Sequencing of Neanderthal Toe Bone Reveals Unknown Hominin Line

This week, in the journal Nature, scientists reported on the full sequencing of a Neanderthal toe bone found in the Denisova Cave in the Altai Mountains, the location where the Denisovan skeleton found in 2008 and sequenced earlier this year was also found.

The abstract of the paper, which is behind a paywall, says:

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.

The abstract also includes this graphic from the paper

Neanderthal 12-22-2013 cropped

This sequence is significant because of a number of unique findings.

  1. The skeleton showed physical traits of both Neanderthals and modern humans and is thought to be about 50,000 years old.
  2. Genetic sequencing revealed that this bone belonged to a Neanderthal woman, not a Denisovan, although other Denisovan remains, including one previously sequenced, have been found in this cave.
  3. The closest genetic relative is found in the Mezmaiskaya Cave in the Caucasus Mountains, some 2000+ miles distant.  Admittedly, we don’t have a lot of sequenced remains for comparison.
  4. Sequencing revealed a heretofore unknown genetic line of archaic humans.  This person obtained from between 2.7 to 5.8 percent of their genome from this unknown line. That percentage is equal to someplace between a great-great-great-grandparent and a great-great-great-great-great-grandparent, assuming only one ancestor was involved.  If this unknown human lineage was admixed into the population in multiple individuals, then the trace amounts could be passed around forever, just like the Neanderthal and Denisovan lineages are in Europeans today.
  5. This unknown line could be homo erectus.
  6. There is no evidence that this unknown human lineage interbred with either modern humans or Neanderthals.  I would presume this means that this unknown line then bred with the Denisovan group which did not manifest itself in contemporary humans.
  7. This individual was inbred with their parents being closely related, possibly half-siblings or an uncle and niece, or an aunt and nephew or a grandfather and granddaughter or grandmother and grandson.  Inbreeding was also common among the woman’s recent ancestors.  Another article headline this week pronounced that “Neanderthals Liked Incest” which I found to be offensive.  Incest is a highly negatively charged cultural word.  In the not so recent past, the practice of inbreeding was perfectly acceptable in European royalty.  Furthermore, we have no idea how these people felt about inbreeding, hence the word “liked” is misleading.  It could well be that they lived in a small nuclear family group and there were no other choices for partners.  There could also be other cultural and selection factors at play here of which we are unaware.  For example, perhaps males were more protective of mothers and children to whom they were related than ones where they had no family or group ties – increasing the likelihood of survival of offspring of women to whom the males were related.
  8. At least half of a percent of the Denisovan genome came from Neanderthals, but none of the Denisovan genome has yet been detected in Neanderthals.  If this holds, it would imply that our ancestors either bred with Neanderthals and Denisovans separately, or with Denisovans who carried Neanderthal DNA.  Given that most Europeans carry more Neanderthal DNA than Denisovan, the second scenario alone is unlikely.  It’s also possible that we simply haven’t found Neanderthal’s who did carry Denisovan DNA.
  9. More than 31,000 differences were found between modern humans and Neanderthals and Denisovans, many having to do with brain development.

Dienekes discussed this research in his blog as well.  Note his “family tree.”

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

 

Neuroarchaeologists Uncover Iberian Origin of Unusual Alzheimer’s Gene Mutation

Alzheimers in IberiaNeuroarchaeologists, a term I haven’t heard before, but one we’ll likely hear into the future.  Genetics, neurology, genealogy, population genetics….they are all becoming intermixed today solving puzzles that are so complex that just a few years ago, there would have been no prayer of solving them at all.

Take early onset Alzheimers, for example.  Keep in mind that this type of Alzheimer’s is only one of several, and much about this disease remains unknown, but for this particular kind of Alzheimer’s disease, this breakthrough is monumental, as is the fact that they can trace it to the Iberian peninsula in the 16th century.

The history of our ancestors truly is in our genes.

This research was performed at the University of California at Santa Barbara and published this month in Alzheimer’s and Dementia, the Journal of the Alzheimer’s Association.  Unfortunately, the academic article is behind a paywall.

Researchers tested more than 100 family members who have the disease.  While many predictably showed onset signs of the disease as expected about age 45, some appeared to be protected by as much as a decade.  The question was what was protecting these people and does that protective mechanism have relevance for the rest of the people afflicted by Alzheimer’s disease.  The answer isn’t yet evident, and research continues, but the process they used to identify this mutation is fascinating.

The team worked with historians and genealogists and using records as old as 1540, managed to track this family, along with their mutation, to a single individual from the Iberian peninsula about the time that Spanish Conquistadors were colonizing Columbia in the early 1500s.

They may call this new field neuroarchaeology, but I think it’s more neurogenealogy, unless they’re excavating graves someplace.  But I bet they think neuroarchaeology just sounds more scientific.  So, want to get assistance with your genealogy….having a dread disease, or being a politician….either one will help immensely.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

2013 Family Tree DNA Conference Day 2

ISOGG Meeting

The International Society of Genetic Genealogy always meets at 8 AM on Sunday morning.  I personally think that 8AM meeting should be illegal, but then I generally work till 2 or 3 AM (it’s 1:51 AM now), so 8 is the middle of my night.

Katherine Borges, the Director speaks about current and future activities, and Alice Fairhurst spoke about the many updates to the Y tree that have happened and those coming as well.  It has been a huge challenge to her group to keep things even remotely current and they deserve a huge round of virtual applause from all of us for the Y tree and their efforts.

Bennett opened the second day after the ISOGG meeting.

“The fact that you are here is a testament to citizen science” and that we are pushing or sometimes pulling academia along to where we are.

Bennett told the story of the beginning of Family Tree DNA.  “Fourteen years ago when the hair that I have wasn’t grey,” he began, “I was unemployed and tried to reorganize my wife’s kitchen and she sent me away to do genealogy.”  Smart woman, and thankfully for us, he went.  But he had a roadblock.  He felt there was a possibility that he could use the Y chromosome to solve the roadblock.  Bennett called the author of one of the two papers published at that time, Michael Hammer.  He called Michael Hammer on Sunday morning at his home, but Michael was running out the door to the airport.  He declined Bennett’s request, told him that’s not what universities do, and that he didn’t know of anyplace a Y test could be commercially be done.  Bennett, having run out of persuasive arguments, started mumbling about “us little people providing money for universities.”  Michael said to him, “Someone should start a company to do that because I get phone calls from crazy genealogists like you all the time.”  Let’s just say Bennett was no longer unemployed and the rest, as they say, is history.  With that, Bennett introduced one of our favorite speakers, Dr. Michael Hammer from the Hammer Lab at the University of Arizona.

Bennett day 2 intro

Session 1 – Michael Hammer – Origins of R-M269 Diversity in Europe

Michael has been at all of the conferences.  He says he doesn’t think we’re crazy.  I personally think we’ve confirmed it for him, several times over, so he KNOWS we’re crazy.  But it obviously has rubbed off on him, because today, he had a real shocker for us.

I want to preface this by saying that I was frantically taking notes and photos, and I may have missed something.  He will have his slides posted and they will be available through a link on the GAP page at FTDNA by the end of the week, according to Elliott.

Michael started by saying that he is really exciting opportunity to begin breaking family groups up with SNPs which are coming faster than we can type them.

Michael rolled out the Y tree for R and the new tree looks like a vellum scroll.

Hammer scroll

Today, he is going to focus on the basic branches of the Y tree because the history of R is held there.

The first anatomically modern humans migrated from Africa about 45,000 years ago.

After last glacial maximum 17,000 years ago, there was a significant expansion into Europe.

Neolithic farmers arrived from the near east beginning 10,000 years ago.

Farmers had an advantage over hunter gatherers in terms of population density.  People moved into Northwestern Europe about 5,000 years ago.

What did the various expansions contribute to the population today?

Previous studies indicate that haplogroup R has a Paleolithic origin, but 2 recent studies agree that this haplogroup has a more recent origin in Europe – the Neolithic but disagree about the timing of the expansion.

The first study, Joblin’s study in 2010, argued that geographic diversity is explained by single Near East source via Anaotolia.

It conclude that the Y of Mesololithic hunger-gatherers were nearly replaced by those of incoming farmers.

In the most recent study by Busby in 2012 is the largest study and concludes that there is no diversity in the mapping of R SNP markers so they could not date lineage and expansion.  They did find that most basic structure of R tree did come from the near east.  They looked at P311 as marker for expansion into Europe, wherever it was.  Here is a summary page of Neolithic Europe that includes these studies.

Hammer says that in his opinion, he thought that if P311 is so frequent and widespread in Europe it must have been there a long time.  However, it appears that he and most everyone else, was wrong.

The hypothesis to be tested is if P311 originated prior to the Neolithic wave, it would predict higher diversity it the near east, closer to the origins of agriculture.  If P311 originated after the expansion, would be able to see it migrate across Europe and it would have had to replace an existing population.

Because we now have sequences the DNA of about 40 ancient DNA specimens, Michael turned to the ancient DNA literature.  There were 4 primary locations with skeletal remains.  There were caves in France, Spain, Germany and then there’s Otzi, found in the Alps.

hammer ancient y

All of these remains are between 6000-7000 years old, so prior to the agricultural expansion into Europe.

In France, the study of 22 remains produced, 20 that were G2a and 2 that were I2a.

In Spain, 5 G2a and 1 E1b.

In Germany, 1I G2a and 2 F*.

Otzi is haplogroup G2a2b.

There was absolutely 0, no, haplogroup R of any flavor.

In modern samples, of 172 samples, 94 are R1b.

To evaluate this, he is dropping back to the backbone of haplogroup R.

hammer backbone

This evidence supports a recent spread of haplogroup R lineages in western Europe about 5K years ago.  This also supports evidence that P311 moved into Europe after the Neolithic agricultural transition and nearly displaced the previously existing western European Neolithic Y, which appears to be G2a.

This same pattern does not extrapolate to mitochondrial DNA where there is continuity.

What conferred advantage to these post Neolithic men?  What was that advantage?

Dr. Hammer then grouped the major subgroups of haplogroup R-P3111 and found the following clusters.

  • U106 is clustered in Germany
  • L21 clustered in the British Isles
  • U152 has an Alps epicenter

hammer post neolithic epicenters

This suggests multiple centers of re-expansion for subgroups of haplogroup R, a stepwise process leading to different pockets of subhaplogroup density.

Archaeological studies produce patterns similar to the hap epicenters.

What kind of model is going on for this expansion?

Ancestral origin of haplogroup R is in the near east, with U106, P312 and L21 which are then found in 3 European locations.

This research also suggests thatG2a is the Neolithic version of R1b – it was the most commonly found haplogroup before the R invasion.

To make things even more interesting, the base tree that includes R has also been shifted, dramatically.

Haplogroup K has been significantly revised and is the parent of haplogroups P, R and Q.

It has been broken into 4 major branches from several individual lineages – widely shifted clades.

hammer hap k

Haps R and Q are the only groups that are not restricted to Oceana and Southeast Asia.

Rapid splitting of lineages in Southeast Asia to P, R and Q, the last two of which then appear in western Europe.

hammer r and q in europe

R then, populated Europe in the last 4000 years.

How did these Asians get to Europe and why?

Asian R1b overtook Neolithic G2a about 4000 years ago in Europe which means that R1b, after migrating from Africa, went to Asia as haplogroup K and then divided into P, Q and R before R and Q returned westward and entered Europe.  If you are shaking your head right about now and saying “huh?”…so were we.

Hammer hap r dist

Here is Dr. Hammer’s revised map of haplogroup dispersion.

hammer haplogroup dispersion map

Moving away from the base tree and looking at more recent SNPs, Dr. Hammer started talking about some of the findings from the advanced SNP testing done through the Nat Geo project and some of what it looks like and what it is telling us.

For example, the R1bs of the British Isles.

There are many clades under L 21.  For example, there is something going on in Scotland with one particular SNP (CTS11722?) as it comprises one third of the population in Scotland, but very rare in Ireland, England and Wales.

New Geno 2.0 SNP data is being utilized to learn more about these downstream SNPs and what they had to say about the populations in certain geographies.

For example, there are 32 new SNPs under M222 which will help at a genealogical level.

These SNPs must have arisen in the past couple thousand years.

Michael wants to work with people who have significant numbers of individuals who can’t be broken out with STRs any further and would like to test the group to break down further with SNPs.  The Big Y is one option but so is Nat Geo and traditional SNP testing, depending on the circumstance.

G2a is currently 4-5% of the population in Europe today and R is more than 40%.

Therefore, P312 split in western Eurasia and very rapidly came to dominate Europe

Session 2 – Dr. Marja Pirttivaara – Bridging Social Media and DNA

Dr. Pirttivaara has her PhD in Physics and is passionate about genetic genealogy, history and maps.  She is an administrator for DNA projects related to Finland and haplogroup N1c1, found in Finland, of course.

marja

Finland has the population of Minnesota and is the size of New Mexico.

There are 3750 Finland project members and of them 614 are haplogroup N1c1.

Combining the N1c1 and the Uralic map, we find a correlation between the distribution of the two.

Turku, the old capital, was full or foreigners, in Medieval times which is today reflected in the far reaching DNA matches to Finnish people.

Some of the interest in Finland’s DNA comes from migration which occurred to the United States.

Facebook and other social media has changed the rules of communication and allows the people from wide geographies to collaborate.  The administrator’s role has also changed on social media as opposed to just a FTDNA project admin.  Now, the administrator becomes a negotiator and a moderator as well as the DNA “expert.”

Marja has done an excellent job of motivating her project members.  They are very active within the project but also on Facebook, comparing notes, posting historical information and more.

Session 3 – Jason Wang – Engineering Roadmap and IT Update

Jason is the Chief Technology Officer at Family Tree DNA and recently joined with the Arpeggi merger and has a MS in Computer Engineering.

Regarding the Gene by Gene/FTDNA partnership, “The sum of the parts is greater than the whole.”  He notes that they have added people since last year in addition to the Arpeggi acquisition.

Jason introduced Elliott Greenspan, who, to most of us, needed no introduction at all.

Elliott began manually scoring mitochondrial DNA tests at age 15.  He joined FTDNA in 2006 officially.

Year in review and What’s Coming

4 times the data processed in the past year.

Uploads run 10 times faster.  With 23andMe and Ancestry autosomal uploads, processing will start in about 5 minutes, and matches will start then.

FTDNA reinvented Family Finder with the goal of making the user experience easier and more modern.   They added photos, profiles and the new comparison bars along with an advanced section and added push to chromosome browser.

Focus on users uploading the family tree.  Tools don’t matter if the data isn’t there.  In order to utilize the genealogy aspect, the genealogy info needs to be there.   Will be enhancing the GEDCOM viewer.  New GEDCOMs replace old GEDCOMs so as you update yours, upload it again.

They are now adding a SNP request form so that you can request a SNP not currently available.  This is not to be confused with ordering an existing SNP.

They currently utilize build 14 for mitochondrial DNA.  They are skipping build 15 entirely and moving forward with 16.

They added steps to the full sequence matches so that you can see your step-wise mutations and decide whether and if you are related in a genealogical timeframe.

New Y tree will be released shortly as a result of the Geno 2.0 testing.  Some of the SNPs have mutated as much as 7 times, and what does that mean in terms of the tree and in terms of genealogical usefulness.  This tree has taken much longer to produce than they expected due to these types of issues which had to be revised individually.

New 2014 tree has 6200 SNPS and 1000 branches.

  • Commitment to take genetic genealogy to the next level
  • Y draft tree
  • Constant updates to official tree
  • Commitment to accurate science

If a single sample comes back as positive for a SNP, they will put it on the tree and will constantly update this.

If 3 or 4 people have the same SNP that are not related it will go directly to the tree.  This is the reason for the new SNP request form.

Part of the reason that the tree has taken so long is that not every SNP is public and it has been a huge problem.

When they find a new SNP, where does it go on the tree?  When one SNP is found or a SNP fails, they have run over 6000 individual SNPs on Nat Geo samples to vet to verify the accuracy of the placement.  For example, if a new SNP is found in a particular location, or one is found not to be equivalent that was believe to be so previously, they will then test other samples to see where the SNP actually belongs.

X Matching

Matching differential is huge in early testing.  One child may inherit as little as 20% of the X and another 90%.  Some first cousins carry none.

X matching will be an advanced feature and will have their own chromosome browser.

End of the year – January 1.  Happy New Year!!!

Population Finder

It’s definitely in need of an upgrade and have assigned one person full time to this product.

There are a few contention points that can be explained through standard history.

It’s going to get a new look as well and will be easily upgradeable in the future.

They cannot utilize the National Geographic data because it’s private to Nat Geo.

Bennett – “Committed to an engineering team of any size it takes to get it done.  New things will be rolling out in first and second quarter of next year.”  Then Bennett kind of sighed and said “I can’t believe I just said that.”

Session 4 – Dr. Connie Bormans – Laboratory Update

The Gene by Gene lab, which of course processes all of the FTDNA samples is now a regulated lab which allows them to offer certain regulated medical tests.

  • CLIA
  • CAP
  • AABB
  • NYSDOH

Between these various accreditations, they are inspected and accredited once yearly.

Working to decrease turn-around time.

SNP request pipeline is an online form and is in place to request a new SNP be added to their testing menu.

Raised the bar for all of their tests even though genetic genealogy isn’t medical testing because it’s good for customers and increases quality and throughput.

New customer support software and new procedures to triage customer requests.

Implement new scoring software that can score twice as many tests in half the time.  This decreases turn-around time to the customer as well.

New projects include improved method of mtDNA analysis, new lab techniques and equipment and there are also new products in development.

Ancient DNA (meaning DNA from deceased people) is being considered as an offering if there is enough demand.

Session 5 – Maurice Gleeson – Back to Our Past, Ireland

Maurice Gleeson coordinated a world class genealogy event in Dublin, Ireland Oct. 18-20, 2013.  Family Tree DNA and ISOGG volunteers attended to educate attendees about genetic genealogy and DNA. It was a great success and the DNA kits from the conference were checked in last week and are in process now.  Hopefully this will help people with Irish ancestry.

12% of the Americans have Irish ancestry, but a show of hands here was nearly 100% – so maybe Irish descendants carry the crazy genealogist gene!

They developed a website titled Genetic Genealogy Ireland 2013.  Their target audience was twofold, genetic genealogy in general and also the Irish people.  They posted things periodically to keep people interested.  They also created a Facebook page.  They announced free (sponsored) DNA tests and the traffic increased a great deal.  Today ISOGG has a free DNA wiki page too.  They also had a prize draw sponsored by the Ireland DNA and mtdna projects. Maurice said that the sessions and the booth proximity were quite symbiotic because when y ou came out of the DNA session, the booth was right there.

2000-5000 people passed by the booth

500 people in the booth

Sold 99 kits – 119 tests

45 took Y 37 marker tests

56 FF, 20 male, 36 female

18 mito tests

They passed out a lot of educational material the first two days.  It appeared that the attendees were thinking about things and they came back the last day which is when half of the kits were sold, literally up until they threatened to turn the lights out on them.

They have uploaded all of the lectures to a YouTube channel and they have had over 2000 views.  Of all of the presentation, which looked to be a list of maybe 10-15, the autosomal DNA lecture has received 25% of the total hits for all of the videos.

This is a wonderful resource, so be sure to watch these videos and publicize them in your projects.

Session 6 – Brad Larkin – Introducing Surname DNA Journal

Brad Larkin is the FTDNA video link to the “how to appropriately” scrape for a DNA test.  That’s his minute or two of fame!  I knew he looked familiar.

Brad began a peer reviewed genetic genealogy journal in order to help people get their project stories published.  It’s free, open access, web based and the author retains the copyright..  www.surnamedna.com

Conceived in 2012, the first article was published in January 2013.  Three papers published to date.

Encourage administrators to write and publish their research.  This helps the publication withstand the test of time.

Most other journals are not free, except for JOGG which is now inactive.  Author fees typically are $1320 (PLOS) to $5000 (Nature) and some also have subscription or reader fees.

Peer review is important.  It is a critical review, a keen eye and an encouraging tone.  This insures that the information is evidence based, correct and replicable.

Session 7 – mtdna Roundtable – Roberta Estes and Marie Rundquist

This roundtable was a much smaller group than yesterday’s Y DNA and SNP session, but much more productive for the attendees since we could give individual attention to each person.  We discussed how to effectively use mtdna results and what they really mean.  And you just never know what you’re going to discover.  Marie was using one of her ancestors whose mtDNA was not the haplogroup expected and when she mentioned the name, I realized that Marie and I share yet another ancestral line.  WooHoo!!

Q&A

FTDNA kits can now be tested for the Nat Geo test without having to submit a new sample.

After the new Y tree is defined, FTDNA will offer another version of the Deep Clade test.

Illumina chip, most of the time, does not cover STRs because it measures DNA in very small fragments.  As they work with the Big Y chip, if the STRs are there, then they will be reported.

80% of FTDNA orders are from the US.

Microalleles from the Houston lab are being added to results as produced, but they do not have the data from the older tests at the University of Arizona.

Holiday sale starts now, runs through December 31 and includes a restaurant.com $100 gift card for anyone who purchases any test or combination of tests that includes Family Finder.

That’s it folks.  We took a few more photos with our friends and left looking forward to next year’s conference.  Below, left to right in rear, Marja Pirttivaara, Marie Rundquist and David Pike.  Front row, left to right, me and Bennett Greenspan.

Goodbyes

See y’all next year!!!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

2013 Family Tree DNA Conference Day 1

This article is probably less polished than my normal articles.  I’d like to get this information out and to you sooner rather than later, and I’m still on the road the rest of this week with little time to write.  So you’re getting a spruced up version of my notes.  There are some articles here I’d like to write about more indepth later, after I’m back at home and have recovered a bit.

Max Blankfield and Bennett Greenspan, founders, opened the conference on the first day as they always do.  Max began with a bit of a story.

13 years ago Bennett started on a quest….

Indeed he did, and later, Bennett will be relating his own story of that journey.

Someone mentioned to Max that this must be a tough time in this industry.  Max thought about this and said, really, not.  Competition validates what you are doing.

For competition it’s just a business opportunity – it was not and is not approached with the passion and commitment that Family Tree DNA has and has always had.

He said this has been their best year ever and great things in the pipeline.

One of the big moves is that Arpeggi merged into Family Tree DNA.

10th Anniversary Pioneer Awards

Quite unexpectedly, Max noted and thanked the early adopters and pioneers, some of which who are gone now but remain with us in spirit.

Max and Bennett recognized the administrators who have been with Family Tree DNA for more than 10 years.  The list included about 20 or so early adopters.  They provided plaques for us and many of us took a photo with Max as the plaques were handed out.

Plaque Max and Me 2013

I am always impressed by the personal humility and gratitude of Max and Bennett, both, to their administrators.  A good part of their success is attributed, I’m sure, to their personal commitment not only to this industry, but to the individual people involved.  When Max noted the admins who were leaders and are no longer with us, he could barely speak.  There were a lot of teary eyes in the room, because they were friends to all of us and we all have good memories.

Thank you, Max and Bennett.

The second day, we took a group photo of all of the recipients along with Max and Bennett.

With that, it was Bennett’s turn for a few remarks.

Bennett remarks

Bennett says that having their own lab provides a wonderful environment and allows them to benchmark and respond to an ever changing business environment.

Today, they are a College of American Pathologists certified lab and tomorrow, we will find out more about what is coming.  Tomorrow, David Mittleman will speak about next generation sequencing.

The handout booklet includes the information that Family Tree DNA now includes over 656,898 records in more than 8,700 group projects. These projects are all managed by volunteer administrators, which in and of itself, is a rather daunting number and amount of volunteer crowd-sourcing.

Session 1 – Amy McGuire, PhD, JD – Am I My Brother’s Keeper?

Dr. McGuire went to college for a very long time.  Her list of degrees would take a page or so.  She is the Director of the Center for Medical Ethics and Health Policy at Baylor College of Medicine.

Thirteen years ago, Amy’s husband was sitting next to Bennett’s wife on an airplane and she gave him a business card.  Then two months ago, Amy wound up sitting next to Max on another airplane.  It’s a very small world.

I will tell you that Amy said that her job is asking the difficult questions, not providing the answers.  You’ll see from what follows that she is quite good at that.

How is genetic genealogy different from clinical genetics in terms of ethics and privacy?  How responsible are we to other family members who share our DNA?

What obligations do we have to relatives in all areas of genetics – both clinical, direct to consumer that related to medical information and then for genetic genealogy.

She referenced the article below, which I blogged about here.  There was unfortunately, a lot of fallout in the media.

Identifying Personal Genomes by Surname Inference – Science magazine in January 2013.  I blogged about this at the time.

She spoke a bit about the history of this issue.

Mcguire

In 2004, a paper was published that stated that it took only 30 to 80 specifically selected SNPS to identify a person.

2008 – Can you identify an individual from pooled or aggregated or DNA?  This is relevant to situations like 911 where the DNA of multiple individuals has been mixed together.  Can you identify individuals from that brew?

2005 – 15 year old boy identifies his biological father who was a sperm donor.  Is this a good thing or a bad thing?  Some feel that it’s unethical and an invasion of the privacy of the father.  But others feel that if the donor is concerned about that, they shouldn’t be selling their sperm.

Today, for children conceived from sperm donors, there are now websites available to identify half-siblings.

The movement today is towards making sure that people are informed that their anonymity may not be able to be preserved.  DNA is the ultimate identifier.

Genetic Privacy – individual perspectives vary widely.  Some individuals are quite concerned and some are not the least bit concerned.

Some of the concern is based in the eugenics movement stemming from the forced sterilization (against their will) of more than 60,000 Americans beginning in 1907.  These people were considered to be of no value or injurious to the general population – meaning those institutionalized for mental illness or in prison.

1927 – Buck vs Bell – The Supreme court upheld forced sterilization of a woman who was the third generation institutionalized female for retardation.  “Three generations of imbeciles is enough.”  I must say, the question this leaves me with is how institutionalized retarded women got pregnant in what was supposed to be a “protected” environment.

Hitler, of course, followed and we all know about the Holocaust.

I will also note here that in my experience, concern is not rooted in Eugenics, but she deals more with medical testing and I deal with genetic genealogy.

The issues of privacy and informed consent have become more important because the technology has improved dramatically and the prices have fallen exponentially.

In 2012, the Nonopore OSB Sequencer was introduced that can sequence an entire genome for about $1000.

Originally, DNA data was provided in open access data bases and was anonymized by removing names.  The data base from which the 2013 individuals were identified removed names, but included other identifying information including ages and where the individuals lived.  Therefore, using Y-STRs, you could identify these families just like an adoptee utilizes data bases like Y-Search to find their biological father.

Today, research data bases have moved to controlled access, meaning other researchers must apply to have access so that their motivations and purposes can be evaluated.

In a recent medical study, a group of people in a research study were informed and educated about the utility of public data bases and why they are needed versus the tradeoffs, and then they were given a release form providing various options.  53% wanted their info in public domain, 33 in restricted access data bases and 13% wanted no data release.  She notes that these were highly motivated people enrolled in a clinical study.  Other groups such as Native Americans are much more skeptical.

People who did not release their data were concerned with uncertainly of what might occur in the future.

People want to be respected as a research participant.  Most people said they would participate if they were simply asked.  So often it’s less about the data and more about how they are treated.

I would concur with Dr. McGuire on this.  I know several people who refused to participate in a research study because their results would not be returned to them personally.  All they wanted was information and to be treated respectfully.

What  the new genetic privacy issues are really all about is whether or not you are releasing data not just about yourself, but about your family as well.  What rights or issues do the other family members have relative to your DNA?

Jim Watson, one of the discoverers of DNA, wanted to release his data publicly…except for his inherited Alzheimer’s status.  It was redacted, but, you can infer the “answer” from surrounding (flanking regions) DNA.  He has two children.  How does this affect his children?  Should his children sign a consent and release before their father’s genome is published, since part of it is their sequence as well? The academic community was concerned and did not publish this information.  Jim Watson published his own.

There is no concrete policy about this within the academic community.

Dr McGuire then referenced the book, “The Immortal Life of Henrietta Lacks”.  Henrietta Lacks was a poor African-American woman with ovarian cancer.  At that time, in the 1950s, her cancer was considered “waste” and no release was needed as waste could be utilized for research.  She was never informed or released anything, but then they were following the protocols of the time.  From her cell line, the HeLa cell line, the first immortal cell line was created which ultimately generated a great deal of revenue for research institutes. The family however, remained impoverished.  The genome was eventually fully sequenced and published.  Henrietta Lacks granddaughter said that this was private family information and should never have been published without permission, even though all of the institutions followed all of the protocols in place.

So, aside from the original ethics issues stemming from the 1950s – who is relevant family?  And how does or should this affect policy?

How does this affect genetic genealogy?  Should the rules be different for genetic genealogy, assuming there are (will be) standard policies in place for medical genetics?  Should you have to talk to family members before anyone DNA tests?  Is genetic information different than other types of information?

Should biological relatives be consulted before someone participates in a medical research study as opposed to genetic genealogy?  How about when the original tester dies?  Who has what rights and interests?  What about the unborn?  What about when people need DNA sequencing due to cancer or another immediate and severe health condition which have hereditary components.  Whose rights trump whose?

Today, the data protections are primarily via data base access restrictions.

Dr. Mcguire feels the way to protect people is through laws like GINA (Genomic Information Nondiscrimination Act) which protects people from discrimination, but does not reach to all industries like life insurance.

Is this different than people posting photos of family members or other private information without permission on public sites?

While much of Dr. McGuire’s focus in on medical testing and ethics, the topic surely is applicable to genetic genealogy as well and will eventually spill over.  However, I shudder to think that someone would have to get permission from their relatives before they can have a Y-line DNA test.  Yes, there is information that becomes available from these tests, including haplogroup information which has the potential to make people uncomfortable if they expected a different ethnicity than what they receive or an undocumented adoption is involved.  However, doesn’t the DNA carrier have the right to know, and does their right to know what is in their body override the concerns about relatives who should (but might not) share the same haplogroup and paternal line information?

And as one person submitted as a question at the end of the session, isn’t that cat already out of the bag?

Session 2 – Dr. Miguel Vilar – Geno 2.0 Update and 2014 Tree

Dr. Vilar is the Science manager for the National Geographic’s Genographic Project.

“The greatest book written is inside of us.”

Miguel is a molecular anthropologist and science writer at the University of Pennsylvania. He has a special interest in Puerto Rico which has 60% Native mitochondrial DNA – the highest percentage of Native American DNA of any Caribbean Island.

The Genographic project has 3 parts, the indigenous population testing, the Legacy project which provides grants back to the indigenous community and the public participation portion which is the part where we purchase kits and test.

Below, Dr. Vilars discussed the Legacy portion of the project.

Villars

The indigenous population aspect focuses both on modern indigenous and ancient DNA as well.  This information, cumulatively, is used to reconstruct human population migratory routes.

These include 72,000 samples collected 2005-2012 in 12 research centers on 6 continents.  Many of these are working with indigenous samples, including Africa and Australia.

42 academic manuscripts and >80 conference presentations have come forth from the project.  More are in the pipeline.

Most recently, a Science paper was published about the spread of mtDNA throughout Europe across the past 5000 years.  More than 360 ancient samples were collected across several different time periods.  There seems to be a divide in the record about 7000 years ago when several disappear and some of the more well known haplogroups today appear on the scene.

Nat Geo has funded 7 new scientific grants since the Geno 2.0 portion began for autosomal including locations in Australia, Puerto Rico and others.

Public participants – Geno 1.0 went over 500,000 participants, Geno 2.0 has over 80,000 participants to date.

Dr. Vilar mentioned that between 2008 and today, the Y tree has grown exponentially.  That’s for sure.  “We are reshaping the tree in an enormous way.”  What was once believed to very homogenous, but in reality, as it drills down to the tips, it’s very heterogenous – a great deal of diversity.

As anyone who works with this information on a daily basis knows, that is probably the understatement of the year.  The Geno 2.0 project, the Walk the Y along with various other private labs are discovering new SNPs more rapidly than they can be placed on the Y tree.  Unfortunately, this has led to multiple trees, none of which are either “official” or “up to date.”  This isn’t meant as a criticism, but more a testimony of just how fast this part of the field is emerging.  I’m hopeful that we will see a tree in 2014, even if it is an interim tree. In fact, Dr. Vilars referred to the 2014 tree.

Next week, the Nat Geo team goes to Ireland and will be looking for the first migrants and settlers in Ireland – both for Y DNA and mitochondrial DNA.  Dr. Vilars says “something happened” about 4000 years ago that changed the frequency of the various haplogroups found in the population.  This “something” is not well understood today but he feels it may be a cultural movement of some sort and is still being studied.

Nat Geo is also focused on haplogroup Q in regions from the Arctic to South America.  Q-M3 has also been found in the Caribbean for the first time, marking a migration up the chain of islands from Mexico and South America within the past 5,000 years.  Papers are coming within the next year about this.

They anticipate that interest will double within the next year.  They expect that based on recent discoveries, the 2015 Y tree will be much larger yet.  Dr. Michael Hammer will speak tomorrow on the Y tree.

Nat Geo will introduce a “new chip by next year.”  The new Ireland data should be available on the National Geographic website within a couple of weeks.

They are also in the process up updating the website with new heat maps and stories.

Session 3 – Matt Dexter – Autosomal Analyses

Matt is a surname administrator, an adoptee and has a BS in Computer Science.  Matt is a relatively new admin, as these things go, beginning his adoptive search in 2008.

Matt found out as a child that he was adopted through a family arrangement.  He contacted his birth mother as an adult.  She told him who his father was who subsequently took a paternity test which disclosed that the man believed to be his biological father, was not.  Unfortunately, his ‘father’ had been very excited to be contacted by Matt, and then, of course, was very disappointed to discover that Matt was not his biological child.

Matt asked his mother about this, and she indicated that yes, “there was another guy, but I told him that the other guy was your father.’  With that, Matt began the search for his biological father.

In order to narrow the candidates, his mother agreed to test, so by process of elimination, Matt now knows which side of his family his autosomal results are from.

Matt covers how autosomal DNA works.

This search has led Matt to an interest in how DNA is passed in general, and specifically from grandparents to grandchildren.

One advantage he has is that he has five children whose DNA he can then compare to his wife and three of their grandparents, inferring of course, the 4th grandparent by process of elimination.  While his children’s DNA doesn’t help him identify his father, it did give him a lot of data to work with to learn about how to use and interpret autosomal DNA.    Here, Matt is discussing his children’s inheritance.

Matt dexter

Session 4 – Jeffrey Mark Paul – Differences in Autosomal DNA Characteristics between Jewish and Non-Jewish Populations and Implications for the Family Finder Test

Dr.Jeffrey Paul, who has a doctorate in Public Health from John Hopkins, noticed that his and his wife’s Family Finder results were quite different, and he wanted to know why.  Why did he, Jewish, have so many more?

There are 84 participants in the Jewish project that he used for the autosomal comparison.

What factors make Ashkenazi Jews endogamous.  The Ashkenazi represent 80%of world’sJewish population.

Arranged marriages based on family backgrounds.  Rabbinical lineages are highly esteemed and they became very inbred with cousins marrying cousins for generations.

Cultural and legal restrictions restrict Jewish movements and who they could marry.

Overprediction, meaning people being listed as being cousins more closely than they are, is one of the problems resulting from the endogamous population issue.  Some labs “correct” for this issue, but the actual accuracy of the correction is unknown.

Jeffrey compared his FTDNA Family Finder test with the expected results for known relatives and he finds the results linear – meaning that the results line up with the expected match percentages for unrelated relatives.  This means that FTDNA’s Jewish “correction” seems to be working quite well.  Of course, they do have a great family group with which to calibrate their product.  Bennett’s family is Jewish.

Jeffrey has downloaded the results of group participants into MSAccess and generates queries to test the hypothesis that Jewish participants have more matches than a non-Jewish control group.

The Jewish group had approximately a total of 7% total non-Ashkenazi Jewish in their Population Finder results, meaning European and Middle Eastern Jewish.  The non-Jewish group had almost exactly the opposite results.

  • Jewish people have from 1500-2100 matches.
  • Interfaith 700-1100 (Jewish and non)
  • NonJewish 60-616

Jewish people match almost 33% of the other Jewish people in the project.  Jewish people match both Jewish and Interfaith families.  NonJewish families match NonJewish and interfaith matches.

Jeffrey mentioned that many people have Jewish ancestry that they are unaware of.

This session was quite interesting.  This study while conducted on the Jewish population, still applies to other endogamous populations that are heavily intermarried.  One of the differences between Jewish populations and other groups, such as Amish, Brethren, Mennonite and Native American groups is that there are many Jewish populations that are still unmixed, where most of these other groups are currently intermixed, although of course there are some exceptions.  Furthermore, the Jewish community has been endogamous longer than some of the other groups.  Between both of those factors, length of endogamy and current mixture level, the Jewish population is probably much more highly admixed than any other group that could be readily studied.

Due to this constant redistribution of Jewish DNA within the same population, many Jewish people have a very high percentage of distant cousin relationships.

For non-Jewish people, if you are finding match number is the endogamous range, and a very high number of distant cousins, proportionally, you might want to consider the possibility that some of your ancestors descend from an endogamous population.

Unfortunately, the photo of Dr. Paul was unuseable.  I knew I should have taken my “real camera.”

Session 5 – Finding Your Indian Prince(ss) Without Having to Kiss Too Many Frogs

This was my session, and I’ll write about it later.

Someone did get a photo, which I’ve lifted from Jennifer Zinck’s great blog (thank you Jennifer), Ancestor Central.  In fact, you can see her writeup for Day 1 here and she is probably writing Day 2’s article as I type this, so watch for it too.

 Estes Indian Princess photo

Session 6 – Roundtable – Y-SNPs, hosted by Roberta Estes, Rebekah Canada and Marie Rundquist

At the end of the day, after the breakout sessions, roundtable discussions were held.  There were several topics.  Rebekah Canada, Marie Rundquist and I together “hostessed” the Y DNA and SNP discussion group, which was quite well attended.  We had a wide range of expertise in the group and answered many questions.  One really good aspect of these types of arrangements is that they are really set up for the participants to interact as well.  In our group, for example, we got the question about what is a public versus a private SNP, and Terry Barton who was attending the session answered the question by telling about his “private” Barton SNPs which are no longer considered private because they have now been found in three other surname individuals/groups.  This means they are listed on the “tree.”  So sometimes public and private can simply be a matter of timing and discovery.

FTDNA roundtable 2013

Here’s Bennett leading another roundtable discussion.

roundtable bennett

Session 7 – Dr. David Mittleman

Mittleman

Dr. Mittleman has a PhD in genetics, is a professor as well as an entrepreneur.  He was one of the partners in Arpeggi and came along to Gene by Gene with the acquisition.  He seems to be the perfect mixture of techie geek, scientist and businessman.

He began his session by talking a bit about the history of DNA sequencing, next generation sequencing and a discussion about the expectation of privacy and how that has changed in the past few years with Google which was launched in 2006 and Facebook in 2010.

David also discussed how the prices have dropped exponentially in the past few years based on the increase in the sophistication of technology.  Today, Y SNPs individually cost $39 to test, but for $199 at Nat Geo you can test 12,000 Y SNPs.

The WTY test, now discontinued tsted about 300,000 SNPs on the Y.  It cost between $950 (if you were willing to make your results public) and $1500 (if the results were private,)

Today, the Y chromosome can be sequenced on the Illumina chip which is the same chip that Nat Geo used and that the autosomal testing uses as well.  Family Tree DNA announced their new Big Y product that will sequence 10 million positions and 25,000 known SNPs for an introductory sale price of $495 for existing customers.  This is not a test that a new customer would ever order.  The test will normally cost $695.

Candid Shots

Tech row in the back of the room – Elliott Greenspan at left seated at the table.

tech row

ISOGG Reception

The ISOGG reception is one of my favorite parts of the conference because everyone comes together, can sit in groups and chat, and the “arrival” adrenaline has worn off a bit.  We tend to strategize, share success stories, help each other with sticky problems and otherwise have a great time.  We all bring food or drink and sometimes pitch in to rent the room.  We also spill out into the hallways where our impromptu “meetings” generally happen.  And we do terribly, terribly geeky things like passing our iPhones around with our chromosome painting for everyone to see.  Do we know how to party or what???

Here’s Linda Magellan working hard during the reception.  I think she’s ordering the Big Y actually.  We had several orders placed by admins during the conference.

magellan.jpg

We stayed up way too late visiting and the ISOGG meeting starts at 8 AM tomorrow!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Human Genetics Revolution Tells Us That Men and Women Are Not the Same

Stop laughing.  I know, my initial reaction too was, “really – it took genetics to tell us that?”  But this is serious….really.

Males are 99.9% the same when compared to other males, and females are as well when compared to other females, but males and females are only 98.5% equal to each other – outside of the X and Y chromosomes.  The genetic difference between men and women is 15 times greater than between two men or two women.  In fact, it’s equal to that of men and male chimpanzees.  So men really are from….never mind.  It’s OK to laugh now…

men-women 1

We’ve been taught that other than X and Y, males and females are genetically exactly the same.  They aren’t.

men-women 2

Does this matter?  Dr. David Page, Director of the Whitehead Institute and MacArthur Genius Grant winner, says it absolutely does.  He has discovered that both the X and Y chromosomes function throughout the entire body, not just within the reproductive tract.

In his words, “Humane Genome, we have a problem.”  Medicine and research fails to take into account this most fundamental difference.  We aren’t unisex, and our bodies know this – every cell knows it at the molecular level, according to Dr. Page.

For example, some non-reproductive tract diseases appear in vastly different percentages in men and women.  Autism is found in 5 times as many males as females, Lupus in 6 times as many women as men and Rheumatoid Arthritis in 5 times as many women as men.  In other diseases, men and women either react differently to disease treatment, react differently to the disease itself, or both.  Dr. Page explains more and suggests a way forward in this short but very informative video.

About Dr. David Page:

David Page, Director of the Whitehead Institute and professor of biology at MIT, has shaped modern genomics and mapped the Y chromosome.  His renowned studies of the sex chromosomes have shaped modern understandings of reproductive health, fertility and sex disorders.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

23andMe Patents Technology for Designer Babies

I try very hard to stay away from politics, religion and ethical discussions.  My Hoosier farmer Dad used to say opinions about those topics are like a certain body part, everyone has one and they all stink.

Today, however, I’m going to violate my own rule because willingly or not, by own DNA has been drug into this arena – without my direct knowledge – and so has yours if you have tested with 23andMe.

23andMe has patented the technology for making designer babies, but has stated that they don’t intend to use it.  If you’re scratching your head about now, so was I.  scratching head

This Fox News article explains about 23andMe’s patent application and recent approval.

They also report that 23andMe claims they have no plan to implement this system, confirmed by a quote from 23andMe.  If you’re thinking that makes no sense at all, you’re not alone.  Kind of reminds me of an alcoholic purchasing alcohol but claiming they have no intention of drinking it, a pedophile purchasing kiddie porn and claiming they have no intention of viewing it, a burglar caught with burglary tools and claiming they aren’t going to use them or maybe in a less sinister vein, a cat chasing a mouse and claiming they have no intention of catching it.  Yeah, right.

An article in Genetics in Medicine elaborates further.  This article explains how the designer baby process takes place.

“Taken out of “patentese,” what 23andMe is claiming is a method by which prospective donors of ova and/or sperm may be selected so as to increase the likelihood of producing a human baby with characteristics desired by the prospective parents, the selection being based on a computerized comparison of the genotypic data of the egg provider with that of the sperm provider.”

Clearly, very few people would have an issue with this technology if it were utilized to only deselect mixtures which would produce children with serious genetic diseases for at-risk couples.  However, utilizing this technique to produce designer children based on the whim of their parents could be another matter altogether, and to many people, crosses the murky line of what is and is not appropriate or acceptable, for whatever reason.  It’s not my intention here to debate the ethics of this technology or technique.  I can’t help but think, however, of the Chinese today who have a “one child policy,” only allowing one child per family which has led to sex selection in an attempt for families to assure that one child is a male.  Worse yet, I’m reminded of Hitler’s horrific genocide, the Holocaust, based on, in part, physical traits.

What does 23andMe themselves have to say about this?  On their May 28th 2012 blog, they announced their Parkinson’s patent.  In that announcement they stated that they “have a research arm with more than 20 scientists dedicated to making meaningful discoveries that will improve the lives of all of us.”

On October 1, 2013, their blog announced their second patent, the “designer baby” patent and states the following:

“Last week, 23andMe was awarded a patent for which we applied more than five years ago, and which relates to one of the tools we offer individuals as part of their genetic exploration. The tool — Family Traits Inheritance Calculator — offers an engaging way for you and your partner to see what kind of traits your child might inherit from you. The Family Trait Inheritance Calculator has also been part of our service since 2009 and is used by our customers as a fun way to look at such things as what eye color their child might have or if their child will be able to perceive bitter taste or be lactose intolerant. The tool offers people an enjoyable way to dip their toes into genetics.”

Here’s a look at 23andMe’s Family Inheritance Calculator.  The categories reported are bitter taste perception, lactose intolerance, earwax, eye color, muscle performance and alcohol flush reaction.  Certainly, this looks innocuous enough.

Utilizing a screen shot from two family members, the first column displays the child’s genes, the second, one parent’s, and the final column predicts the resulting outcome of that trait in the child.  In this case, the child has brown eyes, wet earwax, doesn’t run and has no alcohol flush reaction.

23andMefamilytraits

So if you’ve been dangling your toes in the water and thought you were just having fun, well, there might be something much more sinister under the water, depending on your perspective and your toes, well, they might just be bait.

The final paragraph in the Genetics in Medicine article sums this situation up quite well.

“What makes this case even more surprising is the fact that 23andMe is no stranger to controversy regarding its patenting activities. In the days following its May 2012 announcement on the company blog that it was to be granted a US patent for a test for propensity to develop Parkinson disease, the blog was filled with reactions of upset customers, the providers of the genetic and phenotypic data which constitutes 23andMe’s biobank. Since 23andMe is a commercial entity, clearly intended to bring profit to its investors at some stage at least, its attempts to seek patents are not surprising. Moreover, such attempts are not inherently problematic. However, for a company that invites audience participation, and so needs customers and their goodwill to maintain and expand its most valuable asset, i.e., its biobank, it is surprising that, following the uproar that greeted the announcement of its Parkinson disease patent, 23andMe has pursued this patent with no apparent public discussion. For instance, do the consumers who have also allowed 23andMe to use their genotypic data for the research conducted by the company agree with the use of their information for the purpose of developing a method for gamete donor selection? Public trust is central to the continuing success of human genetics research in general and biobank-based research in particular. We urge maximal transparency by all engaged in human genetics research.”

Customers are the Biobank

Herein lies the problem.  I’m one of those consumers and I had no idea whatsoever that this research was underway.  That makes it clandestine at worst and certainly not transparent at best.  My DNA, along with all of their other clients who constitute their “biobank” was used for this research which has now been patented in the form of “designer baby” technology.  I’m not going to say publicly whether I’m in favor of or opposed to designer babies, per se, but I’m going to say that I’m extremely uncomfortable discovering that this is what was being done with my DNA.  I’m not happy – really not happy.

When I purchased my DNA test at 23andMe, it was for genealogy, although I have clearly benefitted from the health traits aspects too.  I have been a willing participant in several surveys, including the ones about Parkinsons.  My mother had Parkinsons, at least we think she did, as Parkinsons is a diagnosis by excluding other possible diseases.  In other words, there is no test for Parkinson’s disease itself.  My thoughts of course when I’ve taken these surveys about diseases, traits and such is that the research would be utilized in identifying genetic sources and then perhaps treatments or drugs to cure those diseases.  I fully expected the treatments to be patented, but I did not expect the genetic aspects, or the genes themselves, to be patented.

In all fairness, I did give consent and I knew that their primary focus is and was medical research.  However, I didn’t expect they would utilize my DNA for this.  I trusted and had confidence in them.  Now I don’t.

Consenting for What?

Here’s a link to their consent form.  The first paragraph says “23andMe aims to make and support scientific discoveries and publish those discoveries in scientific journals.”  Hey, I’m good with that.  In fact, I applaud it.  A patent is not a scientific journal article.

Looking further, under item 5, under Benefits, it says, “23andMe may develop intellectual property, including but not limited to patents, copyrights and trademarks, and/or commercialize products or services, directly or indirectly, based on the results of this study, and in such cases you will not receive any compensation.”  I don’t quite understand how that is a benefit to me, at least not directly.  But it does say the word, patent.  It’s just that, well, I expected the patents to be related to disease cures, like cancer and Parkinsons and things like that, not designer babies.  Designer babies clearly have been a priority for them, and they have been working very quietly, too quietly, on this for a long time.  The patent was applied for in 2008.  Discussion about their Parkinsons research is all over their website, but not a peep about their designer baby research.  Why is that?

Recently, the Supreme Court struck down a similar patent on the Breast Cancer Genes.  This patent is different in that it doesn’t directly patent the genes themselves, but the gamete selection technique, as best I can tell.

Customer Options

What can I, as a consumer, do?  I’m very uncomfortable now with 23andMe and their priorities.  I feel that we as consumers, their customers, have been betrayed.  I feel that they have compromised their own integrity by focusing on designer babies for the wealthy who want to select eye color instead of on disease cures for the masses, which is what I expected would be done with my DNA.  I’m wondering what other things they are working on that I will find equally as objectionable.

This isn’t a debate about the ethics of designer babies, but a discussion about how my, and your, DNA is being utilized.

What can I do?  I still want the genealogy matching services, but I no longer want to participate in their medical research.  According to the consent form, customers do have an option to withdraw.  Here is what that says:

“Your alternative is not to participate in the 23andWe research study…If you choose not to give consent for 23andWe research, your Genetic & Self-Reported Information may still be used for other purposes, as described in our Privacy Statement.

At any time, you may choose to withdraw all or some of your Genetic & Self-Reported Information from 23andWe research by changing your consent status within the 23andMe “Settings” page or by sending a request to the Human Protections Administrator at hpa@23andme.com.  You will still be allowed full access to the Personal Genome Service®, but 23andMe will prevent the requested information from being used in new 23andWe research occurring after 30 days from receipt of your request. Any research on your data that has been performed or published prior to this date will not be reversed, undone, or withdrawn. Your Genetic & Self-Reported Information may still be used for other purposes as described in the 23andMe Privacy Statement.

Choosing not to give consent or withdrawing from 23andWe will not affect your access to your Genetic Information or to the Personal Genome Service®.

You may also discontinue participation by closing your Personal Genome Service® account, as described in the Terms of Service. Requests for account closure must be made in writing to 23andMe’s business address or via Customer Care.”

Hmm, it says that even if I withdraw, they can still use some information.   I did as they suggested, and consulted the Privacy Statement.  I’m not a lawyer, but this paragraph seems to suggest that regardless, they can use at least some of my information anyway.

They state: If you do not give your consent to participate in 23andWe Research, 23andMe may still use your Genetic and Self-Reported Information for purposes such as quality control or other R&D activities. Genetic and Self-Reported Information used for such purposes may be included in Aggregated Genetic and Self-Reported Information disclosed to third-party research partners who will not publish the information in a peer-reviewed scientific journal. Research partners may include commercial or non-profit organizations that conduct or support scientific/medical research or conduct or support the development of drugs or devices to diagnose, predict, or treat health conditions.”

So, the net-net of this seems to be that my only recourse if I really don’t want my DNA utilized is to close my account entirely – and even then, I’m not at all sure that they don’t retain my information and utilize it.  Maybe Judy Russell or Blaine Bettinger could provide a better legal review.

What I’m Doing

Let me tell you what I am going to do.

1.  I’m going to change my settings to prevent my DNA from being utilized in further research, and I’m not going to answer any more surveys until I feel much better about what 23andMe is doing, if ever.  In fact, I was going to show you how to do this too, if you’re interested.  However, after logging into 23andMe, the “settings” page is not in evidence since their last page reorganization, nor can it be found by searching, and neither is the “gear” that used to be the gateway to settings, so I will be e-mailing their Human Projects Administrator at hpa@23andMe.com.  This settings page required to withdraw should be obvious.

Edit – Update – The Settings Option is a dropdown from your name after you sign into 23andMe.  Then click on Privacy/Consent.

23andme settings

2.  Furthermore, I will no longer be recommending that people test at 23andMe without a very strong caveat and a link to this posting.

3.  I’ve removed their link from my blog sidebar.  Poof – gone.

What Do You Think?

I invite your input?  What do you think?  How do you feel?  What are you going to do?

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

First Iceland, Now the Faroe Islands

Faroe island capital

Sometimes it takes a crisis or a tragedy to spur a revolution.  That’s what has happened in the Faroe Islands.

In the 1990s, deCODE Genetics began the process of creating the world’s first population-wide biobank of genetic information by collecting the DNA of all residents of a confined geographic population.  They approached the Faroe Island, which at that time declined, and deCODE went on to proceed with the population of Iceland.  Unfortunately, deCODE eventually declared bankruptcy and was recently purchased, but the genomics revolution had begun and continues, ironically, in the Faroe Islands.

In Discovery Magazine’s recent article, “Faroe Island Aim to Sequence Genes of Entire Country,” they detail the plans for sequencing the genes of the entire population of 50,000 Faroe Islanders.

Faroe islands

Because of the isolation of the island, in the north Atlantic between Norway and Iceland, the residents have been marrying each other for generations, creating a highly endogamous population.  With few new genes being introduced, the existing genes get passed around, and around, and around.  This causes a very high incidence of some genetically transmitted diseases, and little known CTD, or carnitine transporter deficiency, is among them.

This genetic timebomb is also what spurred the Faroes to action, after the death of a young man, Edmund Jensen, and his family members, from this genetic mutation.

Termed FarGen, this project is leading the way on many fronts.  Questions of ethics, of responsibility, of liability and of privacy will all have to be addressed as this project unfolds, but the project holds the potential for life-changing discoveries on the medical front that will benefit not only Faroe Islanders, but many of the rest of us too.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Epigenetics – Forgotten Perhaps, But Not Gone

Recently, an extremely interesting article about epigenetics appeared in Discover magazine titled “Grandma’s Experiences Leave a Mark on Your Genes.”  The tag line says that your ancestors’ lousy childhood or excellent adventures might change your personality, bequeathing anxiety or resilience by altering the epigenetic expression of genes in the brain.  Wow!

Those of us who work with genetics on a daily basis are used to looking at inheritance, pure and simple, DNA, STRs, SNPs, RNA and mitochondrial DNA.  Nothing more, nothing less.  All straightforward, right?

Epigenetics changes all that….or so we think…but how?

In 1992, two researchers, Moshe Szyf and Michael Meaney, one a molecular biologist and one a neurobiologist met at a conference, had a beer, and from there, epigenetic history has been made.

Epigenetics has to do with changes to molecular structure after the birth of a child – changes that can alter the function of DNA, which can alter you – many parts of you. It can make you susceptible to diseases and alter your personality, genetically.  This is in direct conflict with what we thought we knew.

Until epigenetics, the basic story line on how genes get transcribed in a cell was neat and simple. DNA is the master code, residing inside the nucleus of every cell; RNA transcribes the code to build whatever proteins the cell needs. Then epigenetic research showed that methyl groups could attach to cytosine, one of the chemical bases in DNA and RNA, much like a clinging vine.  Cytosine is one of the 4 nucleotides of DNA, the most basic building blocks.

epigenetic factors

The methyl groups could become married permanently to the DNA, getting replicated right along with the DNA through a hundred generations, but how?

The attachment of the methyl groups significantly altered the behavior of whichever gene they wed, inhibiting its transcription. It did so by tightening the thread of DNA as it wrapped around a molecular spool, called a histone, inside the nucleus. The tighter it is wrapped, the harder to produce proteins from the gene.

Think about what this means.  Without a mutation to the DNA code itself, the attached methyl groups cause long-term, inherited change in gene function. Other molecules, called acetyl groups, were found to play the opposite role, unwinding DNA around the histone spool, and so making it easier for RNA to transcribe a given gene.

It was found that this is particularly pronounced in the situation where mothers are either highly attentive or neglectful of their offspring.

Next came experiments on rats.  Szyf and Meaney began by selecting mother rats who were either highly attentive or highly inattentive. Once a pup had grown up into adulthood, the team examined its hippocampus, a brain region essential for regulating the stress response. In the pups of inattentive mothers, they found that genes regulating the production of glucocorticoid receptors, which regulate sensitivity to stress hormones, were highly methylated; in the pups of conscientious moms, the genes for the glucocorticoid receptors were rarely methylated.

Methylation just gums up the works. So the less the better when it comes to transcribing the affected gene. In this case, methylation associated with miserable mothering prevented the normal number of glucocorticoid receptors from being transcribed in the baby’s hippocampus. And so for want of sufficient glucocorticoid receptors, the rats grew up to be nervous wrecks.

Even more surprising, in subsequent experiments, when they infused their brains with trichostatin A, a drug that can remove methyl groups, these animals showed none of the behavioral deficits usually seen in such offspring, and their brains showed none of the epigenetic changes.  In effect, an eraser.

This information not only was revolutionary, it was highly resisted within the scientific community.  In the end, their landmark paper, “Epigenetic programming by maternal behavior,” was published in June 2004 in the journal Nature Neuroscience.

Meaney and Szyf had proved something incredible. Call it postnatal inheritance. With no changes to their genetic code, the baby rats nonetheless gained genetic attachments due solely to their upbringing — epigenetic additions of methyl groups sticking like umbrellas out the elevator doors of their histones, gumming up the works and altering the function of the brain.  Bad news.

Another scientist found that inattentive mothering in rodents causes methylation of the genes for estrogen receptors in the brain. When those babies grow up, the resulting decrease of estrogen receptors makes them less attentive to their babies.  Generational neglect.

Think about what this means for people, for you, for your ancestors.  Think about the potential effects of extreme stress, like the holocaust, for example, on the children born to those who survived.

Since the landmark, barrier-breaking 2004 paper, more than 2 dozen papers on this topic have been published.  And as you might guess, research on humans has begun as well.

In a 2008 paper, scientists compared the brains of people who had committed suicide with the brains of people who had died suddenly of factors other than suicide. They found excess methylation of genes in the suicide brains’ hippocampus, a region critical to memory acquisition and stress response. If the suicide victims had been abused as children, they found, their brains were more methylated.

What constitutes stress?  It turns out that economic stress factors can affect epigenetics too.  In 2011 Szyf reported on a genome-wide analysis of blood samples taken from 40 men who participated in a British study of people born in England in 1958.

All the men had been at a socioeconomic extreme, either very rich or very poor, at some point in their lives ranging from early childhood to mid-adulthood. In all, Szyf analyzed the methylation state of about 20,000 genes. Of these, 6,176 genes varied significantly based on poverty or wealth. Most striking, however, was the finding that genes were more than twice as likely to show methylation changes based on family income during early childhood versus economic status as adults.

Timing, in other words, matters. Your parents winning the lottery or going bankrupt when you’re 2 years old will likely affect the epigenome of your brain, and your resulting emotional tendencies, far more strongly than whatever fortune finds you in middle age.

The message here is that epigenetic changes seem to be more pronounced in the very young, infants of nonnurturing mothers, and children, as opposed to older adults.

Epigenetic changes seem to be inherited by children.  If this is true, then how does this happen and is it measureable?  In terms of genetic genealogy, these epigenetic changes might be able to be attributed to a particular ancestor, say, a Revolutionary War or Civil War solder, perhaps.

Would there be any way to tell where the epigenetic change came from, which ancestor?  Is this trackable genealogically, and would it be beneficial to ancestor identification?

And if it’s true that certain drugs, an epigenetic elixir of sorts, can remove methyl groups and effectively wipe the slate clean, would we want to do that?  Would it in effect erase the family curse of, say, serial alcoholism or mental illness. Are there benefits that we aren’t aware of or could too much be wiped out?  How would that affect memories, like Post Traumatic Stress Disorder?  Would a terrible memory be turned into something less terrible or at least manageable?  Would our perspective of what happened to us change?  Would our outlook on life change?  Would we become an optimist if we are a pessimist?  Could it cure depression?

This information also makes me wonder why we aren’t all blithering piles of goo?  None of us has escaped a lineage with a terrible event. In my own line, I have an alcoholic grandfather, a grandmother who abandoned her kids, a Civil War veteran who was a POW, a War of 1812 veteran, a Revolutionary War veteran who was with George Washington that terrible winter, and that’s just one quick glance up one line on my tree.  What protects us from the accumulated epigenetic tangle?  Something must be at play here, protecting us in some way, because we can still function.

Let’s look at the other side of that coin.  Until we figure out how to cure epigenetic trauma and its effects on our DNA, could we harvest the information from this new world of clinging vine DNA for genetic genealogy?

Please do take time to read the original Discovery article.  I have excerpted parts of it here, but it’s very detailed and describes the discovery process and subsequent proofs in much greater detail.  Epigenetics is likely the next frontier in genetics, and it has already arrived.  I have to wonder if it has a place in genetic genealogy as well.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Big News! Probable Native American Haplogroup Breakthrough

We are on the verge of another new and very exciting discovery, but we need funding to finish the research.  Let me tell you about what’s going on and maybe you’ll decide to be a part of this new discovery by making a contribution.

It’s not everyday that someone gets the opportunity to make a significant contribution to scientific discovery.  But you have that opportunity today.

I believe a new Native American haplogroup has been discovered.  We have strong evidence, but we need to finish testing on a group of people for the final proof.  People whose DNA results qualify for testing have been notified, and several are ready and willing to have their results upgraded, but don’t have the funding.  I’ve funded some, and I’ve used contributed funds I’ve squirreled away from past donations, and now I’m reaching out in the hopes that together we can collaboratively make this happen.

Most of you know that I’m a long time researcher in both the genetic genealogy and Native American fields, particularly where they intersect.  I’ve being involved with genetic genealogy since the beginning and am tri-racial myself, descended from multiple Native ancestors and tribes.  I write the Personal DNA Reports for Family Tree DNA, own www.dnaexplain.com and write the free blogs, www.dna-explained.com and www.nativeheritageproject.com.   You can verify anything in this article directly with Bennett Greenspan, the President of Family Tree DNA at bcg@familytreedna.com.  In fact, Bennett is both aware and supportive of this DNA testing endeavor and has offered reduced test pricing for a short time to facilitate this discovery process.

By the way, this is not the first time this has happened.  I was also involved with a similar discovery in December 2010.  You can read about that discovery at this link.  http://dna-explained.com/2012/09/11/lenny-trujillo-the-journey-of-you/

Ok, now that you know who I am and why I care, let me tell you about the discovery.

Discovery of a New Native American Haplogroup

To date, only 5 female Native American base haplogroups, or clans, have been discovered.   A, B, C, D and X.  Within these haplogroups are subgroups, and not all subgroups in each haplogroup are Native American.  Some are Asian and European.  In fact, in haplogroup A, which is the haplogroup being studied in this project, only subgroup A2 has been confirmed to be Native American – until now.

Recently, I was working with a client’s DNA, writing a Personal DNA Report, and I realized, based on her information and that of some of the people she matched, that a subgroup of haplogroup A4 is also very likely Native American.

For Native American history, this is a big discovery.  But we need more information.  We need to proof.  How can we do that?

Advanced Testing

We need to test people in haplogroup A who are predicted to fall into this new Native American haplogroup at the full sequence level.  Mitochondrial DNA testing falls into three levels.  The highest level, the full sequence level is the one that tests the entire mitochondria and is required to obtain a full haplogroup assignment.  In other words, if you don’t test the full sequence, you’ll know that you are haplogroup A, but you’ll never know if you are A2, A4 or A10 for that matter.

Of people who have tested only at the lower levels, we have identified a small group of people who we believe will test to be haplogroup A4 or a subgroup based on some specific mutations.  Bennett Greenspan has offered discount testing for the upgraded test through July 5th.

Some people have been able to pay for their own upgrade, but not all, and I certainly don’t want the lack of funds to impede the discovery and proof of a new haplogroup.  This is akin to raising the history of this group of Native people from the dead, from the dust where some of our history and people have been lost until now.

We need several hundred dollars in total.  If everyone that we’d like to test participates, it will cost more than $2000.  You can contribute directly to the haplogroup A4 mtDNA project at Family Tree DNA and the funds will be used directly for this testing.  Every little bit helps – no amount is too small.  You can contribute in memory of someone, anonymously, or however you wish.

http://www.familytreedna.com/group-general-fund-contribution.aspx?g=mtDNA-A4a

In a few months, we’ll let you know the outcome of this testing and what we discover, right here.  I can hardly wait!

Thank you in advance for your support.

Roberta Estes

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Supreme Court Decision – Genes Can’t Be Patented

In a victory for consumers, patients, researchers and women, the Supreme Court today returned a decision that human genes cannot be patented.

Their decision states that DNA ”is a product of nature and not patent eligible merely because it has been isolated.”

This case was a result of a suit against Myriad Genetics, a company that was granted patents for isolating two human genes, known as BRCA1 and BRCA2, both of which are well known breast cancer genes, recently brought to light by Angelina Jolie’s decision to have preventative mastectomys after both the gene and related breast cancer were found to be prevalent in her family.  Shortly after that decision and surgery, Jolie’s aunt died of breast cancer.

While companies cannot patent the genes themselves, they can develop treatments and hopefully, cures, and those can be patented.  Synthetic genes created are also eligible for patents.  Myriad wasn’t the only company to do this.  The government has issued patents to over 4000 genes to both companies and universities.

The patenting of genes made it impossible for other competing companies who could test for the gene technically to do so.  In other words, it artificially created a sole supplier situation where only one company could provide the test for that gene, and therefore could set the price wherever they wanted.  Jolie revealed that the cost of screening for those two genes alone was $3000, a cost prohibitive to many women.  However, the actual cost of the testing is significantly less.  I was wondering just how much less, then the answer arrived in my inbox.

I know that Gene by Gene, through its division, DNA Traits has the capability to offer this test and has been selling it internationally since 2012.  Bennett Greenspan, president of Gene by Gene has discussed this with me privately, and how terribly it pained him not to be able to do this testing to help people within the US.  Bennett shared some pretty profound thoughts about the unfair situation this created.

I was just getting ready to call Bennett, when less than 6 hours after the Supreme Court decision, I received an e-mail from Gene by Gene, which contained the answer – $995.  So the actual cost to the American consumer is only about one third to one quarter of what they were being charged as a result of the patent.

Today’s Supreme Court decision is truly a victory for patients, consumers, researchers, women and all US citizens.  Below is the content of the e-mail I received from Gene by Gene announcing the ability for DNATraits to sell the BRCA test in the US.

dnatraits brca

In effort to increase access to potentially lifesaving BRCA1 and BRCA2 tests, DNATraits can now offer tests for $995, a fraction of the cost of similar tests prior to the court decision

HOUSTON — Jun. 13, 2013 – Thanks to today’s U.S. Supreme Court decision opening the door to greater access to genetic medicine by American patients and their health care providers, testing for genes specifically linked to breast, ovarian and other cancers will now be more widely available and at a lower cost than ever before.

DNATraits, a division of Houston-based genomics and genetics testing company Gene By Gene, Ltd., announced today that it will offer testing for the BRCA1 and BRCA2 genes in the United States for $995.  Prior to today’s unanimous Supreme Court ruling, when exorbitant licensing fees kept DNATraits and others from offering BRCA gene tests in the United States, the cost for such tests was around $4,000.

“We’re pleased to make this important testing more widely available and accessible in the United States,” said Gene By Gene President Bennett Greenspan.  “Our highly automated CLIA-registered lab and efficient processes enable us to make genetic and genomic testing more affordable and accessible to more individuals, in the U.S. and worldwide.  And that’s our company’s mission, in a nutshell.”

The company’s announcement about the tests, which gained national attention when actress Angelina Jolie courageously revealed in May that being a BRCA1 carrier was among the factors in her decision to have a preventive double mastectomy, comes after today’s Supreme Court ruling in “Association For Molecular Pathology v. Myriad Genetics.”

“We commend the Supreme Court for opening the door to greater technological innovation and access to genetic tools that promise to save and improve the quality of human lives in the United States,” Greenspan added.  “It’s critical that as an industry we are able to continue to engage in healthy competition to drive down the costs of these tests – because as more individuals have access to and undergo them, the more information we’ll have about many serious diseases that eventually may lead to cures.”

DNATraits has processed testing for the BRCA1 and BRCA2 genes for individuals living outside the U.S. since 2012.  Those genes are processed using traditional Sanger DNA sequencing, which is considered the gold standard for DNA analysis, at the company’s Genomic Research Center in Houston, a CLIA-registered lab which has processed more than 5 million discrete DNA tests from more than 700,000 individuals and organizations globally.

In addition to the BRCA gene tests, DNATraits offers a pre-natal array that covers 111 population specific diseases, as well as other not population-specific diseases, like Duchene Muscular Dystrophy.

Customer Inquiries

Individuals interested in learning more about either the BRCA1 or BRCA2 tests should ask their doctors for more information.  They and their health care providers can also visit the company’s website, www.dnatraits.com, or call (713) 868-1438 for more information.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research