2014 Top Genetic Genealogy Happenings – A Baker’s Dozen +1

It’s that time again, to look over the year that has just passed and take stock of what has happened in the genetic genealogy world.  I wrote a review in both 2012 and 2013 as well.  Looking back, these momentous happenings seem quite “old hat” now.  For example, both www.GedMatch.com and www.DNAGedcom.com, once new, have become indispensable tools that we take for granted.  Please keep in mind that both of these tools (as well as others in the Tools section, below) depend on contributions, although GedMatch now has a tier 1 subscription offering for $10 per month as well.

So what was the big news in 2014?

Beyond the Tipping Point

Genetic genealogy has gone over the tipping point.  Genetic genealogy is now, unquestionably, mainstream and lots of people are taking part.  From the best I can figure, there are now approaching or have surpassed three million tests or test records, although certainly some of those are duplicates.

  • 500,000+ at 23andMe
  • 700,000+ at Ancestry
  • 700,000+ at Genographic

The organizations above represent “one-test” companies.  Family Tree DNA provides various kinds of genetic genealogy tests to the community and they have over 380,000 individuals with more than 700,000 test records.

In addition to the above mentioned mainstream firms, there are other companies that provide niche testing, often in addition to Family Tree DNA Y results.

In addition, there is what I would refer to as a secondary market for testing as well which certainly attracts people who are not necessarily genetic genealogists but who happen across their corporate information and decide the test looks interesting.  There is no way of knowing how many of those tests exist.

Additionally, there is still the Sorenson data base with Y and mtDNA tests which reportedly exceeded their 100,000 goal.

Spencer Wells spoke about the “viral spread threshold” in his talk in Houston at the International Genetic Genealogy Conference in October and terms 2013 as the year of infection.  I would certainly agree.

spencer near term

Autosomal Now the New Normal

Another change in the landscape is that now, autosomal DNA has become the “normal” test.  The big attraction to autosomal testing is that anyone can play and you get lots of matches.  Earlier in the year, one of my cousins was very disappointed in her brother’s Y DNA test because he only had a few matches, and couldn’t understand why anyone would test the Y instead of autosomal where you get lots and lots of matches.  Of course, she didn’t understand the difference in the tests or the goals of the tests – but I think as more and more people enter the playground – percentagewise – fewer and fewer do understand the differences.

Case in point is that someone contacted me about DNA and genealogy.  I asked them which tests they had taken and where and their answer was “the regular one.”  With a little more probing, I discovered that they took Ancestry’s autosomal test and had no clue there were any other types of tests available, what they could tell him about his ancestors or genetic history or that there were other vendors and pools to swim in as well.

A few years ago, we not only had to explain about DNA tests, but why the Y and mtDNA is important.  Today, we’ve come full circle in a sense – because now we don’t have to explain about DNA testing for genealogy in general but we still have to explain about those “unknown” tests, the Y and mtDNA.  One person recently asked me, “oh, are those new?”

Ancient DNA

This year has seen many ancient DNA specimens analyzed and sequenced at the full genomic level.

The year began with a paper titled, “When Populations Collide” which revealed that contemporary Europeans carry between 1-4% of Neanderthal DNA most often associated with hair and skin color, or keratin.  Africans, on the other hand, carry none or very little Neanderthal DNA.

https://dna-explained.com/2014/01/30/neanderthal-genome-further-defined-in-contemporary-eurasians/

A month later, a monumental paper was published that detailed the results of sequencing a 12,500 Clovis child, subsequently named Anzick or referred to as the Anzick Clovis child, in Montana.  That child is closely related to Native American people of today.

https://dna-explained.com/2014/02/13/clovis-people-are-native-americans-and-from-asia-not-europe/

In June, another paper emerged where the authors had analyzed 8000 year old bones from the Fertile Crescent that shed light on the Neolithic area before the expansion from the Fertile Crescent into Europe.  These would be the farmers that assimilated with or replaced the hunter-gatherers already living in Europe.

https://dna-explained.com/2014/06/09/dna-analysis-of-8000-year-old-bones-allows-peek-into-the-neolithic/

Svante Paabo is the scientist who first sequenced the Neanderthal genome.  Here is a neanderthal mangreat interview and speech.  This man is so interesting.  If you have not read his book, “Neanderthal Man, In Search of Lost Genomes,” I strongly recommend it.

https://dna-explained.com/2014/07/22/finding-your-inner-neanderthal-with-evolutionary-geneticist-svante-paabo/

In the fall, yet another paper was released that contained extremely interesting information about the peopling and migration of humans across Europe and Asia.  This was just before Michael Hammer’s presentation at the Family Tree DNA conference, so I covered the paper along with Michael’s information about European ancestral populations in one article.  The take away messages from this are two-fold.  First, there was a previously undefined “ghost population” called Ancient North Eurasian (ANE) that is found in the northern portion of Asia that contributed to both Asian populations, including those that would become the Native Americans and European populations as well.  Secondarily, the people we thought were in Europe early may not have been, based on the ancient DNA remains we have to date.  Of course, that may change when more ancient DNA is fully sequenced which seems to be happening at an ever-increasing rate.

https://dna-explained.com/2014/10/21/peopling-of-europe-2014-identifying-the-ghost-population/

Lazaridis tree

Ancient DNA Available for Citizen Scientists

If I were to give a Citizen Scientist of the Year award, this year’s award would go unquestionably to Felix Chandrakumar for his work with the ancient genome files and making them accessible to the genetic genealogy world.  Felix obtained the full genome files from the scientists involved in full genome analysis of ancient remains, reduced the files to the SNPs utilized by the autosomal testing companies in the genetic genealogy community, and has made them available at GedMatch.

https://dna-explained.com/2014/09/22/utilizing-ancient-dna-at-gedmatch/

If this topic is of interest to you, I encourage you to visit his blog and read his many posts over the past several months.

https://plus.google.com/+FelixChandrakumar/posts

The availability of these ancient results set off a sea of comparisons.  Many people with Native heritage matched Anzick’s file at some level, and many who are heavily Native American, particularly from Central and South America where there is less admixture match Anzick at what would statistically be considered within a genealogical timeframe.  Clearly, this isn’t possible, but it does speak to how endogamous populations affect DNA, even across thousands of years.

https://dna-explained.com/2014/09/23/analyzing-the-native-american-clovis-anzick-ancient-results/

Because Anzick is matching so heavily with the Mexican, Central and South American populations, it gives us the opportunity to extract mitochondrial DNA haplogroups from the matches that either are or may be Native, if they have not been recorded before.

https://dna-explained.com/2014/09/23/analyzing-the-native-american-clovis-anzick-ancient-results/

Needless to say, the matches of these ancient kits with contemporary people has left many people questioning how to interpret the results.  The answer is that we don’t really know yet, but there is a lot of study as well as speculation occurring.  In the citizen science community, this is how forward progress is made…eventually.

https://dna-explained.com/2014/09/25/ancient-dna-matches-what-do-they-mean/

https://dna-explained.com/2014/09/30/ancient-dna-matching-a-cautionary-tale/

More ancient DNA samples for comparison:

https://dna-explained.com/2014/10/04/more-ancient-dna-samples-for-comparison/

A Siberian sample that also matches the Malta Child whose remains were analyzed in late 2013.

https://dna-explained.com/2014/11/12/kostenki14-a-new-ancient-siberian-dna-sample/

Felix has prepared a list of kits that he has processed, along with their GedMatch numbers and other relevant information, like gender, haplogroup(s), age and location of sample.

http://www.y-str.org/p/ancient-dna.html

Furthermore, in a collaborative effort with Family Tree DNA, Felix formed an Ancient DNA project and uploaded the ancient autosomal files.  This is the first time that consumers can match with Ancient kits within the vendor’s data bases.

https://www.familytreedna.com/public/Ancient_DNA

Recently, GedMatch added a composite Archaic DNA Match comparison tool where your kit number is compared against all of the ancient DNA kits available.  The output is a heat map showing which samples you match most closely.

gedmatch ancient heat map

Indeed, it has been a banner year for ancient DNA and making additional discoveries about DNA and our ancestors.  Thank you Felix.

Haplogroup Definition

That SNP tsunami that we discussed last year…well, it made landfall this year and it has been storming all year long…in a good way.  At least, ultimately, it will be a good thing.  If you asked the haplogroup administrators today about that, they would probably be too tired to answer – as they’ve been quite overwhelmed with results.

The Big Y testing has been fantastically successful.  This is not from a Family Tree DNA perspective, but from a genetic genealogy perspective.  Branches have been being added to and sawed off of the haplotree on a daily basis.  This forced the renaming of the haplogroups from the old traditional R1b1a2 to R-M269 in 2012.  While there was some whimpering then, it would be nothing like the outright wailing now that would be occurring as haplogroup named reached 20 or so digits.

Alice Fairhurst discussed the SNP tsunami at the DNA Conference in Houston in October and I’m sure that the pace hasn’t slowed any between now and then.  According to Alice, in early 2014, there were 4115 individual SNPs on the ISOGG Tree, and as of the conference, there were 14,238 SNPs, with the 2014 addition total at that time standing at 10,213.  That is over 1000 per month or about 35 per day, every day.

Yes, indeed, that is the definition of a tsunami.  Every one of those additions requires one of a number of volunteers, generally haplogroup project administrators to evaluate the various Big Y results, the SNPs and novel variants included, where they need to be inserted in the tree and if branches need to be rearranged.  In some cases, naming request for previously unknown SNPs also need to be submitted.  This is all done behind the scenes and it’s not trivial.

The project I’m closest to is the R1b L-21 project because my Estes males fall into that group.  We’ve tested several, and I’ll be writing an article as soon as the final test is back.

The tree has grown unbelievably in this past year just within the L21 group.  This project includes over 700 individuals who have taken the Big Y test and shared their results which has defined about 440 branches of the L21 tree.  Currently there are almost 800 kits available if you count the ones on order and the 20 or so from another vendor.

Here is the L21 tree in January of 2014

L21 Jan 2014 crop

Compare this with today’s tree, below.

L21 dec 2014

Michael Walsh, Richard Stevens, David Stedman need to be commended for their incredible work in the R-L21 project.  Other administrators are doing equivalent work in other haplogroup projects as well.  I big thank you to everyone.  We’d be lost without you!

One of the results of this onslaught of information is that there have been fewer and fewer academic papers about haplogroups in the past few years.  In essence, by the time a paper can make it through the peer review cycle and into publication, the data in the paper is often already outdated relative to the Y chromosome.  Recently a new paper was released about haplogroup C3*.  While the data is quite valid, the authors didn’t utilize the new SNP naming nomenclature.  Before writing about the topic, I had to translate into SNPese.  Fortunately, C3* has been relatively stable.

https://dna-explained.com/2014/12/23/haplogroup-c3-previously-believed-east-asian-haplogroup-is-proven-native-american/

10th Annual International Conference on Genetic Genealogy

The Family Tree DNA International Conference on Genetic Genealogy for project administrators is always wonderful, but this year was special because it was the 10th annual.  And yes, it was my 10th year attending as well.  In all these years, I had never had a photo with both Max and Bennett.  Everyone is always so busy at the conferences.  Getting any 3 people, especially those two, in the same place at the same time takes something just short of a miracle.

roberta, max and bennett

Ten years ago, it was the first genetic genealogy conference ever held, and was the only place to obtain genetic genealogy education outside of the rootsweb genealogy DNA list, which is still in existence today.  Family Tree DNA always has a nice blend of sessions.  I always particularly appreciate the scientific sessions because those topics generally aren’t covered elsewhere.

https://dna-explained.com/2014/10/11/tenth-annual-family-tree-dna-conference-opening-reception/

https://dna-explained.com/2014/10/12/tenth-annual-family-tree-dna-conference-day-2/

https://dna-explained.com/2014/10/13/tenth-annual-family-tree-dna-conference-day-3/

https://dna-explained.com/2014/10/15/tenth-annual-family-tree-dna-conference-wrapup/

Jennifer Zinck wrote great recaps of each session and the ISOGG meeting.

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy/

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-isogg-meeting/

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-sunday/

I thank Family Tree DNA for sponsoring all 10 conferences and continuing the tradition.  It’s really an amazing feat when you consider that 15 years ago, this industry didn’t exist at all and wouldn’t exist today if not for Max and Bennett.

Education

Two educational venues offered classes for genetic genealogists and have made their presentations available either for free or very reasonably.  One of the problems with genetic genealogy is that the field is so fast moving that last year’s session, unless it’s the very basics, is probably out of date today.  That’s the good news and the bad news.

https://dna-explained.com/2014/11/12/genetic-genealogy-ireland-2014-presentations 

https://dna-explained.com/2014/09/26/educational-videos-from-international-genetic-genealogy-conference-now-available/

In addition, three books have been released in 2014.emily book

In January, Emily Aulicino released Genetic Genealogy, The Basics and Beyond.

richard hill book

In October, Richard Hill released “Guide to DNA Testing: How to Identify Ancestors, Confirm Relationships and Measure Ethnicity through DNA Testing.”

david dowell book

Most recently, David Dowell’s new book, NextGen Genealogy: The DNA Connection was released right after Thanksgiving.

 

Ancestor Reconstruction – Raising the Dead

This seems to be the year that genetic genealogists are beginning to reconstruct their ancestors (on paper, not in the flesh) based on the DNA that the ancestors passed on to various descendants.  Those segments are “gathered up” and reassembled in a virtual ancestor.

I utilized Kitty Cooper’s tool to do just that.

https://dna-explained.com/2014/10/03/ancestor-reconstruction/

henry bolton probablyI know it doesn’t look like much yet but this is what I’ve been able to gather of Henry Bolton, my great-great-great-grandfather.

Kitty did it herself too.

http://blog.kittycooper.com/2014/08/mapping-an-ancestral-couple-a-backwards-use-of-my-segment-mapper/

http://blog.kittycooper.com/2014/09/segment-mapper-tool-improvements-another-wold-dna-map/

Ancestry.com wrote a paper about the fact that they have figured out how to do this as well in a research environment.

http://corporate.ancestry.com/press/press-releases/2014/12/ancestrydna-reconstructs-partial-genome-of-person-living-200-years-ago/

http://www.thegeneticgenealogist.com/2014/12/16/ancestrydna-recreates-portions-genome-david-speegle-two-wives/

GedMatch has created a tool called, appropriately, Lazarus that does the same thing, gathers up the DNA of your ancestor from their descendants and reassembles it into a DNA kit.

Blaine Bettinger has been working with and writing about his experiences with Lazarus.

http://www.thegeneticgenealogist.com/2014/10/20/finally-gedmatch-announces-monetization-strategy-way-raise-dead/

http://www.thegeneticgenealogist.com/2014/12/09/recreating-grandmothers-genome-part-1/

http://www.thegeneticgenealogist.com/2014/12/14/recreating-grandmothers-genome-part-2/

Tools

Speaking of tools, we have some new tools that have been introduced this year as well.

Genome Mate is a desktop tool used to organize data collected by researching DNA comparsions and aids in identifying common ancestors.  I have not used this tool, but there are others who are quite satisfied.  It does require Microsoft Silverlight be installed on your desktop.

The Autosomal DNA Segment Analyzer is available through www.dnagedcom.com and is a tool that I have used and found very helpful.  It assists you by visually grouping your matches, by chromosome, and who you match in common with.

adsa cluster 1

Charting Companion from Progeny Software, another tool I use, allows you to colorize and print or create pdf files that includes X chromosome groupings.  This greatly facilitates seeing how the X is passed through your ancestors to you and your parents.

x fan

WikiTree is a free resource for genealogists to be able to sort through relationships involving pedigree charts.  In November, they announced Relationship Finder.

Probably the best example I can show of how WikiTree has utilized DNA is using the results of King Richard III.

wiki richard

By clicking on the DNA icon, you see the following:

wiki richard 2

And then Richard’s Y, mitochondrial and X chromosome paths.

wiki richard 3

Since Richard had no descendants, to see how descendants work, click on his mother, Cecily of York’s DNA descendants and you’re shown up to 10 generations.

wiki richard 4

While this isn’t terribly useful for Cecily of York who lived and died in the 1400s, it would be incredibly useful for finding mitochondrial descendants of my ancestor born in 1802 in Virginia.  I’d love to prove she is the daughter of a specific set of parents by comparing her DNA with that of a proven daughter of those parents!  Maybe I’ll see if I can find her parents at WikiTree.

Kitty Cooper’s blog talks about additional tools.  I have used Kitty’s Chromosome mapping tools as discussed in ancestor reconstruction.

Felix Chandrakumar has created a number of fun tools as well.  Take a look.  I have not used most of these tools, but there are several I’ll be playing with shortly.

Exits and Entrances

With very little fanfare, deCODEme discontinued their consumer testing and reminded people to download their date before year end.

https://dna-explained.com/2014/09/30/decodeme-consumer-tests-discontinued/

I find this unfortunate because at one time, deCODEme seemed like a company full of promise for genetic genealogy.  They failed to take the rope and run.

On a sad note, Lucas Martin who founded DNA Tribes unexpectedly passed away in the fall.  DNA Tribes has been a long-time player in the ethnicity field of genetic genealogy.  I have often wondered if Lucas Martin was a pseudonym, as very little information about Lucas was available, even from Lucas himself.  Neither did I find an obituary.  Regardless, it’s sad to see someone with whom the community has worked for years pass away.  The website says that they expect to resume offering services in January 2015. I would be cautious about ordering until the structure of the new company is understood.

http://www.dnatribes.com/

In the last month, a new offering has become available that may be trying to piggyback on the name and feel of DNA Tribes, but I’m very hesitant to provide a link until it can be determined if this is legitimate or bogus.  If it’s legitimate, I’ll be writing about it in the future.

However, the big news exit was Ancestry’s exit from the Y and mtDNA testing arena.  We suspected this would happen when they stopped selling kits, but we NEVER expected that they would destroy the existing data bases, especially since they maintain the Sorenson data base as part of their agreement when they obtained the Sorenson data.

https://dna-explained.com/2014/10/02/ancestry-destroys-irreplaceable-dna-database/

The community is still hopeful that Ancestry may reverse that decision.

Ancestry – The Chromosome Browser War and DNA Circles

There has been an ongoing battle between Ancestry and the more seasoned or “hard-core” genetic genealogists for some time – actually for a long time.

The current and most long-standing issue is the lack of a chromosome browser, or any similar tools, that will allow genealogists to actually compare and confirm that their DNA match is genuine.  Ancestry maintains that we don’t need it, wouldn’t know how to use it, and that they have privacy concerns.

Other than their sessions and presentations, they had remained very quiet about this and not addressed it to the community as a whole, simply saying that they were building something better, a better mousetrap.

In the fall, Ancestry invited a small group of bloggers and educators to visit with them in an all-day meeting, which came to be called DNA Day.

https://dna-explained.com/2014/10/08/dna-day-with-ancestry/

In retrospect, I think that Ancestry perceived that they were going to have a huge public relations issue on their hands when they introduced their new feature called DNA Circles and in the process, people would lose approximately 80% of their current matches.  I think they were hopeful that if they could educate, or convince us, of the utility of their new phasing techniques and resulting DNA Circles feature that it would ease the pain of people’s loss in matches.

I am grateful that they reached out to the community.  Some very useful dialogue did occur between all participants.  However, to date, nothing more has happened nor have we received any additional updates after the release of Circles.

Time will tell.

https://dna-explained.com/2014/11/18/in-anticipation-of-ancestrys-better-mousetrap/

https://dna-explained.com/2014/11/19/ancestrys-better-mousetrap-dna-circles/

DNA Circles 12-29-2014

DNA Circles, while interesting and somewhat useful, is certainly NOT a replacement for a chromosome browser, nor is it a better mousetrap.

https://dna-explained.com/2014/11/30/chromosome-browser-war/

In fact, the first thing you have to do when you find a DNA Circle that you have not verified utilizing raw data and/or chromosome browser tools from either 23andMe, Family Tree DNA or Gedmatch, is to talk your matches into transferring their DNA to Family Tree DNA or download to Gedmatch, or both.

https://dna-explained.com/2014/11/27/sarah-hickerson-c1752-lost-ancestor-found-52-ancestors-48/

I might add that the great irony of finding the Hickerson DNA Circle that led me to confirm that ancestry utilizing both Family Tree DNA and GedMatch is that today, when I checked at Ancestry, the Hickerson DNA Circle is no longer listed.  So, I guess I’ve been somehow pruned from the circle.  I wonder if that is the same as being voted off of the island.  So, word to the wise…check your circles often…they change and not always in the upwards direction.

The Seamy Side – Lies, Snake Oil Salesmen and Bullys

Unfortunately a seamy side, an underbelly that’s rather ugly has developed in and around the genetic genealogy industry.  I guess this was to be expected with the rapid acceptance and increasing popularity of DNA testing, but it’s still very unfortunate.

Some of this I expected, but I didn’t expect it to be so…well…blatant.

I don’t watch late night TV, but I’m sure there are now DNA diets and DNA dating and just about anything else that could be sold with the allure of DNA attached to the title.

I googled to see if this was true, and it is, although I’m not about to click on any of those links.

google dna dating

google dna diet

Unfortunately, within the ever-growing genetic genealogy community a rather large rift has developed over the past couple of years.  Obviously everyone can’t get along, but this goes beyond that.  When someone disagrees, a group actively “stalks” the person, trying to cost them their employment, saying hate filled and untrue things and even going so far as to create a Facebook page titled “Against<personname>.”  That page has now been removed, but the fact that a group in the community found it acceptable to create something like that, and their friends joined, is remarkable, to say the least.  That was accompanied by death threats.

Bullying behavior like this does not make others feel particularly safe in expressing their opinions either and is not conducive to free and open discussion. As one of the law enforcement officers said, relative to the events, “This is not about genealogy.  I don’t know what it is about, yet, probably money, but it’s not about genealogy.”

Another phenomenon is that DNA is now a hot topic and is obviously “selling.”  Just this week, this report was published, and it is, as best we can tell, entirely untrue.

http://worldnewsdailyreport.com/usa-archaeologists-discover-remains-of-first-british-settlers-in-north-america/

There were several tip offs, like the city (Lanford) and county (Laurens County) is not in the state where it is attributed (it’s in SC not NC), and the name of the institution is incorrect (Johns Hopkins, not John Hopkins).  Additionally, if you google the name of the magazine, you’ll see that they specialize in tabloid “faux reporting.”  It also reads a lot like the King Richard genuine press release.

http://urbanlegends.about.com/od/Fake-News/tp/A-Guide-to-Fake-News-Websites.01.htm

Earlier this year, there was a bogus institutional site created as well.

On one of the DNA forums that I frequent, people often post links to articles they find that are relevant to DNA.  There was an interesting article, which has now been removed, correlating DNA results with latitude and altitude.  I thought to myself, I’ve never heard of that…how interesting.   Here’s part of what the article said:

Researchers at Aberdeen College’s Havering Centre for Genetic Research have discovered an important connection between our DNA and where our ancestors used to live.

Tiny sequence variations in the human genome sometimes called Single Nucleotide Polymorphisms (SNPs) occur with varying frequency in our DNA.  These have been studied for decades to understand the major migrations of large human populations.  Now Aberdeen College’s Dr. Miko Laerton and a team of scientists have developed pioneering research that shows that these differences in our DNA also reveal a detailed map of where our own ancestors lived going back thousands of years.

Dr. Laerton explains:  “Certain DNA sequence variations have always been important signposts in our understanding of human evolution because their ages can be estimated.  We’ve known for years that they occur most frequently in certain regions [of DNA], and that some alleles are more common to certain geographic or ethnic groups, but we have never fully understood the underlying reasons.  What our team found is that the variations in an individual’s DNA correlate with the latitudes and altitudes where their ancestors were living at the time that those genetic variations occurred.  We’re still working towards a complete understanding, but the knowledge that sequence variations are connected to latitude and altitude is a huge breakthrough by itself because those are enough to pinpoint where our ancestors lived at critical moments in history.”

The story goes on, but at the bottom, the traditional link to the publication journal is found.

The full study by Dr. Laerton and her team was published in the September issue of the Journal of Genetic Science.

I thought to myself, that’s odd, I’ve never heard of any of these people or this journal, and then I clicked to find this.

Aberdeen College bogus site

About that time, Debbie Kennett, DNA watchdog of the UK, posted this:

April Fools Day appears to have arrived early! There is no such institution as Aberdeen College founded in 1394. The University of Aberdeen in Scotland was founded in 1495 and is divided into three colleges: http://www.abdn.ac.uk/about/colleges-schools-institutes/colleges-53.php

The picture on the masthead of the “Aberdeen College” website looks very much like a photo of Aberdeen University. This fake news item seems to be the only live page on the Aberdeen College website. If you click on any other links, including the link to the so-called “Journal of Genetic Science”, you get a message that the website is experienced “unusually high traffic”. There appears to be no such journal anyway.

We also realized that Dr. Laerton, reversed, is “not real.”

I still have no idea why someone would invest the time and effort into the fake website emulating the University of Aberdeen, but I’m absolutely positive that their motives were not beneficial to any of us.

What is the take-away of all of this?  Be aware, very aware, skeptical and vigilant.  Stick with the mainstream vendors unless you realize you’re experimenting.

King Richard

King Richard III

The much anticipated and long-awaited DNA results on the remains of King Richard III became available with a very unexpected twist.  While the science team feels that they have positively identified the remains as those of Richard, the Y DNA of Richard and another group of men supposed to have been descended from a common ancestor with Richard carry DNA that does not match.

https://dna-explained.com/2014/12/09/henry-iii-king-of-england-fox-in-the-henhouse-52-ancestors-49/

https://dna-explained.com/2014/12/05/mitochondrial-dna-mutation-rates-and-common-ancestors/

Debbie Kennett wrote a great summary article.

http://cruwys.blogspot.com/2014/12/richard-iii-and-use-of-dna-as-evidence.html

More Alike than Different

One of the life lessons that genetic genealogy has held for me is that we are more closely related that we ever knew, to more people than we ever expected, and we are far more alike than different.  A recent paper recently published by 23andMe scientists documents that people’s ethnicity reflect the historic events that took place in the part of the country where their ancestors lived, such as slavery, the Trail of Tears and immigration from various worldwide locations.

23andMe European African map

From the 23andMe blog:

The study leverages samples of unprecedented size and precise estimates of ancestry to reveal the rate of ancestry mixing among American populations, and where it has occurred geographically:

  • All three groups – African Americans, European Americans and Latinos – have ancestry from Africa, Europe and the Americas.
  • Approximately 3.5 percent of European Americans have 1 percent or more African ancestry. Many of these European Americans who describe themselves as “white” may be unaware of their African ancestry since the African ancestor may be 5-10 generations in the past.
  • European Americans with African ancestry are found at much higher frequencies in southern states than in other parts of the US.

The ancestry proportions point to the different regional impacts of slavery, immigration, migration and colonization within the United States:

  • The highest levels of African ancestry among self-reported African Americans are found in southern states, especially South Carolina and Georgia.
  • One in every 20 African Americans carries Native American ancestry.
  • More than 14 percent of African Americans from Oklahoma carry at least 2 percent Native American ancestry, likely reflecting the Trail of Tears migration following the Indian Removal Act of 1830.
  • Among self-reported Latinos in the US, those from states in the southwest, especially from states bordering Mexico, have the highest levels of Native American ancestry.

http://news.sciencemag.org/biology/2014/12/genetic-study-reveals-surprising-ancestry-many-americans?utm_campaign=email-news-weekly&utm_source=eloqua

23andMe provides a very nice summary of the graphics in the article at this link:

http://blog.23andme.com/wp-content/uploads/2014/10/Bryc_ASHG2014_textboxes.pdf

The academic article can be found here:

http://www.cell.com/ajhg/home

2015

So what does 2015 hold? I don’t know, but I can’t wait to find out. Hopefully, it holds more ancestors, whether discovered through plain old paper research, cousin DNA testing or virtually raised from the dead!

What would my wish list look like?

  • More ancient genomes sequenced, including ones from North and South America.
  • Ancestor reconstruction on a large scale.
  • The haplotree becoming fleshed out and stable.
  • Big Y sequencing combined with STR panels for enhanced genealogical research.
  • Improved ethnicity reporting.
  • Mitochondrial DNA search by ancestor for descendants who have tested.
  • More tools, always more tools….
  • More time to use the tools!

Here’s wishing you an ancestor filled 2015!

 

Tenth Annual Family Tree DNA Conference Wrapup

baber summary

This slide, by Robert Baber, pretty well sums up our group obsession and what we focus on every year at the Family Tree DNA administrator’s conference in Houston, Texas.

Getting to Houston, this year, was a whole lot easier than getting out of Houston. They had storms yesterday and many of us spent the entire day becoming intimately familiar with the airport.  Jennifer Zinck, of Ancestor Central, is still there today and doesn’t have a flight until late.

And this is how my day ended, after I finally got out of Houston and into my home airport. This isn’t at the airport, by the way.  Everything was fine there, but I made the apparent error of stopping at a Starbucks on the way home.  This is the parking lot outside an hour or so later.  What can I say?  At least I had my coffee, and AAA rocks, as did the tow truck driver and my daughter for getting out of bed to come and rescue me!!!  Hmmm, I think maybe things have gone full circle.  I remember when I used to go and rescue her:)

jeep tow

So far, today hasn’t improved any, so let’s talk about something much more pleasant…the conference itself.

Resources

One of the reasons I mentioned Jennifer Zinck, aside from the fact that she’s still stuck in the airport, is because she did a great job actually covering the conference as it happened. Since I had some time yesterday to visit with her since our gates weren’t terribly far apart, I asked her how she got that done.  I took notes too, and photos, but she turned out a prodigious amount of work in a very short time.  While I took a lightweight MacBook Air, she took her regular PC that she is used to typing on, and she literally transcribed as the sessions were occurring.  She just added her photos later, and since she was working on a platform that she was familiar with, she could crop and make the other adjustments you never see but we perform behind the scenes before publishing a photo.

On the other hand, I struggled with a keyboard that works differently and is a different size than I’m used to as well as not being familiar with the photo tools to reduce the size of pictures, so I just took rough notes and wrote the balance later.  Having familiar tools make such a difference.  I think I’ll carry my laptop from now on, even though it is much heavier.  Kudos to Jennifer!

I was initially going to summarize each session, but since Jen did such a good job, I’m posting her links. No need to recreate a wheel that doesn’t need to be recreated.

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy/

ISOGG, the International Society of Genetic Genealogy is not affiliated with Family Tree DNA or any testing company, but Family Tree DNA is generous enough to allow an ISOGG meeting on Sunday before the first conference session.

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-isogg-meeting/

http://www.ancestorcentral.com/decennial-conference-on-genetic-genealogy-sunday/

You can find my conference postings here:

https://dna-explained.com/2014/10/11/tenth-annual-family-tree-dna-conference-opening-reception/

https://dna-explained.com/2014/10/12/tenth-annual-family-tree-dna-conference-day-2/

https://dna-explained.com/2014/10/13/tenth-annual-family-tree-dna-conference-day-3/

Several people were also posting on a twitter feed as well.

https://twitter.com/search?q=%23FTDNA2014&src=tyah

Those of you where are members of the ISOGG Yahoo group for project administrators can view photos posted by Katherine Borges in that group and there are also some postings on the Facebook ISOGG group as well.

Now that you have the links for the summaries, what I’d like to do is to discuss some of the aspects I found the most interesting.

The Mix

When I attended my first conference 10 years ago, I somehow thought that for the most part, the same group of people would be at the conferences every year. Some were, and in fact, a handful of the 160+ people attending this conference have attended all 10 conferences.  I know of two others for certain, but there were maybe another 3 or so who stood up when Bennett asked for everyone who had been present at all 10 conferences to stand.

Doug Mumma, the very first project administrator was with us this weekend, and still going strong. Now, if Doug and I could just figure out how we’re related…

Some of the original conference group has passed on to the other side where I’m firmly convinced that one of your rewards is that you get to see all of those dead ends of your tree. If we’re lucky, we get to meet them as well and ask all of those questions we have on this side.  We remember our friends fondly, and their departure sadly, but they enriched us while they were here and their memories make us smile.  I’m thinking specifically of Kenny Hedgepath and Leon Little as I write this, but there have been others as well.

The definition of a community is that people come and go, births, deaths and moves.

This year, about half of the attendees had never attended a conference before. I was very pleased to see this turn of events – because in order to survive, we do need new people who are as crazy as we are…er….I mean as dedicated as we are.

isogg reception

ISOGG traditionally hosts a potluck reception on Saturday evening. Lots of putting names with faces going on here.

Collaboration

I asked people about their favorite part of the conference or their favorite session. I was surprised at the number of people who said lunches and dinners.  Trust me, the food wasn’t that wonderful, so I asked them to elaborate.  In essence, the most valuable aspect of the conference was working with and talking to other administrators.

bar talk

It’s not like we don’t talk online, but there is somehow a difference between online communications and having a group discussion, or a one-on-one discussion. Laptops were out and in use everyplace, along with iPads and other tools.  It was so much fun to walk by tables and hear snippets of conversations like “the mutation at location 309.1….” and “null marker at 425” and “I ordered a kit for my great uncle…..”

I agree, as well. I had pre-arranged two dinners before arriving in order to talk with people with whom I share specific interests.  At lunches, I either tried to sit with someone I specifically needed to talk to, or I tried to meet someone new.

I also asked people about their specific goals for the next year. Some people had a particular goal in mind, such as a specific brick wall that needs focus.  Some, given that we are administrators, had wider-ranging project based goals, like Big Y testing certain family groups, and a surprising number had the goal of better utilizing the autosomal results.

Perhaps that’s why there were two autosomal sessions, an introduction by Jim Bartlett and then Tim Janzen’s more advanced session.

Autosomal DNA Results

jim bartlett

Note the cool double helix light fixture behind the speakers.

tim janzen

Tim specifically mentioned two misconceptions which I run across constantly.

Misconception 1 – A common surname means that’s how you match.  Just because you find a common surname doesn’t mean that’s your DNA match.  This belief is particularly prevalent in the group of people who test at Ancestry.com.

Misconception 2 – Your common ancestor has to be within the past 6 generations.  Not true, many matches can be 6-10th cousins because there are so many descendants of those early ancestors, even as many as 15 generations back.

Tim also mentioned that endogamous relationships are a tough problem with no easy answer. Polynesians, Ashkenazi Jews, Low German Mennonites, Acadians, Amish, and island populations.  Do I ever agree with him!  I have Brethren, Mennonite and Acadian in the same parent’s line.

Tim has been working with the Mennonite DNA project now for many years.

Tim included a great resource slide.

tim slide1

Tim has graciously made his entire presentation available for download.

tim slide2

There are probably a dozen or so of us that are actively mapping our ancestors, and a huge backlog of people who would like to. As Tim pointed out with one of his slides, this is not an easy task nor is it for the people who simply want to receive “an answer.”

tim slide3

I will also add that we “mappers” are working with and actively encouraging Family Tree DNA to develop tools so that the mapping is less spreadsheet manual work and more automated, because it certainly can be.

Upload GEDCOM Files

If you haven’t already, upload your GEDCOM to Family Tree DNA.  This is becoming an essential part of autosomal matching.  Furthermore, Family Tree DNA will utilize this file to construct your surname list and that will help immensely determining common surnames and your common ancestor with your Family Finder matches.  If you have sponsored tests for cousins, then upload a GEDCOM file for them or at least construct a basic tree on their Family Tree DNA page.

Ethics

Family Tree DNA always tries to provide a speaker about ethics, and the only speakers I’ve ever felt understood anything about what we want to do are Judy Russell and Blaine Bettinger.  I was glad to see Blaine presenting this year.

blaine bettinger

The essence of Blaine’s speech is that ethics isn’t about law. Law is cut and dried.  Ethics isn’t, and there are no ethics police.

Sometimes our decisions are colored necessarily by right and wrong.  Sometimes those decisions are more about the difference between a better and a worse way.

As a community, we want to reduce negative press coverage and increase positive coverage. We want to be proactive, not reactive.

Blaine stresses that while informed consent is crucial, that DNA doesn’t reveal secrets that aren’t also revealed by other genealogical forms of research. DNA often reveals more recent secrets, such as adoptions and NPEs, so it’s possibly more sensitive.

Two things need to govern our behavior. First, we need to do only things that we would be comfortable seeing above the fold in the New York Times.  Second, understand that we can’t make promises about topics like anonymity or about the absence of medical information, because we don’t know what we don’t know.

The SNP Tsunami

One of my concerns has been and remains the huge number of new SNPs that have been discovered over the past year or so with the Big Y by Family Tree DNA and  corresponding tests from other vendors.

When I say concern, I’m thrilled about this new technology and the advances it is allowing us to make as a community to discover and define the evolution of haplogroups. My concern is that the amount of data is overwhelming.  However, we are working through that, thanks to the hours and hours of volunteer work by haplogroup administrators and others.

Alice Fairhurst, who volunteers to maintain the ISOGG haplotree, mentioned that she has added over 10,000 SNPs to the Y tree this year alone, bringing the total to over 14,000. Those SNPs are fully vetted and placed.  There are many more in process and yet more still being discovered.  On the first page of the Y SNP tree, the list of SNP sources and other critical information, such as the criteria for a SNP to be listed, is provided.

isogg tree3

isogg snps

isogg snps 2014

So, if you’re waiting for that next haplotree poster, give it up because there isn’t a printing press that big, unless you want wallpaper.

isogg new development 2014

These slides are from Alice’s presentation. The ISOGG tree provides an invaluable resource for not only the genetic genealogy community, but also researchers world-wide.

As one example of how the SNP tsunami has affected the Y tree, Alice provided the following summary of R-U106, one of the two major branches of haplogroup R.

From the ISOGG 2006 Y tree, this was the entire haplogroup R Y tree. You can see U106 near the bottom with 3 sub-branches.  While this probably makes you chuckle today, remember that 2006 was only 8 years ago and that this tree didn’t change much for several years.

2006 entire tree

2007 was the same.

2008 u106 tree

2008 shows 5 subclades and one of the subclades had 2 subclades.

2009 u106 tree

2009 showed a total of 12 sub-branches and 2010 added one more.

2011 however, showed a large change. U106 in 2011 had 44 subgroups total and became too large to show on one screen shot.  2012 shows 99 subclades, if I counted accurately.  The 2014 U106 tree is shown below.

before big y

after big y

u106 now

u106 now2

There’s another slide too, but I didn’t manage to get the picture.  You get the idea though…

As you can imagine, for Family Tree DNA, trying to keep up with all of the haplogroups, not just one subgroup like U106 is a gargantuan task that is constantly changing, like hourly. Their Y tree is currently the National Geographic tree, and while they would like to update it, I’m sure, the definition of “current tree” is in a constant state of flux.  Literally, Mike Walsh, one of the admins in the R-L21 group uploads a new tree spreadsheet several times every day.

In order to deal attempt to deal with this, and to encourage people who don’t want to do a Big Y discovery type test, but do want to ferret out their location on their assigned portion of the tree, Family Tree DNA is reintroducing the Backbone tests.

They are starting with M222, also known as the Niall of the 9 Hostages haplogroup which is their beta for the new product and new process. You can see the provisional tree and results in the two slides they provided, below.  I apologize for the quality, but it was the best I could do.

M222

m222 pie

Haplogroup administrators are going to be heavily involved in this process. Family Tree DNA is putting SNP panels together that will help further define the tree and where various SNPs that have been recently discovered, and continue to be discovered, will fall on the tree.

As Big Y tests arrive, haplogroup project administrators typically assemble a spreadsheet of the SNPS and provisionally where they fall on the tree, based on the Big Y results.

What Bennett asked is for the admins to work with Family Tree DNA to assemble a testing panel based on those results. The goal is for the cost to be between $1.50 and $2 (US) for each SNP in the panel, which will reduce the one-off SNP testing and provide a much more complete and productive result at a far reduced price as compared to the current $29 or $39 per individual SNP.

If you are a haplogroup administrator, get in touch with Family Tree DNA to discuss your desired backbone panels. New panels, when it’s your turn, will take about 2 weeks to develop.

Keep in mind that the following SNPs, according to Bennett, are not optimal for panels:

  • Palindromic regions
  • Often mutating regions designated as .1, .2, etc.
  • SNPs in STRs

Nir Leibovich, the Chief Business Officer, also addressed the future and the Big Y to some extent in his presentation.

nir leibovich

ftdna future 2014

Utilizing the Big Y for Genealogy

In my case, during the last sale, I ordered several Big Y tests for my Estes family line because I have several genealogically documented lines from the original Estes family in Kent, England through our common ancestor, Robert Estes born in 1555 and his wife Anne Woodward. The participants also agreed to extend their markers to 111 markers as well.  When the results are back, we’ll be able to compare them on a full STR marker set, and also their SNPs.  Hopefully, they will match on their known SNPs and there will be some new novel variants that will be able to suffice as line marker mutations.

We need more BIG Y tests of these types of genealogically confirmed trees that have different sons’ lines from a distant common ancestor to test descendant lines. This will help immensely to determine the actual, not imputed, SNP mutation rate and allow us to extrapolate the ages of haplogroups more accurately.  Of course, it also goes without saying that it helps to flesh out the trees.

I personally expect the next couple of years will be major years of discovery. Yes, the SNP tsumani has hit land, but it’s far from over.

Research and Development

David Mittleman, Chief Scientific Officer, mentioned that Family Tree DNA now has their own R&D division where they are focused on how to best analyze data. They have been collaborating with other scientists.  A haplogroup G1 paper will be published shortly which states that SNP mutation rates equate to Sanger data.

FTDNA wants to get Big Y data into the public domain. They have set up consent for this to be done by uploading into NCBI.  Initially they sent a survey to a few people that  sampled the interest level.  Those who were interested received a release document.  If you are interested in allowing FTDNA to utilize your DNA for research, be it mitochondrial, Y or autosomal, please send them an e-mail stating such.

Don’t Forget About Y Genealogy Research

It’s very easy for us to get excited about the research and discovery aspect of DNA – and the new SNPs and extending haplotrees back in time as far as possible, but sometimes I get concerned that we are forgetting about the reason we began doing genetic genealogy in the first place.

Robert Baber’s presentation discussed the process of how to reconstruct a tree utilizing both genealogy and DNA results. It’s important to remember that the reason most of our participants test is to find their ancestors, not, primarily, to participate in the scientific process.

Robert baber

edward baber

Robert has succeeded in reconstructing 110 or 111 markers of the oldest known Baber ancestor, shown above. I wrote about how to do this in my article titled, Triangulation for Y DNA.

Not only does this allow us to compare everyone with the ancestor’s DNA, it also provides us with a tool to fit individuals who don’t know specific genealogical line into the tree relatively accurately. When I say relatively, the accuracy is based on line marker mutations that have, or haven’t, happened within that particular family.

Jim illustrated how to do this as well, and his methodology is available at the link on his slide, below.

baber method

I had to laugh. I’ve often wondered what our ancestors would think of us today.  Robert said that that 11 generations after Edward Baber died, he flew over church where Edward was buried and wondered what Edward would have thought about what we know and do today – cars, airplanes, DNA, radio, TV etc..  If someone looked in a crystal ball and told Edward what the future held 11 generations later, he would have thought that they were stark raving mad.

Eleven generations from my birth is roughly the year 2280. I’m betting we won’t be trying to figure out who our ancestors were through this type of DNA analysis then.  This is only a tiny stepping stone to an unknown world, as different to us as our world is to Edward Baber and all of our ancestors who lived in a time where we know their names but their lives and culture are entirely foreign to ours.

Publications

When the Journal of Genetic Genealogy was active, I, along with other citizen scientists published regularly.  The benefit of the journal was that it was peer reviewed and that assured some level of accuracy and because of that, credibility, and it was viewed by the scientific community as such.  My co-authored works published in JOGG as well as others have been cited by experts in the academic community.  It other words, it was a very valuable journal.  Sadly, it has fallen by the wayside and nothing has been published since 2011.  A new editor was recruited, but given their academic load, they have not stepped up to the plate.  For the record, I am still hopeful for a resurrection, but in the mean time, another opportunity has become available for genetic genealogists.

Brad Larkin has founded the Surname DNA Journal, which, like JOGG, is free to both authors and subscribers. In case you weren’t aware, most academic journal’s aren’t.  While this isn’t a large burden for a university, fees ranging from just over $1000 to $5000 are beyond the budget of genetic genealogists.  Just think of how many DNA tests one could purchase with that money.

brad larkin

surname dna journal

Brad has issued a call for papers. These papers will be peer reviewed, similarly to how they were reviewed for JOGG.

call for papers

Take a look at the articles published in this past year, since the founding of Surname DNA Journal.

The citizen science community needs an avenue to publish and share. Peer reviewed journals provide us with another level of credibility for our work. Sharing is clearly the lynchpin of genetic genealogy, as it is with traditional genealogy. Give some thought about what you might be able to contribute.

Brad Larkin solicited nominations prior to the conference and awarded a Genetic Genealogist of the Year award. This year’s award was dually presented to Ian Kennedy in Australia, who, unfortunately, was not present, and to CeCe Moore, who just happened to follow Brad’s presentation with her own.

Don’t Forget about Mitochondrial DNA Either

I believe that mitochondrial DNA the most underutilized DNA tool that we have, often because how to use mitochondrial DNA, and what it can tell you, is poorly understood. I wrote about this in an article titled, Mitochondrial, The Maligned DNA.

Given that I work with mitochondrial DNA daily when I’m preparing client’s Personalized DNA Reports (orderable from your personal page at Family Tree DNA or directly from my website), I know just how useful mitochondrial can be and see those examples regularly. Unfortunately, because these are client reports, I can’t write about them publicly.

CeCe Moore, however, isn’t constrained by this problem, because one of the ways she contributes to genetic genealogy is by working with the television community, in particular Genealogy Roadshow and the PBS series, Finding Your Roots. Now, I must admit, I was very surprised to see CeCe scheduled to speak about mitochondrial DNA, because the area of expertise where she is best known is autosomal DNA, especially in conjunction with adoptee research.

cece moore

cece mtdna

During the research for the production of these shows, CeCe has utilized mitochondrial DNA with multiple celebrities to provide information such as the ethnic identification of the ancestor who provided the mitochondrial DNA as Native American.

Autosomal DNA testing has a broad but shallow reach, across all of your lines, but just back a few generations.  Both Y and mitochondrial DNA have a very deep reach, but only on one specific line, which makes them excellent for identifying a common ancestor on that line, as well as the ethnicity of that individual.

I have seen other cases, where researchers connected the dots between people where no paper trail existed, but a relationship between women was suspected.

CeCe mentioned that currently there are only 44,000 full sequence results in the Family Tree DNA data base and and 185K total HVR1, HVR2 and full sequence tests. Y has half a million.  We need to increase the data base, which, of course increases matches and makes everyone happier.  If you haven’t tested your mitochondrial DNA to the full sequence level, this would be a great time!

There are several lessons on how to utilize mitochondrial DNA at this ISOGG link.

I’m very hopeful that CeCe’s presentation will be made available as I think her examples are quite powerful and will serve to inspire people.  Actually, since CeCe is in the “movie business,” perhaps a short video clip could be made available on the FTDNA website for anyone who hasn’t tested their mitochondrial DNA so they can see an example of why they should!

myOrigins

I would be fibbing to you if I told you I am happy with myOrigins. I don’t feel that it is as sensitive as other methods for picking up minority admixture, in particular, Native American, especially in small amounts.  Unfortunately, those small amounts are exactly what many people are looking for.

If someone has a great-great-great-great grandparent that is Native, they carry about 1%, more or less, of the Native ancestor’s DNA today. A 4X great grandparent puts their birth year in the range of 1800-1825 – or just before the Trail of Tears.  People whose colonial American families intermarried with Native families did so, generally, before the Trail of Tears.  By that time, many tribes were already culturally extinct and those east of the Mississippi that weren’t extinct were fighting for their lives, both literally and figuratively.

We really need the ability to develop the most sensitive testing to report even the smallest amounts of Native DNA and map those segments to our chromosomes so that we can determine who, and what line in our family, was Native.

I know that Family Tree DNA is looking to improve their products, and I provided this feedback to them. Many people test autosomally only for their ethnicity results and I surely would love to have those people’s results available as matches in the FTDNA data base.

Razib Khan has been working with Family Tree DNA on their myOrigins product and spoke about how the myOrigins data is obtained.

razib kahn

my origins pieces

Given that all humans are related, one way or another, far enough back in time, myOrigins has to be able to differentiate between groups that may not be terribly different. Furthermore, even groups that appear different today may not have been historically.  His own family, from India, has no oral history of coming from the East, but the genetic data clearly indicates that they did, along with a larger group, about 1000 years ago.  This may well be a result of the adage that history is written by the victors, or maybe whatever happened was simply too long ago or unremarkable to be recorded.

Razib mentioned that depending on the cluster and the reference samples, that these clusters and groups that we see on our myOrigins maps can range from 1000-10,000 years in age.

relatedness of clusters

The good news is that genetics is blind to any preconceived notions. The bad news is that the software has to fit your results to the best population, even though it may not be directly a fit.  Hopefully, as we have more and better reference populations, the results will improve as well.

my origin components

pca chart

Razib showed a PCA (principal components analysis) graph, above. These graphs chart reference populations in different quadrants.  Where the different populations overlap is where they share common historic ancestors.  As you can see, on this graph with these reference populations, there is a lot of overlap in some cases, and none in others.

Your personal results would then be plotted on top of the reference populations. The graph below shows me, as the white “target” on a PCA graph created by Doug McDonald.

my pca chart

The Changing Landscape

A topic discussed privately among the group, and primarily among the bloggers, is the changing landscape of genetic genealogy over the past year or so.  In many ways I think the bloggers are the canaries in the mine.

One thing that clearly happened is that the proverbial tipping point occurred, and we’re past it. DNA someplace along the line became mainstream.  Today, DNA is a household word.  At gatherings, at least someone has tested, and most people have heard about DNA testing for genealogy or at least consumer based DNA testing.

The good news in all of this is that more and more people are testing. The bad news is that they are typically less informed and are often impulse purchasers.  This gives us the opportunity for many more matches and to work with new people.  It also means there is a steep learning curve and those new testers often know little about their genealogy.  Those of us in the “public eye,” so to speak, have seen an exponential spike in questions and communications in the past several months.  Unfortunately, many of the new people don’t even attempt to help themselves before asking questions.

Sometimes opportunity comes with work clothes – for them and us both.

I was talking with Spencer about this at the reception and he told me I was stealing his presentation.  He didn’t seem too upset by this:)

spencer and me

I had to laugh, because this falls clearly into the “be careful what you wish for, you may get it” category. The Genographic project through National Geographic is clearly, very clearly, a critical component of the tipping point, and this was reflected in Spencer’s presentation.  Although I covered quite a bit of Spencer’s presentation in my day 2 summary, I want to close with Spencer here.  I also want to say that if you ever have the opportunity to hear Spencer speak, please do yourself the favor and be sure to take that opportunity.  Not only is he brilliant, he’s interesting, likeable and very approachable.  Of course, it probably doesn’t hurt that I’ve know him now for 9 years!  I’ve never thought to have my picture taken with Spencer before, but this time, one of my friends did me the favor.

I have to admit, I love talking to Spencer, and listening to him. He is the adventurer through whom we all live vicariously.  In the photo below, Spencer along with his crew, drove from London to Mongolia.  Not sure why he is standing on the top of the Land Rover, but I’m sure he will tell us in his upcoming book about that journey,

spencer on roof

I’m warning you all now, if I win the lottery, I’m going on the world tour that he hosts with National Geographic, and of course, you’ll all be coming with me via the blog!

Spencer talked about the consumer genomics market and where we are today.

spencer genomics

Spencer mentioned that genetic genealogy was a cottage industry originally. It was, and it was even smaller than that, if possible.  It actually was started by Bennett and his cell phone.  I managed to snap a picture of Bennett this weekend on the stage looking at his cell, and I thought to myself, “this is how it all started 14 years ago.”  Just look where we are today.  Thank you Michael Hammer for telling Bennett that you received “lots of phone calls from crazy genealogists like you.”

bennett first office

So, where exactly are we today?  In 2013, the industry crossed the millionth kit line.  The second millionth kit was sold in early summer 2014 and the third million will be sold in 2015.  No wonder we feel like a tidal wave has hit.  It has.

Why now?

DNA has become part of national consciousness.  Businesses advertise that “it’s in our DNA.”  People are now comfortable sharing via social media like facebook and twitter.  What DNA can do and show you, the secrets it can unlock is spreading by word of mouth.  Spencer termed this the “viral spread threshold” and we’ve crossed that invisible line in the sand.  He terms 2013 as the year of infection and based on my blog postings, subscriptions, hits, reach and the number of e-mails I receive, I would completely agree.  Hold on tight for the ride!

Spencer talked about predictions for near term future and said a 5 year plan is impossible and that an 18 month plan is more realistic. He predicts that we will continue to see exponential growth over the next several years.  He feels that genetic genealogy testing will be primary driver of growth because medical or health testing is subject to the clinical utility trap being experienced currently by 23andMe.  The Big 4 testing companies control 99% of consumer market in US (Ancestry, 23andMe, Family Tree DNA and National Geographic.)

Spencer sees a huge international market potential that is not currently being tapped. I do agree with him, but many in European countries are hesitant, and in some places, like France, DNA testing that might expose paternity is illegal.  When Europeans see DNA testing as a genealogical tool, he feels they will become more interested.  Most Europeans know where their ancestral village is, or they think they do, so it doesn’t have the draw for them that it does for some of us.

Ancestry testing (aka genetic genealogy as opposed to health testing) is now a mature industry with 100% growth rate.

Spencer also mentioned that while the Genographic data base is not open access, that affiliate researchers can send Nat Geo a proposal and thereby gain research access to the data base if their proposal is approved. This extends to citizen scientists as well.

spencer near term

Michael Hammer

You’ll notice that Michael Hammer’s presentation, “Ancient and Modern DNA Update, How Many Ancestral Populations for Europe,” is missing from this wrapup. It was absolutely outstanding, and fascinating, which is why I’m writing a separate article about his presentation in conjunction with some additional information.  So, stay tuned.

Testing, More Testing

It’s becoming quite obvious that the people who are doing the best with genetic genealogy are the ones who are testing the most family members, both close and distant. That provides them with a solid foundation for comparison and better ways to “drop matches” into the right ancestor box.  For example, if someone matches you and your mother’s sister, Aunt Margaret, especially if your mother is not available to test, that’s a very important hint that your match is likely from your mother’s line.

So, in essence, while initially we would advise people to test the oldest person in a generational line, now we’ve moved to the “test everyone” mentality.  Instead of a survey, now we need a census.  The exception might be that the “child” does not necessarily need to be tested because both parents have tested.  However, having said that, I would perhaps not make that child’s test a priority, but I would eventually test that child anyway.  Why?  Because that’s how we learn.  Let me give you an example.

I was sitting at lunch with David Pike. were discussing autosomal DNA generational transmission and inheritance.  He pulled out his iPad, passed it to me, and showed me a chromosome (not the X) that has been passed entirely intact from one generation to the next.  Had the child not been tested, we would never have known that.  Now, of course, if you’ll remember the 50% rule, by statistical prediction, the child should get half of the mother’s chromosome and half of the father’s, but that’s not how it worked.  So, because we don’t know what we don’t know, I’m now testing everyone I can find and convince in my family.  Unfortunately, my family is small.

Full genome testing is in the future, but we’re not ready yet. Several presenters mentioned full genome testing in some context.  Here’s the bottom line.  It’s not truly full genome testing today, only 95-96%.  The technology isn’t there yet, and we’re still learning.  In a couple of years, we will have the entire genome available for testing, and over time, the prices will fall.  Keep in mind that most of our genome is identical to that of all humans, and the autosomal tests today have been developed in order to measure what is different and therefore useful genealogially.  I don’t expect big breakthroughs due to full genome testing for genetic genealogy, although I could be wrong.  You can, however, count me in, because I’m a DNA junkie.  When the full genome test is below $1000, when we have comparison tools and when the coverage won’t necessitate doing a second or upgrade test a few years later, I’ll be there.

Thank you

I want to offer a heartfelt thank you to Max Blankfeld and Bennett Grenspan, founders of Family Tree DNA, shown with me in the photo below, for hosting and subsidizing the administrator’s conference – now for a decade. I look forward to seeing them, and all of the other attendees, next year.

I anticipate that this next decade will see many new discoveries resulting in tools that make our genealogy walls fall.  I can’t help but wonder what the article I’ll be writing on the 20th anniversary looking back at nearly a quarter century of genetic genealogy will say!

roberta, max and bennett

Tenth Annual Family Tree DNA Conference Day 2

With the very slow hotel internet service, there’s no way I can do justice to day 1 of the conference as a whole, so I’m selecting one speaker and one picture, or two, hopefully, and I’ll write a more detailed article after returning home.  Please forgive the less than polished text and photos today and join me in a few days for more complete coverage.

This is a history-making event, the 10th year of Family Tree DNAs genetic genealogy conference. Fifteen years ago, this industry didn’t exist at all and today, it’s growing at break neck speed.

Being a part of the leading edge, often bleeding edge, of science is endorphin producing and just plain addictive.  We are so fortunate to live in a time when scientific advances support these tools.

DSC_0002

Bennett and Max opened the conference as is traditional with a few words.

Max shared with us that initially, he and Bennett were concerned that the Nat Geo 1 project would cannibalize the FTDNA customers, when in reality, just the opposite happened. Nat Geo endorsed the idea of testing for genetic genealogy and helped the entire industry to flourish. Without Nat Geo, Family Tree DNA would not have started their own lab in 2006.

Today, Family Tree DNA is asking themselves how they can prepare for the future and reach out to the international community.

Bennett was obviously quite touched to look out over the sea of administrators who have come to support and learn about the industry that he and Max founded.

Bennett said:

“Yesterday is history, tomorrow is mystery – today is a gift and that’s why they call it the present.  My present today is all of you here.”

Bennett added that never did he imagine 10 years ago that it would not only become a fully matured industry, but a secondary industry would emerge as well, such as several books being authored within the genetic genealogy community.

I’ve selected Spencer Wells as the speaker to feature for today, although I will provide additional photos in a follow-up article when I cover the other speakers as well.

Spencer Wells, Scientist in Residence at the National Geographic Society, spoke today on Consumer Genomics, The 30,000 Foot View.

DSC_0024

The goal of Spencer’s work is more than genetic genealogy – it’s to explain the various patterns of human diversity. There are 6000 languages spoken in world today. How are they related? If we understand how languages are related, then we can probably understand how the people who speak those languages are related as well.

This has happened in the evolutionary blink of an eye, 2000 human generations since the emergence from Africa has generated all of these patterns of diversity.

In our blood is the time machine to reunite us with our ancestors.

The key to understanding these connections lay in the veins of isolated populations who have not culturally assimilated and admixed with other people and population groups. That’s who Spencer visits, and his adventures are renowned.  In 2005, he missed the conference which was held a the National Geographic headquarters in Washington DC because he was caught in a war in Chad, collecting samples.

There are 7 billion people in the world today. All of the people outside of African descend from about 10,000 people who lived in Africa when a small band decided to leave.  That band and their descendants populated the entire rest of the earth.  This, the greatest journey, is the history of our species.

Spencer said that 10 years in the lab left him with ten years worth of work that provided more questions than answers. Spencer left academia and retraced the journey of mankind for himself and this is how he became involved with Nat Geo.

One of Spencer’s concerns is that cultural mass extinction is occurring. By the end of the century 50-90% of the 6000 languages will be gone forever, extinct, through process of cultural assimilation.

Cultural diversity is what defined us as a species.  When we lose a piece of that cultural diversity we lose a chapter or a volume in the history of humanity.

The Geno 2.0 project is doing very well, beyond everyone’s expectations through a combination of the three aspects of the Genographic project.

  • Field Research
  • Public participation
  • Legacy fund

Today Nat Geo has 75,000 indigenous participants whose DNA has been gathered by the Nat Geo team and 625,000 public participants who have purchased kits.

The third aspect of the project, the Legacy fund, is trying to preserve the accumulated knowledge of 50,000-60,000 years of human history. For example, the use of medicinal plants in South America. If that knowledge is lost, the cure for cancer, aids or ebola may be lost along with that traditional cultural knowledge.

The last aspect, and one that was somewhat unexpected, is that they are harnessing the power of the citizen scientist community.

For example, a few years ago, a woman from Hungary reported to Nat Geo that her test was clearly incorrect, because it reported an Asian haplogroup. Spencer recognized this for what it was, a genetic history of human population migration.

The Hungarian language is related to languages further north and east. Uralic – from the area surrounding the Ural mountains.

DSC_0030

The Huns, about the year 1000 AD, invaded central Euro plains and replaced the invaded population within a couple of generations.

Nat Geo decided to look at their 2334 samples of Hungarian origin and found that 2-3% of Hungarian Y and mtDNA are of Asian origin. Hence, the signature of the Huns still resides, even after generations of admixture with other populations, in Hungary.

DSC_0031

Spencer was gracious enough to answer questions and indicated that there will be a Geno 3.0 and a new SNP chip, but he can’t talk about that just yet. Stay tuned.

He also mentioned that he’s finishing a 4th book, “The Ghost of Genghis Khan,” reflecting one of his most interesting journeys.

You know, every time I hear Spencer speak, I’m energized again, encouraged and so inspired – I feel like I’ve been to the DNA Church Revival!!!

I’m excited, very excited about our ability to learn and participate personally in this new frontier.  The genetics frontier within connects us with the distant, very distant, past and those who lived then that, combined, make us who we are today.

Haplogroups, SNPs and Family Group Confusion

The transition at Family Tree DNA from the old haplogroup naming convention to the new SNP-only naming convention has generated a great deal of confusion.  It’s like surgery – had to be done – but it has been painful.

I’ve received several questions, many that are similar, so I’d like to attempt to resolve some of the confusing points here.

First, just a little background.

Ancient History

Remember, in 2008, when Michael Hammer et al rewrote the Y tree?  If you do, then count yourself as an old-timer.  Names such as R1b1c became R1b1a2.  E3a became E1b1a and E3b became E1b1b1.  We thought we were all going to die.  But we didn’t – and now, if I hadn’t just told you, you wouldn’t even be able to remember the previous name of R1b1a2.

Why did this happen?  Because when you have a step-wise tree where each step is given a number and letter, like this, you have no room for expansion.

R

R1

R1a

R1a1

Each of these haplogroup names is assigned a SNP, and when a new SNP is discovered between R and R1, for example, the name R1 gets assigned to the new SNP and everyone downstream gets renamed and/or a new SNP assigned.  If you think this is confusing, it is and was – terribly so.  In fact, as testimony to this, the last version of the FTDNA tree, the ISOGG tree and the tree used by 23andMe are entirely out of sync with each other.

With the shift from about 800 SNPs to 12,000 SNPs with the Geno2.0 chip, it was definitely time to redo and rethink how haplogroup names are assigned.  What seemed initially like a great idea turned out not to be when the magnitude of the number of SNPs that actually exist was realized.  In reality, they needed to be obsoleted, but the familiar cadence of the letter number path will forever be gone – with the exception of the fact that the SNP is prefaced with the haplogroup name.  We will no longer have our signposts, sadly, but our signposts were becoming overwhelmingly long.  Here’s one example I copied from the ISOGG tree.  R1b1a2a1a1c2b2a1a1b2a1a – seriously – I can’t remember that.

So, today, and forever more, R1b1a2 will be R-M269.  It will not be shifted or “become” anything else.  Moving a SNP to a new location becomes painless, because it will not affect anything upstream or downstream.

However, as you get use to this new beast, you’re going to want to refer to “what something was” before.  You’ll find that articles, papers and who knows what else will refer to the haplogroup name – and you’ll need a conversion reference.

Here’s a link to that reference.  I don’t know about you, but I copied this and created a .pdf file in case this reference disappears – not that that ever happens in the electronic world.

Why the Confusion?

Within projects, men with the same surname now have different haplogroups assigned, and the SNP names look entirely different.  Before, if most of the surname group was R1b1a2, and one person had SNP tested at a deeper level and showed R1b1a2a1a1b4, it was easy to tell by looking that R1b1a2a1a1b4 fell underneath R1b1a2, and was a subclade.  Today, with the new tree, everyone that was R1b1a2 is now shown as R-M269 and the lone R1b1a2a1a1b4 person is shown as R-L21.  You can’t tell by looking if R-L21 is a subclade of R-M269 or the other way around.  And another few SNP tests at different levels into the mix, and you have one confused administrator.

One thing hasn’t changed.  Notice the haplogroup I-M253 individual in the purple group below.  There is a note that their parentage is uncertain.  Given the completely different haplogroup – this individual does not fit into any groups of Estes males biologically.  So completely different haplogroups are still exclusive, meaning you can tell at a glance that these folks do not share a common ancestor, even though their genealogy says that they should.

estes project cropped

Ok, got that now?  Good, because it gets more confusing.

Family Tree DNA did not do a one to one conversion, meaning they did not create a conversion table where R1b1a2=R-M269.  They did an entirely new prediction routine.  This makes sense, because they don’t hard code the haplogroup – it’s fluid and based on either a hard and fast SNP test or a prediction routine. This also allows for easy future improvements, and they utilize 37 markers for haplogroup predictions now instead of just 12, in most cases.

Unfortunately, or fortunately, the prediction routine produces different results for people within the same family group, based on STR marker results and how many STRs are tested.

What this means is that different people in the same family line will have different haplogroup predictions, as you can see in the groups above of individuals all descended from one male, Abraham Estes.

This isn’t wrong, as in incorrect, but it is confusing, especially when you’re used to seeing everyone who has not been SNP tested have a matching haplogroup within families.

Enter the Terminal SNP

The terminal SNP is your SNP that is furthest down the tree based on the SNPs that you have tested.  That second part is really important – based on the SNPs that you have tested.

When you’re looking at your matches, you can see their terminal SNP in the column below to the right, but what you can’t tell is if they have tested for any downstream SNPs and were found negative.

Estes match cropped

For example, if you are tested positive for R-M269 (formerly R1b1a2) and someone else that you match is R-L21, which is downstream of R-M269 – this does not exclude them as valid matches, UNLESS the first R-M269+ gentleman has actually tested for R-L21 and is negative.  You, of course, have no way of knowing this without asking the other participant.

Also, testing “negative” is a bit subjective, because there are known no-calls in the Geno 2.0 results – so if the Geno 2.0 result did not include the terminal haplogroup you expected, and the outcome is truly important to you, meaning family defining – have that defining SNP, if it’s absent in the Geno 2.0 raw data results, tested individually through regular Sanger sequencing – meaning purchase it separately through Family Tree DNA.  A non-positive result in the Geno 2.0 results is typically interpreted to mean negative, but that is not always the case.  In most situations, if everything else matches, meaning surname, STRs and other SNPs, it’s not necessary to test the SNP separately – but it is available if you need to know, positively.

Secondly, the terminal SNP on the new Family Tree DNA haplotree and in your results, if you have taken the Big Y, the Walk Through the Y or purchased individuals SNPs, may be different.  Why, and how would you know?

The why is because Family Tree DNA has synced to the Geno 2.0 tree at this point, and there have been many new SNPs discovered since the Geno 2.0 tree was developed in 2012.  The ISOGG tree is more current, but keep in mind that it is a provisional tree.  However, you still need to have a way to determine your terminal SNP beyond the Geno 2.0 criteria if you have had advanced testing.

There were originally some tools created by individuals to help with this dilemma, but both tools appear to no longer work.  Kitty Cooper blogged about this, and was apparently recently successful, but I was not.  I downloaded the updated version of the Big Y Chromosome extension that I wrote about and was using the Morley tree but that no longer functions either.  Let’s just say that the word frustrated doesn’t even begin to apply….

My suggestion is to work closely with your haplogroup and surname project administrator(s).  Many of the administrators have put together provisional charts and the haplogroup project pages are grouped by SNP groupings with suggestions for additional relevant testing.

The U106 project is a great example of proactive administrators.  Individual participants are clearly categorized and the categories suggest an appropriate “next step.”  Looking at their home page, the administrators make themselves readily available to project members for consulting about how to proceed.

u106 project

Yes, all of this change is a bit fuzzy right now, but give it a bit of time and the fog will clear.  It did in 2008 and we all survived.

Tree Updates

Family Tree DNA has committed to at least one more tree update this year, and let’s hope that it includes all of the SNPs in the reference data base they are using for the Big Y.

I’ll be talking about Big Y comparisons in a future article.

10 Things to Do With Your DNAPrint, renamed AncestrybyDNA, Test

birdcage

Please note, AncestrybyDNA is NOT the same as the AncestryDNA test sold by Ancestry.com.  Both CeCe Moore and David Dowell have written about this in their respective blogs.

Back in 2002 (no, that is not a typo,) a new product called DNAPrint was introduced by a company then called DNAPrint Genomics.  It provided you, in percentages, your percentages of 4 ethnic groups: Indo-European, East-Asian, Native American and African.  Family Tree DNA remarketed this test for just over a year but ceased when they realized there were issues.

It was the first of its kind of test ever to be offered commercially, and version 2.0 utilized a whopping 71 ancestrally informative markers, according to the user’s guide delivered with the product.  The next version of the test, 2.5, titled AncestrybyDNA included 175 markers, and a third version, which I don’t believe was ever released, was to include just over 300 markers.

In 2002, this was a baby step in a brand new world.  We, as a community, were thrilled to be able to obtain this type of information.  And of course, we believed it was accurate, or relatively so.  However, the questions and ensuing debate started almost immediately and became very heated.

The company’s representatives indicated that East-Asian and Native American could be combined for those without a “Chinese grandpa” and that would have given me a whopping 25% Native American.  Even then, before pedigree analysis, I thought this was a little high.  My East Asian was shown as 15%, Native American at 10% and Indo-European at 75%.  For reference, my real Native results are probably in the 1-3% range.  Keep in mind that we were all babes in the woods, kind of stumbling around, learning, in 2002 and 2003.

Interestingly enough, I found the answer recently, quite by accident, to one of the burning questions about Native American ancestry that was asked repeatedly of Tony Frudakis during that timeframe, then a corporate officer of DNAPrint, and left unanswered.  In Carolyn Abraham’s book, The Juggler’s Children, which is a wonderful read, on page 55, the answer to the forever-hanging question was answered:

“When I finally reached Frudakis, that’s how he explained the confusion over our Native ancestry result – semantics.  The Florida company had pegged its markers as being Native American to appeal to the American market, he told me.  But it was accurate to consider them Central Asian markers, he said, that had been carried to different regions by those who migrated from that part of the globe long ago – into the Americas, into East Asia, South Asia and even southern Europe – finding their way into today’s Greeks, Italians and Turks.  ‘We may do ourselves a favour and change the name of this ancestry [component] in the test,’ he said, since apparently I wasn’t the only one baffled by it.”

So, now we know, straight from the horses mouth, via Carolyn.

Of course, since that time, many advances have occurred in this field.  Today, Family Tree DNA, 23andMe, Ancestry.com and the Genographic Project utilize chip based technology and utilize over half a million markers to achieve ethnicity predictions.  If DNAPrint, renamed AncestybyDNA was the first baby step, today we are teenagers – trying to refine our identity.  Today’s tests, although not totally accurate, are, by far, more accurate than this first baby step.  Give us another dozen years in this industry, and they’ll be spot on!

For 2003, when I ordered mine, DNAPrint was an adventure – it was exciting – it was a first step – and we learned a lot.  Unfortunately, DNAPrint under the name AncestrybyDNA is still being sold today, currently owned by the DNA Diagnostics Center.  If you are even thinking about ordering this product, take a look first at the Yelp reviews and the Better Business Bureau complaints.

I don’t regret spending the money in 2003.  Spending money on this outdated test today would be another story entirely – a total waste.  The results are entirely irrelevant today in light of the newer and more refined technology.  Unfortunately, seldom a week goes by that I don’t receive an e-mail from someone who bought this test and are quite confused and unhappy.  The test has been marketed and remarketed by a number of companies over the years.

So, here are some suggestions about what might be appropriate to do with your DNAPrint or AncestybyDNA results if you don’t want to just throw them away:

  1. Line the bottom of the birdcage.
  2. Use to light the BBQ grill or camp fire.
  3. Use under boots in the hallway in the winter.
  4. Shred, then use as confetti.
  5. Cut into strips and use as bookmarks.
  6. Use as scratch paper.
  7. Use in the garden between rows to minimize weeds.
  8. Make into a paper airplane.
  9. Roll, along with other excess paper, into logs for the fireplace.
  10. Frame, and display along with your other antiques.

Yes, it’s really that old and outdated!

Family Tree DNA Surpasses the Million Test Mark

Family-Tree-DNA logo

Family Tree DNA, the genetic genealogy arm of Gene by Gene, announced today in a press release that it has processed over 1,000,000 DNA test kits results for genealogy and anthropology purposes.

This historic amount includes Family Tree DNA’s tests as well the processing of public participation samples for National Geographic’s Genographic Projects genetic testing partner.

The million-test milestone was reached this week during the company’s Father’s Day sale, which includes the Family Finder test currently discounted to the price of $79 and the Big Y at $595.  So if you purchased one of these tests this week, you could have been that historic millionth person!

The press release goes on to say:

Family Tree DNA offers the widest range of DNA testing services in the field of genetic genealogy.  The company prides itself on its commitment to the practice of solid, ethical science. Family Tree DNA has the largest database in the world for matching purposes, which means increased chances of finding long lost relatives. In that regard, Family Tree DNA is an important resource for the three million people in the United States who either were adopted or descend from adoptees.

Founded in 2000, Gene By Gene, Ltd. is a CAP-accredited and CLIA-registered genetic testing company that serves consumers, researchers, and physicians. Gene by Gene offers a wide range of regulated clinical diagnostic tests, as well as research use only (RUO) tests. The Family Tree DNA division of Gene by Gene is a pioneer and leader in DNA testing for genealogy and ancestry. The company operates the largest genetic genealogy database in the world and has provided more than 5 million discrete genetic tests.

It seems like only yesterday that I ordered kit 6656, but it was December of 2002, nearly a dozen years ago.  On New Year’s Eve of 2005, right at midnight, I ordered kit 50,000.  The genetic genealogy community was very excited at that milestone as well.  Eight and a half years later, one million.  It took Family Tree DNA 3 years, from 2002 to 2005, to sell 43,000 kits, or about 14,500 kits per year.  Between 2005 and today, they have sold another 950,000 kits, or just over 100,000 per year, on average.

The 5 million number also suggests that the average client has purchased 5 different tests or upgrades, per kit.  In my case, that’s true because I began purchasing when only the HVR region of mtDNA was available, so I’ve upgraded several times and purchased every test or upgrade Family Tree DNA has ever offered.  All in the unquenchable thirst to learn more about my ancestors.

Congratulations Family Tree DNA on this historic and important milestone.  May your second million happen quickly and include a lot of my relatives:)

Ethnicity Percentages – Second Generation Report Card

Recently, Family Tree DNA introduced their new ethnicity tool, myOrigins as part of their autosomal Family Finder product.  This means that all of the major players in this arena using chip based technology (except for the Genographic project) have now updated their tools.  Both 23andMe and Ancestry introduced updated versions of their tools in the fall of 2013.  In essence, this is the second generation of these biogeographical or ethnicity products.  So lets take a look and see how the vendors are doing.

In a recent article, I discussed the process for determining ethnicity percentages using biogeographical ancestry, or BGA, tools.  The process is pretty much the same, regardless of which vendor’s results you are looking at.  The variant is, of course, the underlying population data base, it’s quality and quantity, and the way the vendors choose to construct and name their regions.

I’ve been comparing my own known and proven genealogy pedigree breakdown to the vendors results for some time now.  Let’s see how the new versions stack up to a known pedigree.

The paper, “Revealing American Indian and Minority Heritage using Y-line, Mitochondrial, Autosomal and X Chromosomal Testing Data Combined with Pedigree Analysis” was published in the Fall 2010 issue of JoGG, Vol. 6 issue 1.

The pedigree analysis portion of this document begins about page 8.  My ancestral breakdown is as follows:

Geography Pedigree Percent
Germany 23.8041
British Isles 22.6104
Holland 14.5511
European by DNA 6.8362
France 6.6113
Switzerland 0.7813
Native American 0.2933
Turkish 0.0031

This leaves about 25% unknown.

Let’s look at each vendor’s results one by one.

23andMe

23andme v2

My results using the speculative comparison mode at 23andMe are shown in a chart, below.

23andMe Category 23andMe Percentage
British and Irish 39.2
French/German 15.6
Scandinavian 7.9
Nonspecific North European 27.9
Italian 0.5
Nonspecific South European 1.6
Eastern European 1.8
Nonspecific European 4.9
Native American 0.3
Nonspecific East Asian/Native American 0.1
Middle East/North Africa 0.1

At 23andMe, if you have questions about what exact population makes up each category, just click on the arrow beside the category when you hover over it.

For example, I wasn’t sure exactly what comprises Eastern European, so I clicked.

23andme eastern europe

The first thing I see is sample size and where the samples come from, public data bases or the 23andMe data base.  Their samples, across all categories, are most prevalently from their own data base.  A rough add shows about 14,000 samples in total.

Clicking on “show details” provides me with the following information about the specific locations of included populations.

23andme pop

Using this information, and reorganizing my results a bit, the chart below shows the comparison between my pedigree chart and the 23andMe results.  In cases where the vendor’s categories spanned several of mine, I have added mine together to match the vendor category.  A perfect example is shown in row 1, below, where I added France, Holland, Germany and Switzerland together to equal the 23andMe French and German category.  Checking their reference populations shows that all 4 of these countries are included in their French and German group.

Geography Pedigree Percent 23andMe %
Germany, Holland, Switzerland & France 45.7451 15.6
France 6.6113 (above) Combined
Germany 23.8014 (above) Combined
Holland 14.5511 (above) Combined
Switzerland 0.7813 (above) Combined
British Isles 22.6104 39.2
Native American 0.2933 0.4 (Native/East Asian)
Turkish 0.0031 0.1 (Middle East/North Africa)
Scandinavian 7.9
Italian 0.5
South European 1.6
East European 1.8
European by DNA 6.8362 4.9 (nonspecific European)
Unknown 25 27.9 (North European)

I can also change to the Chromosome view to see the results mapped onto my chromosomes.

23andme chromosome view

The 23andMe Reference Population

According to the 23andMe customer care pages, “Ancestry Composition uses 31 reference populations, based on public reference datasets as well as a significant number of 23andMe members with known ancestry. The public reference datasets we’ve drawn from include the Human Genome Diversity ProjectHapMap, and the 1000 Genomes project. For these datasets as well as the data from 23andMe, we perform filtering to ensure accuracy.

Populations are selected for Ancestry Composition by studying the cluster plots of the reference individuals, choosing candidate populations that appear to cluster together, and then evaluating whether we can distinguish the groups in practice. The population labels refer to genetically similar groups, rather than nationalities.”

Additional detailed information about Ancestry Composition is available here.

Ancestry.com

ancestry v2

Ancestry is a bit more difficult to categorize, because their map regions are vastly overlapping.  For example, the west Europe category is shown above, and the Scandinavian is shown below.

ancestry scandinavia

Both categories cover the Netherlands, Germany and part of the UK.

My Ancestry percentages are:

Ancestry Category Ancestry Percentage
North Africa 1
America <1
East Asia <1
West Europe 79
Scandinavia 10
Great Britain 4
Ireland 2
Italy/Greece 2

Below, my pedigree percentages as compared to Ancestry’s categories, with category adjustments.

Geography Pedigree Percent Ancestry %
West European 52.584 (combined from below) 79
Germany 23.8041 Combined
Holland 14.5511 Combined
European by DNA 6.8362 Combined
France 6.6113 Combined
Switzerland 0.7813 Combined
British Isles 22.6104 6
Native American 0.2933 ~1 incl East Asian
Turkish 0.0031 1 (North Africa)
Unknown 25
Italy/Greece 2
Scandinavian 10

Ancestry’s European populations and regions are so broadly overlapping that almost any interpretation is possible.  For example, the Netherlands could be included in several categories – and based up on the history of the country, that’s probably legitimate.

At Ancestry, clicking on a region, then scrolling down will provide additional information about that region of the world, both their population and history.

The Ancestry Reference Population

Just below your ethnicity map is a section titled “Get the Most Out of Your Ethnicity Estimate.”  It’s worth clicking, reading and watching the video.  Ancestry states that they utilized about 3000 reference samples, pared from 4245 samples taken from people whose ethnicity seems to be entirely from that specific location in the world.

ancestry populations

You can read more in their white paper about ethnicity prediction.

Family Tree DNA’s myOrigins

I wrote about the release of my Origins recently, so I won’t repeat the information about reference populations and such found in that article.

myorigins v2

Family Tree DNA shows matches by region.  Clicking on the major regions, European and Middle Eastern, shown above, display the clusters within regions.  In addition, your Family Finder matches that match your ethnicity are shown in highest match order in the bottom left corner of your match page.

Clicking on a particular cluster, such as Trans-Ural Peneplain, highlights that cluster on the map and then shows a description in the lower left hand corner of the page.

myorigins trans-ural

Family Tree DNA shows my ethnicity results as follows.

Family Tree DNA Category Family Tree DNA Percentage
European Coastal Plain 68
European Northlands 12
Trans-Ural Peneplain 11
European Coastal Islands 7
Anatolia and Caucus 3

Below, my pedigree results reorganized a bit and compared to Family Tree DNA’s categories.

Geography Pedigree Percent Family Tree DNA %
European Coastal Plain 45.7478 68
Germany 23.8041 Combined above
Holland 14.5511 Combined above
France 6.6113 Combined above
Switzerland 0.7813 Combined above
British Isles 22.6104 7 (Coastal Islands)
Turkish 0.0031 3 (Anatolia and Caucus)
European by DNA 6.8362
Native American 0.2933
Unknown 25
Trans-Ural Peneplain 11
European Northlands 12

Third Party Admixture Tools

www.GedMatch.com is kind enough to include 4 different admixture utilities, contributed by different developers, in their toolbox.  Remember, GedMatch is a free, meaning a contribution site – so if you utilize and enjoy their tools – please contribute.

On their main page, after signing in and transferring your raw data files from either 23andMe, Family Tree DNA or Ancestry, you will see your list of options.  Among them is “admixture.”  Click there.

gedmatch admixture

Of the 4 tools shown, MDLP is not recommended for populations outside of Europe, such as Asian, African or Native American, so I’ve skipped that one entirely.

gedmatch admix utilities

I selected Admixture Proportions for the part of this exercise that includes the pie chart.

The next option is Eurogenes K13 Admixture Proportions.  My results are shown below.

Eurogenes K13

Eurogenes K13

Of course, there is no guide in terms of label definition, so we’re guessing a bit.

Geography Pedigree Percent Eurogenes K13%
North Atlantic 75.19 44.16
Germany 23.8041 Combined above
British Isles 22.6104 Combined above
Holland 14.5511 Combined above
European by DNA 6.8362 Combined above
France 6.6113 Combined above
Switzerland 0.7813 Combined above
Native American 0.2933 2.74 combined East Asian, Siberian, Amerindian and South Asian
Turkish 0.0031 1.78 Red Sea
Unknown 25
Baltic 24.36
West Med 14.78
West Asian 6.85
Oceanian 0.86

Dodecad K12b

Next is Dodecad K12b

According to John at GedMatch, there is a more current version of Dodecad, but the developer has opted not to contribute the current or future versions.

Dodecad K12b

By the way, in case you’re wondering, Gedrosia is an area along the Indian Ocean – I had to look it up!

Geography Pedigree Percent Dodecad K12b
North European 75.19 43.50
Germany 23.8041 Combined above
British Isles 22.6104 Combined above
Holland 14.5511 Combined above
European by DNA 6.8362 Combined above
France 6.6113 Combined above
Switzerland 0.7813 Combined above
Native American 0.2933 3.02 Siberian, South Asia, SW Asia, East Asia
Turkish 0.0031 10.93 Caucus
Gedrosia 7.75
Northwest African 1.22
Atlantic Med 33.56
Unknown 25

Third is Harappaworld.

Harappaworld

harappaworld

Baloch is an area in the Iranian plateau.

Geography Pedigree Percent Harappaworld %
Northeast Euro 75.19 46.58
Germany 23.8041 Combined above
British Isles 22.6104 Combined above
Holland 14.5511 Combined above
European by DNA 6.8362 Combined above
France 6.6113 Combined above
Switzerland 0.7813 Combined above
Native American 0.2933 2.81 SE Asia, Siberia, NE Asian, American, Beringian
Turkish 0.0031 10.27
Unknown 25
S Indian 0.21
Baloch 9.05
Papuan 0.38
Mediterranean 28.71

The wide variety found in these results makes me curious about how my European results would be categorized using the MDLP tool, understanding that it will not pick up Native, Asian or African.

MDLP K12

mdlp k12

The Celto-Germanic category is very close to my mainland European total – but of course, many Germanic people settled in the British Isles.

Second Generation Report Card

Many of these tools picked up my Native American heritage, along with the African.  Yes, these are very small amounts, but I do have several proven lines.  By proven, I mean both by paper trail (Acadian church and other records) and genetics, meaning Yline and mtDNA.  There is no arguing with that combination.  I also have other Native lines that are less well proven.  So I’m very glad to see the improvements in that area.

Recent developments in historical research and my mitochondrial DNA matches show that my most distant maternal ancestral line in Germany have some type of a Scandinavian connection.  How did this happen, and when?  I just don’t know yet – but looking at the map below, which are my mtDNA full sequence matches, the pattern is clear.

mitomatches

Could the gene flow have potentially gone the other direction – from Germany to Scandinavia?  Yes, it’s possible.  But my relatively consistent Scandinavian ethnicity at around 10% seems unlikely if that were the case.

Actually, there is a second possibility for additional Scandinavian heritage and that’s my heavy Frisian heritage.  In fact, most of my Dutch ancestors in Frisia were either on or very near the coast on the northernmost part of Holland and many were merchants.

I also have additional autosomal matches with people from Scandinavia – not huge matches – but matches just the same – all unexplained.  The most notable of which, and the first I might add, is with my friend, Marja.

It’s extremely difficult to determine how distant the ancestry is that these tests are picking up.  It could be anyplace from a generation ago to hundreds of generations ago.  It all depends on how the DNA was passed, how isolated the population was, who tested today and which data bases are being utilized for comparison purposes along with their size and accuracy.  In most cases, even though the vendors are being quite transparent, we still don’t know exactly who the population is that we match, or how representative it is of the entire population of that region.  In some cases, when contributed data is being used, like testers at 23andMe, we don’t know if they understood or answered the questions about their ancestry correctly – and 23andMe is basing ethnicity results on their cumulative answers.  In other words, we can’t see beneath the blanket – and even if we could – I don’t know that we’d understand how to interpret the components.

So Where Am I With This?

I knew already, through confirmed paper sources that most of my ancestry is in the European heartland – Germany, Holland, France as well as in the British Isles.  Most of the companies and tools confirm this one way or another.  That’s not a surprise.  My 35 years of genealogical research has given me an extremely strong pedigree baseline that is invaluable for comparing vendor ethnicity results.

The Scandinavian results were somewhat of a surprise – especially at the level in which they are found.  If this is accurate, and I tend to believe it is present at some level, then it must be a combined effect of many ancestors, because I have no missing or unknown ancestors in the first 5 generations and only 11 of 64 missing or without a surname in generation 6.  Those missing ancestors in generation 6 only contribute about 1.5% of my DNA each, assuming they contribute an average of 50% of their DNA to offspring in each subsequent generation.

Clearly, to reach 10%, nearly all of my missing ancestors, in the US and Germany, England and the Netherlands would have to be 100% Scandinavian – or, alternately, I have quite a bit scattered around in many ancestors, which is a more likely scenario.  Still, I’m having a difficult time with that 10% number in any scenario, but I will accept that there is some Scandinavian heritage one way or another.  Finding it, however, genealogically is quite another matter.

However, I’m at a total loss as to the genesis of the South European and Mediterranean.  This must be quite ancient.  There are only two known possible ancestors from these regions and they are many generations back in time – and both are only inferred with clearly enough room to be disproven.  One is a possible Jewish family who went to France from Spain in 1492 and the other is possibly a Roman soldier whose descendants are found within a few miles of a Roman fort site today in Lancashire.  Neither of these ancestors could have contributed enough DNA to influence the outcome to the levels shown, so the South European/Mediterranean is either incorrect, or very deep ancestry.

The Eastern European makes more sense, given my amount of German heritage.  The Germans are well known to be admixed with the Magyars and Huns, so while I can’t track it or prove it, it also doesn’t surprise me one bit given the history of the people and regions where my ancestors are found.

What’s the Net-Net of This?

This is interesting, very interesting.  There are tips and clues buried here, especially when all of the various tools, including autosomal matching, Y and mtDNA, are utilized together for a larger picture.  Alone, none of these tools are as powerful as they are combined.

I look forward to the day when the reference populations are in the tens of thousands, not hundreds.  All of the tools will be far more accurate as the data base is built, refined and utilized.

Until then, I’ll continue to follow each release and watch for more tips and clues – and will compare the various tools.  For example, I’m very pleased to see Family Tree DNA’s new ethnicity matching tool incorporated into myOrigins.

I’ve taken the basic approach that my proven pedigree chart is the most accurate, by far, followed by the general consensus of the combined results of all of the vendors.  It’s particularly relevant when vendors who don’t use the same reference populations arrive at the same or similar results.  For example, 23andMe uses primarily their own clients and Nat Geo of course, although I did not include them above because they haven’t released a new tool recently, uses their own population sample results.

National Geographic’s Geno2

Nat Geo took a bit of a different approach and it’s more difficult to compare to the others.  They showed my ethnicity as 43% North European, 36% Mediterranean and 18% Southwest Asian.

nat geo results

While this initially looks very skewed, they then compared me to my two closest populations, genetically, which were the British and the Germans, which is absolutely correct, according to my pedigree chart.  Both of these populations are within a few percent of my exact same ethnicity profile, shown below.

Nat geo british 2

The description makes a lot of sense too.  “The dominant 49% European component likely reflects the earliest settlers in Europe, hunter-gatherers who arrived there more than 35,000 years ago.  The 44% Mediterranean and the 17% Southwest Asian percentages arrived later, with the spread of agriculture from the Fertile Crescent in the middle East, over the past 10,000 years.  As these early farmers moved into Europe, they spread their genetic patterns as well.”

nat geo german

So while individually, and compared to my pedigree chart, these results appear questionable, especially the Mediterranean and Southwest Asian portions, in the context of the populations I know I descend from and most resemble, the results make perfect sense when compared to my closest matching populations.  Those populations themselves include a significant amount of both Mediterranean and Southwest Asian.  Looking at this, I feel a lot better about the accuracy of my results.  Sometimes, perspective makes a world of difference.

It’s A Wrap

Just because we can’t exactly map the ethnicity results to our pedigree charts today doesn’t mean the results are entirely incorrect.  It doesn’t mean they are entirely correct, either.  The results may, in some cases, be showing where population groups descend from, not where our specific ancestors are found more recently.  The more ancestors we have from a particular region, the more that region’s profile will show up in our own personal results.  This explains why Mediterranean shows up, for example, from long ago but our one Native ancestor from 7 or 8 generations ago doesn’t.  In my case, it would be because I have many British/German/Dutch lines that combine to show the ancient Mediterranean ancestry of these groups – where I have many fewer Native ancestors.

Vendors may be picking up deep ancestry that we can’t possible know about today – population migration.  It’s not like our ancestors left a guidebook of their travels for us – at least – not outside of our DNA – and we, as a community, are still learning exactly how to read that!  We are, after all, participants on the pioneering, leading edge of science.

Having said that, I’ll personally feel a lot better about these kinds of results when the underlying technology, data bases and different vendors’ tools mature to the point where there the differences between their results are minor.

For today, these are extremely interesting tools, just don’t try to overanalyze the results, especially if you’re looking for minority admixture.  And if you don’t like your results, try a different vendor or tool, you’ll get an entirely new set to ponder!