Y DNA: Step-by-Step Big Y Analysis

Many males take the Big Y-700 test offered by FamilyTreeDNA, so named because testers receive the most granular haplogroup SNP results in addition to 700+ included STR marker results. If you’re not familiar with those terms, you might enjoy the article, STRs vs SNPs, Multiple DNA Personalities.

The Big Y test gives testers the best of both, along with contributing to the building of the Y phylotree. You can read about the additions to the Y tree via the Big Y, plus how it helped my own Estes project, here.

Some men order this test of their own volition, some at the request of a family member, and some in response to project administrators who are studying a specific topic – like a particular surname.

The Big Y-700 test is the most complete Y DNA test offered, testing millions of locations on the Y chromosome to reveal mutations, some unique and never before discovered, many of which are useful to genealogists. The Big Y-700 includes the traditional Y DNA STR marker testing along with SNP results that define haplogroups. Translated, both types of test results are compared to other men for genealogy, which is the primary goal of DNA testing.

Being a female, I often recruit males in my family surname lines and sponsor testing. My McNiel line, historic haplogroup R-M222, has been particularly frustrating both genealogically as well as genetically after hitting a brick wall in the 1700s. My McNeill cousin agreed to take a Big Y test, and this analysis walks through the process of understanding what those results are revealing.

After my McNeill cousin’s Big Y results came back from the lab, I spent a significant amount of time turning over every leaf to extract as much information as possible, both from the Big Y-700 DNA test itself and as part of a broader set of intertwined genetic information and genealogical evidence.

I invite you along on this journey as I explain the questions we hoped to answer and then evaluate Big Y DNA results along with other information to shed light on those quandaries.

I will warn you, this article is long because it’s a step-by-step instruction manual for you to follow when interpreting your own Big Y results. I’d suggest you simply read this article the first time to get a feel for the landscape, before working through the process with your own results. There’s so much available that most people leave laying on the table because they don’t understand how to extract the full potential of these test results.

If you’d like to read more about the Big Y-700 test, the FamilyTreeDNA white paper is here, and I wrote about the Big Y-700 when it was introduced, here.

You can read an overview of Y DNA, here, and Y DNA: The Dictionary of DNA, here.

Ok, get yourself a cuppa joe, settle in, and let’s go!

George and Thomas McNiel – Who Were They?

George and Thomas McNiel appear together in Spotsylvania County, Virginia records. Y DNA results, in combination with early records, suggest that these two men were brothers.

I wrote about discovering that Thomas McNeil’s descendant had taken a Y DNA test and matched George’s descendants, here, and about my ancestor George McNiel, here.

McNiel family history in Wilkes County, NC, recorded in a letter written in 1898 by George McNiel’s grandson tells us that George McNiel, born about 1720, came from Scotland with his two brothers, John and Thomas. Elsewhere, it was reported that the McNiel brothers sailed from Glasgow, Scotland and that George had been educated at the University of Edinburgh for the Presbyterian ministry but had a change of religious conviction during the voyage. As a result, a theological tiff developed that split the brothers.

George, eventually, if not immediately, became a Baptist preacher. His origins remain uncertain.

The brothers reportedly arrived about 1750 in Maryland, although I have no confirmation. By 1754, Thomas McNeil appeared in the Spotsylvania County, VA records with a male being apprenticed to him as a tailor. In 1757, in Spotsylvania County, the first record of George McNeil showed James Pey being apprenticed to learn the occupation of tailor.

If George and Thomas were indeed tailors, that’s not generally a country occupation and would imply that they both apprenticed as such when they were growing up, wherever that was.

Thomas McNeil is recorded in one Spotsylvania deed as being from King and Queen County, VA. If this is the case, and George and Thomas McNiel lived in King and Queen, at least for a time, this would explain the lack of early records, as King and Queen is a thrice-burned county. If there was a third brother, John, I find no record of him.

My now-deceased cousin, George McNiel, initially tested for the McNiel Y DNA and also functioned for decades as the family historian. George, along with his wife, inventoried the many cemeteries of Wilkes County, NC.

George believed through oral history that the family descended from the McNiel’s of Barra.

McNiel Big Y Kisumul

George had this lovely framed print of Kisimul Castle, seat of the McNiel Clan on the Isle of Barra, proudly displayed on his wall.

That myth was dispelled with the initial DNA testing when our line did not match the Barra line, as can be seen in the MacNeil DNA project, much to George’s disappointment. As George himself said, the McNiel history is both mysterious and contradictory. Amen to that, George!

McNiel Big Y Niall 9 Hostages

However, in place of that history, we were instead awarded the Niall of the 9 Hostages badge, created many years ago based on a 12 marker STR result profile. Additionally, the McNiel DNA was assigned to haplogroup R-M222. Of course, today’s that’s a far upstream haplogroup, but 15+ years ago, we had only a fraction of the testing or knowledge that we do today.

The name McNeil, McNiel, or however you spell it, resembles Niall, so on the surface, this made at least some sense. George was encouraged by the new information, even though he still grieved the loss of Kisimul Castle.

Of course, this also caused us to wonder about the story stating our line had originated in Scotland because Niall of the 9 Hostages lived in Ireland.

Niall of the 9 Hostages

Niall of the 9 Hostages was reportedly a High King of Ireland sometime between the 6th and 10th centuries. However, actual historical records place him living someplace in the mid-late 300s to early 400s, with his death reported in different sources as occurring before 382 and alternatively about 411. The Annals of the Four Masters dates his reign to 379-405, and Foras Feasa ar Eirinn says from 368-395. Activities of his sons are reported between 379 and 405.

In other words, Niall lived in Ireland about 1500-1600 years ago, give or take.

Migration

Generally, migration was primarily from Scotland to Ireland, not the reverse, at least as far as we know in recorded history. Many Scottish families settled in the Ulster Plantation beginning in 1606 in what is now Northern Ireland. The Scots-Irish immigration to the states had begun by 1718. Many Protestant Scottish families immigrated from Ireland carrying the traditional “Mc” names and Presbyterian religion, clearly indicating their Scottish heritage. The Irish were traditionally Catholic. George could have been one of these immigrants.

We have unresolved conflicts between the following pieces of McNeil history:

  • Descended from McNeil’s of Barra – disproved through original Y DNA testing.
  • Immigrated from Glasgow, Scotland, and schooled in the Presbyterian religion in Edinburgh.
  • Descended from the Ui Neill dynasty, an Irish royal family dominating the northern half of Ireland from the 6th to 10th centuries.

Of course, it’s possible that our McNiel/McNeil line could have been descended from the Ui Neill dynasty AND also lived in Scotland before immigrating.

It’s also possible that they immigrated from Ireland, not Scotland.

And finally, it’s possible that the McNeil surname and M222 descent are not related and those two things are independent and happenstance.

A New Y DNA Tester

Since cousin George is, sadly, deceased, we needed a new male Y DNA tester to represent our McNiel line. Fortunately, one such cousin graciously agreed to take the Big Y-700 test so that we might, hopefully, answer numerous questions:

  • Does the McNiel line have a unique haplogroup, and if so, what does it tell us?
  • Does our McNiel line descend from Ireland or Scotland?
  • Where are our closest geographic clusters?
  • What can we tell by tracing our haplogroup back in time?
  • Do any other men match the McNiel haplogroup, and what do we know about their history?
  • Does the Y DNA align with any specific clans, clan history, or prehistory contributing to clans?

With DNA, you don’t know what you don’t know until you test.

Welcome – New Haplogroup

I was excited to see my McNeill cousin’s results arrive. He had graciously allowed me access, so I eagerly took a look.

He had been assigned to haplogroup R-BY18350.

McNiel Big Y branch

Initially, I saw that indeed, six men matched my McNeill cousin, assigned to the same haplogroup. Those surnames were:

  • Scott
  • McCollum
  • Glass
  • McMichael
  • Murphy
  • Campbell

Notice that I said, “were.” That’s right, because shortly after the results were returned, based on markers called private variants, Family Tree DNA assigned a new haplogroup to my McNeill cousin.

Drum roll please!!!

Haplogroup R-BY18332

McNiel Big Y BY18332

Additionally, my cousin’s Big Y test resulted in several branches being split, shown on the Block Tree below.

McNIel Big Y block tree

How cool is this!

This Block Tree graphic shows, visually, that our McNiel line is closest to McCollum and Campbell testers, and is a brother clade to those branches showing to the left and right of our new R-BY18332. It’s worth noting that BY25938 is an equivalent SNP to BY18332, at least today. In the future, perhaps another tester will test, allowing those two branches to be further subdivided.

Furthermore, after the new branches were added, Cousin McNeill has no more Private Variants, which are unnamed SNPs. There were all utilized in naming additional tree branches!

I wrote about the Big Y Block Tree here.

Niall (Or Whoever) Was Prolific

The first thing that became immediately obvious was how successful our progenitor was.

McNiel Big Y M222 project

click to enlarge

In the MacNeil DNA project, 38 men with various surname spellings descend from M222. There are more in the database who haven’t joined the MacNeil project.

Whoever originally carried SNP R-M222, someplace between 2400 and 5900 years ago, according to the block tree, either had many sons who had sons, or his descendants did. One thing is for sure, his line certainly is in no jeopardy of dying out today.

The Haplogroup R-M222 DNA Project, which studies this particular haplogroup, reads like a who’s who of Irish surnames.

Big Y Match Results

Big Y matches must have no more than 30 SNP differences total, including private variants and named SNPs combined. Named SNPs function as haplogroup names. In other words, Cousin McNeill’s terminal SNP, meaning the SNP furthest down on the tree, R-BY18332, is also his haplogroup name.

Private variants are mutations that have occurred in the line being tested, but not yet in other lines. Occurrences of private variants in multiple testers allow the Private Variant to be named and placed on the haplotree.

Of course, Family Tree DNA offers two types of Y DNA testing, STR testing which is the traditional 12, 25, 37, 67 and 111 marker testing panels, and the Big Y-700 test which provides testers with:

  • All 111 STR markers used for matching and comparison
  • Another 589+ STR markers only available through the Big Y test increasing the total STR markers tested from 111 to minimally 700
  • A scan of the Y chromosome, looking for new and known SNPs and STR mutations

Of course, these tests keep on giving, both with matching and in the case of the Big Y – continued haplogroup discovery and refinement in the future as more testers test. The Big Y is an investment as a test that keeps on giving, not just a one-time purchase.

I wrote about the Big Y-700 when it was introduced here and a bit later here.

Let’s see what the results tell us. We’ll start by taking a look at the matches, the first place that most testers begin.

Mcniel Big Y STR menu

Regular Y DNA STR matching shows the results for the STR results through 111 markers. The Big Y section, below, provides results for the Big Y SNPs, Big Y matches and additional STR results above 111 markers.

McNiel Big Y menu

Let’s take a look.

STR and SNP Testing

Of Cousin McNeil’s matches, 2 Big Y testers and several STR testers carry some variant of the Neal, Neel, McNiel, McNeil, O’Neil, etc. surnames by many spellings.

While STR matching is focused primarily on a genealogical timeframe, meaning current to roughly 500-800 years in the past, SNP testing reaches much further back in time.

  • STR matching reaches approximately 500-800 years.
  • Big Y matching reaches approximately 1500 years.
  • SNPs and haplogroups reach back infinitely, and can be tracked historically beyond the genealogical timeframe, shedding light on our ancestors’ migration paths, helping to answer the age-old question of “where did we come from.”

These STR and Big Y time estimates are based on a maximum number of mutations for testers to be considered matches paired with known genealogy.

Big Y results consider two men a match if they have 30 or fewer total SNP differences. Using NGS (next generation sequencing) scan technology, the targeted regions of the Y chromosome are scanned multiple times, although not all regions are equally useful.

Individually tested SNPs are still occasionally available in some cases, but individual SNP testing has generally been eclipsed by the greatly more efficient enriched technology utilized with Big Y testing.

Think of SNP testing as walking up to a specific location and taking a look, while NGS scan technology is a drone flying over the entire region 30-50 times looking multiple times to be sure they see the more distant target accurately.

Multiple scans acquiring the same read in the same location, shown below in the Big Y browser tool by the pink mutations at the red arrow, confirm that NGS sequencing is quite reliable.

McNiel Big Y browser

These two types of tests, STR panels 12-111 and the SNP-based Big Y, are meant to be utilized in combination with each other.

STR markers tend to mutate faster and are less reliable, experiencing frustrating back mutations. SNPs very rarely experience this level of instability. Some regions of the Y chromosome are messier or more complicated than others, causing problems with interpreting reads reliably.

For purposes of clarity, the string of pink A reads above is “not messy,” and “A” is very clearly a mutation because all ~39 scanned reads report the same value of “A,” and according to the legend, all of those scans are high quality. Multiple combined reads of A and G, for example, in the same location, would be tough to call accurately and would be considered unreliable.

You can see examples of a few scattered pink misreads, above.

The two different kinds of tests produce results for overlapping timeframes – with STR mutations generally sifting through closer relationships and SNPs reaching back further in time.

Many more men have taken the Y DNA STR tests over the last 20 years. The Big Y tests have only been available for the past handful of years.

STR testing produces the following matches for my McNiel cousin:

STR Level STR Matches STR Matches Who Took the Big Y % STR Who Took Big Y STR Matches Who Also Match on the Big Y
12 5988 796 13 52
25 6660 725 11 57
37 878 94 11 12
67 1225 252 21 23
111 4 2 50 1

Typically, one would expect that all STR matches that took the Big Y would match on the Big Y, since STR results suggest relationships closer in time, but that’s not the case.

  • Many STR testers who have taken the Big Y seem to be just slightly too distant to be considered a Big Y match using SNPs, which flies in the face of conventional wisdom.
  • However, this could easily be a function of the fact that STRs mutate both backward and forwards and may have simply “happened” to have mutated to a common value – which suggests a closer relationship than actually exists.
  • It could also be that the SNP matching threshold needs to be raised since the enhanced and enriched Big Y-700 technology now finds more mutations than the older Big Y-500. I would like to see SNP matching expanded to 40 from 30 because it seems that clan connections may be being missed. Thirty may have been a great threshold before the more sensitive Big Y-700 test revealed more mutations, which means that people hit that 30 threshold before they did with previous tests.
  • Between the combination of STRs and SNPs mutating at the same time, some Big Y matches are pushed just out of range.

In a nutshell, the correlation I expected to find in terms of matching between STR and Big Y testing is not what I found. Let’s take a look at what we discovered.

It’s worth noting that the analysis is easier if you are working together with at least your closest matches or have access via projects to at least some of their results. You can see common STR values to 111 in projects, such as surname projects. Project administrators can view more if project members have allowed access.

Unexpected Discoveries and Gotchas

While I did expect STR matches to also match on the Big Y, I don’t expect the Big Y matches to necessarily match on the STR tests. After all, the Big Y is testing for more deep-rooted history.

Only one of the McNiel Big Y matches also matches at all levels of STR testing. That’s not surprising since Big Y matching reaches further back in time than STR testing, and indeed, not all STR testers have taken a Big Y test.

Of my McNeill cousin’s closest Big Y matches, we find the following relative to STR matching.

Surname Ancestral Location Big Y Variant/SNP Difference STR Match Level
Scott 1565 in Buccleuch, Selkirkshire, Scotland 20 12, 25, 37, 67
McCollum Not listed 21 67 only
Glass 1618 in Banbridge, County Down, Ireland 23 12, 25, 67
McMichael 1720 County Antrim, Ireland 28 67 only
Murphy Not listed 29 12, 25, 37, 67
Campbell Scotland 30 12, 25, 37, 67, 111

It’s ironic that the man who matches on all STR levels has the most variants, 30 – so many that with 1 more, he would not have been considered a Big Y match at all.

Only the Campbell man matches on all STR panels. Unfortunately, this Campbell male does not match the Clan Campbell line, so that momentary clan connection theory is immediately put to rest.

Block Tree Matches – What They Do, and Don’t, Mean

Note that a Carnes male, the other person who matches my McNeill cousin at 111 STR markers and has taken a Big Y test does not match at the Big Y level. His haplogroup BY69003 is located several branches up the tree, with our common ancestor, R-S588, having lived about 2000 years ago. Interestingly, we do match other R-S588 men.

This is an example where the total number of SNP mutations is greater than 30 for these 2 men (McNeill and Carnes), but not for my McNeill cousin compared with other men on the same S588 branch.

McNiel Big Y BY69003

By searching for Carnes on the block tree, I can view my cousin’s match to Mr. Carnes, even though they don’t match on the Big Y. STR matches who have taken the Big Y test, even if they don’t match at the Big Y level, are shown on the Block Tree on their branch.

By clicking on the haplogroup name, R-BY69003, above, I can then see three categories of information about the matches at that haplogroup level, below.

McNiel Big Y STR differences

click to enlarge

By selecting “Matches,” I can see results under the column, “Big Y.” This does NOT mean that the tester matches either Mr. Carnes or Mr. Riker on the Big Y, but is telling me that there are 14 differences out of 615 STR markers above 111 markers for Mr. Carnes, and 8 of 389 for Mr. Riker.

In other words, this Big Y column is providing STR information, not indicating a Big Y match. You can’t tell one way or another if someone shown on the Block Tree is shown there because they are a Big Y match or because they are an STR match that shares the same haplogroup.

As a cautionary note, your STR matches that have taken the Big Y ARE shown on the block tree, which is a good thing. Just don’t assume that means they are Big Y matches.

The 30 SNP threshold precludes some matches.

My research indicates that the people who match on STRs and carry the same haplogroup, but don’t match at the Big Y level, are every bit as relevant as those who do match on the Big Y.

McNIel Big Y block tree menu

If you’re not vigilant when viewing the block tree, you’ll make the assumption that you match all of the people showing on the Block Tree on the Big Y test since Block Tree appears under the Big Y tools. You have to check Big Y matches specifically to see if you match people shown on the Block Tree. You don’t necessarily match all of them on the Big Y test, and vice versa, of course.

You match Block Tree inhabitants either:

  • On the Big Y, but not the STR panels
  • On the Big Y AND at least one level of STRs between 12 and 111, inclusive
  • On STRs to someone who has taken the Big Y test, but whom you do not match on the Big Y test

Big Y-500 or Big Y-700?

McNiel Big Y STR differences

click to enlarge

Looking at the number of STR markers on the matches page of the Block Tree for BY69003, above, or on the STR Matches page is the only way to determine whether or not your match took the Big Y-700 or the Big Y-500 test.

If you add 111 to the Big Y SNP number of 615 for Mr. Carnes, the total equals 726, which is more than 700, so you know he took the Big Y-700.

If you add 111 to 389 for Mr. Riker, you get 500, which is less than 700, so you know that he took the Big Y-500 and not the Big Y-700.

There are still a very small number of men in the database who did not upgrade to 111 when they ordered their original Big Y test, but generally, this calculation methodology will work. Today, all Big Y tests are upgraded to 111 markers if they have not already tested at that level.

Why does Big Y-500 vs Big Y-700 matter? The enriched chemistry behind the testing technology improved significantly with the Big Y-700 test, enhancing Y-DNA results. I was an avowed skeptic until I saw the results myself after upgrading men in the Estes DNA project. In other words, if Big Y-500 testers upgrade, they will probably have more SNPs in common.

You may want to contact your closest Big Y-500 matches and ask if they will consider upgrading to the Big Y-700 test. For example, if we had close McNiel or similar surname matches, I would do exactly that.

Matching Both the Big Y and STRs – No Single Source

There is no single place or option to view whether or not you match someone BOTH on the Big Y AND STR markers. You can see both match categories individually, of course, but not together.

You can determine if your STR matches took the Big Y, below, and their haplogroup, which is quite useful, but you can’t tell if you match them at the Big Y level on this page.

McNiel Big Y STR match Big Y

click to enlarge

Selecting “Display Only Matches With Big Y” means displaying matches to men who took the Big Y test, not necessarily men you match on the Big Y. Mr. Conley, in the example above, does not match my McNeill cousin on the Big Y but does match him at 12 and 25 STR markers.

I hope FTDNA will add three display options:

  • Select only men that match on the Big Y in the STR panel
  • Add an option for Big Y on the advanced matches page
  • Indicate men who also match on STRs on the Big Y match page

It was cumbersome and frustrating to have to view all of the matches multiple times to compile various pieces of information in a separate spreadsheet.

No Big Y Match Download

There is also no option to download your Big Y matches. With a few matches, this doesn’t matter, but with 119 matches, or more, it does. As more people test, everyone will have more matches. That’s what we all want!

What you can do, however, is to download your STR matches from your match page at levels 12-111 individually, then combine them into one spreadsheet. (It would be nice to be able to download them all at once.)

McNiel Big Y csv

You can then add your Big Y matches manually to the STR spreadsheet, or you can simply create a separate Big Y spreadsheet. That’s what I chose to do after downloading my cousin’s 14,737 rows of STR matches. I told you that R-M222 was prolific! I wasn’t kidding.

This high number of STR matches also perfectly illustrates why the Big Y SNP results were so critical in establishing the backbone relationship structure. Using the two tools together is indispensable.

An additional benefit to downloading STR results is that you can sort the STR spreadsheet columns in surname order. This facilitates easily spotting all spelling variations of McNiel, including words like Niel, Neal and such that might be relevant but that you might not notice otherwise.

Creating a Big Y Spreadsheet

My McNiel cousin has 119 Big Y-700 matches.

I built a spreadsheet with the following columns facilitating sorting in a number of ways, with definitions as follows:

McNiel Big Y spreadsheet

click to enlarge

  • First Name
  • Last Name – You will want to search matches on your personal page at Family Tree DNA by this surname later, so be sure if there is a hyphenated name to enter it completely.
  • Haplogroup – You’ll want to sort by this field.
  • Convergent – A field you’ll complete when doing your analysis. Convergence is the common haplogroup in the tree shared by you and your match. In the case of the green matches above, which are color-coded on my spreadsheet to indicate the closest matches with my McNiel cousin, the convergent haplogroup is BY18350.
  • Common Tree Gen – This column is the generations on the Block Tree shown to this common haplogroup. In the example above, it’s between 9 and 14 SNP generations. I’ll show you where to gather this information.
  • Geographic Location – Can be garnered from 4 sources. No color in that cell indicates that this information came from the Earliest Known Ancestor (EKA) field in the STR matches. Blue indicates that I opened the tree and pulled the location information from that source. Orange means that someone else by the same surname whom the tester also Y DNA matches shows this location. I am very cautious when assigning orange, and it’s risky because it may not be accurate. A fourth source is to use Ancestry, MyHeritage, or another genealogical resource to identify a location if an individual provides genealogical information but no location in the EKA field. Utilizing genealogy databases is only possible if enough information is provided to make a unique identification. John Smith 1700-1750 won’t do it, but Seamus McDougal (1750-1810) married to Nelly Anderson might just work.
  • STR Match – Tells me if the Big Y match also matches on STR markers, and if so, which ones. Only the first 111 markers are used for matching. No STR match generally means the match is further back in time, but there are no hard and fast rules.
  • Big Y Match – My original goal was to combine this information with the STR match spreadsheet. If you don’t wish to combine the two, then you don’t need this column.
  • Tree – An easy way for me to keep track of which matches do and do not have a tree. Please upload or create a tree.

You can also add a spreadsheet column for comments or contact information.

McNiel Big Y profile

You will also want to click your match’s name to display their profile card, paying particular attention to the “About Me” information where people sometimes enter genealogical information. Also, scan the Ancestral Surnames where the match may enter a location for a specific surname.

Private Variants

I added additional spreadsheet columns, not shown above, for Private Variant analysis. That level of analysis is beyond what most people are interested in doing, so I’m only briefly discussing this aspect. You may want to read along, so you at least understand what you are looking at.

Clicking on Private Variants in your Big Y Results shows your variants, or mutations, that are unnamed as SNPs. When they are named, they become SNPs and are placed on the haplotree.

The reference or “normal” state for the DNA allele at that location is shown as the “Reference,” and “Genotype” is the result of the tester. Reference results are not shown for each tester, because the majority are the same. Only mutations are shown.

McNiel Big Y private variants

There are 5 Private Variants, total, for my cousin. I’ve obscured the actual variant numbers and instead typed in 111111 and 222222 for the first two as examples.

McNiel Big Y nonmatching variants

In our example, there are 6 Big Y matches, with matches one and five having the non-matching variants shown above.

Non-matching variants mean that the match, Mr. Scott, in example 1, does NOT match the tester (my cousin) on those variants.

  • If the tester (you) has no mutation, you won’t have a Private Variant shown on your Private Variant page.
  • If the tester does have a Private Variant shown, and that variant shows ON their matches list of non-matching variants, it means the match does NOT match the tester, and either has the normal reference value or a different mutation. Explained another way, if you have a mutation, and that variant is listed on your match list of Non-Matching Variants, your match does NOT match you and does NOT have the same mutation.
  • If the match does NOT have the Private Variant on their list, that means the match DOES match the tester, and they both have the same mutation, making this Private Variant a candidate to be named as a new SNP.
  • If you don’t have a Private Variant listed, but it shows in the Non-Matching Variants of your match, that means you have the reference or normal value, and they have a mutation.

In example #1, above, the tester has a mutation at variant 111111, and 111111 is shown as a Non-Matching Variant to Mr. Scott, so Mr. Scott does NOT match the tester. Mr. Scott also does NOT match the tester at locations 222222 and 444444.

In example #5, 111111 is NOT shown on the Non-Matching Variant list, so Mr. Treacy DOES match the tester.

I have a terrible time wrapping my head around the double negatives, so it’s critical that I make charts.

On the chart below, I’ve listed the tester’s private variants in an individual column each, so 111111, 222222, etc.

For each match, I’ve copy and pasted their Non-Matching Variants in a column to the right of the tester’s variants, in the lavender region. In this example, I’ve typed the example variants into separate columns for each tester so you can see the difference. Remember, a non-matching variant means they do NOT match the tester’s mutation.

McNiel private variants spreadsheet

On my normal spreadsheet where the non-matching variants don’t have individuals columns, I then search for the first variant, 111111. If the variant does appear in the list, it means that match #1 does NOT have the mutation, so I DON’T put an X in the box for match #1 under 111111.

In the example above, the only match that does NOT have 111111 on their list of Non-Matching Variants is #5, so an X IS placed in that corresponding cell. I’ve highlighted that column in yellow to indicate this is a candidate for a new SNP.

You can see that no one else has the variant, 222222, so it truly is totally private. It’s not highlighted in yellow because it’s not a candidate to be a new SNP.

Everyone shares mutation 333333, so it’s a great candidate to become a new SNP, as is 555555.

Match #6 shares the mutation at 444444, but no one else does.

This is a manual illustration of an automated process that occurs at Family Tree DNA. After Big Y matches are returned, automated software creates private variant lists of potential new haplogroups that are then reviewed internally where SNPs are evaluated, named, and placed on the tree if appropriate.

If you follow this process and discover matches, you probably don’t need to do anything, as the automated review process will likely catch up within a few days to weeks.

Big Y Matches

In the case of the McNiel line, it was exciting to discover several private variants, mutations that were not yet named SNPs, found in several matches that were candidates to be named as SNPs and placed on the Y haplotree.

Sure enough, a few days later, my McNeill cousin had a new haplogroup assignment.

Most people have at least one Private Variant, locations in which they do NOT match another tester. When several people have these same mutations, and they are high-quality reads, the Private Variant qualifies to be added to the haplotree as a SNP, a task performed at FamilyTreeDNA by Michael Sager.

If you ever have the opportunity to hear Michael speak, please do so. You can watch Michael’s presentation at Genetic Genealogy Ireland (GGI) titled “The Tree of Mankind,” on YouTube, here, compliments of Maurice Gleeson who coordinates GGI. Maurice has also written about the Gleeson Y DNA project analysis, here.

As a result of Cousin McNeill’s test, six new SNPs have been added to the Y haplotree, the tree of mankind. You can see our new haplogroup for our branch, BY18332, with an equivalent SNP, BY25938, along with three sibling branches to the left and right on the tree.

McNiel Big Y block tree 4 branch

Big Y testing not only answers genealogical questions, it advances science by building out the tree of mankind too.

The surname of the men who share the same haplogroup, R-BY18332, meaning the named SNP furthest down the tree, are McCollum and Campbell. Not what I expected. I expected to find a McNeil who does match on at least some STR markers. This is exactly why the Big Y is so critical to define the tree structure, then use STR matches to flesh it out.

Taking the Big Y-700 test provided granularity between 6 matches, shown above, who were all initially assigned to the same branch of the tree, BY18350, but were subsequently divided into 4 separate branches. My McNiel cousin is no longer equally as distant from all 6 men. We now know that our McNiel line is genetically closer on the Y chromosome to Campbell and McCollum and further distant from Murphy, Scott, McMichael, and Glass.

Not All SNP Matches are STR Matches

Not all SNP matches are also STR matches. Some relationships are too far back in time. However, in this case, while each person on the BY18350 branches matches at some STR level, only the Campbell individual matches at all STR levels.

Remember that variants (mutations) are accumulating down both respective branches of the tree at the same time, meaning one per roughly every 100 years (if 100 is the average number we want to use) for both testers. A total of 30 variants or mutations difference, an average of 15 on each branch of the tree (McNiel and their match) would suggest a common ancestor about 1500 years ago, so each Big Y match should have a common ancestor 1500 years ago or closer. At least on average, in theory.

The Big Y test match threshold is 30 variants, so if there were any more mismatches with the Campbell male, they would not have been a Big Y match, even though they have the exact same haplogroup.

Having the same haplogroup means that their terminal SNP is identical, the SNP furthest down the tree today, at least until someone matches one of them on their Private Variants (if any remain unnamed) and a new terminal SNP is assigned to one or both of them.

Mutations, and when they happen, are truly a roll of the dice. This is why viewing all of your Big Y Block Tree matches is critical, even if they don’t show on your Big Y match list. One more variant and Campbell would have not been shown as a match, yet he is actually quite close, on the same branch, and matches on all STR panels as well.

SNPs Establish the Backbone Structure

I always view the block tree first to provide a branching tree structure, then incorporate STR matches into the equation. Both can equally as important to genealogy, but haplogroup assignment is the most accurate tool, regardless of whether the two individuals match on the Big Y test, especially if the haplogroups are relatively close.

Let’s work with the Block Tree.

The Block Tree

McNIel Big Y block tree menu

Clicking on the link to the Block Tree in the Big Y results immediately displays the tester’s branch on the tree, below.

click to enlarge

On the left side are SNP generation markers. Keep in mind that approximate SNP generations are marked every 5 generations. The most recent generations are based on the number of private variants that have not yet been assigned as branches on the tree. It’s possible that when they are assigned that they will be placed upstream someplace, meaning that placement will reduce the number of early branches and perhaps increase the number of older branches.

The common haplogroup of all of the branches shown here with the upper red arrow is R-BY3344, about 15 SNP generations ago. If you’re using 100 years per SNP generation, that’s about 1500 years. If you’re using 80 years, then 1200 years ago. Some people use even fewer years for calculations.

If some of the private variants in the closer branches disappear, then the common ancestral branch may shift to closer in time.

This tree will always be approximate because some branches can never be detected. They have disappeared entirely over time when no males exist to reproduce.

Conversely, subclades have been born since a common ancestor clade whose descendants haven’t yet tested. As more people test, more clades will be discovered.

Therefore, most recent common ancestor (MRCA) haplogroup ages can only be estimated, based on who has tested and what we know today. The tree branches also vary depending on whether testers have taken the Big Y-500 or the more sensitive Big Y-700, which detects more variants. The Y haplotree is a combination of both.

Big Y-500 results will not be as granular and potentially do not position test-takers as far down the tree as Big Y-700 results would if they upgraded. You’ll need to factor that into your analysis if you’re drawing genealogical conclusions based on these results, especially close results.

You’ll note that the direct path of descent is shown above with arrows from BY3344 through the first blue box with 5 equivalent SNPS, to the next white box, our branch, with two equivalent SNPs. Our McNeil ancestor, the McCollum tester, and the Campell tester have no unresolved private variants between them, which suggests they are probably closer in time than 10 generations back. You can see that the SNP generations are pushed “up” by the neighbor variants.

Because of the fact that private variants don’t occur on a clock cycle and occur in individual lines at an unsteady rate, we must use averages.

That means that when we look further “up” the tree, clicking generation by generation on the up arrow above BY3344, the SNP generations on the left side “adjust” based on what is beneath, and unseen at that level.

The Block Tree Adjusts

Note, in the example above, BY3344 is at SNP generation 15.

Next, I clicked one generation upstream, to R-S668.

McNiel Big Y block tree S668

click to enlarge

You can see that S668 is about 21 SNP generations upstream, and now BY3344 is listed as 20 generations, not 15. You can see our branch, BY3344, but you can no longer see subclades or our matches below that branch in this view.

You can, however, see two matches that descend through S668, brother branches to BY3344, red arrows at far right.

Clicking on the up arrow one more time shows us haplogroup S673, below, and the child branches. The three child branches on which the tester has matches are shown with red arrows.

McNiel Big Y S673

click to enlarge

You’ll immediately notice that now S668 is shown at 19 SNP generations, not 20, and S673 is shown at 20. This SNP generation difference between views is a function of dealing with aggregated and averaged private variants on combined lines and causes the SNP generations to shift. This is also why I always say “about.”

As you continue to click up the tree, the shifting SNP generations continue, reminding us that we can’t truly see back in time. We can only achieve approximations, but those approximations improve as more people test, and more SNPs are named and placed in their proper places on the phylotree.

I love the Block Tree, although I wish I could see further side-to-side, allowing me to view all of the matches on one expanded tree so I can easily see their relationships to the tester, and each other.

Countries and Origins

In addition to displaying shared averaged autosomal origins of testers on a particular branch, if they have taken the Family Finder test and opted-in to sharing origins (ethnicity) results, you can also view the countries indicated by testers on that branch along with downstream branches of the tree.

McNiel Big Y countries

click to enlarge

For example, the Countries tab for S673 is shown above. I can see matches on this branch with no downstream haplogroup currently assigned, as well as cumulative results from downstream branches.

Still, I need to be able to view this information in a more linear format.

The Block Tree and spreadsheet information beautifully augment the haplotree, so let’s take a look.

The Haplotree

On your Y DNA results page, click on the “Haplotree and SNPs” link.

McNIel Big Y haplotree menu

click to enlarge

The Y haplotree will be displayed in pedigree style, quite familiar to genealogists. The SNP legend will be shown at the top of the display. In some cases, “presumed positive” results occur where coverage is lacking, back mutations or read errors are encountered. Presumed positive is based on positive SNPs further down the tree. In other words, that yellow SNP below must read positive or downstream ones wouldn’t.

McNIel Big Y pedigree descent

click to enlarge

The tester’s branch is shown with the grey bar. To the right of the haplogroup-defining SNP are listed the branch and equivalent SNP names. At far right, we see the total equivalent SNPs along with three dots that display the Country Report. I wish the haplotree also showed my matches, or at least my matching surnames, allowing me to click through. It doesn’t, so I have to return to the Big Y page or STR Matches page, or both.

I’ve starred each branch through which my McNiell cousin descends. Sibling branches are shown in grey. As you’ll recall from the Block Tree, we do have matches on those sibling branches, shown side by side with our branch.

The small numbers to the right of the haplogroup names indicate the number of downstream branches. BY18350 has three, all displayed. But looking upstream a bit, we see that DF97 has 135 downstream branches. We also have matches on several of those branches. To show those branches, simply click on the haplogroup.

The challenge for me, with 119 McNeill matches, is that I want to see a combination of the block tree, my spreadsheet information, and the haplotree. The block tree shows the names, my spreadsheet tells me on which branches to look for those matches. Many aren’t easily visible on the block tree because they are downstream on sibling branches.

Here’s where you can find and view different pieces of information.

Data and Sources STR Matches Page Big Y Matches Page Block Tree Haplogroups & SNPs Page
STR matches Yes No, but would like to see who matches at which STR levels If they have taken Big Y test, but doesn’t mean they match on Big Y matching No
SNP matches *1 Shows if STR match has common haplogroup, but not if tester matches on Big Y No, but would like to see who matches at which STR level Big Y matches and STR matches that aren’t Big Y matches are both shown No, but need this feature – see combined haplotree/ block tree
Other Haplogroup Branch Residents Yes, both estimated and tested No, use block tree or click through to profile card, would like to see haplogroup listed for Big Y matches Yes, both Big Y and STR tested, not estimated. Cannot tell if person is Big Y match or STR match, or both. No individuals, but would like that as part of countries report, see combined haplotree/block tree
Fully Expanded Phylotree No No Would like ability to see all branches with whom any Big Y or STR match resides at one time, even if it requires scrolling Yes, but no match information. Matches report could be added like on Block Tree.
Averaged Ethnicities if Have FF Test No No Yes, by haplogroup branch No
Countries Matches map STR only No, need Big Y matches map Yes Yes
Earliest Known Ancestor Yes No, but can click through to profile card No No
Customer Trees Yes No, need this link No No
Profile Card Yes, click through Yes, click through Yes, click through No match info on this page
Downloadable data By STR panel only, would like complete download with 1 click, also if Big Y or FF match Not available at all No No
Path to common haplogroup No No, but would like to see matches haplogroup and convergent haplogroup displayed No, would like the path to convergent haplogroup displayed as an option No, see combined match-block -haplotree in next section

*1 – the best way to see the haplogroup of a Big Y match is to click on their name to view their profile card since haplogroup is not displayed on the Big Y match page. If you happen to also match on STRs, their haplogroup is shown there as well. You can also search for their name using the block tree search function to view their haplogroup.

Necessity being the mother of invention, I created a combined match/block tree/haplotree.

And I really, REALLY hope Family Tree DNA implements something like this because, trust me, this was NOT fun! However, now that it’s done, it is extremely useful. With fewer matches, it should be a breeze.

Here are the steps to create the combined reference tree.

Combo Match/Block/Haplotree

I used Snagit to grab screenshots of the various portions of the haplotree and typed the surnames of the matches in the location of our common convergent haplogroup, taken from the spreadsheet. I also added the SNP generations in red for that haplogroup, at far left, to get some idea of when that common ancestor occurred.

McNIel Big Y combo tree

click to enlarge

This is, in essence, the end-goal of this exercise. There are a few steps to gather data.

Following the path of two matches (the tester and a specific match) you can find their common haplogroup. If your match is shown on the block tree in the same view with your branch, it’s easy to see your common convergent parent haplogroup. If you can’t see the common haplogroup, it’s takes a few extra steps by clicking up the block tree, as illustrated in an earlier section.

We need the ability to click on a match and have a tree display showing both paths to the common haplogroup.

McNiel Big Y convergent

I simulated this functionality in a spreadsheet with my McNiel cousin, a Riley match, and an Ocain match whose terminal SNP is the convergent SNP (M222) between Riley and McNiel. Of course, I’d also like to be able to click to see everyone on one chart on their appropriate branches.

Combining this information onto the haplotree, in the first image, below, M222, 4 men match my McNeill cousin – 2 who show M222 as their terminal SNP, and 2 downstream of M222 on a divergent branch that isn’t our direct branch. In other words, M222 is the convergence point for all 4 men plus my McNeill cousin.

McNiel Big Y M222 haplotree

click to enlarge

In the graphic below, you can see that M222 has a very large number of equivalent SNPs, which will likely become downstream haplogroups at some point in the future. However, today, these equivalent SNPs push M222 from 25 generations to 59. We’ll discuss how this meshes with known history in a minute.

McNiel Big Y M222 block tree

click to enlarge

Two men, Ocain and Ransom, who have both taken the Big Y, whose terminal SNP is M222, match my McNiel cousin. If their common ancestor was actually 59 generations in the past, it’s very, very unlikely that they would match at all given the 30 mutation threshold.

On my reconstructed Match/Block/Haplotree, I included the estimated SNP generations as well. We are starting with the most distant haplogroups and working our way forward in time with the graphics, below.

Make no mistake, there are thousands more men who descend from M222 that have tested, but all of those men except 4 have more than 30 mutations total, so they are not shown as Big Y matches, and they are not shown individually on the Block Tree because they neither match on the Big Y or STR tests. However, there is a way to view information for non-matching men who test positive for M222.

McNiel Big Y M222 countries

click to enlarge

Looking at the Block Tree for M222, many STR match men took a SNP test only to confirm M222, so they would be shown positive for the M222 SNP on STR results and, therefore, in the detailed view of M222 on the Block tree.

Haplogroup information about men who took the M222 test and whom the tester doesn’t match at all are shown here as well in the country and branch totals for R-M222. Their names aren’t displayed because they don’t match the tester on either type of Y DNA test.

Back to constructing my combined tree, I’ve left S658 in both images, above and below, as an overlap placeholder, as we move further down, or towards current, on the haplotree.

McNiel Big Y combo tree center

click to enlarge

Note that BY18350, above, is also an overlap connecting below.

You’ll recall that as a result of the Big Y test, BY18350 was split and now has three child branches plus one person whose terminal SNP is BY18350. All of the men shown below were on one branch until Big Y results revealed that BY18350 needed to be split, with multiple new haplogroups added to the tree.

McNiel Big Y combo tree current

click to enlarge

Using this combination of tools, it’s straightforward for me to see now that our McNiel line is closest to the Campbell tester from Scotland according to the Big Y test + STRs.

Equal according to the Big Y test, but slightly more distant, according to STR matching, is McCollum. The next closest would be sibling branches. Then in the parent group of the other three, BY18350, we find Glass from Scotland.

In BY18350 and subgroups, we find several Scotland locations and one Northern Ireland, which was likely from Scotland initially, given the surname and Ulster Plantation era.

The next upstream parent haplogroup is BY3344, which looks to be weighted towards ancestors from Scotland, shown on the country card, below.

McNiel Big Y BY3344

click to enlarge

This suggests that the origins of the McNiel line was, perhaps, in Scotland, but it doesn’t tell us whether or not George and presumably, Thomas, immigrated from Ireland or Scotland.

This combined tree, with SNPs, surnames from Big Y matches, along with Country information, allows me to see who is really more closely related and who is further away.

What I didn’t do, and probably should, is to add in all of the STR matches who have taken the Big Y test, shown on their convergent branch – but that’s just beyond the scope of time I’m willing to invest, at least for now, given that hundreds of STR matches have taken the Big Y test, and the work of building the combined tree is all manual today.

For those reading this article without access to the Y phylogenetic tree, there’s a public version of the Y and mitochondrial phylotrees available, here.

What About Those McNiels?

No other known McNiel descendants from either Thomas or George have taken the Big Y test, so I didn’t expect any to match, but I am interested in other men by similar surnames. Does ANY other McNiel have a Big Y match?

As it turns out, there are two, plus one STR match who took a Big Y test, but is not a Big Y match.

However, as you can see on the combined match/block/haplotree, above, the closest other Big Y-matching McNeil male is found at about 19 SNP generations, or roughly 1900 years ago. Even if you remove some of the variants in the lower generations that are based on an average number of individual variants, you’re still about 1200 years in the past. It’s extremely doubtful that any surname would survive in both lines from the year 800 or so.

That McNeil tester’s ancestor was born in 1747 in Tranent, Scotland.

The second Big Y-matching person is an O’Neil, a few branches further up in the tree.

The convergent SNP of the two branches, meaning O’Neil and McNeill are at approximately the 21 generation level. The O’Neil man’s Neill ancestor is found in 1843 in Cookestown, County Tyrone, Ireland.

McNiel Big Y convergent McNeil lines

I created a spreadsheet showing convergent lines:

  • The McNeill man with haplogroup A4697 (ancestor Tranent, Scotland) is clearly closest genetically.
  • O’Neill BY91591, who is brother clades with Neel and Neal, all Irish, is another Big Y match.
  • The McNeill man with haplogroup FT91182 is an STR match, but not a Big Y match.

The convergent haplogroup of all of these men is DF105 at about the 22 SNP generation marker.

STRs

Let’s turn back to STR tests, with results that produce matches closer in time.

Searching my STR download spreadsheet for similar surnames, I discovered several surname matches, mining the Earliest Known Ancestor information, profiles and trees produced data as follows:

Ancestor STR Match Level Location
George Charles Neil 12, 25, match on Big Y A4697 1747-1814 Tranent, Scotland
Hugh McNeil 25 (tested at 67) Born 1800 Country Antrim, Northern Ireland
Duncan McNeill 12 (tested at 111) Married 1789, Argyllshire, Scotland
William McNeill 12, 25 (tested at 37) Blackbraes, Stirlingshire, Scotland
William McNiel 25 (tested at 67) Born 1832 Scotland
Patrick McNiel 25 (tested at 111) Trien East, County Roscommon, Ireland
Daniel McNeill 25 (tested at 67) Born 1764 Londonderry, Northern Ireland
McNeil 12 (tested at 67) 1800 Ireland
McNeill (2 matches) 25 (tested Big Y-  SNP FT91182) 1810, Antrim, Northern Ireland
Neal 25 – (tested Big Y, SNP BY146184) Antrim, Northern Ireland
Neel (2 matches) 67 (tested at 111, and Big Y) 1750 Ireland, Northern Ireland

Our best clue that includes a Big Y and STR match is a descendant of George Charles Neil born in Tranent, Scotland, in 1747.

Perhaps our second-best clue comes in the form of a 111 marker match to a descendant of one Thomas McNeil who appears in records as early as 1753 and died in 1761 In Rombout Precinct, Dutchess County, NY where his son John was born. This line and another match at a lower level both reportedly track back to early New Hampshire in the 1600s.

The MacNeil DNA Project tells us the following:

Participant 106370 descends from Isaiah McNeil b. 14 May 1786 Schaghticoke, Rensselaer Co. NY and d. 28 Aug 1855 Poughkeepsie, Dutchess Co., NY, who married Alida VanSchoonhoven.

Isaiah’s parents were John McNeal, baptized 21 Jun 1761 Rombout, Dutchess Co., NY, d. 15 Feb 1820 Stillwater, Saratoga Co., NY and Helena Van De Bogart.

John’s parents were Thomas McNeal, b.c. 1725, d. 14 Aug 1761 NY and Rachel Haff.

Thomas’s parents were John McNeal Jr., b. around 1700, d. 1762 Wallkill, Orange Co., NY (now Ulster Co. formed 1683) and Martha Borland.

John’s parents were John McNeal Sr. and ? From. It appears that John Sr. and his family were this participant’s first generation of Americans.

Searching this line on Ancestry, I discovered additional information that, if accurate, may be relevant. This lineage, if correct, and it may not be, possibly reaching back to Edinburgh, Scotland. While the information gathered from Ancestry trees is certainly not compelling in and of itself, it provides a place to begin research.

Unfortunately, based on matches shown on the MacNeil DNA Project public page, STR marker mutations for kits 30279, B78471 and 417040 when compared to others don’t aid in clustering or indicating which men might be related to this group more closely than others using line-marker mutations.

Matches Map

Let’s take a look at what the STR Matches Map tells us.

McNiel Big Y matches map menu

This 67 marker Matches Map shows the locations of the earliest known ancestors of STR matches who have entered location information.

McNiel Big Y matches mapMcNiel Big Y matches map legend

My McNeill cousin’s closest matches are scattered with no clear cluster pattern.

Unfortunately, there is no corresponding map for Big Y matches.

SNP Map

The SNP map provided under the Y DNA results allows testers to view the locations where specific haplogroups are found.

McNiel Big Y SNP map

The SNP map marks an area where at least two or more people have claimed their most distant known ancestor to be. The cluster size is the maximum amount of miles between people that is allowed in order for a marker indicating a cluster at a location to appear. So for example, the sample size is at least 2 people who have tested, and listed their most distant known ancestor, the cluster is the radius those two people can be found in. So, if you have 10 red dots, that means in 1000 miles there are 10 clusters of at least two people for that particular SNP. Note that these locations do NOT include people who have tested positive for downstream locations, although it does include people who have taken individual SNP tests.

Working my way from the McNiel haplogroup backward in time on the SNP map, neither BY18332 nor BY18350 have enough people who’ve tested, or they didn’t provide a location.

Moving to the next haplogroup up the tree, two clusters are formed for BY3344, shown below.

McNIel Big Y BY3344 map

S668, below.

McNiel Big Y S668 map

It’s interesting that one cluster includes Glasgow.

S673, below.

McNiel Big Y S673 map

DF85, below:

McNiel Big Y DF85 map

DF105 below:

McNiel BIg Y DF105 map

M222, below:

McNiel Big Y M222 map

For R-M222, I’ve cropped the locations beyond Ireland and Scotland. Clearly, RM222 is the most prevalent in Ireland, followed by Scotland. Wherever M222 originated, it has saturated Ireland and spread widely in Scotland as well.

R-M222

R-M222, the SNP initially thought to indicate Niall of the 9 Hostages, occurred roughly 25-59 SNP generations in the past. If this age is even remotely accurate, averaging by 80 years per generation often utilized for Big Y results, produces an age of 2000 – 4720 years. I find it extremely difficult to believe any semblance of a surname survived that long. Even if you reduce the time in the past to the historical narrative, roughly the year 400, 1600 years, I still have a difficult time believing the McNiel surname is a result of being a descendant of Niall of the 9 Hostages directly, although oral history does have staying power, especially in a clan setting where clan membership confers an advantage.

Surname or not, clearly, our line along with the others whom we match on the Big Y do descend from a prolific common ancestor. It’s very unlikely that the mutation occurred in Niall’s generation, and much more likely that other men carried M222 and shared a common ancestor with Niall at some point in the distant past.

McNiel Conclusion – Is There One?

If I had two McNiel wishes, they would be:

  • Finding records someplace in Virginia that connect George and presumably brothers Thomas and John to their parents.
  • A McNiel male from wherever our McNiel line originated becoming inspired to Y DNA test. Finding a male from the homeland might point the way to records in which I could potentially find baptismal records for George about 1720 and Thomas about 1724, along with possibly John, if he existed.

I remain hopeful for a McNiel from Edinburgh, or perhaps Glasgow.

I feel reasonably confident that our line originated genetically in Scotland. That likely precludes Niall of the 9 Hostages as a direct ancestor, but perhaps not. Certainly, one of his descendants could have crossed the channel to Scotland. Or, perhaps, our common ancestor is further back in time. Based on the maps, it’s clear that M222 saturates Ireland and is found widely in Scotland as well.

A great deal depends on the actual age of M222 and where it originated. Certainly, Niall had ancestors too, and the Ui Neill dynasty reaches further back, genetically, than their recorded history in Ireland. Given the density of M222 and spread, it’s very likely that M222 did, in fact, originate in Ireland or, alternatively, very early in Scotland and proliferated in Ireland.

If the Ui Neill dynasty was represented in the persona of the High King, Niall of the 9 Hostages, 1600 years ago, his M222 ancestors were clearly inhabiting Ireland earlier.

We may not be descended from Niall personally, but we are assuredly related to him, sharing a common ancestor sometime back in the prehistory of Ireland and Scotland. That man would sire most of the Irish men today and clearly, many Scots as well.

Our ancestors, whoever they were, were indeed in Ireland millennia ago. R-M222, our ancestor, was the ancestor of the Ui Neill dynasty and of our own Reverend George McNiel.

Our ancestors may have been at Knowth and New Grange, and yes, perhaps even at Tara.

Tara Niall mound in sun

Someplace in the mists of history, one man made a different choice, perhaps paddling across the channel, never to return, resulting in M222 descendants being found in Scotland. His descendants include our McNeil ancestors, who still slumber someplace, awaiting discovery.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

RootsTech 2020: It’s a Wrap

Before sharing photos and details about the last three days at RootsTech, I want to provide some general observations.

I expected the attendance to be down this year because of the concern about the Novel Corona Virus. There was a lot of hand-washing and sanitizer, but no hand-wringing.

I don’t think attendance was lagging at all. In fact, this show was larger, based on how my feet feel and general crowd observation than ever before. People appeared to be more engaged too.

According to RootsTech personnel, 4 major vendors pulled out the week before the show opened; 23andMe, LivingDNA, FindMyPast and a book vendor.

I doubt there’s much of a refund policy, so surely something happened in these cases. If you recall, LivingDNA and FindMyPast have a business relationship. 23andMe just laid off a number of people, but then again, so did Ancestry but you’d never know it based on the size of their booth and staffing here.

Family Search has really stepped up their game to modernize, capture stories, scan books and otherwise make genealogy interesting and attractive to everyone.

We got spoiled last year with the big DNA announcements at RootsTech, but nothing of that magnitude was announced this year. That’s not to say there weren’t vendor announcements, there were.

FamilyTreeDNA announced:

  • Their myOrigins Version 3.0 which is significantly updated by adding several worldwide populations, increasing the number from 24 to 90. I wrote about these features here.
  • Adding a myOrigins chromosome browser painted view. I am SOOO excited about this because it makes ethnicity actually useful for genealogy because we can compare specific ethnicity segments with genealogical matches. I can hardly wait.

RootsTech 2020 Sunny Paul

Sunny Morton with Family Tree Magazine interviewing Dr. Paul Maier, FamilyTreeDNA’s population geneticist. You can see the painted chromosome view on the screen behind Dr. Maier.

  • Providing, after initial release, a downloadable ethnicity estimate segment file.
  • Sponsorship of The Million Mito Project, a joint collaborative citizen science project to rewrite the mitochondrial tree of womankind includes team members Dr. Miguel Vilar, Lead Scientist of the National Geographic Genographic Project, Dr. Paul Maier, Population Geneticist at FamilyTreeDNA, Goran Runfeldt, Head of Research and Development at FamilyTreeDNA, and me, DNAeXplain, scientist, genetic genealogist, National Geographic Genographic Affiliate Researcher.

RootsTech 2020 Million Mito

I was honored to make The Million Mito Project announcement Saturday morning, but it was hard for me to contain my enthusiasm until Saturday. This initiative is super-exciting and I’ll be writing about the project, and how you can participate, as soon as I get home and recover just a bit.

  • Michael Sager, aka Mr. Big Y, announced additions to the Y Tree of Mankind in the Demo Theater, including a particularly impressive haplogroup D split.

Rootstech 2020 Sager

RootsTech 2020 Sager 2

RootsTech 2020 Sager hap d

In case anyone is counting, as of last week, the Y tree has 26,600+ named branches and over half a million detected (private variant) SNPs at FamilyTreeDNA waiting for additional testers to be placed on the tree. All I can say is WOW!!! In 2010, a decade ago, there were only 441 Y DNA branches on the entire Y tree. The Y tree has shot up from a twig to an evergreen. I think it’s actually a Sequoia and we just don’t know how large it’s going to grow to be.

RootsTech 2020 FTDNA booth

FamilyTreeDNA stepped up their game with a way-cool new booth that incorporated a lovely presentation area, greatly improved, which featured several guest presenters throughout the conference, including Judy Russell, below.

RootsTech 2020 Judy Russell

Yes, in case anyone is wondering, I DID ask permission to take Judy’s picture, AND to publish it in my article. Just sayin’😊

MyHeritage announced their new photo colorization, MyHeritage in Color, just before RootsTech. I wrote about it, here. At RootsTech MyHeritage had more announcements, including:

  • Enhancements coming soon to the photo colorization program. It was interesting to learn that the colorization project went live in less than 2 months from inception and resulted from an internal “hack-a-thon,” which in the technology industry is a fun think-tank sort of marathon endeavor where ideas flow freely in a competitive environment. Today, over a million photos have been colorized. People LOVE this feature.

RootsTech 2020 MyHeritage booth

One of their booth giveaways was a magnet – of your colorized ancestor’s photo. Conference attendees emailed the photo to a special email address and came by the booth a few minutes later to retrieve their photo magnet.

The photos on the board in front, above, are the colorized photos waiting for their family to pick them up. How fun!!!

  • Fan View for family trees which isn’t just a chart, but dynamic in that you can click on any person and they become the “center.” You can also add to your tree from this view.

RootsTech 2020 MyHeritage fan tree

One of the views is a colorful fan. If you sign on to your MyHeritage account, you’ll be asked if you’d like to see the new fan view. You can read about the new tree features on their blog, here.

  • The release of a MASSIVE 100-year US city directory digitization project that’s more than just imaging and indexing. If you’ve every used city directories, the unique abbreviations in each one will drive you batty. MyHeritage has solved that problem by providing the images, plus the “translation.” They’ve also used artificial intelligence to understand how to search further, incorporating things like spouse, address and more to provide you with not just one year or directory, but linear information that might allow you to infer the death of a spouse, for example. You can read their blog article, here.

RootsTech 2020 MyHeritage city directories

The MyHeritage booth incorporated a very cool feature this year about the Mayflower. Truthfully, I was quite surprised, because the Mayflower is a US thing. MyHeritage is working with folks in Leiden, Netherlands, where some Mayflower family members remained while others continued to what would become Plymouth Colony to prove the connection.

Rootstech 2020 MyHeritage Mayflower virtual

MyHeritage constructed a 3D area where you can sail with the Pilgrims.

I didn’t realize at first, but the chair swivels and as you move, your view in the 3D “goggles” changes to the direction on board the ship where you are looking.

RootsTech 2020 MyHeritage Mayflower virtual 2

The voyage in 1620 was utterly miserable – very rough with a great deal of illness. They did a good job of portraying that, but not “too much” if you get my drift. What you do feel is the utter smallness of the ship in the immense angry ocean.

I wonder how many descendants “sailed with their ancestors” on the virtual Mayflower. Do you have Mayflower ancestors? Mine are William Brewster, his wife, Mary and daughter, Patience along with Stephen Hopkins and his son, Gyles.

Ancestry’s only announcements were:

  • That they are “making things better” by listening and implementing improvements in the DNA area. I’ll forego any commentary because it would be based on their failure to listen and act (for years) about the absence of segment information and a chromosome browser. You’ve guessed it, that’s not mentioned.
  • That the WWII young man Draft Registration cards are now complete and online. Truthfully, I had no idea that the collection I was using online wasn’t complete, which I actually find very upsetting. Ancestry, assuming you actually are listening, how about warning people when they are using a partially complete collection, meaning what portion is and is not complete.
  • Listing content record additions planned for 2020 including the NYC birth index and other state and international records, some of which promise to be very useful. I wonder which states the statewide digitization projects pertain to and what that means, exactly.

OK, now we’re done with vendor announcements, so let’s just take a walk around the expo hall and see who and what we find. We might run into some people you know!

Walking Around

I sandwiched my walking around in-between my sessions. Not only did I present two RootsTech classes, but hosted the ToolMaker Meetup, attended two dinners, two lunches, announced The Million Mito Project, did two booth talks, one for FamilyTreeDNA and one for WikiTree, and I think something else I’ve forgotten about. Plus, all the planned and chance meetings which were absolutely wonderful.

Oh yes, and I attended a couple of sessions myself as an attendee and a few in the vendors booths too.

The great thing, or at least I think its great, is that most of the major vendors also have booth educational learning opportunities with presentation areas at their booths. Unfortunately, there is no centralized area where you can find out which booths have sessions, on what topics, when. Ditto for the Demo Theater.

Of course, that means booth presentations are also competing for your time with the regular sessions – so sometimes it’s really difficult to decide. It’s sort of like you’re awash in education for 4 days and you just can’t absorb enough. By Saturday, you’re physically and emotionally exhausted and you can’t absorb another iota, nor can you walk another step. But then you see someone you know and the pain in your feet is momentarily forgotten.

Please note that there were lots of other people that I saw and we literally passed, hugged and waved, or we were so engrossed in conversation that I didn’t realize until later that I had failed to take the photo. So apologies to all of those people.

RootsTech 2020 Amy Mags

I gave a presentation in the WikiTree booth about how to incorporate WikiTree into your 52 Ancestor stories, both as a research tool and as a way to bait the hook for cousins. Not to mention seeing if someone has already tested for Y or mtDNA, or candidates to do so.

That’s Amy Johnson Crow who started the 52 Ancestors challenge years ago, on the left and Mags Gaulden who writes at Grandma’s Genes and is a WikiTree volunteer (not to mention MitoY DNA.) Amy couldn’t stay for the presentation, so of course, I picked on her in her absence! I suspect her ears were burning. All in a good way of course.

RootsTech 2020 Kevin Borland

Kevin Borland of Borland Genetics, swabbing at the Family Tree DNA  booth, I hope for The Million Mito Project.

RootsTech 2020 Daniel Horowitz

Daniel Horowitz with MyHeritage at the blogger dinner. How about that advertising on his laptop lid. I need to do that with DNAexplain. Wonder where I can get one of those decals custom made.

RootsTech 2020 Hasani

Hasani Carter who I know from Facebook and who I discovered volunteering in a booth at RootsTech. I love to see younger people getting involved and to meet people in person. Love your dreads, Hasani.

RootsTech 2020 Randy Seaver

Cousin Randy Seaver who writes at Genea-Musings, daily, and has for YEARS. Believe it or not, he has published more than 13,000 articles, according to the Lifetime Achievement Award presented by Dear Myrtle at RootsTech. What an incredible legacy.

If you don’t already subscribe (it’s free), you’re missing out. By the way, I discovered Randy was my cousin when I read one of his 52 Ancestors articles, recognizing that his ancestor and my ancestor had the same surname in the same place. He knew the connection. Those articles really work. Thanks Randy – it was so good to see you again.

RootsTech 2020 univ dundee

The University of Dundee booth, with Sylvia Valentine and Pat Whatley, was really fun.  As part of their history and genealogy curriculum (you an earn certificates, bachelors and masters degrees,) they teach paleography, which, in case you are unaware is the official word for deciphering “ancient handwriting.” You didn’t know that’s what you’d been doing did you?

RootsTech 2020 paleography

They provided ink and quills for people to try their own hand.

RootsTech 2020 Paleography 2

The end of the feather quill pen is uneven and scratchy. Pieces separate and splatter ink. You can’t “write,” you draw the letters very, very carefully and slowly. I must say, my “signature” is more legible than normal.

Rootstech 2020 scribe

I now have a lot more empathy for those scribes. It’s probably a good thing that early records are no worse than they are.

RootsTech 2020 Gilad Japhet

Gilad Japhet at the MyHeritage luncheon. I have attended other vendor sponsored (but paid by the attendee) lunches at RootsTech in the past and found them disappointing, especially for the cost. Now MyHeritage is the only sponsored lunch that I attend and I always enjoy it immensely. Yes, I arrived early and sat dead center in front.

I also have a confession to make – I was so very excited about being contacted by Mary Tan Hai’s son that I was finishing colorizing the photos part of the time while Gilad was talking. (I did warn him so he didn’t think I was being rude.) But it’s HIS fault because he made these doggone photos so wonderful – and let’s just say time was short to get the photos to Mary’s family. You can read this amazing story, here.

Gilad always shares part of his own personal family story, and this time was no different. He shared that his mother is turning 85 soon and that the family, meaning her children and grandchildren all teamed up to make her a lovely video. Trust me, it was and made us all smile.

I’m so grateful for a genealogy company run by a genealogist. Speaking of that, Gilad’s mother was a MyHeritage board member in the beginning. That beginning also included a story about how the MyHeritage name came to be, and how Gilad managed to purchase the domain for an unwilling seller. Once again, by proxy, his mother entered into the picture. If you have the opportunity to hear Gilad speak – do – you won’t be disappointed. You’ll hear him speak for sure if you attend MyHeritage LIVE in Tel Aviv this October.

RootsTech 2020 Paul Woodbury

Paul Woodbury who works for Legacy Tree Genealogists, has a degree in both family history and genetics from BYU. He’s standing with Scott Fisher (left). Paul’s an excellent researcher and the only way you can put him to work on your brick wall is through Legacy Tree Genealogists. If you contact them for a quote, tell them I referred you for a $50 discount.

Rootstech 2020 Toolmaker meetup

From The ToolMaker’s Meetup, at far left, Jonny Pearl of DNAPainter, behind me, Dana Leeds who created The Leeds Method, and at right, Rob Warthen, the man behind DNAGedcom. Thanks to Michelle Patient for the photo.

RootsTech 2020 Toolmaker meetup 2

The meetup was well received and afforded people an opportunity to meet and greet, ask questions and provide input.

RootsTech 2020 Campbell baby

In fact, we’re working on recruiting the next generation. I have to say, my “grandma” kicked in and I desperately wanted to hold this beautiful baby girl. What a lovely family. Of course, when I noticed the family name is Campbell, we had a discussion of a different nature, especially since my cousin, Kevin Campbell and I were getting ready to have lunch. We will soon find out if Heidi’s husband is our relative, which makes her and her daughter our relative too!

Rootstech 2020 Kevin Campbell

It was so much fun to sit and develop a research plan with Kevin Campbell. We’re related, somehow on the Campbell line – we just have to sort out when and where.

Bless Your Heart

The photo I cherish most from RootsTech 2020 is the one that’s not pictured here.

A very special gentleman told me, when I asked if we could take a picture together, after he paid me the lovely compliment of saying that my session was the best one he had ever attended, that he doesn’t “do pictures.” Not in years, literally. I thought he was kidding at first, but he was deadly seriously.

The next day, I saw him again a couple of times and we shares stories. Our lives are very different, yet they still intersected in amazing ways. I feel like I’ve known him forever.

Then on the last day, he attended my Million Mito presentation and afterwards came up and told me a new story. How he had changed his mind, and what prompted the change of heart. Now we have a wonderful, lovely photo together which I will cherish all the more because I know how special it is – and how wonderful that makes me feel.

To my friend – you know who you are – thank you! You have blessed my heart. Bless yours😊

The Show Floor

I think I actually got all the way through the show floor, but I’m not positive. In some cases, the “rows” weren’t straight or had dead ends due to large booths, and it was possible to miss an area. I didn’t get to every booth I wanted to. Some were busy, some I simply forgot to take photos.

RootsTech 2020 everything

You can literally find almost anything.

I focused on booths related to genetic genealogy, but not exclusively.

RootsTech 2020 DNAPainter

Jonny Perl and the DNAPainter booth. I’ve written lots of articles, here, about using DNAPainter, one of my very favorite tools.

RootsTech 2020 Rootstech store

The RootsTech store was doing a brisk business.

RootsTech 2020 DNA basics

The RootsTech show area itself had a DNA Basics area which I thought was brilliant in its simplicity.

Inheritance is show by jellybeans.

Rootstech 2020 dNA beans

Put a cup under the outlet and pull the lever.

Rootstech 2020 beans in cup

How many of which color you receive in your cup is random, although you get exactly the same number from the maternal and paternal side.

Now you know I wanted to count these, don’t you?

Rootstech 2020 JellyGenes

And they are of course, called, “JellyGenes.” Those must be deletions still laying in the bin.

RootsTech 2020 Wikitree

WikiTree booth and volunteers. I love WikiTree – it’s “one great tree” is not perfect but these are the people, along with countless others that inject the “quality” into the process.

RootsTech 2020 MitoYDNA

MitoYDNA with Kevin Borland standing in front of the sign.

RootsTech 2020 Crossley

This amazing artist whose name I didn’t get. I was just so struck by her work, painting her ancestor from the picture on her phone.

RootsTech 2020 painter

I wish I was this talented. I would love to have some of my ancestor’s painted. Hmm….

Rootstech 2020 GeneaCreations

Jeanette at GeneaCreations makes double helix zipper pulls, along with lots of other DNA bling, and things not so blingy for men. These are just SOOO cool.

RootsTech 2020 zipper pull

I particularly love my “What’s Your Haplogroup” t-shirt and my own haplogroup t-shirt. Yes, she does custom work. What’s your haplogroup? You can see those goodies here.

Around the corner, I found CelebrateDNA.

RootsTech 2020 Celebrate DNA

Is that a Viking wearing a DNA t-shirt?

Rootstech 2020 day of the dead

CelebrateDNA has some very cool “Day of the Dead” bags, t-shirts and mouse pads, in addition to their other DNA t-shirts. I bought an “Every day is Day of the Dead for Genealogists” mouse pad which will live permanently in my technology travel bag. You can see their other goodies, here.

RootsTech 2020 skeleton

Hey, I think I found a relative. Can we DNA test to see?

Rootstech 2020 Mayflower replica

The Mayflower Society had a fun booth with a replica model ship.

RootsTech 2020 Mayflower passengers

Along with the list of passengers perched on a barrel of the type that likely held food or water for the Pilgrims.

RootsTech 2020 Webinar Marathon

Legacy Family Tree Webinars is going to have a 24-hour Genealogy Webinar Marathon March 12-13. So, who is going to stay up for this?Iit’s free and just take a look at the speakers, and topics, here. I’m guessing lots of people will take advantage of this opportunity. You can also subscribe for more webinars, here.

On March 4th, I’m presenting a FREE webinar, “3 Genealogy DNA Case Studies and How I Solved Them,” so sign up and join in!

Rootstech 2020 street art

Food at RootsTech falls into two categories. Anything purchased in the convention center meaning something to stave off starvation, and some restaurant with friends – the emphasis being on friends.

A small group went for pizza one evening when we were too exhausted to do anything else. Outside I found this interesting street art – and inside Settebello Pizzeria Napoletana I had the best Margarita Pizza I think I’ve ever had.

Then, as if I wasn’t already stuffed to the gills, attached through a doorway in the wall is Capo Gelateria Italiana, creators of artisan gelato. I’ve died and gone to heaven. Seriously, it’s a good thing I don’t live here.

Rootstech 2020 gelatto

Who says you can’t eat ice cold gelato in the dead of winter, outside waiting for the Uber, even if your insides are literally shivering and shaking!! It was that good.

This absolutely MUST BE a RootsTech tradition.

Rootstech 2020 ribbons

That’s it for RootsTech 2020. Hope you’ve enjoyed coming along on this virtual journey and that you’ve found something interesting, perhaps a new hint or tool to utilize.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Y DNA: Part 2 – The Dictionary of DNA

After my introductory article, Y DNA: Part 1 – Overview, I received several questions about terminology, so this second article will be a dictionary or maybe more like a wiki. Many terms about Y DNA apply to mitochondrial and autosomal as well.

Haplogroup – think of your Y or mitochondrial DNA haplogroup as your genetic clan. Haplogroups are assigned based on SNPs, specific nucleotide mutations that change very occasionally. We don’t know exactly how often, but the general schools of thought are that a new SNP mutation on the Y chromosome occurs someplace between every 80 and 145 years. Of course, those would only be averages. I’ve as many as two mutations in a father son pair, and no mutations for many generations.

Dictionary haplogroup.png

Y DNA haplogroups are quite reliably predicted by STR results at Family Tree DNA, meaning the results of a 12, 25, 37, 67 or 111 marker tests. Haplogroups are only confirmed or expanded from the estimate by SNP testing of the Y chromosome. Predictions are almost always accurate, but only apply to the upper level base haplogroups. I wrote about that in the article, Haplogroups and the Three Brothers.

Haplogroups are also estimated by some companies, specifically 23andMe and LivingDNA who provide autosomal testing. These companies estimate Y and mitochondrial haplogroups by targeting certain haplogroup defining locations in your DNA, both Y and mitochondrial. That doesn’t mean they are actually obtaining Y and mtDNA information from autosomal DNA, just that the chip they are using for DNA processing targets a few Y and mitochondrial locations to be read.

Again, the only way to confirm or expand that haplogroup is to test either your Y or mitochondrial DNA directly. I wrote about that in the article Haplogroup Comparisons Between Family Tree DNA and 23andMe and Why Different Haplogroup Results?.

Nucleotide – DNA is comprised of 4 base nucleotides, abbreviated as T (Thymine), A (Adenine), C (Cytosine) and G (Guanine.) Every DNA address holds one nucleotide.

In the DNA double helix, generally, A pairs with T and C pairs with G.

Dictionary helix structure.png

Looking at this double helix twist, green and purple “ladder rungs” represent the 4 nucleotides. Purple and green and have been assigned to one bonding pair, either A/T or C/G, and red and blue have been assigned to the other pair.

When mutations occur, most often A or T are replaced with their paired nucleotide, as are C and G. In this example, A would be replaced with T and vice versa. C with G and vice versa.

Sometimes that’s not the case and a mutation occurs that pairs A with C or G, for example.

For Y DNA SNPs, we care THAT the mutation occurred, and the identity of the replacing nucleotide so we know if two men match on that SNP. These mutations are what make DNA in general, and Y DNA in particular useful for genealogy.

The rest of this nucleotide information is not something you really need to know, unless of course you’re playing in the jeopardy championship. (Yes, seriously.) The testing lab worries about these things, as well as matching/not matching, so you don’t need to.

SNP – Single nucleotide polymorphism, pronounced “snip.” A mutation that occurs when the nucleotide typically found at a particular location (the ancestral value) is replaced with one of the other three nucleotides (the derived value.) SNPs that mutate are called variants.

In Y DNA, after discovery and confirmation that the SNP mutation is valid and carried by more than one man, the mutation is given a name something like R-M269 where R is the base haplogroup and M269 reflects the lab that discovered and named the SNP (M = Peter Underhill at Stanford) and an additional number, generally the next incremental number named by that lab (269).

Some SNPs were discovered simultaneously by different labs. When that happens, the same mutation in the identical location is given different names by different organizations, resulting in multiple names for the name mutation in the same DNA location. These are considered equivalent SNPs because they are identical.

In some cases, SNPs in different locations seem to define the same tree branching structure. These are functionally equivalent until enough tests are taken to determine a new branching structure, but they are not equivalent in the sense that the exact same DNA location was named by two different labs.

Some confusion exists about Y DNA SNP equivalence.

Equivalence Confusion How This Happens Are They the Same?
Same exact DNA location named by two labs Different SNP names for the same DNA location, named by two different labs at about the same time Exactly equivalent because SNPs are named for the the exact same DNA locations, define only one tree branch ever
Different DNA locations and SNP names, one current tree branch Different SNPs temporarily located on same branch of  the tree because branches or branching structure have not yet been defined When enough men test, different branches will likely be sorted out for the non-equivalent SNPs pointing to newly defined branch locations that divide the tree or branch

Let’s look at an example where 4 example SNPs have been named. Two at the same location, and two more for two additional locations. However, initially, we don’t know how this tree actually looks, meaning what is the base/trunk and what are branches, so we need more tests to identify the actual structure.

Dictionary SNPs before branching.png

The example structure of a haplogroup R branch, above, shows that there are three actual SNP locations that have been named. Location 1 has been given two different SNP names, but they are the same exact location. Duplicate names are not intentionally given, but result from multiple labs making simultaneous discoveries.

However, because we don’t have enough information yet, meaning not enough men have tested that carry at least some of the mutations (variants,), we can’t yet define trunks and branches. Until we do, all 4 SNPs will be grouped together. Examples 1 and 2 will always be equivalent because they are simply different names for the exact same DNA location. Eventually, a branching structure will emerge for Examples 1/2, Example 3 and Example 4..

Dictionary SNP branches.png

Eventually, the downstream branches will be defined and split off. It’s also possible that Example 4 would be the trunk with Examples 1 and 2 forming a branch and Example 3 forming a branch. Branching tree structure can’t be built without sufficient testers who take the NGS tests, specifically the Big Y-700 which doesn’t just confirm a subset of existing named SNPs, but confirms all named SNPs, unnamed variants and discovers new previously-undiscovered variants which define the branching tree structure.

SNP testing occurs in multiple ways, including:

  • NGS, next generation sequencing, tests such as the Big Y-700 which scans the gold standard region of the Y chromosome in order to find known SNPs at specific locations, mutations (variants) not yet named as SNPs, previously undiscovered variants and minimally 700 STR mutations.
  • WGS, whole genome sequencing although there currently exist no bundled commercial tools to separate Y DNA information from the rest of the genome, nor any comparison methodology that allows whole genome information to be transferred to Family Tree DNA, the only commercial lab that does both testing and matching of NGS Y DNA tests and where most of the Y DNA tests reside. There can also be quality issues with whole genome sequencing if the genome is not scanned a similar number of times as the NGS Y tests. The criteria for what constitues a “positive call” for a mutation at a specific location varies as well, with little standardization within the industry.
  • Targeted SNP testing of a specific SNP location. Available at Family Tree DNA  and other labs for some SNP locations, this test would only be done if you are looking for something very specific and know what you are doing. In some cases, a tester will purchase one SNP to verify that they are in a particular lineage, but there is no benefit such as matching. Furthermore, matching on one SNP alone does not confirm a specific lineage. Not all SNPs are individually available for purchase. In fact, as more SNPs are discovered at an astronomical rate, most aren’t available to purchase separately.
  • SNP panels which test a series of SNPs within a certain haplogroup in order to determine if a tester belongs to a specific subclade. These tests only test known SNPs and aren’t tests of discovery, scanning the useable portion of the Y chromosome. In other words, you will discern whether you are or are not a member of the specific subclades being tested for, but you will not learn anything more such as matching to a different subclade, or new, undiscovered variants (mutations) or subclades.

Subclade – A branch of a specific upstream branch of the haplotree.

Dictionary R.png

For example, in haplogroup R, R1 and R2 are subclades of haplogroup R. The graphic above conveys the concept of a subclade. Haplogroups beneath R1 and R2, respectively, are also subclades of haplogroup R as well as subclades of all clades above them on the haplotree.

Older naming conventions used letter number conventions such as R1 and R2 which expanded to R1b1c and so forth, alternating letters and numbers.

Today, we see most haplogroups designated by the haplogroup letter and SNP name. Using that notation methodology, R would be R-M207, R1 would be R-M173 and R2 would be R-M479.

Dictionary R branches.png

ISOGG documents Y haplogroup naming conventions and their history, maintaining both an alphanumeric and SNP tree for backwards compatibility. The reason that the alphanumeric tree was obsoleted was because there was no way to split a haplogroup like R1b1c when a new branch appeared between R1b and R1b1 without renaming everything downstream of R1b, causing constant reshuffling and renaming of tree branches. Haplogroup names were becoming in excess of 20 characters long. Today, the terminal SNP is used as a person’s haplogroup designation. The SNP name never changes and the individual’s Y haplogroup only changes if:

  • Further testing is performed and the tester is discovered to have an additional mutation further downstream from their current terminal SNP
  • A SNP previously discovered using the Big Y NGS test has since been named because enough men were subsequently discovered to carry that mutation, and the newly named SNP is the tester’s terminal SNP

Terminal SNP – It’s really not fatal. Used in this context, “terminal” means end of line, meaning furthest down and closest to present in the haplotree.

Depending on what level of testing you’ve undergone, you may have different haplogroups, or SNPs, assigned as your official “end of line” haplogroup or “terminal SNP” at various times.

If you took any of the various STR panel tests (12, 25, 37, 67 or 111) at Family Tree DNA your SNP was predicted based on STR matches to other men. Let’s say that prediction is R-M198. At that time, R-M198 was your terminal SNP. If you took the Big Y-700 test, your terminal SNP would almost assuredly change to something much further downstream in the haplotree.

If you took an autosomal test, your haplogroup was predicted based on a panel of SNPs selected to be informative about Y or mitochondrial DNA haplogroups. As with predicted haplogroups from STR test panels, the only way to discover a more definitive haplogroup is with further testing.

If you took a Y DNA STR test, you can see by looking at your match list that other testers may have a variety of “terminal SNPs.”

Dictionary Y matches.png

In the above example, the tester was originally predicted as R-M198 but subsequently took a Big Y test. His haplogroup now is R-YP729, a subclade of R-M198 several branches downstream.

Looking at his Y DNA STR matches to view the haplogroups of his matches, we see that the Y DNA predicted or confirmed haplogroup is displayed in the Y-DNA Haplogroup column – and several other men are M198 as well.

Anyone who has taken any type of confirming SNP test, whether it’s an individual SNP test, a panel test or the Big Y has their confirmed haplogroup at that level of testing listed in the Terminal SNP column. What we don’t know and can’t tell is whether the men whose Terminal SNP is listed as R-M198 just tested that SNP or have undergone additional SNP testing downstream and tested negative for other downstream SNPs. We can tell if they have taken the Big Y test by looking at their tests taken, shown by the red arrows above.

If the haplogroup has been confirmed by any form of SNP testing, then the confirmed haplogroup is displayed under the column, “Terminal SNP.” Unfortunately, none of this testers’ matches at this STR marker level have taken the Big Y test. As expected, no one matches him on his Terminal SNP, meaning his SNP farthest down on the tree. To obtain that level of resolution, one would have to take the Big Y test and his matches have not.

Dictionary Y block tree.png

Looking at this tester’s Big Y Block Tree results, we can see that there are indeed 3 people that match him on his terminal SNP, but none of them match him on the STR tests which generally produce genealogical matches closer in time. This suggests that these haplogroup level matches are a result of an ancestor further back in time. Note that these men also have an average of 5 variants each that are currently unnamed. These may eventually be named and become baby branches.

SNP matches can be useful genealogically, depending on when they occurred, or can originate further back in time, perhaps before the advent of surnames.

Our tester’s paternal ancestors migrated from Germany to Hungary in the late 1700s or 1800s, settling in a region now in Croatia, but he’s brick-walled on his paternal line due to record loss during the various wars.

The block tree reveals that the tester’s Big Y SNP match is indeed from Germany, born in 1718, with other men carrying this same terminal SNP originating in both Hungary and Germany even though they aren’t shown as a STR marker match to our tester.

You can read more about the block tree in the article, Family Tree DNA’s New Big Y Block Tree.

Haplotype – your individual values for results of gene sequencing, such as SNPs or STR values tested in the 12, 25, 37, 67 and 111 marker panels at Family Tree DNA. The haplotype for the individual shown below would be 13 for location DYS393, 26 for location DYS390, 16 for location DYS19, and so forth.

Dictionary panel 1.png

The values in a haplotype tend to be inherited together, so they are “unique” to you and your family. In this case, the Y DNA STR values of 13, 26, 16 and 10 are generally inherited together (unless a new mutation occurs,) passed from father to son on the Y chromosome. Therefore, this person’s haplotype is 13, 26, 16 and 10 for these 4 markers.

If this haplotype is rare, it may be very unique to the family. If the haplotype is common, it may only be unique to a much larger haplogroup reaching back hundreds or thousands of years. The larger the haplotype, the more unique it tends to be.

STR – Short tandem repeat. I think of a short tandem repeat as a copy machine or a stutter error. On the Y chromosome, the value of 13 at the location DYS393 above indicates that a series of DNA nucleotides is repeated a total of 13 times.

Indel example 1

Starting with the above example, let’s see how STR values accrue mutations.

STR example

In the example above, the value of CT was repeated 4 times in this DNA sequence, for a total of 5, so 5 would be the marker value.

Indel example 3

DNA can have deletions where the DNA at one or more locations is deleted and no DNA is found at that location, like the missing A above.

DNA can also have insertions where a particular value is inserted one or more times.

Dictionary insertion example.png

For example, if we know to expect the above values at DNA locations 1-10, and an insertion occurs between location 3 and 4, we know that insertion occurred because the alignment of the pattern of values expected in locations 4-10 is off by 1, and an unexpected T is found between 3 and 4, which I’ve labeled 3.1.

Dictionary insertion example 1.png

STR, or copy mutations are different from insertions, deletions or SNP mutations, shown below, where one SNP value is actually changed to another nucleotide.

Indel example 2

Haplotree – the SNP trees of humanity. Just a few years ago, we thought that there were only a few branches on the Y and mitochondrial trees of humanity, but the Big Y test has been a game changer for Y DNA.

At the end of 2019, the tree originating in Africa with Y chromosome Adam whose descendants populated the earth is comprised of more than 217,277 variants divided into 24,838 individual Y haplotree branches

A tree this size is very difficult to visualize, but you can take a look at Family Tree DNA’s public Y DNA tree here, beginning with haplogroup A. Today, there 25,880 branches, increased by more than 1000 branches in less than 3 weeks since year end. This tree is growing at breakneck speed as more men take the Big Y-700 test and new SNPs are discovered.

On the Public Y Tree below, as you expand each haplogroup into subgroups, you’ll see the flags representing the locations of where the testers’ most distant paternal ancestor lived.

Dictionary public tree.png

I wrote about how to use the Y tree in the article Family Tree DNA’s PUBLIC Y DNA Haplotree.

The mitochondrial tree can be viewed here. I wrote about to use the mitochondrial tree in the article Family Tree DNA’s Mitochondrial Haplotree.

Need Something Else?

I’ll be introducing more concepts and terms in future articles on the various Y DNA features. In the mean time, be sure to use the search box located in the upper right-hand corner of the blog to search for any term.

DNAexplain search box.png

For example, want to know what Genetic Distance means for either Y or mitochondrial DNA? Just type “genetic distance” into the search box, minus the quote marks, and press enter.

Enjoy and stay tuned for Part 3 in the Y DNA series, coming soon.

______________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by emailed each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items

Whole Genome Sequencing – Is It Ready for Prime Time?

Dante Labs is offering a whole genomes test for $199 this week as an early Black Friday special.

Please note that just as I was getting ready to push the publish button on this article, Veritas Genetics also jumped on the whole sequencing bandwagon for $199 for the first 1000 testers Nov. 19 and 20th. In this article, I discuss the Dante Labs test. I have NOT reviewed Veritas, their test nor terms, so the same cautions discussed below apply to them and any other company offering whole genome sequencing. The Veritas link is here.

Update – Veritas provides the VCF file for an additional $99, but does not provide FASTQ or BAM files, per their Tweet to me.

I have no affiliation with either company.

$199 (US) is actually a great price for a whole genome test, but before you click and purchase, there are some things you need to know about whole genome sequencing (WGS) and what it can and can’t do for you. Or maybe better stated, what you’ll have to do with your own results before you can utilize the information for genealogical purposes.

The four questions you need to ask yourself are:

  • Why do you want to consider whole genome testing?
  • What question(s) are you trying to answer?
  • What information do you seek?
  • What is your testing goal?

I’m going to say this once now, and I’ll say it again at the end of the article.

Whole genome sequencing tests are NOT A REPLACEMENT FOR GENEALOGICAL DNA TESTS for mitochondrial, Y or autosomal testing. Whole genome sequencing is not a genealogy magic bullet.

There are both pros and cons of this type of purchase, as with most everything. Whole genome tests are for the most experienced and technically savvy genetic genealogists who understand both working with genetics and this field well, who have already taken the vendors’ genealogy tests and are already in the Y, mitochondrial and autosomal comparison data bases.

If that’s you or you’re interested in medical information, you might want to consider a whole genome test.

Let’s start with some basics.

What Is Whole Genome Sequencing?

Whole Genome Sequencing will sequence most of your genome. Keep in mind that humans are more than 99% identical, so the only portions that you’ll care about either medically or genealogically are the portions that differ or tend to mutate. Comparing regions where you match everyone else tells you exactly nothing at all.

Exome Sequencing – A Subset of Whole Genome

Exome sequencing, a subset of whole genome sequencing is utilized for medical testing. The Exome is the region identified as the portions most likely to mutate and that hold medically relevant information. You can read about the benefits and challenges of exome testing here.

I have had my Exome sequenced twice, once at Helix and once at Genos, now owned by NantOmics. Currently, NantOmics does not have a customer sign-in and has acquired my DNA sequence as part of the absorption of Genos. I’ll be writing about that separately. There is always some level of consumer risk in dealing with a startup.

Helix sequences your Exome (plus) so that you can order a variety of DNA based or personally themed products from their marketplace, although I’m not convinced about the utility of even the legitimacy of some of the available tests, such as the “Wine Explorer.”

On the other hand, the world-class The National Geographic Society’s Genographic Project now utilizes Helix for their testing, as does Spencer Well’s company, Insitome.

You can also pay to download your Exome sequence data separately for $499.

Autosomal Testing for Genealogy

Both whole genome and Exome testing are autosomal testing, meaning that they test chromosomes 1-22 (as opposed to Y and mitochondrial DNA) but the number of autosomal locations varies vastly between the various types of tests.

The locations selected by the genealogy testing companies are a subset of both the whole genome and the Exome. The different vendors that compare your DNA for genealogy generally utilize between 600,000 and 900,000 chip-specific locations that they have selected as being inclined to mutate – meaning that we can obtain genealogically relevant information from those mutations.

Some vendors (for example, 23andMe and Ancestry) also include some medical SNPs (single nucleotide polymorphisms) on their chips, as both have formed medical research alliances with various companies.

Whole genome and Exome sequencing includes these same locations, BUT, the whole genome providers don’t compare the files to other testers nor reduce the files to the locations useful for genealogical comparisons. In other words, they don’t create upload files for you.

The following chart is not to scale, but is meant to convey the concept that the Exome is a subset of the whole genome, and the autosomal vendors’ selected SNPs, although not the same between the companies, are all subsets of the Exome and full genome.

I have not had my whole genome sequenced because I have seen no purpose for doing so, outside of curiosity.

This is NOT to imply that you shouldn’t. However, here are some things to think about.

Whole Genome Sequencing Questions

Coverage – Medical grade coverage is considered to be 30X, meaning an average of 30 scans of every targeted location in your genome. Some will have more and some will have less. This means that your DNA is scanned thirty different times to minimize errors. If a read error happens once or twice, it’s unlikely that the same error will happen several more times. You can read about coverage here and here.

Genomics Education Programme [CC BY 2.0 (https://creativecommons.org/licenses/by/2.

Here’s an example where the read length of Read 1 is 18, and the depth of the location shown in light blue is 4, meaning 4 actual reads were obtained. If the goal was 30X, then this result would be very poor. If the goal was 4X then this location is a high quality result for a 4X read.

In the above example, if the reference value, meaning the value at the light blue location for most people is T, then 4 instances of a T means you don’t have a mutation. On the other hand, if T is not the reference value, then 4 instances of T means that a mutation has occurred in that location.

Dante Labs coverage information is provided from their webpage as follows:

Other vendors coverage values will differ, but you should always know what you are purchasing.

Ownership – Who owns your data? What happens to your DNA itself (the sample) and results (the files) under normal circumstances and if the company is sold. Typically, the assets of the company, meaning your information, are included during any acquisition.

Does the company “share, lease or sell” your information as an additional revenue stream with other entities? If so, do they ask your permission each and every time? Do they perform internal medical research and then sell the results? What, if anything, is your DNA going to be used for other than the purpose for which you purchased the test? What control do you exercise over that usage?

Read the terms and conditions carefully for every vendor before purchasing.

File Delivery – Three types of files are generated during a whole genome test.

The VCF (Variant Call Format) which details your locations that are different from the reference file. A reference file is the “normal” value for humans.

A FASTQ file which includes the nucleotide sequence along with a corresponding quality score. Mutations in a messy area or that are not consistent may not be “real” and are considered false positives.

The BAM (Binary Alignment Map) file is used for Y DNA SNP alignment. The output from a BAM file is displayed in Family Tree DNA’s Big Y browser for their customers. Are these files delivered to you? If so, how? Family Tree DNA delivers their Big Y DNA BAM files as free downloads.

Typically whole genome data is too large for a download, so it is sent on a disc drive to you. Dante provides this disc for BAM and FASTQ files for 59 Euro ($69 US) plus shipping. VCF files are available free, but if you’re going to order this product, it would be a shame not to receive everything available.

Version – Discoveries are still being made to the human genome. If you thought we’re all done with that, we’re not. As new regions are mapped successfully, the addresses for the rest change, and a new genomic map is created. Think of this as street addresses and a new cluster of houses is now inserted between existing houses. All of the houses are periodically renumbered.

Today, typically results are delivered in either of two versions: hg19(GRVH37) or hg38(GRCH38). What happens when the next hg (human genome) version is released?

When you test with a vendor who uses your data for comparison as a part of a product they offer, they must realign your data so that the comparison will work for all of their customers (think Family Tree DNA and GedMatch, for example), but a vendor who only offers the testing service has no motivation to realign your output file for you. You only pay for sequencing, not for any after-the-fact services.

Platform – Multiple sequencing platforms are available, and not all platforms are entirely compatible with other competing platforms. For example, the Illumina platform and chips may or may not be compatible with the Affymetrix platform (now Thermo Fisher) and chips. Ask about chip compatibility if you have a specific usage in mind before you purchase.

Location – Where is your DNA actually being sequenced? Are you comfortable having your DNA sent to that geographic location for processing? I’m personally fine with anyplace in either the US, Canada or most of Europe, but other locations maybe not so much. I’d have to evaluate the privacy policies, applicable laws, non-citizen recourse and track record of those countries.

Last but perhaps most important, what do you want to DO with this file/information?

Utilization

What you receive from whole genome sequencing is files. What are you going to do with those files? How can you use them? What is your purpose or goal? How technically skilled are you, and how well do you understand what needs to be done to utilize those files?

A Specific Medical Question

If you have a particular question about a specific medical location, Dante allows you to ask the question as soon as you purchase, but you must know what question to ask as they note below.

You can click on their link to view their report on genetic diseases, but keep in mind, this is the disease you specifically ask about. You will very likely NOT be able to interpret this report without a genetic counselor or physician specializing in this field.

Take a look at both sample reports, here.

Health and Wellness in General

The Dante Labs Health and Wellness Report appears to be a collaborative effort with Sequencing.com and also appears to be included in the purchase price.

I uploaded both my Exome and my autosomal DNA results from the various testing companies (23andMe V3 and V4, Ancestry V1 and V2, Family Tree DNA, LivingDNA, DNA.Land) to Promethease for evaluation and there was very little difference between the health-related information returned based on my Exome data and the autosomal testing vendors. The difference is, of course, that the Exome coverage is much deeper (and therefore more reliable) because that test is a medical test, not a consumer genealogy test and more locations are covered. Whole genome testing would be more complete.

I wrote about Promethease here and here. Promethease does accept VCF files from various vendors who provide whole genome testing.

None of these tests are designed or meant for medical interpretation by non-professionals.

Medical Testing

If you plan to test with the idea that should your physician need a genetics test, you’re already ahead of the curve, don’t be so sure. It’s likely that your physician will want a genetics test using the latest technology, from their own lab, where they understand the quality measures in place as well as how the data is presented to them. They are unlikely to accept a test from any other source. I know, because I’ve already had this experience.

Genealogical Comparisons

The power of DNA testing for genealogy is comparing your data to others. Testing in isolation is not useful.

Mitochondrial DNA – I can’t tell for sure based on the sample reports, but it appears that you receive your full sequence haplogroup and probably your mutations as well from Dante. They don’t say which version of mitochondrial DNA they utilize.

However, without the ability to compare to other testers in a database, what genealogical benefit can you derive from this information?

Furthermore, mitochondrial DNA also has “versions,” and converting from an older to a newer version is anything but trivial. Haplogroups are renamed and branches sawed from one part of the mitochondrial haplotree and grafted onto another. A testing (only) vendor that does not provide comparisons has absolutely no reason to update your results and can’t be expected to do so. V17 is the current build, released in February 2016, with the earlier version history here.

Family Tree DNA is the only vendor who tests your full sequence mitochondrial DNA, compares it to other testers and updates your results when a new version is released. You can read more about this process, here and how to work with mtDNA results here.

Y DNA – Dante Labs provides BAM files, but other whole genome sequencers may not. Check before you purchase if you are interested in Y DNA. Again, you’ll need to be able to analyze the results and submit them for comparison. If you are not capable of doing that, you’ll need to pay a third party like either YFull or FGS (Full Genome Sequencing) or take the Big Y test at Family Tree DNA who has the largest Y Database worldwide and compares results.

Typically whole genome testers are looking for Y DNA SNPs, not STR values in BAM files. STR (short tandem repeat) values are the results that you receive when you purchase the 37, 67 or 111 tests at Family Tree DNA, as compared to the Big Y test which provides you with SNPs in order to resolve your haplogroup at the most granular level possible. You can read about the difference between SNPs and STRs here.

As with SNP data, you’ll need outside assistance to extract your STR information from the whole genome sequence information, none of which will be able to be compared with the testers in the Family Tree DNA data base. There is also an issue of copy-count standardization between vendors.

You can read about how to work with STR results and matches here and Big Y results here.

Autosomal DNA – None of the major providers that accept transfers (MyHeritage, Family Tree DNA, GedMatch) accept whole genome files. You would need to find a methodology of reducing the files from the whole genome to the autosomal SNPs accepted by the various vendors. If the vendors adopt the digital signature technology recently proposed in this paper by Yaniv Erlich et al to prevent “spoofed files,” modified files won’t be accepted by vendors.

Summary

Whole genome testing, in general, will and won’t provide you with the following:

Desired Feature Whole Genome Testing
Mitochondrial DNA Presumed full haplogroup and mutations provided, but no ability for comparison to other testers. Upload to Family Tree DNA, the only vendor doing comparisons not available.
Y DNA Presume Y chromosome mostly covered, but limited ability for comparison to other testers for either SNPs or STRs. Must utilize either YFull or FGS for SNP/STR analysis. Upload to Family Tree DNA, the vendor with the largest data base not available when testing elsewhere.
Autosomal DNA for genealogy Presume all SNPs covered, but file output needs to be reduced to SNPs offered/processed by vendors accepting transfers (Family Tree DNA, MyHeritage, GedMatch) and converted to their file formats. Modified files may not be accepted in the future.
Medical (consumer interest) Accuracy is a factor of targeted coverage rate and depth of actual reads. Whole genome vendors may or may not provide any analysis or reports. Dante does but for limited number of conditions. Promethease accepts VCF files from vendors and provides more.
Medical (physician accepted) Physician is likely to order a medical genetics test through their own institution. Physicians may not be willing to risk a misdiagnosis due to a factor outside of their control such as an incompatible human genome version.
Files VCF, FASTQ and BAM may or may not be included with results, and may or may not be free.
Coverage Coverage and depth may or may not be adequate. Multiple extractions (from multiple samples) may or may not be included with the initial purchase (if needed) or may be limited. Ask.
Updates Vendors who offer sequencing as a part of a products that include comparison to other testers will update your results version to the current reference version, such as hg38 and mitochondrial V17. Others do not, nor can they be expected to provide that service.
Version Inquire as to the human genome (hg) version or versions available to you, and which version(s) are acceptable to the third party vendors you wish to utilize. When the next version of the human genome is released, your file will no longer be compatible because WGS vendors are offering sequencing only, not results comparisons to databases for genealogy.
Ownership/Usage Who owns your sample? What will it be utilized for, other than the service you ordered, by whom and for what purposes? Will you we able to authorize or decline each usage?
Location Where geographically is your DNA actually being sequenced and stored? What happens to your actual DNA sample itself and the resulting files? This may not be the location where you return your swab kit.

The Question – Will I Order?

The bottom line is that if you are a genealogist, seeking genetic information for genealogical purposes, you’re much better off to test with the standard and well know genealogy vendors who offer compatibility and comparisons to other testers.

If you are a pioneer in this field, have the technical ability required to make use of a whole genome test and are willing to push the envelope, then perhaps whole genome sequencing is for you.

I am considering ordering the Dante Labs whole genome test out of simple curiosity and to upload to Promethease to determine if the whole genome test provides me with something potentially medically relevant (positive or negative) that autosomal and Exome testing did not.

I’m truly undecided. Somehow, I’m having trouble parting with the $199 plus $69 (hard drive delivery by request when ordering) plus shipping for this limited functionality. If I was a novice genetic genealogist or was not a technology expert, I would definitely NOT order this test for the reasons mentioned above.

A whole genome test is not in any way a genealogical replacement for a full sequence mitochondrial test, a Y STR test, a Y SNP test or an autosomal test along with respective comparison(s) in the data bases of vendors who don’t allow uploads for these various functions.

The simple fact that 30X whole genome testing is available for $199 plus $69 plus shipping is amazing, given that 15 years ago that same test cost 2.7 billion dollars. However, it’s still not the magic bullet for genealogy – at least, not yet.

Today, the necessary integration simply doesn’t exist. You pay the genealogy vendors not just for the basic sequencing, but for the additional matching and maintenance of their data bases, not to mention the upgrading of your sequence as needed over time.

If I had to choose between spending the money for the WGS test or taking the genealogy tests, hands down, I’d take the genealogy tests because of the comparisons available. Comparison and collaboration is absolutely crucial for genealogy. A raw data file buys me nothing genealogically.

If I had not previously taken an Exome test, I would order this test in order to obtain the free Dante Health and Wellness Report which provides limited reporting and to upload my raw data file to Promethease. The price is certainly right.

However, keep in mind that once you view health information, you cannot un-see it, so be sure you do really want to know.

What do you plan to do? Are you going to order a whole genome test?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some (but not all) of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Glossary – Terminal SNP

What is a Terminal SNP?

It sounds fatal doesn’t it, but don’t worry, it’s not.

The phrase Terminal SNP is generally used in conjunction with discussing Y DNA testing and haplogroup identification.

SNPs Define Haplogroups

In a nutshell, SNPs, single nucleotide polymorphisms, are the mutations that define different haplogroups. Haplogroups reach far back in time on the direct paternal, generally the surname, line.

SNPs, mutations that define haplogroups are considered to be “once in the lifetime of mankind” events that divide one haplogroup into two subgroups, or branches.

A haplogroup can be thought of as the ancient genetic clan of males – specifically their Y DNA. You might want to read the article, What is a Haplogroup?

If you test your Y DNA with Family Tree DNA, you’ll notice that you receive an estimated haplogroup with the regular Y DNA tests which test STR, or short tandem repeat, markers. STRs are the markers tested in the 37, 67 or 111 marker tests. You can read about the difference between STRs and SNPs in the article, STRs vs SNPs, Multiple DNA Personalities.

STR markers are used for more recent genealogical testing and comparison, while haplogroups reach further back in time.

An estimated haplogroup as provided by Family Tree DNA is based on STR matches to people who have done SNP testing. Estimated haplogroups are quite accurate, as far as they go. However, by necessity, they aren’t deep haplogroups, meaning they aren’t the leaves on the end of the twigs of the branch of your haplotree. Estimated haplogroups are the big branches.

In essence, what a haplogroup provided with STR testing tells you is the name of the town and the main street through town. To get to your house, you may need to turn on a few side streets.

Haplotree

The haplotree, back in the ancient days of 2002 used to hold less than 100 haplogroups, each main branch called by a different letter of the alphabet. The main branches or what is referred to as the core backbone is shown in this graphic from Wikipedia.

Today, the haplotree shown for each Y DNA tester on their personal page at Family Tree DNA, has tens of thousands of branches. No, that’s not a misprint.

The haplotree is the phylogenetic tree that defines all of the branches of mankind and groups them into increasingly refined “clans” or groups, the further down the tree you go.

In other words, Y Adam is at the root, then his “sons” who, due to specific mutations, formed different base haplogroups. As more mutations occurred in the son’s descendants’ lines, more haplogroups were born. Multiply that over tens of thousands of years, and you have lots of branches and twigs and even leaves on the branches of this tree of humanity.

Let’s look at the terminal SNP of my cousin, John, on his Haplotree and SNP page at Family Tree DNA.

John’s terminal SNP is R-BY490. R indicates the main branch and BY490 is the name of the SNP that is the further down the tree – his leaf, for lack of a better definition.

In John’s case, we know this is the smallest leaf on his branch, because he took the Big Y test which reads all of his SNPs on the Y chromosome.

Haplogroup R is quite large with thousands of branches and leaves – each one with its own distinct history that is an important part of your genealogy. Tracking where and when these mutations happened tells you the migration history of your paternal ancestor.

How else would you ever know?

How Do I Discover My Terminal SNP?

Sometimes “terminal SNP” is used to mean the SNP for which a man has most recently tested. It may NOT mean that he has tested for all of the available SNPs. What this really means is that when someone gives you a terminal SNP name, or you see one listed someplace, you’ll need to ask about the depth of the testing undergone by the man in question.

Let’s look at an example.

I’ve condensed John’s tree into only the SNPs for which he tested positive. The entire tree includes SNPs that John tested negative for, and their branches which are not relevant to John – although we certainly didn’t know that they weren’t relevant before he tested. However, he may want to reference the large and accurate scientific tree, so all information is provided to John. It’s like seeing a map that includes all roads, not just the one you’re traveling.

I’ve created a descendant chart style tree below. Y line Adam is the first male. Some several thousands of years later, his descendant had a mutation that created haplogroup R defined by the SNP M207, in yellow.

John, based on his STR matches, was predicted to be R-M269. On his results page, that’s the estimated haplogroup that was showing when his results were first returned.

If you had asked John about his terminal SNP, he would have probably told you R-M269. At that time, to the best of his knowledge, that WAS his terminal SNP – but it wasn’t really.

John could choose three ways to test for additional SNPs to discover his actual terminal SNP.

  • One by One

John could selectively test one SNP at a time to see if he was positive, meaning that he has that mutation. SNPs cost $39 each to test, as of the time this article was written. Of course, John could also be negative for that SNP, meaning he doesn’t have the SNP, and therefore does not descend from that line. That’s good information too, but then John would have to select another branch to test by purchasing the SNP associated with that new branch.

If John had selected any of the SNPs on the list above to test, he would have tested positive. So, let’s say John decided to test L21, a major branch. If he tested positive, that means that all of the branches directly above L21, between L21 and M207, are also positive, by inference.

At that point, John would tell you that his terminal SNP is L21, but it isn’t actually.

  • SNP Packs

Now, John wants to purchase a more cost-effective SNP pack, because he can test 100 or more SNP locations by purchasing one SNP pack for $99. That’s a great value, so John purchases the SNP pack offered on his personal page. A SNP pack tests selective SNPs all over the relevant portion of the tree in an attempt to place a man on a relatively low branch. These SNPs are selected to find an appropriate branch, not the appropriate leaf. They confirm (or disprove) SNPs that have already been discovered.

Let’s say, in John’s case, the SNP pack moves him down to R-ZP21. If you asked him now about his terminal SNP, he would probably tell you R-ZP21, but it still isn’t actually.

SNP packs are great and do move people down the tree, but the only way to move to the end of the twigs is the Big Y test.

  • The Big Y Test

The Big Y test tests for all known SNPs as well as what were called Novel Variants and are now called Unnamed Variants which are new SNPs discovered that are as yet unnamed. You may have a new SNP in your line waiting to be discovered. The Estes family has one dating from sometime before 1495 that, to date, has only been found in Estes descendant males from that common ancestor who was born in 1495.

The Big Y test scans virtually the entire Y chromosome in order to place testers on the lowest leaf of the tree. You can’t get there any other way with certainty and you’ll never know if you have any as yet undiscovered SNPs or leaves unless you take the Big Y.

In John’s case, that leaf was 4 more branches below R-ZP21, at R-BY490.

Why Does a Terminal SNP Matter?

Haplogroup R-M269 is the most common haplogroup of European men.

Looking at the SNP map, you can see that there are so many map locations as to color the map of the UK entirely red.

Genealogically, this isn’t helpful at all.

However, looking now at DF49, below, we see many fewer locations, suggesting perhaps that men with this terminal SNP are clustered in particular areas.

SNPS further down John’s personal haplotree tell an increasingly focused and granular story, each step moving closer in time.

Summary

Men generally want to discover their terminal SNP with the hope that they can learn something interesting about the migration of their ancestors before the genesis of surnames.

Perhaps they will discover that they match all men with McSurnames, suggesting perhaps a Scottish origin. Or maybe their terminal SNP is only found in a mountainous region of Germany, or perhaps their Big Y matches all have patronymic surnames from Scandinavia.

Big Y testing is also a community sourced citizen science effort to expand the Y haplotree – and quite successfully. The vast majority of SNPs on the publicly available ISOGG Y tree today are from individual testers, not from academic studies.

Haplogroups, and therefore terminal SNPs are the only way we have to peek back behind the veil of time.

If you’re interested in discovering your terminal SNP, you’ll be money ahead to simply purchase the Big Y up front and skip individual SNP testing along with SNP packs. In addition to discovering your terminal SNP, you are also matched to other men who have taken the Big Y test.

You can order the Big Y, individual SNPs or SNP packs by clicking on this link, signing on to your account, and then clicking on the blue “Upgrade” button, either in the Y DNA section, shown below, or in the upper right hand corner of your personal page.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research