Concepts – How Your Autosomal DNA Identifies Your Ancestors

Welcome to the concepts articles. This series presents the concepts of genetic genealogy, not the details.  I have written a lot of detailed articles, and I’ve linked to them for those of you who want more.  My suggestion would be to read this article once, entirely, all the way through to understand the concepts with continuity of thought, then go back and reread and click through to other articles if you are interested.

All of autosomal genetic genealogy is based on these concepts of inheritance and matching, so if you don’t understand these, you won’t understand your matches, how they work, why, or how to interpret what they do or don’t tell you.

The Question 

Someone sent me this question about autosomal DNA matching.

“I do not quite understand how the profiles can be identified to an ancestor since that person is not among us to provide DNA material for “testing” and “comparison.”

That’s a really good question, so let’s take a shot at answering this question conceptually.

Do you have a cat or dog?

Chica Pixie Quilt

I bet I could tell if I could see your clothes, your house, your car or your quilt. Why or how?  Because pets shed, and try as you might, it’s almost impossible to get rid of the evidence.  I went to the dentist once and he looked at my sweatshirt and said, “German Shepherd?” I laughed.

When your ancestor had children, he or she shed their DNA, half of it, and it’s still being passed down to their descendants today, at least for the next several generations. Let’s look, conceptually, at how and why this works.

In the following diagram, on the left you can see the generations and the relationships of the people both to the ancestor and to each other.

Our ancestor, John Doe, married a wife, J, and had 2 children. Gender of the children, in this example, does not matter.

Everyone receives one strand of DNA from their mother and one from their father. If you’re interested in more detail about how this works, click here.

In our example below, I’ve divided this portion of John’s DNA into 10 buckets. Think of each of these buckets as having maybe 100 units of John’s DNA.  You can think of pebbles in the bucket if you’d like.  Our DNA is passed, often, in buckets where the group of pebbles sticks together, at least for a while.  Since this is conceptual, our buckets are being passed intact from generation to generation.

John’s mother’s strand of DNA has her buckets labeled MATERNALAB and I’ve colored them pink to make them easy to identify. John’s father’s strand of DNA has his buckets labeled FATHERSIDE and is blue.  Important note – buckets don’t come colored coded pink or blue in nature – you have no idea which side your DNA comes from.  Yes, I know, that’s a cruel joke of Nature.

John married J, call her Jean. Jean also has 2 strands of DNA, one from her mother and one from her father, but in order to simplify things, rather than have two colors for the wives, I’d rather you think of this generationally, so the wives in each generation only have one color. That way you can see the wives’ DNA mixing with the husbands by just looking at the colors. Jean’s color is lavender.

DNA “Shedding” to Descendants

So, now let’s look at how John “sheds” his DNA to his two children and their descendants – and why that matters to us several generations later.

Concept ancestor inheritance

Please note that you can click on any of the graphics to make them larger.

In the examples above, the DNA that is descended in each generational line from John is bolded within the colored square. I also intentionally put it at the beginning and ends of the segments for each child so it’s easy to see.

In the first generation, John’s children each receive one strand of DNA from their mother, J, and one from John. John’s DNA that his children receive is mixed between John’s father’s DNA and John’s mother’s DNA – roughly 50-50 – but not exactly.

At every position, or bucket, during recombination, John’s child will receive either the value in John’s Mom’s bucket or the value at that location in John’s Dad’s bucket.  In other words, the two strands of John’s parent’s DNA, in John, combine to make one strand to give to one of John’s children.  Each time this happens, for each child conceived, the recombination happens differently.

Concept Ancestor inheritance John

In this case, John’s children will receive either the M or the F in bucket one.  In buckets 2 and 3, the values are the same.  This happens in DNA.  The child’s bucket 4 will receive either an E or H.  Bucket 5 an R or E.  Bucket 6 an N or R.  And so forth.  This is how recombination works, and it’s called “random recombination” meaning that we have not been able to discern why or how the values for each location are chosen.

Is recombination really random, like a coin flip?  No, it’s not.  How do we know?  Because clumps of neighboring DNA stick often together, in buckets – in fact we call them “sticky segments.”  Groups of buckets stick together too, sometimes for many generations.  So it’s not entirely random, but we don’t know why.

What we do know for absolutely positively sure is that every person get’s exactly half of their parents’ DNA on chromosomes 1-22.  We are not talking about the X chromosome (meaning chromosome 23) or mitochondrial DNA or Y DNA.  Different topics entirely relative to inheritance.

You can see which buckets received which of John’s parents’ DNA based on the pink and blue color coding and the letters in the buckets.  Jean’s contribution to Child 1 and Child 2 would be mixed between her parents’ DNA too.

Concept Ancestor inheritance child

In the first generation, Child 1 received 6 pink buckets (segments) from John’s mother and 4 blue buckets from John’s father – MATHERSLAB.  Child 2 received 6 blue buckets from John’s father and 4 pink buckets from John’s mother – FATHERALAB.  On the average, each child received half of their grandparents’ DNA, but in reality, neither child received exactly half.

Note that Child 1 and 2 did not necessarily receive the SAME buckets, or segments, from John’s parents, although Child 1 and 2 did receive some buckets with the same letters in them – ATHERLAB.

If you’re thinking, “lies, damned lies and statistics” right about now, and chuckling, or maybe crying, join the club!

Looking at the next generation, John’s Child 1 married K and John’s Child 2 married O.

Child 1

Let’s follow John’s pink and blue DNA in Child 1’s descendants.  Child 1 marries K and had one child.

Concept Ancestor inheritance grandchild child 1 c

John’s grandchild by Child 1 has one strand of DNA from Child 1’s spouse K and one strand from Child 1 which reads MATJJJJLAB. You can see this by K’s entire strand and the grandchild’s other strand, contributed by Child 1, being a mixture of John’s DNA along with his wife J’s DNA.  In this case, for these buckets, John’s mother’s pink DNA is only being passed on.  John’s father’s buckets 4-7 were “washed out” in this generation and the grandchild received grandmother J’s DNA instead.

Concept Ancestor inheritance gen 4 c

In the next generation, 3, John’s grandchild married P and had generation 4, the great-grandchild. Generation 4 of course carries a strand from wife P, but the Doe strand now carries less of John’s original DNA – just MA and LAB at the beginning and end of the grouping.

Concept Ancestor inheritance gen 5 c

In the next generation, 5, the great-great-grandchild, you can see that now John Doe’s inherited DNA is reduced to only the AB at the right end.

Concept Ancestor inheritance gen 6

In the next generation, 6, the great-great-great-grandchild carries only the A, and in the final generation, below, the great-great-great-great-grandchild, none of John Doe’s DNA is carried by that descendant in those particular buckets.

Concept Ancestor inheritance gen 7 c1

Can there be exceptions? Yes.  Buckets are sometimes split and the X chromosome functions differently in male and female inheritance.  But this example is conceptual, remember.

You always receive exactly half of your parents’ DNA, but after that, how much you receive of an ancestor’s DNA isn’t 50% in each generation. You saw that in our examples where both Child 1 and Child 2 inherited a little more or a little less than 50% of each of John’s parents’ DNA.

Sometimes groups of DNA buckets are passed together and sometimes, the entire bucket or group of buckets are replaced by DNA from “the next generation.”

To summarize for Child 1, from John Doe to generation 7, each generation inherited the following buckets from John, with the final generation, 7, having none of John’s DNA at all – at least not in these buckets.

concept child 1

Now, let’s see how the DNA of Child 2 stacks up.

Child 2

You can follow the same sequence with Child 2. In the first generation, Child 2 has one strand of John’s DNA and one of their mother’s, J.

Child 2 marries O, Olive, and their child has one strand from O, and one from Child 2.

Concept Ancestor inheritance gen 3 c 2

Child 2’s contributed strand is comprised of DNA from John Doe and mother J.  You can see that the grandchild has FA and ALAB from John, but the rest is from mother J.

Concept Ancestor inheritance gen 4 c 2

The grandchild (above) married Q and their child generation 4, inherits most of John’s DNA, but did drop the A .

Concept Ancestor inheritance gen 5 c 2

Sometimes the DNA between generations is passed on without recombining or dividing.  That’s what happened in generation 5, above, and 6 below, with John’s DNA.

Concept Ancestor inheritance gen 6 c 2

Generations, 5 (great-great-grandchild) and 6 (great-great-great-grandchild) both receive John’s F and AB, above.

Concept Ancestor inheritance gen 7 c 2

However, in the 7th generation, the great-great-great-great-grandchild only inherits John’s bucket with B.  The F and A were both lost in this generation.

concept child 2

This summary of the inheritance of John’s DNA in Child 2’s descendants shows that in the 7th generation, that individual carries only one of John’s DNA buckets, the rest having been replaced by the DNA of other ancestors during the inheritance recombination process in each generation.

Half the Equation

To answer the question of how we can identify the profile of a person long dead is not answered by this inheritance diagram, at least not directly – because we don’t KNOW how much of John’s DNA we inherited, or which parts.  In fact, that’s what we’re trying to figure out – but first, we had to understand how we inherited DNA from John (or not).

Matching with known family members is what actually identifies John’s DNA and tells us which parts of our DNA, if any, come from John.

Generational Matching

Let’s say I’m in the first cousin generation and I’m comparing my autosomal DNA against my first cousin from this line.  First cousins share common grandparents.

Assuming that they are genetically my first cousin (meaning no adoptions or misattributed parentage,) they are close enough that we can both be expected to carry some of our common ancestor’s DNA. I wrote an in-depth article about first cousin matching here, but for our purposes, we know genetically that first cousins are going to match each other virtually 100% of the time.

Here’s a nice table from the Family Tree DNA Learning Center that tells us what to expect in terms of matching at different relationship levels.

concept generational match

The reason our autosomal DNA matches with our reasonably close relatives is because we share a common ancestor and have inherited at least a bucket, if not more than one bucket, of the same DNA from that ancestor.

That’s the ONLY WAY our DNA could match at the bucket level, given what we know about inheritance. The only way to get our DNA is through our parents who got their DNA through their parents and ancestors.  Now, could we share more than one common ancestral line?  Yes – but that’s beyond conceptual, for now.  And yes, there is identical by chance (IBC), which doesn’t apply to close relatives and in general, nor to larger buckets. If you want to read more about this complex subject, which is far beyond conceptual, click here.

Now, let’s see how we identify our ancestor’s DNA!

Concept ancestor matching

Let’s look at people of the same generation of descendants and see how they match each other.  In other words, now we’re going to read left to right across rows, to compare the descendants of child 1 and 2.  Previously, we were reading up and down columns where we tracked how DNA was inherited.

Bolded letters in buckets indicate buckets inherited from John, just like before, but buckets with black borders indicate buckets shared with a cousin from John’s other child.  In other words, a black border means the DNA of those two people match at that location.  Let’s look at the grandchildren of John compared to each other.  John’s grandchildren are first cousins to each other.

Concept ancestor matching 1c

Our first cousins match on 4 different buckets of John’s DNA: A, L, A and B.  In this case, you can see that both individuals inherited some DNA from John that they don’t share with each other, such as their first letters, M for Child 1 and F for child 2.  Because they inherited different pieces from John, because he inherited those pieces from different ancestors, the first cousins don’t match each other on that particular bucket because the letters in their individual buckets are different.

Yes, the first cousins also match on wife J’s DNA, but we’re just talking about John’s DNA here.  Now, let’s look at the next generation.

Concept ancestor matching 2c

Our second cousins, above, match on four buckets of John’s DNA.  Yes, the A bucket was inherited from John’s Mom in one case, and John’s Dad in the other case, but because the letter in the bucket is the same, when matching, we can’t tell them apart.  We only “know” which side they came from, in this case, because I told you and colored the buckets pink and blue to illustrate inheritance.  All the actual software matching comparison has to go by is the letter in the bucket.  Software doesn’t have the luxury of “knowing” because in nature there is no pink and blue color coding.

concept ancestor matching 3c

Our third cousins, above, match, but share only A and B, half as much of John’s DNA as the second cousins shared with each other.

Concept ancestor matching 4c

Our 4th cousins, above, are lucky and do match, although they share only one bucket, A, of John’s DNA, which happens to have come from John’s mother.

Concept ancestor matching 5c

By the time you get down to the 5th cousins, meaning the 7th generation, the cousins’ luck has run out, because these two 5th cousins don’t match on any of John’s DNA.

Most 5th cousins don’t match and few 6th cousins match, at least not at the default thresholds used by the testing companies – but some do.  Remember, we’re dealing with matching predictions based on averages, and actual individual DNA inheritance varies quite a bit.  Lies, damned lies and statistics again!

You can adjust your own thresholds at GedMatch, in essence making the buckets smaller, so increasing the odds that the contents of the buckets will match each other, but also increasing the chances that the matches will be by chance.  Again, beyond conceptual.

concept buckets inherited

While this is how matching worked for these comparisons of descendants, it will work differently for every pair of people who are compared against each other, because they will have, or not have, inherited different (or the same) buckets of DNA from their common ancestor.  That’s a long way of saying, “your mileage will vary.”  These are concepts and guidelines, not gospel.

Now, let’s put these guidelines to work.

Matching People at Testing Companies

Ok, so now let’s say that I match Sarah Doe. I don’t know Sarah, but we are predicted to be in the 2nd or 3rd cousin range, based on the amount of our DNA that we share.

As we know, based on our inheritance example, amounts of shared DNA can vary, but we may well be able to discern a common ancestor by looking at our pedigree charts.

Sure enough, given her surname as a hint, we determined that John Doe is our common ancestor.

That’s great evidence that this DNA was passed from John to both of us, but to prove it takes a third person matching us on the same segment, also with proven descent from John Doe. Why?  Because Sarah and I might also have a second common genealogical line, maybe even one we don’t know about, that’s isn’t on our pedigree chart. And yes, that happens far more than you’d think. To prove that Sarah Doe and my shared DNA is actually from John Doe or his wife, we need a third confirmed pedigree and DNA match on that same bucket.

A Circle is Not a Bucket

If you just said to yourself, “but Ancestry doesn’t show me buckets,” you’re right – and a Circle is not a bucketA Circle means you match someone’s DNA and have a common tree ancestor.  It doesn’t mean that you or any Circle members match each other on the same buckets. A bucket, or segment information, tells you if you match on common buckets, which buckets, and exactly where.  You could match all those people in a Circle on different buckets, from completely different ancestors, and there is no way to know without bucket information.  If you want to read more about the effects of lack of tools at Ancestry, click here and here.

Proof

Matching multiple people on the same buckets who descend from the same ancestor through different children is proof – and it’s the only proof except for very close relatives, like siblings, grandparents, first cousins, etc.  Circles are hints, good hints, but far, far from proof.  For buckets, you’ll need to transfer your Ancestry results to Family Tree DNA or to GedMatch, or preferably, both.

I’m most comfortable if at least two of the individuals of a minimum of three who match on the same buckets and share an ancestor, which is called a triangulation group, descend from at least two different children of John.  In other words, the first common ancestor of the matches is John and his wife, not their children.

Cross generational matches 2

The reason I like the different children aspect is because it removes the possibility that people are really matching on the downstream wives DNA, and not John’s.  In other words, if you have two people who match on the same buckets, A and B above, who both descend from John’s Child 1 who married K, they also will share K’s DNA in addition to John’s.  So their match to each other on a given bucket might be though K’s side and not through John’s line at all.

Let’s say A and B have a match to unknown person D who is adopted and doesn’t know their pedigree chart.  We can’t make the presumption that D’s match to A and B is through John Doe and Jean, because it might be through K.

However, a match on the same buckets to a third person, C, who descends through John’s other child, Child 2, assuming that Child 2 did not also marry into K’s (or any other common) line, assures that the shared DNA of A and B (and C) in that bucket is through John or his wife – and therefore D’s match to A, B and C on that bucket is also through the same common ancestor.

If you want to read more about triangulation, click here.

In Summary

The beauty of autosomal DNA is that we carry some readily measurable portion of each of our ancestors, at least the ones in the past several generations, in us. The way we identify that DNA and assign it to that ancestor is through matching to other people on the same segments (buckets) that also descend from the same ancestor or ancestral line, preferably through different children.  In many cases, after time, you’ll have a lot more than 3 people descended from that ancestral line matching on that same bucket.  Your triangulation group will grow to many – all connected by the umbilical lifethread of your common ancestors’ DNA.

As you can see, the concepts, taken one step at a time are pretty simple, but the layers of things that you need to think about can get complex quickly.

I’ll tell you though, this is the most interesting puzzle you’ll ever work on!  It’s just that there’s no picture on the box lid.  Instead, it’s incredible real-life journey to the frontiers inside of you to discover your ancestors and their history:)  Your ancestors are waiting for you, although my ancestors have a perverse sense of humor and we play hide and seek from time to time!

The Concepts Series

clock

Sometimes we get caught up in the details of how DNA testing for genetic genealogy works and what it means. Then someone asks a simple conceptual question, and I have to step back and figure out how to not tell them how to build a clock, but simply answer the question of what time it is.

pocketwatch

Someone sent me this query about autosomal DNA matching.

“I do not quite understand how the profiles can be identified specially to an ancestor since that person is not among us to provide DNA material for “testing” and comparison.”

That used to be a common question, but less so now, or so I thought. But maybe it’s just because people aren’t asking anymore, or I’m talking to a different audience.

So, I’m introducing a “Concepts” series of articles. These articles won’t explain the specifics of “how to,” but will explain the concepts of genetic genealogy – just the concepts.  For details, how to and exceptions – and you know there are always exceptions, you can dig deeper.

If you have a basic concept question about genetic genealogy or know of one you’d like to see addressed, drop me a note or attach it as a comment to this article. I’ve discovered that many times concepts questions begin with a phrase like, “Maybe I’ve missed something, but…..”

I’ll be adding the Concepts articles here as I publish them.  And yes, the first article will be “How Your Autosomal DNA Identifies Your Ancestors.”

Concepts Articles

Concepts – How Your Autosomal DNA Identifies Your Ancestors

Concepts – Identical by…Descent, State, Population and Chance

Concepts – CentiMorgans, SNPs and Pickin’ Crab

Concepts – Parental Phasing

Concepts – Downloading Autosomal Data from Family Tree DNA

Concepts – Managing Autosomal DNA Matches – Step 1 – Assigning Parental Sides

Concepts – Y DNA Matching and Connecting with your Paternal Ancestor

Concepts – Genetic Distance

 

 

Top 10 Most Popular Articles of 2015

Wordpress 2015

WordPress, the blogging software I use, provides a year-end summary that is quite interesting.

I really like this report, as I tend to be very focused on what I’m researching and writing, not on stats – so this is a refreshing break and summary. I thought you might be interested too.

The top 10 most viewed posts in 2015 were, in order from least to most:

10thPromethease – Genetic Health Information Alternative – From December 2013

People are beginning to ask about how they can obtain some of the health information that they were previously receiving from 23andMe.  For $5, at Promethease,  you can upload any of the autosomal files from either Family Tree DNA, 23andMe or Ancestry.com.  They will process your raw data and provide you with a report that is available to download from their server for 45 days.  They also e-mail you a copy.

9thX Marks the Spot – From September 2012

When using autosomal DNA, the X chromosome is a powerful tool with special inheritance properties.  Many people think that mitochondrial DNA is the same as the X chromosome.  It’s not.

8thThick Hair, Small Boobs, Shovel Shaped Teeth and More – From February 2013

Yep, there’s a gene for these traits, and more.  The same gene, named EDAR (short for Ectodysplasin receptor EDARV370A), it turns out, also confers more sweat glands and distinctive teeth and is found in the majority of East Asian people.

7thMythbusting – Women, Fathers and DNA – From June 2013

I’m sometimes amazed at what people believe – and not just a few people – but a lot of people.

Recently, I ran across a situation where someone was just adamant that autosomal DNA could not help a female find or identify her father.  That’s simply wrong. Incorrect.  Nada!  This isn’t, I repeat, IS NOT, true of autosomal testing.

6th4 Kinds of DNA for Genetic Genealogy – from October 2012 – This is probably the article I refer people to most often.  It’s the basics, just the basics.

There seems to be a lot of confusion about the different “kinds” of DNA and how they can be used for genetic genealogy.

It used to be simple.  When this “industry” first started, in the year 2000, you could test two kinds of DNA and it was straightforward.  Now we’ve added more DNA, more tools and more testing companies and it’s not quite so straightforward anymore.

5thIs History Repeating Itself at Ancestry? – from August 2012

Is history repeating itself at Ancestry?

I’ve been thinking about whether or not I should publish this posting.  As I write and rewrite it, I still haven’t made up my mind.  It’s one of those sticky wickets, as they are called.  One of the reasons I hesitate is that I have far more questions than answers.

4thWhat is a Haplogroup? – From January 2013

Sometimes we’ve been doing genetic genealogy for so long we forget what it’s like to be new.  I’m reminded, sometimes humorously, by some of the questions I receive.

3rdAutosomal DNA 2015 – Which Test is the Best? – From February 2015

This now obsolete article compared the autosomal tests from Family Tree DNA, Ancestry and 23andMe.  23andMe, as of year end (2015), is in the midst of rewriting their platform, which obsoletes some of the tools they offered previously.   As soon as the 23andMe transition to their new platform is complete, I’ll be writing an updated version of this article for 2016.  Until then, suffice it to say I am recommending Family Tree DNA and Ancestry, in that order.

2ndEthnicity Results – True or Not? – from October 2013

I can’t even begin to tell you how many questions I receive that go something like this:

“I received my ethnicity results from XYZ.  I’m confused.  The results don’t seem to align with my research and I don’t know what to make of them?”

1stProving Native American Ancestry Using DNA – From December 2012 – this has been the most popular article every year since 2012. This doesn’t surprise me, as it’s also the most common question I receive.

Every day, I receive e-mails very similar to this one.

“My family has always said that we were part Native American.  I want to prove this so that I can receive help with money for college.”

Interesting

I was surprised, at first, to see so many older posts, but then I realized they have had more time to accumulate hits.

Of these all-time Top 10, three of them, including the most popular, which is most popular by far, have to do with Native American ancestry, directly or indirectly. The most common questions I receive about ethnicity also relate to the discovery of Native American ancestry.

Thank you everyone for coming along with me on this on this wonderful journey.  It will be exciting to see what 2016 has to offer.  I already have some exciting research planned that I’ll be sharing with you.

Happy New Year everyone!  I’m wishing you new ancestors!

Autosomal DNA Testing 101 – Tips and Tricks for Contact Success

contact

In the first part of this two part series, Autosomal DNA Testing 101 – What Now?, we talked about the different kinds of things you can do when you receive your autosomal DNA test results from either Family Tree DNA, Ancestry or 23andMe.  There are, in general, 4 types of goals that people have when they test their autosomal DNA – if they have any specific goals:

  1. I want to meet people I’m related to.
  2. I want to confirm my genealogy is correct.
  3. I want to find new ancestors.
  4. I want to map my chromosomes to my ancestors.

Regardless of which of these goals you had when you tested, or have since developed, now that you know what is possible – most of the options are going to require you to do something – often contacting your matches.

One thing that doesn’t happen is that your new genealogy is not delivered to you gift wrapped and all you have to do is open the box, untie the bow around the scroll, and roll it down the hallway.  That only happens on the genealogy TV shows:)

Because of the different ways the various vendors have implemented their DNA matching software, there are different reasons why you might want to contact your matches.

23andMe

At 23andMe, you cannot send messages to your matches or share your matching DNA segments unless you obtain permission from each match to first communicate with them and then to share matching DNA segments, which can be one or two separate permissions.  23andMe has an internal messaging system that facilitates you sending a permission request to your matches.  Personalized messages work best.  If permission is granted, you can then begin a dialogue about common ancestors and how you might match that person.

Family Tree DNA

At Family Tree DNA, you are provided with the e-mail address of everyone that you match within each person’s privacy selections.  Participants can upload their GEDCOM files, create family trees and enter a list of ancestral surnames.  You can search by current or ancestral surname.  The most common reason to contact someone you match at Family Tree DNA is if you are a match to them and they have not uploaded or created a family tree.

Ancestry

Ancestry also uses an internal messaging system.  The most common reason to contact a DNA match at Ancestry is if you match someone, and especially if you share a shakey leaf hint with them, meaning you have a common ancestor in your trees – but your match’s tree is private and you can’t see who that common ancestor might be.

GedMatch

If you upload your results to www.gedmatch.com, a free (donation based) site, you can then match your results to people who tested at all 3 companies – if they also have uploaded their results.  People provide their e-mails when uploading and configuring their accounts at GedMatch.  People who use GedMatch are often the most excited and “into” autosomal DNA matching and therefore, the most likely to contact matches.

Regardless of where you are matching, it’s important to make that first communication attempt count.  At 23andMe, if your match declines contact, you can’t communicate with them.  If they don’t reply, you can delete that first contact attempt and try again, but your attempts are limited – so you really do have to make them count.

Here are some helpful hints and approaches that do and don’t work well.  Your goal is to obtain a helpful response, so you want to position yourself in the best possible light to get that response.

A faux pas may kill your chances, so let’s start out with what not to do, and why, then we’ll look at how to make your communications a winner!

Don’t!

  • Don’t send group e-mails to everyone you match saying, “Hi, we all match. Can you tell me how?” Guess what? You won’t get many or any replies and you’ll have irritated all of your matches in one fell swoop. This is considered DNA spamming. Think about what you are writing before you press that send button.
  • Don’t say things like this to people: “Hi, I’m guessing (or hoping) that you’ve mapped your (or your cousin’s) chromosomes and you can just tell me how we are related.” When I told this person I have not mapped my cousin’s chromosomes – they had the bad judgment to ask me when I might get around to it.
  • Don’t provide just a few surnames and ask if they are related. Most of your matches will be more than 2 or 3 generations back in the tree, so the answer is likely going to be “no,” or no answer at all.
  • Don’t offer to send them an ancestry invite. That means they have to sort through your entire tree to find a match, AND Ancestry will attach your tree to their list forever. Give the e-mail recipient something to work with in the e-mail itself. Don’t make your problem their problem or they won’t reply. The more work they have to do to reply, the less chance they will.
  • Don’t send multiple e-mails with dribs and drabs of information in each one. If you have something to share, put it together logically and concisely in an e-mail and send one.
  • Don’t assume that someone of a different ethnicity isn’t related to you.
  • Don’t assume a particular surname is indicative of a person’s entire genealogical background.
  • Don’t convey an entitlement attitude. Remember, you are asking them to take a few minutes of their time to help you.
  • Don’t assume that all of your matches are from the US, or that English is their primary language – so use full state names and locations. The good news is that more and more people are testing from around the world.
  • Don’t send messages in all caps.
  • Don’t send messages with misspellings, incorrect grammar or abbreviated texting language. Translated, this means your phone or i-pad with autocorrect is probably not a good idea.
  • Don’t send the entire request in the title of the message. Yes, people do this.
  • Don’t send a message with a title like “hi there.”  It’s likely to go to the spam folder or be over looked or ignored.  Instead, title each message with the name of the test, the testing company and whose DNA you are writing about.  In other words, something like this: “Autosomal DNA Match at Family Tree DNA to John Doe”
  • Don’t just send the “canned” request message at 23andMe. Send a personal note. If you have an online tree, include that link. If you notice you have ancestors from the same part of the world, or country, tell them. If you match their DNA, tell them. Some people send match requests because they notice a common surname. In other words, try to find some common ground to start a conversation.
  • Don’t dash off a hurried, half-baked, partially complete message.  It shows and will be reflected in the responses you do, and don’t, receive.
  • Don’t expect others to do your work for you.  Recently, I received a match contact and when I asked the sender for the name of the person they matched, they told me they couldn’t remember, they had sent out a “mass mailing,” and asked me to check my kits and see if there were matches to them.  Seriously?  They also didn’t tell me the testing company name, nor the test type.  Three e-mails later, I still don’t know the name of the person they matched.  Guess what.  Delete!  Make it easy for your matches to help you and don’t waste their time by only providing partial information.

Do!

  • Read your matches profiles if they have provided one. It shows you took the time to read what they provided, and may give you some common ground out the door. “I see we both have ancestors from the Netherlands,” is a good icebreaker, for example.
  • Address the e-mail to the person using their name if it’s available. In other words, begin, “Hi Joe” not just “Hi.” Do not assume a gender. Names can be deceiving. My name is not deceiving, Roberta, but I can’t tell you how many e-mails I receive to Robert or “Mr. Estes.” This tells me they didn’t pay attention.
  • Do use capital letters and punctuation.  Otherwise, you’re telling the person on the receiving end they aren’t important enough to bother with – and they will likely treat your request in kind.
  • Enter information about yourself in your profile at the vendors, including your country of origin.
  • Upload a photo of yourself into your profile at the vendor so that people can see you. This makes you seem more like a real person and they may look at you for family resemblance. Probably shouldn’t upload a photo that might be controversial or off-putting if your goal is to maximize response.
  • Link your tree to your DNA results (Ancestry) or upload a Gedcom file (Family Tree DNA.) 23andMe is more challenging since their collaboration with My Heritage which is a subscription service. Most people simply put a link to their public tree someplace in their profile information at 23andMe.
  • Provide your name and kit number or other identifying information in all correspondence – including the first e-mail.
  • Include kit numbers (GedMatch) and/or names (Family Tree DNA) that you’re matching. Many people manage multiple kits for family members and if they have to go and look for you in their kits’ matches, they won’t.  Don’t make the recipient have to guess at any part of the equation.  Say something like this, “Hi, I match John Smith’s autosomal DNA test at Family Tree DNA and you are his e-mail contact…”
  • Tell them where you tested and where you are matching them. “Hi, I tested at Ancestry and downloaded by kit to GedMatch where I’m kit number A100007. I’m matching kit F9141, Jane Doe, where you are listed as the contact.”  Be sure to get the name of the testing company right.  Today, someone told me the test was through “Family Search,” who, of course, does not do DNA testing.
  • If you are matching on a Y or mitochondrial DNA test, tell them at what level you’re matching.  Otherwise, they have to search through each level to find you.  On mitochondrial DNA, if you and they both tested to the full sequence level, but you’re only matching on the HVR1 level, it’s not nearly as compelling or interesting as if you match at the full sequence level with no mutations difference.  So, tell them, “I’m a match to John Doe at Family Tree DNA at the full mitochondrial level, with no mutations difference.  Maybe we can find our common ancestor.  My direct mitochondrial line is….”
  • If you are matching at GedMatch and you lowered the match threshold from the default, tell them. Better yet, don’t lower the threshold, at least not for initial comparisons.
  • Make replying to your query as easy as possible. You stand a much better chance of getting a reply. The more work you make them do, the less chance you’ll get a reply.
  • Include your full name and e-mail address if you are using Ancestry’s or 23andMe’s message systems.
  • Get your facts straight. I recently received an e-mail from someone who told me that we matched on 21% of our DNA and one segment. I knew that was impossible because 21% is in the half sibling range and if you’re a half sibling – you will match on a whole lot more than one segment. If you don’t pay attention and get your facts straight, it’s less likely that the person you are contacting will take you seriously.
  • Accept contact requests if you tested at 23andMe and receive a contact or sharing request, and be sure to share genomes so that you can see how you match and use their comparison tools like their Family Inheritance: Advanced.
  • Include a very brief, maybe two sentence summary about yourself in contact requests. Something like. “It appears we may match on my father’s side which is primarily from Appalachia, which means they were Scotch-Irish and British before that” or “My maternal heritage is from Scandinavia, so the names may not look familiar to you. My mother’s family is from the area near Stockholm.” Do not tell them your life story or ramble. You’ll lose them.
  • Send a pedigree chart (preferably with an index) in pdf format if you’re using e-mail or a link to a tree. I have a pedigree chart for my mother’s side and my father’s side. I can tell which side they match because my mother has tested as well. One of the best tools I have ever received with a query is shown below. It was sent as a spreadsheet, which made it incredibly easy for me to sort, but wouldn’t work for everyone. It could be sent as a pdf file as well, and is very easy to scan for surnames and locations. I immediately liked this person and absolutely knew they were serious and we stood a chance of making a genealogy connection.  (Click on the image to make larger in a separate window.)

ancestor spreadsheet

  • Take the time to learn about autosomal DNA, matching and what it means. Aside from the many articles on this blog which you can find by using the key search word “autosomal,” here are four additional resources for you:

Genetic Genealogy: The Basics and Beyond by Emily Aulicino
NextGen Genealogy: The DNA Connection by David Dowell
DNA Adoption’s classes
Beginners Guide to Genetic Genealogy by Kelly Wheaton

  • If you’re adopted or searching for an unknown parents or grandparent, visit www.dnaadoption.com.
  • If you have a blog or genealogy webpage, include that information, maybe below your signature.
  • If you’re serious about maximizing your opportunities for success with genetic genealogy, you’ll want to test at all 3 companies, Family Tree DNA (Y, mtDNA and autosomal), Ancestry and 23andMe. Family Tree DNA facilitates reduced cost file transfers from Ancestry and from 23andMe if you tested before Dec. 2013 (when 23andMe changed their chip.) They all have their strong and weak points – but the bottom line is that you’ll want to fish in all three ponds. You’ll also want to download your results from one of those companies, preferably Family Tree DNA or Ancestry, to www.gedmatch.com, a site that facilitates comparison of data from the various companies and provides some great tools. GedMatch is a contribution site, so don’t forget to donate. Some of their Tier 1 tools require a minimal subscription of $10 a month, which is well worth it if you are serious. Ask your matches if they have downloaded their data to GedMatch and provide your kit number there.
  • Be courteous and gracious. Say please and thank you. You’d be amazed how many people say neither.
  • Share this article with eager newbies who need a little direction. Most newbies aren’t going to find this article before shooting off that e-mail in their initial excitement to an entire group of matches. By helping them to better focus their efforts, you’ll be helping yourself too. Most newbies have no idea what they’ve just gotten themselves into!

Acknowledgements:  Thanks to contributors in the ISOGG Facebook group for helping to flesh out these tips for success.

Getting Started in Genetic Genealogy – Intro by Diahan Southard

Diahan Southard gave a fantastic presentation at Rootstech 2015 about how to get started with Genetic Genealogy.  Diahan is one of the few people who has been in this field as long as I have been – 15 years now.  This is the only industry I know where 15 years makes you both one of the first and an old-timer.  Funny – Diahan doesn’t look anything like a dinosaur:)

southard

Diahan makes DNA interesting.  Guaranteed, she will not put you to sleep.  And when I say intro, this really is – so don’t be intimidated.

southard1

As Diahan says, genetic genealogy is not mysterious, it makes sense, there’s a pattern and you utilize DNA results plus you add your traditional genealogy skills into the mix.

Diahan is right.  In her presentation, she tells you all about those tools, and why you would want to test.  And…which test would be the best for you to take to accomplish your genealogy goals.

You are a walking, living, breathing record of your ancestors!!!  Find out how to discover more!

Thanks to Rootstech for the videos and Diahan for the great intro.  The conference video is no longer available, but this note from Diahan provides directions to her great videos.

Even though the Rootstech video is no longer available, I do have that video (plus lots more!) as part of my online video tutorial series (http://www.yourdnaguide.com/#/video-training/). That same RootsTech Video is also a bonus feature of subscribing to Lisa Louise Cooke’s Genealogy Gems Premium Membership where she provides instruction on Tech Tools like Google, Evernote, and Google Earth (http://lisalouisecooke.com/premium-membership/). You can also come learn about genetic genealogy in person if you are going to be nearby anywhere I am going to be (http://www.yourdnaguide.com/lecture-schedule).

Demystifying Autosomal DNA Matching

dna word cluster4

What, exactly, is an autosomal DNA match?

Answer:  It’s Relative

I’m sorry, I just had to say that.

But truthfully, it is.

I know this sounds like a very basic question, and it is, but the answer sometimes isn’t as straightforward as we would like for it to be.

Plus, there are differences in quality of matches and types of matches.  If you want to sigh right about now, it’s OK.

We’ve talked a lot about matching in various recent articles.  I have several people who follow this blog religiously, and who would rather read this than, say, do dishes (who wouldn’t).  One of our regulars recently asked me the question, “what, exactly, is a match and how do I tell?”

Darned good question and I wish someone had explained this to me so I wouldn’t have had to figure it out.

In the computer industry, where I spent many years, we have what we call flow charts or wernier diagrams which in essence are logic paths that lead to specific results or outcomes depending on the answers at different junctions.

flow chart

I had a really hard time deciding whether to use the beer decision-making flow chart or the procrastinator flow chart, but the procrastinator flow chart was just one big endless loop, so I decided on the beer.

What I’m going to do is to step you through the logic path of finding and evaluating a match, determining whether it’s valid, identical by descent or chance, when possible, and how to work with your matches and what they mean.

Let me also say that while I use and prefer Family Tree DNA, these matching techniques are universal and apply to results from 23andMe as well, but not for Ancestry who gives you no browser or tools to compare your DNA to anyone else.  So, you can’t compare your results at Ancestry.

Comparing DNA results is the lynchpin of genetic genealogy.  You’re dead in the water without it.  If you have tested at Ancestry, you can always transfer your results to Family Tree DNA, where you do have tools, and to GedMatch as well.  You’re always better, in terms of genealogy, to fish in as many ponds as possible.

Before we talk about how to work with matches, for those who need to figure out how to find matches at Family Tree DNA and 23andMe, I wrote about that in the Chromosome Browser War article.  This article focuses on working with matching DNA after you have found that you are a match to someone – and what those matches might mean.

Matching Thresholds

All autosomal DNA vendors have matching thresholds.  People who meet or exceed those thresholds will be shown on your match list.  People who do not meet the initial threshold will not be considered as a match to you, and therefore will not be on your match list.

Currently, at Family Tree DNA, their match threshold to be shown as a match is about 20cM of total matching DNA and a single segment of about 7.7cM with 500 SNPs or over. The words “about” are in there because there is some fuzziness in the rules based on certain situations.

After you meet that criteria and you are shown as a match to an individual, when you download your matching data, your matches to them on each chromosome will be shown to the 1cM and 500 SNP level

At 23andMe, the threshold is 7cMs/700 SNPs for the first segment.  However, 23andMe has an upper limit of people who can match you at about 1000 matches.  This can be increased by the number of people you are communicating or sharing with.  However, your smallest matches will be dropped from your list when you hit your threshold.  This means that it’s very likely that at least some of your matches are not showing if you have in excess of 1000 matches total.  This means that your personal effective cM/SNP match threshold at 23andMe may be much higher.

Step 1 – Downloading Your Matching Segments

For this comparison, I’m starting with two fresh files from Family Tree DNA, one file of my own matches and one of my mother’s matches.  My mother died before autosomal DNA testing was available, so her results are only at Family Tree DNA (and now downloaded to GedMatch,) because her DNA was archived there.  Thank you Family Tree DNA, 100,000 times thank you!!!

At Family Tree DNA, the option to download all matches with segment information is on the chromosome browser tab, at the top, at the right, shown below.

ftdna download button

If you have your parents DNA available to test and it hasn’t been tested, order a kit for them today.  If either or both parents have been tested, download their results into the same spreadsheet with yours and color code them in a way you will understand.

In my case, I only have my mother’s results, and I color coded my matches pink, because I’m the daughter.  However, if I had both parents, I might have colored coded Mother pink and Dad blue.

Whatever color coding you do, it’s forever in your master spreadsheet, so make a note of what it is.  In my case, it’s part of the match column header.  Why is it in my column header?  Because I screwed up once and reversed them in a download.

Step 2 – Preparing and Sorting Your Spreadsheet

In my master DNA spreadsheet, I have the following columns,

dna master header

The green cell matches are matches to me from 23andMe.  My cousin, Cheryl also tested at 23andMe before autosomal testing was offered at Family Tree DNA.

The Source column, in my spreadsheet, means any source other than FTDNA.  The Ignore column is an extraneous number generated at one time by downloads.  I could delete that column now.

The “Side” column is which side the match is from, Mom or Dad.  Mom’s I can identify easily, because I have her DNA to compare to.  I don’t identify a match as Dad’s without having identified an ancestral line, because I don’t have his DNA to compare to.

And no, you can’t just assume that if it doesn’t match Mom, it’s an automatic match to Dad because you may have some IBS, identical by chance, matches.

The Common Ancestors/Comments column is just that.  I include things like when I e-mailed someone, if the match is triangulated and if so, with whom, etc.

In my master spreadsheet, the first “name” column (of who tested) is deleted, but I’ve left it in the working spreadsheet (below) with my mother for illustration purposes.  That way, neither of us has to remember who is pink!

Step 3 – Reviewing IBD and IBS Guidelines

If you need a refresher on, phasing, IBD, identical by descent, IBS which can mean either identical by chance or identical by population, it would be a good time to read or reread the article titled How Phasing Works and Determining IBD Versus IBS Matches.

Let’s briefly review the IBD vs IBS guidelines, because we’ll be applying them in this article.

Identical by Chance – Can be determined if an individual you match does not match to one of your parents, if parents are available.  If parents are not available for matching, IBS by chance segments won’t triangulate with other known genealogical matches on a common segment.

Identical by Descent – Can be suggested if a common ancestor (or ancestral line) can be determined between any two people who are not known relatives. If the two people are known close relatives, and their DNA matches, identical by descent is proven.  IBD can be proven with previously unknown family or genealogical matches when any three people descending from that same ancestor or ancestral line all match each other on the same segment of DNA.  Three way matching is called triangulation.

Identical by Population – Can be determined when multiple people triangulate with you on a specific segment of DNA, but the triangulated groups are from proven different lineages and are not otherwise related.  This is generally found in smaller segments from similar regions of the world.  Identical by population is identical by descent, but the ancestors are so far back in time that they cannot be determined and may contribute the same DNA to multiple lineages.  This is particularly evident in Jewish genealogy and other endogamous groups.

Step 4 – Determining Parental Side and IBS by Chance

The first thing to do, if you have either or both parents, is to determine whether your matches phase to your parents or are IBS by chance.

In this context, phasing means determining whether a particular match is to your father’s side of the family or to your mother’s side of the family.

Remember, at every address in your DNA, you will have two valid matches to different lines, one from your mother and one from your father.  The address on your DNA consists of the chromosome number which equates to the street name, and then the start and end locations, which consists of a range of addresses on that street.  Think of it as the length of your property on the street.

First, let’s look at my situation with only my mother’s DNA for comparison.

It’s easy to tell one of three things.

  1. Do mother and I both match the person? If so, that means that DNA match is from mother’s side of the family. Mark it as such. They are green, below.
  2. If the individual does not match me and mother, both, and only matches me, then the match is either on my father’s side or it’s IBS by chance. Those matches are blue below. Because I don’t have my father’s DNA, I can’t tell any more at this step.
  3. Notice the matches that are Mom’s but not to me. That means that I did not receive that DNA from Mom, or I received a small part, but it’s not over the lowest matching threshold at Family Tree DNA of 1cM and 500 SNPs.

match mom

In this next scenario, you can see that mother and I both match the same individual, but not on all segments.  I selected this particular match between me, my mother and Alfred because it has some “problems” to work through.

match mom2

The segments shown in green above are segments that Mom carries that I don’t.  This means that I didn’t receive them from mother.  This also means they could be  matching to Alfred legitimately, or are IBS by chance.  I can’t tell anything more about them at this point, so I’ve just noted what they are.  I usually mark these as “mother only” in my master spreadsheet.

match mom3

The first of the two green rows above show a match but it’s a little unusual.  My segment is larger than my mothers.  This means that one of five things has happened.

  1. Part of this segment is a valid match.  At the end, where we don’t match, the match extends IBS by chance a bit at the end, in my case, when matching Alfred. The valid match portion would end where my mother’s segment ends, at 16,100,293
  2. There is a read error in one of the files.
  3. The boundary locations are fuzzy, meaning vendor calculations like ‘healing’ for no calls, etc..
  4. I also match to my father’s line.
  5. Recombination has occurred, especially possible in an endogamous population, reconnecting identical by population segments between me and Alfred at the end of the segment where I don’t match my mother’s segment, so from 16,100,293 to 16,250,884.

Given that this is a small segment, the most likely scenario would be the first, that this is partly valid and partly IBS by chance.  I just make the note by that row.

The second green segment above isn’t an exact match, but if my segment “fits within” the boundaries of my mother’s segments, then we know I inherited the entire segment from her.  Once again, my boundaries are off a bit from hers, but this time it’s the beginning.  The same criteria applies as in 1-5, above.

match mom4

The green segments above are where I match Alfred, but my mother does not.  This means that these segments are either IBS by chance or that they will match my father.  I don’t know which, so I simply label them.  Given that they are all small segments, they are likely IBS by chance, but we don’t know that.  If we had my father’s DNA, we would be able to phase against him, too, but we don’t.

Now, if I was to leave this discussion here, you might have the impression that all small segment matches have problems, but they don’t.  In fact, here’s a much more normal “rea life” situation where mother and I are both matching to our cousin, Cheryl, Mom’s first cousin.  These matches include both large and small segments.  Let’s take a look and see what we can tell about our matches.

match mom complete

Roberta and Barbara have a total of 83 DNA matches to Cheryl.

Some matches will be where Barbara matches Cheryl and Roberta doesn’t.  That’s normal, Barbara is Roberta’s mother and Roberta only inherits half of Barbara’s DNA.  These rows where only Barbara, the mother, matches Cheryl are not colorized in the Start, End, cM and SNP columns, so they show as white.

Some matches will be exact matches.  That too is normal.  In some cases, Barbara passes all of a particular segment of DNA to Roberta.  These matches are colored purple.

Some of these matches are partial matches where Roberta inherited part of the segment of DNA from Barbara.  These are colored green. There are two additional columns at right where the percentage of DNA that Roberta inherited from Barbara on these segments is calculated, both for cM and SNPs.

Some of the matches are where Roberta matches Cheryl and Barbara doesn’t.  Cheryl is not known to be related to Roberta on her father’s side, so assuming that statement is correct, these matches would be IBS, identical by state, meaning identical by chance and can be disregarded at legitimate matches.  These are colored rust.  Note that most of these are small segments, but one segment is 8.8cM and 2197 SNPs.  In this case, if this segment becomes important for any reason, I would be inclined to look at the raw data file of Barbara to see if there were no calls or a problem with reads in this region that would prevent an otherwise legitimate match.

Let’s look at how these matches stack up.

Number Percent (rounded) Comment
Exact Matches 26 31 100% of the DNA
Barbara Only 20 24 0% of the DNA
Partial Matches 29 35 11-98% of the actual DNA matches
Roberta Only (IBS by chance) 7 8 Not a valid match

I think it’s interesting to note that while, on the average, 50% of the DNA of any segment is passed to the child, in actuality, in this example of partial inheritance, meaning the green rows, inheritance was never actually 50%.  In fact, the SNP and cM percentages inherited for the same segment varied, and the actual amounts ranged from 11-98% of the DNA of the parent being inherited by the child.  The average of these events was 54.57143 (cM) and 54.21429 (SNPs) however.

On top of that, in 13 (26 rows) instances, Roberta inherited all of Barbara’s DNA in that sequence, and in 20 cases, Roberta inherited none of Barbara’s DNA in that sequence.

This illustrates that while the average of something may be 50%, none of the actual individual values may be 50% and the values themselves may include the entire range of possibilities.  In this case, 11-98% were the actual percentage ranges for partial matches.

Matching Both Parents

I don’t have my father’s DNA, but I’m creating this next example as if I did.

match both parents

Matches to mother are marked in green.

I have two matches where I match my father, so we can attribute those to his side, which I’ve done and marked in orange.

The third group of matches to me, at the bottom, to Julio, Anna, Cindy and George don’t match either parent, so they must be IBS by chance.

I label IBS by chance segments, but I don’t delete them because if I download again, I’ll have to go through this same analysis process if I don’t leave them in my spreadsheet

Step 5 – How Much of the DNA is a Match?

One person asked, “exactly how do I tell how much DNA is matching, especially between three people.”  That’s a very valid question, especially since triangulation requires matching of three people, on the same segment, proven to a common ancestral line.

Let’s look at the match of both me and my mother to Don, Cheryl and Robin.

match mom part

In this example, we know that Don, Cheryl and Robin all match me on my mother’s side, because they all three match me and my mother, both on the same segment.

How do we determine that we match on the same segment?

I have sorted this spreadsheet in order of end location, then start location, then chromosome number so that the entire spreadsheet is in chromosome order, then start location, then end location.

We can see that both mother and I match Cheryl partially on this segment of chromosome 1, but not exactly.  The start location is slightly different, but the end location matches exactly.

The area where we all three match, meaning me, Mom and Cheryl, begins at 176,231,846 and ends at the common endpoint of 178,453,336

On the chart below, you can see that mother and I also both match Don, Cheryl’s brother, on part of this same segment, but not all of the same segment.

match mom part2

The common matching areas between me, Mom and Don begins at 176,231,846 and ends at 178,453,336.

Next, let’s look at the third person, Robin.

Mom and I both match Robin on part of this same overlapping segment as well.  Note that my segment extends beyond Mom’s, but that does not invalidate the portion that does match between Robin, Mom and I.

match mom part3

Our common match area begins at the same location, but ends at 178,453,336, the same location as the common end area with Don and Cheryl

Step 6 – What Do Matches Mean? IBD vs IBS in Action

So, let’s look at various types of matches and what they tell us.

match mom example

Looking at our matching situation above, let’s apply the various IBD/IBS rules and guidelines and see what we have

1. Are these matches identical by chance?  No.  How do we know?

a. Because they all match both me and a parent.

2. Are these matches identical by descent? Yes. How do we know?

a. Because we all match each other on this segment, and we know the common ancestor of Cheryl, Don, Barbara and me is Hiram Ferverda and Evaline Miller.  We know that Robin descends from the same ancestral Miller line.

3. Are these matches identical by population.  We don’t know, but there is no reason at this point to think so. Why?

a. Because looking at my master spreadsheet, I see no evidence that these segments are also assigned to other lineages. These individuals are also triangulated on a large number of other, much larger, segments as well.

4. Are these matches triangulated, meaning they are proven to a common ancestor? Yes. How do we know?

a. Documented genealogy of Hiram Ferverda and Evaline Miller. Don, Barbara, Cheryl and me are known family since birth.
b. Documented genealogy of Robin to the same ancestral family, even though Robin was previously unknown before DNA matching.
c. Even without the documented genealogy, Robin matches a set of two triangulation groups of people documented to the same ancestral line, which means she has to descend from that same line as well.

In our case, clearly these individuals share a common ancestor and a common ancestral line.  Even though these are small segments on chromosome 1, there are much larger matching segments on other chromosomes, and the same rules still apply.  The difference might be at some point smaller segments are more likely to be identical by population than larger segments.  Larger segments, when available, are always safer to use to draw conclusions.  Larger groups of matching individuals with known common genealogy on the same segments are also the safest way to draw conclusions.

Step 7 – Matching With No Parents

Sometimes you’re just not that lucky.  Let’s say both of your parents have passed and you have no DNA from them.

That immediately eliminates phasing and the identical by chance test by comparing to your parents, so you’ll have to work with your matches, including your identical by chance segments.

A second way to “phase” part of your DNA to a side of your family is by matching with known cousins or any known family member.

In the situation above, matching to Cheryl, Don and Robin, let’s remove my mother and see what we have.

match no mom

In this case, I still match to both of my first cousins, once removed, Cheryl and Don.  Given that Cheryl and Don are both known cousins, since forever, I don’t feel the need for triangulation proof in this case – although the three of us are triangulated to our common ancestor.  In other words, the fact that my mother does match them at the expected 1st cousin level is proof enough in and of itself if we only had one cousin to test.  We know our common ancestor is Cheryl and Don’s grandparents, who are my great-grandparents, Hiram Ferverda and Evaline Miller.

When I looked at Robin’s pedigree chart and saw that Robin descended from Philip Jacob Miller and wife Magdalena, I knew that this segment was a Miller side match, not a Ferverda match.

Therefore, matching with someone whose genealogy goes beyond the common ancestor of Cheryl, Don and me proves this line through 4 more generations.  In other words, this DNA segment came through the following direct line to reach Me, Mother, Cheryl and Don.

  • Philip Jacob Miller and Magdalena
  • Daniel Miller
  • David Miller
  • John David Miller
  • Evaline Louise Miller who married Hiram Ferverda

Clearly, we know from the earlier chart that my mother carried this DNA too, but even if we didn’t know that, she obviously had to have carried this segment or I would not carry it today.

So, even though in this example, our parents aren’t directly available for IBS testing and elimination, we can determine that anyone who matches both me and Cheryl or me and Don will have also matched mother on that segment, so we have, in essence, phased those people by triangulation, not by direct parental matching.

Step 8 – Triangulation Groups

What else does this match group tell us?

It tells us that anyone else who matches me and any one of our triangulation group on that segment also descends from the Miller descendant clan, one way or another.

Why do they have to match me AND one of the triangulation group members on that segment?  Because I have two sides to my DNA, my Mom’s side and my Dad’s side.  Matching me plus another person from the triangulation group proves which side the match is on – Mom’s or Dad’s.

We were able to phase to eliminate any identical by chance segments people on Mom’s side, so we know matches to both of us are valid.

On Dad’s side, there are some IBS by chance people (or segments) thrown in for good measure because I don’t have my Dad’s DNA to eliminate them out of the starting gate.  Those IBS segments will have to be removed in time by not triangulating with proven triangulated groups they should triangulate with, if they were valid matches.

When you map matches on your chromosome spreadsheet, this is what you’re doing.  Over time, you will be able to tell when you receive a new match by who they match and where they fall on your spreadsheet which ancestral line they descend from.

GedMatch also includes a triangulation utility.  It’s a great tool, because it produces trios of people for your top 400 matches.  The results are two kits that triangulate to the third person whose kit number you are matching against.

The output, below, shows you the chromosome number followed by the two kit numbers (obscured) that triangulate at this location, and then the start and end location followed by the matching cMs.  The result is triangulation groups that “slide to the right.”

gedmatch triang group3

In the example above, all of the triangulation matches to me above the red arrow include either Mother, my Ferverda cousins or the Miller group that we discussed in the Just One Cousin article.  In other words they are all related via a common ancestor.

You can tell a great deal about triangulation groups by who is, and isn’t in them using deductive reasoning.  And once you’ve figured out the key to the group, you have the key to the entire group.

In this case, Mom is a member of the first triangulation group, so I know this group is from her side and not Dad’s side.  Both Ferverda cousins are there, so I know it’s Mom’s Dad’s side of the family.  The Miller cousins are there, so I know it’s the Miller side of Mom’s Dad’s side of the family.

Please also note that while this entire group triangulates within itself, that the group manages to slide right and the first triangulated group of 3 in the list may not overlap the DNA of the last triangulated group of 3.  In fact, because you can see the start and end points, you can tell that these two triangulated groups don’t overlap.  The multiple triangulation groups all do match some portion of the group above and below them (in this case,) and as a composite group, they slide to the right. Because each group overlaps with the group above and below them, they all connect together in a genetic chain.  Because there is an entire group that are triangulated together, in multiple ways, we know that it is one entire group.

This allows me to map that entire segment on my Mom’s side of my DNA, from 10,369,154 to 41,685,667 to this group because it is contiguously connected to me, triangulated and unbroken.  The most distant ancestor listed will vary based upon the known genealogy of the three people being triangulated  For example, part of this segment, may come from Philip Jacob Miller himself, the line’s founder,, but another part could come from his son’s wife, who is also my ancestor.  Therefore, the various pieces of this group segment may eventually be attributed to different ancestors from this particular line based upon the oldest common ancestor of the three people who have triangulated.

In our example above, the second group starts where the red arrow is pointing.  I have absolutely no idea which ancestor this second group comes from – except – I know it does not come from my mother’s side because her kit number isn’t there.

Neither are any of my direct line Estes or Vannoy relatives, so it’s probably not through that line either.  My Bolton cousins are also missing, so we’ve probably eliminated several possible lines, 3 of 4 great grandparents, based on who is NOT in the match group.  See the value of testing both close and distant cousins?  In this case, the family members not only have to test, they also have to upload their results to GedMatch.

Conversely, we could quickly identify at least a base group by the presence in the triangulation groups of at least one my known cousins or people with whom I’ve identified my common ancestor.  Two from the same line would be even better!!!

Endogamy

The last thing I want to show you is an example of what an endogamous group looks like when triangulated.

gedmatch endogamy

This segment of chromosome 9 is an Acadian matching group to my Mom – and the list doesn’t stop here – this is just the size of the screen shot.  These matches continue for pages.

How do I know this group is Acadian?  In part, because this group also triangulates with my known Lore cousin who also descends from the same Acadian ancestor, Antoine Lore, son of Honore Lore and Marie Lafaille.  Additionally, I’ve worked with some of these people and we have confirmed Honore Lore and Marie Lafaille as our common ancestor as well.  In other cases, we’ve confirmed upstream ancestors.

Unfortunately, the Acadians are so intermarried that it’s very difficult to sort through the most distant genetic ancestor because there tend to be multiple most distant ancestors in everyone’s trees.  There is a saying that if you’re related to one Acadian, you’re related to all Acadians and it’s the truth.  Just ask my cousin Paul who I’m related to 137 different ways.

Matches to endogamous groups tend to have very, very long lists of matches, even triangulated, which means proven, matches.

Oh, and by the way, just for the record, this lengthy group includes some of my proven Acadian matches that were trimmed, meaning removed, from my match list when Ancestry did their big purge due to their new and improved phasing.  So if there was ever any doubt that we did in fact lose at least some valid matches, the proof lies right here, in the triangulation of those exact same people at GedMatch

Summary

I hope this step by step article has helped take the Greek, or maybe the geek, out of matching.  Once you think of it in a step by step logical basis, it makes a lot of sense and allows you to reasonably judge the quality of your matches.

The rule of thumb has been that larger matches tend to be “legitimate” and smaller matches are often discarded en masse because they might be problematic.  However, we’ve seen situations where some larger matches may not be legitimate and some smaller matches clearly are.  In essence, the 50% average seldom applies exactly and rules of thumb don’t apply in individuals situations either.  Your situation is unique with every match and now you have tools and guidelines to help you through the matching maze.

And hey, since we made it to the end, I think we should celebrate with that beer!!!

beer

2014 Top Genetic Genealogy Happenings – A Baker’s Dozen +1

It’s that time again, to look over the year that has just passed and take stock of what has happened in the genetic genealogy world.  I wrote a review in both 2012 and 2013 as well.  Looking back, these momentous happenings seem quite “old hat” now.  For example, both www.GedMatch.com and www.DNAGedcom.com, once new, have become indispensable tools that we take for granted.  Please keep in mind that both of these tools (as well as others in the Tools section, below) depend on contributions, although GedMatch now has a tier 1 subscription offering for $10 per month as well.

So what was the big news in 2014?

Beyond the Tipping Point

Genetic genealogy has gone over the tipping point.  Genetic genealogy is now, unquestionably, mainstream and lots of people are taking part.  From the best I can figure, there are now approaching or have surpassed three million tests or test records, although certainly some of those are duplicates.

  • 500,000+ at 23andMe
  • 700,000+ at Ancestry
  • 700,000+ at Genographic

The organizations above represent “one-test” companies.  Family Tree DNA provides various kinds of genetic genealogy tests to the community and they have over 380,000 individuals with more than 700,000 test records.

In addition to the above mentioned mainstream firms, there are other companies that provide niche testing, often in addition to Family Tree DNA Y results.

In addition, there is what I would refer to as a secondary market for testing as well which certainly attracts people who are not necessarily genetic genealogists but who happen across their corporate information and decide the test looks interesting.  There is no way of knowing how many of those tests exist.

Additionally, there is still the Sorenson data base with Y and mtDNA tests which reportedly exceeded their 100,000 goal.

Spencer Wells spoke about the “viral spread threshold” in his talk in Houston at the International Genetic Genealogy Conference in October and terms 2013 as the year of infection.  I would certainly agree.

spencer near term

Autosomal Now the New Normal

Another change in the landscape is that now, autosomal DNA has become the “normal” test.  The big attraction to autosomal testing is that anyone can play and you get lots of matches.  Earlier in the year, one of my cousins was very disappointed in her brother’s Y DNA test because he only had a few matches, and couldn’t understand why anyone would test the Y instead of autosomal where you get lots and lots of matches.  Of course, she didn’t understand the difference in the tests or the goals of the tests – but I think as more and more people enter the playground – percentagewise – fewer and fewer do understand the differences.

Case in point is that someone contacted me about DNA and genealogy.  I asked them which tests they had taken and where and their answer was “the regular one.”  With a little more probing, I discovered that they took Ancestry’s autosomal test and had no clue there were any other types of tests available, what they could tell him about his ancestors or genetic history or that there were other vendors and pools to swim in as well.

A few years ago, we not only had to explain about DNA tests, but why the Y and mtDNA is important.  Today, we’ve come full circle in a sense – because now we don’t have to explain about DNA testing for genealogy in general but we still have to explain about those “unknown” tests, the Y and mtDNA.  One person recently asked me, “oh, are those new?”

Ancient DNA

This year has seen many ancient DNA specimens analyzed and sequenced at the full genomic level.

The year began with a paper titled, “When Populations Collide” which revealed that contemporary Europeans carry between 1-4% of Neanderthal DNA most often associated with hair and skin color, or keratin.  Africans, on the other hand, carry none or very little Neanderthal DNA.

https://dna-explained.com/2014/01/30/neanderthal-genome-further-defined-in-contemporary-eurasians/

A month later, a monumental paper was published that detailed the results of sequencing a 12,500 Clovis child, subsequently named Anzick or referred to as the Anzick Clovis child, in Montana.  That child is closely related to Native American people of today.

https://dna-explained.com/2014/02/13/clovis-people-are-native-americans-and-from-asia-not-europe/

In June, another paper emerged where the authors had analyzed 8000 year old bones from the Fertile Crescent that shed light on the Neolithic area before the expansion from the Fertile Crescent into Europe.  These would be the farmers that assimilated with or replaced the hunter-gatherers already living in Europe.

https://dna-explained.com/2014/06/09/dna-analysis-of-8000-year-old-bones-allows-peek-into-the-neolithic/

Svante Paabo is the scientist who first sequenced the Neanderthal genome.  Here is a neanderthal mangreat interview and speech.  This man is so interesting.  If you have not read his book, “Neanderthal Man, In Search of Lost Genomes,” I strongly recommend it.

https://dna-explained.com/2014/07/22/finding-your-inner-neanderthal-with-evolutionary-geneticist-svante-paabo/

In the fall, yet another paper was released that contained extremely interesting information about the peopling and migration of humans across Europe and Asia.  This was just before Michael Hammer’s presentation at the Family Tree DNA conference, so I covered the paper along with Michael’s information about European ancestral populations in one article.  The take away messages from this are two-fold.  First, there was a previously undefined “ghost population” called Ancient North Eurasian (ANE) that is found in the northern portion of Asia that contributed to both Asian populations, including those that would become the Native Americans and European populations as well.  Secondarily, the people we thought were in Europe early may not have been, based on the ancient DNA remains we have to date.  Of course, that may change when more ancient DNA is fully sequenced which seems to be happening at an ever-increasing rate.

https://dna-explained.com/2014/10/21/peopling-of-europe-2014-identifying-the-ghost-population/

Lazaridis tree

Ancient DNA Available for Citizen Scientists

If I were to give a Citizen Scientist of the Year award, this year’s award would go unquestionably to Felix Chandrakumar for his work with the ancient genome files and making them accessible to the genetic genealogy world.  Felix obtained the full genome files from the scientists involved in full genome analysis of ancient remains, reduced the files to the SNPs utilized by the autosomal testing companies in the genetic genealogy community, and has made them available at GedMatch.

https://dna-explained.com/2014/09/22/utilizing-ancient-dna-at-gedmatch/

If this topic is of interest to you, I encourage you to visit his blog and read his many posts over the past several months.

https://plus.google.com/+FelixChandrakumar/posts

The availability of these ancient results set off a sea of comparisons.  Many people with Native heritage matched Anzick’s file at some level, and many who are heavily Native American, particularly from Central and South America where there is less admixture match Anzick at what would statistically be considered within a genealogical timeframe.  Clearly, this isn’t possible, but it does speak to how endogamous populations affect DNA, even across thousands of years.

https://dna-explained.com/2014/09/23/analyzing-the-native-american-clovis-anzick-ancient-results/

Because Anzick is matching so heavily with the Mexican, Central and South American populations, it gives us the opportunity to extract mitochondrial DNA haplogroups from the matches that either are or may be Native, if they have not been recorded before.

https://dna-explained.com/2014/09/23/analyzing-the-native-american-clovis-anzick-ancient-results/

Needless to say, the matches of these ancient kits with contemporary people has left many people questioning how to interpret the results.  The answer is that we don’t really know yet, but there is a lot of study as well as speculation occurring.  In the citizen science community, this is how forward progress is made…eventually.

https://dna-explained.com/2014/09/25/ancient-dna-matches-what-do-they-mean/

https://dna-explained.com/2014/09/30/ancient-dna-matching-a-cautionary-tale/

More ancient DNA samples for comparison:

https://dna-explained.com/2014/10/04/more-ancient-dna-samples-for-comparison/

A Siberian sample that also matches the Malta Child whose remains were analyzed in late 2013.

https://dna-explained.com/2014/11/12/kostenki14-a-new-ancient-siberian-dna-sample/

Felix has prepared a list of kits that he has processed, along with their GedMatch numbers and other relevant information, like gender, haplogroup(s), age and location of sample.

http://www.y-str.org/p/ancient-dna.html

Furthermore, in a collaborative effort with Family Tree DNA, Felix formed an Ancient DNA project and uploaded the ancient autosomal files.  This is the first time that consumers can match with Ancient kits within the vendor’s data bases.

https://www.familytreedna.com/public/Ancient_DNA

Recently, GedMatch added a composite Archaic DNA Match comparison tool where your kit number is compared against all of the ancient DNA kits available.  The output is a heat map showing which samples you match most closely.

gedmatch ancient heat map

Indeed, it has been a banner year for ancient DNA and making additional discoveries about DNA and our ancestors.  Thank you Felix.

Haplogroup Definition

That SNP tsunami that we discussed last year…well, it made landfall this year and it has been storming all year long…in a good way.  At least, ultimately, it will be a good thing.  If you asked the haplogroup administrators today about that, they would probably be too tired to answer – as they’ve been quite overwhelmed with results.

The Big Y testing has been fantastically successful.  This is not from a Family Tree DNA perspective, but from a genetic genealogy perspective.  Branches have been being added to and sawed off of the haplotree on a daily basis.  This forced the renaming of the haplogroups from the old traditional R1b1a2 to R-M269 in 2012.  While there was some whimpering then, it would be nothing like the outright wailing now that would be occurring as haplogroup named reached 20 or so digits.

Alice Fairhurst discussed the SNP tsunami at the DNA Conference in Houston in October and I’m sure that the pace hasn’t slowed any between now and then.  According to Alice, in early 2014, there were 4115 individual SNPs on the ISOGG Tree, and as of the conference, there were 14,238 SNPs, with the 2014 addition total at that time standing at 10,213.  That is over 1000 per month or about 35 per day, every day.

Yes, indeed, that is the definition of a tsunami.  Every one of those additions requires one of a number of volunteers, generally haplogroup project administrators to evaluate the various Big Y results, the SNPs and novel variants included, where they need to be inserted in the tree and if branches need to be rearranged.  In some cases, naming request for previously unknown SNPs also need to be submitted.  This is all done behind the scenes and it’s not trivial.

The project I’m closest to is the R1b L-21 project because my Estes males fall into that group.  We’ve tested several, and I’ll be writing an article as soon as the final test is back.

The tree has grown unbelievably in this past year just within the L21 group.  This project includes over 700 individuals who have taken the Big Y test and shared their results which has defined about 440 branches of the L21 tree.  Currently there are almost 800 kits available if you count the ones on order and the 20 or so from another vendor.

Here is the L21 tree in January of 2014

L21 Jan 2014 crop

Compare this with today’s tree, below.

L21 dec 2014

Michael Walsh, Richard Stevens, David Stedman need to be commended for their incredible work in the R-L21 project.  Other administrators are doing equivalent work in other haplogroup projects as well.  I big thank you to everyone.  We’d be lost without you!

One of the results of this onslaught of information is that there have been fewer and fewer academic papers about haplogroups in the past few years.  In essence, by the time a paper can make it through the peer review cycle and into publication, the data in the paper is often already outdated relative to the Y chromosome.  Recently a new paper was released about haplogroup C3*.  While the data is quite valid, the authors didn’t utilize the new SNP naming nomenclature.  Before writing about the topic, I had to translate into SNPese.  Fortunately, C3* has been relatively stable.

https://dna-explained.com/2014/12/23/haplogroup-c3-previously-believed-east-asian-haplogroup-is-proven-native-american/

10th Annual International Conference on Genetic Genealogy

The Family Tree DNA International Conference on Genetic Genealogy for project administrators is always wonderful, but this year was special because it was the 10th annual.  And yes, it was my 10th year attending as well.  In all these years, I had never had a photo with both Max and Bennett.  Everyone is always so busy at the conferences.  Getting any 3 people, especially those two, in the same place at the same time takes something just short of a miracle.

roberta, max and bennett

Ten years ago, it was the first genetic genealogy conference ever held, and was the only place to obtain genetic genealogy education outside of the rootsweb genealogy DNA list, which is still in existence today.  Family Tree DNA always has a nice blend of sessions.  I always particularly appreciate the scientific sessions because those topics generally aren’t covered elsewhere.

https://dna-explained.com/2014/10/11/tenth-annual-family-tree-dna-conference-opening-reception/

https://dna-explained.com/2014/10/12/tenth-annual-family-tree-dna-conference-day-2/

https://dna-explained.com/2014/10/13/tenth-annual-family-tree-dna-conference-day-3/

https://dna-explained.com/2014/10/15/tenth-annual-family-tree-dna-conference-wrapup/

Jennifer Zinck wrote great recaps of each session and the ISOGG meeting.

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy/

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-isogg-meeting/

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-sunday/

I thank Family Tree DNA for sponsoring all 10 conferences and continuing the tradition.  It’s really an amazing feat when you consider that 15 years ago, this industry didn’t exist at all and wouldn’t exist today if not for Max and Bennett.

Education

Two educational venues offered classes for genetic genealogists and have made their presentations available either for free or very reasonably.  One of the problems with genetic genealogy is that the field is so fast moving that last year’s session, unless it’s the very basics, is probably out of date today.  That’s the good news and the bad news.

https://dna-explained.com/2014/11/12/genetic-genealogy-ireland-2014-presentations 

https://dna-explained.com/2014/09/26/educational-videos-from-international-genetic-genealogy-conference-now-available/

In addition, three books have been released in 2014.emily book

In January, Emily Aulicino released Genetic Genealogy, The Basics and Beyond.

richard hill book

In October, Richard Hill released “Guide to DNA Testing: How to Identify Ancestors, Confirm Relationships and Measure Ethnicity through DNA Testing.”

david dowell book

Most recently, David Dowell’s new book, NextGen Genealogy: The DNA Connection was released right after Thanksgiving.

 

Ancestor Reconstruction – Raising the Dead

This seems to be the year that genetic genealogists are beginning to reconstruct their ancestors (on paper, not in the flesh) based on the DNA that the ancestors passed on to various descendants.  Those segments are “gathered up” and reassembled in a virtual ancestor.

I utilized Kitty Cooper’s tool to do just that.

https://dna-explained.com/2014/10/03/ancestor-reconstruction/

henry bolton probablyI know it doesn’t look like much yet but this is what I’ve been able to gather of Henry Bolton, my great-great-great-grandfather.

Kitty did it herself too.

http://blog.kittycooper.com/2014/08/mapping-an-ancestral-couple-a-backwards-use-of-my-segment-mapper/

http://blog.kittycooper.com/2014/09/segment-mapper-tool-improvements-another-wold-dna-map/

Ancestry.com wrote a paper about the fact that they have figured out how to do this as well in a research environment.

http://corporate.ancestry.com/press/press-releases/2014/12/ancestrydna-reconstructs-partial-genome-of-person-living-200-years-ago/

http://www.thegeneticgenealogist.com/2014/12/16/ancestrydna-recreates-portions-genome-david-speegle-two-wives/

GedMatch has created a tool called, appropriately, Lazarus that does the same thing, gathers up the DNA of your ancestor from their descendants and reassembles it into a DNA kit.

Blaine Bettinger has been working with and writing about his experiences with Lazarus.

http://www.thegeneticgenealogist.com/2014/10/20/finally-gedmatch-announces-monetization-strategy-way-raise-dead/

http://www.thegeneticgenealogist.com/2014/12/09/recreating-grandmothers-genome-part-1/

http://www.thegeneticgenealogist.com/2014/12/14/recreating-grandmothers-genome-part-2/

Tools

Speaking of tools, we have some new tools that have been introduced this year as well.

Genome Mate is a desktop tool used to organize data collected by researching DNA comparsions and aids in identifying common ancestors.  I have not used this tool, but there are others who are quite satisfied.  It does require Microsoft Silverlight be installed on your desktop.

The Autosomal DNA Segment Analyzer is available through www.dnagedcom.com and is a tool that I have used and found very helpful.  It assists you by visually grouping your matches, by chromosome, and who you match in common with.

adsa cluster 1

Charting Companion from Progeny Software, another tool I use, allows you to colorize and print or create pdf files that includes X chromosome groupings.  This greatly facilitates seeing how the X is passed through your ancestors to you and your parents.

x fan

WikiTree is a free resource for genealogists to be able to sort through relationships involving pedigree charts.  In November, they announced Relationship Finder.

Probably the best example I can show of how WikiTree has utilized DNA is using the results of King Richard III.

wiki richard

By clicking on the DNA icon, you see the following:

wiki richard 2

And then Richard’s Y, mitochondrial and X chromosome paths.

wiki richard 3

Since Richard had no descendants, to see how descendants work, click on his mother, Cecily of York’s DNA descendants and you’re shown up to 10 generations.

wiki richard 4

While this isn’t terribly useful for Cecily of York who lived and died in the 1400s, it would be incredibly useful for finding mitochondrial descendants of my ancestor born in 1802 in Virginia.  I’d love to prove she is the daughter of a specific set of parents by comparing her DNA with that of a proven daughter of those parents!  Maybe I’ll see if I can find her parents at WikiTree.

Kitty Cooper’s blog talks about additional tools.  I have used Kitty’s Chromosome mapping tools as discussed in ancestor reconstruction.

Felix Chandrakumar has created a number of fun tools as well.  Take a look.  I have not used most of these tools, but there are several I’ll be playing with shortly.

Exits and Entrances

With very little fanfare, deCODEme discontinued their consumer testing and reminded people to download their date before year end.

https://dna-explained.com/2014/09/30/decodeme-consumer-tests-discontinued/

I find this unfortunate because at one time, deCODEme seemed like a company full of promise for genetic genealogy.  They failed to take the rope and run.

On a sad note, Lucas Martin who founded DNA Tribes unexpectedly passed away in the fall.  DNA Tribes has been a long-time player in the ethnicity field of genetic genealogy.  I have often wondered if Lucas Martin was a pseudonym, as very little information about Lucas was available, even from Lucas himself.  Neither did I find an obituary.  Regardless, it’s sad to see someone with whom the community has worked for years pass away.  The website says that they expect to resume offering services in January 2015. I would be cautious about ordering until the structure of the new company is understood.

http://www.dnatribes.com/

In the last month, a new offering has become available that may be trying to piggyback on the name and feel of DNA Tribes, but I’m very hesitant to provide a link until it can be determined if this is legitimate or bogus.  If it’s legitimate, I’ll be writing about it in the future.

However, the big news exit was Ancestry’s exit from the Y and mtDNA testing arena.  We suspected this would happen when they stopped selling kits, but we NEVER expected that they would destroy the existing data bases, especially since they maintain the Sorenson data base as part of their agreement when they obtained the Sorenson data.

https://dna-explained.com/2014/10/02/ancestry-destroys-irreplaceable-dna-database/

The community is still hopeful that Ancestry may reverse that decision.

Ancestry – The Chromosome Browser War and DNA Circles

There has been an ongoing battle between Ancestry and the more seasoned or “hard-core” genetic genealogists for some time – actually for a long time.

The current and most long-standing issue is the lack of a chromosome browser, or any similar tools, that will allow genealogists to actually compare and confirm that their DNA match is genuine.  Ancestry maintains that we don’t need it, wouldn’t know how to use it, and that they have privacy concerns.

Other than their sessions and presentations, they had remained very quiet about this and not addressed it to the community as a whole, simply saying that they were building something better, a better mousetrap.

In the fall, Ancestry invited a small group of bloggers and educators to visit with them in an all-day meeting, which came to be called DNA Day.

https://dna-explained.com/2014/10/08/dna-day-with-ancestry/

In retrospect, I think that Ancestry perceived that they were going to have a huge public relations issue on their hands when they introduced their new feature called DNA Circles and in the process, people would lose approximately 80% of their current matches.  I think they were hopeful that if they could educate, or convince us, of the utility of their new phasing techniques and resulting DNA Circles feature that it would ease the pain of people’s loss in matches.

I am grateful that they reached out to the community.  Some very useful dialogue did occur between all participants.  However, to date, nothing more has happened nor have we received any additional updates after the release of Circles.

Time will tell.

https://dna-explained.com/2014/11/18/in-anticipation-of-ancestrys-better-mousetrap/

https://dna-explained.com/2014/11/19/ancestrys-better-mousetrap-dna-circles/

DNA Circles 12-29-2014

DNA Circles, while interesting and somewhat useful, is certainly NOT a replacement for a chromosome browser, nor is it a better mousetrap.

https://dna-explained.com/2014/11/30/chromosome-browser-war/

In fact, the first thing you have to do when you find a DNA Circle that you have not verified utilizing raw data and/or chromosome browser tools from either 23andMe, Family Tree DNA or Gedmatch, is to talk your matches into transferring their DNA to Family Tree DNA or download to Gedmatch, or both.

https://dna-explained.com/2014/11/27/sarah-hickerson-c1752-lost-ancestor-found-52-ancestors-48/

I might add that the great irony of finding the Hickerson DNA Circle that led me to confirm that ancestry utilizing both Family Tree DNA and GedMatch is that today, when I checked at Ancestry, the Hickerson DNA Circle is no longer listed.  So, I guess I’ve been somehow pruned from the circle.  I wonder if that is the same as being voted off of the island.  So, word to the wise…check your circles often…they change and not always in the upwards direction.

The Seamy Side – Lies, Snake Oil Salesmen and Bullys

Unfortunately a seamy side, an underbelly that’s rather ugly has developed in and around the genetic genealogy industry.  I guess this was to be expected with the rapid acceptance and increasing popularity of DNA testing, but it’s still very unfortunate.

Some of this I expected, but I didn’t expect it to be so…well…blatant.

I don’t watch late night TV, but I’m sure there are now DNA diets and DNA dating and just about anything else that could be sold with the allure of DNA attached to the title.

I googled to see if this was true, and it is, although I’m not about to click on any of those links.

google dna dating

google dna diet

Unfortunately, within the ever-growing genetic genealogy community a rather large rift has developed over the past couple of years.  Obviously everyone can’t get along, but this goes beyond that.  When someone disagrees, a group actively “stalks” the person, trying to cost them their employment, saying hate filled and untrue things and even going so far as to create a Facebook page titled “Against<personname>.”  That page has now been removed, but the fact that a group in the community found it acceptable to create something like that, and their friends joined, is remarkable, to say the least.  That was accompanied by death threats.

Bullying behavior like this does not make others feel particularly safe in expressing their opinions either and is not conducive to free and open discussion. As one of the law enforcement officers said, relative to the events, “This is not about genealogy.  I don’t know what it is about, yet, probably money, but it’s not about genealogy.”

Another phenomenon is that DNA is now a hot topic and is obviously “selling.”  Just this week, this report was published, and it is, as best we can tell, entirely untrue.

http://worldnewsdailyreport.com/usa-archaeologists-discover-remains-of-first-british-settlers-in-north-america/

There were several tip offs, like the city (Lanford) and county (Laurens County) is not in the state where it is attributed (it’s in SC not NC), and the name of the institution is incorrect (Johns Hopkins, not John Hopkins).  Additionally, if you google the name of the magazine, you’ll see that they specialize in tabloid “faux reporting.”  It also reads a lot like the King Richard genuine press release.

http://urbanlegends.about.com/od/Fake-News/tp/A-Guide-to-Fake-News-Websites.01.htm

Earlier this year, there was a bogus institutional site created as well.

On one of the DNA forums that I frequent, people often post links to articles they find that are relevant to DNA.  There was an interesting article, which has now been removed, correlating DNA results with latitude and altitude.  I thought to myself, I’ve never heard of that…how interesting.   Here’s part of what the article said:

Researchers at Aberdeen College’s Havering Centre for Genetic Research have discovered an important connection between our DNA and where our ancestors used to live.

Tiny sequence variations in the human genome sometimes called Single Nucleotide Polymorphisms (SNPs) occur with varying frequency in our DNA.  These have been studied for decades to understand the major migrations of large human populations.  Now Aberdeen College’s Dr. Miko Laerton and a team of scientists have developed pioneering research that shows that these differences in our DNA also reveal a detailed map of where our own ancestors lived going back thousands of years.

Dr. Laerton explains:  “Certain DNA sequence variations have always been important signposts in our understanding of human evolution because their ages can be estimated.  We’ve known for years that they occur most frequently in certain regions [of DNA], and that some alleles are more common to certain geographic or ethnic groups, but we have never fully understood the underlying reasons.  What our team found is that the variations in an individual’s DNA correlate with the latitudes and altitudes where their ancestors were living at the time that those genetic variations occurred.  We’re still working towards a complete understanding, but the knowledge that sequence variations are connected to latitude and altitude is a huge breakthrough by itself because those are enough to pinpoint where our ancestors lived at critical moments in history.”

The story goes on, but at the bottom, the traditional link to the publication journal is found.

The full study by Dr. Laerton and her team was published in the September issue of the Journal of Genetic Science.

I thought to myself, that’s odd, I’ve never heard of any of these people or this journal, and then I clicked to find this.

Aberdeen College bogus site

About that time, Debbie Kennett, DNA watchdog of the UK, posted this:

April Fools Day appears to have arrived early! There is no such institution as Aberdeen College founded in 1394. The University of Aberdeen in Scotland was founded in 1495 and is divided into three colleges: http://www.abdn.ac.uk/about/colleges-schools-institutes/colleges-53.php

The picture on the masthead of the “Aberdeen College” website looks very much like a photo of Aberdeen University. This fake news item seems to be the only live page on the Aberdeen College website. If you click on any other links, including the link to the so-called “Journal of Genetic Science”, you get a message that the website is experienced “unusually high traffic”. There appears to be no such journal anyway.

We also realized that Dr. Laerton, reversed, is “not real.”

I still have no idea why someone would invest the time and effort into the fake website emulating the University of Aberdeen, but I’m absolutely positive that their motives were not beneficial to any of us.

What is the take-away of all of this?  Be aware, very aware, skeptical and vigilant.  Stick with the mainstream vendors unless you realize you’re experimenting.

King Richard

King Richard III

The much anticipated and long-awaited DNA results on the remains of King Richard III became available with a very unexpected twist.  While the science team feels that they have positively identified the remains as those of Richard, the Y DNA of Richard and another group of men supposed to have been descended from a common ancestor with Richard carry DNA that does not match.

https://dna-explained.com/2014/12/09/henry-iii-king-of-england-fox-in-the-henhouse-52-ancestors-49/

https://dna-explained.com/2014/12/05/mitochondrial-dna-mutation-rates-and-common-ancestors/

Debbie Kennett wrote a great summary article.

http://cruwys.blogspot.com/2014/12/richard-iii-and-use-of-dna-as-evidence.html

More Alike than Different

One of the life lessons that genetic genealogy has held for me is that we are more closely related that we ever knew, to more people than we ever expected, and we are far more alike than different.  A recent paper recently published by 23andMe scientists documents that people’s ethnicity reflect the historic events that took place in the part of the country where their ancestors lived, such as slavery, the Trail of Tears and immigration from various worldwide locations.

23andMe European African map

From the 23andMe blog:

The study leverages samples of unprecedented size and precise estimates of ancestry to reveal the rate of ancestry mixing among American populations, and where it has occurred geographically:

  • All three groups – African Americans, European Americans and Latinos – have ancestry from Africa, Europe and the Americas.
  • Approximately 3.5 percent of European Americans have 1 percent or more African ancestry. Many of these European Americans who describe themselves as “white” may be unaware of their African ancestry since the African ancestor may be 5-10 generations in the past.
  • European Americans with African ancestry are found at much higher frequencies in southern states than in other parts of the US.

The ancestry proportions point to the different regional impacts of slavery, immigration, migration and colonization within the United States:

  • The highest levels of African ancestry among self-reported African Americans are found in southern states, especially South Carolina and Georgia.
  • One in every 20 African Americans carries Native American ancestry.
  • More than 14 percent of African Americans from Oklahoma carry at least 2 percent Native American ancestry, likely reflecting the Trail of Tears migration following the Indian Removal Act of 1830.
  • Among self-reported Latinos in the US, those from states in the southwest, especially from states bordering Mexico, have the highest levels of Native American ancestry.

http://news.sciencemag.org/biology/2014/12/genetic-study-reveals-surprising-ancestry-many-americans?utm_campaign=email-news-weekly&utm_source=eloqua

23andMe provides a very nice summary of the graphics in the article at this link:

http://blog.23andme.com/wp-content/uploads/2014/10/Bryc_ASHG2014_textboxes.pdf

The academic article can be found here:

http://www.cell.com/ajhg/home

2015

So what does 2015 hold? I don’t know, but I can’t wait to find out. Hopefully, it holds more ancestors, whether discovered through plain old paper research, cousin DNA testing or virtually raised from the dead!

What would my wish list look like?

  • More ancient genomes sequenced, including ones from North and South America.
  • Ancestor reconstruction on a large scale.
  • The haplotree becoming fleshed out and stable.
  • Big Y sequencing combined with STR panels for enhanced genealogical research.
  • Improved ethnicity reporting.
  • Mitochondrial DNA search by ancestor for descendants who have tested.
  • More tools, always more tools….
  • More time to use the tools!

Here’s wishing you an ancestor filled 2015!