

23andMe apparently does not correct original errors involving what is known as “strand swap” where the maternal and paternal segments are inverted during analysis. My V4 test results are shown below, where the strands are correctly portrayed.

Minority ethnicity Native V4.png

Note that both Native segments are now on the lower chromosome “side” of the pair and the position on the chromosome 1 segment has shifted visually.

Minority ethnicity sides.png

I have not tested at 23andMe on the current V5 GSA chip, in use since August 9, 2017, but perhaps I should. The results might be different yet, with the concept being that each version offers an improvement over earlier versions as science advances.

If your parents have tested, 23andMe makes adjustments to your ethnicity estimates accordingly.

Although my mother can’t test at 23andMe, I happen to already know that these Native segments descend from my mother based on genealogical and genetic analysis, combined. I’m going to walk you through the process.

I can utilize my genealogy to confirm or refute information shown by 23andMe. For example, if one of those segments comes from known ancestors who were living in Germany, it’s clearly not Native, and it’s noise of some type.

We’re going to utilize DNAPainter to determine which ancestors contributed your minority segments, but first you’ll need to download your ethnicity segments from 23andMe.

Downloading Ethnicity Segment Data

Downloading your ethnicity segments is NOT THE SAME as downloading your raw DNA results to transfer to another vendor. Those are two entirely different files and different procedures.

To download the locations of your ethnicity segments at 23andMe, scroll down below your painted ethnicity segments in your Ancestry Composition section to “View Scientific Details.”

MInority ethnicity scientific details.png

Click on View Scientific Details and scroll down to near the bottom and then click on “Download Raw Data.” I leave mine at the 50% confidence level.

Minority ethnicity download raw data.png

Save this spreadsheet to your computer in a known location.

In the spreadsheet, you’ll see columns that provide the name of the segment, the chromosome copy number (1 or 2) and the chromosome number with start and end locations.

Minority ethnicity download.png

You really don’t care about this information directly, but DNAPainter does and you’ll care a lot about what DNAPainter does for you.

DNAPainter

I wrote introductory articles about DNAPainter:

If you’re not familiar with DNAPainter, you might want to read these articles first and then come back to this point in this article.

Go ahead – I’ll wait!

Getting Started

If you don’t have a DNAPainter account, you’ll need to create one for free. Some features, such as having multiple profiles are subscription based, but the functionality you’ll need for one profile is free.

I’ve named this example profile “Ethnicity Demo.” You’ll see your name where mine says “Ethnicity Demo.”

Minority ethnicity DNAPainter.png

Click on “Import 23andme ancestry composition.”

You will copy and paste all the spreadsheet rows in the entire downloaded 23andMe ethnicity spreadsheet into the DNAPainter text box and make your selection, below. The great news is that if you discover that your assumption about copy 1 being maternal or paternal is incorrect, it’s easy to delete the ethnicity segments entirely and simply repaint later. Ditto if 23andMe changes your estimate over time, like they have mine.

Minority ethnicity DNAPainter sides.png

I happen to know that “copy 2” is maternal, so I’ve made that selection.

You can then see your ethnicity chromosome segments painted, and you can expand each one to see the detail. Click on “Save Segments.”

MInority ethnicity DNAPainter Native painting

Click to enlarge

In this example, you can see my Native segments, called by various names at different confidence levels at 23andMe, on chromosome 1.

Depending on the confidence level, these segments are called some mixture of:

  • East Asian & Native American
  • North Asian & Native American
  • Native American
  • Broadly East Asian & Native American

It’s exactly the same segment, so you don’t really care what it’s called. DNAPainter paints all of the different descriptions provided by 23andMe, at all confidence levels as you can see above.

The DNAPainter colors are different from 23andMe colors and are system-selected. You can’t assign the colors for ethnicity segments.

Now, I’m moving to my own profile that I paint with my ancestral segments. To date, I have 78% of my segments painted by identifying cousins with known common ancestors.

On chromosomes 1 and 2, copy 2, which I’ve determined to be my mother’s “side,” these segments track back to specific ancestors.

Minority ethnicity maternal side

Click to enlarge

Chromosome 1 segments, above, track back to the Lore family, descended from Antoine (Anthony) Lore (Lord) who married Rachel Hill. Antoine Lore was Acadian.

Minority ethnicity chromosome 1.png

Clicking on the green segment bar shows me the ancestors I assigned when I painted the match with my Lore family member whose name is blurred, but whose birth surname was Lore.

The Chromosome 2 segment, below, tracks back to the same family through a match to Fred.

Minority ethnicity chromosome 2.png

My common ancestors with Fred are Honore Lore and Marie Lafaille who are the parents of Antoine Lore.

Minority ethnicity common ancestor.png

There are additional matches on both chromosomes who also match on portions of the Native segments.

Now that I have a pointer in the ancestral direction that these Native American segments arrived from, what can traditional genealogy and other DNA information tell me?

Traditional Genealogy Research

The Acadian people were a mixture of English, French and Native American. The Acadians settled on the island of Nova Scotia in 1609 and lived there until being driven out by the English in 1755, roughly 6 or 7 generations later.

Minority ethnicity Acadian map.png

The Acadians intermarried with the Mi’kmaq people.

It had been reported by two very qualified genealogists that Philippe Mius, born in 1660, married two Native American women from the Mi’kmaq tribe given the name Marie.

The French were fond of giving the first name of Marie to Native women when they were baptized in the Catholic faith which was required before the French men were allowed to marry the Native women. There were many Native women named Marie who married European men.

Minority ethnicity Native mitochondrial tree

Click to enlarge

This Mius lineage is ancestral to Antoine Lore (Lord) as shown on my pedigree, above.

Mitochondrial DNA has revealed that descendants from one of Philippe Mius’s wives, Marie, carry haplogroup A2f1a.

However, mitochondrial tests of other descendants of “Marie,” his first wife, carry haplogroup X2a2, also Native American.

Confusion has historically existed over which Marie is the mother of my ancestor, Francoise.

Karen Theroit Reader, another professional genealogist, shows Francoise Mius as the last child born to the first Native wife before her death sometime after 1684 and before about 1687 when Philippe remarried.

However, relative to the source of Native American segments, whether Francoise descends from the first or second wife doesn’t matter in this instance because both are Native and are proven so by their mitochondrial DNA haplogroups.

Additionally, on Antoine’s mother’s side, we find a Doucet male, although there are two genetic male Doucet lines, one of European origin, haplogroup R-L21, and one, surprisingly, of Native origin, haplogroup C-P39. Both are proven by their respective haplogroups but confusion exists genealogically over who descends from which lineage.

On Antoine’s mother’s side, there are several unidentified lineages, any one or multiples of which could also be Native. As you can see, there are large gaps in my tree.

We do know that these Native segments arrived through Antoine Lore and his parents, Honore Lore and Marie LaFaille. We don’t know exactly who upstream contributed these segments – at least not yet. Painting additional matches attributable to specific ancestral couples will eventually narrow the candidates and allow me to walk these segments back in time to their rightful contributor.

Segments, Traditional Research and DNAPainter

These three tools together, when using continent-level segments in combination with painting the DNA segments of known cousins that match specific lineages create a triangulated ethnicity segment.

When that segment just happens to be genealogically important, this combination can point the researchers in the right direction knowing which lines to search for that minority ancestor.

If your cousins who match you on this segment have also tested with 23andMe, they should also be identified as Native on this same segment. This process does not apply to intracontinental segments, meaning within Europe, because the admixture is too great and the ethnicity predictions are much less reliable.

When identifying minority admixture at the continental level, adding Y and mitochondrial DNA testing to the mix in order to positively identify each individual ancestor’s Y and mitochondrial DNA is very important in both eliminating and confirming what autosomal DNA and genealogy records alone can’t do. The base haplogroup as assigned at 23andMe is a good start, but it’s not enough alone. Plus, we only carry one line of mitochondrial DNA and only males carry Y DNA, and only their direct paternal line.

We need Y and mitochondrial DNA matching at FamilyTreeDNA to verify the specific lineage. Additionally, we very well may need the Y and mitochondrial DNA information that we don’t directly carry – but other cousins do. You can read about Y and mitochondrial DNA testing, here.

I wrote about creating a personal DNA pedigree chart including your ancestors’ Y and mitochondrial DNA here. In order to find people descended from a specific ancestor who have DNA tested, I utilize:

  • WikiTree resources and trees
  • Geni trees
  • FamilySearch trees
  • FamilyTreeDNA autosomal matches with trees
  • AncestryDNA autosomal matches and their associated trees
  • Ancestry trees in general, meaning without knowing if they are related to a DNA match
  • MyHeritage autosomal matches and their trees
  • MyHeritage trees in general

At both MyHeritage and Ancestry, you can view the trees of your matches, but you can also search for ancestors in other people’s trees to see who might descend appropriately to provide a Y or mitochondrial DNA sample. You will probably need a subscription to maximize these efforts. My Heritage offers a free trial subscription here.

If you find people appropriately descended through WikiTree, Geni or FamilySearch, you’ll need to discuss DNA testing with them. They may have already tested someplace.

If you find people who have DNA tested through your DNA matches with trees at Ancestry and MyHeritage, you’ll need to offer a Y or mitochondrial DNA test to them if they haven’t already tested at FamilyTreeDNA.

FamilyTreeDNA is the only vendor who provides the Y DNA and mitochondrial DNA tests at the higher resolution level, beyond base haplogroups, required for matching and for a complete haplogroup designation.

If the person has taken the Family Finder autosomal test at FamilyTreeDNA, they may have already tested their Y DNA and mtDNA, or you can offer to upgrade their test.

Projects

Checking projects at FamilyTreeDNA can be particularly useful when trying to discover if anyone from a specific lineage has already tested. There are many, special interest projects such as the Acadian AmerIndian Ancestry project, the American Indian project, haplogroup projects, surname projects and more.

You can view projects alphabetically here or you can click here to scroll down to enter the surname or topic you are seeking.

Minority ethnicity project search.png

If the topic isn’t listed, check the alphabetic index under Geographical Projects.

23andMe Maternal and Paternal Sides

If possible, you’ll want to determine which “side” of your family your minority segments originate come from, unless they come from both. you’ll want to determine whether chromosome side one 1 or 2 is maternal, because the other one will be paternal.

23andMe doesn’t offer tree functionality in the same way as other vendors, so you won’t be able to identify people there descended from your ancestors without contacting each person or doing other sleuthing.

Recently, 23andMe added a link to FamilySearch that creates a list of your ancestors from their mega-shared tree for 7 generations, but there is no tree matching or search functionality. You can read about the FamilySearch connection functionality here.

So, how do you figure out which “side” is which?

Minority ethnicity minority segment.png

The chart above represents the portion of your chromosomes that contains your minority ancestry. Initially, you don’t know if the minority segment is your mother’s pink chromosome or your father’s blue chromosome. You have one chromosome from each parent with the exact same addresses or locations, so it’s impossible to tell which side is which without additional information. Either the pink or the blue segment is minority, but how can you tell?

In my case, the family oral history regarding Native American ancestry was from my father’s line, but the actual Native segments wound up being from my mother, not my father. Had I made an assumption, it would have been incorrect.

Fortunately, in our example, you have both a maternal and paternal aunt who have tested at 23andMe. You match both aunts on that exact same segment location – one from your father’s side, blue, and one from your mother’s side, pink.

You compare your match with your maternal aunt and verify that indeed, you do match her on that segment.

You’ll want to determine if 23andMe has flagged that segment as Native American for your maternal aunt too.

You can view your aunt’s Ancestry Composition by selecting your aunt from the “Your Connections” dropdown list above your own ethnicity chromosome painting.

Minority ethnicity relative connections.png

You can see on your aunt’s chromosomes that indeed, those locations on her chromosomes are Native as well.

Minority ethnicity relative minority segments.png

Now you’ve identified your minority segment as originating on your maternal side.

Minority ethnicity Native side.png

Let’s say you have another match, Match 1, on that same segment. You can easily tell which “side” Match 1 is from. Since you know that you match your maternal aunt on that minority segment, if Match 1 matches both you and your maternal aunt, then you know that’s the side the match is from – AND that person also shares that minority segment.

You can also view that person’s Ancestry Composition as well, but shared matching is more reliable,especially when dealing with small amounts of minority admixture.

Another person, Match 2, matches you on that same segment, but this time, the person matches you and your paternal aunt, so they don’t share your minority segment.

Minority ethnicity match side.png

Even if your paternal aunt had not tested, because Match 2 does not match you AND your maternal aunt, you know Match 2 doesn’t share your minority segment which you can confirm by checking their Ancestry Composition.

Download All of Your Matches

Rather than go through your matches one by one, it’s easiest to download your entire match list so you can see which people match you on those chromosome locations.

Minority ethnicity download aggregate data.png

You can click on “Download Aggregate Data” at 23andMe, at the bottom of your DNA Relatives match list to obtain all of your matches who are sharing with you. 23andMe limits your matches to 2000 or less, the actual number being your highest 2000 matches minus the people who aren’t sharing. I have 1465 matches showing and that number decreases regularly as new testers at 23andMe are focused on health and not genealogy, meaning lower matches get pushed off the list of 2000 match candidates.

You can quickly sort the spreadsheet to see who matches you on specific segments. Then, you can check each match in the system to see if that person matches you and another known relative on the minority segments or you can check their Ancestry Composition, or both.

If they share your minority segment, then you can check their tree link if they have one, included in the download, their Family Search information if included on their account, or reach out to them to see if you might share a known ancestor.

The key to making your ethnicity segment work for you is to identify ancestors and paint known matches.

Paint Those Matches

When searching for matches whose DNA you can attribute to specific ancestors, be sure to check at all 4 places that provide segment information that you can paint:

At GedMatch, you’ll find some people who have tested at the other various vendors, including Ancestry, but unfortunately not everyone uploads. Ancestry doesn’t provide segment information, so you won’t be able to paint those matches directly from Ancestry.

If your Ancestry matches transfer to GedMatch, FamilyTreeDNA or MyHeritage you can view your match and paint your common segments. At GedMatch, Ancestry kit numbers begin with an A. I use my Ancestry kit matches at GedMatch to attempt to figure out who that match is at Ancestry in order to attempt to figure out the common ancestor.

To Paint, You Must Test

Of course, in order to paint your matches that you find in various databases, you need to be in those data bases, meaning you either need to test there or transfer your DNA file.

Transfers

If you’d like to test your DNA at one vendor and download the file to transfer to another vendor, or GedMatch, that’s possible with both FamilyTreeDNA and MyHeritage who both accept uploads.

You can transfer kits from Ancestry and 23andMe to both FamilyTreeDNA and MyHeritage for free, although the chromosome browsers, advanced tools and ethnicity require an unlock fee (or alternatively a subscription at MyHeritage). Still, the free transfer and unlock for $19 at FamilyTreeDNA or $29 at MyHeritage is less than the cost of testing.

Here’s a quick cheat sheet.

DNA vendor transfer cheat sheet 2019

From time to time, as vendor file formats change, the ability to transfer is temporarily interrupted, but it costs nothing to try a transfer to either MyHeritage or FamilyTreeDNA, or better yet, both.

In each of these articles, I wrote about how to download your data from a specific vendor and how to upload from other vendors if they accept uploads.

Summary Steps

In order to use your minority ethnicity segments in your genealogy, you need to:

  1. Test at 23andMe
  2. Identify which parental side your minority ethnicity segments are from, if possible
  3. Download your ethnicity segments
  4. Establish a DNAPainter account
  5. Upload your ethnicity segments to DNAPainter
  6. Paint matches of people with whom you share known common ancestors utilizing segment information from 23andMe, FamilyTreeDNA, MyHeritage and AncestryDNA matches who have uploaded to GedMatch
  7. If you have not tested at either MyHeritage or FamilyTreeDNA, upload your 23andMe file to either vendor for matching, along with GedMatch
  8. Focus on those minority segments to determine which ancestral line they descend through in order to identify the ancestor(s) who provided your minority admixture.

Have fun!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

First Steps When Your DNA Results are Ready – Sticking Your Toe in the Genealogy Water

First steps helix

Recently someone asked me what the first steps would be for a person who wasn’t terribly familiar with genealogy and had just received their DNA test results.

I wrote an article called DNA Results – First Glances at Ethnicity and Matching which was meant to show new folks what the various vendor interfaces look like. I was hoping this might whet their appetites for more, meaning that the tester might, just might, stick their toe into the genealogy waters😊

I’m hoping this article will help them get hooked! Maybe that’s you!

A Guide

This article can be read in one of two ways – as an overview, or, if you click the links, as a pretty thorough lesson. If you’re new, I strongly suggest reading it as an overview first, then a second time as a deeper dive. Use it as a guide to navigate your results as you get your feet wet.

I’ll be hotlinking to various articles I’ve written on lots of topics, so please take a look at details (eventually) by clicking on those links!

This article is meant as a guideline for what to do, and how to get started with your DNA matching results!

If you’re looking for ethnicity information, check out the First Glances article, plus here and here and here.

Concepts – Calculating Ethnicity Percentages provides you with guidelines for how to estimate your own ethnicity percentages based on your known genealogy and Ethnicity Testing – A Conundrum explains how ethnicity testing is done.

OK, let’s get started. Fun awaits!

The Goal

The goal for using DNA matching in genealogy depends on your interests.

  1. To discover cousins and family members that you don’t know. Some people are interested in finding and meeting relatives who might have known their grandparents or great-grandparents in the hope of discovering new family information or photos they didn’t know existed previously. I’ve been gifted with my great-grandparent’s pictures, so this strategy definitely works!
  2. To confirm ancestors. This approach presumes that you’ve done at least a little genealogy, enough to construct at least a rudimentary tree. Ancestors are “confirmed” when you DNA match multiple other people who descend from the same ancestor through multiple children. I wrote an article, Ancestors: What Constitutes Proof?, discussing how much evidence is enough to actually confirm an ancestor. Confirmation is based on a combination of both genealogical records and DNA matching and it varies depending on the circumstances.
  3. Adoptees and people with unknown parents seeking to discover the identities of those people aren’t initially looking at their own family tree – because they don’t have one yet. The genealogy of others can help them figure out the identity of those mystery people. I wrote about that technique in the article, Identifying Unknown Parents and Individuals Using DNA Matching.

DNAAdoption for Everyone

Educational resources for adoptees and non-adoptees alike can be found at www.dnaadoption.org. DNAAdoption is not just for adoptees and provides first rate education for everyone. They also provide trained and mentored search angels for adoptees who understand the search process along with the intricacies of navigating the emotional minefield of adoption and unknown parent searches.

First Look” classes for each vendor are free for everyone at DNAAdoption and are self-paced, downloadable onto your computer as a pdf file. Intro to DNA, Applied Autosomal DNA and Y DNA Basics classes are nominally priced at between $29 and $49 and I strongly recommend these. DNAAdoption is entirely non-profit, so your class fee or contribution supports their work. Additional resources can be found here and their 12 adoptee search steps here.

Ok, now let’s look at your results.

Matches are the Key

Regardless of your goal, your DNA matches are the key to finding answers, whether you want to make contact with close relatives, prove your more distant ancestors or you’re involved in an adoptee or unknown parent search.

Your DNA matches that of other people because each of you inherited a piece of DNA, called a segment, where many locations are identical. The length of that DNA segment is measured in centiMorgans and those locations are called SNPs, or single nucleotide polymorphisms. You can read about the definition of a centimorgan and how they are used in the article Concepts – CentiMorgans, SNPs and Pickin’Crab.

While the scientific details are great, they aren’t important initially. What is important is to understand that the more closely you match someone, the more closely you are related to them. You share more DNA with close relatives than more distant relatives.

For example, I share exactly half of my mother’s DNA, but only about 25% of each of my grandparents’ DNA. As the relationships move further back in time, I share less and less DNA with other people who descend from those same ancestors.

Informational Tools

Every vendor’s match page looks different, as was illustrated in the First Glances article, but regardless, you are looking for four basic pieces of information:

  • Who you match
  • How much DNA you share with your match
  • Who else you and your match share that DNA with, which suggests that you all share a common ancestor
  • Family trees to reveal the common ancestor between people who match each other

Every vendor has different ways of displaying this information, and not all vendors provide everything. For example, 23andMe does not support trees, although they allow you to link to one elsewhere. Ancestry does not provide a tool called a chromosome browser which allows you to see if you and others match on the same segment of DNA. Ancestry only tells you THAT you match, not HOW you match.

Each vendor has their strengths and shortcomings. As genealogists, we simply need to understand how to utilize the information available.

I’ll be using examples from all 4 major vendors:

Your matches are the most important information and everything else is based on those matches.

Family Tree DNA

I have tested many family members from both sides of my family at Family Tree DNA using the Family Finder autosomal test which makes my matches there incredibly useful because I can see which family members, in addition to me, my matches match.

Family Tree DNA assigns matches to maternal and paternal sides in a unique way, even if your parents haven’t tested, so long as some close relatives have tested. Let’s take a look.

First Steps Family Tree DNA matches.png

Sign on to your account and click to see your matches.

At the top of your Family Finder matches page, you’ll see three groups of things, shown below.

First Steps Family Tree DNA bucketing

Click to enlarge

A row of tools at the top titled Chromosome Browser, In Common With and Not in Common With.

A second row of tabs that include All, Paternal, Maternal and Both. These are the maternal and paternal tabs I mentioned, meaning that I have a total of 4645 matches, 988 of which are from my paternal side and 847 of which are from my maternal side.

Family Tree DNA assigns people to these “buckets” based on matches with third cousins or closer if you have them attached in your tree. This is why it’s critical to have a tree and test close relatives, especially people from earlier generations like aunts, uncles, great-aunts/uncles and their children if they are no longer living.

If you have one or both parents that can test, that’s a wonderful boon because anyone who matches you and one of your parents is automatically bucketed, or phased (scientific term) to that parent’s side of the tree. However, at Family Tree DNA, it’s not required to have a parent test to have some matches assigned to maternal or paternal sides. You just need to test third cousins or closer and attach them to the proper place in your tree.

How does bucketing work?

Maternal or Paternal “Side” Assignment, aka Bucketing

If I match a maternal first cousin, Cheryl, for example, and we both match John Doe on the same segment, John Doe is automatically assigned to my maternal bucket with a little maternal icon placed beside the match.

First Steps Family Tree DNA match info

Click to enlarge

Every vendor provides an estimated or predicted relationship based on a combination of total centiMorgans and the longest contiguous matching segment. The actual “linked relationship” is calculated based on where this person resides in your tree.

The common surnames at far right are a very nice features, but not every tester provides that information. When the testers do include surnames at Family Tree DNA, common surnames are bolded. Other vendors have similar features.

People with trees are shown near their profile picture with a blue pedigree icon. Clicking on the pedigree icon will show you their ancestors. Your matches estimated relationship to you indicates how far back you should expect to share an ancestor.

For example, first cousins share grandparents. Second cousins share great-grandparents. In general, the further back in time your common ancestor, the less DNA you can be expected to share.

You can view relationship information in chart form in my article here or utilize DNAPainter tools, here, to see the various possibilities for the different match levels.

Clicking on the pedigree chart of your match will show you their tree. In my tree, I’ve connected my parents in their proper places, along with Cheryl and Don, mother’s first cousins. (Yes, they’ve given permission for me to utilize their results, so they aren’t always blurred in images.)

Cheryl and Don are my first cousins once removed, meaning my mother is their first cousin and I’m one generation further down the tree. I’m showing the amount of DNA that I share with each of them in red in the format of total DNA shared and longest unbroken segment, taken from the match list. So 382-53 means I share a total of 382 cM and 53 cM is the longest matching block.

First Steps Family Tree DNA tree.png

The Chromosome Browser

Utilizing the chromosome browser, I can see exactly where I match both Don and Cheryl. It’s obvious that I match them on at least some different pieces of my DNA, because the total and longest segment amounts are different.

The reason it’s important to test lots of close relatives is because even siblings inherit different pieces of DNA from their parents, and they don’t pass the same DNA to their offspring either – so in each generation the amount of shared DNA is probably reduced. I say probably because sometimes segments are passed entirely and sometimes not at all, which is how we “lose” our ancestors’ DNA over the generations.

Here’s a matching example utilizing a chromosome browser.

First Steps Family Tree DNA chromosome browser.png

I clicked the checkboxes to the left of both Cheryl and Don on the match page, then the Chromosome Browser button, and now you can see, above, on chromosomes 1-16 where I match Cheryl (blue) and Don (red.)

In this view, both Don and Cheryl are being compared to me, since I’m the one signed in to my account and viewing my DNA matches. Therefore, one of the bars at each chromosome represents Don’s DNA match to me and one represents Cheryl’s. Cheryl is the first person and Don is the second. Person match colors (red and blue) are assigned arbitrarily by the system.

My grandfather and Cheryl/Don’s father, Roscoe, were siblings.

You can see that on some segments, my grandfather and Roscoe inherited the same segment of DNA from their parents, because today, my mother gave me that exact same segment that I share with both Don and Cheryl. Those segments are exactly identical and shown in the black boxes.

The only way for us to share this DNA today is for us to have shared a common ancestor who gave it to two of their children who passed it on to their descendants who DNA tested today.

On other segments, in red boxes, I share part of the same segments of DNA with Cheryl and Don, but someone along the line didn’t inherit all of that segment. For example on chromosome 3, in the red box, you can see that I share more with Cheryl (blue) than Don (red.)

In other cases, I share with either Don or Cheryl, but Don and Cheryl didn’t inherit that same segment of DNA from their father, so I don’t share with both of them. Those are the areas where you see only blue or only red.

On chromosome 12, you can see where it looks like Don’s and Cheryl’s segments butt up against each other. The DNA was clearly divided there. Don received one piece and Cheryl got the other. That’s known as a crossover and you can read about crossovers here, if you’d like.

It’s important to be able to view segment information to be able to see how others match in order to identify which common ancestor that DNA came from.

In Common With

You can use the “In Common With” tool to see who you match in common with any match. My first 6 matches in common with Cheryl are shown below. Note that they are already all bucketed to my maternal side.

First Steps Family Tree DNA in common with

click to enlarge

You can click on up to 7 individuals in the check box at left to show them on the chromosome browser at once to see if they match you on common segments.

Each matching segment has its own history and may descend from a different ancestor in your common tree.

First Steps 7 match chromosome browser

click to enlarge

If combinations of people do match me on a common segment, because these matches are all on my maternal side, they are triangulated and we know they have to descend from a common ancestor, assuming the segment is large enough. You can read about the concept of triangulation here. Triangulation occurs when 3 or more people (who aren’t extremely closely related like parents or siblings) all match each other on the same reasonably sized segment of DNA.

If you want to download your matches and work through this process in a spreadsheet, that’s an option too.

Size Matters

Small segments can be identical by chance instead of identical by descent.

  • “Identical by chance” means that you accidentally match someone because your DNA on that segment has been combined from both parents and causes it to match another person, making the segment “looks like” it comes from a common ancestor, when it really doesn’t. When DNA is sequenced, both your mother and father’s strands are sequenced, meaning that there’s no way to determine which came from whom. Think of a street with Mom’s side and Dad’s side with identical addresses on the houses on both sides. I wrote about that here.
  • “Identical by descent” means that the DNA is identical because it actually descends from a common ancestor. I discussed that concept in the article, We Match, But Are We Related.

Generally, we only utilize 7cM (centiMorgan) segments and above because at that level, about half of the segments are identical by descent and about half are identical by chance, known as false positives. By the time we move above 15 cM, most, but not all, matches are legitimate. You can read about segment size and accuracy here.

Using “In Common With” and the Matrix

“In Common With” is about who shares DNA. You can select someone you match to see who else you BOTH match. Just because you match two other people doesn’t necessarily mean that it’s on the same segment of DNA. In fact, you could match one person from your mother’s side and the other person from your father’s side.

First Steps match matrix.png

In this example, you match Person B due to ancestor John Doe and Person C due to ancestor Susie Smith. However, Person B also matches person C, but due to ancestor William West that they share and you don’t.

This example shows you THAT they match, but not HOW they match.

The only way to assure that the matches between the three people above are due to the same ancestor is to look at the segments with a chromosome browser and compare all 3 people to each other. Finding 3 people who match on the same segment, from the same side of your tree means that (assuming a reasonably large segment) you share a common ancestor.

Family Tree DNA has a nice matrix function that allows you to see which of your matches also match each other.

First steps matrix link

click to enlarge

The important distinction between the matrix and the chromosome browser is that the chromosome browser shows you where your matches match you, but those matches could be from both sides of your tree, unless they are bucketed. The matrix shows you if your matches also match each other, which is a huge clue that they are probably from the same side of your tree.

First Steps Family Tree DNA matrix.png

A matrix match is a significant clue in terms of who descends from which ancestors. For example, I know, based on who Amy matches, and who she doesn’t match, that she descends from the Ferverda side and that Charles, Rex and Maxine descend from ancestors on the Miller side.

Looking in the chromosome browser, I can tell that Cheryl, Don, Amy and I match on some common segments.

Matching multiple people on the same segment that descends from a common ancestor is called triangulation.

Let’s take a look at the MyHeritage triangulation tool.

MyHeritage

Moving now to MyHeritage who provides us with an easy to use triangulation tool, we see the following when clicking on DNA matches on the DNA tab on the toolbar.

First Steps MyHeritage matches

click to enlarge

Cousin Cheryl is at MyHeritage too. By clicking on Review DNA Match, the purple button on the right, I can see who else I match in common with Cheryl, plus triangulation.

The list of people Cheryl and I both match is shown below, along with our relationships to each person.

First Steps MyHeritage triangulation

click to enlarge

I’ve selected 2 matches to illustrate.

The first match has a little purple icon to the right which means that Amy triangulates with me and Cheryl.

The second match, Rex, means that while we both match Rex, it’s not on the same segment. I know that without looking further because there is no triangulation button. We both match Rex, but Cheryl matches Rex on a different segment than I do.

Without additional genealogy work, using DNA alone, I can’t say whether or not Cheryl, Rex and I all share a common ancestor. As it turns out, we do. Rex is a known cousin who I tested. However, in an unknown situation, I would have to view the trees of those matches to make that determination.

Triangulation

Clicking on the purple triangulation icon for Amy shows me the segments that all 3 of us, me, Amy and Cheryl share in common as compared to me.

First Steps MyHeritage triangulation chromosome browser.png

Cheryl is red and Amy is yellow. The one segment bracketed with the rounded rectangle is the segment shared by all 3 of us.

Do we have a common ancestor? I know Cheryl and I do, but maybe I don’t know who Amy is. Let’s look at Amy’s tree which is also shown if I scroll down.

First Steps MyHeritage common ancestor.png

Amy didn’t have her tree built out far enough to show our common ancestor, but I immediately recognized the surname Ferveda found in her tree a couple of generations back. Darlene was the daughter of Donald Ferverda who was the son of Hiram Ferverda, my great-grandfather.

Hiram was the father of Cheryl’s father, Roscoe and my grandfather, John Ferverda.

First Steps Hiram Ferverda pedigree.png

Amy is my first cousin twice removed and that segment of DNA that I share with her is from either Hiram Ferverda or his wife Eva Miller.

Now, based on who else Amy matches, I can probably tell whether that segment descends from Hiram or Eva.

Viva triangulation!

Theory of Family Relativity

MyHeritage’s Theory of Family Relativity provides theories to people whose DNA matches regarding their common ancestor if MyHeritage can calculate how the 2 people are potentially related.

MyHeritage uses a combination of tools to make that connection, including:

  • DNA matches
  • Your tree
  • Your match’s tree
  • Other people’s trees at MyHeritage, FamilySearch and Geni if the common ancestor cannot be found in your tree compared against your DNA match’s MyHeritage
  • Documents in the MyHeritage data collection, such as census records, for example.

MyHeritage theory update

To view the Theories, click on the purple “View Theories” banner or “View theory” under the DNA match.

First Steps MyHeritage theory of relativity

click to enleage

The theory is displayed in summary format first.

MyHeritage view full theory

click to enlarge

You can click on the “View Full Theory” to see the detail and sources about how MyHeritage calculated various paths. I have up to 5 different theories that utilize separate resources.

MyHeritage review match

click to enlarge

A wonderful aspect of this feature is that MyHeritage shows you exactly the information they utilized and calculates a confidence factor as well.

All theories should be viewed as exactly that and should be evaluated critically for accuracy, taking into consideration sources and documentation.

I wrote about using Theories of Relativity, with instructions, here and here.

I love this tool and find the Theories mostly accurate.

AncestryDNA

Ancestry doesn’t offer a chromosome browser or triangulation but does offer a tree view for people that you match, so long as you have a subscription. In the past, a special “Light” subscription for DNA only was available for approximately $49 per year that provided access to the trees of your DNA matches and other DNA-related features. You could not order online and had to call support, sometimes asking for a supervisor in order to purchase that reduced-cost subscription. The “Light” subscription did not provide access to anything outside of DNA results, meaning documents, etc. I don’t know if this is still available.

After signing on, click on DNA matches on the DNA tab on the toolbar.

You’ll see the following match list.

First Steps Ancestry matches

click to enlarge

I’ve tested twice at Ancestry, the second time when they moved to their new chip, so I’m my own highest match. Click on any match name to view more.

First Steps Ancestry shared matches

click to enlarge

You’ll see information about common ancestors if you have some in your trees, plus the amount of shared DNA along with a link to Shared Matches.

I found one of the same cousins at Ancestry whose match we were viewing at MyHeritage, so let’s see what her match to me at Ancestry looks like.

Below are my shared matches with that cousin. The notes to the right are mine, not provided by Ancestry. I make extensive use of the notes fields provided by the vendors.

First Steps Ancestry shared matches with cousin

click to enlarge

On your match list, you can click on any match, then on Shared Matches to see who you both match in common. While Ancestry provides no chromosome browser, you can see the amount of DNA that you share and trees, if any exist.

Let’s look at a tree comparison when a common ancestor can be detected in a tree within the past 7 generations.

First Steps Ancestry view ThruLines.png

What’s missing of course is that I can’t see how we match because there’s no chromosome browser, nor can I see if my matches match each other.

Stitched Trees

What I can see, if I click on “View ThruLines” above or ThruLines on the DNA Summary page on the main DNA tab is all of the people I match who Ancestry THINKS we descend from a common ancestor. This ancestor information isn’t always taken from either person’s tree.

For example, if my match hadn’t included Hiram Ferverda in her tree, Ancestry would use other people’s trees to “stitch them together” such that the tester is shown to be descended from a common ancestor with me. Sometimes these stitched trees are accurate and sometimes they are not, although they have improved since they were first released. I wrote about ThruLines here.

First Steps Ancestry ThruLines tree

click to enlarge

In closer generations, especially if you are looking to connect with cousins, tree matching is a very valuable tool. In the graphic above, you can see all of the cousins who descend from Hiram Ferverda who have tested and DNA match to me. These DNA matches to me either descend from Hiram according to their trees, or Ancestry believes they descend from Hiram based on other people’s trees.

With more distant ancestors, other people’s trees are increasingly likely to be copied with no sources, so take them with a very large grain of salt (perchance the entire salt lick.) I use ThruLines as hints, not gospel, especially the further back in time the common ancestor. I wish they reached back another couple of generations. They are great hints and they end with the 7th generation where my brick walls tend to begin!

23andMe

I haven’t mentioned 23andMe yet in this article. Genealogists do test there, especially adoptees who need to fish in every pond.

23andMe is often the 4th choice of the major 4 vendors for genealogy due to the following challenges:

  • No tree support, other than allowing you to link to a tree at FamilySearch or elsewhere. This means no tree matching.
  • Less than 2000 matches, meaning that every person is limited to a maximum of 2000 matches, minus however many of those 2000 don’t opt-in for genealogical matching. Given that 23andMe’s focus is increasingly health, my number of matches continues to decrease and is currently just over 1500. The good news is that those 1500 are my highest, meaning closest matches. The bad news is the genealogy is not 23andMe’s focus.

If you are an adoptee, a die-hard genealogist or specifically interested in ethnicity, then test at 23andMe. Otherwise all three of the other vendors would be better choices.

However, like the other vendors, 23andMe does have some features that are unique.

Their ethnicity predictions are acknowledged to be excellent. Ethnicity at 23andMe is called Ancestry Composition, and you’ll see that immediately when you sign in to your account.

First Steps 23andMe DNA Relatives.png

Your matches at 23andMe are found under DNA Relatives.

First Steps 23andMe tools

click to enlarge

At left, you’ll find filters and the search box.

Mom’s and Dad’s side filter matches if you’ve tested your parents, but it’s not like the Family Tree DNA bucketing that provides maternal and paternal side bucketing by utilizing through third cousins if your parents aren’t available for testing.

Family names aren’t your family names, but the top family names that match to you. Guess what my highest name is? Smith.

However, Ancestor Birthplaces are quite useful because you can sort by country. For example, my mother’s grandfather Ferverda was born in the Netherlands.

First Steps 23andMe country.png

If I click on Netherlands, I can see my 5 matches with ancestors born in the Netherlands. Of course, this doesn’t mean that I match because of my match’s Dutch ancestors, but it does provide me with a place to look for a common ancestor and I can proceed by seeing who I match in common with those matches. Unfortunately, without trees we’re left to rely on ancestor birthplaces and family surnames, if my matches have entered that information.

One of my Dutch matches also matches my Ferverda cousin. Given that connection, and that the Ferverda family immigrated from Holland in 1868, that’s a starting point.

MyHeritage has a similar features and they are much more prevalent in Europe.

By clicking on my Ferverda cousin, I can view the DNA we share, who we match in common, our common ethnicity and more. I have the option of comparing multiple people in the chromosome browser by clicking on “View DNA Comparison” and then selecting who I wish to compare.

First Steps 23andMe view DNA Comparison.png

By scrolling down instead of clicking on View DNA Comparison, I can view where my Ferverda cousin matches me on my chromosomes, shown below.

First STeps 23andMe chromosome browser.png

23andMe identifies completely identical segments which would be painted in dark purple, the legend at bottom left.

Adoptees love this feature because it would immediately differentiate between half and full siblings. Full siblings share approximately 25% of the exact DNA on both their maternal and paternal strands of DNA, while half siblings only share the DNA from one parent – assuming their parents aren’t closely related. I share no completely identical DNA with my Ferverda cousin, so no segments are painted dark purple.

23andMe and Ancestry Maps Show Where Your Matches Live

Another reason that adoptees and people searching for birth parents or unknown relatives like 23andMe is because of the map function.

After clicking on DNA Relatives, click on the Map function at the top of the page which displays the following map.

First Steps 23andMe map

click to enlarge

This isn’t a map of where your matches ancestors lived, but is where your matches THEMSELVES live. Furthermore, you can zoom in, click on the button and it displays the name of the individual and the city where they live or whatever they entered in the location field.

First Steps 23andMe your location on map.png

I entered a location in my profile and confirmed that the location indeed displays on my match’s maps by signing on to another family member’s account. What I saw is the display above. I’d wager that most testers don’t realize that their home location and photo, if entered, is being displayed to their matches.

I think sharing my ancestors’ locations is a wonderful, helpful, idea, but there is absolutely no reason whatsoever for anyone to know where I live and I feel it’s stalker-creepy and a safety risk.

First Steps 23andMe questions.png

If you enter a location in this field in your profile, it displays on the map.

If you test with 23andMe and you don’t want your location to display on this map to your matches, don’t answer any question that asks you where you call home or anything similar. I never answer any questions at 23andMe. They are known for asking you the same question repeatedly, in multiple locations and ways, until you relent and answer.

Ancestry has a similar map feature and they’ve also begun to ask you questions that are unrelated to genealogy.

Ancestry Map Shows Where Your Matches Live

At Ancestry, when you click to see your DNA matches, look to the right at the map link.

First Steps Ancestry map link.png

By clicking on this link, you can see the locations that people have entered into their profile.

First Steps Ancestry match map.png

As you can see, above, I don’t have a location entered and I am prompted for one. Note that Ancestry does specifically say that this location will be shown to your matches.

You can click on the Ancestry Profile link here, or go to your Personal Profile by click the dropdown under your user name in the upper right hand corner of any page.

This is important because if you DON’T want your location to show, you need to be sure there is nothing entered in the location field.

First Steps Ancestry profile.png

Under your profile, click “Edit.”

First Steps Ancestry edit profile.png

After clicking edit, complete the information you wish to have public or remove the information you do not.

First Steps Ancestry location in profile.png

Sometimes Your Answer is a Little More Complicated

This is a First Steps article. Sometimes the answer you seek might be a little more complicated. That’s why there are specialists who deal with this all day, everyday.

What issues might be more complex?

If you’re just starting out, don’t worry about these things for now. Just know when you run into something more complex or that doesn’t make sense, I’m here and so are others. Here’s a link to my Help page.

Getting Started

What do you need to get started?

  • You need to take a DNA test, or more specifically, multiple DNA tests. You can test at Ancestry or 23andMe and transfer your results to both Family Tree DNA and MyHeritage, or you can test directly at all vendors.

Neither Ancestry nor 23andMe accept uploads, meaning other vendors tests, but both MyHeritage and Family Tree DNA accept most file versions. Instructions for how to download and upload your DNA results are found below, by vendor:

Both MyHeritage and Family Tree DNA charge a minimal fee to unlock their advanced features such as chromosome browsers and ethnicity if you upload transfer files, but it’s less costly in both cases than testing directly. However, if you want the MyHeritage DNA plus Health or the Family Tree DNA Y DNA or Mitochondrial DNA tests, you must test directly at those companies for those tests.

  • It’s not required, but it would be in your best interest to build as much of a tree at all three vendors as you can. Every little bit helps.

Your first tree-building step should be to record what your family knows about your grandparents and great-grandparents, aunts and uncles. Here’s what my first step attempt looked like. It’s cringe-worthy now, but everyone has to start someplace. Just do it!

You can build a tree at either Ancestry or MyHeritage and download your tree for uploading at the other vendors. Or, you can build the tree using genealogy software on your computer and upload to all 3 places. I maintain my primary tree on my computer using RootsMagic. There are many options. MyHeritage even provides free tree builder software.

Both Ancestry and MyHeritage offer research/data subscriptions that provide you with hints to historical documents that increase what you know about your ancestors. The MyHeritage subscription can be tried for free. I have full subscriptions to both Ancestry and MyHeritage because they both include documents in their collections that the other does not.

Please be aware that document suggestions are hints and each one needs to be evaluated in the context of what you know and what’s reasonable. For example, if your ancestor was born in 1750, they are not included in the 1900 census, nor do women have children at age 70. People do have exactly the same names. FindAGrave information is entered by humans and is not always accurate. Just sayin’…

Evaluate critically and skeptically.

Ok, Let’s Go!

When your DNA results are ready, sign on to each vendor, look at your matches and use this article to begin to feel your way around. It’s exciting and the promise is immense. Feel free to share the link to this article on social media or with anyone else who might need help.

You are the cumulative product of your ancestors. What better way to get to know them than through their DNA that’s shared between you and your cousins!

What can you discover today?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Exploring Family Trees Website, Including Average DNA Percent Inheritance by Ancestor

Sometimes you just have to do something just because it’s fun.

That’s the website learnforeverlearn at this link, a free tool created by B. F. Lyon visualizations that allows you to view your family tree or pedigree chart in very novel ways.

Here’s what greets you.

learnforever splash

The “About This” link at the very top of the page shows the following:

learnforever about

In case you’re wondering, your Gedcom file never leaves your PC, so you don’t need to worry about security.

Getting Started

First, you’ll be prompted to upload a Gedcom file, a file generated by either your genealogy software like RootsMagic or a site like Ancestry. If you have a tree at Ancestry, you can download it into a Gedcom file format and save on your computer.

My own personal Gedcom file from my PC software was too large, so I downloaded a smaller file that I use on Ancestry. I’ve entered all of my ancestors at Ancestry through 12 generations, if known, and some of their children. I use my Ancestry file to focus on direct line ancestors and DNA matches, not as my primary tree.

The first thing you see after uploading your Gedcom file is that your pedigree chart is displayed in one tree. If you want to see examples before uploading your own, click here, or view mine below. You can click to see a larger image.

learnforever ancestors

What fun! If you’ve experienced pedigree collapse where you are descended from the same ancestral line multiple times, you’ll see that in this large pedigree map. I don’t have pedigree collapse, but you take a look at fun examples under “Sample Trees.”

If you want to see more detail, just scroll your mouse wheel for larger or smaller. If you get yourself lost, simply reset pan/zoom or reset to the root person.

You can’t “hurt” this application because you reload your file every time you want to use it, so you can always just start over.

Your options are at the top, but by mousing over anything on the page, you can generally learn a lot more. Every time I use this tool, I notice something I didn’t see previously.

learnforever toolbar

Let’s take a look at what you can do.

Who’s Who

I currently have 793 individuals in my tree. By clicking on the “Current Tree Details” at the top of the page, you can see the list of who is included.

learnforever tree detail

This is an easy way to see if you have any issues in your file. I quickly discovered that I have two people with typos in their birth dates because the years have 3 digits. How did that happen?

Validation Check

You can also run a data validation check.

learnforever data validation

What a valuable tool!

Hmmm, looks like I need to do some cleanup. Ahem!!

The X Chromosome

At the top right, you can click on “Highlight X DNA Contributions” which creates a view of the people who contributed or are candidates to contribute segments of their X chromosome to the home person. Remember that you can change the home (root) person to someone else in your tree, like maybe one of your parents, for example.

The X is important because it has unique inheritance properties that can be very helpful that I wrote about here.

learnforever x contributions

I moused over the various people and discovered that when you “land” on someone, you can view their information. In this case, my great-grandmother who, on average, contributed 12.5% of her DNA to me and 25% of her X chromosome.

learnforever ancestor contribution

I can then view Evaline’s ancestor or descendant tree, or a straight path to the root, which is me, by clicking the blue buttons.

learnforever ancestor tree

Years

learnforever years

By scrolling your mouse up and down between people, you can see a horizontal black “line” that shows you a year. By following the line, you can see who in your tree was living during that year.

learnforever living years

Gosh this is fun!

History

By mousing over the green year bar at far right, you can see what was going on historically at that time, as well as in your own family.

learnforever history

I love this tool!

Locations

Under the options tab, at upper left, by toggling the flag icon, you can then view your tree by birth location.

learnforever options

I love this view.

learnforever flags

You can view the migration progression by just looking at your tree.

Scroll on down the options tab for more display possibilities.

Possible Immigrants

learnforever possible immigrants

Ancestor Information

learnforever statistics

In my case, the “number of children” information isn’t accurate because I have not fleshed out the families at Ancestry. I was only working primarily with my direct ancestors.

Unique Birthplaces

learnforever birthplaces

I’ve combined unique birthplaces with potential immigrants.

Ancestor Cone

learnforever ancestor cone

By mousing, you can see how many ancestors you had at a particular time and the total world population.

learnforever ancestors vs world population

Wow. In 1615, I had 16,384 ancestors? I need to get busy! I am never going to be finished!

Just when you think you can’t have any more fun…

You can read more about this tool and ways to use it in an article written by the author here.

Thank You

I don’t know B. F. Lyon who created this cool free website, but under the options tab, I found this:

Want more options/features? Let me know at bradflyon@gmail.com

Please drop Brad a note to say thank you or offer suggestions!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

MyHeritage LIVE Conference Day 2 – The Science Behind DNA Matching    

The MyHeritage LIVE Oslo conference is but a fond memory now, and I would count it as a resounding success.

Perhaps one of the reasons I enjoyed it so much is the scientific aspect and because the content is very focused on a topic I enjoy without being the size and complexity of Rootstech. The smaller, more intimate venue also provides access to the “right” people as well as the ability to meet other attendees and not be overwhelmed by the sheer size.

Here are some stats:

  • 401 registered guests
  • 28 countries represented including distant places like Australia and South America
  • More than 20 speakers plus the hands-on workshops where specialist teams worked with students
  • 38 sessions and workshops, plus the party
  • 60,000 livestream participants, in spite of the time differences around the world

I was blown away by the number of livestream attendees.

I don’t know what criteria Gilad Japhet will be using to determine “success” but I can’t imagine this conference being judged as anything but.

Let’s take a look at the second day. I spent part of the time talking to people and drifting in and out of the rear of several sessions for a few minutes. I meant to visit some of the workshops, but there was just too much good, distracting content elsewhere.

I began Sunday in Mike Mansfield’s presentation about SuperSearch. Yes, I really did attend a few sessions not about DNA, but my favorite was the session on Improved DNA Matching.

Improved DNA Matching

I’m sure it won’t surprise any of my readers that my favorite presentations were about the actual science of genetic genealogy.

Consumers don’t really need to understand the science behind autosomal results to reap the benefits, but the underlying science is part of what I love – and it’s important for me to understand the underpinnings to be able to unravel the fine points of what the resulting matches are and are not revealing. Misinterpretation of DNA results leading to faulty conclusions is a real issue in genetic genealogy today. Consequently, I feel that anyone working with other people’s results and providing advice really needs to understand how the science and technology together works.

Dr. Daphna Weissglas-Volkov, a population geneticist by training, although she clearly functions far beyond that scope today, gave a very interesting presentation about how MyHeritage handles (their greatly improved) DNA Matching. I’m hitting the high points here, but I would strongly encourage you to watch the video of this session when they are made available online.

In addition to Dr. Weissglas-Volkov’s slides, I’ve added some additional explanations and examples in various places. You can easily tell that the slides are hers and the graphics that aren’t MyHeritage slides are mine.

Dr. Weissglas-Volkov began the session by introducing the MyHeritage science team and then explaining terminology to set the stage.

A match is when two people match each other on a fairly long piece of DNA. Of course, “fairly long” is defined differently by each vendor.

Your genetic map (of your chromosomes) is comprised of the DNA you inherit from different ancestors by the process of recombination when DNA is transferred from the parents to the child. A centiMorgan is the relatively likelihood that a recombination will occur in a single generation. On average, 36 recombinations occur in each generation, meaning that the DNA is divided on any chromosome. However, women, for reasons unknown have about 1.5 times as many recombinations as men.

You can’t see that when looking at an example of a person compared to their parents, of course, because each individual is a full match to each parent, but you can see this visually when comparing a grandchild to their maternal grandmother and their paternal grandmother on a chromosome browser.

The above illustration is the same female grandchild compared to her maternal grandmother, at left, and her paternal grandmother at right. Therefore the number of crossovers at left is through a female child (her mother), and the number at right is through a male child (her father.)

# of Crossovers
Through female child – left 57
Through male child – right 22

There are more segments at left, through the mother, and the segments are generally shorter, because they have been divided into more pieces.

At right, fewer and larger segments through the father.

Keep in mind that because you have a strand of DNA from each parent, with exactly the same “street addresses,” that what is produced by DNA sequencing are two columns of data – but your Mom’s and Dad’s DNA is intermixed.

The information in the two columns can’t be identified as Mom’s or Dad’s DNA or strand at this point.

That interspersed raw data is called a genotype. A haplotype is when Mom’s and Dad’s DNA can be reassembled into “sides” so you can attribute the two letters at each address to either Mom or Dad.

Here’s a quick example.

The goal, of course, is to figure out how to reassemble your DNA into Mom’s side and Dad’s side so that we know that someone matching you is actually matching on all As (Mom) or all Gs (Dad,) in this example, and not a false match that zigzags back and forth between Mom and Dad.

The best way to accomplish that goal of course is trio phasing, when the child and both parents are available, so by comparing the child’s DNA with the parents you can assign the two strands of the child’s DNA.

Unfortunately, few people have both or even one parent available in order to actual divide their DNA into “sides,” so the next best avenue is statistical phasing. I’ve called this academic phasing in the past, as compared to parental phasing which MyHeritage refers to as trio phasing.

There’s a huge amount of confusion about phasing, with few people understanding there are two distinct types.

Statistical phasing is a type of machine learning where a large number of reference populations are studied. Since we know that DNA travels together in blocks when inherited, statistical phasing learns which DNA travels with which buddy DNA – and creates probabilities. Your DNA is then compared to these models and your DNA is reshuffled in order to assemble your DNA into two groups – one representing your Mom’s DNA and one representing your Dad’s DNA, according to statistical probability.

Looking at your genotype, if we know that As group together at those 6 addresses in my example 95% of the time, then we know that the most likely scenario to create a haplotype is that all of the As came from one parent and all of the Gs from the other parent – although without additional information, there is no way to yet assign the maternal and paternal identifier. At this point, we only know parent 1 and parent 2.

In order to train the computers (machine learning) to properly statistically phase testers’ results, MyHeritage uses known relationships of people to teach the machines. In other words, their reference panels of proven haplotypes grows all of the time as parent/child trios test.

Dr. Weissglas-Volkev then moved on to imputation.

When sequencing DNA, not every location reads accurately, so the missing values can be imputed, or “put back” using imputation.

Initially imputation was a hot mess. Not just for MyHeritage, but for all vendors, imputation having been forced upon them (and therefore us) by Illumina’s change to the GSA chip.

However, machine learning means that imputation models improve constantly, and matching using imputation is greatly improved at MyHeritage today.

Imputation can do more than just fill in blanks left by sequencing read errors.

The benefit of imputation to the genetic genealogy community is that vendors using disparate chips has forced vendors that want to allow uploads to utilize imputation to create a global template that incorporates all of the locations from each vendor, then impute the values they don’t actually test for themselves to complete the full template for each person.

In the example below, you can see that no vendor tests all available locations, but when imputation extends the sequences of all testers to the full 1-500 locations, the results can easily be compared to every other tester because every tester now has values in locations 1-500, regardless of which vendor/chip was utilized in their actual testing.

Therefore, using imputation, MyHeritage is able to match between quite disparate chips, such as the traditional Illumina chips (OmniExpress), the custom Ancestry chip and the new GSA chip utilized by 23andMe and LivingDNA.

So, how are matches determined?

Matching

First your DNA and that of another person are scanned for nearly identical seed sequences.

A minimum segment length of 6cM must be identified for further match processing to occur. Anything below 6cM is discarded at this point.

The match is then further evaluated to see if the seed match is of a high enough quality that it should be perfected and should count as a match. Other segments continue to be evaluated as well. If the total matching segment(s) is 8 total cM or greater, it’s considered a valid match. MyHeritage has taken the position that they would rather give you a few accidental false matches than to miss good matches. I appreciate that position.

Window cleaning is how they refer to the process of removing pileup regions known to occur in the human genome. This is NOT the same as Ancestry’s routine that removes areas they determine to be “too matchy” for you individually.

The difference is that in humans, for example, there is a segment of chromosome 6 where, for some reason, almost all humans match. Matching across that segment is not informative for genetic genealogy, so that region along with several others similar in nature are removed. At Ancestry, those genome-wide pileup segments are removed, along with other regions where Ancestry decides that you personally have too many matches. The problem is that for me, these “too matchy” segments are many of my Acadian matches. Acadians are endogamous, so lots of them match each other because as a small intermarried population, they share a great deal of the same DNA. However, to me, because I have one great-grandfather that’s Acadian, that “too matchy” information IS valuable although I understand that it wouldn’t be for someone that is 100% Acadian or Jewish.

In situations such as Ashkenazi Jewish matching, which is highly endogamous, MyHeritage uses a higher matching threshold. Otherwise every Ashkenazi person would match every other Ashkenazi person because they all descend from a small founder population, and for genealogy, that’s not useful.

The last step in processing matches is to establish the confidence level that the match is accurately predicted at the correct level – meaning the relationship range based on the amount of matching DNA and other criteria.

For example, does this match cluster with other proven matches of the same known relationship level?

From several confidence ascertainment steps, a confidence score is assigned to the predicted relationship.

Of course, you as a customer see none of this background processing, just the fact that you do match, the size of the match and the confidence score. That’s what genealogists need!

Matching Versus Triangulation Thresholds

Confusion exists about matching thresholds versus triangulation thresholds.

While any single segment must be over 6 cM in length for the matching process to begin, the actual match threshold at MyHeritage is a total of 8 cM.

I took a look at my lowest match at MyHeritage.

I have two segments, one 6.1 cM segment, and one 6 cM segment that match. It would appear that if I only had one 6 cM segment, it would not show as a match because I didn’t have the minimum 8 cM total.

Triangulation Threshold

However, after you pass that matching criteria and move on to triangulation with a matching individual, you have the option of selecting the triangulation threshold, which is not the same thing as the match threshold. The match threshold does not change, but you can change the triangulation threshold from 2 cM to 8 cM and selections in-between.

In the example below, I’m comparing myself against two known relatives.

You won’t be shown any matches below the 6 cM individual segment threshold, BUT you can view triangulated segments of different sizes. This is because matching segments often don’t line up exactly and the triangulated overlap between several individuals may be very small, but may still be useful information.

Flying your mouse over the location in the bubble, which is the triangulated segment, tells you the size of the triangulated portion. If you selected the 2 cM triangulation, you would see smaller triangulated portions of matches.

Closing Session

The conference was closed by Aaron Godfrey, a super-nice MyHeritage employee from the UK. The closing session is worth watching on the recorded livestream when it becomes available, in part because there are feel good moments.

However, the piece of information I was looking for was whether there will be a MyHeritage LIVE conference in 2019, and if so, where.

I asked Gilad afterwards and he said that they will be evaluating the feedback from attendees and others when making that decision.

So, if you attended or joined the livestream sessions and found value, please let MyHeritage know so that they can factor your feedback onto their decision. If there are topics you’d like to see as sessions, I’m sure they’d love to hear about that too. Me, I’m always voting for more DNA😊

I hope to hear about MyHeritage LIVE 2019, and I’m voting for any of the following locations:

  • Australia
  • New Zealand
  • Israel
  • Germany
  • Switzerland

What do you think?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research