2019: The Year and Decade of Change

2019 ends both a year and a decade. In the genealogy and genetic genealogy world, the overwhelmingly appropriate word to define both is “change.”

Everything has changed.

Millions more records are online now than ever before, both through the Big 3, being FamilySearch, MyHeritage and Ancestry, but also through multitudes of other sites preserving our history. Everyplace from National Archives to individual blogs celebrating history and ancestors.

All you need to do is google to find more than ever before.

I don’t know about you, but I’ve made more progress in the past decade that in all of the previous ones combined.

Just Beginning?

If you’re just beginning with genetic genealogy, welcome! I wrote this article just for you to see what to expect when your DNA results are returned.

If you’ve been working with genetic genealogy results for some time, or would like a great review of the landscape, let’s take this opportunity to take a look at how far we’ve come in the past year and decade.

It’s been quite a ride!

What Has Changed?

EVERYTHING

Literally.

A decade ago, we had Y and mitochondrial DNA, but just the beginning of the autosomal revolution in the genetic genealogy space.

In 2010, Family Tree DNA had been in business for a decade and offered both Y and mitochondrial DNA testing.

Ancestry offered a similar Y and mtDNA product, but not entirely the same markers, nor full sequence mitochondrial. Ancestry subsequently discontinued that testing and destroyed the matching database. Ancestry bought the Sorenson database that included Y, mitochondrial and autosomal, then destroyed that data base too.

23andMe was founded in 2006 and began autosomal testing in 2007 for health and genealogy. Genealogists piled on that bandwagon.

Family Tree DNA added autosomal to their menu in 2010, but Ancestry didn’t offer an autosomal product until 2012 and MyHeritage not until 2016. Both Ancestry and MyHeritage have launched massive marketing and ad campaigns to help people figure out “who they are,” and who their ancestors were too.

Family Tree DNA

2019 FTDNA

Family Tree DNA had a banner year with the Big Y-700 product, adding over 211,000 Y DNA SNPs in 2019 alone to total more than 438,000 by year end, many of which became newly defined haplogroups. You can read more here. Additionally, Family Tree DNA introduced the Block Tree and public Y and public mitochondrial DNA trees.

Anyone who ignores Y DNA testing does so at their own peril. Information produced by Y DNA testing (and for that matter, mitochondrial too) cannot be obtained any other way. I wrote about utilizing mitochondrial DNA here and a series about how to utilize Y DNA begins in a few days.

Family Tree DNA remains the premier commercial testing company to offer high resolution and full sequence testing and matching, which of course is the key to finding genealogy solutions.

In the autosomal space, Family Tree DNA is the only testing company to provide Phased Family Matching which uses your matches on both sides of your tree, assuming you link 3rd cousins or closer, to assign other testers to specific parental sides of your tree.

Family Tree DNA accepts free uploads from other testing companies with the unlock for advanced features only $19. You can read about that here and here.

MyHeritage

MyHeritage, the DNA testing dark horse, has come from behind from their late entry into the field in 2016 with focused Europeans ads and the purchase of Promethease in 2019. Their database stands at 3.7 million, not as many as either Ancestry or 23andMe, but for many people, including me – MyHeritage is much more useful, especially for my European lines. Not only is MyHeritage a genealogy company, piloted by Gilad Japhet, a passionate genealogist, but they have introduced easy-to-use advanced tools for consumers during 2019 to take the functionality lead in autosomal DNA.

2019 MyHeritage.png

You can read more about MyHeritage and their 2019 accomplishments, here.

As far as I’m concerned, the MyHeritage bases-loaded 4-product “Home Run” makes MyHeritage the best solution for genetic genealogy via either testing or transfer:

  • Triangulation – shows testers where 3 or more people match each other. You can read more, here.
  • Tree Matching – SmartMatching for both DNA testers and those who have not DNA tested
  • Theories of Family Relativity – a wonderful new tool introduced in February. You can read more here.
  • AutoClusters – Integrated cluster technology helps you to visualize which groups of people match each other.

One of their best features, Theories of Family Relativity connects the dots between people you DNA match with disparate trees and other documents, such as census. This helps you and others break down long-standing brick walls. You can read more, here.

MyHeritage encourages uploads from other testing companies with basic functions such as matching for free. Advanced features cost either a one-time unlock fee of $29 or are included with a full subscription which you can try for free, here. You can read about what is free and what isn’t, here.

You can develop a testing and upload strategy along with finding instructions for how to upload here and here.

23andMe

Today, 23andMe is best known for health, having recovered after having had their wings clipped a few years back by the FDA. They were the first to offer Health results, leveraging the genealogy marketspace to attract testers, but have recently been eclipsed by both Family Tree DNA with their high end full Exome Tovana test and MyHeritage with their Health upgrade which provides more information than 23andMe along with free genetic counseling if appropriate. Both the Family Tree DNA and MyHeritage tests are medically supervised, so can deliver more results.

23andMe has never fully embraced genetic genealogy by adding the ability to upload and compare trees. In 2019, they introduced a beta function to attempt to create a genetic tree on your behalf based on how your matches match you and each other.

2019 23andMe.png

These trees aren’t accurate today, nor are they deep, but they are a beginning – especially considering that they are not based on existing trees. You can read more here.

The best 23andMe feature for genealogy, as far as I’m concerned, is their ethnicity along with the fact that they actually provide testers with the locations of their ethnicity segments which can help testers immensely, especially with minority ancestry matching. You can read about how to do this for yourself, here.

23andMe generally does not allow uploads, probably because they need people to test on their custom-designed medical chip. Very rarely, once that I know of in 2018, they do allow uploads – but in the past, uploaders do not receive all of the genealogy features and benefits of testing.

You can however, download your DNA file from 23andMe and upload elsewhere, with instructions here.

Ancestry

Ancestry is widely known for their ethnicity ads which are extremely effective in recruiting new testers. That’s the great news. The results are frustrating to seasoned genealogists who get to deal with the fallout of confused people trying to figure out why their results don’t match their expectations and family stories. That’s the not-so-great news.

However, with more than 15 million testers, many of whom DO have genealogy trees, a serious genealogist can’t *NOT* test at Ancestry. Testers do need to be aware that not all features are available to DNA testers who don’t also subscribe to Ancestry’s genealogy subscriptions. For example, you can’t see your matches’ trees beyond a 5 generation preview without a subscription. You can read more about what you do and don’t receive, here.

Ancestry is the only one of the major companies that doesn’t provide a chromosome browser, despite pleas for years to do so, but they do provide ThruLines that show you other testers who match your DNA and show a common ancestor with you in their trees.

2019 Ancestry.png

ThruLines will also link partial trees – showing you ancestral descendants from the perspective of the ancestor in question, shown above. You can read about ThruLines, here.

Of course, without a chromosome browser, this match is only as good as the associated trees, and there is no way to prove the genealogical connection. It’s possible to all be wrong together, or to be related to some people through a completely different ancestor. Third party tools like Genetic Affairs and cluster technology help resolve these types of issues. You can read more, here.

You can’t upload DNA files from other testing companies to Ancestry, probably due to their custom medical chip. You can download your file from Ancestry and upload to other locations, with instructions here.

Selling Customers’ DNA

Neither Family Tree DNA, MyHeritage nor Gedmatch sell, lease or otherwise share their customers’ DNA, and all three state (minimally) they will not in the future without prior authorization.

All companies utilize their customers’ DNA internally to enhance and improve their products. That’s perfectly normal.

Both Ancestry and 23andMe sell consumers DNA to both known and unknown partners if customers opt-in to additional research. That’s the purpose of all those questions.

If you do agree or opt-in, and for those who tested prior to when the opt-in began, consumers don’t know who their DNA has been sold to, where it is or for what purposes it’s being utilized. Although anonymized (pseudonymized) before sale, autosomal results can easily be identified to the originating tester (if someone were inclined to do so) as demonstrated by adoptees identifying parents and law enforcement identifying both long deceased remains and criminal perpetrators of violent crimes. You can read more about re-identification here, although keep in mind that the re-identification frequency (%) would be much higher now than it was in 2018.

People are widely split on this issue. Whatever you decide, to opt-in or not, just be sure to do your homework first.

Always read the terms and conditions fully and carefully of anything having to do with genetics.

Genealogy

The bottom line to genetic genealogy is the genealogy aspect. Genealogists want to confirm ancestors and discover more about those ancestors. Some information can only be discovered via DNA testing today, distant Native heritage, for example, breaking through brick walls.

This technology, as it has advanced and more people have tested, has been a godsend for genealogists. The same techniques have allowed other people to locate unknown parents, grandparents and close relatives.

Adoptees

Not only are genealogists identifying people long in the past that are their ancestors, but adoptees and those seeking unknown parents are making discoveries much closer to home. MyHeritage has twice provided thousands of free DNA tests via their DNAQuest program to adoptees seeking their biological family with some amazing results.

The difference between genealogy, which looks back in time several generations, and parent or grand-parent searches is that unknown-parent searches use matches to come forward in time to identify parents, not backwards in time to identify distant ancestors in common.

Adoptee matching is about identifying descendants in common. According to Erlich et al in an October 2018 paper, here, about 60% of people with European ancestry could be identified. With the database growth since that time, that percentage has risen, I’m sure.

You can read more about the adoption search technique and how it is used, here.

Adoptee searches have spawned their own subculture of sorts, with researchers and search angels that specialize in making these connections. Do be aware that while many reunions are joyful, not all discoveries are positively received and the revelations can be traumatic for all parties involved.

There’s ying and yang involved, of course, and the exact same techniques used for identifying biological parents are also used to identify cold-case deceased victims of crime as well as violent criminals, meaning rapists and murderers.

Crimes Solved

The use of genetic genealogy and adoptee search techniques for identifying skeletal remains of crime victims, as well as identifying criminals in order that they can be arrested and removed from the population has resulted in a huge chasm and division in the genetic genealogy community.

These same issues have become popular topics in the press, often authored by people who have no experience in this field, don’t understand how these techniques are applied or function and/or are more interested in a sensational story than in the truth. The word click-bait springs to mind although certainly doesn’t apply equally to all.

Some testers are adamantly pro-usage of their DNA in order to identify victims and apprehend violent criminals. Other testers, not so much and some, on the other end of the spectrum are vehemently opposed. This is a highly personal topic with extremely strong emotions on both sides.

The first such case was the Golden State Killer, which has been followed in the past 18 months or so by another 100+ solved cases.

Regardless of whether or not people want their own DNA to be utilized to identify these criminals and victims, providing closure for families, I suspect the one thing we can all agree on is that we are grateful that these violent criminals no longer live among us and are no longer preying on innocent victims.

I wrote about the Golden State Killer, here, as well as other articles here, here, here and here.

In the genealogy community, various vendors have adopted quite different strategies relating to these kinds of searches, as follows:

  • Ancestry, 23andMe and MyHeritage – have committed to fight all access attempts by law enforcement, including court ordered subpoenas.
  • MyHeritage, Family Tree DNA and GedMatch allow uploads, so forensic kits, meaning kits from deceased remains or rape kits could be uploaded to search for matches, the same as any other kit. Law Enforcement uploads violate the MyHeritage terms of service. Both Family Tree DNA and GEDmatch have special law enforcement procedures in place. All three companies have measures in place to attempt to detect unauthorized forensic uploads.
  • Family Tree DNA has provided a specific Law Enforcement protocol and guidelines for forensic uploads, here. All EU customers were opted out earlier in 2019, but all new or existing non-EU customers need to opt out if they do not want their DNA results available for matching to law enforcement kits.
  • GEDmatch was recently sold to Verogen, a DNA forensics company, with information, here. Currently GEDMatch customers are opted-out of matching for law enforcement kits, but can opt-in. Verogen, upon purchase of GEDmatch, required all users to read the terms and conditions and either accept the terms or delete their kits. Users can also delete their kits or turn off/on law enforcement matching at any time.

New Concerns

Concerns in late 2019 have focused on the potential misuse of genetic matching to potentially target subsets of individuals by despotic regimes such as has been done by China to the Uighurs.

You can read about potential risks here, here and here, along with a recent DoD memo here.

Some issues spelled out in the papers can be resolved by vendors agreeing to cryptographically sign their files when customers download. Of course, this would require that everyone, meaning all vendors, play nice in the sandbox. So far, that hasn’t happened although I would expect that the vendors accepting uploads would welcome cryptographic signatures. That pretty much leaves Ancestry and 23andMe. I hope they will step up to the plate for the good of the industry as a whole.

Relative to the concerns voiced in the papers and by the DoD, I do not wish to understate any risks. There ARE certainly risks of family members being identified via DNA testing, which is, after all, the initial purpose even though the current (and future) uses were not foreseen initially.

In most cases, the cow has already left that barn. Even if someone new chooses not to test, the critical threshold is now past to prevent identification of individuals, at least within the US and/or European diaspora communities.

I do have concerns:

  • Websites where the owners are not known in the genealogical community could be collecting uploads for clandestine purposes. “Free” sites are extremely attractive to novices who tend to forget that if you’re not paying for the product, you ARE the product. Please be very cognizant and leery. Actually, just say no unless you’re positive.
  • Fearmongering and click-bait articles in general will prevent and are already causing knee-jerk reactions, causing potential testers to reject DNA testing outright, without doing any research or reading terms and conditions.
  • That Ancestry and 23andMe, the two major vendors who don’t accept uploads will refuse to add crypto-signatures to protect their customers who download files.

Every person needs to carefully make their own decisions about DNA testing and participating in sharing through third party sites.

Health

Not surprisingly, the DNA testing market space has cooled a bit this past year. This slowdown is likely due to a number of factors such as negative press and the fact that perhaps the genealogical market is becoming somewhat saturated. Although, I suspect that when vendors announce major new tools, their DNA kit sales spike accordingly.

Look at it this way, do you know any serious genealogists who haven’t DNA tested? Most are in all of the major databases, meaning Ancestry, 23andMe, FamilyTreeDNA, MyHeritage and GedMatch.

All of the testing companies mentioned above (except GEDmatch who is not a testing company) now have a Health offering, designed to offer existing and new customers additional value for their DNA testing dollar.

23andMe separated their genealogy and health offering years ago. Ancestry and MyHeritage now offer a Health upgrade. For existing customers, FamilyTreeDNA offers the Cadillac of health tests through Tovana.

I would guess it goes without saying here that if you really don’t want to know about potential health issues, don’t purchase these tests. The flip side is, of course, that most of the time, a genetic predisposition is nothing more and not a death sentence.

From my own perspective, I found the health tests to be informative, actionable and in some cases, they have been lifesaving for friends.

Whoever knew genealogy might save your life.

Innovative Third-Party Tools

Tools, and fads, come and go.

In the genetic genealogy space, over the years, tools have burst on the scene to disappear a few months later. However, the last few years have been won by third party tools developed by well-known and respected community members who have created tools to assist other genealogists.

As we close this decade, these are my picks of the tools that I use almost daily, have proven to be the most useful genealogically and that I feel I just “couldn’t live without.”

And yes, before you ask, some of these have a bit of a learning curve, but if you are serious about genealogy, these are all well worthwhile:

  • GedMatch – offers a wife variety of tools including triangulation, half versus fully identical segments and the ability to see who your matches also match. One of the tools I utilize regularly is segment search to see who else matches me on a specific segment, attached to an ancestor I’m researching. GedMatch, started by genealogists, has lasted more than a decade prior to the sale in December 2019.
  • Genetic Affairs – a barn-burning newcomer developed by Evert-Jan Blom in 2018 wins this years’ “Best” award from me. Genetic Affairs offers clustering, tree building between your matches even when YOU don’t have a tree. You can read more here.

2019 genetic affairs.png

Just today, Genetic Affairs released a new cluster interface with DNAPainter, example shown above.

  • DNAPainter – THE chromosome painter created by Jonny Perl just gets better and better, having added pedigree tree construction this year and other abilities. I wrote a composite instructional article, here.
  • DNAGedcom.com and Genetic.Families, affiliated with DNAAdoption.org – Rob Warthen in collaboration with others provides tools like clustering combined with triangulation. My favorite feature is the gathering of all direct ancestors of my matches’ trees at the various vendors where I’ve DNA tested which allows me to search for common surnames and locations, providing invaluable hints not otherwise available.

Promising Newcomer

  • MitoYDNA – a non-profit newcomer by folks affiliated with DNAAdoption and DNAGedcom is designed to replace YSearch and MitoSearch, both felled by the GDPR ax in 2018. This website allows people to upload their Y and mitochondrial DNA results and compare the values to each other, not just for matching, which you can do at Family Tree DNA, but also to see the values that do and don’t match and how they differ. I’ll be taking MitoYDNA for a test drive after the first of the year and will share the results with you.

The Future

What does the future hold? I almost hesitate to guess.

  • Artificial Intelligence Pedigree Chart – I think that in the not-too-distant future we’ll see the ability to provide testers with a “one and done” pedigree chart. In other words, you will test and receive at least some portion of your genealogy all tidily presented, red ribbon untied and scroll rolled out in front of you like you’re the guest on one of those genealogy TV shows.

Except it’s not a show and is a result of DNA testing, segment triangulation, trees and other tools which narrow your ancestors to only a few select possibilities.

Notice I said, “the ability to.” Just because we have the ability doesn’t mean a vendor will implement this functionality. In fact, just think about the massive businesses built upon the fact that we, as genealogists, have to SEARCH incessantly for these elusive answers. Would it be in the best interest of these companies to just GIVE you those answers when you test?

If not, then these types of answers will rest with third parties. However, there’s a hitch. Vendors generally don’t welcome third parties offering advanced tools and therefore block those tools, even though they are being used BY the customer or with their explicit authorization to massage their own data.

On the other hand, as a genealogist, I would welcome this feature with open arms – because as far as I’m concerned, the identification of that ancestor is just the first step. I get to know them by fleshing out their bones by utilizing those research records.

In fact, I’m willing to pony up to the table and I promise, oh-so-faithfully, to maintain my subscription lifelong if one of those vendors will just test me. Please, please, oh pretty-please put me to the test!

I guess you know what my New Year’s Wish is for this and upcoming years now too😊

What About You?

What do you think the high points of 2019 have been?

How about the decade?

What do you think the future holds?

Do you care to make any predictions?

Are you planning to focus on any particular goal or genealogy problem in 2020?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Hit a Genetic Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters

Do you want to hit a home run with your DNA test, but find yourself a mite bewildered?

Yep, those matches can be somewhat confusing – especially if you don’t understand what’s going on. Do you have a nagging feeling that you might be missing something?

I’m going to explain chromosome matching, and its big sister, triangulation, step by step to remove any confusion, to help you sort through your matches and avoid imposters.

This article is one of the most challenging I’ve ever written – in part because it’s a concept that I’m so familiar with but can be, and is, misinterpreted so easily. I see mistakes and confusion daily, which means that resulting conclusions stand a good chance of being wrong.

I’ve tried to simplify these concepts by giving you easy-to-use memory tools.

There are three key phrases to remember, as memory-joggers when you work through your matches using a chromosome browser: double-sided, two faces and imposter. While these are “cute,” they are also quite useful.

When you’re having a confusing moment, think back to these memory-jogging key words and walk yourself through your matches using these steps.

These three concepts are the foundation of understanding your matches, accurately, as they pertain to your genealogy. Please feel free to share, link or forward this article to your friends and especially your family members (including distant cousins) who work with genetic genealogy. 

Now, it’s time to enjoy your double-sided, two-faced chromosomes and avoid those imposters:)

Are you ready? Grab a nice cup of coffee or tea and learn how to hit home runs!

Double-Sided – Yes, Really

Your chromosomes really are double sided, and two-faced too – and that’s a good thing!

However, it’s initially confusing because when we view our matches in a chromosome browser, it looks like we only have one “bar” or chromosome and our matches from both our maternal and paternal sides are both shown on our one single bar.

How can this be? We all have two copies of chromosome 1, one from each parent.

Chromosome 1 match.png

This is my chromosome 1, with my match showing in blue when compared to my chromosome, in gray, as the background.

However, I don’t know if this blue person matches me on my mother’s or father’s chromosome 1, both of which I inherited. It could be either. Or neither – meaning the dreaded imposter – especially that small blue piece at left.

What you’re seeing above is in essence both “sides” of my chromosome number 1, blended together, in one bar. That’s what I mean by double-sided.

There’s no way to tell which side or match is maternal and which is paternal without additional information – and misunderstanding leads to misinterpreting results.

Let’s straighten this out and talk about what matches do and don’t mean – and why they can be perplexing. Oh, and how to discover those imposters!

Your Three Matches

Let’s say you have three matches.

At Family Tree DNA, the example chromosome browser I’m using, or at any vendor with a chromosome browser, you select your matches which are viewed against your chromosomes. Your chromosomes are always the background, meaning in this case, the grey background.

Chromosome 1-4.png

  • This is NOT three copies each of your chromosomes 1, 2, 3 and 4.
  • This is NOT displaying your maternal and paternal copies of each chromosome pictured.
  • We CANNOT tell anything from this image alone relative to maternal and paternal side matches.
  • This IS showing three individual people matching you on your chromosome 1 and the same three people matching you in the same order on every chromosome in the picture.

Let’s look at what this means and why we want to utilize a chromosome browser.

I selected three matches that I know are not all related through the same parent so I can demonstrate how confusing matches can be sorted out. Throughout this article, I’ve tried to explain each concept in at least two ways.

Please note that I’m using only chromsomes 1-4 as examples, not because they are any more, or less, important than the other chromosomes, but because showing all 22 would not add any benefit to the discussion. The X chromosome has a separate inheritance path and I wrote about that here.

Let’s start with a basic question.

Why Would I Want to Use a Chromosome Browser?

Genealogists view matches on chromosome browsers because:

  • We want to see where our matches match us on our chromosomes
  • We’d like to identify our common ancestor with our match
  • We want to assign a matching segment to a specific ancestor or ancestral line, which confirmed those ancestors as ours
  • When multiple people match us on the same location on the chromosome browser, that’s a hint telling us that we need to scrutinize those matches more closely to determine if those people match us on our maternal or paternal side which is the first step in assigning that segment to an ancestor

Once we accurately assign a segment to an ancestor, when anyone else matches us (and those other people) on that same segment, we know which ancestral line they match through – which is a great head start in terms of identifying our common ancestor with our new match.

That’s a genetic genealogy home run!

Home Runs 

There are four bases in a genetic genealogy home run.

  1. Determine whether you actually match someone on the same segment
  2. Which is the first step in determining that you match a group of people on the same segment
  3. And that you descend from a common ancestor
  4. The fourth step, or the home run, is to determine which ancestor you have in common, assigning that segment to that ancestor

If you can’t see segment information, you can’t use a chromosome browser and you can’t confirm the match on that segment, nor can you assign that segment to a particular ancestor, or ancestral couple.

The entire purpose of genealogy is to identify and confirm ancestors. Genetic genealogy confirms the paper trail and breaks down even more brick walls.

But before you can do that, you have to understand what matches mean and how to use them.

The first step is to understand that our chromosomes are double-sided and you can’ t see both of your chromosomes at once!

Double Sided – You Can’t See Both of Your Chromosomes at Once

The confusing part of the chromosome browser is that it can only “see” your two chromosomes blended as one. They are both there, but you just can’t see them separately.

Here’s the important concept:

You have 2 copies of chromosomes 1 through 22 – one copy that you received from your mother and one from your father, but you can’t “see” them separately.

When your DNA is sequenced, your DNA from your parents’ chromosomes emerges as if it has been through a blender. Your mother’s chromosome 1 and your father’s chromosome 1 are blended together. That means that without additional information, the vendor can’t tell which matches are from your father’s side and which are from your mother’s side – and neither can you.

All the vendor can tell is that someone matches you on the blended version of your parents. This isn’t a negative reflection on the vendors, it’s just how the science works.

Chromosome 1.png

Applying this to chromosome 1, above, means that each segment from each person, the blue person, the red person and the teal person might match you on either one of your chromosomes – the paternal chromosome or the maternal chromosome – but because the DNA of your mother and father are blended – there’s no way without additional information to sort your chromosome 1 into a maternal and paternal “side.”

Hence, you’re viewing “one” copy of your combined chromosomes above, but it’s actually “two-sided” with both maternal and paternal matches displayed in the chromosome browser.

Parent-Child Matches

Let’s explain this another way.

Chromosome parent.png

The example above shows one of my parents matching me. Don’t be deceived by the color blue which is selected randomly. It could be either parent. We don’t know.

You can see that I match my parent on the entire length of chromosome 1, but there is no way for me to tell if I’m looking at my mother’s match or my father’s match, because both of my parents (and my children) will match me on exactly the same locations (all of them) on my chromosome 1.

Chromosome parent child.png

In fact, here is a combination of my children and my parents matching me on my chromosome 1.

To sort out who is matching on paternal and maternal chromosomes, or the double sides, I need more information. Let’s look at how inheritance works.

Stay with me!

Inheritance Example

Let’s take a look at how inheritance works visually, using an example segment on chromosome 1.

Chromosome inheritance.png

In the example above:

  • The first column shows addresses 1-10 on chromosome 1. In this illustration, we are only looking at positions, chromosome locations or addresses 1-10, but real chromosomes have tens of thousands of addresses. Think of your chromosome as a street with the same house numbers on both sides. One side is Mom’s and one side is Dad’s, but you can’t tell which is which by looking at the house numbers because the house numbers are identical on both sides of the street.
  • The DNA pieces, or nucleotides (T, A, C or G,) that you received from your Mom are shown in the column labeled Mom #1, meaning we’re looking at your mother’s pink chromosome #1 at addresses 1-10. In our example she has all As that live on her side of the street at addresses 1-10.
  • The DNA pieces that you received from your Dad are shown in the blue column and are all Cs living on his side of the street in locations 1-10.

In other words, the values that live in the Mom and Dad locations on your chromosome streets are different. Two different faces.

However, all that the laboratory equipment can see is that there are two values at address 1, A and C, in no particular order. The lab can’t tell which nucleotide came from which parent or which side of the street they live on.

The DNA sequencer knows that it found two values at each address, meaning that there are two DNA strands, but the output is jumbled, as shown in the First and Second read columns. The machine knows that you have an A and C at the first address, and a C and A at the second address, but it can’t put the sequence of all As together and the sequence of all Cs together. What the sequencer sees is entirely unordered.

This happens because your maternal and paternal DNA is mixed together during the extraction process.

Chromosome actual

Click to enlarge image.

Looking at the portion of chromosome 1 where the blue and teal people both match you – your actual blended values are shown overlayed on that segment, above. We don’t know why the blue and the teal people are matching you. They could be matching because they have all As (maternal), all Cs (paternal) or some combination of As and Cs (a false positive match that is identical by chance.)

There are only two ways to reassemble your nucleotides (T, A, C, and G) in order and then to identify the sides as maternal and paternal – phasing and matching.

As you read this next section, it does NOT mean that you must have a parent for a chromosome browser to be useful – but it does mean you need to understand these concepts.

There are two types of phasing.

Parental Phasing

  • Parental Phasing is when your DNA is compared against that of one or both parents and sorted based on that comparison.

Chromosome inheritance actual.png

Parental phasing requires that at least one parent’s DNA is available, has been sequenced and is available for matching.

In our example, Dad’s first 10 locations (that you inherited) on chromosome 1 are shown, at left, with your two values shown as the first and second reads. One of your read values came from your father and the other one came from your mother. In this case, the Cs came from your father. (I’m using A and C as examples, but the values could just as easily be T or G or any combination.)

When parental phasing occurs, the DNA of one of your parents is compared to yours. In this case, your Dad gave you a C in locations 1-10.

Now, the vendor can look at your DNA and assign your DNA to one parent or the other. There can be some complicating factors, like if both your parents have the same nucleotides, but let’s keep our example simple.

In our example above, you can see that I’ve colored portions of the first and second strands blue to represent that the C value at that address can be assigned through parental phasing to your father.

Conversely, because your mother’s DNA is NOT available in our example, we can’t compare your DNA to hers, but all is not lost. Because we know which nucleotides came from your father, the remaining nucleotides had to come from your mother. Hence, the As remain after the Cs are assigned to your father and belong to your mother. These remaining nucleotides can logically be recombined into your mother’s DNA – because we’ve subtracted Dad’s DNA.

I’ve reassembled Mom, in pink, at right.

Statistical/Academic Phasing

  • A second type of phasing uses something referred to as statistical or academic phasing.

Statistical phasing is less successful because it uses statistical calculations based on reference populations. In other words, it uses a “most likely” scenario.

By studying reference populations, we know scientifically that, generally, for our example addresses 1-10, we either see all As or all Cs grouped together.

Based on this knowledge, the Cs can then logically be grouped together on one “side” and As grouped together on the other “side,” but we still have no way to know which side is maternal or paternal for you. We only know that normally, in a specific population, we see all As or all Cs. After assigning strings or groups of nucleotides together, the algorithm then attempts to see which groups are found together, thereby assigning genetic “sides.” Assigning the wrong groups to the wrong side sometimes happens using statistical phasing and is called strand swap.

Once the DNA is assigned to physical “sides” without a parent or matching, we still can’t identify which side is paternal and which is maternal for you.

Statistical or academic phasing isn’t always accurate, in part because of the differences found in various reference populations and resulting admixture. Sometimes segments don’t match well with any population. As more people test and more reference populations become available, statistical/academic phasing improves. 23andMe uses academic phasing for ethnicity, resulting in a strand swap error for me. Ancestry uses academic phasing before matching.

By comparison to statistical or academic phasing, parental phasing with either or both parents is highly accurate which is why we test our parents and grandparents whenever possible. Even if the vendor doesn’t use our parents’ results, we certainly can!

If someone matches you and your parent too, you know that match is from that parent’s side of your tree.

Matching

The second methodology to sort your DNA into maternal and paternal sides is matching, either with or without your parents.

Matching to multiple known relatives on specific segments assigns those segments of your DNA to the common ancestor of those individuals.

In other words, when I match my first cousin, and our genealogy indicates that we share grandparents – assuming we match on the appropriate amount of DNA for the expected relationship – that match goes a long way to confirming our common ancestor(s).

The closer the relationship, the more comfortable we can be with the confirmation. For example, if you match someone at a parental level, they must be either your biological mother, father or child.

While parent, sibling and close relationships are relatively obvious, more distant relationships are not and can occur though unknown or multiple ancestors. In those cases, we need multiple matches through different children of that ancestor to reasonably confirm ancestral descent.

Ok, but how do we do that? Let’s start with some basics that can be confusing.

What are we really seeing when we look at a chromosome browser?

The Grey/Opaque Background is Your Chromosome

It’s important to realize that you will see as many images of your chromosome(s) as people you have selected to match against.

This means that if you’ve selected 3 people to match against your chromosomes, then you’ll see three images of your chromosome 1, three images of your chromosome 2, three images of your chromosome 3, three images of your chromosome 4, and so forth.

Remember, chromosomes are double-sided, so you don’t know whether these are maternal or paternal matches (or imposters.)

In the illustration below, I’ve selected three people to match against my chromosomes in the chromosome browser. One person is shown as a blue match, one as a red match, and one as a teal match. Where these three people match me on each chromosome is shown by the colored segments on the three separate images.

Chromosome 1.png

My chromosome 1 is shown above. These images are simply three people matching to my chromosome 1, stacked on top of each other, like cordwood.

The first image is for the blue person. The second image is for the red person. The third image is for the teal person.

If I selected another person, they would be assigned a different color (by the system) and a fourth stacked image would occur.

These stacked images of your chromosomes are NOT inherently maternal or paternal.

In other words, the blue person could match me maternally and the red person paternally, or any combination of maternal and paternal. Colors are not relevant – in other words colors are system assigned randomly.

Notice that portions of the blue and teal matches overlap at some of the same locations/addresses, which is immediately visible when using a chromosome browser. These areas of common matching are of particular interest.

Let’s look closer at how chromosome browser matching works.

What about those colorful bars?

Chromosome Browser Matching

When you look at your chromosome browser matches, you may see colored bars on several chromosomes. In the display for each chromosome, the same color will always be shown in the same order. Most people, unless very close relatives, won’t match you on every chromosome.

Below, we’re looking at three individuals matching on my chromosomes 1, 2, 3 and 4.

Chromosome browser.png

The blue person will be shown in location A on every chromosome at the top. You can see that the blue person does not match me on chromosome 2 but does match me on chromosomes 1, 3 and 4.

The red person will always be shown in the second position, B, on each chromosome. The red person does not match me on chromosomes 2 or 4.

The aqua person will always be shown in position C on each chromosome. The aqua person matches me on at least a small segment of chromosomes 1-4.

When you close the browser and select different people to match, the colors will change and the stacking order perhaps, but each person selected will always be consistently displayed in the same position on all of your chromosomes each time you view.

The Same Address – Stacked Matches

In the example above, we can see that several locations show stacked segments in the same location on the browser.

Chromosome browser locations.png

This means that on chromosome 1, the blue and green person both match me on at least part of the same addresses – the areas that overlap fully. Remember, we don’t know if that means the maternal side or the paternal side of the street. Each match could match on the same or different sides.

Said another way, blue could be maternal and teal could be paternal (or vice versa,) or both could be maternal or paternal. One or the other or both could be imposters, although with large segments that’s very unlikely.

On chromosome 4, blue and teal both match me on two common locations, but the teal person extends beyond the length of the matching blue segments.

Chromosome 3 is different because all three people match me at the same address. Even though the red and teal matching segments are longer, the shared portion of the segment between all three people, the length of the blue segment, is significant.

The fact that the stacked matches are in the same places on the chromosomes, directly above/below each other, DOES NOT mean the matches also match each other.

The only way to know whether these matches are both on one side of my tree is whether or not they match each other. Do they look the same or different? One face or two? We can’t tell from this view alone.

We need to evaluate!

Two Faces – Matching Can be Deceptive!

What do these matches mean? Let’s ask and answer a few questions.

  • Does a stacked match mean that one of these people match on my mother’s side and one on my father’s side?

They might, but stacked matches don’t MEAN that.

If one match is maternal, and one is paternal, they still appear at the same location on your chromosome browser because Mom and Dad each have a side of the street, meaning a chromosome that you inherited.

Remember in our example that even though they have the same street address, Dad has blue Cs and Mom has pink As living at that location. In other words, their faces look different. So unless Mom and Dad have the same DNA on that entire segment of addresses, 1-10, Mom and Dad won’t match each other.

Therefore, my maternal and paternal matches won’t match each other either on that segment either, unless:

  1. They are related to me through both of my parents and on that specific location.
  2. My mother and father are related to each other and their DNA is the same on that segment.
  3. There is significant endogamy that causes my parents to share DNA segments from their more distant ancestors, even though they are not related in the past few generations.
  4. The segments are small (segments less than 7cM are false matches roughly 50% of the time) and therefore the match is simply identical by chance. I wrote about that here. The chart showing valid cM match percentages is shown here, but to summarize, 7-8 cMs are valid roughly 46% of the time, 8-9 cM roughly 66%, 9-10 cM roughly 91%, 10-11 cM roughly 95, but 100 is not reached until about 20 cM and I have seen a few exceptions above that, especially when imputation is involved.

Chromosome inheritance match.png

In this inheritance example, we see that pink Match #1 is from Mom’s side and matches the DNA I inherited from pink Mom. Blue Match #2 is from Dad’s side and matches the DNA I inherited from blue Dad. But as you can see, Match #1 and Match #2 do not match each other.

Therefore, the address is only half the story (double-sided.)

What lives at the address is the other half. Mom and Dad have two separate faces!

Chromosome actual overlay

Click to enlarge image

Looking at our example of what our DNA in parental order really looks like on chromosome 1, we see that the blue person actually matches on my maternal side with all As, and the teal person on the paternal side with all Cs.

  • Does a stacked match on the chromosome browser mean that two people match each other?

Sometimes it happens, but not necessarily, as shown in our example above. The blue and teal person would not match each other. Remember, addresses (the street is double-sided) but the nucleotides that live at that address tell the real story. Think two different looking faces, Mom’s and Dad’s, peering out those windows.

If stacked matches match each other too – then they match me on the same parental side. If they don’t match each other, don’t be deceived just because they live at the same address. Remember – Mom’s and Dad’s two faces look different.

For example, if both the blue and teal person match me maternally, with all As, they would also match each other. The addresses match and the values that live at the address match too. They look exactly the same – so they both match me on either my maternal or paternal side – but it’s up to me to figure out which is which using genealogy.

Chromosome actual maternal.png

Click to enlarge image

When my matches do match each other on this segment, plus match me of course, it’s called triangulation.

Triangulation – Think of 3

If my two matches match each other on this segment, in addition to me, it’s called triangulation which is genealogically significant, assuming:

  1. That the triangulated people are not closely related. Triangulation with two siblings, for example, isn’t terribly significant because the common ancestor is only their parents. Same situation with a child and a parent.
  2. The triangulated segments are not small. Triangulation, like matching, on small segments can happen by chance.
  3. Enough people triangulate on the same segment that descends from a common ancestor to confirm the validity of the common ancestor’s identity, also confirming that the match is identical by descent, not identical by chance.

Chromosome inheritance triangulation.png

The key to determining whether my two matches both match me on my maternal side (above) or paternal side is whether they also match each other.

If so, assuming all three of the conditions above are true, we triangulate.

Next, let’s look at a three-person match on the same segment and how to determine if they triangulate.

Three Way Matching and Identifying Imposters

Chromosome 3 in our example is slightly different, because all three people match me on at least a portion of that segment, meaning at the same address. The red and teal segments line up directly under the blue segment – so the portion that I can potentially match identically to all 3 people is the length of the blue segment. It’s easy to get excited, but don’t get excited quite yet.

Chromosome 3 way match.png

Given that three people match me on the same street address/location, one of the following three situations must be true:

  • Situation 1- All three people match each other in addition to me, on that same segment, which means that all three of them match me on either the maternal or paternal side. This confirms that we are related on the same side, but not how or which side.

Chromosome paternal.png

In order to determine which side, maternal or paternal, I need to look at their and my genealogy. The blue arrows in these examples mean that I’ve determined these matches to all be on my father’s side utilizing a combination of genealogy plus DNA matching. If your parent is alive, this part is easy. If not, you’ll need to utilize common matching and/or triangulation with known relatives.

  • Situation 2 – Of these three people, Cheryl, the blue bar on top, matches me but does not match the other two. Charlene and David, the red and teal, match each other, plus me, but not Cheryl.

Chromosome maternal paternal.png

This means that at least either my maternal or paternal side is represented, given that Charlene and David also match each other. Until I can look at the identity of who matches, or their genealogy, I can’t tell which person or people descend from which side.

In this case, I’ve determined that Cheryl, my first cousin, with the pink arrow matches me on Mom’s side and Charlene and David, with the blue arrows, match me on Dad’s side. So both my maternal and paternal sides are represented – my maternal side with the pink arrow as well as my father’s side with the blue arrows.

If Cheryl was a more distant match, I would need additional triangulated matches to family members to confirm her match as legitimate and not a false positive or identical by chance.

  • Situation 3 – Of the three people, all three match me at the same addresses, but none of the three people match each other. How is this even possible?

Chromosome identical by chance.png

This situation seems very counter-intuitive since I have only 2 chromosomes, one from Mom and one from Dad – 2 sidesof the street. It is confusing until you realize that one match (Cheryl and me, pink arrow) would be maternal, one would be paternal (Charlene and me, blue arrow) and the third (David and me, red arrows) would have DNA that bounces back and forth between my maternal and paternal sides, meaning the match with David is identical by chance (IBC.)

This means the third person, David, would match me, but not the people that are actually maternal and paternal matches. Let’s take a look at how this works

Chromosome maternal paternal IBC.png

The addresses are the same, but the values that live at the addresses are not in this third scenario.

Maternal pink Match #1 is Cheryl, paternal blue Match #2 is Charlene.

In this example, Match #3, David, matches me because he has pink and blue at the same addresses that Mom and Dad have pink and blue, but he doesn’t have all pink (Mom) nor all blue (Dad), so he does NOT match either Cheryl or Charlene. This means that he is not a valid genealogical match – but is instead what is known as a false positive – identical by chance, not by descent. In essence, a wily genetic imposter waiting to fool unwary genealogists!

In his case, David is literally “two-faced” with parts of both values that live in the maternal house and the paternal house at those addresses. He is a “two-faced imposter” because he has elements of both but isn’t either maternal or paternal.

This is the perfect example of why matching and triangulating to known and confirmed family members is critical.

All three people, Cheryl, Charlene and David match me (double sided chromosomes), but none of them match each other (two legitimate faces – one from each parent’s side plus one imposter that doesn’t match either the legitimate maternal or paternal relatives on that segment.)

Remember Three Things

  1. Double-Sided – Mom and Dad both have the same addresses on both sides of each chromosome street.
  2. Two Legitimate Faces – The DNA values, nucleotides, will have a unique pattern for both your Mom and Dad (unless they are endogamous or related) and therefore, there are two legitimate matching patterns on each chromsome – one for Mom and one for Dad. Two legitimate and different faces peering out of the houses on Mom’s side and Dad’s side of the street.
  3. Two-Faced Imposters – those identical by chance matches which zig-zag back and forth between Mom and Dad’s DNA at any given address (segment), don’t match confirmed maternal and paternal relatives on the same segment, and are confusing imposters.

Are you ready to hit your home run?

What’s Next?

Now that we understand how matching and triangulation works and why, let’s put this to work at the vendors. Join me for my article in a few days, Triangulation in Action at Family Tree DNA, MyHeritage, 23andMe and GedMatch.

We will step through how triangulation works at each vendor. You’ll have matches at each vendor that you don’ t have elsewhere. If you haven’t transferred your DNA file yet, you still have time with the step by step instructions below:

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

DNAPainter Instructions and Resources

DNAPainter garden

DNAPainter is one of my favorite tools because DNAPainter, just as its name implies, facilitates users painting their matches’ segments on their various chromosomes. It’s genetic art and your ancestors provide the paint!

People use DNAPainter in different ways for various purposes. I utilize DNAPainter to paint matches with whom I’ve identified a common ancestor and therefore know the historical “identity” of the ancestors who contributed that segment.

Those colors in the graphic above are segments identified to different ancestors through DNA matching.

DNAPainter includes:

  • The ability to paint or map your chromosomes with your matching segments as well as your ethnicity segments
  • The ability to upload or create trees and mark individuals you’ve confirmed as your genetic ancestors
  • A number of tools including the Shared cM Tool to show ranges of relationships based on your match level and WATO (what are the odds) tool to statistically predict or estimate various positions in a family based on relationships to other known family members

A Repository

I’ve created this article as a quick-reference instructional repository for the articles I’ve written about DNAPainter. As I write more articles, I’ll add them here as well.

  • The Chromosome Sudoku article introduced DNAPainter and how to use the tool. This is a step-by-step guide for beginners.

DNA Painter – Chromosome Sudoku for Genetic Genealogy Addicts

  • Where do you find those matches to paint? At the vendors such as Family Tree DNA, MyHeritage, 23andMe and GedMatch, of course. The Mining Vendor Matches article explains how.

DNAPainter – Mining Vendor Matches to Paint Your Chromosomes

  • Touring the Chromosome Garden explains how to interpret the results of DNAPainter, and how automatic triangulation just “happens” as you paint. I also discuss ethnicity painting and how to handle questionable ancestors.

DNA Painter – Touring the Chromosome Garden

  • You can prove or disprove a half-sibling relationship using DNAPainter – for you and also for other people in your tree.

Proving or Disproving a Half Sibling Relationship Using DNAPainter

  • Not long after Dana Leeds introduced The Leeds Method of clustering matches into 4 groups representing your 4 grandparents, I adapted her method to DNAPainter.

DNAPainter: Painting the Leeds Method Matches

  • Ethnicity painting is a wonderful tool to help identify Native American or minority ancestry segments by utilizing your estimated ethnicity segments. Minority in this context means minority to you.

Native American and Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments

  • Creating a tree or uploading a GEDCOM file provides you with Ancestral Trees where you can indicate which people in your tree are genetically confirmed as your ancestors.

DNAPainter: Ancestral Trees

Of course, the key to DNA painting is to have as many matches and segments as possible identified to specific ancestors. In order to do that, you need to have your DNA working for you at as many vendors as possible that provide you with matching and a chromosome browser. Ancestry does not have a browser or provide specific paintable segment information, but the other major vendors do, and you can transfer Ancestry results elsewhere.

DNA Transfers

Some vendors don’t require you to test at their company and allow transfers into their systems from other vendors. Those vendors do charge a small fee to unlock their advanced features, but not as much as testing there.

Ancestry and 23andMe DO NOT allow transfers of DNA from other vendors INTO their systems, but they do allow you to download your raw DNA file to transfer TO other vendors.

Family Tree DNA, MyHeritage and GedMatch all 3 accept files uploaded FROM other vendors. Family Tree DNA and MyHeritage also allow you to download your raw data file to transfer TO other vendors.

These articles provide step-by-step instructions how to download your results from the various vendors and how to upload to that vendor, when possible.

Here are some suggestions about DNA testing and a transfer strategy:

Paint and have fun!!!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

DNAPainter: Ancestral Trees

Ancestral Tree.png

DNAPainter has introduced a new feature, Ancestral Trees.

Ancestral tree fan.png

You can create a tree by hand or upload a GEDCOM file from your own software or one of the online vendors who support a tree export to a GEDCOM file, such as Ancestry or MyHeritage.

GEDCOM Import

As a longtime genealogist, I wanted to upload my GEDCOM file, because there’s absolutely no reason to recreate the wheel, or the fan, pardon the pun.

I’ve been building my file for decades, so it’s rather large, with over 35,000 people. Not all are ancestors of course.

If the upload process was going to choke on a large file, mine is a good candidate. DNAPainter indicates that files of 50,000 people or less shouldn’t be a problem. My file upload worked fine and took all of a couple minutes.

It’s worth noting that your GEDCOM file itself is not uploaded and retained. Only your direct line ancestors are extracted and uploaded to your DNAPainter account. You can read about options here.

Pedigree

A pedigree version of my direct ancestral tree appeared as soon as the upload completed.

Ancestral tree pedigree.png

By hovering over any person, you can perform a several functions.

You can delete the person, edit their information, add parents or mark them as a genetic ancestor by clicking on that box.

Ancestral tree options.png

What, exactly, is a genetic ancestor?

Genetic Ancestors

Genetic ancestors are people in your tree that are confirmed, genetically, to be your ancestors. For example, if you match a full first cousin on your mother’s side, that confirms your maternal grandparents as your grandparents.

Two pieces of independent data confirm that – your paper trail plus the fact that the first cousin matches you in the first cousin range.

Confirming ancestral segments, and therefore ancestors, is what DNAPainter does. DNAPainter creates a visualization of your chromosomes with the DNA segments you inherited from your ancestors painted on the appropriate maternal or paternal chromosomes.

Here’s an example.

Ancestral tree chromosome 22.png

All of the grey matches on my chromosome 22, above, descend from cousins who share ancestors Lazarus Estes and Elizabeth Vannoy with me. In addition, there are other matches painted as well who descend from other ancestors, such as their son, in addition to my painted ethnicity segments.

In the blue, grey and red match trio, we can see that the exact segment was passed from Elijah Vannoy and Lois McNiel to their son Joel Vannoy who married Phoebe Crumley whose daughter Elizabeth Vannoy married Lazarus Estes. We can track that segment back three generations with just this one example, plus the two generations between me and my great-grandparents, Lazarus Estes and Elizabeth Vannoy – for a total of 5 ancestral generations. Pretty cool, huh!

Use the Legend

When you paint chromosomes, you define ancestors to a color as you paint segments attributed to them.

You can view the legend of the ancestors you’ve painted – either all of them or divided into maternal or paternal.

Ancestral tree legend.png

Utilize this legend to mark the appropriate people on your Ancestral Tree as genetic ancestors.

Couple or Person?

You’ll need to make a decision.

Are you going to mark both people of a couple as your genetic ancestors when someone else that you match descends from this same couple, or are you only going to mark your descendant child of that couple?

Using the same example as the grey/blue/red trio on my painted chromosomes, I can see the pedigree descent, below.

Ancestral tree ancestors.png

If my initial match was to a cousin who descended through Lazarus Estes and Elizabeth Vannoy, I wouldn’t know which of those two ancestors actually passed the matching segment to my grandfather, William George Estes, then to my father and me.

Ancestral tree path.png

I know for sure I inherited the segment though William George Estes, but I don’t know if he received it from his father, Lazarus Estes, his mother Elizabeth Vannoy, or parts from both of his parents.

However, given that we are talking about only one segment at a time, it’s likely that the segment actually came from either Lazarus or Elizabeth, not a combination of both. But it’s not certain.

If I match someone on multiple segments, each segment has its own independent history. Multiple segments could have and probably did originate with different ancestors on up the tree.

Do I mark only William George Estes as the confirmed ancestor, or do I mark both Lazarus Estes and Elizabeth Vannoy as the confirmed couple?

Eventually, after I match more people, as shown in the chromosome painting, I’ll have evidence that this segment descends through Elizabeth Vannoy and her father Joel Vannoy.

Ancestral tree line of descent.png

Now I know that the segment descends from Elijah Vannoy and Lois McNiel, but until someone from either the McNiel line or the Vannoy line upstream match me on that same segment, or part of the segment, I won’t know whether that segment descends from Elijah or Lois or maybe a partial contribution from each.

Until then, I need to decide how I’m going to handle the designation of Genetic Ancestor – the couple or their child who is my ancestor. As long as you are consistent in your methodoloy and you understand your strategy, I don’t think there is any specific right or wrong answer.

Displaying Genetic Ancestors

After designating a person in your tree as a genetic ancestor, you’ll be able to select “Show genetic ancestors” from the DNA filters.

Ancestral tree filters.png

Your pedigree chart will show the black DNA icon for every ancestor that you’ve identified as a genetic ancestor.

Ancestral tree genetic ancestors.png

Next, you can view your Genetic fan chart.

Your Genetic Fan Chart

Ancestral tree fan option.png

By switching from tree to fan, you’ll be able to view your genetic tree in fan format.

Ancestral tree fan genetic ancestors.png

The darkened ancestral “squares” show the people you’ve indicated as genetic ancestors. The lighter colors are people in my tree, but not yet genetically confirmed.

My particularly problematic quadrant is the dark red one that also happens to include my mitochondrial DNA. Why is this line so lacking as compared to the others?

Ancestral tree descent.png

By flying my cursor over the ancestor on the tree that I want to see, DNAPainter tells me that the end of line ancestor in the outer band is Elisabeth Schlicht, born in 1698. I know immediately what the problem is, and why I only have a few generations confirmed.

Barbara Mehlheimer was the immigrant in the 1850s. None of the rest of her family came to America. Few if any of the family in Germany have tested. If they have, I don’t know it because either I don’t match them or they don’t have a tree.

That entire red quadrant beyond the 4th generation is partially identified in the German church records, but not (yet) genetically confirmed.

X and Mitochondrial DNA Paths

Another feature that you can select is to see the X and mitochondrial DNA paths.

Ancestral tree X path.png

The X inheritance path is shown above, and mitochondrial DNA below.

Ancestral tree mtDNA path.png

I discussed X matching here.

X DNA and mitochondrial DNA is NOT the same thing, although they both have a unique inheritance path. I wrote about X matching and mitochondrial DNA and their differences, here.

DNAPainter only shows that inheritance path. The genetic ancestor designation does NOT MEAN that the genetic ancestors on the X path are confirmed by the X chromosome, only that those ancestors are somehow confirmed – by you.

The mitochondrial path does NOT necessarily mean that that line is mitochondrially DNA confirmed – just that the line is autosomally confirmed, or not – depending on whether you checked genetic ancestor.

I, personally, am only using the genetic ancestor designation as autosomal, meaning chromosomes 1-22 AND the X chromosome. When I indicate that Edith Barbara Lore, who is my mitochondrial ancestor, is a genetic ancestor, I’m referring to autosomal confirmation, not mitochondrial.

I’d actually love to see separate Y and mitochondrial DNA confirmations – although I’m afraid it might be confusing to people. On the other hand, it might be a great teaching opportunity about Y and mito.

Another useful feature of DNAPainter is tree completeness.

Tree Completeness

At the upper right, you’ll see the option for tree completeness.

Ancestral tree completeness.png

By clicking, a new box opens with a list of ancestors that appear more than once in your tree – known as pedigree collapse.

Ancestral tree pedigree collapse.png

This was quite interesting. Fifteen are Acadians and 19 are Germans from multiple lines. the commonality is that all of these people hail from villages or geographically isolated regions where there isn’t a lot of population being added during the timeframe in question.

Not one repeat ancestor hails from colonial America, although I’d bet they exist in areas where these families lived in close proximity. Many records have been destroyed and I have lots of brick walls in those lines.

Ancestral tree identified ancestors.png

Scrolling on down the page, we see a report by generation of how many ancestors are identified per generation. I have identified all of my 4th great-grandparents, but only about 3/4th of the next generation. After that, the percentage drops roughly in half every generation.

Of the 4th great-grandparents, who lived 6 generations ago, (counting my parents as generation 1,) born in the mid-1700s, three women don’t have surnames and one is known only by her mitochondrial DNA results. I’m hopeful that one day, those results will lead me to her identity.

The Future

Jonny Perl has indicated that he’s working to integrate the genetic ancestor designation with the chromosome painting function, including colors. That will require more decision-making on the part of the user though, because sometimes the source of the segment isn’t clear, especially when families lived close and there are multiple possible paths of descend from multiple ancestors. And of course, there’s always the possibility of an unexpected parent or adoption thrown into the mix.

What does the user do when they have 10 cousins who match on a segment but conflicting information as to the ancestral source? When that occurs in my tree, I evaluate the evidence of each match on that segment and make an individual decision. Automating this process might be challenging, especially considering the situations of partial segment matches and endogamy.

While I wait, I’ll just revel in the nice dark colors on my ancestry fan tree and see what I can do to darken a few more of those areas by painting more matches.

Have you uploaded your tree and claimed your genetic ancestors? How are you doing?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Native American & Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments

Ethnicity is always a ticklish subject. On one hand we say to be leery of ethnicity estimates, but on the other hand, we all want to know who our ancestors were and where they came from. Many people hope to prove or disprove specific theories or stories about distant ancestors.

Reasons to be cautious about ethnicity estimates include:

  • Within continents, like Europe, it’s very difficult to discern ethnicity at the “country” level because of thousands of years of migration across regions where borders exist today. Ethnicity estimates within Europe can be significantly different than known and proven genealogy.
  • “Countries,” in Europe, political constructs, are the same size as many states in the US – and differentiation between those populations is almost impossible to accurately discern. Think of trying to figure out the difference between the populations of Indiana and Illinois, for example. Yet we want to be able to tell the difference between ancestors that came from France and Germany, for example.

Ethnicity states over Europe

  • All small amounts of ethnicity, even at the continental level, under 2-5%, can be noise and might be incorrect. That’s particularly true of trace amounts, 1% or less. However, that’s not always the case – which is why companies provide those small percentages. When hunting ancestors in the distant past, that small amount of ethnicity may be the only clue we have as to where they reside at detectable levels in our genome.

Noise in this case is defined as:

  • A statistical anomaly
  • A chance combination of your DNA from both parents that matches a reference population
  • Issues with the reference population itself, specifically admixture
  • Perhaps combinations of the above

You can read about the challenges with ethnicity here and here.

On the Other Hand

Having restated the appropriate caveats, on the other hand, we can utilize legitimate segments of our DNA to identify where our ancestors came from – at the continental level.

I’m actually specifically referring to Native American admixture which is the example I’ll be using, but this process applies equally as well to other minority or continental level admixture as well. Minority, in this sense means minority ethnicity to you.

Native American ethnicity shows distinctly differently from African and European. Sometimes some segments of DNA that we inherit from Native American ancestors are reported as Asian, specifically Siberian, Northern or Eastern Asian.

Remember that the Native American people arrived as a small group via Beringia, a now flooded land bridge that once connected Siberia with Alaska.

beringia map

By Erika Tamm et al – Tamm E, Kivisild T, Reidla M, Metspalu M, Smith DG, et al. (2007) Beringian Standstill and Spread of Native American Founders. PLoS ONE 2(9): e829. doi:10.1371/journal.pone.0000829. Also available from PubMed Central., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=16975303

After that time, the Native American/First Nations peoples were isolated from Asia, for the most part, and entirely from Europe until European exploration resulted in the beginning of sustained European settlement, and admixture beginning in the late 1400s and 1500s in the Americas.

Family Inheritance

Testing multiple family members is extremely useful when working with your own personal minority heritage. This approach assumes that you’d like to identify your matches that share that genetic heritage because they share the same minority DNA that you do. Of course, that means you two share the same ancestor at some time in the past. Their genealogy, or your combined information, may hold the clue to identifying your ancestor.

In my family, my daughter has Native American segments that she inherited from me that I inherited from my mother.

Finding the same segment identified as Native American in several successive generations eliminates the possibility that the chance combination of DNA from your father and mother is “appearing” as Native, when it isn’t.

We can use segment information to our benefit, especially if we don’t know exactly who contributed that DNA – meaning which ancestor.

We need to find a way to utilize those Native or other minority segments genealogically.

23andMe

Today, the only DNA testing vendor that provides consumers with a segment identification of our ethnicity predictions is 23andMe.

If you have tested at 23andMe, sign in and click on Ancestry on the top tab, then select Ancestry Composition.

Minority ethnicity ancestry composition.png

Scroll down until you see your painted chromosomes.

Minority ethnicity chromosome painting.png

By clicking on the region at left that you want to see, the rest of the regions are greyed out and only that region is displayed on your chromosomes, at right.

Minority ethnicity Native.png

According to 23andMe, I have two Native segments, one each on chromosomes 1 and 2. They show these segments on opposite chromosomes, meaning one (the top for example) would be maternal or paternal, and the bottom one would be the opposite. But 23andMe apparently could not tell for sure because neither my mother nor father have tested there. This placement also turned out to be incorrect. The above image was my initial V3 test at 23andMe. My later V4 results were different.

Versions May Differ

Please note that your ethnicity predictions may be different based on which test you took which is dictated by when you took the test. The image above is my V3 test that was in use at 23andMe between 2010 and November 2013, and the image below is my V4 test in use between November 2013 and August 2017.

23andMe apparently does not correct original errors involving what is known as “strand swap” where the maternal and paternal segments are inverted during analysis. My V4 test results are shown below, where the strands are correctly portrayed.

Minority ethnicity Native V4.png

Note that both Native segments are now on the lower chromosome “side” of the pair and the position on the chromosome 1 segment has shifted visually.

Minority ethnicity sides.png

I have not tested at 23andMe on the current V5 GSA chip, in use since August 9, 2017, but perhaps I should. The results might be different yet, with the concept being that each version offers an improvement over earlier versions as science advances.

If your parents have tested, 23andMe makes adjustments to your ethnicity estimates accordingly.

Although my mother can’t test at 23andMe, I happen to already know that these Native segments descend from my mother based on genealogical and genetic analysis, combined. I’m going to walk you through the process.

I can utilize my genealogy to confirm or refute information shown by 23andMe. For example, if one of those segments comes from known ancestors who were living in Germany, it’s clearly not Native, and it’s noise of some type.

We’re going to utilize DNAPainter to determine which ancestors contributed your minority segments, but first you’ll need to download your ethnicity segments from 23andMe.

Downloading Ethnicity Segment Data

Downloading your ethnicity segments is NOT THE SAME as downloading your raw DNA results to transfer to another vendor. Those are two entirely different files and different procedures.

To download the locations of your ethnicity segments at 23andMe, scroll down below your painted ethnicity segments in your Ancestry Composition section to “View Scientific Details.”

MInority ethnicity scientific details.png

Click on View Scientific Details and scroll down to near the bottom and then click on “Download Raw Data.” I leave mine at the 50% confidence level.

Minority ethnicity download raw data.png

Save this spreadsheet to your computer in a known location.

In the spreadsheet, you’ll see columns that provide the name of the segment, the chromosome copy number (1 or 2) and the chromosome number with start and end locations.

Minority ethnicity download.png

You really don’t care about this information directly, but DNAPainter does and you’ll care a lot about what DNAPainter does for you.

DNAPainter

I wrote introductory articles about DNAPainter:

If you’re not familiar with DNAPainter, you might want to read these articles first and then come back to this point in this article.

Go ahead – I’ll wait!

Getting Started

If you don’t have a DNAPainter account, you’ll need to create one for free. Some features, such as having multiple profiles are subscription based, but the functionality you’ll need for one profile is free.

I’ve named this example profile “Ethnicity Demo.” You’ll see your name where mine says “Ethnicity Demo.”

Minority ethnicity DNAPainter.png

Click on “Import 23andme ancestry composition.”

You will copy and paste all the spreadsheet rows in the entire downloaded 23andMe ethnicity spreadsheet into the DNAPainter text box and make your selection, below. The great news is that if you discover that your assumption about copy 1 being maternal or paternal is incorrect, it’s easy to delete the ethnicity segments entirely and simply repaint later. Ditto if 23andMe changes your estimate over time, like they have mine.

Minority ethnicity DNAPainter sides.png

I happen to know that “copy 2” is maternal, so I’ve made that selection.

You can then see your ethnicity chromosome segments painted, and you can expand each one to see the detail. Click on “Save Segments.”

MInority ethnicity DNAPainter Native painting

Click to enlarge

In this example, you can see my Native segments, called by various names at different confidence levels at 23andMe, on chromosome 1.

Depending on the confidence level, these segments are called some mixture of:

  • East Asian & Native American
  • North Asian & Native American
  • Native American
  • Broadly East Asian & Native American

It’s exactly the same segment, so you don’t really care what it’s called. DNAPainter paints all of the different descriptions provided by 23andMe, at all confidence levels as you can see above.

The DNAPainter colors are different from 23andMe colors and are system-selected. You can’t assign the colors for ethnicity segments.

Now, I’m moving to my own profile that I paint with my ancestral segments. To date, I have 78% of my segments painted by identifying cousins with known common ancestors.

On chromosomes 1 and 2, copy 2, which I’ve determined to be my mother’s “side,” these segments track back to specific ancestors.

Minority ethnicity maternal side

Click to enlarge

Chromosome 1 segments, above, track back to the Lore family, descended from Antoine (Anthony) Lore (Lord) who married Rachel Hill. Antoine Lore was Acadian.

Minority ethnicity chromosome 1.png

Clicking on the green segment bar shows me the ancestors I assigned when I painted the match with my Lore family member whose name is blurred, but whose birth surname was Lore.

The Chromosome 2 segment, below, tracks back to the same family through a match to Fred.

Minority ethnicity chromosome 2.png

My common ancestors with Fred are Honore Lore and Marie Lafaille who are the parents of Antoine Lore.

Minority ethnicity common ancestor.png

There are additional matches on both chromosomes who also match on portions of the Native segments.

Now that I have a pointer in the ancestral direction that these Native American segments arrived from, what can traditional genealogy and other DNA information tell me?

Traditional Genealogy Research

The Acadian people were a mixture of English, French and Native American. The Acadians settled on the island of Nova Scotia in 1609 and lived there until being driven out by the English in 1755, roughly 6 or 7 generations later.

Minority ethnicity Acadian map.png

The Acadians intermarried with the Mi’kmaq people.

It had been reported by two very qualified genealogists that Philippe Mius, born in 1660, married two Native American women from the Mi’kmaq tribe given the name Marie.

The French were fond of giving the first name of Marie to Native women when they were baptized in the Catholic faith which was required before the French men were allowed to marry the Native women. There were many Native women named Marie who married European men.

Minority ethnicity Native mitochondrial tree

Click to enlarge

This Mius lineage is ancestral to Antoine Lore (Lord) as shown on my pedigree, above.

Mitochondrial DNA has revealed that descendants from one of Philippe Mius’s wives, Marie, carry haplogroup A2f1a.

However, mitochondrial tests of other descendants of “Marie,” his first wife, carry haplogroup X2a2, also Native American.

Confusion has historically existed over which Marie is the mother of my ancestor, Francoise.

Karen Theroit Reader, another professional genealogist, shows Francoise Mius as the last child born to the first Native wife before her death sometime after 1684 and before about 1687 when Philippe remarried.

However, relative to the source of Native American segments, whether Francoise descends from the first or second wife doesn’t matter in this instance because both are Native and are proven so by their mitochondrial DNA haplogroups.

Additionally, on Antoine’s mother’s side, we find a Doucet male, although there are two genetic male Doucet lines, one of European origin, haplogroup R-L21, and one, surprisingly, of Native origin, haplogroup C-P39. Both are proven by their respective haplogroups but confusion exists genealogically over who descends from which lineage.

On Antoine’s mother’s side, there are several unidentified lineages, any one or multiples of which could also be Native. As you can see, there are large gaps in my tree.

We do know that these Native segments arrived through Antoine Lore and his parents, Honore Lore and Marie LaFaille. We don’t know exactly who upstream contributed these segments – at least not yet. Painting additional matches attributable to specific ancestral couples will eventually narrow the candidates and allow me to walk these segments back in time to their rightful contributor.

Segments, Traditional Research and DNAPainter

These three tools together, when using continent-level segments in combination with painting the DNA segments of known cousins that match specific lineages create a triangulated ethnicity segment.

When that segment just happens to be genealogically important, this combination can point the researchers in the right direction knowing which lines to search for that minority ancestor.

If your cousins who match you on this segment have also tested with 23andMe, they should also be identified as Native on this same segment. This process does not apply to intracontinental segments, meaning within Europe, because the admixture is too great and the ethnicity predictions are much less reliable.

When identifying minority admixture at the continental level, adding Y and mitochondrial DNA testing to the mix in order to positively identify each individual ancestor’s Y and mitochondrial DNA is very important in both eliminating and confirming what autosomal DNA and genealogy records alone can’t do. The base haplogroup as assigned at 23andMe is a good start, but it’s not enough alone. Plus, we only carry one line of mitochondrial DNA and only males carry Y DNA, and only their direct paternal line.

We need Y and mitochondrial DNA matching at FamilyTreeDNA to verify the specific lineage. Additionally, we very well may need the Y and mitochondrial DNA information that we don’t directly carry – but other cousins do. You can read about Y and mitochondrial DNA testing, here.

I wrote about creating a personal DNA pedigree chart including your ancestors’ Y and mitochondrial DNA here. In order to find people descended from a specific ancestor who have DNA tested, I utilize:

  • WikiTree resources and trees
  • Geni trees
  • FamilySearch trees
  • FamilyTreeDNA autosomal matches with trees
  • AncestryDNA autosomal matches and their associated trees
  • Ancestry trees in general, meaning without knowing if they are related to a DNA match
  • MyHeritage autosomal matches and their trees
  • MyHeritage trees in general

At both MyHeritage and Ancestry, you can view the trees of your matches, but you can also search for ancestors in other people’s trees to see who might descend appropriately to provide a Y or mitochondrial DNA sample. You will probably need a subscription to maximize these efforts. My Heritage offers a free trial subscription here.

If you find people appropriately descended through WikiTree, Geni or FamilySearch, you’ll need to discuss DNA testing with them. They may have already tested someplace.

If you find people who have DNA tested through your DNA matches with trees at Ancestry and MyHeritage, you’ll need to offer a Y or mitochondrial DNA test to them if they haven’t already tested at FamilyTreeDNA.

FamilyTreeDNA is the only vendor who provides the Y DNA and mitochondrial DNA tests at the higher resolution level, beyond base haplogroups, required for matching and for a complete haplogroup designation.

If the person has taken the Family Finder autosomal test at FamilyTreeDNA, they may have already tested their Y DNA and mtDNA, or you can offer to upgrade their test.

Projects

Checking projects at FamilyTreeDNA can be particularly useful when trying to discover if anyone from a specific lineage has already tested. There are many, special interest projects such as the Acadian AmerIndian Ancestry project, the American Indian project, haplogroup projects, surname projects and more.

You can view projects alphabetically here or you can click here to scroll down to enter the surname or topic you are seeking.

Minority ethnicity project search.png

If the topic isn’t listed, check the alphabetic index under Geographical Projects.

23andMe Maternal and Paternal Sides

If possible, you’ll want to determine which “side” of your family your minority segments originate come from, unless they come from both. you’ll want to determine whether chromosome side one 1 or 2 is maternal, because the other one will be paternal.

23andMe doesn’t offer tree functionality in the same way as other vendors, so you won’t be able to identify people there descended from your ancestors without contacting each person or doing other sleuthing.

Recently, 23andMe added a link to FamilySearch that creates a list of your ancestors from their mega-shared tree for 7 generations, but there is no tree matching or search functionality. You can read about the FamilySearch connection functionality here.

So, how do you figure out which “side” is which?

Minority ethnicity minority segment.png

The chart above represents the portion of your chromosomes that contains your minority ancestry. Initially, you don’t know if the minority segment is your mother’s pink chromosome or your father’s blue chromosome. You have one chromosome from each parent with the exact same addresses or locations, so it’s impossible to tell which side is which without additional information. Either the pink or the blue segment is minority, but how can you tell?

In my case, the family oral history regarding Native American ancestry was from my father’s line, but the actual Native segments wound up being from my mother, not my father. Had I made an assumption, it would have been incorrect.

Fortunately, in our example, you have both a maternal and paternal aunt who have tested at 23andMe. You match both aunts on that exact same segment location – one from your father’s side, blue, and one from your mother’s side, pink.

You compare your match with your maternal aunt and verify that indeed, you do match her on that segment.

You’ll want to determine if 23andMe has flagged that segment as Native American for your maternal aunt too.

You can view your aunt’s Ancestry Composition by selecting your aunt from the “Your Connections” dropdown list above your own ethnicity chromosome painting.

Minority ethnicity relative connections.png

You can see on your aunt’s chromosomes that indeed, those locations on her chromosomes are Native as well.

Minority ethnicity relative minority segments.png

Now you’ve identified your minority segment as originating on your maternal side.

Minority ethnicity Native side.png

Let’s say you have another match, Match 1, on that same segment. You can easily tell which “side” Match 1 is from. Since you know that you match your maternal aunt on that minority segment, if Match 1 matches both you and your maternal aunt, then you know that’s the side the match is from – AND that person also shares that minority segment.

You can also view that person’s Ancestry Composition as well, but shared matching is more reliable,especially when dealing with small amounts of minority admixture.

Another person, Match 2, matches you on that same segment, but this time, the person matches you and your paternal aunt, so they don’t share your minority segment.

Minority ethnicity match side.png

Even if your paternal aunt had not tested, because Match 2 does not match you AND your maternal aunt, you know Match 2 doesn’t share your minority segment which you can confirm by checking their Ancestry Composition.

Download All of Your Matches

Rather than go through your matches one by one, it’s easiest to download your entire match list so you can see which people match you on those chromosome locations.

Minority ethnicity download aggregate data.png

You can click on “Download Aggregate Data” at 23andMe, at the bottom of your DNA Relatives match list to obtain all of your matches who are sharing with you. 23andMe limits your matches to 2000 or less, the actual number being your highest 2000 matches minus the people who aren’t sharing. I have 1465 matches showing and that number decreases regularly as new testers at 23andMe are focused on health and not genealogy, meaning lower matches get pushed off the list of 2000 match candidates.

You can quickly sort the spreadsheet to see who matches you on specific segments. Then, you can check each match in the system to see if that person matches you and another known relative on the minority segments or you can check their Ancestry Composition, or both.

If they share your minority segment, then you can check their tree link if they have one, included in the download, their Family Search information if included on their account, or reach out to them to see if you might share a known ancestor.

The key to making your ethnicity segment work for you is to identify ancestors and paint known matches.

Paint Those Matches

When searching for matches whose DNA you can attribute to specific ancestors, be sure to check at all 4 places that provide segment information that you can paint:

At GedMatch, you’ll find some people who have tested at the other various vendors, including Ancestry, but unfortunately not everyone uploads. Ancestry doesn’t provide segment information, so you won’t be able to paint those matches directly from Ancestry.

If your Ancestry matches transfer to GedMatch, FamilyTreeDNA or MyHeritage you can view your match and paint your common segments. At GedMatch, Ancestry kit numbers begin with an A. I use my Ancestry kit matches at GedMatch to attempt to figure out who that match is at Ancestry in order to attempt to figure out the common ancestor.

To Paint, You Must Test

Of course, in order to paint your matches that you find in various databases, you need to be in those data bases, meaning you either need to test there or transfer your DNA file.

Transfers

If you’d like to test your DNA at one vendor and download the file to transfer to another vendor, or GedMatch, that’s possible with both FamilyTreeDNA and MyHeritage who both accept uploads.

You can transfer kits from Ancestry and 23andMe to both FamilyTreeDNA and MyHeritage for free, although the chromosome browsers, advanced tools and ethnicity require an unlock fee (or alternatively a subscription at MyHeritage). Still, the free transfer and unlock for $19 at FamilyTreeDNA or $29 at MyHeritage is less than the cost of testing.

Here’s a quick cheat sheet.

DNA vendor transfer cheat sheet 2019

From time to time, as vendor file formats change, the ability to transfer is temporarily interrupted, but it costs nothing to try a transfer to either MyHeritage or FamilyTreeDNA, or better yet, both.

In each of these articles, I wrote about how to download your data from a specific vendor and how to upload from other vendors if they accept uploads.

Summary Steps

In order to use your minority ethnicity segments in your genealogy, you need to:

  1. Test at 23andMe
  2. Identify which parental side your minority ethnicity segments are from, if possible
  3. Download your ethnicity segments
  4. Establish a DNAPainter account
  5. Upload your ethnicity segments to DNAPainter
  6. Paint matches of people with whom you share known common ancestors utilizing segment information from 23andMe, FamilyTreeDNA, MyHeritage and AncestryDNA matches who have uploaded to GedMatch
  7. If you have not tested at either MyHeritage or FamilyTreeDNA, upload your 23andMe file to either vendor for matching, along with GedMatch
  8. Focus on those minority segments to determine which ancestral line they descend through in order to identify the ancestor(s) who provided your minority admixture.

Have fun!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Ethnicity – Far More than Percentages!

Since ethnicity results have been in the news recently, I thought this might be a good time to talk about how to squeeze more out of your ethnicity results than just percentages.

You do know there’s more, right? You can tell a lot more about where your ethnicity came from by who you match, and how. Vendors provide that information too, but you need to know where to look. Plus, I have some tips about how to use this information effectively.

Genealogists are always trying to squeeze every last drop of information out of every DNA test, so I’d like to illustrate how I use ethnicity in combination with shared matches at Ancestry, Family Tree DNA, MyHeritage and 23andMe. Each vendor has a few unique features and tools as well, plus people in their databases that other vendors don’t have.

Come along and see what you might discover!

Ancestry

Ancestry recently introduced a new ethnicity comparison feature so let’s start there. Ancestry’s new tool:

  • Compares the ethnicity of you and a match side by side.
  • Shows Shared Migrations
  • Shows you common matches with that person.

At Ancestry, I have a V1 (older) and a V2 (newer) test, so I’m comparing my own V1 to my own V2 test for purposes of illustration.

To start, click on DNA Matches. You’ll see a new blue compare button, beneath the green View Match button, at right.

Clink on any image to enlarge

Click on the blue Compare button. You’ll see a side by side display, shown below.

My V1, at left, compared to my V2 test, at right. My V2 test results do not have a photo uploaded, so you just see my initials. It’s interesting to note that even though these are both me, just tested on different chips, that my ethnicity doesn’t match exactly, although it’s mighty close.

Next, you’ll see the shared migrations between the two people being compared. This helps determine where your common ancestor might be found.

Last, you’ll see the shared matches between you and the other person. This means that those people match both you and the person you’re comparing against, suggesting a potential common ancestor.

On your matches page, you can also sort your matches by your regions.

Where Did Your Ethnicity Come From?

Ethnicity comparisons can be helpful, especially if you’re a person who carries DNA from different continents. I do not suggest trying to compare intra-continental estimates in the same way. It’s simply too difficult for vendors to separate DNA from locations that all border each other where countries are the size of states in the US, such as the Netherlands, Germany, France and Switzerland for example.

As I’ve said before, ethnicity results are only estimates, but they are relatively accurate at the continental level, plus Jewish, as illustrated below.

To be specific, these regions are the easiest for vendors to tell apart from the other regions:

  • European
  • African
  • Native American (North American, South American, Central American and Siberian in conjunction with the Americas)
  • Asian
  • Jewish

For example, if you are 30% African, 35% Native American and 35% European, you could use this information to form a hypothesis about how you match a particular individual or group of individuals.

If the person you match is 50% Asian and 50% African, it’s most likely that the region you match them on is the common African side.

Of course, the next step would be to look at the shared matches to see if those matches include your known relatives with African heritage. This is one reason I always encourage testing of relatives. Who you and your known relative both match tells you a lot about where the common ancestor of a matching group of individuals is found in your tree. For example, if someone matches you and a first cousin, then the common ancestor of the three people is on the side of your tree that you share with the first cousin.

Not exactly sure, or dealing with smaller amounts of continental ethnicity? There’s another way to work with ethnicity.

Ethnicity Match Chart

Make an Ethnicity Match Chart that includes the ethnicity of each person in the match group, as follows.

In this example, the only category in which all people fall is African, so that’s where I’d look in my tree first for a family connection.

Keep in mind that you match person 1, and people 2-4 match both you and person 1.

That does NOT mean that:

  • Person 2, 3 or 4 match each other.
  • Any of those people share the same ancestor with each other. Yes, you can match due to different ancestors that might not have anything to do with each other.
  • These people match on any of the same segments. You can’t view segments at Ancestry. You’ll have to transfer your results to Family Tree DNA, MyHeritage or GedMatch to do that.

Next, look at the trees for each person in the common match group and see if you can discern any common genealogy or even common geography. The best hints of course, at Ancestry, are those green leaf Shared Ancestor Hints. If you find a common ancestor or line, you’re well on your way to identifying how those people are related to you and potentially your match as well.

You could also use this methodology as an adaptation of or in tandem with the Leeds Method that I wrote about here.

Comparing Segments – Yes, You’ll Need To

Ancestry doesn’t offer a chromosome browser, but Family Tree DNA, MyHeritage, 23andMe and GedMatch all do, allowing you to view segments and triangulate. I always suggest uploading Ancestry results to GedMatch, Family Tree DNA and MyHeritage. 23andMe does not accept uploads.

You’ll find instructions for downloading from Ancestry here, uploading to Family Tree DNA here, and to MyHeritage here.

Other Vendors

Each vendor offers their own version of ethnicity comparison. All vendors offer in common with (ICW) and shared match tools too, so you can create your Ethnicity Match Chart for a specific group of people from any vendor’s results – although I don’t mix vendor results on one chart. Plus, every vendor has people in their matching database that no other vendor has, so fish in every pond.

Family Tree DNA

Family Tree DNA offers shared ethnicity information on the myOrigins map. To view, click on MyOrigins, then on View MyOrigins Map.

Testers who opt in can view their ethnicity as compared to their matches’ ethnicity. You can also sort by ethnicity as well as use the pin function at bottom right to drop Y and mtDNA most distant ancestor pins on the map.

Please note that this is NOT where your match lives, but is the location of their most distant matrilineal (mtDNA) or patrilineal (surname) known individual.

If you’re looking for Native American matches, for example, you might look for someone with some percentage of Native American autosomal DNA and/or Native American Y or mitochondrial haplogroups. Click on any pin to view that person and their ethnicity that matches yours. You can also search for a specific individual to see how your ethnicity lines up.

On your match list, look for common surnames with those matches, see who you match in common and check your matches’ trees.

Linking your DNA matches to their location in your tree enables you to participate in Phased Family Matching, meaning you can then select people that are assigned to your maternal or paternal sides to view in the chromosome browser.

When viewing all maternal (red icon) or all paternal (blue icon) matches together on the chromosome browser, the segments are automatically mathematically triangulated. All you need to do is identify the common ancestor!

I love Phased Family Matches. Family Tree DNA is the only vendor to offer this feature and to incorporate Y and mitochondrial DNA.

MyHeritage

MyHeritage provides multiple avenues for comparison, allowing users to select matches by their ethnicity, country or to simply compare their ethnicity to each other. To view matches by ethnicity, click on the Filter button, but note that not all ethnicity locations are included. You can also combine options, such as looking for anyone from the Netherlands with Nigerian DNA.

To view your matches ethnicity as compared to yours, click on the match and scroll down.

Look for people you match in common as well as the triangulation icon, shown at right, below. Another feature, SmartMatches (a filter option) sort for people who have common ancestors with you in trees.

I love triangulation and DNA SmartMatches and MyHeritage is the only vendor to offer this combination of tools!

23andMe

At 23andMe, you can see your ethnicity beside that of your match by clicking on DNA Relatives, on the Ancestry tab, then click on the person you wish to compare to. In my case, I’ve also taken the V3 and V4 test at 23andMe, so I’m comparing to myself.

At 23andMe, you can view which portions of your segments are attributed to which ethnicity. Under the Ancestry tab, click Ancestry Composition and scroll down to view your Ancestry Composition Chromosome Painting.

You can see my Native American segments on chromosomes 1 and 2.

Click on Scientific Details, then scroll to the bottom to download your ethnicity raw data that includes the segment detail for the location of those specific segments.

Utilizing these chromosome and segment locations with any other vendor who supports a chromosome browser, and determining which side that ethnicity descends through allows you to identify matches who should also carry segments of that same ethnicity at that same location.

Here’s my Native segment on chromosome 2 from the download file. Remember, you have two copies of every chromosome – and in my case, only one of those copies on Chromosome 2 is Native. I know it’s from my mother, so anyone matching me on my maternal side at this location on chromosome 2 should also have a Native segment, and our common ancestor is the source of our common Native American heritage.

23andMe is the only vendor to identify ethnicity segments.

23andMe does show matches in common and common matching segments on the chromosome browser, but they don’t support trees.

Your Turn!

If you carry ethnicity from multiple continents (plus Jewish), what hints can you derive from using your ethnicity as a match tool?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Elizabeth Warren’s Native American DNA Results: What They Mean

Elizabeth Warren has released DNA testing results after being publicly challenged and derided as “Pochahontas” as a result of her claims of a family story indicating that her ancestors were Native America. If you’d like to read the specifics of the broo-haha, this Washington Post Article provides a good summary, along with additional links.

I personally find name-calling of any type unacceptable behavior, especially in a public forum, and while Elizabeth’s DNA test was taken, I presume, in an effort to settle the question and end the name-calling, what it has done is to put the science of genetic testing smack dab in the middle of the headlines.

This article is NOT about politics, it’s about science and DNA testing. I will tell you right up front that any comments that are political or hateful in nature will not be allowed to post, regardless of whether I agree with them or not. Unfortunately, these results are being interpreted in a variety of ways by different individuals, in some cases to support a particular political position. I’m presenting the science, without the politics.

This is the first of a series of two articles.

I’m dividing this first article into four sections, and I’d ask you to read all four, especially before commenting. A second article, Possibilities – Wringing the Most Out of Your DNA Ethnicity Test will follow shortly about how to get the most out of an ethnicity test when hunting for Native American (or other minority, for you) ethnicity.

Understanding how the science evolved and works is an important factor of comprehending the results and what they actually mean, especially since Elizabeth’s are presented in a different format than we are used to seeing. What a wonderful teaching opportunity.

  • Family History and DNA Science – How this works.
  • Elizabeth Warren’s Genealogy
  • Elizabeth Warren’s DNA Results
  • Questions and Answers – These are the questions I’m seeing, and my science-based answers.

My second article, Possibilities – Wringing the Most Out of Your DNA Ethnicity Test will include:

  • Potential – This isn’t all that can be done with ethnicity results. What more can you do to identify that Native ancestor?
  • Resources with Step by Step Instructions

Now, let’s look at Elizabeth’s results and how we got to this point.

Family Stories and DNA

Every person that grows up in their biological family hears family stories. We have no reason NOT to believe them until we learn something that potentially conflicts with the facts as represented in the story.

In terms of stories handed down for generations, all we have to go on, initially, are the stories themselves and our confidence in the person relating the story to us. The day that we begin to suspect that something might be amiss, we start digging, and for some people, that digging begins with a DNA test for ethnicity.

My family had that same Cherokee story. My great-grandmother on my father’s side who died in 1918 was reportedly “full blooded Cherokee” 60 years later when I discovered she had existed. Her brothers reportedly went to Oklahoma to claim headrights land. There were surely nuggets of truth in that narrative. Family members did indeed to go Oklahoma. One did own Cherokee land, BUT, he purchased that land from a tribal member who received an allotment. I discovered that tidbit later.

What wasn’t true? My great-grandmother was not 100% Cherokee. To the best of my knowledge now, a century after her death, she wasn’t Cherokee at all. She probably wasn’t Native at all. Why, then, did that story trickle down to my generation?

I surely don’t know. I can speculate that it might have been because various people were claiming Native ancestry in order to claim land when the government paid tribal members for land as reservations were dissolved between 1893 and 1914. You can read more about that in this article at the National Archives about the Dawes Rolls, compiled for the Cherokee, Creek, Choctaw, Chickasaw and Seminole for that purpose.

I can also speculate that someone in the family was confused about the brother’s land ownership, especially since it was Cherokee land.

I could also speculate that the confusion might have resulted because her husband’s father actually did move to Oklahoma and lived on Choctaw land.

But here is what I do know. I believed that story because there wasn’t any reason NOT to believe it, and the entire family shared the same story. We all believed it…until we discovered evidence through DNA testing that contradicted the story.

Before we discuss Elizabeth Warren’s actual results, let’s take a brief look at the underlying science.

Enter DNA Testing

DNA testing for ethnicity was first introduced in a very rudimentary form in 2002 (not a typo) and has progressed exponentially since. The major vendors who offer tests that provide their customers with ethnicity estimates (please note the word estimates) have all refined their customer’s results several times. The reference populations improve, the vendor’s internal software algorithms improve and population genetics as a science moves forward with new discoveries.

Note that major vendors in this context mean Family Tree DNA, 23andMe, the Genographic Project and Ancestry. Two newer vendors include MyHeritage and LivingDNA although LivingDNA is focused on England and MyHeritage, who utilizes imputation is not yet quite up to snuff on their ethnicity estimates. Another entity, GedMatch isn’t a testing vendor, but does provide multiple ethnicity tools if you upload your results from the other vendors. To get an idea of how widely the results vary, you can see the results of my tests at the different vendors here and here.

My initial DNA ethnicity test, in 2002, reported that I was 25% Native American, but I’m clearly not. It’s evident to me now, but it wasn’t then. That early ethnicity test was the dinosaur ages in genetic genealogy, but it did send me on a quest through genealogical records to prove that my family member was indeed Native. My father clearly believed this, as did the rest of the family. One of my early memories when I was about four years old was attending a (then illegal) powwow with my Dad.

In order to prove that Elizabeth Vannoy, that great-grandmother, was Native I asked a cousin who descends from her matrilineally to take a mitochondrial DNA test that would unquestionably provide the ethnicity of her matrilineal line – that of her mother’s mother’s mother’s direct line. If she was Native, her haplogroup would be a derivative either A, B, C, D or X. Her mitochondrial DNA was European, haplogroup J, clearly not Native, so Elizabeth Vannoy was not Native on that line of her family. Ok, maybe through her dad’s line then. I was able to find a Vanoy male descendant of her father, Joel Vannoy, to test his Y DNA and he was not Native either. Rats!

Tracking Elizabeth Vannoy’s genealogy back in time provided no paper-trail link to any Native ancestors, but there were and are still females whose surnames and heritage we don’t know. Were they Native or part Native? Possibly. Nothing precludes it, but nothing (yet) confirms it either.

Unexpected Results

DNA testing is notorious for unveiling unexpected results. Adoptions, unknown parents, unexpected ethnicities, previously unknown siblings and half-siblings and more.

Ethnicity is often surprising and sometimes disappointing. People who expect Native American heritage in their DNA sometimes don’t find it. Why?

  • There is no Native ancestor
  • The Native DNA has “washed out” over the generations, but they did have a Native ancestor
  • We haven’t yet learned to recognize all of the segments that are Native
  • The testing company did not test the area that is Native

Not all vendors test the same areas of our DNA. Each major company tests about 700,000 locations, roughly, but not the same 700,000. If you’re interested in specifics, you can read more about that here.

50-50 Chance

Everyone receives half of their autosomal DNA from each parent.

That means that each parent contributes only HALF OF THEIR DNA to a child. The other half of their DNA is never passed on, at least not to that child.

Therefore, ancestral DNA passed on is literally cut in half in each generation. If your parent has a Native American DNA segment, there is a 50-50 chance you’ll inherit it too. You could inherit the entire segment, a portion of the segment, or none of the segment at all.

That means that if you have a Native ancestor 6 generations back in your tree, you share 1.56% of their DNA, on average. I wrote the article, Ancestral DNA Percentages – How Much of Them is in You? to explain how this works.

These calculations are estimates and use averages. Why? Because they tell us what to expect, on average. Every person’s results will vary. It’s entirely possible to carry a Native (or other ethnic) segment from 7 or 8 or 9 generations ago, or to have none in 5 generations. Of course, these calculations also presume that the “Native” ancestor we find in our tree was fully Native. If the Native ancestor was already admixed, then the percentages of Native DNA that you could inherit drop further.

Why Call Ethnicity an Estimate?

You’ve probably figured out by now that due to the way that DNA is inherited, your ethnicity as reported by the major testing companies isn’t an exact science. I discussed the methodology behind ethnicity results in the article, Ethnicity Testing – A Conundrum.

It is, however, a specialized science known as Population Genetics. The quality of the results that are returned to you varies based on several factors:

  • World Region – Ethnicity estimates are quite accurate at the continental level, plus Jewish – meaning African, Indo-European, Asian, Native American and Jewish. These regions are more different than alike and better able to be separated.
  • Reference Population – The size of the population your results are being compared to is important. The larger the reference population, the more likely your results are to be accurate.
  • Vendor Algorithm – None of the vendors provide the exact nature of their internal algorithms that they use to determine your ethnicity percentages. Suffice it to say that each vendor’s staff includes population geneticists and they all have years of experience. These internal differences are why the estimates vary when compared to each other.
  • Size of the Segment – As with all genetic genealogy, bigger is better because larger segments stand a better chance of being accurate.
  • Academic Phasing – A methodology academics and vendors use in which segments of DNA that are known to travel together during inheritance are grouped together in your results. This methodology is not infallible, but in general, it helps to group your mother’s DNA together and your father’s DNA together, especially when parents are not available for testing.
  • Parental Phasing – If your parents test and they too have the same segment identified as Native, you know that the identification of that segment as Native is NOT a factor of chance, where the DNA of each of your parents just happens to fall together in a manner as to mimic a Native segment. Parental phasing is the ability to divide your DNA into two parts based on your parent’s DNA test(s).
  • Two Chromosomes – You have two chromosomes, one from your mother and one from your father. DNA testing can’t easily separate those chromosomes, so the exact same “address” on your mother’s and father’s chromosomes that you inherited may carry two different ethnicities. Unless your parents are both from the same ethnic population, of course.

All of these factors, together, create a confidence score. Consumers never see these scores as such, but the vendors return the highest confidence results to their customers. Some vendors include the capability, one way or another, to view or omit lower confidence results.

Parental Phasing – Identical by Descent

If you’re lucky enough to have your parents, or even one parent available to test, you can determine whether that segment thought to be Native came from one of your parents, or if the combination of both of your parent’s DNA just happened to combine to “look” Native.

Here’s an example where the “letters” (nucleotides) of Native DNA for an example segment are shown at left. If you received the As from one of your parents, your DNA is said to be phased to that parent’s DNA. That means that you in fact inherited that piece of your DNA from your mother, in the case shown below.

That’s known as Identical by Descent (IBD). The other possibility is what your DNA from both of your parents intermixed to mimic a Native segment, shown below.

This is known as Identical by Chance (IBC).

You don’t need to understand the underpinnings of this phenomenon, just remember that it can happen, and the smaller the segment, the more likely that a chance combination can randomly happen.

Elizabeth Warren’s Genealogy

Elizabeth Warren’s genealogy, is reported to the 5th generation by WikiTree.

Elizabeth’s mother, Pauline Herring’s line is shown, at WikiTree, as follows:

Notice that of Elizabeth Warren’s 16 great-great-great grandparents on her mother’s side, 9 are missing.

Paper trail being unfruitful, Elizabeth Warren, like so many, sought to validate her family story through DNA testing.

Elizabeth Warren’s DNA Results

Elizabeth Warren didn’t test with one of the major vendors. Instead, she went directly to a specialist. That’s the equivalent of skipping the family practice doctor and going to the Mayo Clinic.

Elizabeth Warren had test results interpreted by Dr. Carlos Bustamante at Stanford University. You can read the actual report here and I encourage you to do so.

From the report, here are Dr. Bustamante’s credentials:

Dr. Carlos D. Bustamante is an internationally recognized leader in the application of data science and genomics technology to problems in medicine, agriculture, and biology. He received his Ph.D. in Biology and MS in Statistics from Harvard University (2001), was on the faculty at Cornell University (2002-9), and was named a MacArthur Fellow in 2010. He is currently Professor of Biomedical Data Science, Genetics, and (by courtesy) Biology at Stanford University. Dr. Bustamante has a passion for building new academic units, non-profits, and companies to solve pressing scientific challenges. He is Founding Director of the Stanford Center for Computational, Evolutionary, and Human Genomics (CEHG) and Inaugural Chair of the Department of Biomedical Data Science. He is the Owner and President of CDB Consulting, LTD. and also a Director at Eden Roc Biotech, founder of Arc-Bio (formerly IdentifyGenomics and BigData Bio), and an SAB member of Imprimed, Etalon DX, and Digitalis Ventures among others.

He’s no lightweight in the study of Native American DNA. This 2012 paper, published in PLOS Genetics, Development of a Panel of Genome-Wide Ancestry Informative Markers to Study Admixture Throughout the Americas focused on teasing out Native American markers in admixed individuals.

From that paper:

Ancestry Informative Markers (AIMs) are commonly used to estimate overall admixture proportions efficiently and inexpensively. AIMs are polymorphisms that exhibit large allele frequency differences between populations and can be used to infer individuals’ geographic origins.

And:

Using a panel of AIMs distributed throughout the genome, it is possible to estimate the relative ancestral proportions in admixed individuals such as African Americans and Latin Americans, as well as to infer the time since the admixture process.

The methodology produced results of the type that we are used to seeing in terms of continental admixture, shown in the graphic below from the paper.

Matching test takers against the genetic locations that can be identified as either Native or African or European informs us that our own ancestors carried the DNA associated with that ethnicity.

Of course, the Native samples from this paper were focused south of the United States, but the process is the same regardless. The original Native American population of a few individuals arrived thousands of years ago in one or more groups from Asia and their descendants spread throughout both North and South America.

Elizabeth’s request, from the report:

To analyze genetic data from an individual of European descent and determine if there is reliable evidence of Native American and/or African ancestry. The identity of the sample donor, Elizabeth Warren, was not known to the analyst during the time the work was performed.

Elizabeth’s test included 764,958 genetic locations, of which 660,173 overlapped with locations used in ancestry analysis.

The Results section says after stating that Elizabeth’s DNA is primarily (95% or greater) European:

The analysis also identified 5 genetic segments as Native American in origin at high confidence, defined at the 99% posterior probability value. We performed several additional analyses to confirm the presence of Native American ancestry and to estimate the position of the ancestor in the individual’s pedigree.

The largest segment identified as having Native American ancestry is on chromosome 10. This segment is 13.4 centiMorgans in genetic length, and spans approximately 4,700,000 DNA bases. Based on a principal components analysis (Novembre et al., 2008), this segment is clearly distinct from segments of European ancestry (nominal p-value 7.4 x 10-7, corrected p-value of 2.6 x 10-4) and is strongly associated with Native American ancestry.

The total length of the 5 genetic segments identified as having Native American ancestry is 25.6 centiMorgans, and they span approximately 12,300,000 DNA bases. The average segment length is 5.8 centiMorgans. The total and average segment size suggest (via the method of moments) an unadmixed Native American ancestor in the pedigree at approximately 8 generations before the sample, although the actual number could be somewhat lower or higher (Gravel, 2012 and Huff et al., 2011).

Dr. Bustamante’s Conclusion:

While the vast majority of the individual’s ancestry is European, the results strongly support the existence of an unadmixed Native American ancestor in the individual’s pedigree, likely in the range of 6-10 generations ago.

I was very pleased to see that Dr. Bustamante had included the PCA (Principal Component Analysis) for Elizabeth’s sample as well.

PCA analysis is the scientific methodology utilized to group individuals to and within populations.

Figure one shows the section of chromosome 10 that showed the largest Native American haplotype, meaning DNA block, as compared to other populations.

Remember that since Elizabeth received a chromosome from BOTH parents, that she has two strands of DNA in that location.

Here’s our example again.

Given that Mom’s DNA is Native, and Dad’s is European in this example, the expected results when comparing this segment of DNA to other populations is that it would look half Native (Mom’s strand) and half European (Dad’s strand.)

The second graphic shows Elizabeth’s sample and where it falls in the comparison of First Nations (Canada) and Indigenous Mexican individuals. Given that Elizabeth’s Native ancestor would have been from the United States, her sample falls where expected, inbetween.

Let’s take a look at some of the questions being asked.

Questions and Answers

I’ve seen a lot of misconceptions and questions regarding these results. Let’s take them one by one:

Question – Can these results prove that Elizabeth is Cherokee?

Answer – No, there is no test, anyplace, from any lab or vendor, that can prove what tribe your ancestors were from. I wrote an article titled Finding Your American Indian Tribe Using DNA, but that process involves working with your matches, Y and mitochondrial DNA testing, and genealogy.

Q – Are these results absolutely positive?

A – The words “absolutely positive” are a difficult quantifier. Given the size of the largest segment, 13.4 cM, and that there are 5 Native segments totaling 25.6 cM, and that Dr. Bustamante’s lab performed the analysis – I’d say this is as close to “absolutely positive” as you can get without genealogical confirmation.

A 13.4 cM segment is a valid segment that phases to parents 98% of the time, according to Philip Gammon’s work, here, and 99% of the time in my own analysis here. That indicates that a 13.4 cM segment is very likely a legitimately ancestral segment, not a match by chance. The additional 4 segments simply increase the likelihood of a Native ancestor. In other words, for there NOT to be a Native ancestor, all 5 segments, including the large 13.4 cM segment would have to be misidentified by one of the premier scientists in the field.

Q – What did Dr. Bustamante mean by “evidence of an unadmixed Native American ancestor?”

A – Unadmixed means that the Native person was fully Native, meaning not admixed with European, Asian or African DNA. Admixture, in this context, means that the individual is a mixture of multiple ethnic groups. This is an important concept, because if you discover that your ancestor 4 generations ago was a Cherokee tribal member, but the reality was that they were only 25% Native, that means that the DNA was already in the process of being divided. If your 4th generation ancestor was fully Native, you would receive about 6.25% of their DNA which would be all Native. If they were only 25% Native, that means that while you will still receive about 6.25% of their DNA but only one fourth of that 6.25% is possibly Native – so 1.56%. You could also receive NONE of their Native DNA.

Q – Is this the same test that the major companies use?

A – Yes and no. The test itself was probably performed on the same Illumina chip platform, because the chips available cover the markers that Bustamante needed for analysis.

The major companies use the same reference data bases, plus their own internal or private data bases in addition. They do not create PCA models for each tester. They do use the same methodology described by Dr. Bustamante in terms of AIMs, along with proprietary algorithms to further define the results. Vendors may also use additional internal tools.

Q – Did Dr. Bustamante use more than one methodology in his analysis? What if one was wrong?

A – Yes, he utilized two different methodologies whose results agreed. The global ancestry method evaluates each location independently of any surrounding genetic locations, ignoring any correlation or relationship to neighboring DNA. The second methodology, known as the local ancestry method looks at each location in combination with its neighbors, given that DNA pieces are known to travel together. This second methodology allows comparisons to entire segments in reference populations and is what allows the identification of complete ancestral segments that are identified as Native or any other population.

Q – If Elizabeth’s DNA results hadn’t shown Native heritage, would that have proven that she didn’t have Native ancestry?

A – No, not definitively, although that is a possible reason for ethnicity results not showing Native admixture. It would have meant that either she didn’t have a Native ancestor, the DNA washed out, or we cannot yet detect those segments.

Q – Does this qualify Elizabeth to join a tribe?

A – No. Every tribe defines their own criteria for membership. Some tribes embrace DNA testing for paternity issues, but none, to the best of my knowledge, accept or rely entirely on DNA results for membership. DNA results alone cannot identify a specific tribe. Tribes are societal constructs and Native people genetically are more alike than different, especially in areas where tribes lived nearby, fought and captured other tribe’s members.

Q – Why does Dr. Bustamante use words like “strong probability” instead of absolutes, such as the percentages shown by commercial DNA testing companies?

A – Dr. Bustamante’s comments accurately reflect the state of our knowledge today. The vendors attempt to make the results understandable and attractive for the general population. Most vendors, if you read their statements closely and look at your various options indicate that ethnicity is only an estimate, and some provide the ability to view your ethnicity estimate results at high, medium and low confidence levels.

Q – Can we tell, precisely, when Elizabeth had a Native ancestor?

A – No, that’s why Dr. Bustamante states that Elizabeth’s ancestor was approximately 8 generations ago, and in the range of 6-10 generations ago. This analysis is a result of combined factors, including the total centiMorgans of Native DNA, the number of separate reasonably large segments, the size of the longest segment, and the confidence score for each segment. Those factors together predict most likely when a fully Native ancestor was present in the tree. Keep in mind that if Elizabeth had more than one Native ancestor, that too could affect the time prediction.

Q – Does Dr. Bustamante provide this type of analysis or tools for the general public?

A – Unfortunately, no. Dr. Bustamante’s lab is a research facility only.

Roberta’s Summary of the Analysis

I find no omissions or questionable methods and I agree with Dr. Bustamante’s analysis. In other words, yes, I believe, based on these results, that Elizabeth had a Native ancestor further back in her tree.

I would love for every tester to be able to receive PCA results like this.

However, an ethnicity confirmation isn’t all that can be done with Elizabeth’s results. Additional tools and opportunities are available outside of an academic setting, at the vendors where we test, using matching and other tools we have access to as the consuming public.

We will look at those possibilities in a second article, because Elizabeth’s results are really just a beginning and scratch the surface. There’s more available, much more. It won’t change Elizabeth’s ethnicity results, but it could lead to positively identifying the Native ancestor, or at least the ancestral Native line.

Join me in my next article for Possibilities, Wringing the Most Out of Your DNA Ethnicity Test.

In the mean time, you might want to read my article, Native American DNA Resources.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Anne (probably not) Elmore (c1650/2-c1721), Wife of Charles Dodson, 52 Ancestors #159

Charles Dodson (1649-1706) of Richmond County, Virginia was married to a woman named Ann. That much we know, positively.

The first actual record we have of Ann is found with the birth of her son, Thomas.

The North Farnham Parish register tells us that Thomas Dodson was born to Charles and Ann Dodson on May 15, 1681.

Thomas is the only child attributed to Charles and Ann in the North Farnham Parish church records, which are known to be incomplete. In this case, they are quite incomplete.

Ann is still married to Charles at his death and is named as his executrix in early 1705/1706. Charles’ will lists all of their children, including a son named Charles Jr.

Charles Jr. first appears in the records in 1693 as a witness. This suggests strongly that he is age 21 at that time, which would put his birth in approximately 1672. Charles Jr. is also named after Charles Sr., typical for a first son, and he is also listed first in the deeds when his father conveys land on the same day to both Charles Jr. and Thomas in 1702/03.

Even if Charles Jr. is only 16 instead of 21 when he witnessed the two transactions in 1693, his first appearance in county records, that would put his birth no later than 1677.

Presuming that Ann is also the mother of Charles Jr., that means that Ann and Charles Sr. were probably married by 1671 if Charles Jr. was born in 1672, or perhaps they married slightly earlier. They couldn’t have married much earlier, given their ages.

We know from a deposition in 1699 that Charles Sr. was about 50 years of age at that time, putting his birth about 1649.

It stands to reason that Ann would have been born about the same time, or subtracting 20 years from her first child’s birth, about 1652. This meshes nicely with Charles Sr.’s age as well, so I think we can presume that 1671 marriage date is approximately accurate.

Obviously, given all this effort to figure Ann’s birth year, we have no other information about when she was born.

Ann’s Parents

When I first started Dodson research, Ann’s parents were always recorded as unknown. Then, in the past few years, I saw in several locations, including several Ancestry Trees and now WikiTree as well as FamilySearch where Ann was recorded as Ann Elmore, daughter of Peter Elmore.

At first, I was quite excited, especially when I found something that appeared to be relatively well-researched at Family Search – but appearances can be quitey deceiving.

Here’s the entry for Peter Elmore from FamilySearch.

Known Issues

I’m not an Elmore researcher, but I am a Dodson researcher and I don’t want to leave the above information in print without mentioning the known issues with the information, highlighted in red, as follows:

  • There is no indication that I can find where Charles Dodson Sr’s wife, who was remarried to John Hill, died on August 1, 1715. However, Charles Dodson Jr. wrote his will on July 8, 1715 and it was probated on May 1, 1716.
  • Ann Dodson, wife of Charles Dodson Jr., whose surname is unknown, had her will probated in court on March 4, 1718/1719. Of course to make the situation more confusing both Charles Dodson Sr. and Jr. had wifes with unknown surnames named Ann. Of course, Ann Dodson Hill would have been named Ann Hill in 1718/1719 since she was married to John Hill and had been for more than a decade.
  • There is no record that Ann Elmore married Charles Dodson in 1678 in Rappahannock County, or anyplace.
  • There is no shred of evidence that Charles Dodson’s parents were Jesse Dodson and Judith Hagar.
  • There is no evidence that Charles Dodson was born in Rappahannock County, although a deposition in 1799 does state that that he is about 50 years old.
  • There is no evidence that Charles Dodson was christened in 1650 or that his christening, whenever it was, was in Rappahannock County.
  • Charles Dodson Sr. did not sign his will on July 8, 1680, but on January 11, 1702/1703.
  • However, a deed was registered between Peter Elmore and Charles Dodson on July 7, 1680.
  • Charles Dodson Sr. died between October 4, 1705 and February 6, 1705/1706 when his will was probated, not in 1704/1705.
  • Charles Dodson Jr. was not born in or about 1679, because he is witnessing deeds in 1693. He was probably born about 1672.
  • Other than Charles and Thomas Dodson, there is no indication in the Dodson research when the other children of Charles and Ann Dodson were born. Researchers simply have to fit them into the child-bearing years of Ann, around Charles and Thomas.
  • According to Charles Dodson’s will in combination with church and other records, there is no daughter Mary. Charles Dodson Jr. had a daughter Mary born in 1715, several years after Charles Dodson Sr. has died.

Even with the above incorrect information, this is the best information I could find on the Elmore family and how Ann Elmore was thought to be Charles Dodson’s wife. Hopefully the Elmore information is more accurate than the Dodson information.

Is Ann Dodson the daughter of Peter Elmore?

I couldn’t keep the Elmore information straight, so I created this abbreviated tree to track the various Peter Elmores, according to the FamilySearch information.

Peter Elmore proves a bit confusing, because in 1686, the following deed was filed.

Old Rappahannock Co Deed Book 7 – 1686 -1688; pg 306-307

I Wm. Thacker of the County of Lancaster do give William Mathews of the County of Rappa: one Cow Calfe black marked on the right eare with a crop and a slit and the left eare slitt down the midle with the one halfe of her encrease to him his heires and assignes from me my heires forever or from any persons that shall lay claim by me the abovesd Mathews being Son to Mr Wm. Mathews deceased of the Parish of Farnham of the County aforesaid. Peter Elmore being Father in Law to the abovesd Mathews is obliged to see it recorded and to have the other halfe of the encrease of the sd Cow for to looke after them as Witness my hand this 9th day of January 1683/6

Teste Charles Dodson, Wm. Thacker

John Mills marke of

Recordr. in Cur Com Rappa 23d die Martii 1686/7

A Yearling Heifer pide with black and white to be recorded with all her female encrease for Frans: Elmore marked as followeth: Crop in the right eare and a hole and under keeled on the same on the left

Record Cur Com Rappa 23 Marchy 1686/7

Father-in-law in this context probably means step-father, especially given the reference to Frances Elmore, above, and a birth recorded in 1674. Other records from this same time period in this county use the words “father in law” to mean father by law or the person we term as a step-father today.

The only Peter Elmores old enough to be the Peter in the 1686 deed are either Peter Elmore born in 1627 or his son Peter born in 1643.

The Registers of North Farnham Parish 1663-1814 and Lunenburg Parish 1783-1800 Richmond County, Virginia Compiled and Published by George Harrison Sanford King 1966 show:

Elmore, Anne daughter of Peter and Frances Elmore, Aug 29, 1674

Peter, born in 1643, is the only Peter of the age to be having a child, Ann, in 1674, given that his father, Peter born in 1627 is married to Jane and (supposedly) already has a daughter, Ann.

If in fact there was an Ann Elmore born to Peter Elmore Sr., we now have a second, younger Ann Elmore who was born in 1674, shown on the chart below. This younger Ann Elmore is clearly not the wife of Charles Dodson who is having children with his wife Ann at the time the younger Ann Elmore is born in 1674.

Deed Book Page 348 Sept 1, 1675 – I Thomas Dusin give grant and make over Anne Elmore the daughter of Peter Elmore and Frances his wife one yearling heifer…to her the said Ann Ellmore her heirs and assigns forever. Signed with mark, witness Peter Calvin and John Ingo

A year after Anne’s birth, Thomas Dusin, for some reason, gives her a one yearling heifer.

Deed Book Page 278 – July 10, 1679 between Peter Elmore of Rappae County, planter and Charles Dodson, same, planter, and his heirs and assignes, as much plantable land as 3 tithables can tend in corn and tabb, with privilege of leaving out for partuidge and further that said Dodson shall have the privilege of coopers and carpenters timber for the use of ye plantation for the term of 19 years from date hereof. (Further the said Elmore doth engage to furnish ye said Dodson with apple trees and peach trees suffichant to make an orchard both of apples and peaches) and further at the expiration of ye said terms the said Dodson is to leave a 30 foot dwelling house and a 50 foot tobacco house tennentable with all fencing in repairs that is at the expiration of the time. An further ye said Dodson to pay ye said Peter Elmore 50 pounds tobacco yearly during he said terme but if said Dodson chance to leave ye said plantation before the expiration of the said time that then ye said Peter Elmore shall have ye refusal before any other.

Signed Peter Elmore with mark and Charles Dodson. Witness William Smoote and Charles Wilson. Looks like it was registered July 7, 1680.

I’m almost positive that this transaction is why Ann Dodson, wife of Charles, is believed to be Ann Elmore, daughter of Peter. I must admit, this transaction, because of its rather strange nature, makes me wonder the same thing. However, if this were a deed to a daughter, one would think that it would not revert to Peter Elmore after 19 years. This is not a gift, but a business arrangement.

Unfortunately, because land isn’t conveyed, we really can’t say for sure whether this is Peter Elmore Sr. or Peter Elmore Jr., because Peter’s wife is not required to sign a release of her dower.

Deed Book Page 282 April 24, 1680 – Henry Dawson to Peter Elmore right in a bill of sale. Witnessed by William Dawson and Charles Dodson

Charles Dodson clearly does have a close relationship with Peter Elmore. Unfortunately, we really don’t know why. Are they just close neighbors, or is there something more? If they are related, keep in mind that we don’t know who Charles Dodson’s parents are, who Peter Elmore’s parents are, who Jane Elmore’s parents are nor who Ann Dodson’s parents are.  So if they are actually related, it could be through any of those individuals in any capacity.

Deed Book Page 310 – May 30, 1681 John Harding to Jane Elmore, daughter of Peter Elmore one black cow yearling. Signed with mark. Witness Charles Dodson and Jane Ellmore (signed with mark)

Given that this 1681 deed is witnessed by Jane Ellmore, she surely must be the daughter of the elder Peter Elmore, not the Peter Jr. born in 1643.

Deed Book Page 151 November 1684 – Mr Colston, I should desire you to record for Ann Elmore my eldest daughter two cowes with calves by their sides with all their increase and in soe doeing shall obleig. Signed Peter Elmore by mark

And likewise one cowe and calfe to be between my two youngest sons with their increase. Signed Peter Elmore by mark

And likewise a black heifer of 2 years to William Mathews my son-in-law with all her increase Signed Peter Elmore by mark

This deed executed in November 1684 provides us with even more information about Peter Elmore Jr. This has to be Peter Elmore Jr. because he refers to William Matthews, so this Ann Elmore is the Ann born in 1674.

The close relationship between Charles Dodson and Peter Elmore continues, as we see by the following transactions.

Will Book Jan. 29, 1686/87 Edward Johnson will, Charles Dodson executor, Peter Elmore witness.

Court Order Book March 2, 1686/7 page 15 Ordered Richard White, William Smoote, Peter Elmore or any 2 of them do sometime between this and the next court meet to inventory and appraise the estate of Edward Johnson.

Deed Book Page 165 Charles Dodson convey to beloved son Thomas Dodson brown cow called by the name of Nancy marked with a crop and swallow forke on the left eare and a crop on the right eare together with all her female increase being in exchange with him my said son Thomas for one cow given him by his Godfather Peter Elmore. July 31, 1693 signed, wit William Ward and William Colston

Does Ann Elmore, Daughter of Peter Elmore Sr., Exist?

This 1793 document explains something about the relationship between Charles Dodson and Peter Elmore. Peter is the godfather, not the grandfather, of Charles and Ann’s son Thomas Dodson, born in 1681. If Peter was the child’s grandfather, this deed would have said grandfather, not godfather – because blood would trump any other kind of relationship, since a relationship was identified. If Peter Elmore was Peter Elmore Jr., it would have said uncle, not godfather.

Furthermore, there is no child named Peter among Ann Dodson’s children, nor a child named Jane, Peter Elmore’s wife’s name.

I’m beginning to wonder if Anne Elmore, daughter of Peter Sr., born in 1627, ever actually existed at all. There is nothing anyplace to suggest that she did. Jane, yes – Ann, no.

I’m beginning to think that perhaps Ann Elmore was added to the list of Peter Elmore’s children by a genealogist because someone deduced that Ann Dodson was Ann Elmore because of the 1689 transaction between Charles Dodson, whose wife’s name was Ann, and Peter Elmore.

Charles and Ann Dodson obviously were very close to Peter Elmore, but why?

We’ve now produced evidence that suggests Ann Dodson is not Ann Elmore. However, we still have no idea who Ann Dodson is.

We also don’t know who Charles Dodson’s parents were, or where he came from either. We do know that there is no record of any Dodson family in the region before Charles first appears in the 1679 transaction between Charles Dodson and Peter Elmore.

For all we know, Charles and Ann may have married in England, or wherever they were before they are found in Rappahannock County in 1679.

By that time, Ann and Charles have at least one son, Charles Jr., have probably been married about 9 years and most likely have had about 4 children. We know that Charles Jr. lived to adulthood, and it’s safe to say that Thomas born in 1781 is the second son that lived, but we don’t know if any of the children born between Charles and Thomas survived.

Can Ann Dodson Write?

Ann witnesses four documents in 1693, 1694 and 1705. It appears that she signed her name, although that may simply be because the clerk did not mention that she could not write and signed with a mark. Given that her son, Charles Jr., also married an Ann, it’s difficult to discern which Ann was signing, although the ones where Charles Jr. is absent are much more likely to have been signed by Ann, wife of Charles Sr.

If Ann is literate, it makes the probability that she was raised in England much more likely than being raised in early Virginia.

Court Order Book May 1, 1693 Power of Attorney Easter Mills of Richmond Co. constitute my trusty and loving friend Edward Reid of same to be my attorney to ask a deed above made by my husband John Mills and myself unto Charles Richardson of the same of 125 acres. Wit Ann Dodson, Charles Dodson, Jr, Charles Dodson Sr. Book 1, page 71

Deed Book May 28, 1694 William Richardson and Elizabeth his wife of Richmond Co planter to John Henley of same, planter, 50 ac parcel in Farnham parish adj said Richardson’s land and Thomas Dusin part of a devident of land purch of John Mills of Richmond Co on main branch of Totuskey. Wit Ann Dodson, Charles Dodson Jr, Charles Dodson Sr. Ack June 6, 1694 Book 2 page 29

Notice that in the above deed, no one is noted as signing with an X, but below, having to do with the same deed, both Ann and Charles Jr. are noted as signing by their marks.

Court Order Book May 28, 1694 Elizabeth Richardson POA to Thomas Dusin to acknowledge deed. Signed with mark, wit Ann Dodson by mark, Charles Dodson Jr. by mark and Charles Dodson Sr.

Will Book 24 Apr 1704-04 Oct 1705. Richmond Co, Virginia Wills, Will of Eve Smith. Grandson William and John Goad; daughter Catherine to have her father, John Williams’ chest; granddaughter Hannah Goad; exec. son Abraham Goad; Wits: William Dodson, Charles Dodson, Sr., Anne Dodson.

Life on the Northern Neck

Life on the Northern Neck of Virginia at that time revolved around the planting, nurturing and harvesting of tobacco, a very labor intensive crop.

Charles Dodson was very clearly a man with a great deal of initiative and drive, given that he started out in 1679 by working the land of Peter Elmore that he would never own, and by the time he died, 27 years later, he owned 900 acres.

Ann’s life too would have revolved around crops, seasons and church. While church attendance was mandatory at the time, most people, especially women, didn’t need much encouragement to attend. Where the court sessions were an important social occasion for men, women didn’t usually attend court, and church provided that same type of camaraderie for women.

Charles and Ann lived in, along or on Briery Swamp, a part of the Totuskey watershed. They paid for their land with tobacco, the traditionally accepted money in colonial Virginia.

Ann’s husband did the normal male things of the day. He witnessed wills, witnessed deeds and attended court, occasionally serving as a juror. Charles apparently settled differences with people amicably, because for a very long time, he wasn’t sued and he didn’t sue anyone.

He was highly thought of in the community, because in 1686/1687, when neighbor John Lincoln died, it was reported that John would “have none other than Charles Dodson” for his executor.

In 1688, Charles and Ann would have been about 38 years old.

Something began to change. The first suit was filed against Charles Dodson, with a second one following at the same court tern.

In 1693, a rather unusual transaction occurred where Charles Dodson trades cows with his son, Thomas, who was age 12.

Charles continues to sign deeds as a witness and appear in court, until in 1695, when the “Ozgrippin event” occurred. According to depositions, Charles, along with two other men went to the house of Matthew Ozgrippen (or Ozgriffen), apparently Charles Dodson’s tenant, and forcibly entered the house, beat Matthew and destroyed his tobacco and corn crop.

For two years, and with Murphy of Murphy’s law in attendance, Charles Dodson and Matthew Ozgrippen battled in the courts, with Matthew ultimately winning, but not nearly as much money (tobacco) as he had requested.

Charles then begins to file suits and not appear afterwards.

The behavior of Charles has changed perceptibly and I have to wonder if he changed at home too. He would have been between 40 and 50 at this time. His behavior is similar to what I’ve witnessed up close and personal when strokes or closed head injuries are incurred.

About 1698, the 19 year “arrangement” for Charles to farm and improve Peter Elmore’s land expires, and apparently Charles and Ann built a new house on a new plantation on land they owned, because Charles’ will in 1702/1703 references it as such.

In 1699, when he is age 50, Charles does serve on a jury once more, gives a deposition and is also involved with Ozgrippen again in a suit. Ann must have been holding her breath, waiting on one of those two men to kill the other.

In January 1702/03, Charles Dodson wrote his will. He would have been about 53 at the time. He didn’t pass away right away, in fact, not for 3 more years – and he resumes filing suit and not showing up for court too.

In March of 1705/1706, Charles Dodson’s estate is probated, with Ann as executrix.

Charles Dodson’s Estate Inventory

Charles Dodson’s estate inventory was filed with the court on Oct. 17, 1706, as follows:

  • Feather bed and bedstead and parcel of sheets and one blanket and one rugg – 0600
  • One flock bed and paire of blankets one sheet and rug and bolster and bedstead – 0500
  • One saw and six reep hooks and one paire of old pestells holsters and one old chest and one old bill book – 0200
  • Eight chairs – 0800
  • Two wooden chairs – 0100
  • One chest of drawers and table – 1000
  • Two chest – 0250
  • One small table couch – 0150
  • One warming pan two paire of tongs and one box iron – 0200
  • One pair hilliards – 0250
  • One super table cloth and 12 napkins – 0200
  • Four old napkins and one old table cloth – 0050
  • One feather bed curtains and valens one blankett one pair of sheets and two pillows – 1100
  • A parcel of old books – 0150
  • Ole looking glass and lantron? – 0050
  • One old flock bed 2 blankets rug bolster and pillows – 0400
  • 2 spinning wheels – 0150
  • 3 pots 3 pothooks and 3 pot hangers one spit and one iron pestell – 0450
  • 99 weight of pewter – 0950
  • One bellmettle pestle and mortar 0 0700
  • 7.5 pounds of brass – 0130
  • One servant man 3 years and 8 months to serve – 2200
  • One pare of small hilliards and two smoothing iron and two cutting knives and skewers – 0150
  • One mare and two horses – 2400
  • Parcel of old iron – 0100
  • Pair of cart wheels – 0060
  • Old crosscut saw – 0150
  • One saddle and pillow or pillion – 0120
  • 3 cows and 3 years old – 1800
  • One cow and calfe – 0500
  • 6 two yeare olde – 1200
  • One steere of 5 years old – 0500
  • 2 barren cows and heifer and one calfe – 1400
  • 3 old sheep – 0300
  • 3 lambs – 0200

Total 18780

Signed John Rankin, William Smoot and Richard R. White (his mark)

I absolutely love estate inventories, because they tell us exactly what was in the household and on the farm when the man died. Inventories included everything owned by the couple, because the man was presumed to own all property of any kind except for the wife’s clothes and any real estate deeded to her individually after they were married. The wife was entitled to one third of the value of the husband’s estate unless the husband provided for more. However, the estate’s real value was established by the sale of the inventory items, not by the inventory itself, so everything was inventoried prior to sale.  In some cases, the widow was made an initial allocation so she and the children could simply survive.

The feather bed clearly was the bed that Charles and Ann slept in, but it’s worth noting that there were no bedcurtains or valances which would have suggested a more upper-class household.

There were three beds in the inventory, two of flock which meant a mattress of scraps of fabric and wool instead of feathers. However, Ann and Charles had 8 children and a servant. Obviously there was a lot of bed-sharing going on and not everyone had a bed. The servant may have slept in the barn or on straw in the kitchen.

The spinning wheels certainly weren’t tools used by Charles and were obviously Ann’s.

This photo of a woman with a spinning wheel was taken about 1920, but not a lot had changed in spinning wheel design in the past couple hundred years.

The looking glass may have been a shared resource. Looking glasses were scarce and status symbols.

I do wonder why there were no pots and pans, silverware, candle holders, etc. The absence of these items if very unusual for this time period – and let’s face it, you can’t live without candles and silverware and Charles Dodson, while he wasn’t rich, he certainly was not a poor man.

Ann Remarries

Four months after Charles’ will is probated, Ann has remarried to John Hill, probably between March 6th and July 3rd, 1706.

John Hill is no stranger. In fact, he has been a lifelong friend of Charles Dodson. John Hill had previously married the widow of John Lincoln and she had probably recently died as well, assuming Ann married the same John Hill. They probably knew each other well, possibly for their entire lives. A decision to marry would have benefitted both parties. Life alone was difficult if not impossible in colonial Virginia, and Ann would probably have had some children yet at home given that she was probably between 50 and 55 when Charles died. Women had children until they biologically could not, generally between the ages of 41-45, which meant Ann probably had at least 5 or 6 children remaining at home.

Court Order Book Page 137 March 6, 1705/06 Will of Charles Dodson proved by oath of Christopher Petty with oath of John Beckwith.

Will Book Page 171 July 3, 1706 Upon petition of John Hill and Anne his wife, exec of the will of Charles Dodson decd ordered that John Rankin, William Smoote, John Mills and Richard White or any 3 of them meet at the house of John Hill and inventory and appraise the estate of Charles Dodson. All sworn plus John Hill and Anne, his wife.

Court Order Book Page 262 April 3, 1707 Action brought by Thomas Dodson against John Hill marrying the executrix of Charles Dodson is dismissed, plt not prosecuting.

Thomas Dodson was Ann’s second oldest son, of course, who would have about 26 years old at the time and had been married since 1701. Something upset him enough to file suit, although the issue was apparently resolved within the family as the suit was obviously dropped. I wonder if his suit had anything to do with what appears to be missing estate inventory items.

Court Order Book Page 275 May 7, 1707 John Hill and Anne his wife exec of Charles Dodson confest judgement to Katherine Gwyn exec of will of Majr David Gwyn for 8 pounds 19 shillings and 8 pence 3 farthings and 731 pounds of sweet scented tobacco due upon balance of accounts ordered to be paid with costs.

Court Order Book Page 281 May 8, 1707 Imparlance granted in suite between John Harper plt and John Hill and Anne his wife exec of Charles Dodson decd, till next court.

Court Order Book Page 292 July 3, 1707 John Harper against John Hill and Anne his wife exec of Charles Dodson decde, deft for 500 pounds of tobacco upon balance of accounts, def pleaded they owed nothing and plt asked time to next court.

Court Order Book Page 303 Sept. 4, 1707 Judgement granted to John Harper against John Hill and Anne his wife exec of Charles Dodson, decd, for 405 pounds tobacco due by account proved by oath of plt ordered paid with costs.

Court Order Book Page 323 Dec. 4, 1707 John Hill and Anne his wife exe of will of Charles Dodson decd against John Harper dismissed, plt not prosecuting.

Court Order Book Page 40 June 2 1709 Judgment granted to John Davis Sr. against John Hill and Anne, wife, exec of Charles Dodson decd for 136 pounds tobacco due by account ordered paid with costs.

John Hill

As with Charles Dodson previously, we now have to track Ann’s life through husband, John Hill. As we might expect, it appears there is more than one John Hill, at least eventually. We can’t tell the difference between the two, if there are two this early, and we don’t know when Ann died.

Court Order Book Page 27 June 1, 1709 Ordered Luke Hanks officiate as constable for the ensuing year in room and stead of John Hill in the precincts between Totuskey and Farnham Creeks.

Court Order Book Page 337 Sept. 8, 1715 Petition of Thomas Mountjoy and John Hill for their keep an ordinary at the place where they now live is granted provided they give bond and security as the law directs.

Court Order Book Page 475 May 2, 1716 Ordered the Sheriff to summon William Hill and John Hill to appear to answer the presentment of the grand jury against them for stopping the creek and mill road from the Folly Neck in Farnham Parish within this 3 months.

Please note that you can click to enlarge any image.

Folly Neck is the point of land on the south side of Tosuskey Creek where it intersects with the Rappahannock River. Folly Neck Road (614) intersects with the main road (3). Did Ann live here with John Hill, or did they live on one of Charles Dodson’s plantations?  Was this one of Charles Dodson’s plantations? Folly Neck is just south of Totuskey Creek and not far from Rich Neck, shown a the top of the map below, where  Charles Dodson’s land deeded to both Charles Jr. and Thomas in 1703 was located.

The old Farnham Parish church is just south of Emmerton in the bend of the road and the new church, built in 1737, is currently located at Farnham.  The river near Sharps is Farnham Creek and the one heading northwest underneath the word Simonson is Morattico Creek.

Court Order Book Page 43 August 2, 1716 John Hill his action of case against Ann Dodson executrix of the will of Charles Dodson decd for 313 pounds tobacco due by account is dismissed, plt not prosecuting.

This Charles Dodson is Charles Dodson Jr., the son of Charles Sr. and Ann Dodson Hill, and the Ann Dodson mentioned here is the wife of Charles Jr.

Deed Book September 1716 Deed between Thomas Mountjoy and John Hill.

Deed Book Page 66 October 4, 1716 John Doyle from Edward Barrow gent, one of his majesties justices of the peace for this county, against the estate of John Hill for 261 pounds of tobacco is dismissed, the plt not prosecuting.

Given that this 1716 record doesn’t say John Hill, deceased, it’s unclear whether or not this John Hill in question is deceased.  It seems unlikely since there has been no other mention of a will or probate estate in any existing court or will book for Richmond County. The same day, John Hill is in court, noted below.

Deed Book Page 67 October 4, 1716 John Hill came into court and confessed until Augustine Higgins 4167 pounds of tobacco which is ordered to be paid with costs.

Court Order Book Page 72 October 4, 1716 Action of debt between Joseph Hutchinson Plt and Thomas Mountjoy and John Hill, deft, for 750 pounds tobacco due by bill being called and not appearing on motion judgement is granted him against William Carter, returned security for the deft for the aforesaid sum and costs unless defts appear at next court and answer action.

Court Order Book Page 73 October 4, 1716 Mary Stevens action of debt against John Hill for 600 pounds tobacco due by bill, dismissed, plt not prosecuting.

Court Order Page 91 Feb. 7, 1716/17 Joseph Hutchison action of debt against Thomas Mountjoy and John Hill dismissed the plt not prosecuting.

John Hill was appointed constable, but I failed to copy the date which was in either the  1716 -1717 Court Order book or the 1717-1718 book.

Assuming this John Hill is the same John Hill that was married to Ann Dodson, she has died sometime between June 2, 1709 when she is last mentioned in the court records pertaining to the estate of Charles Dodson, and March 7, 1721/1722, when John Hill’s new wife released her down in land John Hill sells.

Court Order Book Page 36 March 7, 1721/22 Frances Hill wife of John Hill relinquished right of dower in piece of land sold by her husband unto Thomas Creele and ack last Jan court.

The Creele family does live in the neighborhood, because in later generations, the Dodson family intermarries with Creeles. Based on the next entry, John Hill has obviously married a recently widowed woman, for the third time. Given that he seems to have a propensity for that, I wonder if Ann Dodson Hill had just recently died in late 1721 or early 1722.

Court Order Book Page 36 March 7, 1721/22 John Hill and Frances Hill, relict of Robert Reynolds, decd came into court and made oath that Robert Reynolds departed this life without making any will so farr as they know or believe and on their petition and giving security for their just and faithful administration of the decds estate, certificate granted them for obtaining probate.

Court Order Book Page 36 March 7, 1721/22 John Hill, Frances Hill, Caron Brannon and James Neale came into court and ack bond for John Hill and Frances Hill admin of estate of Robert Reynolds, decd.

Court Order Book Page 36 March 7, 1721/22 Thomas Dodson, Christopher Petty, Bartholomew Richard Dodson and Thomas Scurlock or any 3 of them to appraise estate of Robert Reynolds decd. All sworn plus John and Frances Hill, the admins.

It’s impossible to tell whether the above John Hill is the same one that was married to Ann Dodson, but the continued interaction with the Dodson family suggests possibly so. It’s also possible that we are dealing with a second generation John Hill, although Jr. and Sr. is never used in these records.

Court Order Book Page 83 January 2, 1722/23 Ordered John Hill in the Forrest of Moratico of Northumberland Parish to answer to the presentment of the grand jury for unlawfully absenting themselves from their Parish Church for one month last past.

This entry is somewhat confusing, because there is not now nor was there ever, that I an find, a Northumberland Parish in Richmond County, Virginia.  There was a Northumberland County formed in 1648, a neighbor to Richmond County, but the parishes in Northumberland were called St. Stephens and Wycomico (Wicomico) when the county was founded.  Northumberland Parish, is therefore, a bit of a mystery.

If John Hill lived in the Forest of Moratico, so did Ann. This reminds me of Sherwood Forest, although I’m sure I’m being overly romantic. I could not find the Forest of Moratico on current maps, or any map between now and then. Clearly, it’s someplace near the Moratico River which is in the general vicinity of the Dodson lands in Richmond County.

I’m guessing that the Forest of Morattico would be someplace near Morattico Creek shown at the red balloon, above. There are several wooded areas, including three state-owned areas shown in green above.  Below, you can see the extent of the tree cover.

The involvement between the Dodson clan and John Hill continues.

Deed Book Dec. 10, 1723 Thomas Durham to Thomas Dodson Sr. 5 shillings 100 acres formerly belonging to Abraham Marshall bounded by Spanish Oak corner tree of Charles Dodson part of patent formerly granted to William Thatcher by the main branch of Totoskey and then (metes and bounds.) Signed Thomas and Mary Durham, wit John Hill, William Walker and Jeremiah Greenham

Deed Book Dec. 10, 1723 between Thomas Durham to Thomas Dodson Sr. of Richmond Co. 5000 pounds tobacco received by Thomas Dodson Sr certain parcel of land formerly belonging to Abraham Marshall bearing date 25th of 9ber, 1692, containing 100 acres bounded (same as lease above). Signed Thomas Durham, Mary Durham, wit John Hill, William Walker, Jeremiah Greenham

Thomas Dodson Sr. is Ann’s son.

Court Order Book Page 307 Sept. 7, 1726 William Garland plt and Edward Jones deft, the deft being called and not appearing, judgement granted him against deft and John Hill his security for the sum sued for in the declaration shall appear next court with cost providing deft does not then appear and answer thereto.

Court Order Book Page 307 Sept. 7, 1726 John Nancy vs John Hill deft damage 100 pounds sterling the plt being called and not appearing, at deft’s motion ordered that he be nonsuited and that he pay the deft damage according to law and attorney’s fees with costs.

Court Order Book Page 308 Sept. 7, 1726 John Hill his case damage 20 pounds sterling against Richard Woollard dismissed, the plt not prosecuting.

I made a note that there is a John Hill listed in the book, Richmond Co Will Book 4 1717-1725 by TLC, but unfortunately, I did not copy the page. The date could be wrong as well, as the books at the Allen County Public Library in this series appears to have the covers mixed up. This site shows that John’s will was probated April 3, 1728 where he leaves the plantation and land to his wife, who is unnamed.

I expect the 1728 entry is “our” John Hill, as he is clearly dead by April 1728 when Frances is shown in the court records as his executrix. Furthermore, three sons of Charles and Ann Dodson are still connected with this man.

Court Order Book Page 399 April 3, 1728 Last will of John Hill decd presented by Frances Hill, executrix and oath of James Wilson and John Hightower, two witnesses.

Court Order Book Page 399 April 3, 1728 Frances Hill, John Hightower and Lambert Dodson came into court and ack bond for Frances Hill’s administration of will of John Hill decd.

Court Order Book Page 399 April 3, 1728 Thomas Scurlock, Thomas Dodson, John Hightower and Bartholomew Richard Dodson or any 3 of them to appraise estate of John Hill. Oaths admin to all 3 plus Frances Hill.

Court Order Book Page 435 October 2, 1728 Action of debt between Frances Hill executrix of will of John Hill, decd, plt and Thomas Livack and Mary, wife executrix of will of John Mills, decd, for 16,000 pounds tobacco due by bond, the def being called and not appearing the motion of the plt judgement is granted her against the defts.

These next two orders show that there was unquestionably (at least) two John Hills, because one is still living.

Court Order Book Page 644 May 3, 1732 Thomas Dodson, Sr, Jeremiah Greenham and John Hill on grand jury.

Court Order Book Page 172 April 1, 1734 Jeremiah Greenham and John Hill on jury.

At this point in time, it’s very unlikely for this John Hill, active in court, to be the husband of Ann Dodson Hill. Ann would have been about 85 years old by now, and John probably as well. They are very likely both deceased by this time and if John isn’t deceased, he’s probably not riding his horse to court. I stopped extracting John Hill information at this point.

I believe that Ann died before 1721/1722 when John had remarried to Frances.

Where is Ann Buried?

In the book, “The Registers of North Farnham Parish 1663-1814,” the following map of the current and old Farnham Parish churches is shown. The current church was built in 1737, and the previous church was located some distance away, on the main road.

This map gives the only locations I have ever seen of the original church, other than a general description.

What I don’t know is whether this is an approximation, or if the old-timers actually knew the location of the old church.

Regardless, given this map, I was able to find the location on Google maps today based on the bends in the road.

Map above, satellite view below.

The X on the map from the Farnham Parish book would be found approximately where the Calvary United Methodist Church is found today.

A closer view allows us to see the lay of the land.

The church does have a cemetery, although we have no idea of course whether this cemetery predates this church or whether the original Farnham Parish church was even in this location.

The original church was certainly someplace nearby, so let’s take a drive down this road.

What a beautiful white country church. Whether the original Farnham Parish Church church was in this location or not, Ann would have seen this beautiful countryside on her way to church.

The earliest burials in this cemetery with markers are a Ficklin in 1873 and a Lyell 1884. The area of the cemetery is quite large, so there may well be many unmarked burials in the churchyard. I was unable to find any history of this particular church online.

The fields beside the church would have been prime farmland – flat and dry. At that time, they would have been planted in tobacco (for 3 years) or corn (for 3 years), or lieing fallow (for 20 years), waiting for the nutrients to replenish so that the fields could be planted once again.

Ann’s Children

Ann and Charles had several children who survived at least until Charles made his will in January 1702/1703. There were likely several more children born to Ann as well. In the following generations, there were at least three grandchildren named for Charles but only one that we know of named for Ann. Of course, we don’t know the identities of the children of William, Anne or Elizabeth and only two names of children of Richard Bartholomew who are remembered in Charles’ will, but we know nothing further.

If Ann was born about 1652 and had her first child in 1672, she would have been having children until about 1695 or so when she would have been about 43 years of age.

  • Charles Junior was born between 1672 and 1677 and likely closer to 1672 given that he witnessed a document in 1693. Based on the deeds by Charles and the fact that he was named for his father, he was most likely the eldest son, if not the eldest child. Charles married an Anne whose surname is unknown.  Charles Jr. died between July of 1715 and May of 1716 when his will was probated.
  • Child born about 1674
  • Child born about 1676
  • Child born about 1678
  • Thomas Dodson was born on May 15, 1681, married Mary Durham on August 1, 1701 and died on November 21, 1740 in Richmond County.

We don’t have birth dates for the remainder of the children, so I’ve listed them as best we know.

  • Child born about 1683
  • Elizabeth possibly born about 1685, nothing further known except that she was alive when her father wrote his will in 1703
  • Anne possibly born about 1687, nothing more is known except that she was alive when her father wrote his will in 1703
  • Bartholomew Richard Dodson married Elizabeth Clark and their first child, James was born on December 23, 1716 according to the North Farnham Parish Records. This would suggest his birth date probably around 1689 if James was the first child. They are last found in the Richmond County records in 1734 selling their land to brother Thomas Dodson, listing themselves as “of Northumberland County.” Unfortunately, Northumberland County records are mostly missing and Bartholomew Richard disappears after this date.

I suspect that Bartholomew Richard’s name may be a hint as to the parents of either Ann or Charles, given that middle names were not utilized at that time unless they were family names and Bartholomew was a very unusual name.

  • William Dodson born about 1691, about whom nothing more is known. He may have died before a 1717 land conveyance by James Tune and Bartholomew Richard Dodson that could have been his land, or he may simply have moved away, abandoning his land with no record.
  • John Dodson born about 1693 was married to Elizabeth Goad about 1724 and died in Shenandoah Co., VA in 1784. In 1726, John sold or leased to Robert Mathews his 100 acres for the use of Mathews for 3 natural lifetimes, with the actual ownership remaining with John, per Charles Sr.’s wishes in his will. In 1737, two of John’s sons, Charles age 1 and Moses age 8 were taken into the care of the church, although nothing more is said as to why. John left soon thereafter and is found in Augusta County by 1741 when his daughter Elizabeth was baptized. John bequeaths his land, leased for 3 lifetimes, to his son, Charles, in his will.
  • Lambeth Dodson was born about 1695 and married a Sarah whose surname is unknown. Lambeth sold the land he inherited from his father being “the new dwelling plantation with 100 acres of land belonging to it” to his brother, Thomas, who bequeathed the land in his will in 1739 to his son Greenham Dodson. By 1753, Lambeth is found in Halifax County, VA and in Guilford Co., NC by 1779.

Lambeth’s son, Greenham Dodson married Eleanor Hightower and sold the 100 acres of Charles’ land to Jeremiah Greenham in 1746, Richmond County deeds 10-373. This land needs to be tracked forward from Jeremiah, with the hope that it can be located today.

Ann’s DNA

The only DNA that we could specifically identify today of Ann’s would be her mitochondrial DNA which is passed from mothers to all of their children, but only passed on to subsequent generations by females. Unfortunately, we know absolutely nothing about what happened to Ann’s two daughters, Anne and Elizabeth. We only know they existed because Charles’ will mentions them. They could have died or married, but regardless, we have no further records of these women, so we can’t obtain Ann’s mitochondrial DNA.

Many people carry autosomal DNA tracking back to Charles and Ann. Some of that DNA is undoubtedly Ann’s DNA, but when we have DNA attributed to a couple, the only way to tell whose DNA is whose is to be able to track specific segments upstream to either the Dodson side or Ann’s side.

The way to do that is to track those segments by finding them in Dodson’s, for example, who do not descend through Ann or Charles – meaning through Charles Dodson’s siblings. Since we don’t know who Charles’ parents nor Ann’s parents were, we don’t know who their siblings are either, so our figurative hands are tied relative to identifying whether segments descending from this couple are his or hers. We can only tell that they are “theirs.”

At Family Tree DNA, where I can both search for current and ancestral surnames, AND compare people to look for matching segments in a chromosome browser, I did just that.

I found a total of 22 people who either have the current surname of Dodson or have Dodson listed in their Ancestral Surnames. Some have trees, and some don’t.

I checked each tree to see how my matches descend from a Dodson ancestor. I discovered that we descend through at least two sons of Charles and Ann Dodson. Several people are brick walled and don’t have their genealogy back far enough to connect.

However, the Dodson DNA connects us when compared to known Dodson descendants.

I pushed all of these people through to the chromosome browser, 5 at a time, and downloaded the matching results, combining them into one working spreadsheet. In total, I had 22 matches that matched me on a total of 452 separate segments. Many of these people matched me on some of the same segments

There are two sizeable segments of chromosome 5 that have, amazingly, arrived intact from the Dodson line.

This first segment is staggered across the first half of the chromosome, and of this group, only two, the yellow and orange have their Dodson lines proven back to Charles. Both the yellow and orange descend through son Thomas, the same as me.

The cM values and ranges for the people shown above as compared to me are:

While the chromosome browser tells me that all of these people match me on the same chromosome – all chromosomes have two sides – Mom’s and Dad’s. Furthermore, these matches are staggered, so not entirely overlapping. Therefore, some of the people may not match each other either because their overlapping portion of the segment on chromosome 5 isn’t large enough to be considered a match to each other, or because some people could be matching me from a line on my mother’s side.

To see if these people all match each other, I used the Matrix tool.

Three of these individuals match each other, plus me, although a matrix match does not guarantee a match on the same segment(s). It does, however, create a genetic network of people known to match and share ancestors, or in this care, a mixture of people proven to Charles and Ann and people whose genealogy isn’t proven quite that far back but who are Dodson descendants.

Two individuals do not match each other. If the overlap occurs without enough DNA matching to be over the threshold, non-matching can be the result. As you can see in the table and also on the chromosome graphic above, the orange and magenta are very offset from the other 3. Sure enough, these two don’t match the other 3 more closely aligned matches over the matching threshold, so either they don’t belong in this group or their overlap isn’t large enough for a match to each other. Looking for other clues, neither of those two are assigned to my father’s side through phased matching.

But wait, there’s more.

A second matching segment on chromosome 5 is even more remarkable.

These segments are even longer and more robust. Five people are shown above on the chromosome browser, above, and in the first 5 rows below.

Three additional people match on these segments, but the chromosome browser only displays 5 at a time. The row below green would be the exact same segment as the green segment. The segment with only 1.37 cM is very small and the last segment, at 13.34 is a known cousin, so I omitted that individual from the browser.

To be as sure as I can be that these segments are legitimate and that these people also match each other, I used the matrix tool again.

This matrix shows that all of the individuals in the matrix match. I’ve included two of the three individuals whose DNA did not fit in the chromosome browser, excluding the one small segment match. All match each other, except for the last row who is the known cousin whose matching segment is much smaller and does not extend the full length of the segments of the other individuals who are matching to me. Therefore, that cousin matches some, but not others, as might be expected.

While Family Tree DNA does not have explicit triangulation, the combination of the chromosome browser showing matches on the same segment, the same family line and the matrix tool indicating that these people also match each other is a very powerful indication that triangulation would or will occur if you can verify that these people also match each other. These individuals form a match group.

So, at this point, we can assume that of these people, all of the group in the second matrix and at least 3 of the 5 in the first matrix all descend from Charles and Ann Dodson, for a minimum total of 10 people plus me.

This is actually quite remarkable, because these large segments have survived through 10 generations on my side alone – plus about as many generations for each of them as well.

If one can assume that the other people matching that chromosome 5 segment are also 10 generations removed from Charles and Ann, they would be my 9th cousins.

The shared cM chart doesn’t even go as far out as 9th cousins. The highest is 8th, with the maximum amount of shared DNA by cM for 8th cousins being 16 cM with an average of 9. These centiMorgans ranging from 15 to 39 for this entire group is really quite amazing. The Dodson DNA seems to “stick together” quite well.

Now if we could just tell if we are looking at Ann’s DNA or Charles’ DNA, or some combination of both. Maybe someday there will be an avenue to associate this segment with the Dodson line or Ann’s family line – and if that day comes, maybe we’ll finally be able to solve the mystery of who Ann Dodson, wife of Charles Dodson, really was.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Which DNA Test is Best?

If you’re reading this article, congratulations. You’re a savvy shopper and you’re doing some research before purchasing a DNA test. You’ve come to the right place.

The most common question I receive is asking which test is best to purchase. There is no one single best answer for everyone – it depends on your testing goals and your pocketbook.

Testing Goals

People who want to have their DNA tested have a goal in mind and seek results to utilize for their particular purpose. Today, in the Direct to Consumer (DTC) DNA market space, people have varied interests that fall into the general categories of genealogy and medical/health.

I’ve approached the question of “which test is best” by providing information grouped into testing goal categories.  I’ve compared the different vendors and tests from the perspective of someone who is looking to test for those purposes – and I’ve created separate sections of this article for each interest..

We will be discussing testing for:

  • Ethnicity – Who Am I? – Breakdown by Various World Regions
  • Adoption – Finding Missing Parents or Close Family
  • Genealogy – Cousin Matching and Ancestor Search/Verification
  • Medical/Health

We will be reviewing the following test types:

  • Autosomal
  • Y DNA (males only)
  • Mitochondrial DNA

I have included summary charts for each section, plus an additional chart for:

  • Additional Vendor Considerations

If you are looking to select one test, or have limited funds, or are looking to prioritize certain types of tests, you’ll want to read about each vendor, each type of test, and each testing goal category.

Each category reports information about the vendors and their products from a different perspective – and only you can decide which of these perspectives and features are most important to you.

You might want to read this short article for a quick overview of the 4 kinds of DNA used for genetic genealogy and DTC testing and how they differ.

The Big 3

Today, there are three major players in the DNA testing market, not in any particular order:

Each of these companies offers autosomal tests, but each vendor offers features that are unique. Family Tree DNA and 23andMe offer additional tests as well.

In addition to the Big 3, there are a couple of new kids on the block that I will mention where appropriate. There are also niche players for the more advanced genetic genealogist or serious researcher, and this article does not address advanced research.

In a nutshell, if you are serious genealogist, you will want to take all of the following tests to maximize your tools for solving genealogical puzzles. There is no one single test that does everything.

  • Full mitochondrial sequence that informs you about your matrilineal line (only) at Family Tree DNA. This test currently costs $199.
  • Y DNA test (for males only) that informs you about your direct paternal (surname) line (only) at Family Tree DNA. This test begins at $169 for 37 markers.
  • Family Finder, an autosomal test that provides ethnicity estimates and cousin matching at Family Tree DNA. This test currently costs $89.
  • AncestryDNA, an autosomal test at Ancestry.com that provides ethnicity estimates and cousin matching. (Do not confuse this test with Ancestry by DNA, which is not the same test and does not provide the same features.) This test currently costs $99, plus the additional cost of a subscription for full feature access. You can test without a subscription, but nonsubscribers can’t access all of the test result features provided to Ancestry subscribers.
  • 23andMe Ancestry Service test, an autosomal test that provides ethnicity estimates and cousin matching. The genealogy version of this test costs $99, the medical+genealogy version costs $199.

A Word About Third Party Tools

A number of third party tools exist, such as GedMatch and DNAGedcom.com, and while these tools are quite useful after testing, these vendors don’t provide tests. In order to use these sites, you must first take an autosomal DNA test from a testing vendor. This article focuses on selecting your DNA testing vendor based on your testing goals.

Let’s get started!

Ethnicity

Many people are drawn to DNA testing through commercials that promise to ‘tell you who you are.” While the allure is exciting, the reality is somewhat different.

Each of the major three vendors provide an ethnicity estimate based on your autosomal DNA test, and each of the three vendors will provide you with a different result.

Yep, same person, different ethnicity breakdowns.

Hopefully, the outcomes will be very similar, but that’s certainly not always the case. However, many people take one test and believe those results wholeheartedly. Please don’t. You may want to read Concepts – Calculating Ethnicity Percentages to see how varied my own ethnicity reports are at various vendors as compared to my known genealogy.

The technology for understanding “ethnicity” from a genetic perspective is still very new. Your ethnicity estimate is based on reference populations from around the world – today. People and populations move, and have moved, for hundreds, thousands and tens of thousands of years. Written history only reaches back a fraction of that time, so the estimates provided to people today are not exact.

That isn’t to criticize any individual vendor. View each vendor’s results not as gospel, but as their opinion based on their reference populations and their internal proprietary algorithm of utilizing those reference populations to produce your ethnicity results.

To read more about how ethnicity testing works, and why your results may vary between vendors or not be what you expected, click here.

I don’t want to discourage anyone from testing, only to be sure consumers understand the context of what they will be receiving. Generally speaking, these results are accurate at the continental level, and less accurate within continents, such as European regional breakdowns.

All three testing companies provide additional features or tools, in addition to your ethnicity estimates, that are relevant to ethnicity or population groups.

Let’s look at each company separately.

Ethnicity – Family Tree DNA

Family Tree DNA’s ethnicity tool is called myOrigins and provides three features or tools in addition to the actual ethnicity estimate and associated ethnicity map.

Please note that throughout this article you can click on any image to enlarge.

On the myOrigins ethnicity map page, above, your ethnicity percentages and map are shown, along with two additional features.

The Shared Origins box to the left shows the matching ethnic components of people on your DNA match list. This is particularly useful if you are trying to discover, for example, where a particular minority admixture comes from in your lineage. You can select different match types, for example, immediate relatives or X chromosome matches, which have special inheritance qualities.

Clicking on the apricot (mitochondrial DNA) and green (Y DNA) pins in the lower right corner drops the pins in the locations on your map of the most distant ancestral Y and mitochondrial DNA locations of the individuals in the group you have selected in the Shared Origins match box. You may or may not match these individuals on the Y or mtDNA lines, but families tend to migrate in groups, so match hints of any kind are important.

A third unique feature provided by Family Tree DNA is Ancient Origins, a tool released with little fanfare in November 2016.

Ancient Origins shows the ancient source of your European DNA, based on genome sequencing of ancient DNA from the locations shown on the map.

Additionally, Family Tree DNA hosts an Ancient DNA project where they have facilitated the upload of the ancient genomes so that customers today can determine if they match these ancient individuals.

Kits included in the Ancient DNA project are shown in the chart below, along with their age and burial location. Some have matches today, and some of these samples are included on the Ancient Origins map.

Individual Approx. Age Burial Location Matches Ancient Origins Map
Clovis Anzick 12,500 Montana (US) Yes No
Linearbandkeramik 7,500 Stuttgart, Germany Yes Yes
Loschbour 8,000 Luxembourg Yes Yes
Palaeo-Eskimo 4,000 Greenland No No
Altai Neanderthal 50,000 Altai No No
Denisova 30,000 Siberia No No
Hinxton-4 2,000 Cambridgeshire, UK No No
BR2 3,200 Hungary Yes Yes
Ust’-Ishim 45,000 Siberia Yes No
NE1 7,500 Hungary Yes Yes

Ethnicity – Ancestry

In addition to your ethnicity estimate, Ancestry also provides a feature called Genetic Communities.

Your ethnicity estimate provides percentages of DNA found in regions shown on the map by fully colored shapes – green in Europe in the example above. Genetic Communities show how your DNA clusters with other people in specific regions of the world – shown with dotted clusters in the US in this example.

In my case, my ethnicity at Ancestry shows my European roots, illustrated by the green highlighted areas, and my two Genetic Communities are shown by yellow and red dotted regions in the United States.

My assigned Genetic Communities indicate that my DNA clusters with other people whose ancestors lived in two regions; The Lower Midwest and Virginia as well as the Alleghenies and Northeast Indiana.

Testers can then view their DNA matches within that community, as well as a group of surnames common within that community.

The Genetic Communities provided for me are accurate, but don’t expect all of your genealogical regions to be represented in Genetic Communities. For example, my DNA is 25% German, and I don’t have any German communities today, although ancestry will be adding new Genetic Communities as new clusters are formed.

You can read more about Genetic Communities here and here.

Ethnicity – 23andMe

In addition to ethnicity percentage estimates, called Ancestry Composition, 23andMe offers the ability to compare your Ancestry Composition against that of your parent to see which portions of your ethnicity you inherited from each parent, although there are problems with this tool incorrectly assigning parental segments.

Additionally, 23andMe paints your chromosome segments with your ethnic heritage, as shown below.

You can see that my yellow Native American segments appear on chromosomes 1 and 2.

In January 2017, 23andMe introduced their Ancestry Timeline, which I find to be extremely misleading and inaccurate. On my timeline, shown below, they estimate that my most recent British and Irish ancestor was found in my tree between 1900 and 1930 while in reality my most recent British/Irish individual found in my tree was born in England in 1759.

I do not view 23andMe’s Ancestry Timeline as a benefit to the genealogist, having found that it causes people to draw very misleading conclusions, even to the point of questioning their parentage based on the results. I wrote about their Ancestry Timeline here.

Ethnicity Summary

All three vendors provide both ethnicity percentage estimates and maps. All three vendors provide additional tools and features relevant to ethnicity. Vendors also provide matching to other people which may or may not be of interest to people who test only for ethnicity. “Who you are” only begins with ethnicity estimates.

DNA test costs are similar, although the Family Tree DNA test is less at $89. All three vendors have sales from time to time.

Ethnicity Vendor Summary Chart

Ethnicity testing is an autosomal DNA test and is available for both males and females.

Family Tree DNA Ancestry 23andMe
Ethnicity Test Included with $89 Family Finder test Included with $99 Ancestry DNA test Included with $99 Ancestry Service
Percentages and Maps Yes Yes Yes
Shared Ethnicity with Matches Yes No Yes
Additional Feature Y and mtDNA mapping of ethnicity matches Genetic Communities Ethnicity phasing against parent (has issues)
Additional Feature Ancient Origins Ethnicity mapping by chromosome
Additional Feature Ancient DNA Project Ancestry Timeline

 

Adoption and Parental Identity

DNA testing is extremely popular among adoptees and others in search of missing parents and grandparents.

The techniques used for adoption and parental search are somewhat different than those used for more traditional genealogy, although non-adoptees may wish to continue to read this section because many of the features that are important to adoptees are important to other testers as well.

Adoptees often utilize autosomal DNA somewhat differently than traditional genealogists by using a technique called mirror trees. In essence, the adoptee utilizes the trees posted online of their closest DNA matches to search for common family lines within those trees. The common family lines will eventually lead to the individuals within those common trees that are candidates to be the parents of the searcher.

Here’s a simplified hypothetical example of my tree and a first cousin adoptee match.

The adoptee matches me at a first cousin level, meaning that we share at least one common grandparent – but which one? Looking at other people the adoptee matches, or the adoptee and I both match, we find Edith Lore (or her ancestors) in the tree of multiple matches. Since Edith Lore is my grandmother, the adoptee is predicted to be my first cousin, and Edith Lore’s ancestors appear in the trees of our common matches – that tells us that Edith Lore is also the (probable) grandmother of the adoptee.

Looking at the possibilities for how Edith Lore can fit into the tree of me and the adoptee, as first cousins, we fine the following scenario.

Testing the known child of daughter Ferverda will then provide confirmation of this relationship if the known child proves to be a half sibling to the adoptee.

Therefore, close matches, the ability to contact matches and trees are very important to adoptees. I recommend that adoptees make contact with www.dnaadoption.com. The volunteers there specialize in adoptions and adoptees, provide search angels to help people and classes to teach adoptees how to utilize the techniques unique to adoption search such as building mirror trees.

For adoptees, the first rule is to test with all 3 major vendors plus MyHeritage. Family Tree DNA allows you to test with both 23andMe and Ancestry and subsequently transfer your results to Family Tree DNA, but I would strongly suggest adoptees test on the Family Tree DNA platform instead. Your match results from transferring to Family Tree DNA from other companies, except for MyHeritage, will be fewer and less reliable because both 23andMe and Ancestry utilize different chip technology.

For most genealogists, MyHeritage is not a player, as they have only recently entered the testing arena, have a very small data base, no tools and are having matching issues. I recently wrote about MyHeritage here. However, adoptees may want to test with MyHeritage, or upload your results to MyHeritage if you tested with Family Tree DNA, because your important puzzle-solving match just might have tested there and no place else. You can read about transfer kit compatibility and who accepts which vendors’ tests here.

Adoptees can benefit from ethnicity estimates at the continental level, meaning that regional (within continent) or minority ethnicity should be taken with a very large grain of salt. However, knowing that you have 25% Jewish heritage, for example, can be a very big clue to an adoptee’s search.

Another aspect of the adoptees search that can be relevant is the number of foreign testers. For many years, neither 23andMe, nor Ancestry tested substantially (or at all) outside the US. Family Tree DNA has always tested internationally and has a very strong Jewish data base component.

Not all vendors report X chromosome matches. The X chromosome is important to genetic genealogy, because it has a unique inheritance path. Men don’t inherit an X chromosome from their fathers. Therefore, if you match someone on the X chromosome, you know the relationship, for a male, must be from their mother’s side. For a female, the relationship must be from the mother or the father’s mother’s side. You can read more about X chromosome matching here.

Neither Ancestry nor MyHeritage have chromosome browsers which allow you to view the segments of DNA on which you match other individuals, which includes the X chromosome.

Adoptee Y and Mitochondrial Testing

In addition to autosomal DNA testing, adoptees will want to test their Y DNA (males only) and mitochondrial DNA.

These tests are different from autosomal DNA which tests the DNA you receive from all of your ancestors. Y and mitochondrial DNA focus on only one specific line, respectively. Y DNA is inherited by men from their fathers and the Y chromosome is passed from father to son from time immemorial. Therefore, testing the Y chromosome provides us with the ability to match to current people as well as to use the Y chromosome as a tool to look far back in time. Adoptees tend to be most interested in matching current people, at least initially.

Working with male adoptees, I have a found that about 30% of the time a male will match strongly to a particular surname, especially at higher marker levels. That isn’t always true, but adoptees will never know if they don’t test. An adoptee’s match list is shown at 111 markers, below.

Furthermore, utilizing the Y and mitochondrial DNA test in conjunction with autosomal DNA matching at Family Tree DNA helps narrows possible relatives. The Advanced Matching feature allows you to see who you match on both the Y (or mitochondrial) DNA lines AND the autosomal test, in combination.

Mitochondrial DNA tests the matrilineal line only, as women pass their mitochondrial DNA to all of their children, but only females pass it on. Family Tree DNA provides matching and advanced combination matching/searching for mitochondrial DNA as well as Y DNA. Both genders of children carry their mother’s mitochondrial DNA. Unfortunately, mitochondrial DNA is more difficult to work with because of the surname changes in each generation, but you cannot be descended from a woman, or her direct matrilineal ancestors if you don’t substantially match her mitochondrial DNA.

Some vendors state that you receive mitochondrial DNA with your autosomal results, which is only partly accurate. At 23andMe, you receive a haplogroup but no detailed results and no matching. 23andMe does not test the entire mitochondria and therefore cannot provide either advanced haplogroup placement nor Y or mitochondrial DNA matching between testers.

For additional details on the Y and Mitochondrial DNA tests themselves and what you receive, please see the Genealogy – Y and Mitochondrial DNA section.

Adoption Summary

Adoptees should test with all 4 vendors plus Y and mitochondrial DNA testing.

  • Ancestry – due to their extensive data base size and trees
  • Family Tree DNA – due to their advanced tools, chromosome browser, Y and mitochondrial DNA tests (Ancestry and 23andMe participants can transfer autosomal raw data files and see matches for free, but advanced tools require either an unlock fee or a test on the Family Tree DNA platform)
  • 23andMe – no trees and many people don’t participate in sharing genetic information
  • MyHeritage – new kid on the block, working through what is hoped are startup issues
  • All adoptees should take the full mitochondrial sequence test.
  • Male adoptees should take the 111 marker Y DNA test, although you can start with 37 or 67 markers and upgrade later.
  • Y and mitochondrial tests are only available at Family Tree DNA.

Adoptee Vendor Feature Summary Chart

Family Tree DNA Ancestry 23andMe MyHeritage
Autosomal DNA – Males and Females
Matching Yes Yes Yes Yes – problems
Relationship Estimates* Yes – May be too close Yes – May be too distant Yes – Matches may not be sharing Yes –  problematic
International Reach Very strong Not strong but growing Not strong Small but subscriber base is European focused
Trees Yes Yes No Yes
Tree Quantity 54% have trees, 46% no tree (of my first 100 matches) 56% have trees, 44% no tree or private (of my first 100 matches) No trees ~50% don’t have trees or are private (cannot discern private tree without clicking on every tree)
Data Base Size Large Largest Large – but not all opt in to matching Very small
My # of Matches on 4-23-2017 2,421 23,750 1,809 but only 1,114 are sharing 75
Subscription Required No No for partial, Yes for full functionality including access to matches’ trees, minimal subscription for $49 by calling Ancestry No No for partial, Yes for full functionality
Other Relevant Tools New Ancestor Discoveries
Autosomal DNA Issues Many testers don’t have trees Many testers don’t have trees Matching opt-in is problematic, no trees at all Matching issues, small data base size is problematic, many testers don’t have trees
Contact Methodology E-mail address provided to matches Internal message system – known delivery issues Internal message system Internal message system
X Chromosome Matching Yes No Yes No
Y-DNA – Males Only
Y DNA STR Test Yes- 37, 67, and 111 markers No No No
Y Haplogroup Yes as part of STR test plus additional testing available No Yes, basic level but no additional testing available, outdated haplogroups No
Y Matching Yes No No No
Advanced Matching Between Y and Autosomal Yes No No No
Mitochondrial DNA- Males and Females
Test Yes, partial and full sequence No No No
Mitochondrial DNA Haplogroup Yes, included in test No Yes, basic but full haplogroup not available, haplogroup several versions behind No
Advanced Matching Between Mitochondrial and Autosomal Yes No No No

Genealogy – Cousin Matching and Ancestor Search/Verification

People who want to take a DNA test to find cousins, to learn more about their genealogy, to verify their genealogy research or to search for unknown ancestors and break down brick walls will be interested in various types of testing

Test Type Who Can Test
Y DNA – direct paternal line Males only
Mitochondrial DNA – direct matrilineal line Males and Females
Autosomal – all lines Males and Females

Let’s begin with autosomal DNA testing for genealogy which tests your DNA inherited from all ancestral lines.

Aside from ethnicity, autosomal DNA testing provides matches to other people who have tested. A combination of trees, meaning their genealogy, and their chromosome segments are used to identify (through trees) and verify (through DNA segments) common ancestor(s) and then to assign a particular DNA segment(s) to that ancestor or ancestral couple. This process, called triangulation, then allows you to assign specific segments to particular ancestors, through segment matching among multiple people. You then know that when another individual matches you and those other people on the same segment, that the DNA comes from that same lineage. Triangulation is the only autosomal methodology to confirm ancestors who are not close relatives, beyond the past 2-3 generations or so.

All three vendors provide matching, but the tools they include and their user interfaces are quite different. 

Genealogy – Autosomal –  Family Tree DNA

Family Tree DNA entered DNA testing years before any of the others, initially with Y and mitochondrial DNA testing.

Because of the diversity of their products, their website is somewhat busier, but they do a good job of providing areas on the tester’s personal landing page for each of the products and within each product, a link for each feature or function.

For example, the Family Finder test is Family Tree DNA’s autosomal test. Within that product, tools provided are:

  • Matching
  • Chromosome Browser
  • Linked Relationships
  • myOrigins
  • Ancient Origins
  • Matrix
  • Advanced Matching

Unique autosomal tools provided by Family Tree DNA are:

  • Linked Relationships that allows you to connect individuals that you match to their location in your tree, indicating the proper relationship. Phased Family Matching uses these relationships within your tree to indicate which side of your tree other matches originate from.
  • Phased Family Matching shows which side of your tree, maternal, paternal or both, someone descends from, based on phased DNA matching between you and linked relationship matches as distant as third cousins. This allows Family Tree DNA to tell you whether matches are paternal (blue icon), maternal (red icon) or both (purple icon) without a parent’s DNA. This is one of the best autosomal tools at Family Tree DNA, shown below.

  • In Common With and Not In Common With features allow you to sort your matches in common with another individual a number of ways, or matches not in common with that individual.
  • Filtered downloads provide the downloading of chromosome data for your filtered match list.
  • Stackable filters and searches – for example, you can select paternal matches and then search for a particular surname or ancestral surname within the paternal matches.
  • Common ethnicity matching through myOrigins allows you to see selected groups of individuals who match you and share common ethnicities.
  • Y and mtDNA locations of autosomal matches are provided on your ethnicity map through myOrigins.
  • Advanced matching tool includes Y, mtDNA and autosomal in various combinations. Also includes matches within projects where the tester is a member as well as by partial surname.
  • The matrix tool allows the tester to enter multiple people that they match in order to see if those individuals also match each other. The matrix tool is, in combination with the in-common-with tool and the chromosome browser is a form of pseudo triangulation, but does not indicate that the individuals match on the same segment.

  • Chromosome browser with the ability to select different segment match thresholds to display when comparing 5 or fewer individuals to your results.
  • Projects to join which provide group interaction and allow individuals to match only within the project, if desired.

To read more about how to utilize the various autosomal tools at Family Tree DNA, with examples, click here.

Genealogy – Autosomal – Ancestry

Ancestry only offers autosomal DNA testing to their customers, so their page is simple and straightforward.

Ancestry is the only testing vendor (other than MyHeritage who is not included in this section) to require a subscription for full functionality, although if you call the Ancestry support line, a minimal subscription is available for $49. You can see your matches without a subscription, but you cannot see your matches trees or utilize other functions, so you will not be able to tell how you connect to your matches. Many genealogists have Ancestry subscriptions, so this is minimally problematic for most people.

However, if you don’t realize you need a subscription initially, the required annual subscription raises the effective cost of the test quite substantially. If you let your subscription lapse, you no longer have access to all DNA features. The cost of testing with Ancestry is the cost of the test plus the cost of a subscription if you aren’t already a subscriber.

This chart, from the Ancestry support center, provides details on which features are included for free and which are only available with a subscription.

Unique tools provided by Ancestry include:

  • Shared Ancestor Hints (green leaves) which indicate a match with whom you share a common ancestor in your tree connected to your DNA, allowing you to display the path of you and your match to the common ancestor. In order to take advantage of this feature, testers must link their tree to their DNA test. Otherwise, Ancestry can’t do tree matching.  As far as I’m concerned, this is the single most useful DNA tool at Ancestry. Subscription required.

  • DNA Circles, example below, are created when several people whose DNA matches also share a common ancestor. Subscription required.

  • New Ancestor Discoveries (NADs), which are similar to Circles, but are formed when you match people descended from a common ancestor, but don’t have that ancestor in your tree. The majority of the time, these NADs are incorrect and are, when dissected and the source can be determined, found to be something like the spouse of a sibling of your ancestor. I do not view NADs as a benefit, more like a wild goose chase, but for some people these could be useful so long as the individual understands that these are NOT definitely ancestors and only hints for research. Subscription required.
  • Ancestry uses a proprietary algorithm called Timber to strip DNA from you and your matches that they consider to be “too matchy,” with the idea that those segments are identical by population, meaning likely to be found in large numbers within a population group – making them meaningless for genealogy. The problem is that Timber results in the removal of valid segments, especially in endogamous groups like Acadian families. This function is unique to Ancestry, but many genealogists (me included) don’t consider Timber a benefit.
  • Genetic Communities shows you groups of individuals with whom your DNA clusters. The trees of cluster members are then examined by Ancestry to determine connections from which Genetic Communities are formed. You can filter your DNA match results by Genetic Community.

Genealogy – Autosomal – 23and Me

Unfortunately, the 23andMe website is not straightforward or intuitive. They have spent the majority of the past two years transitioning to a “New Experience” which has resulted in additional confusion and complications when matching between people on multiple different platforms. You can take a spin through the New Experience by clicking here.

23andMe requires people to opt-in to sharing, even after they have selected to participate in Ancestry Services (genealogy) testing, have opted-in previously and chosen to view their DNA Relatives. Users on the “New Experience” can then either share chromosome data and results with each other individually, meaning on a one by one basis, or globally by a one-time opt-in to “open sharing” with matches. If a user does not opt-in to both DNA Relatives and open sharing, sharing requests must be made individually to each match, and they must opt-in to share with each individual user. This complexity and confusion results in an approximate sharing rate of between 50 and 60%. One individual who religiously works their matches by requesting sharing now has a share rate of about 80% of their matches in the data base who HAVE initially selected to participate in DNA Relatives. You can read more about the 23andMe experience at this link.

Various genetic genealogy reports and tools are scattered between the Reports and Tools tabs, and within those, buried in non-intuitive locations. If you are going to utilize 23andMe for matching and genealogy, in addition to the above link, I recommend Kitty Cooper’s blogs about the new DNA Relatives here and on triangulation here. Print the articles, and use them as a guide while navigating the 23andMe site.

Note that some screens (the Tools, DNA Relatives, then DNA tab) on the site do not display/work correctly utilizing Internet Explorer, but do with Edge or other browsers.

The one genealogy feature unique to 23andMe is:

  • Triangulation at 23andMe allows you to select a specific match to compare your DNA against. Several pieces of information will be displayed, the last of which, scrolling to the bottom, is a list of your common relatives with the person you selected.

In the example below, I’ve selected to see the matches I match in common with known family member, Stacy Den (surnames have been obscured for privacy reasons.)  Please note that the Roberta V4 Estes kit is a second test that I took for comparison purposes when the new V4 version of 23andMe was released.  Just ignore that match, because, of course I match myself as a twin.

If an individual does not match both you and your selected match, they will not appear on this list.

In the “relatives in common” section, each person is listed with a “shared DNA” column. For a person to be shown on this “in common” list, you obviously do share DNA with these individuals and they also share with your match, but the “shared DNA” column goes one step further. This column indicates whether or not you and your match both share a common DNA segment with the “in common” person.

I know this is confusing, so I’ve created this chart to illustrate what will appear in the “Shared DNA” column of the individuals showing on the list of matches, above, shared between me and Stacy Den.

Clicking on “Share to see” sends Sarah a sharing request for her to allow you to see her segment matches.

Let’s look at an example with “yes” in the Shared DNA column.

Clicking on the “Yes” in the Shared DNA column of Debbie takes us to the chromosome browser which shows both your selected match, Stacy in my case, and Debbie, the person whose “yes” you clicked.

All three people, meaning me, Stacy and Debbie share a common DNA segment, shown below on chromosome 17.

What 23andMe does NOT say is that these people. Stacy and Debbie, also match each other, in addition to matching me, which means all three of us triangulate.

Because I manage Stacy’s kit at 23andMe, I can check to see if Debbie is on Stacy’s match list, and indeed, Debbie is on Stacy’s match list and Stacy does match both Debbie and me on chromosome 17 in exactly the same location shown above, proving unquestionably that the three of us all match each other and therefore triangulate on this segment. In our case, it’s easy to identify our common relative whose DNA all 3 of us share.

Genealogy – Autosomal Summary

While all 3 vendors offer matching, their interfaces and tools vary widely.

I would suggest that Ancestry is the least sophisticated and has worked hard to make their tools easy for the novice working with genetic genealogy. Their green leaf DNA+Tree Matching is their best feature, easy to use and important for the novice and experienced genealogist alike.  Now, if they just had that chromosome browser so we could see how we match those people.

Ancestry’s Circles, while a nice feature, encourage testers to believe that their DNA or relationship is confirmed by finding themselves in a Circle, which is not the case.

Circles can be formed as the result of misinformation in numerous trees. For example, if I were to inaccurately list Smith as the surname for one of my ancestor’s wives, I would find myself in a Circle for Barbara Smith, when in fact, there is absolutely no evidence whatsoever that her surname is Smith. Yet, people think that Barbara Smith is confirmed due to a Circle having been formed and finding themselves in Barbara Smith’s Circle. Copying incorrect trees equals the formation of incorrect Circles.

It’s also possible that I’m matching people on multiple lines and my DNA match to the people in any given Circle is through another common ancestor entirely.

A serious genealogist will test minimally at Ancestry and at Family Tree DNA, who provides a chromosome browser and other tools necessary to confirm relationships and shared DNA segments.

Family Tree DNA is more sophisticated, so consequently more complex to use.  They provide matching plus numerous other tools. The website and matching is certainly friendly for the novice, but to benefit fully, some experience or additional education is beneficial, not unlike traditional genealogy research itself. This is true not just for Family Tree DNA, but GedMatch and 23andMe who all three utilize chromosome browsers.

The user will want to understand what a chromosome browser is indicating about matching DNA segments, so some level of education makes life a lot easier. Fortunately, understanding chromosome browser matching is not complex. You can read an article about Match Groups and Triangulation here. I also have an entire series of Concepts articles, Family Tree DNA offers a webinar library, their Learning Center and other educational resources are available as well.

Family Tree DNA is the only vendor to provide Phased Family Matches, meaning that by connecting known relatives who have DNA tested to your tree, Family Tree DNA can then identify additional matches as maternal, paternal or both. This, in combination with pseudo-phasing are very powerful matching tools.

23andMe is the least friendly of the three companies, with several genetic genealogy unfriendly restrictions relative to matching, opt-ins, match limits and such. They have experienced problem after problem for years relative to genetic genealogy, which has always been a second-class citizen compared to their medical research, and not a priority.

23andMe has chosen to implement a business model where their customers must opt-in to share segment information with other individuals, either one by one or by opting into open sharing. Based on my match list, roughly 60% of my actual DNA matches have opted in to sharing.

Their customer base includes fewer serious genealogists and their customers often are not interested in genealogy at all.

Having said that, 23andMe is the only one of the three that provides actual triangulated matches for users on the New Experience and who have opted into sharing.

If I were entering the genetic genealogy testing space today, I would test my autosomal DNA at Ancestry and at Family Tree DNA, but I would probably not test at 23andMe. I would test both my Y DNA (if a male) and mitochondrial at Family Tree DNA.

Thank you to Kitty Cooper for assistance with parent/child matching and triangulation at 23andMe.

Genealogy Autosomal Vendor Feature Summary Chart

Family Tree DNA Ancestry 23andMe
Matching Yes Yes Yes – each person has to opt in for open sharing or authorize sharing individually, many don’t
Estimated Relationships Yes Yes Yes
Chromosome Browser Yes No – Large Issue Yes
Chromosome Browser Threshold Adjustment Yes No Chromosome Browser No
X Chromosome Matching Yes No Yes
Trees Yes Yes – subscription required so see matches’ trees No
Ability to upload Gedcom file Yes Yes No
Ability to search trees Yes Yes No
Subscription in addition to DNA test price No No for partial, Yes for full functionality, minimal subscription for $49 by calling Ancestry No
DNA + Ancestor in Tree Matches No Yes – Leaf Hints – subscription required – Best Feature No
Phased Parental Side Matching Yes – Best Feature No No
Parent Match Indicator Yes No Yes
Sort or Group by Parent Match Yes Yes Yes
In Common With Tool Yes Yes Yes
Not In Common With Tool Yes No No
Triangulated Matches No – pseudo with ICW, browser and matrix No Yes – Best Feature
Common Surnames Yes Yes – subscription required No
Ability to Link DNA Matches on Tree Yes No No
Matrix to show match grid between multiple matches Yes No No
Match Filter Tools Yes Minimal Some
Advanced Matching Tool Yes No No
Multiple Test Matching Tool Yes No multiple tests No multiple tests
Ethnicity Matching Yes No Yes
Projects Yes No No
Maximum # of Matches Restricted No No Yes – 2000 unless you are communicating with the individuals, then they are not removed from your match list
All Customers Participate Yes Yes, unless they don’t have a subscription No – between 50-60% opt-in
Accepts Transfers from Other Testing Companies Yes No No
Free Features with Transfer Matching, ICW, Matrix, Advanced Matching No transfers No transfers
Transfer Features Requiring Unlock $ Chromosome Browser, Ethnicity, Ancient Origins, Linked Relationships, Parentally Phased Matches No Transfers No transfers
Archives DNA for Later Testing Yes, 25 years No, no additional tests available No, no additional tests available
Additional Tool DNA Circles – subscription required
Additional Tool New Ancestor Discoveries – subscription required
Y DNA Not included in autosomal test but is additional test, detailed results including matching No Haplogroup only
Mitochondrial DNA Not included in autosomal test but is additional test, detailed results including matching No Haplogroup only
Advanced Testing Available Yes No No
Website Intuitive Yes, given their many tools Yes, very simple No
Data Base Size Large Largest Large but many do not test for genealogy, only test for health
Strengths Many tools, multiple types of tests, phased matching without parent DNA + Tree matching, size of data base Triangulation
Challenges Website episodically times out No chromosome browser or advanced tools Sharing is difficult to understand and many don’t, website is far from intuitive

 

Genealogy – Y and Mitochondrial DNA

Two indispensable tools for genetic genealogy that are often overlooked are Y and mitochondrial DNA.

The inheritance path for Y DNA is shown by the blue squares and the inheritance path for mitochondrial DNA is shown by the red circles for the male and female siblings shown at the bottom of the chart.

Y-DNA Testing for Males

Y DNA is inherited by males only, from their father. The Y chromosome makes males male. Women instead inherit an X chromosome from their father, which makes them female. Because the Y chromosome is not admixed with the DNA of the mother, the same Y chromosome has been passed down through time immemorial.

Given that the Y chromosome follows the typical surname path, Y DNA testing is very useful for confirming surname lineage to an expected direct paternal ancestor. In other words, an Estes male today should match, with perhaps a few mutations, to other descendants of Abraham Estes who was born in 1647 in Kent, England and immigrated to the colony of Virginia.

Furthermore, that same Y chromosome can look far back in time, thousands of years, to tell us where that English group of Estes men originated, before the advent of surnames and before the migration to England from continental Europe. I wrote about the Estes Y DNA here, so you can see an example of how Y DNA testing can be used.

Y DNA testing for matching and haplogroup identification, which indicates where in the world your ancestors were living within the past few hundred to few thousand years, is only available from Family Tree DNA. Testing can be purchased for either 37, 67 or 111 markers, with the higher marker numbers providing more granularity and specificity in matching.

Family Tree DNA provides three types of Y DNA tests.

  • STR (short tandem repeat) testing is the traditional Y DNA testing for males to match to each other in a genealogically relevant timeframe. These tests can be ordered in panels of 37, 67 or 111 markers and lower levels can be upgraded to higher levels at a later date. An accurate base haplogroup prediction is made from STR markers.
  • SNP (single nucleotide polymorphism) testing is a different type of testing that tests single locations for mutations in order to confirm and further refine haplogroups. Think of a haplogroup as a type of genetic clan, meaning that haplogroups are used to track migration of humans through time and geography, and are what is utilized to determine African, European, Asian or Native heritage in the direct paternal line. SNP tests are optional and can be ordered one at a time, in groups called panels for a particular haplogroup or a comprehensive research level Y DNA test called the Big Y can be ordered after STR testing.
  • The Big Y test is a research level test that scans the entire Y chromosome to determine the most refined haplogroup possible and to report any previously unknown mutations (SNPs) that may define further branches of the Y DNA tree. This is the technique used to expand the Y haplotree.

You can read more about haplogroups here and about the difference between STR markers and SNPs here, here and here.

Customers receive the following features and tools when they purchase a Y DNA test at Family Tree DNA or the Ancestry Services test at 23andMe. The 23andMe Y DNA information is included in their Ancestry Services test. The Family Tree DNA Y DNA information requires specific tests and is not included in the Family Finder test. You can click here to read about the difference in the technology between Y DNA testing at Family Tree DNA and at 23andMe. Ancestry is not included in this comparison because they provide no Y DNA related information.

Y DNA Vendor Feature Summary Chart

Family Tree DNA 23andMe
Varying levels of STR panel marker testing Yes, in panels of 37, 67 and 111 markers No
Test panel (STR) marker results Yes Not tested
Haplogroup assignment Yes – accurate estimate with STR panels, deeper testing available Yes –base haplogroup by scan – haplogroup designations are significantly out of date, no further testing available
SNP testing to further define haplogroup Yes – can purchase individual SNPs, by SNP panels or Big Y test No
Matching to other participants Yes No
Trees available for your matches Yes No
E-mail of matches provided Yes No
Calculator tool to estimate probability of generational distance between you and a match Yes No
Earliest known ancestor information Yes No
Projects Surname, haplogroup and geographic projects No
Ability to search Y matches Yes No Y matching
Ability to search matches within projects Yes No projects
Ability to search matches by partial surname Yes No
Haplotree and customer result location on tree Yes, detailed with every branch Yes, less detailed, subset
Terminal SNP used to determine haplogroup Yes Yes, small subset available
Haplogroup Map Migration map Heat map
Ancestral Origins – summary by ancestral location of others you match, by test level Yes No
Haplogroup Origins – match ancestral location summary by haplogroup, by test level Yes No
SNP map showing worldwide locations of any selected SNP Yes No
Matches map showing mapped locations of your matches most distant ancestor in the paternal line, by test panel Yes No
Big Y – full scan of Y chromosome for known and previously unknown mutations (SNPs) Yes No
Big Y matching Yes No
Big Y matching known SNPs Yes No
Big Y matching novel variants (unknown or yet unnamed SNPs) Yes No
Filter Big Y matches Yes No
Big Y results Yes No
Advanced matching for multiple test types Yes No
DNA is archived so additional tests or upgrades can be ordered at a later date Yes, 25 years No

Mitochondrial DNA Testing for Everyone

Mitochondrial DNA is contributed to both genders of children by mothers, but only the females pass it on. Like the Y chromosome, mitochondrial DNA is not admixed with the DNA of the other parent. Therefore, anyone can test for the mitochondrial DNA of their matrilineal line, meaning their mother’s mother’s mother’s lineage.

Matching can identify family lines as well as ancient lineage.

You receive the following features and tools when you purchase a mitochondrial DNA test from Family Tree DNA or the Ancestry Services test from 23andMe. The Family Tree DNA mitochondrial DNA information requires specific tests and is not included in the Family Finder test. The 23andMe mitochondrial information is provided with the Ancestry Services test. Ancestry is omitted from this comparison because they do not provide any mitochondrial information.

Mitochondrial DNA Vendor Feature Summary Chart

Family Tree DNA 23andMe
Varying levels of testing Yes, mtPlus and Full Sequence No
Test panel marker results Yes, in two formats, CRS and RSRS No
Rare mutations, missing and extra mutations, insertions and deletions reported Yes No
Haplogroup assignment Yes, most current version, Build 17 Yes, partial and out of date version
Matching to other participants Yes No
Trees of matches available to view Yes No
E-mail address provided to matches Yes No
Earliest known ancestor information Yes No
Projects Surname, haplogroup and geographic available No
Ability to search matches Yes No
Ability to search matches within project Yes No projects
Ability to search match by partial surname Yes No
Haplotree and customer location on tree No Yes
Mutations used to determine haplogroup provided Yes No
Haplogroup Map Migration map Heat map
Ancestral Origins – summary by ancestral location of others you match, by test level Yes No
Haplogroup Origins –match ancestral location summary by haplogroup Yes No
Matches map showing mapped locations of your matches most distant ancestor in the maternal line, by test level Yes No
Advanced matching for multiple test types Yes No
DNA is archived so additional tests or upgrades can be ordered at a later date Yes, 25 years No

 

Overall Genealogy Summary

Serious genealogists should test with at least two of the three major vendors, being Family Tree DNA and Ancestry, with 23andMe coming in as a distant third.

No genetic genealogy testing regimen is complete without Y and mitochondrial DNA for as many ancestral lines as you can find to test. You don’t know what you don’t know, and you’ll never know if you don’t test.

Unfortunately, many people, especially new testers, don’t know Y and mitochondrial DNA testing for genetic genealogy exists, or how it can help their genealogy research, which is extremely ironic since these were the first tests available, back in 2000.

You can read about finding Y and mitochondrial information for various family lines and ancestors and how to assemble a DNA Pedigree Chart here.

You can also take a look at my 52 Ancestors series, where I write about an ancestor every week. Each article includes some aspect of DNA testing and knowledge gained by a test or tests, DNA tool, or comparison. The DNA aspect of these articles focuses on how to use DNA as a tool to discover more about your ancestors.

Testing for Medical/Health or Traits

The DTC market also includes health and medical testing, although it’s not nearly as popular as genetic genealogy.

Health/medical testing is offered by 23andMe, who also offers autosomal DNA testing for genealogy.

Some people do want to know if they have genetic predispositions to medical conditions, and some do not. Some want to know if they have certain traits that aren’t genealogically relevant, but might be interesting – such as whether they carry the Warrior gene or if they have an alcohol flush reaction.

23andMe was the first company to dip their toes into the water of Direct to Consumer medical information, although they called it “health,” not medicine, at that time. Regardless of the terminology, information regarding Parkinson’s and Alzheimer’s, for example, were provided for customers. 23andMe attempted to take the raw data and provide the consumer with something approaching a middle of the road analysis, because sometimes the actual studies provide conflicting information that might not be readily understood by consumers.

The FDA took issue with 23andMe back in November of 2013 when they ordered 23andMe to discontinue the “health” aspect of their testing after 23andMe ignored several deadlines. In October 2015, 23andMe obtained permission to provide customers with some information, such as carrier status, for 36 genetic disorders.

Since that time, 23andMe has divided their product into two separate tests, with two separate prices. The genealogy only test called Ancestry Service can be purchased separately for $99, or the combined Health + Ancestry Service for $199.

If you are interested in seeing what the Health + Ancestry test provides, you can click here to view additional information.

However, there is a much easier and less expensive solution.

If you have taken the autosomal test from 23andMe, Ancestry or Family Tree DNA, you can download your raw data file from the vendor and upload to Promethease to obtain a much more in-depth report than is provided by 23andMe, and much less expensively – just $5.

I reviewed the Promethease service here. I found the Promethease reports to be very informative and I like the fact that they provide information, both positive and negative for each SNP (DNA location) reported. Promethease avoids FDA problems by not providing any interpretation or analysis, simply the data and references extracted from SNPedia for you to review.

I would be remiss if I didn’t mention that you should be sure you really want to know before you delve into medical testing. Some mutations are simply indications that you could develop a condition that you will never develop or that is not serious. Other mutations are not so benign. Promethease provides this candid page before you upload your data.

Different files from different vendors provide different results at Promethease, because those vendors test different SNP locations in your DNA. At the Promethease webpage, you can view examples.

Traits

Traits fall someplace between genealogy and health. When you take the Health + Ancestry test at 23andMe, you do receive information about various traits, as follows:

Of course, you’ll probably already know if you have several of these traits by just taking a look in the mirror, or in the case of male back hair, by asking your wife.

At Family Tree DNA, existing customers can order tests for Factoids (by clicking on the upgrade button), noted as curiosity tests for gene variants.

Family Tree DNA provides what I feel is a great summary and explanation of what the Factoids are testing on their order page:

“Factoids” are based on studies – some of which may be controversial – and results are not intended to diagnose disease or medical conditions, and do not serve the purpose of medical advice. They are offered exclusively for curiosity purposes, i.e. to see how your result compared with what the scientific papers say. Other genetic and environmental variables may also impact these same physiological characteristics. They are merely a conversational piece, or a “cocktail party” test, as we like to call it.”

Test Price Description
Alcohol Flush Reaction $19 A condition in which the body cannot break down ingested alcohol completely. Flushing, after consuming one or two alcoholic beverages, includes a range of symptoms: nausea, headaches, light-headedness, an increased pulse, occasional extreme drowsiness, and occasional skin swelling and itchiness. These unpleasant side effects often prevent further drinking that may lead to further inebriation, but the symptoms can lead to mistaken assumption that the people affected are more easily inebriated than others.
Avoidance of Errors $29 We are often angry at ourselves because we are unable to learn from certain experiences. Numerous times we have made the wrong decision and its consequences were unfavorable. But the cause does not lie only in our thinking. A mutation in a specific gene can also be responsible, because it can cause a smaller number of dopamine receptors. They are responsible for remembering our wrong choices, which in turn enables us to make better decisions when we encounter a similar situation.
Back Pain $39 Lumbar disc disease is the drying out of the spongy interior matrix of an intervertebral disc in the spine. Many physicians and patients use the term lumbar disc disease to encompass several different causes of back pain or sciatica. A study of Asian patients with lumbar disc disease showed that a mutation in the CILP gene increases the risk of back pain.
Bitter Taste Perception $29 There are several genes that are responsible for bitter taste perception – we test 3 of them. Different variations of this gene affect ability to detect bitter compounds. About 25% of people lack ability to detect these compounds due to gene mutations. Are you like them? Maybe you don’t like broccoli, because it tastes too bitter?
Caffeine Metabolism $19 According to the results of a case-control study reported in the March 8, 2006 issue of JAMA, coffee is the most widely consumed stimulant in the world, and caffeine consumption has been associated with increased risk for non-fatal myocardial infarction. Caffeine is primarily metabolized by the cytochrome P450 1A2 in the liver, accounting for 95% of metabolism. Carriers of the gene variant *1F allele are slow caffeine metabolizers, whereas individuals homozygous for the *1A/*1A genotype are rapid caffeine metabolizers.
Earwax Type $19 Whether your earwax is wet or dry is determined by a mutation in a single gene, which scientists have discovered. Wet earwax is believed to have uses in insect trapping, self-cleaning and prevention of dryness in the external auditory canal of the ear. It also produces an odor and causes sweating, which may play a role as a pheromone.
Freckling $19 Freckles can be found on anyone no matter what the background. However, having freckles is genetic and is related to the presence of the dominant melanocortin-1 receptor MC1R gene variant.
Longevity $49 Researchers at Harvard Medical School and UC Davis have discovered a few genes that extend lifespan, suggesting that the whole family of SIR2 genes is involved in controlling lifespan. The findings were reported July 28, 2005 in the advance online edition of Science.
Male Pattern Baldness $19 Researchers at McGill University, King’s College London and GlaxoSmithKline Inc. have identified two genetic variants in Caucasians that together produce an astounding sevenfold increase of the risk of male pattern baldness. Their results were published in the October 12, 2008 issue of the Journal of Nature Genetics.
Monoamine Oxidase A (Warrior Gene) $49.50 The Warrior Gene is a variant of the gene MAO-A on the X chromosome. Recent studies have linked the Warrior Gene to increased risk-taking and aggressive behavior. Whether in sports, business, or other activities, scientists found that individuals with the Warrior Gene variant were more likely to be combative than those with the normal MAO-A gene. However, human behavior is complex and influenced by many factors, including genetics and our environment. Individuals with the Warrior Gene are not necessarily more aggressive, but according to scientific studies, are more likely to be aggressive than those without the Warrior Gene variant. This test is available for both men and women, however, there is limited research about the Warrior Gene variant amongst females. Additional details about the Warrior Gene genetic variant of MAO-A can be found in Sabol et al, 1998.
Muscle Performance $29 A team of researchers, led by scientists at Dartmouth Medical School and Dartmouth College, have identified and tested a gene that dramatically alters both muscle metabolism and performance. The researchers say that this finding could someday lead to treatment of muscle diseases, including helping the elderly who suffer from muscle deterioration and improving muscle performance in endurance athletes.
Nicotine Dependence $19 In 2008, University of Virginia Health System researchers have identified a gene associated with nicotine dependence in both Europeans and African Americans.

Many people are interested in the Warrior Gene, which I wrote about here.

At Promethease, traits are simply included with the rest of the conditions known to be associated with certain SNPs, such as baldness, for example, but I haven’t done a comparison to see which traits are included.

 

Additional Vendor Information to Consider

Before making your final decision about which test or tests to purchase, there are a few additional factors you may want to consider.

As mentioned before, Ancestry requires a subscription in addition to the cost of the DNA test for the DNA test to be fully functional.

One of the biggest issues, in my opinion, is that both 23andMe and Ancestry sell customer’s anonymized DNA information to unknown others. Every customer authorizes the sale of their information when they purchase or activate a kit – even though very few people actually take the time to read the Terms and Conditions, Privacy statements and Security documents, including any and all links. This means most people don’t realize they are authorizing the sale of their DNA.

At both 23andMe and Ancestry, you can ALSO opt in for additional non-anonymized research or sale of your DNA, which you can later opt out of. However, you cannot opt out of the lower level sale of your anonymized DNA without removing your results from the data base and asking for your sample to be destroyed. They do tell you this, but it’s very buried in the fine print at both companies. You can read more here.

Family Tree DNA does not sell your DNA or information.

All vendors can change their terms and conditions at any time. Consumers should always thoroughly read the terms and conditions including anything having to do with privacy for any product they purchase, but especially as it relates to DNA testing.

Family Tree DNA archives your DNA for later testing, which has proven extremely beneficial when a family member has passed away and a new test is subsequently introduced or the family wants to upgrade a current test.  Had my mother’s DNA not been archived at Family Tree DNA, I would not have Family Finder results for her today – something I thank Mother and Family Tree DNA for every single day.

Family Tree DNA also accepts transfer files from 23andMe, Ancestry and very shortly, MyHeritage – although some versions work better than others. For details on which companies accept which file versions, from which vendors, and why, please read Autosomal DNA Transfers – Which Companies Accept Which Tests?

If you tested on a compatible version of the 23andMe Test (V3 between December 2010 and November 2013) or the Ancestry V1 (before May 2016) you may want to transfer your raw data file to Family Tree DNA for free and pay only $19 for full functionality, as opposed to taking the Family Finder test. Family Tree DNA does accept later versions of files from 23andMe and Ancestry, but you will receive more matches if you test on the same chip platform that Family Tree DNA utilizes instead of doing a transfer.

Additional Vendor Considerations Summary Chart

Family Tree DNA Ancestry 23andMe
Subscription required in addition to cost of DNA test No Yes for full functionality, partial functionality is included without subscription, minimum subscription is $49 by calling Ancestry No
Customer Support Good and available Available, nice but often not knowledgeable about DNA Poor
Sells customer DNA information No Yes Yes
DNA raw data file available to download Yes Yes Yes
DNA matches file available to download including match info and chromosome match locations Yes No Yes
Customers genealogically focused Yes Yes Many No
Accepts DNA raw data transfer files from other companies Yes, most, see article for specifics No No
DNA archived for later testing Yes, 25 years No No
Beneficiary provision available Yes No No

 

Which Test is Best For You?

I hope you now know the answer as to which DNA test is best for you – or maybe it’s multiple tests for you and other family members too!

DNA testing holds so much promise for genealogy. I hesitate to call DNA testing a miracle tool, but it often is when there are no records. DNA testing works best in conjunction with traditional genealogical research.

There are a lot of tests and options.  The more tests you take, the more people you match. Some people test at multiple vendors or upload their DNA to third party sites like GedMatch, but most don’t. In order to make sure you reach those matches, which may be the match you desperately need, you’ll have to test at the vendor where they tested. Otherwise, they are lost to you. That means, of course, that eventually, if you’re a serious genealogist, you’ll be testing at all 3 vendors.  Don’t forget about Y and mitochondrial tests at Family Tree DNA.

Recruit family members to test and reach out to your matches.  The more you share and learn – the more is revealed about your ancestors. You are, after all, the unique individual that resulted from the combination of all of them!

Update: Vendor prices updated June 22, 2017.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

2016 Genetic Genealogy Retrospective

In past years, I’ve written a “best of” article about genetic genealogy happenings throughout the year. For several years, the genetic genealogy industry was relatively new, and there were lots of new tools being announced by the testing vendors and others as well.

This year is a bit different. I’ve noticed a leveling off – there have been very few announcements of new tools by vendors, with only a few exceptions.  I think genetic genealogy is maturing and has perhaps begun a new chapter.  Let’s take a look.

Vendors

Family Tree DNA

Family Tree DNA leads the pack this year with their new Phased Family Matches which utilizes close relatives, up to third cousins, to assign your matches to either maternal or paternal buckets, or both if the individual is related on both sides of your tree.

Both Buckets

They are the first and remain the only vendor to offer this kind of feature.

Phased FF2

Phased Family Matching is extremely useful in terms of identifying which side of your family tree your matches are from. This tool, in addition to Family Tree DNA’s nine other autosomal tools helps identify common ancestors by showing you who is related to whom.

Family Tree DNA has also added other features such as a revamped tree with the ability to connect DNA results to family members.  DNA results connected to the tree is the foundation for the new Phased Family Matching.

The new Ancient Origins feature, released in November, was developed collaboratively with Dr. Michael Hammer at the University of Arizona Hammer Lab.

Ancient European Origins is based on the full genome sequencing work now being performed in the academic realm on ancient remains. These European results fall into three primary groups of categories based on age and culture.  Customer’s DNA is compared to the ancient remains to determine how much of the customer’s European DNA came from which group.  This exciting new feature allows us to understand more about our ancestors, long before the advent of surnames and paper or parchment records. Ancient DNA is redefining what we know, or thought we knew, about population migration.

2016-ancient-origins

You can view Dr. Hammer’s presentation given at the Family Tree DNA Conference in conjunction with the announcement of the new Ancient Origins feature here.

Family Tree DNA maintains its leadership position among the three primary vendors relative to Y DNA testing, mtDNA testing and autosomal tools.

Ancestry

In May of 2016, Ancestry changed the chip utilized by their tests, removing about 300,000 of their previous 682,000 SNPs and replacing them with medically optimized SNPs. The rather immediate effect was that due to the chip incompatibility, Ancestry V2 test files created on the new chip cannot be uploaded to Family Tree DNA, but they can be uploaded to GedMatch.  Family Tree DNA is working on a resolution to this problem.

I tested on the new Ancestry V2 chip, and while there is a difference in how much matching DNA I share with my matches as compared to the V1 chip, it’s not as pronounced as I expected. There is no need for people who tested on the earlier chip to retest.

Unfortunately, Ancestry has remained steadfast in their refusal to implement a chromosome browser, instead focusing on sales by advertising the ethnicity “self-discovery” aspect of DNA testing.

Ancestry does have the largest autosomal data base but many people tested only for ethnicity, don’t have trees or have private trees.  In my case, about half of my matches fall into that category.

Ancestry maintains its leadership position relative to DNA tree matching, known as a Shared Ancestor Hint, identifying common ancestors in the trees of people whose DNA matches.

ancestry-common-ancestors

23andMe

23andMe struggled for most of the year to meet a November 2015 deadline, which is now more than a year past, to transition its customers to the 23andMe “New Experience” which includes a new customer interface. I was finally transitioned in September 2016, and the experience has been very frustrating and extremely disappointing, and that’s putting it mildly. Some customers, specifically international customers, are still not transitioned, nor is it clear if or when they will be.

I tested on the 23andMe older V3 chip as well as their newer V4 chip. After my transition to the New Experience, I compared the results of the two tests. The new security rules incorporated into the New Experience meant that I was only able to view about 25% of my matches (400 of 1651(V3) matches or 1700 (V4) matches). 23andMe has, in essence, relegated themselves into the non-player status for genetic genealogy, except perhaps for adoptees who need to swim in every pool – but only then as a last place candidate. And those adoptees had better pray that if they have a close match, that match falls into the 25% of their matches that are useful.

In December, 23andMe began providing segment information for ethnicity segments, except the parental phasing portion does not function accurately, calling into question the overall accuracy of the 23andme ethnicity information. Ironically, up until now, while 23andMe slipped in every other area, they had been viewed at the best, meaning most accurate, in terms of ethnicity estimates.

New Kids on the Block

MyHeritage

In May of 2016, MyHeritage began encouraging people who have tested at other vendors to upload their results. I was initially very hesitant, because aside from GedMatch that has a plethora of genetic genealogy tools, I have seen no benefit to the participant to upload their DNA anyplace, other than Family Tree DNA (available for V3 23andMe and V1 Ancestry only).

Any serious genealogist is going to test at least at Family Tree DNA and Ancestry, both, and upload to GedMatch. My Heritage was “just another upload site” with no tools, not even matching initially.

However, in September, MyHeritage implemented matching, although they have had a series of what I hope are “startup issues,” with numerous invalid matches, apparently resulting from their usage of imputation.

Imputation is when a vendor infers what they think your DNA will look like in regions where other vendors test, and your vendor doesn’t. The best example would be the 300,000 or so Ancestry locations that are unique to the Ancestry V2 chip. Imputation would result in a vendor “inferring” or imputing your results for these 300,000 locations based on…well, we don’t exactly know based on what. But we do know it cannot be accurate.  It’s not your DNA.

In the midst of this, in October, 23andMe announced on their forum that they had severed a previous business relationship with MyHeritage where 23andMe allowed customers to link to MyHeritage trees in lieu of having customer trees directly on the 23andMe site.  This approach had been problematic because customers are only allowed 250 individuals in their tree for free, and anything above that requires a MyHeritage subscription.  Currently 23andMe has no tree capability.

It appears that MyHeritage refined their DNA matching routines at least somewhat, because many of the bogus matches were gone in November when they announced that their beta was complete and that they were going to sell their own autosomal DNA tests. However, matching issues have not disappeared or been entirely resolved.

While Family Tree DNA’s lab will be processing the MyHeritage autosomal tests, the results will NOT be automatically placed in the Family Tree DNA data base.

MyHeritage will be doing their own matching within their own database. There are no comparison tools, tree matching or ethnicity estimates today, but My Heritage says they will develop a chromosome browser and ethnicity estimates. However, it is NOT clear whether these will be available for free to individuals who have transferred their results into MyHeritage or if they will only be available to people who tested through MyHeritage.

2016-myheritage-matches

For the record, I have 28 matches today at MyHeritage.

2016-myheritage-second-match

I found that my second closest match at MyHeritage is also at Ancestry.

2016-myheritage-at-ancestry

At MyHeritage, they report that I match this individual on a total of 64.1 cM, across 7 segments, with the largest segment being 14.9 cM.

Ancestry reports this same match at 8.3 cM total across 1 segment, which of course means that the longest segment is also 8.3 cM.

Ancestry estimates the relationship as 5th to 8th cousin, and MyHeritage estimates it as 2nd to 4th.

While I think Ancestry’s Timber strips out too much DNA, there is clearly a HUGE difference in the reported results and the majority of this issue likely lies with the MyHeritage DNA imputation and matching routines.

I uploaded my Family Tree DNA autosomal file to MyHeritage, so MyHeritage is imputing at least 300,000 SNPs for me – almost half of the SNPs needed to match to Ancestry files.  They are probably imputing that many for my match’s file too, so that we have an equal number of SNPs for comparison.  Combined, this would mean that my match and I are comparing 382,000 actual SNPs that we both tested, and roughly 600,000 SNPs that we did not test and were imputed.  No wonder the MyHeritage numbers are so “off.”

My Heritage has a long way to go before they are a real player in this arena. However, My Heritage has potential, as they have a large subscriber base in Europe, where we desperately need additional testers – so I’m hopeful that they can attract additional genealogists that are willing to test from areas that are under-represented to date.

My Heritage got off to a bit of a rocky start by requiring users to relinquish the rights to their DNA, but then changed their terms in May, according to Judy Russell’s blog.

All vendors can change their terms at any time, in a positive or negative direction, so I would strongly encourage all individuals considering utilizing any testing company or upload service to closely read all the legal language, including Terms and Conditions and any links found in the Terms and Conditions.

Please note that MyHeritage is a subscription genealogy site, similar to Ancestry.  MyHeritage also owns Geni.com.  One site, MyHeritage, allows individual trees and the other, Geni, embraces the “one world tree” model.  For a comparison of the two, check out Judy Russell’s articles, here and here.  Geni has also embraced DNA by allowing uploads from Family Tree DNA of Y, mitochondrial and autosomal, but the benefits and possible benefits are much less clear.

If the MyHeritage story sounds like a confusing soap opera, it is.  Let’s hope that 2017 brings both clarity and improvements.

Living DNA

Living DNA is a company out of the British Isles with a new test that purports to provide you with a breakdown of your ethnicity and the locations of your ancestral lines within 21 regions in the British Isles.  Truthfully, I’m very skeptical, but open minded.

They have had my kit for several weeks now, and testing has yet to begin.  I’ll write about the results when I receive them.  So far, I don’t know of anyone who has received results.

2016-living-dna

Genos

I debated whether or not I should include Genos, because they are not a test for genealogy and are medically focused. However, I am including them because they have launched a new model for genetic testing wherein your full exome is tested, you receive the results along with information on the SNPs where mutations are found. You can then choose to be involved with research programs in the future, if you wish, or not.

That’s a vastly different model that the current approach taken by 23andMe and Ancestry where you relinquish your rights to the sale of your DNA when you sign up to test.  I like this new approach with complete transparency, allowing the customer to decide the fate of their DNA. I wrote about the Genos test and the results, here.

Third Parties

Individuals sometimes create and introduce new tools to assist genealogists with genetic genealogy and analysis.

I have covered these extensively over the years.

GedMatch, WikiTree, DNAGedcom.com and Kitty Cooper’s tools remain my favorites.

I love Kitty’s Ancestor Chromosome Mapper which maps the segments identified with your ancestors on your chromosomes. I just love seeing which ancestors’ DNA I carry on which chromosomes.  Somehow, this makes me feel closer to them.  They’re not really gone, because they still exist in me and other descendants as well.

Roberta's ancestor map2

In order to use Kitty’s tool, you’ll have to have mapped at least some of your autosomal DNA to ancestors.

The Autosomal DNA Segment Analyzer written by Don Worth and available at DNAGedcom is still one of my favorite tools for quick, visual and easy to understand segment matching results.

ADSA Crumley cluster

GedMatch has offered a triangulation tool for some time now, but recently introduced a new Triangulation Groups tool.

2016-gedmatch-triangulation-groups

I have not utilized this tool extensively but it looks very interesting. Unfortunately, there is no explanation or help function available for what this tool is displaying or how to understand and interpret the results. Hopefully, that will be added soon, as I think it would be possible to misinterpret the output without educational material.

GedMatch also introduced their “Evil Twin” tool, which made me laugh when I saw the name.  Using parental phasing, you can phase your DNA to your parent or parents at GedMatch, creating kits that only have your mother’s half of your DNA, or your father’s half.  These phased kits allow you to see your matches that come from that parent, only.  However, the “Evil Twin” feature creates a kit made up of the DNA that you DIDN’T receive from that parent – so in essence it’s your other half, your evil twin – you know, that person who got blamed for everything you “didn’t do.”  In any case, this allows you to see the matches to the other half of your parent’s DNA that do not show up as your matches.

Truthfully, the Evil Twin tool is interesting, but since you have to have that parent’s DNA to phase against in the first place, it’s just as easy to look at your parent’s matches – at least for me.

Others offer unique tools that are a bit different.

DNAadoption.com offers tools, search and research techniques, especially for adoptees and those looking to identify a parent or grandparents, but perhaps even more important, they offer genetic genealogy classes including basic and introductory.

I send all adoptees in their direction, but I encourage everyone to utilize their classes.

WikiTree has continued to develop and enhance their DNA offerings.  While WikiTree is not a testing service nor do they offer autosomal data tools like Family Tree DNA and GedMatch, they do allow individuals to discover whether anyone in their ancestral line has tested their Y, mitochondrial or autosomal DNA.

Specifically, you can identify the haplogroup of any male or female ancestor if another individual from that direct lineage has tested and provided that information for that ancestor on WikiTree.  While I am generally not a fan of the “one world tree” types of implementations, I am a fan of WikiTree because of their far-sighted DNA comparisons, the fact that they actively engage their customers, they listen and they expend a significant amount of effort making sure they “get it right,” relative to DNA. Check out WikiTree’s article,  Putting DNA Results Into Action, for how to utilize their DNA Features.

2016-wikitree-peter-roberts

Thanks particularly to Chris Whitten at WikiTree and Peter Roberts for their tireless efforts.  WikiTree is the only vendor to offer the ability to discover the Y and mtDNA haplogroups of ancestors by searching trees.

All of the people creating the tools mentioned above, to the best of my knowledge, are primarily volunteers, although GedMatch does charge a small subscription service for their high end tools, including the triangulation and evil twin tools.  DNAGedcom does as well.  Wikitree generates some revenue for the site through ads on pages of non-members. DNAAdoption charges nominally for classes but they do have need-based scholarships. Kitty has a donation link on her website and all of these folks would gladly accept donations, I’m sure.  Websites and everything that goes along with them aren’t free.  Donations are a nice way to say thank you.

What Defined 2016

I have noticed two trends in the genetic genealogy industry in 2016, and they are intertwined – ethnicity and education.

First, there is an avalanche of new testers, many of whom are not genetic genealogists.

Why would one test if they weren’t a genetic genealogist?

The answer is simple…

Ethnicity.

Or more specifically, the targeted marketing of ethnicity.  Ethnicity testing looks like an easy, quick answer to a basic human question, and it sells kits.

Ethnicity

“Kim just wanted to know who she was.”

I have to tell you, these commercials absolutely make me CRINGE.

Yes, they do bring additional testers into the community, BUT carrying significantly misset expectations. If you’re wondering about WHY I would suggest that ethnicity results really cannot tell you “who you are,” check out this article about ethnicity estimates.

And yes, that’s what they are, estimates – very interesting estimates, but estimates just the same.  Estimates that provide important and valid hints and clues, but not definitive answers.

ESTIMATES.

Nothing more.

Estimates based on proprietary vendor algorithms that tend to be fairly accurate at the continental level, and not so much within continents – in particular, not terribly accurate within Europe. Not all of this can be laid a the vendor’s feet.  For example, DNA testing is illegal in France.  Not to mention, genetic genealogy and population genetics is still a new and emerging field.  We’re on the frontier, folks.

The ethnicity results one receives from the 3 major vendors (Ancestry, Family Tree DNA and 23andMe) and the various tools at GedMatch don’t and won’t agree – because they use different reference populations, different matching routines, etc.  Not to mention people and populations move around and have moved around.

The next thing that happens, after these people receive their results, is that we find them on the Facebook groups asking questions like, “Why doesn’t my full blooded Native American grandmother show up?” and “I just got my Ancestry results back. What do I do?”  They mean that question quite literally.

I’m not making fun of these people, or light of the situation. Their level of frustration and confusion is evident. I feel sorry for them…but the genetic genealogy community and the rest of us are left with applying ointment and Band-Aids.  Truthfully, we’re out-numbered.

Because of the expectations, people who test today don’t realize that genetic testing is a TOOL, it’s not an ANSWER. It’s only part of the story. Oh, and did I mention, ethnicity is only an ESTIMATE!!!

But an estimate isn’t what these folks are expecting. They are expecting “the answer,” their own personal answer, which is very, very unfortunate, because eventually they are either unhappy or blissfully unaware.

Many become unhappy because they perceive the results to be in error without understanding anything about the technology or what information can reasonably be delivered, or they swallow “the answer” lock stock and barrel, again, without understanding anything about the technology.

Ethnicity is fun, it isn’t “bad” but the results need to be evaluated in context with other information, such as Y and mitochondrial haplogroups, genealogical records and ethnicity results from the other major testing companies.

Fortunately, we can recruit some of the ethnicity testers to become genealogists, but that requires education and encouragement. Let’s hope that those DNA ethnicity results light the fires of curiosity and that we can fan those flames!

Education

The genetic genealogy community desperately needs educational resources, in part as a result of the avalanche of new testers – approximately 1 million a year, and that estimate may be low. Thankfully, we do have several education options – but we can always use more.  Unfortunately, the learning curve is rather steep.

My blog offers just shy of 800 articles, all key word searchable, but one has to first find the blog and want to search and learn, as opposed to being handed “the answer.”

Of course, the “Help” link is always a good place to start as are these articles, DNA Testing for Genealogy 101 and Autosomal DNA Testing 101.  These two articles should be “must reads” for everyone who has DNA tested, or wants to, for that matter.  Tips and Tricks for Contact Success is another article that is immensely helpful to people just beginning to reach out.

In order to address the need for basic understanding of autosomal DNA principles, tools and how to utilize them, I began the “Concepts” series in February 2016. To date I offer the following 15 articles about genetic genealogy concepts. To be clear, DNA testing is only the genetic part of genetic genealogy, the genealogical research part being the second half of the equation.

My blog isn’t the only resource of course.

Kelly Wheaton provides 19 free lessons in her Beginners Guide to Genetic Genealogy.

Other blogs I highly recommend include:

Excellent books in print that should be in every genetic genealogist’s library:

And of course, the ISOGG Wiki.

Online Conference Resources

The good news and bad news is that I’m constantly seeing a genetic genealogy seminar, webinar or symposium hosted by a group someplace that is online, and often free. When I see names I recognize as being reputable, I am delighted that there is so much available to people who want to learn.

And for the record, I think that includes everyone. Even professional genetic genealogists watch these sessions, because you just never know what wonderful tidbit you’re going to pick up.  Learning, in this fast moving field, is an everyday event.

The bad news is that I can’t keep track of everything available, so I don’t mean to slight any resource.  Please feel free to post additional resources in the comments.

You would be hard pressed to find any genealogy conference, anyplace, today that didn’t include at least a few sessions about genetic genealogy. However, genetic genealogy has come of age and has its own dedicated conferences.

Dr. Maurice Gleeson, the gentleman who coordinates Genetic Genealogy Ireland films the sessions at the conference and then makes them available, for free, on YouTube. This link provides a list of the various sessions from 2016 and past years as well. Well worth your time!  A big thank you to Maurice!!!

The 19 video series from the I4GG Conference this fall is now available for $99. This series is an excellent opportunity for genetic genealogy education.

As always, I encourage project administrators to attend the Family Tree DNA International Conference on Genetic Genealogy. The sessions are not filmed, but the slides are made available after the conference, courtesy of the presenters and Family Tree DNA. You can view the presentations from 2015 and 2016 at this link.

Jennifer Zinck attended the conference and published her excellent notes here and here, if you want to read what she had to say about the sessions she attended. Thankfully, she can type much faster and more accurately than I can! Thank you so much Jennifer.

If you’d like to read about the unique lifetime achievement awards presented at the conference this year to Bennett Greenspan and Max Blankfeld, the founders of Family Tree DNA, click here. They were quite surprised!  This article also documents the history of genetic genealogy from the beginning – a walk down memory lane.

The 13th annual Family Tree DNA conference which will be held November 10-12, 2017 at the Hyatt Regency North Houston. Registration is always limited due to facility size, so mark your calendars now, watch for the announcement and be sure to register in time.

Summary

2016 has been an extremely busy year. I think my blog has had more views, more comments and by far, more questions, than ever before.

I’ve noticed that the membership in the ISOGG Facebook group, dedicated to genetic genealogy, has increased by about 50% in the past year, from roughly 8,000 members to just under 12,000. Other social media groups have been formed as well, some focused on specific aspects of genetic genealogy, such as specific surnames, adoption search, Native American or African American heritage and research.

The genetic aspect of genealogy has become “normal” today, with most genealogists not only accepting DNA testing, but embracing the various tools and what they can do for us in terms of understanding our ancestors, tracking them, and verifying that they are indeed who we think they are.

I may have to explain the three basic kinds of DNA testing and how they are used today, but no longer do I have to explain THAT DNA testing for genealogy exists and that it’s legitimate.

I hope that each of us can become an ambassador for genetic genealogy, encouraging others to test, with appropriate expectations, and helping to educate, enlighten and encourage. After all, the more people who test and are excited about the results, the better for everyone else.

Genetic genealogy is and can only be a collaborative team sport.

Here’s wishing you many new cousins and discoveries in 2017.

Happy New Year!!!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research