23andMe – Fear of Speaking, Hair and Other Interesting Traits

People who have taken the 23and Me V4 or V5 test (Nov. 2013 or later) qualify to receive new traits as they are introduced. Recently, I received a notification that 23andMe had introduced a ‘fear of speaking” trait.

This made me chuckle, because while I do get somewhat nervous about some aspects, such as equipment failure, I have no fear of public speaking itself. Neither did my mother who was a ballet dancer, nor do my children nor grandchildren.

Given this known history, I was curious to see what 23andme had to say.

Since I was taking a look anyway, I decided to rank the first two pages of my traits based on whether they were accurately predicted or not. I’ve marked them as correct or wrong.

By the way, I view these traits as “just for fun” but keep in mind that health predictions can be just as subject to inaccuracy. Genetics generally predicts possibilities and predispositions, with a few notable exceptions. For the most part, genetics is but one of multiple factors. There are likely genetic factors we haven’t yet discovered and when dealing with disease, personal lifestyle, environment and perhaps simply luck play a part too.

Traits

Let’s take a look at what 23andMe has to say about my traits. My evaluation is in the center.

23andMe traits.png

23andMe traits 2.png

Hair

I was uncertain about my hair texture being wavy versus curly.

Roberta Estes hair trait

Here’s my hair a few days ago, not curled by me – in its natural state – as I was preparing for filming a documentary. Fear of speaking not in evidence, but fear of makeup running in the heat and hair frizz was real!

At 23andMe, you can click on the links to any of these traits on your own results page and view the criteria, so let’s look at hair traits and what they have to say. Then I’ll let you decide about mine.

23andMe hair prediction.png

My Hair certainly isn’t straight, so we can rule that option out.

Next, they show the results of other participants with similar genetics.

23andMe prediction results.png

I think we can eliminate everything except wavy and big curls which leave us split between the blue wavy which they claim I am more likely to have and the red “big curls” which they claim I am less likely to have.

23andme calculation.png

23andMe explains how they arrived at my results. I think it’s very interesting that 75 locations in the human genome are involved in determining hair curl. It’s likely that even more will be discovered in the future.

23andMe hair variants.png

According to this graphic, 30 of those 75 locations are irrelevant to my hair.

Given this scattering, it’s impossible to know which parent I inherited my hair curl from.

The Verdict

Now it’s your turn.

What do you think, based on my photo?

  1. Is this trait predicted accurately and I have “wavy hair?”
  2. Is this trait predicted inaccurately and I have “big curls” instead of “wavy hair?”

Let me know your opinion in the comments.

23andMe Products

If you want to purchase a 23andMe test for ancestry alone, meaning genealogy matching and ethnicity but no health, medical or traits, you can purchase that here.

If you want to purchase a 23andMe test for ancestry PLUS health, medical and traits, click here to order.

MyHeritage Test

MyHeritage recently introduced a product that also provides you with ancestry PLUS health information. I’ve ordered that test and will review the results as compared to 23andMe when the results are in. You can order the MyHeritage DNA Ancestry plus Health test here.

______________________________________________________________

Disclosure

I receive a small contribution when you click on the link to one of the vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

DNA Results – First Glances at Ethnicity and Matching!

People who have worked with genetic genealogy for a long time often forget what it’s like to be a new person taking a DNA test.

Recently, someone asked me what a tester actually sees after they take a DNA test and their results are ready. Good question, especially for someone trying to decide what might work for them.

I’m going to make this answer very simple. For each of the 4 major vendors, I’m going to show what a customer sees when they first sign in and view their results. Not everything or every tool, just their main page along with the initial matching and ethnicity pages.

Please feel free to share this article with people who are new and might be interested. It’s easy to follow along.

I do want to stress that this is just the beginning, not the end game and that every vendor has much more to offer if you take advantage of their tools.

Best of all, it’s so much FUN to learn about your heritage and your ancestry, plus meeting cousins and family members you may not have known that you had.

I’ve been gifted with photos of my grandparents and great-grandparents that I had no idea existed before meeting new family members.

I hope that all the new testers will become excited and that their results are just a tiny first step!

The Vendors

I’m going to take a look at:

Each vendor offers DNA matching to others in their database, plus ethnicity estimates. Yes, ethnicity is only an estimate.

Family Tree DNA

Family Tree DNA was the first and still the only genetic genealogy testing company to offer a full range of DNA testing products, launching in the year 2000. Today they stand out as the “science company,” offering both Y and mitochondrial DNA testing in addition to their Family Finder test which is comparable with the tests offered by Ancestry, 23andMe and MyHeritage.

Your personal page at Family Tree DNA shows the following tools for the Family Finder test.

Glances Family Tree DNA home

The two options we’ll look at today are your Matches and myOrigins, which is your ethnicity estimate.

Click on Matches to view whose DNA matches you. In my case, on the page below, you can see that I have a total of 4610 matches, of which 986 have been assigned to my paternal side, 842 to my maternal side, and 4 to both sides. In my case, the 4 assigned to both sides are my children and grandchildren, which makes perfect sense,

Glances Family Tree DNA matches

You can click to enlarge this graphic.

The green box above the matches indicates additional tools which provide information such as who I match in common with another person. I can see, for example, who I match in common with a first cousin which is very helpful in determining which ancestor those matches are related through.

The red box and circle show information provided to me about each match.

Family Tree DNA is able to divide my matches into “Maternal,” “Paternal” and “Both” buckets because they encourage me to link DNA matches on my tree. This means that I connect my mother to her location on my tree so that Family Tree DNA knows that people that match Mother and me both are related on my mother’s side of the tree.

Your matches don’t have to be your parents for linking to work. The more people you link, the more matches Family Tree DNA can put into buckets for you, especially if your parents aren’t available to test. Plus, your aunts and uncles inherited parts of your grandparent’s DNA that your parents didn’t, so they are super important!

Figuring out which side your matches come from, and which ancestor is first step in genetic genealogy!

You can see, above, that my mother is “assigned” on my maternal side and my son matches me on both.

“Bucketing” is a great, innovative feature. But there’s more.

The tan rounded rectangle includes ancestral surnames, with the ones that you and your match have in common shown in bold.

Based on the amount of DNA that I share with a match, and other scientific calculations, a relationship range is calculated, with the linked relationship reflecting where I’ve put that person on my tree.

If your match has uploaded or created a tree, you can view their tree (if they share) by clicking on the little blue pedigree icon, above, circled in tan between the two arrows.

Glances Family Tree DNA tree

Here’s my tree with my family members who have DNA tested attached in the proper places in my tree. Of course, there are a lot more connected people that I’m not showing in this view.

Advanced features include tools like a matching matrix and a chromosome browser where you can view the segments that actually match.

Family Tree DNA Ethnicity

To view your ethnicity estimate, click on myOrigins and you’ll see the following, along with people you match in the various regions if they have given permission for that information to be shared with their matches:

Glances Family Tree DNA myOrigins

MyHeritage

MyHeritage has penetrated the European market quite well, so if your ancestors are from the US or Europe, MyHeritage is a wonderful resource. They offer both DNA testing and records via subscription, combining genetic matches and genealogical records into a powerful tool.

Glances MyHeritage home

At MyHeritage, when you sign in, the DNA tab is at the top.

Clicking on DNA Matches shows you the following match list:

Glances MyHeritage matches

To review all of the information provided for each match, meaning who they match in common with you, their ancestral surnames, their tree and matching details, you’ll click on “Review DNA Match.”

MyHeritage provides a special tool called Theories of Family Relativity which connects you with others and your common ancestors. In essence, MyHeritage uses DNA, trees and records to weave together at least some of your family lines, quite accurately.

Here’s a simple example where MyHeritage has figured out that one of the testers is my niece and has drawn our connection for us.

Theory match 2

Theories of Family Relativity is a recently released world-class tool, easy to use but can solve very complex problems. I wrote about it here.

Advanced DNA tools include a chromosome browser and triangulation, a feature which shows you when three people match on a common segment, indicating genetically that you all 3 share a common ancestor from whom you inherited that common piece of DNA.

MyHeritage Ethnicity

To view your ethnicity estimate at MyHeritage, simply click on Ethnicity Estimate on the menu.

Glances MyHeritage ethnicity.png

23andMe

23andMe is better known for their health offering, although they were the first commercial company to offer autosomal commercial testing. However, they don’t support trees, which for genealogists are essential. Furthermore, they limit the number of your matches to your 2000 closest matches, but if some of those people don’t choose to be included in matching, they are subtracted from your 2000 total allowed. Due to this, I have only 1501 matches, far fewer matches at 23andMe than at any of the other vendors.

Glances 23andMe home

At 23andMe when you sign on, under the Ancestry tab you’ll see DNA Relatives which are your matches and Ancestry Composition which is your ethnicity estimate.

Glances 23andMe matches

While you don’t see all of the information on this primary DNA page that you do with the other vendors, with the unfortunate exception of trees, it’s there, just not on the initial display.

23andMe also provides some advanced tools such as a chromosome browser and triangulation.

23andMe Ethnicity

What 23andMe does exceptionally well is ethnicity estimates.

To view your ethnicity at 23andMe, click on Ancestry Composition.

Glances 23andMe ethnicity

23andMe refines your ethnicity estimates if your parents have tested and shows you a composite of your ethnicity with your matches. However, I consider their ethnicity painting of your chromosomes to be their best feature.

Glances 23andMe chromosome painting

You can see, in my case, the two Native American segments on chromosomes 1 and 2, subsequently proven to be accurate via documentation along with Y and mitochondrial DNA tests at Family Tree DNA. The two chromosomes shown don’t equate necessarily to maternal and paternal.

I can download this information into a spreadsheet, meaning that I can then compare matches at other companies to these ethnicity segments on my mother’s side. If my matches share these segments, they too descend from our common Native American ancestor. How cool is that!!!

Ancestry

Ancestry’s claim to fame is that they have the largest DNA database for autosomal results. Because of that, you’ll have more matches at Ancestry, but if you’re a genealogist or someone seeking an unknown family member, the match you NEED might just be found in one of the other databases, so don’t assume you can simply test at one company and find everything you need.

You don’t know what you don’t know.

Glances Ancestry home

At Ancestry, when you sign on, you’ll see the DNA tab. Click on DNA Story.

Glances Ancestry DNA tab

Scrolling past some advertising, you’ll see DNA Story, which is your Ethnicity Estimate and DNA Matches.

ThruLines, at right, is a tool similar to MyHeritage’s Theories of Family Relativity, but not nearly as accurate. However, Thrulines are better than they were when first released in February. I wrote about ThruLines here.

Glances Ancestry matches

Clicking on DNA Matches shows me information about my matches, in red, their trees or lack thereof in green, and information I can enter including ways to group my matches, in tan.

One of Ancestry’s best features is the green leaf, at the bottom in the green box, accompanied by the smiley face (that I added.) That means that this match’s tree indicates that we have a common ancestor. However, the smiley face is immediately followed by the sad face when I noticed the little lock, which means their tree is private and they aren’t sharing it with me.

If DNA testers forget and don’t connect their tree to their DNA results, you’ll see “unlinked tree.”

Like other vendors, Ancestry offers other tools as well, including the ability to define your own colored tags. You can see that I’ve tagged the matches at far right in the gold box with the little colored dots. I was able to define those dots and they have meanings such as common ancestor identified, messaged, etc.

Ancestry Ethnicity

To view your ethnicity estimate, click on “View Your DNA Story.”

Glances Ancestry ethnicity

You’ll see your ethnicity estimate and communities of matches that Ancestry has defined. By clicking on the community, you can see the ancestors in your tree that plot on the map into that community, along with a timeline. Seeing a community doesn’t necessarily mean your ancestor lived there, but that you match a group of people who are from that community.

Sharing Information

You might be thinking to yourself that it would be a lot easier if you could just test at one vendor and share the results in the other databases. Sometimes you can.

There is a central open repository at GedMatch, but clearly not everyone uploads there, so you still need to be in the various vendors’ data bases. GedMatch doesn’t offer testing, but offers additional tools, flexibility and open access not provided by the testing vendors.

Of these four vendors, Family Tree DNA and MyHeritage accept transferred files from other vendors, while Ancestry and 23andMe do not.

Transferring

If you’re interested in transferring, meaning downloading your results from one vendor and uploading to another, I wrote a series of how-to transfer articles here:

Enjoy your new matches and have fun!

______________________________________________________________

Disclosure

I receive a small contribution when you click on the link to one of the vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Identifying Unknown Parents and Individuals Using DNA Matching

There have been a lot of questions recently about the methodology used by people searching for unknown parents and other unidentified individuals. I covered this technique in concept recently at a conference as part of an overview presentation. In this article, I’m addressing only this topic and in more detail.

What is the methodology that genealogists use to identify unknown parents? It’s exactly the same process used to identify unknown Does, meaning unidentified bodies as well as violent criminals who have left DNA, such as blood or semen, at a crime scene.

How is Identifying Unknown Individuals Different from Genealogy?

Genealogists are interested in discovering their ancestors. Generally, genealogists know who their parents are and most of the time, their grandparents as well. Not very many people can tell you the names of their great-grandparents off the top of their head – not unless they ARE genealogists😊

Genealogists interview family members and access family sources, such as photos, Bibles, boxes of memorabilia and often extend their family another generation or two using these resources. Then, to gather additional information, genealogists turn to publicly available sources such as:

Constructing a Tree

Genealogists utilize software to create trees of their ancestors, either on their own computers with software such as Family Tree Maker, Legacy, RootsMagic or the free tree building software from MyHeritage. They then either synchronize or duplicate their tree on the public sites mentioned above which provide functionality such as “hints” that point to documents relevant to the ancestors in their tree. Additionally, they can access the trees of other genealogists who are researching the same ancestors. This facilitates the continued growth of their tree by adding ancestors and extending the tree back generations.

While tree-building is the goal of genealogists, the trees they build are important tools for people seeking to identify unknown individuals.

The Tree

Generations tree

In my tree, shown in the format of a pedigree chart, above, you can see that I’ve identified all 16 of my great-great-grandparents. In reality, because I’ve been a genealogist for decades, I’ve identified many more of my ancestors which are reflected in my tree on my computer and in my trees at both Ancestry and MyHeritage where I benefit from hints and DNA matches.

Genealogical pedigree charts are typically represented with the “home person,” me, in this case at the base with my ancestors branching out behind them like a lovely peacock’s tail.

While I’m looking for distant ancestors, adoptees and others seeking the identities of contemporary people are not looking back generations, but seek to identify contemporary generations, meaning people who are alive or lived very recently, typically within a generation.

Enter the world of genetics and DNA matching.

Genetics, The Game Changing Tool

Before the days of DNA testing, adoptees could only hope that someone knew the identify of their biological parents, or that their biological parents registered with a reunion site, or that their court records could be opened.

DNA testing changed all of that, because people can now DNA test and find their close relatives. As more people test, the better the odds of actually having a parent or sibling match, or perhaps a close relative like an aunt, uncle or first cousin. My closest relative that has tested that I didn’t know was testing is my half-sister’s daughter.

You share grandparents with your first cousin, and since you only have 4 grandparents, it’s not terribly difficult to figure out which set of grandparents you connect to through that first cousin – especially given the size of the databases and the number of matches that people have today.

The chart below shows my matches as of June 2019.

Vendor

Total Matches

Second Cousin or Closer

Family Tree DNA

4,609

18

MyHeritage

9,644

14

23andMe

1,501

5

Ancestry

80,151

8

You can see that I have a total of 45 close matches, although some of those matches are duplicates of each other. However, each database has some people that are only in that database and have not tested at other companies or transferred to other databases.

Situations like this are exactly why people who are searching for unknown family members take DNA tests at all 4 of the vendors.

Stories were once surprising about people who tested and either discover a previously unknown close relative, or conversely discovered that they are not related to someone who they initially believed they were. Today these occurrences are commonplace.

Matches

If you’re searching for an unknown parent or close relative, you just might be lucky to receive a parental, sibling, half-sibling or uncle/aunt match immediately.

An estimated relationship range is provided by all vendors based on the amount of DNA that the tester shares with their match.

Generations Family Tree DNA matches

My mother’s match page at Family Tree DNA is shown above. You can see that I’m Mother’s closest match. My known half brother did not test before he passed away, and mother’s parents are long deceased, so my mother should NEVER have another match this close.

So, who is that person in row 2 that is also predicted to be a mother or daughter? I took a test at Ancestry and uploaded my results to Family Tree DNA for research purposes, so this is actually my own second kit, but for example purposes, I’ve renamed myself “Example Adoptee.” Judging from the photo here, apparently my “adopted” sibling was a twin😊

If the adoptee tested at Family Tree DNA, she would immediately see a sibling match (me) and a parent match (Mom.) A match at that cM (centiMorgan) level can only be a parent or a child, and the adoptee knows whether she has a child or not.

Let’s look at a more distant example, which is probably more “typical” than immediately finding a parent match.

Let’s say that the “male adoptee” at the bottom in the red box is also searching for his birth family. He matches my mother at the 2nd-3rd cousin level, so someplace in her tree are his ancestors too.

People who have trees are shown with gold boxes around the tiny pedigree icons, because they literally are trees of gold.

Because of Family Tree DNA’s “bucketing” tool, the software has already told my Mother that the male adoptee is a match on her father’s side of her tree. The adoptee can click on the little pedigree icon to view the trees of his matches to view their ancestors, then engage in what is known as “tree triangulation” with his other close matches.

From the Perspective of the Adoptee

An adoptee tests not knowing anything about their ancestors.

Generations adoptee

When their results come back, the adoptee, in the red box in the center, hoping to identify their biological parents, discovers that their closest matches are the testers in the pink and blue ovals.

The adoptee does NOT know that these people are related to each other at this point, only that these 7 people are their closest matches on their match list.

The adoptee has to put the rest of the story together like a puzzle.

Who Matches Each Other?

In our scenario, test takers 2, 3 and 8 don’t match the adoptee, so the adoptee will never know they tested and vice versa. Everyone at a second cousin level will match each other, but only some people will match at more distant relationships, according to statistics published by 23andMe:

Relationship Level

Percentage of People Who Match

Parents, siblings, aunts, uncles, half siblings, half aunts/uncles and 1st cousins

100%

2nd cousins

>99%

3rd cousins

90%

4th cousins

45%

5th cousins

15%

6th cousins and more distant

<5%

You can view a detailed chart with additional relationships here.

Tree Triangulation

By looking at the individual trees of test taker 1, 4 and 5 whom they match, the adoptee notices that John and Jane Doe are common ancestors in the trees of all 3 test takers. The adoptee may also use “in common with” tools provided by each vendor to see who they match “in common with” another tester. In this case, let’s say that test taker 1, 4 and 5 also match each other, so the adoptee would also make note of that, inferring correctly that they are members of the same family.

The goal is to identify a common ancestor of a group of matches in order to construct the ancestor’s tree, not a pedigree chart backwards in time, as with genealogy, but to construct a descendants’ tree from the ancestral couple to the current day, as completely as possible. After all, the goal is to identify the parent of the adoptee who descends from the common ancestor.

Generations adoptee theory

In this case, the adoptee realized that the pink test takers descended from John and Jane Doe, and the blue test takers descended from Walter and Winnie Smith, and constructed descendant trees of both couples.

The adoptee created a theory, based on the descendants of these two ancestral couples, incorporating other known facts, such as the year when the adoptee was born, and where.

In our example, the adoptee discovered that John and Jane Doe had another daughter, Juanita, whose descendants don’t appear to have tested, and that Juanita had a daughter who was in the right place at the right time to potentially be the mother of the adoptee.

Conversely, Walter and Winnie Smith had a son whose descendants also appear to have not tested, and he had a son who lived in the same place as Juanita Doe. In other words, age, opportunity and process of elimination all play a role in addition to DNA matches. DNA is only the first hint that must be followed up by additional research.

At this point, if the adoptee has taken either Y or mitochondrial DNA testing, those results can serve to either include or exclude some candidates at Family Tree DNA. For example, if the adoptee was a male and matched the Y DNA of the Smith line, that would be HUGE hint.

From this point on, an adoptee can either wait for more people to test or can contact their matches hoping that the matches will have information and be helpful. Keep in mind that all the adoptee has is a theory at this point and they are looking to refine their theory or create a new one and then to help narrow their list of parent candidates.

Fortunately, there are tools and processes to help.

What Are the Odds?

One helpful tool to do this is the WATO, What Are the Odds statistical probability tools at DNAPainter.

Using WATO, you create a hypothesis tree as to how the person whose connection you are seeking might be related, plugging them in to different tree locations, as shown below.

Generations WATO

This is not the same example as Smith and Doe, above, but a real family puzzle being worked on by my cousin. Names are blurred for privacy, of course.

Generations WATO2

WATO then provides a statistical analysis of the various options, with only one of the above hypothesis being potentially viable based on the level of DNA matching for the various hypothetical relationships.

DNAPainter Shared cM Tool

If your eyes are glazing over right about now with all of these numbers flying around, you’re not alone.

I’ll distill this process into individual steps to help you understand how this works, and why, starting with another tool provided by DNAPainter, the Shared cM tool that helps you calculate the most likely relationship with another person.

The more closely related you are to a person, the more DNA you will share with them.

DNAPainter has implemented this tool based on the results of Blaine Bettinger’s Shared cM Project where you can enter the amount of DNA that you share with someone to determine the “best fit” relationship, on average, plus the range of expected shared DNA.

Generations DNAPainter Shared cM Project

You, or the test taker, are in the middle and the relationship ranges surround “you.”

For example, you can clearly see that the number of cMs for my Example Adoptee at 3384 is clearly in the Parent or Child range. But wait, it could also be at the very highest end of a half sibling relationship. Other lower cM matches are less specific, so another feature of the DNAPainter tool is a life-saver.

At the top of the page, you can enter the number of matching cMs and the tool will predict the most likely results, based on probability.

Generations 3384

The relationship for 3384 cMs is 100% a parent/child relationship, shown above, but the sibling box is highlighted below because 3384 is the very highest value in the range. This seems to be a slight glitch in the tool. We can summarize by saying that it would be extremely, extremely rare for a 3384 cM match to be a full sibling instead of a parent or child. Hen’s teeth rare.

Generations parent child

Next, let’s look at 226 cM, for our male adoptee which produces the following results:

Generations 226

The following chart graphically shows the possible relationships. The “male adoptee” is actually Mom’s second cousin. This tool is quite accurate.

Generations 226 chart

Now that you’ve seen the tools in action, let’s take a look at the rest of the process.

The Steps to Success

The single biggest predictor of success identifying an unknown person is the number of close matches. Without relatively close matches, the process gets very difficult quickly.

What constitutes a close match and how many close matches do adoptees generally have to work with?

If an adoptee matches someone at a 2nd or 3rd cousin level, what does that really mean to them?

I’ve created the following charts to answer these questions. By the way, this information is relevant to everyone, not just adoptees.

In the chart below, you can view different relationships in the blue legs of the chart descending from the common ancestral couple.

In this example, “You” and the “Other Tester” match at the 4th cousin level sharing 35 cM of DNA. If you look “up” the tree a generation, you can see that the parents of the testers match at the 3rd cousin level and share 74 cM of DNA, the grandparents of the testers match at the 2nd cousin level and share 223 cM of DNA and so forth.

Generations relationship table

In the left column, generations begin being counted with your parents as generation 1. The cumulative number of direct line relatives you have at each generation is shown in the “# Grandparents” column.

Generations relationship levels

Here’s how to read this chart, straight across.

Viewing the “Generation” column, at the 4th generation level, you have 16 great-great-grandparents. Your great-great-grandparent is a first cousin to the the great-great-grandparent of your 4th cousin. Their parents were siblings.

Looking at it this way, it might not seem too difficult to reassemble the descendancy tree of someone 5 generations in the past, but let’s look at it from the other perspective meaning from the perspective of the ancestral couple.

Generations descendants

Couples had roughly 25 years of being reproductively capable and for most of history, birth control was non-existent. If your great-great-great-grandparents, who were born sometime near the year 1800 (the births of mine range from 1785 to 1810) had 5 children who lived, and each of their descendants had 5 children who lived, today each ancestral couple would have 3,125 descendants.

If that same couple had 10 children and 10 lived in each subsequent generation, they would have 100,000 descendants. Accuracy probably lies someplace in-between. That’s still a huge number of descendants for one couple.

That’s JUST for one couple. You have 32 great-great-great-grandparents, or 16 pairs, so multiply 16 times 3,125 for 50,000 descendants or 100,000 times 16 for…are you ready for this…1,600,000 descendants.

Descendants per GGG-grandparent couple at 5 generations Total descendants for 16 GGG-grandparent couples combined
5 children per generation 3,125 50,000
10 children per generation 100,000 1,600,000

NOW you understand why adoptees need to focus on only close matches and why distant matches at the 3rd and 4th cousin level are just too difficult to work with.

By contrast, let’s look at the first cousin row.

Generations descendants 1C.png

At 5 descendants per generation, you’ll have 25 first cousins or 100 first cousins at 10 descendants per generation.

Generations descendants 2C

At second cousins, you’ll have 125 and 1,000 – so reconstructing these trees down to current descendants is still an onerous task but much more doable than from the third or fourth cousin level, especially in smaller families.

The Perfect Scenario

Barring a fortuitous parent or sibling match, the perfect scenario for adoptees and people seeking unknown individuals means that:

  • They have multiple 1st or 2nd cousin matches making tree triangulation to a maternal and paternal group of matches to identify the common ancestors feasible.
  • Their matches have trees that allow the adoptee to construct theories of how they might fit into a family.

Following the two steps above, when sufficient matching and trees have been assembled, the verification steps begin.

  • Adoptees hope that their matches are responsive to communications requesting additional information to either confirm or refute their relationship theory. For example, my mother could tell the male adoptee that he is related on her father’s side of the family based on Family Tree DNA‘s parental “side” assignment. Based on who else the adoptee matches in common with mother, she could probably tell him how he’s related. That information would be hugely beneficial.
  • In a Doe situation where the goal is to identify remains, with a relatively close match, the investigator could contact that match and ask if they know of a missing family member.
  • In a law enforcement situation where strong close-family matches that function as hints lead to potential violent crime suspects, investigators could obtain a piece of trash discarded by the potential suspect to process and compare to the DNA from the crime scene, such as was done in the Golden State Killer case.

If the discarded DNA doesn’t match the crime scene DNA, the person is exonerated as a potential suspect. If the discarded DNA does match the crime scene DNA, investigators would continue to gather non-DNA evidence and/or pick the suspect up for questioning and to obtain a court ordered DNA sample to compare to the DNA from the crime scene in a law enforcement database.

Sometimes DNA is a Waiting Game

I know that on the surface, DNA matching for adoptees and unknown persons sounds simple, and sometimes it is if there is a very close family match.

More often than not, trying to identify unknown persons, especially if the tester doesn’t have multiple close matches is much like assembling a thousand-piece puzzle with no picture on the front of the box.

Sometimes simply waiting for a better match at some point in the future is the only feasible answer. I waited years for my brother, Dave’s family match. You can read his story here and here.

DNA is a waiting game.

______________________________________________________________

Disclosure

I receive a small contribution when you click on the link to one of the vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

DNA Day Prices and Vendors’ Best Features

DNA Day always produces great sales at the DNA testing companies. Here’s a breakdown of the prices available this week and the best autosomal feature of each vendor.

Company Regular Price Sale Price Ethnicity Matching to other testers Additional Tools Best Feature
FamilyTreeDNA – Family Finder *1 *2 79 49 Yes Yes Yes Maternal and paternal bucketing of matches without parents testing
MyHeritageDNA *5 79 59 Yes Yes Yes Theories of Family Relativity, triangulation
AncestryDNA *2 *6 99 69 Yes Yes Yes Data base size
23andMe Ancestry *3 99 99 Yes Yes Yes Ethnicity breakdown by chromosome segment
LivingDNA *4 99 59 Yes No *4 No Focus on British Isles

*1 – Family Tree DNA also sells both Y and mitochondrial DNA tests. For information on sale prices for those products, please see this article.

*2 – Sale ends April 25th.

*3 – The 23andme Ancestry plus Health test is on sale here for $169 versus the normal price of $199. Sale ends May 13th. Free shipping.

*4 – Sale expiration date not provided. LivingDNA’s matching has been in a very preliminary stage for months, and while I feel confident that eventually they will have viable matching, today matching should not be considered in a purchase decision.

*5 – Sale ends April 28th. Free shipping with purchase of 2 or more kits.

*6 – Free shipping through Amazon on Ancestry test at this link.

Test yourself and close family members (parents, aunts, uncles, cousins, grandparents, etc.), especially the older generations, to make full use of the tools and matching.

Fishing in all the ponds either directly or by transfer assures that you don’t miss that critical match.

Many of these prices only last 2 more days.

Enjoy!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

DNA Testing and Transfers – What’s Your Strategy?

The landscape of genetic genealogy is forever morphing.

I’m providing a quick update as to which vendors support file transfers from which other vendors in a handy matrix.

Come join in the fun!

Testing and Transfer Strategy

Using the following chart, you can easily plan a testing and transfer strategy.

DNA Vendor Transfer Chart 2019

Click on image to enlarge.

Caveats and footnotes as follows:

1. After May 2016, the Ancestry test is only partly compatible, meaning you receive your closest matches (about 20-25% of the total) but won’t receive distant matches due to chip incompatibility. However, beginning in April 2019, when Family Tree DNA implemented the Illumina GSA chip, Ancestry files are receiving all matches.

2. The 23andMe December 2010 (V3) version is fully compatible. December 2013-August 2017 (V4) and August 2017 (V5) tests are partly compatible meaning you receive your closest matches (about 20-25% of the total) but won’t receive distant matches due to chip incompatibility. However, beginning in April 2019, when Family Tree DNA implemented the Illumina GSA chip, 23andMe V4 and V5 files are receiving all matches.
3. GedMatch has been working to resolve autosomal matching issues between vendor’s chips. Patience is a key word.
4. LivingDNA does not yet have full blown matching (I have one match), which has been in the testing phase for months, and has recently changed chip vendors.
5. Customer must extract the file using a file utility before it can be uploaded. LivingDNA indicates that they are working on a simpler solution.
6. Files transferred to LivingDNA must be in build 37 format.
4-12-2019 update – please note that MyHeritage does not accept 23andMe V2 files, only V3, V4 and V5.

Recommendations

My recommendations are as follows, and why:

Transfer Costs

Autosomal transfers and matching are free at the vendors who accept transfers, but payment for advanced tools is required.

  • Family Tree DNA – $19 one-time unlock fee for advanced tools
  • MyHeritage – $29 one-time fee for advanced tools
  • GedMatch – many tools free, but for Tier 1 advanced tools, $10 per month

All great values!

Please note that as vendors change testing chips and file formats, other vendors who accept transfers will need time to adapt. I know it’s frustrating sometimes, but it’s a sign that technology is moving forward. The good news is that after the wait, if there is one, you’ll have a brand new group of genealogy matches – many holding clues for you to decipher.

I’m in all of the databases, so see you there.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Full or Half Siblings?

Many people are receiving unexpected sibling matches. Everyday on social media, “surprises” are being reported so often that they are no longer surprising – unless of course you’re the people directly involved and then it’s very personal, life-altering and you’re in shock. Staring at a computer screen in stunned disbelief.

Conversely, sometimes that surprise involves people we already know, love and believe to be full siblings – but autosomal DNA testing casts doubt.

If your sibling doesn’t match at all, download your DNA files and upload to another company to verify. This step can be done quickly.

Often people will retest, from scratch, with another company just for the peace of mind of confirming that a sample didn’t get swapped. If a sample was swapped, then another unknown person will match you at the sibling level, because they would be the one with your sibling’s kit. It’s extremely rare, but it has happened.

If the two siblings aren’t biologically related at all, we need to consider that one or both might have been adopted, but if the siblings do match but are predicted as half siblings, the cold fingers of panic wrap themselves around your heart because the ramifications are immediately obvious.

Your full sibling might not be your full sibling. But how can you tell? For sure? Especially when minutes seem like an eternity and your thoughts are riveted on finding the answer.

This article focuses on two tools to resolve the question of half versus full siblingship, plus a third safeguard.

Half Siblings Versus Step-Siblings

For purposes of clarification, a half sibling is a sibling you share only one parent with, while a step-sibling is your step-parent’s child from a relationship with someone other than your parent. Your step-parent marries your parent but is not your parent. You are not genetically related to your step-siblings unless your parent is related to your step-parent.

Parental Testing

Ideally two people who would like to know if they are full or half siblings would have both parents, or both “assumed” parents to compare their results with. However, life is seldom ideal and parents aren’t always available. Not to mention that parents in a situation where there was some doubt might be reluctant to test.

Furthermore, you may elect NOT to have your parents test if your test with your sibling casts doubt on the biological connections within your family. Think long and hard before exposing family secrets that may devastate people and potentially destroy existing relationships. However, this article is about the science of confirming full versus half siblings, not the ethics of what to do with that information. Let your conscience be your guide, because there is no “undo” button.

Ranges Aren’t Perfect

The good news is that autosomal DNA testing gives us the ability to tell full from half-siblings by comparing the siblings to each other, without any parent’s involvement.

Before we have this discussion, let me be very clear that we are NOT talking about using these tools to attempt to discern a relationship between two more distant unknown people. This is only for people who know, or think they know or suspect themselves to be either full or half siblings.

Why?

Because the ranges of the amount of DNA found in people sharing close family relationships varies and can overlap. In other words, different degrees of relationships can be expected to share the same amounts of DNA. Furthermore, except for parents with whom you share exactly 50% of your autosomal DNA (except males don’t share their father’s X chromosome), there is no hard and fast amount of DNA that you share with any relative. It varies and sometimes rather dramatically.

The first few lines of this Relationship Chart, from the 2016 article Concepts – Relationship Predictions, shows both first and second degree relationships (far right column).

Sibling shared cM chart 2016.png

You can see that first degree relations can be parent/child, or full siblings. Second degree relationships can be half siblings, grandparents, aunt/uncle or niece/nephew.

Today’s article is not about how to discern an unknown relation with someone, but how to determine ONLY if two people are half or full siblings to each other. In other words, we’re only trying to discern between rows two and three, above.

As more data was submitted to Blaine Bettinger’s Shared cM Project, the ranges changed as we continued to learn. Blaine’s 2017 results were combined into a useful visual tool at DNAPainter, showing various relationships.

Sibling shared cM DNAPainter.png

Note that in the 2017 version of the Shared cM Project, the high end of the half sibling range of 2312 overlaps with the low end of the full sibling range of 2209 – and that’s before we consider that the people involved might actually be statistical outliers. Outliers, by their very definition are rare, but they do occur. I have seen them, but not often. Blaine wrote about outliers here and here.

Full or Half Siblings?

So, how to we tell the difference, genetically, between full and half siblings?

There are two parts to this equation, plus an optional third safeguard:

  1. Total number of shared cM (centiMorgans)
  2. Fully Identical Regions (FIR) versus Half Identical Regions (HIR)

You can generally get a good idea just from the first part of the equation, but if there is any question, I prefer to download the results to GedMatch so I can confirm using the second part of the equation too.

The answer to this question is NOT something you want to be wrong about.

Total Number of Shared cM

Each child inherits half of each parent’s DNA, but not the same half. Therefore, full siblings will share approximately 50% of the same DNA, and half siblings will share approximately 25% when compared to each other.

You can see the differences on these charts where percentages are converted into cM (centiMorgans) and on the 2017 combined chart here.

I’ve summarized full and half siblings’ shared cMs of DNA from the 2017 chart, below.

Relationship Average Shared cM Range of Shared cM
Half Siblings 1,783 1,317 – 2,312
Full Siblings 2,629 2,209 – 3,394

Fully Identical and Half Identical Regions

Part of the DNA that full siblings inherit will be the exact same DNA from Mom and Dad, meaning that the siblings will match at the same location on their DNA on both Mom’s strand of DNA and Dad’s strand of DNA. These sections are called Fully Identical Regions, or FIR.

Half siblings won’t fully match, except for very small slivers where the nucleotides just happen to be the same (identical by chance) and that will only be for very short segments.

Half siblings will match each other, but only one parent’s side, called Half Identical Regions or HIR.

Roughly, we expect to see about 25% of the DNA of full siblings be fully identical, which means roughly half of their shared DNA is inherited identically from both parents.

Understanding the Concept of Half Identical Versus Fully Identical

To help understand this concept, every person has two strands of DNA, one from each parent. Think of two sides of a street but with the same addresses on both sides. A segment can “live” from 100-150 Main Street, er, I mean chromosome 1 – but you can’t tell just from the address if it’s on Mom’s side of the street or Dad’s.

However, when you match other people, you’ll be able to differentiate which side is which based on family members from that line and who you match in common with your sibling. This an example of why it’s so important to have close family members test.

Any one segment on either strand being compared between between full siblings can:

  • Not match at all, meaning the siblings inherited different DNA from both parents at this location
  • Match on one strand but not the other, meaning the siblings inherited the same DNA from one parent, but different DNA from the other. (Half identical.)
  • Match identically on both, meaning the siblings inherited exactly the same DNA in that location from both parents. (Fully identical.)

I created this chart to show this concept visually, reflecting the random “heads and tails” combination of DNA segments by comparing 4 sets of full siblings with one another.

Sibling full vs half 8 siblings arrows

This chart illustrates the concept of matching where siblings share:

  • No DNA on this segment (red arrow for child 1 and 2, for example)
  • Half identical regions (HIR) where siblings share the DNA from one parent OR the other (green arrow for child 1 and 2, for example, where the siblings share brown from mother)
  • Fully identical regions (FIR) where they share the same segment from BOTH parents so their DNA matches exactly on both strands (black boxed regions)

If a region isn’t either half or fully identical, it means the siblings don’t match on that piece of DNA at all. That’s to be expected in roughly 50% of the time for full siblings, and 75% of the time for half siblings. That’s no problem, unless the siblings don’t match at all, and that’s entirely different, of course.

Let’s look at how the various vendors address half versus full siblings and what tools we have to determine which is which.

Ancestry

Ancestry predicts a relationship range and provides the amount of shared DNA, but offers no tools for customers to differentiate between half versus full siblings. Ancestry has no chromosome browser to facilitate viewing DNA matches but shared matches can sometimes be useful, especially if other close family members have tested.

Sibling Ancestry.png

Update 4-4-2019 – I was contacted by a colleague who works for an Ancestry company, who provided this information: Ancestry is using “Close Family” to designate avuncular, grandparent/grandchild and half-sibling relationships. If you see “Immediate Family “the relationship is a full sibling.

Customers are not able to view the results for ourselves, but according to my colleague, Ancestry is using FIRs and HIRs behind the scenes to make this designation. The Ancestry Matching White Paper is here, dating from 2016.

If Ancestry changes their current labeling in the future, this may not longer be exactly accurate. Hopefully new labeling would provide more clarity. The good news is that you can verify for yourself at GedMatch.

A big thank you to my colleague!

MyHeritage

MyHeritage provides estimated relationships, a chromosome browser and the amount of shared DNA along with triangulation but no specific tool to determine whether another tester is a full or half sibling. One clue can be if one of the siblings has a proven second cousin or closer match that is absent for the other sibling, meaning the siblings and the second cousin (or closer) do not all match with each other.

Sibling MyHeritage.png

Family Tree DNA

At Family Tree DNA, you can see the amount of shared DNA. They also they predict a relationship range, include a chromosome browser, in common matching and family phasing, also called bucketing which sorts your matches into maternal and paternal sides. They offer additional Y DNA testing which can be extremely useful for males.

Sibling FamilyTreeDNA.png

If the two siblings in question are male, a Y DNA test will shed light on the question of whether or not they share the same father (unless the two fathers are half brothers or otherwise closely related on the direct paternal line).

Sibling advanced matches.png

FamilyTreeDNA provides Advanced Matching tools that facilitate combined matching between Y and autosomal DNA.

Sibling bucketing both.png

FamilyTreeDNA’s Family Finder maternal/paternal bucketing tool is helpful because full siblings should be assigned to “both” parents, shown in purple, not just one parent, assuming any third cousins or closer have tested on both sides, or at least on the side in question.

As you can see, on the test above, the tester matches her sister at a level that could be either a high half sibling match, or a low full sibling match. In this case, it’s a full sibling, not only because both parents tested and she matched, but because even before her parents tested, she was already bucketed to both sides based on cousins who had tested on both the maternal and paternal sides of the family.

GedMatch

GedMatch, an upload site, shows the amount of shared DNA as well. Select the One-to-One matching and the “Graph and Position” option, letting the rest of the settings default.

Sibling GedMatch menu.png

GedMatch doesn’t provide predicted relationship ranges as such, but instead estimates the number of generations to the most recent common ancestor – in this case, the parents.

Sibling GedMatch total.png

However, GedMatch does offer an important feature through their chromosome browser that shows fully identical regions.

To illustrate, first, I’m showing two kits below that are known to be full siblings.

The green areas are FIR or Fully Identical Regions which are easy to spot because of the bright green coloring. Yellow indicate half identical matching regions and red means there is no match.

Sibling GedMatch legend.png

Please note that this legend varies slightly between the legacy GedMatch and GedMatch Genesis, but yellow, green, purple and red thankfully remain the same. The blue base indicates an entire region that matches, while the grey indicates an entire region not considered a match..

Sibling GedMatch FIR.png

Fully identical green regions (FIR) above are easy to differentiate when compared with half siblings who share only half identical regions (HIR).

The second example, below, shows two half-siblings that share one parent.

Sibling GedMatch HIR.png

As you can see, there are slivers of green where the nucleotides that both parents contributed to the respective children just happen to be the same for a very short distance on each chromosome. Compared to the full sibling chart, the green looks very different.

The half-sibling small green segments are fully identical by chance or by population, but not identical by descent which would mean the segments are identical because the individuals share both parents. These two people don’t share both parents.

The fully identical regions for full siblings are much more pronounced, in addition to full siblings generally sharing more total DNA.

GedMatch is the easiest and most useful site to work with for determining half versus full siblings by comparing HIR/FIR. I wrote instructions for downloading your DNA from each of the testing vendors at the links below:

Twins

Fraternal twins are the same as regular siblings. They share the same space for 9 months but are genetically siblings. Identical twins, on the other hand, are nearly impossible to tell apart genetically, and for all intents and purposes cannot be distinguished in this type of testing.

Sibling GedMatch identical twin.png

Here’s the same chart for identical twins.

23andMe

23andMe also provides relationship estimates, along with the amount of shared DNA, a chromosome browser that includes triangulation (although they don’t call it that) and a tool to identify full versus half identical regions. 23andMe does not support trees, a critical tool for genealogists.

Unfortunately, 23andMe has become the “last” company that people use for genealogy. Most of their testers seem to be seeking health information today.

If you just happen to have already tested at 23andMe with your siblings, great, because you can use these tools. If you have not tested at 23andMe, simply upload your results from any vendor to GedMatch.

At 23andMe, under the Ancestry, then DNA Relatives tabs, click on your sibling’s match to view genetic information, assuming you both have opted into matching. If you don’t match your sibling, PLEASE be sure you BOTH have completely opted in for matching. I can’t tell you how many panic stricken siblings I’ve coached who weren’t both opted in to matching. If you’re experiencing difficulty, don’t panic. Simply download both people’s files to GedMatch for an easier comparison. You can find 23andMe download instructions here.

Sibling 23andMe HIR.png

Scrolling down, you can see the options for both half and completely identical segments on your chromosomes as compared to your match. Above,  my child matches me completely on half identical regions. This makes perfect sense, of course, because my father and my child’s father are not the same person and are not related.

Conversely, this next match is my identical twin whom I match completely identically on all segments.

Sibling 23andMe FIR.png

Confession – I don’t have an identical twin. This is actually my V3 test compared with my V4 test, but these two tests are in essence identical twin tests.

Unusual Circumstances

The combination of these two tools, DNA matching and half versus fully identical regions generally provides a relatively conclusive answer as to whether two individuals are half or full siblings. Note the words generally and relatively.

There are circumstances that aren’t as clear cut, such as when the father of the second child is a brother or other close relative of the first child’s father – assuming that both children share the same mother. These people are sometimes called three quarters siblings or niblings.

In other situations, the parents are related, sometimes closely, complicating the genetics.

These cases tend to be quite messy and should be unraveled with the help of a professional. I recommend www.dnaadoption.com (free unknown parent search specialists) or Legacy Tree Genealogists (professional genealogists.)

The Final SafeGuard – Just in Case

A third check, should any doubt remain about full versus half siblings, would be to find a relative that is a second cousin or closer on the presumed mother’s side and one on the presumed father’s side, and compare autosomal results of both relatives to both siblings.

There has never been a documented case of second cousins or closer NOT matching each other. I’m unclear about second cousins once removed, or half second cousins, but about 10% of third cousins don’t match. To date, second cousins (or closer) who didn’t match, didn’t match because they weren’t really biological second cousins.

If the two children are full siblings meaning the biological children of both the presumed parents, both siblings will match the 2nd cousin or closer on the mother’s side AND the 2nd cousin or closer on the father’s side as well. If they are not full siblings, one will match only on the second cousin on the common parent’s side.

You can see in the example below that Child 1 and Child 2, full siblings, match both Hezekiah (green), a second cousin from the father’s side, as well as Susan (pink), a second cousin from the mother’s side.

Sibling both sides matching.png

If one of the two children only matches one cousin, and not the other, then the person who doesn’t match the cousin from the father’s side, for example, is not related to the father – although depending on the distance of the relationship, I would seek an additional cousin to test through a different child – just in case.

You can see in the example below that Child 2 matches both Hezekiah (green) and Susan (pink), but Child 1 only matches Susan (pink), from the mother’s side, meaning that Child 1 does not descend from John, so isn’t the child of the Presumed Father (green).
Sibling both sides not matching.png

If neither child matches Hezekiah, that’s a different story. You need to consider the possibility of one of the following:

  • Neither child is the child of the Presumed Father, and could potentially be fathered by different men
  • A break occurred in the genetic line someplace between John and Hezekiah or between John and the Presumed Father.

In other words, the only way this safeguard works as a final check is if at least ONE of the children matches both presumed parents’ lines with a second cousin or closer.

And yes, these types of “biological lineage disruptions” do occur and much more frequently that first believed.

In the End

You may not need this safeguard check when the first and second methodologies, separately or together, are relatively conclusive. Sometimes these decisions about half versus full siblings incorporate non-genetic situational information, but be careful about tainting your scientific information with confirmation bias – meaning unintentionally skewing the information to produce the result that you might desperately want.

When I’m working with a question as emotionally loaded as trying to determine whether people are half or full siblings, I want every extra check and safeguard available – and you will too. I utilize every tool at my disposal so that I don’t inadvertently draw the wrong conclusion.

I want to make sure I’ve looked under every possible rock for evidence. I try to disprove as much as I try to prove. The question of full versus half siblingship is one of the most common topics of the Quick Consults that I offer. Even when people think they know the answer, it’s not uncommon to ask an expert to take a look to confirm. It’s a very emotional topic and sometimes we are just too close to the subject to be rational and objective.

Regardless of the genetic outcome, I hope that you’ll remember that your siblings are your siblings, your parents are your parents (genetic or otherwise) and love is love – regardless of biology. Please don’t lose the compassionate, human aspect of genealogy in the fervor of the hunt.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

 

23andMe Step by Step Guide: How to Upload-Download DNA Files

In this Upload-Download series, we’ll cover each major vendor:

  • How to download raw data files from the vendor
  • How to upload raw data files to the vendor, if possible
  • Other mainstream vendors where you can upload this vendor’s files

Uploading TO 23andMe

This part is easy with 23andMe, because 23andMe doesn’t accept any other vendor’s files. There is no ability to upload TO 23andMe. You have to test with 23andMe if you want results from 23andMe.

Downloading FROM 23andMe

In order to transfer your autosomal DNA file to another testing vendor, or GedMatch, for either matching or ethnicity, you’ll need to first download the file from 23andMe.

Download Step 1

Sign on to your account at 23andMe.

23andMe download

Under your name at the upper right-hand corner of your page, by clicking on the little circle with your initials, you’ll see “Browse Raw Data.” Click there.

Download Step 2

23andMe download 2

You’ll see “Your Raw Data.” Click on the blue download link.

Download Step 3

On the Download Raw Data page, scroll down towards the bottom until you see “Request your raw data download.”

23andMe download 3

Click on Submit request.

Download Step 4

You’ll see the following message saying an e-mail will be sent to you.

23andMe download 4

Download Step 5

A few minutes later, an e-mail will arrive that says this:

23andMe download 5

Click on the green button in the e-mail which will take you back to 23andMe to sign in.

Download Step 6

After you sign in, you’ll be immediately at the download page and will see the following.

23andMe download 6

Your raw data file will be downloaded to your computer where you’ll need to store it in a location and by a name that you can find.

The file name will be something like “genome_Roberta_Estes_v2_v3_Full_xxxxxxxx” where the xs are a long number. I would suggest adding the word 23andMe to the front when you save the file on your system.

Most vendors want an unopened zip file, so if you want to open your file, first copy it to another name. Otherwise, you’ll have to download again.

23andMe File Transfers to Other Vendors

23andMe files can be in one any one of four formats:

  • V2 – the earliest tests taken at 23andMe. V2 test takers were offered an upgrade to V3.
  • V3 – V3 files beginning December 2010 through December 2013
  • V4 – V4 files beginning December 2013 through August 2017
  • V5 – V5 files beginning August 2017 through present

The changes in the files due to chip differences sometimes cause issues with transfers to other vendors who utilize other testing chips.

Your upload results to other vendors’ sites will vary in terms of both matching and ethnicity accuracy based on your 23andMe version number, as follows:

From below to >>>>>>> Family Tree DNA Accepts * MyHeritage Accepts** GedMatch Accepts *** Ancestry Accepts LivingDNA Accepts ****
23andMe V2 No Yes Yes No Yes
23andMe V3 Yes, fully compatible Yes Yes No Yes
23andMe V4 Yes, partly compatible Yes Yes No Yes
23andMe V5 No Yes Yes No Yes

* The transfer to Family Tree DNA and matching is free, but advanced tools including the chromosome browser and ethnicity require a one-time $19 unlock fee. That fee is less expensive than retesting, but V4 customers should consider retesting to obtain fully compatible matching. V4 tests won’t receive all of the distant matches that they would if they tested at Family Tree DNA.

** MyHeritage  and Family Tree DNA use the same testing chip, but MyHeritage utilizes a technique known as imputation to achieve compatibility between different vendors files. The transfer and matching is free, but advanced tools require a one-time $29 unlock fee unless you are a MyHeritage subscriber. You can read about the various options here.

***GedMatch recently transitioned to their Genesis platform and is still working on matching between multiple vendors highly disparate chips with little overlapping test regions. Patience is key. Matching is free, but the more advanced features require a Tier 1 subscription for $10 per month.

**** LivingDNA accepts files, but their matching is still in an early testing phase. They have also just changed DNA testing chips so the net effect is unknown. I will review their features later in 2019.

23andMe Testing and Transfer Strategy

My recommendation, if you’ve tested at 23andMe, depending on your test version, is as follows:

  • V2 – Upgrade (retest) at 23andMe to newer test version.
  • V3 – Transfer to Family Tree DNA, MyHeritage and GedMatch
  • V4 or V5 – Test at either Family Tree DNA or MyHeritage and transfer to the other one. You never know which match is going to break down that brick wall, and it would be a shame to miss it because you transferred rather than retested.

Step by Step Transfer Instructions

I wrote step by step transfer instructions for:

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Whole Genome Sequencing – Is It Ready for Prime Time?

Dante Labs is offering a whole genomes test for $199 this week as an early Black Friday special.

Please note that just as I was getting ready to push the publish button on this article, Veritas Genetics also jumped on the whole sequencing bandwagon for $199 for the first 1000 testers Nov. 19 and 20th. In this article, I discuss the Dante Labs test. I have NOT reviewed Veritas, their test nor terms, so the same cautions discussed below apply to them and any other company offering whole genome sequencing. The Veritas link is here.

Update – Veritas provides the VCF file for an additional $99, but does not provide FASTQ or BAM files, per their Tweet to me.

I have no affiliation with either company.

$199 (US) is actually a great price for a whole genome test, but before you click and purchase, there are some things you need to know about whole genome sequencing (WGS) and what it can and can’t do for you. Or maybe better stated, what you’ll have to do with your own results before you can utilize the information for genealogical purposes.

The four questions you need to ask yourself are:

  • Why do you want to consider whole genome testing?
  • What question(s) are you trying to answer?
  • What information do you seek?
  • What is your testing goal?

I’m going to say this once now, and I’ll say it again at the end of the article.

Whole genome sequencing tests are NOT A REPLACEMENT FOR GENEALOGICAL DNA TESTS for mitochondrial, Y or autosomal testing. Whole genome sequencing is not a genealogy magic bullet.

There are both pros and cons of this type of purchase, as with most everything. Whole genome tests are for the most experienced and technically savvy genetic genealogists who understand both working with genetics and this field well, who have already taken the vendors’ genealogy tests and are already in the Y, mitochondrial and autosomal comparison data bases.

If that’s you or you’re interested in medical information, you might want to consider a whole genome test.

Let’s start with some basics.

What Is Whole Genome Sequencing?

Whole Genome Sequencing will sequence most of your genome. Keep in mind that humans are more than 99% identical, so the only portions that you’ll care about either medically or genealogically are the portions that differ or tend to mutate. Comparing regions where you match everyone else tells you exactly nothing at all.

Exome Sequencing – A Subset of Whole Genome

Exome sequencing, a subset of whole genome sequencing is utilized for medical testing. The Exome is the region identified as the portions most likely to mutate and that hold medically relevant information. You can read about the benefits and challenges of exome testing here.

I have had my Exome sequenced twice, once at Helix and once at Genos, now owned by NantOmics. Currently, NantOmics does not have a customer sign-in and has acquired my DNA sequence as part of the absorption of Genos. I’ll be writing about that separately. There is always some level of consumer risk in dealing with a startup.

I wrote about Helix here. Helix sequences your Exome (plus) so that you can order a variety of DNA based or personally themed products from their marketplace, although I’m not convinced about the utility of even the legitimacy of some of the available tests, such as the “Wine Explorer.”

On the other hand, the world-class The National Geographic Society’s Genographic Project now utilizes Helix for their testing, as does Spencer Well’s company, Insitome.

You can also pay to download your Exome sequence data separately for $499.

Autosomal Testing for Genealogy

Both whole genome and Exome testing are autosomal testing, meaning that they test chromosomes 1-22 (as opposed to Y and mitochondrial DNA) but the number of autosomal locations varies vastly between the various types of tests.

The locations selected by the genealogy testing companies are a subset of both the whole genome and the Exome. The different vendors that compare your DNA for genealogy generally utilize between 600,000 and 900,000 chip-specific locations that they have selected as being inclined to mutate – meaning that we can obtain genealogically relevant information from those mutations.

Some vendors (for example, 23andMe and Ancestry) also include some medical SNPs (single nucleotide polymorphisms) on their chips, as both have formed medical research alliances with various companies.

Whole genome and Exome sequencing includes these same locations, BUT, the whole genome providers don’t compare the files to other testers nor reduce the files to the locations useful for genealogical comparisons. In other words, they don’t create upload files for you.

The following chart is not to scale, but is meant to convey the concept that the Exome is a subset of the whole genome, and the autosomal vendors’ selected SNPs, although not the same between the companies, are all subsets of the Exome and full genome.

I have not had my whole genome sequenced because I have seen no purpose for doing so, outside of curiosity.

This is NOT to imply that you shouldn’t. However, here are some things to think about.

Whole Genome Sequencing Questions

Coverage – Medical grade coverage is considered to be 30X, meaning an average of 30 scans of every targeted location in your genome. Some will have more and some will have less. This means that your DNA is scanned thirty different times to minimize errors. If a read error happens once or twice, it’s unlikely that the same error will happen several more times. You can read about coverage here and here.

Genomics Education Programme [CC BY 2.0 (https://creativecommons.org/licenses/by/2.

Here’s an example where the read length of Read 1 is 18, and the depth of the location shown in light blue is 4, meaning 4 actual reads were obtained. If the goal was 30X, then this result would be very poor. If the goal was 4X then this location is a high quality result for a 4X read.

In the above example, if the reference value, meaning the value at the light blue location for most people is T, then 4 instances of a T means you don’t have a mutation. On the other hand, if T is not the reference value, then 4 instances of T means that a mutation has occurred in that location.

Dante Labs coverage information is provided from their webpage as follows:

Other vendors coverage values will differ, but you should always know what you are purchasing.

Ownership – Who owns your data? What happens to your DNA itself (the sample) and results (the files) under normal circumstances and if the company is sold. Typically, the assets of the company, meaning your information, are included during any acquisition.

Does the company “share, lease or sell” your information as an additional revenue stream with other entities? If so, do they ask your permission each and every time? Do they perform internal medical research and then sell the results? What, if anything, is your DNA going to be used for other than the purpose for which you purchased the test? What control do you exercise over that usage?

Read the terms and conditions carefully for every vendor before purchasing.

File Delivery – Three types of files are generated during a whole genome test.

The VCF (Variant Call Format) which details your locations that are different from the reference file. A reference file is the “normal” value for humans.

A FASTQ file which includes the nucleotide sequence along with a corresponding quality score. Mutations in a messy area or that are not consistent may not be “real” and are considered false positives.

The BAM (Binary Alignment Map) file is used for Y DNA SNP alignment. The output from a BAM file is displayed in Family Tree DNA’s Big Y browser for their customers. Are these files delivered to you? If so, how? Family Tree DNA delivers their Big Y DNA BAM files as free downloads.

Typically whole genome data is too large for a download, so it is sent on a disc drive to you. Dante provides this disc for BAM and FASTQ files for 59 Euro ($69 US) plus shipping. VCF files are available free, but if you’re going to order this product, it would be a shame not to receive everything available.

Version – Discoveries are still being made to the human genome. If you thought we’re all done with that, we’re not. As new regions are mapped successfully, the addresses for the rest change, and a new genomic map is created. Think of this as street addresses and a new cluster of houses is now inserted between existing houses. All of the houses are periodically renumbered.

Today, typically results are delivered in either of two versions: hg19(GRVH37) or hg38(GRCH38). What happens when the next hg (human genome) version is released?

When you test with a vendor who uses your data for comparison as a part of a product they offer, they must realign your data so that the comparison will work for all of their customers (think Family Tree DNA and GedMatch, for example), but a vendor who only offers the testing service has no motivation to realign your output file for you. You only pay for sequencing, not for any after-the-fact services.

Platform – Multiple sequencing platforms are available, and not all platforms are entirely compatible with other competing platforms. For example, the Illumina platform and chips may or may not be compatible with the Affymetrix platform (now Thermo Fisher) and chips. Ask about chip compatibility if you have a specific usage in mind before you purchase.

Location – Where is your DNA actually being sequenced? Are you comfortable having your DNA sent to that geographic location for processing? I’m personally fine with anyplace in either the US, Canada or most of Europe, but other locations maybe not so much. I’d have to evaluate the privacy policies, applicable laws, non-citizen recourse and track record of those countries.

Last but perhaps most important, what do you want to DO with this file/information?

Utilization

What you receive from whole genome sequencing is files. What are you going to do with those files? How can you use them? What is your purpose or goal? How technically skilled are you, and how well do you understand what needs to be done to utilize those files?

A Specific Medical Question

If you have a particular question about a specific medical location, Dante allows you to ask the question as soon as you purchase, but you must know what question to ask as they note below.

You can click on their link to view their report on genetic diseases, but keep in mind, this is the disease you specifically ask about. You will very likely NOT be able to interpret this report without a genetic counselor or physician specializing in this field.

Take a look at both sample reports, here.

Health and Wellness in General

The Dante Labs Health and Wellness Report appears to be a collaborative effort with Sequencing.com and also appears to be included in the purchase price.

I uploaded both my Exome and my autosomal DNA results from the various testing companies (23andMe V3 and V4, Ancestry V1 and V2, Family Tree DNA, LivingDNA, DNA.Land) to Promethease for evaluation and there was very little difference between the health-related information returned based on my Exome data and the autosomal testing vendors. The difference is, of course, that the Exome coverage is much deeper (and therefore more reliable) because that test is a medical test, not a consumer genealogy test and more locations are covered. Whole genome testing would be more complete.

I wrote about Promethease here and here. Promethease does accept VCF files from various vendors who provide whole genome testing.

None of these tests are designed or meant for medical interpretation by non-professionals.

Medical Testing

If you plan to test with the idea that should your physician need a genetics test, you’re already ahead of the curve, don’t be so sure. It’s likely that your physician will want a genetics test using the latest technology, from their own lab, where they understand the quality measures in place as well as how the data is presented to them. They are unlikely to accept a test from any other source. I know, because I’ve already had this experience.

Genealogical Comparisons

The power of DNA testing for genealogy is comparing your data to others. Testing in isolation is not useful.

Mitochondrial DNA – I can’t tell for sure based on the sample reports, but it appears that you receive your full sequence haplogroup and probably your mutations as well from Dante. They don’t say which version of mitochondrial DNA they utilize.

However, without the ability to compare to other testers in a database, what genealogical benefit can you derive from this information?

Furthermore, mitochondrial DNA also has “versions,” and converting from an older to a newer version is anything but trivial. Haplogroups are renamed and branches sawed from one part of the mitochondrial haplotree and grafted onto another. A testing (only) vendor that does not provide comparisons has absolutely no reason to update your results and can’t be expected to do so. V17 is the current build, released in February 2016, with the earlier version history here.

Family Tree DNA is the only vendor who tests your full sequence mitochondrial DNA, compares it to other testers and updates your results when a new version is released. You can read more about this process, here and how to work with mtDNA results here.

Y DNA – Dante Labs provides BAM files, but other whole genome sequencers may not. Check before you purchase if you are interested in Y DNA. Again, you’ll need to be able to analyze the results and submit them for comparison. If you are not capable of doing that, you’ll need to pay a third party like either YFull or FGS (Full Genome Sequencing) or take the Big Y test at Family Tree DNA who has the largest Y Database worldwide and compares results.

Typically whole genome testers are looking for Y DNA SNPs, not STR values in BAM files. STR (short tandem repeat) values are the results that you receive when you purchase the 37, 67 or 111 tests at Family Tree DNA, as compared to the Big Y test which provides you with SNPs in order to resolve your haplogroup at the most granular level possible. You can read about the difference between SNPs and STRs here.

As with SNP data, you’ll need outside assistance to extract your STR information from the whole genome sequence information, none of which will be able to be compared with the testers in the Family Tree DNA data base. There is also an issue of copy-count standardization between vendors.

You can read about how to work with STR results and matches here and Big Y results here.

Autosomal DNA – None of the major providers that accept transfers (MyHeritage, Family Tree DNA, GedMatch) accept whole genome files. You would need to find a methodology of reducing the files from the whole genome to the autosomal SNPs accepted by the various vendors. If the vendors adopt the digital signature technology recently proposed in this paper by Yaniv Erlich et al to prevent “spoofed files,” modified files won’t be accepted by vendors.

Summary

Whole genome testing, in general, will and won’t provide you with the following:

Desired Feature Whole Genome Testing
Mitochondrial DNA Presumed full haplogroup and mutations provided, but no ability for comparison to other testers. Upload to Family Tree DNA, the only vendor doing comparisons not available.
Y DNA Presume Y chromosome mostly covered, but limited ability for comparison to other testers for either SNPs or STRs. Must utilize either YFull or FGS for SNP/STR analysis. Upload to Family Tree DNA, the vendor with the largest data base not available when testing elsewhere.
Autosomal DNA for genealogy Presume all SNPs covered, but file output needs to be reduced to SNPs offered/processed by vendors accepting transfers (Family Tree DNA, MyHeritage, GedMatch) and converted to their file formats. Modified files may not be accepted in the future.
Medical (consumer interest) Accuracy is a factor of targeted coverage rate and depth of actual reads. Whole genome vendors may or may not provide any analysis or reports. Dante does but for limited number of conditions. Promethease accepts VCF files from vendors and provides more.
Medical (physician accepted) Physician is likely to order a medical genetics test through their own institution. Physicians may not be willing to risk a misdiagnosis due to a factor outside of their control such as an incompatible human genome version.
Files VCF, FASTQ and BAM may or may not be included with results, and may or may not be free.
Coverage Coverage and depth may or may not be adequate. Multiple extractions (from multiple samples) may or may not be included with the initial purchase (if needed) or may be limited. Ask.
Updates Vendors who offer sequencing as a part of a products that include comparison to other testers will update your results version to the current reference version, such as hg38 and mitochondrial V17. Others do not, nor can they be expected to provide that service.
Version Inquire as to the human genome (hg) version or versions available to you, and which version(s) are acceptable to the third party vendors you wish to utilize. When the next version of the human genome is released, your file will no longer be compatible because WGS vendors are offering sequencing only, not results comparisons to databases for genealogy.
Ownership/Usage Who owns your sample? What will it be utilized for, other than the service you ordered, by whom and for what purposes? Will you we able to authorize or decline each usage?
Location Where geographically is your DNA actually being sequenced and stored? What happens to your actual DNA sample itself and the resulting files? This may not be the location where you return your swab kit.

The Question – Will I Order?

The bottom line is that if you are a genealogist, seeking genetic information for genealogical purposes, you’re much better off to test with the standard and well know genealogy vendors who offer compatibility and comparisons to other testers.

If you are a pioneer in this field, have the technical ability required to make use of a whole genome test and are willing to push the envelope, then perhaps whole genome sequencing is for you.

I am considering ordering the Dante Labs whole genome test out of simple curiosity and to upload to Promethease to determine if the whole genome test provides me with something potentially medically relevant (positive or negative) that autosomal and Exome testing did not.

I’m truly undecided. Somehow, I’m having trouble parting with the $199 plus $69 (hard drive delivery by request when ordering) plus shipping for this limited functionality. If I was a novice genetic genealogist or was not a technology expert, I would definitely NOT order this test for the reasons mentioned above.

A whole genome test is not in any way a genealogical replacement for a full sequence mitochondrial test, a Y STR test, a Y SNP test or an autosomal test along with respective comparison(s) in the data bases of vendors who don’t allow uploads for these various functions.

The simple fact that 30X whole genome testing is available for $199 plus $69 plus shipping is amazing, given that 15 years ago that same test cost 2.7 billion dollars. However, it’s still not the magic bullet for genealogy – at least, not yet.

Today, the necessary integration simply doesn’t exist. You pay the genealogy vendors not just for the basic sequencing, but for the additional matching and maintenance of their data bases, not to mention the upgrading of your sequence as needed over time.

If I had to choose between spending the money for the WGS test or taking the genealogy tests, hands down, I’d take the genealogy tests because of the comparisons available. Comparison and collaboration is absolutely crucial for genealogy. A raw data file buys me nothing genealogically.

If I had not previously taken an Exome test, I would order this test in order to obtain the free Dante Health and Wellness Report which provides limited reporting and to upload my raw data file to Promethease. The price is certainly right.

However, keep in mind that once you view health information, you cannot un-see it, so be sure you do really want to know.

What do you plan to do? Are you going to order a whole genome test?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Jacob Lentz’s Signatures: Cursive and Genetic – 52 Ancestors #216

What is a signature anyway?

A signature is defined as a mark or something that personally identifies an individual. A form of undeniable self-identification.

Of course, that’s exactly why I seek my ancestors’ signatures, both their handwriting and their genetic signature.

Jacob Lentz was born in Germany in 1783 and died in 1870 in Ohio.

Most documents of that timeframe contained only facsimiles of actual signatures. Original deeds indicate that the document was signed, but when recorded in deed books at the courthouse, the clerk only transcribed the signature. The person recorded the physical deed that they had in their hand, and then took it home with them. Therefore, the deed book doesn’t hold the original signature – the original deed does. I was crestfallen years ago when I discovered that fact. ☹

Hence, the actual physical signature of an ancestor is rare indeed.

Recently, I’ve been lucky enough to find not one, but two actual signatures of Jacob Lentz – plus part of his genetic signature as well.

Jacob’s Handwritten Signatures

When Jacob Lenz, later Lentz in the US, petitioned to leave Germany in 1817, he signed the petition document.

The original document is in the “Weinstadt City Archive”, which kindly gave permission for the reproduction and was graciously retrieved by my distant cousin, Niclas Witt. Thank you very much to both!

Here’s Jacob’s actual signature.

The story of Jacob’s life and immigration, and what a story it is, is recorded here, here, here and here.

Jacob’s life has a missing decade or so, after he completed his indentured servitude about 1820 or 1821 in Pennsylvania and before he arrived in Montgomery County, Ohio about 1830. In Ohio, he purchased land and began creating records. That’s where I found him initially.

Jacob’s youngest child, Mary Lentz, was born in May or June of 1829, before leaving Pennsylvania. She married in Montgomery County, Ohio on December 19, 1848 to Henry Overlease. That marriage document contains the signature of her father, Jacob Lentz.

This signature is slightly different than the German one from 31 years earlier, but it’s still clearly our Jacob, as the document states that the parents have signed. It looks like he’s also incorporated the “t” into the name now as well.

Jacob Lentz’s Genetic Signatures

As I was celebrating the discovery of not one, but two versions of Jacob’s written signature, I realized that I carry part of Jacob’s genetic signature too, as do others of his descendants. I just never thought of it quite like that before.

His genetic signature is every bit as personal, and even better because it’s in me, not lost to time.

There are three types of DNA that can provide genetic signatures of our ancestors; mitochondrial, Y DNA and autosomal.

Mitochondrial DNA

Mitochondrial DNA is passed from mothers to all genders of their children, but only their daughters pass it on. Therefore, it’s primarily unchanged, generation to generation.

Being a male, Jacob couldn’t pass his mitochondrial DNA on to his descendants, so we have to discover Jacob’s mitochondrial DNA by testing someone else who descends from his mother’s direct matrilineal line through all females but can be a male in the current generation.

Unfortunately, we haven’t been able to discover Jacob’s mitochondrial DNA that he inherited from his matrilineal line, meaning his mother’s mother’s mother’s line.

However, we only identified his parents a few months ago. Most of Jacob’s family didn’t immigrate, so perhaps eventually the right person will test who descends from his mother, or her matrilineal line, through all women to the current generation.

Jacob’s matrilineal line is as follows, beginning with his mother:

  • Jacob’s mother – Maria Margaretha Gribler born May 4, 1749 and died July 5, 1823 in Beutelsbach, married Jakob Lenz November 3, 1772.
  • Her mother, Katharina Nopp born April 23, 1707 and died November 27, 1764 in Beutelsbach, married Johann Georg Gribler on October 26, 1745.
  • Agnes Back/Beck born November 26, 1673 in Aichelberg, Germany, died February 10, 1752 in Beutelsbach and married Johann Georg Nopp from Beutelsbach.
  • Margaretha, surname unknown, from Magstadt who married Dionysus Beck who lived in Aichelberg, Germany.

If you descend from any of these women, or their female siblings through all females to the current generation, I have a DNA testing scholarship for mitochondrial DNA at Family Tree DNA for you! I’ll throw an autosomal Family Finder test in too!

If you’d like a read a quick article about how mitochondrial, Y DNA and autosomal DNA work and are inherited, click here.

Y-DNA

On the other hand, Jacob did contribute his Y DNA to his sons. Lentz male descendants, presuming no adoptions, carry Jacob’s Y DNA signature as their own.

We are very fortunate to have Jacob Lentz’s Y DNA signature, thanks to two male Lentz cousins. I wrote about how unique the Lentz Y DNA is, and that we’ve determined that our Lentz line descends from the Yamnaya culture in Russia some 3500 years ago. How did we do that? We match one of the ancient burials. Jacob’s haplogroup is R-BY39280 which is a shorthand way of telling us about his clan.

On the Big Y Tree, at Family Tree DNA, we can see that on our BY39280 branch, we have people whose distant ancestors were found in two locations, France and Germany. On the next upstream branch, KMS67, the parent of BY39280, we find people with that haplogroup in Switzerland and Greece.

Our ancestors are amazingly interesting.

Autosomal DNA

Jacob shares his Y and mitochondrial DNA, probably exactly, with other relatives, since both Y and mitochondrial DNA is passed intact from generation to generation, except for an occasional mutation.

However, Jacob’s autosomal DNA was the result of a precise combination of half of his mother’s and half of his father’s autosomal DNA. No one on this earth had the exact combination of DNA as Jacob. Therefore, Jacob’s autosomal DNA identifies him uniquely.

Unfortunately, Jacob isn’t alive to test, and no, I’m not digging him up – so we are left to piece together Jacob’s genetic signature from the pieces distributed among his descendants.

I realized that by utilizing DNAPainter, which allows me to track my own segments by ancestor, I have reconstructed a small portion of Jacob’s autosomal DNA.

Now, there’s a hitch, of course.

Given that there are no testers that descend from the ancestors of either Jacob or his wife, Fredericka Ruhle, at least not that I know of, I can’t sort out which of these segments are actually Jacob’s and which are Fredericka’s.

In the chart above, the tester and my mother match each other on the same segments, but without testers who descend from the parents of Jacob and Fredericka, through other children and also match on that same segment, we can’t tell which of those common segments came from Jacob and which from Fredericka. If my mother and the tester matched a tester from Jacob’s siblings, then we would know that their common segment descended through Jacob’s line, for example.

Painting Jacob’s Genetic Signature

The segments in pink below show DNA that I inherited from either Jacob or Fredericka. I match 8 other cousins who descend from Jacob Lentz and Fredericka Ruhle on some portion of my DNA – and in many cases, three or more descendants of Jacob/Fredericka match on the same exact segment, meaning they are triangulated.

As you can see, I inherited a significant portion of my maternal chromosome 3 from Jacob or Fredericka, as did my cousins. I also inherited portions of chromosomes 7, 9, 18 and 22 from Jacob or Fredericka as well. While I was initially surprised to see such a big piece of chromosome three descending from Jacob/Fredericka, Jacob Lentz and Fredericka Ruhle aren’t really that distantly removed – being my great-great-great-grandparents, or 5 generations back in time.

Based on the DNAPainter calculations, these segments represent about 2.4% of my DNA segments on my maternal side. The expected amount, if the DNA actually was passed in exactly half (which seldom happens,) would be approximately 3.125% for each Jacob and Fredericka, or 6.25% combined. That means I probably carry more of Jacob/Fredericka’s DNA that can eventually be identified by new cousin matches!

Of course, my cousins may well share segments of Jacob’s DNA with each other that I don’t, so those segments won’t be shown on my DNAPainter graph.

However, if we were to create a DNAPainter chart for Jacob/Fredericka themseves, and their descendants were to map their shared segments to that chart, we could eventually recreate a significant amount of Jacob’s genetic signature through the combined efforts of his descendants – like reassembling a big puzzle where we all possess different pieces of the puzzle.

Portions of Jacob’s genetic signature are in each of his descendants, at least for several generations! Reassembling Jacob would be he ultimate scavenger hunt.

What fun!

Resources

You can order Y and mitochondrial DNA tests from Family Tree DNA here, the only company offering these tests.

You can order autosomal tests from either Family Tree DNA or MyHeritage by clicking on those names in this sentence. You’ll need segment information that isn’t available at Ancestry, so I recommend testing with one of these two companies.

23andMe and Gedmatch also provide segment information. Some people who test at both 23andMe and Ancestry upload to GedMatch, so be sure to check there as well.

You can transfer your autosomal DNA files from one company to the other, with instructions for Family Tree DNA here and MyHeritage here, including how to transfer from Ancestry here.

You can learn how to use DNA Painter here, here and here.

Whose genetic signatures can you identify?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Ethnicity – Far More than Percentages!

Since ethnicity results have been in the news recently, I thought this might be a good time to talk about how to squeeze more out of your ethnicity results than just percentages.

You do know there’s more, right? You can tell a lot more about where your ethnicity came from by who you match, and how. Vendors provide that information too, but you need to know where to look. Plus, I have some tips about how to use this information effectively.

Genealogists are always trying to squeeze every last drop of information out of every DNA test, so I’d like to illustrate how I use ethnicity in combination with shared matches at Ancestry, Family Tree DNA, MyHeritage and 23andMe. Each vendor has a few unique features and tools as well, plus people in their databases that other vendors don’t have.

Come along and see what you might discover!

Ancestry

Ancestry recently introduced a new ethnicity comparison feature so let’s start there. Ancestry’s new tool:

  • Compares the ethnicity of you and a match side by side.
  • Shows Shared Migrations
  • Shows you common matches with that person.

At Ancestry, I have a V1 (older) and a V2 (newer) test, so I’m comparing my own V1 to my own V2 test for purposes of illustration.

To start, click on DNA Matches. You’ll see a new blue compare button, beneath the green View Match button, at right.

Clink on any image to enlarge

Click on the blue Compare button. You’ll see a side by side display, shown below.

My V1, at left, compared to my V2 test, at right. My V2 test results do not have a photo uploaded, so you just see my initials. It’s interesting to note that even though these are both me, just tested on different chips, that my ethnicity doesn’t match exactly, although it’s mighty close.

Next, you’ll see the shared migrations between the two people being compared. This helps determine where your common ancestor might be found.

Last, you’ll see the shared matches between you and the other person. This means that those people match both you and the person you’re comparing against, suggesting a potential common ancestor.

On your matches page, you can also sort your matches by your regions.

Where Did Your Ethnicity Come From?

Ethnicity comparisons can be helpful, especially if you’re a person who carries DNA from different continents. I do not suggest trying to compare intra-continental estimates in the same way. It’s simply too difficult for vendors to separate DNA from locations that all border each other where countries are the size of states in the US, such as the Netherlands, Germany, France and Switzerland for example.

As I’ve said before, ethnicity results are only estimates, but they are relatively accurate at the continental level, plus Jewish, as illustrated below.

To be specific, these regions are the easiest for vendors to tell apart from the other regions:

  • European
  • African
  • Native American (North American, South American, Central American and Siberian in conjunction with the Americas)
  • Asian
  • Jewish

For example, if you are 30% African, 35% Native American and 35% European, you could use this information to form a hypothesis about how you match a particular individual or group of individuals.

If the person you match is 50% Asian and 50% African, it’s most likely that the region you match them on is the common African side.

Of course, the next step would be to look at the shared matches to see if those matches include your known relatives with African heritage. This is one reason I always encourage testing of relatives. Who you and your known relative both match tells you a lot about where the common ancestor of a matching group of individuals is found in your tree. For example, if someone matches you and a first cousin, then the common ancestor of the three people is on the side of your tree that you share with the first cousin.

Not exactly sure, or dealing with smaller amounts of continental ethnicity? There’s another way to work with ethnicity.

Ethnicity Match Chart

Make an Ethnicity Match Chart that includes the ethnicity of each person in the match group, as follows.

In this example, the only category in which all people fall is African, so that’s where I’d look in my tree first for a family connection.

Keep in mind that you match person 1, and people 2-4 match both you and person 1.

That does NOT mean that:

  • Person 2, 3 or 4 match each other.
  • Any of those people share the same ancestor with each other. Yes, you can match due to different ancestors that might not have anything to do with each other.
  • These people match on any of the same segments. You can’t view segments at Ancestry. You’ll have to transfer your results to Family Tree DNA, MyHeritage or GedMatch to do that.

Next, look at the trees for each person in the common match group and see if you can discern any common genealogy or even common geography. The best hints of course, at Ancestry, are those green leaf Shared Ancestor Hints. If you find a common ancestor or line, you’re well on your way to identifying how those people are related to you and potentially your match as well.

You could also use this methodology as an adaptation of or in tandem with the Leeds Method that I wrote about here.

Comparing Segments – Yes, You’ll Need To

Ancestry doesn’t offer a chromosome browser, but Family Tree DNA, MyHeritage, 23andMe and GedMatch all do, allowing you to view segments and triangulate. I always suggest uploading Ancestry results to GedMatch, Family Tree DNA and MyHeritage. 23andMe does not accept uploads.

You’ll find instructions for downloading from Ancestry here, uploading to Family Tree DNA here, and to MyHeritage here.

Other Vendors

Each vendor offers their own version of ethnicity comparison. All vendors offer in common with (ICW) and shared match tools too, so you can create your Ethnicity Match Chart for a specific group of people from any vendor’s results – although I don’t mix vendor results on one chart. Plus, every vendor has people in their matching database that no other vendor has, so fish in every pond.

Family Tree DNA

Family Tree DNA offers shared ethnicity information on the myOrigins map. To view, click on MyOrigins, then on View MyOrigins Map.

Testers who opt in can view their ethnicity as compared to their matches’ ethnicity. You can also sort by ethnicity as well as use the pin function at bottom right to drop Y and mtDNA most distant ancestor pins on the map.

Please note that this is NOT where your match lives, but is the location of their most distant matrilineal (mtDNA) or patrilineal (surname) known individual.

If you’re looking for Native American matches, for example, you might look for someone with some percentage of Native American autosomal DNA and/or Native American Y or mitochondrial haplogroups. Click on any pin to view that person and their ethnicity that matches yours. You can also search for a specific individual to see how your ethnicity lines up.

On your match list, look for common surnames with those matches, see who you match in common and check your matches’ trees.

Linking your DNA matches to their location in your tree enables you to participate in Phased Family Matching, meaning you can then select people that are assigned to your maternal or paternal sides to view in the chromosome browser.

When viewing all maternal (red icon) or all paternal (blue icon) matches together on the chromosome browser, the segments are automatically mathematically triangulated. All you need to do is identify the common ancestor!

I love Phased Family Matches. Family Tree DNA is the only vendor to offer this feature and to incorporate Y and mitochondrial DNA.

MyHeritage

MyHeritage provides multiple avenues for comparison, allowing users to select matches by their ethnicity, country or to simply compare their ethnicity to each other. To view matches by ethnicity, click on the Filter button, but note that not all ethnicity locations are included. You can also combine options, such as looking for anyone from the Netherlands with Nigerian DNA.

To view your matches ethnicity as compared to yours, click on the match and scroll down.

Look for people you match in common as well as the triangulation icon, shown at right, below. Another feature, SmartMatches (a filter option) sort for people who have common ancestors with you in trees.

I love triangulation and DNA SmartMatches and MyHeritage is the only vendor to offer this combination of tools!

23andMe

At 23andMe, you can see your ethnicity beside that of your match by clicking on DNA Relatives, on the Ancestry tab, then click on the person you wish to compare to. In my case, I’ve also taken the V3 and V4 test at 23andMe, so I’m comparing to myself.

At 23andMe, you can view which portions of your segments are attributed to which ethnicity. Under the Ancestry tab, click Ancestry Composition and scroll down to view your Ancestry Composition Chromosome Painting.

You can see my Native American segments on chromosomes 1 and 2.

Click on Scientific Details, then scroll to the bottom to download your ethnicity raw data that includes the segment detail for the location of those specific segments.

Utilizing these chromosome and segment locations with any other vendor who supports a chromosome browser, and determining which side that ethnicity descends through allows you to identify matches who should also carry segments of that same ethnicity at that same location.

Here’s my Native segment on chromosome 2 from the download file. Remember, you have two copies of every chromosome – and in my case, only one of those copies on Chromosome 2 is Native. I know it’s from my mother, so anyone matching me on my maternal side at this location on chromosome 2 should also have a Native segment, and our common ancestor is the source of our common Native American heritage.

23andMe is the only vendor to identify ethnicity segments.

23andMe does show matches in common and common matching segments on the chromosome browser, but they don’t support trees.

Your Turn!

If you carry ethnicity from multiple continents (plus Jewish), what hints can you derive from using your ethnicity as a match tool?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research