More Opportunities at RootsTech 2023 – Book Signing & Booth Lecture Sessions

There are even MORE virtual and in-person opportunities at RootsTech beginning on March 2nd.

Collage graphic courtesy of Dr. Penny Walters

This is sort of like Where’s Waldo, except it’s “Where’s Roberta” at RootsTech 2023.

I’m giving my three RootsTech sessions of course, but that’s not all. I’m appearing for presentations in both the FamilyTreeDNA and MyHeritage booths, plus having a book signing for my book, DNA for Native American Genealogy.

Unfortunately, none of my RootsTech sessions are livestreamed, so please attend in person if you’re in Salt Lake City.

The Expo Hall vendor floor plan is here.

The entire floor plan, including the session rooms is here.

Here’s my schedule, followed by the FamilyTreeDNA and MyHeritage booth schedules. Both have wonderful, free, DNA and genealogy sessions.

Roberta – Thursday March 2

9:30 – 10:30 AM – DNA for Native American Genealogy – 10 Ways to Find Your Native American Ancestor – Room 155A

1 – 1:30 PM – Time Travel with Your Ancestors – MyHeritage Booth

3 PM – DNA Journey – Follow Your Ancestor’s Path – Room 255B

Roberta – Friday March 3

1:30 – 2:30 PM – Big Y DNA for the Win – Room 150

4 PM – AutoClusters for the Win – MyHeritage Booth

Roberta – Saturday March 4

1:30 – 2:00 PM – Native American AMA (Ask Me Anything) – FamilyTreeDNA Booth

2:00 – 2:30 PM – Book Signing – DNA for Native American Genealogy – FamilyTreeDNA Booth

About the Book Signing

It’s unfortunate that there won’t be a book vendor at RootsTech this year, but I’ll have some copies of my book along for purchase and signing.

For right now, plan on bringing either $30 in cash, or a check. I’m trying to work out credit card processing, but no promises.

If I run out of books, the show-special pricing of $30 will be honored by the publisher if you order and pay at the book signing.

I’m bringing book plates to sign so I can sign the plate for you, even if you need to order.

If you already purchased the book, come on by and I’ll be glad to sign a book plate for you as well, at least until I run out😊

Expo Hall Opportunities

Many vendors will be offering sessions in their booths, both in person and virtual. Please check them out.

You can register for RootsTech for free which gives you remote access and also access to the Expo Hall if you attend in person. Of course, the paid registration gives you access to the in-person sessions at RootsTech.

I wrote about how to sign up and navigate the RootsTech site, here.

There are a lot more sessions available in the Expo Hall, both virtual and in person, in the vendor booths.

I’m highlighting both FamilyTreeDNA and MyHeritage since they both focus on DNA and have scheduled free sessions from their own specialists plus industry leaders. Most booth sessions tend to be about half an hour.

MyHeritage Hall Lecture and Booth Schedule

Click to enlarge

I’m sure after the virtual Expo Halls opens, their schedule will be available there too.

FamilyTreeDNA Hall Lecture and Booth Schedule

FamilyTreeDNA (FTDNA) published two blog posts, one about the free virtual RootsTech sessions, here, and one about the in-person sessions, here. If you subscribe to their blog, here, you’ll received updates during the week as they feature different sessions. Also, check their virtual booth after the Expo Hall opens.

SLC Local Time Thursday March 2 Friday March 3 Saturday March 4
9:30 (AM) Y DNA: An Overview of your Results – Katy Rowe – Ballroom A – livestreamed Let’s Play Connect Forefathers! -Sherman McRae – Ballroom A – livestreamed
10:30 What You Can Do with DNA – Katy Rowe – FTDNA Booth Native American Roots – Janine Cloud – FTDNA Booth Which Test is Best for Me? – Janine Cloud – FTDNA Booth
1:00 PM FamilyTreeDNA Sponsor Spotlight – Main Stage Y-DNA AMA (Ask Me Anything) – Dr. Paul Maier, Goran Runfeldt, Michael Sager Mitochondrial DNA AMA (Ask me Anything) – Dr. Paul Maier, Goran Runfeldt
1:30 Unexpected Y-DNA Result – Sherman McRae – FTDNA Booth Just in Time for Groups – Jim Brewster – Virtual Live Demo through FTDNA Expo Hall booth Native American AMA (Ask Me Anything) – Roberta Estes – FTDNA Booth
2:00 Book Signing – DNA for Native American Genealogy – Roberta Estes – FTDNA booth
3:00 Unexpected Y DNA Result – Sherman McRae – FTDNA booth
4:00 Which Test is Best for Me? – Janine Cloud – FTDNA Booth

Rootstech Live Webinars Versus Livestreamed Sessions

There has been some confusion about the difference between RootsTech Live Webinars and Livestreamed sessions, and how to access each. I know this is confusing, so bear with me.

  • It appears that the free virtual registration will give you access to the live webinars, because the speakers and their sessions are listed both under the in-person and the virtual on-demand classes, here.
  • The paid registration gives you access to the sessions that will be given in person and also livestreamed.

There is no list (or filter ability) of livestreamed or live webinar sessions, but it’s easy to see if you go to the list of in-person sessions, here, and look under location where it will say “Live Webinar” if the session is just a webinar. However, this list does NOT tell you if the session is livestreamed.

Let’s look at an example.

Here are the first two sessions for Thursday.

Click to enlarge

The first session listed is a Live Webinar, meaning there is no in person room to visit. This sessions ALSO appears on the virtual list of classes, if you look there.

The second session physically takes place in Ballroom A. If you click on the session, and scroll to the bottom, you’ll see this statement about livestreaming. That means you go to Ballroom A if you are in SLC or you can view the session by visiting this link and clicking at the red arrow to join. I believe these will be available later too, but I have no confirmation of that.

This session is NOT listed in the free “on demand” sessions, so I believe any in-person session is only available with a paid registration.

The message is to plan your RootsTech sessions in advance.

Over and Out Until RootsTech

How can it possibly just be just four days until RootsTech. The suspense builds every single day because we know there will be announcements and it will be wonderful to see our genea-friends in person again. It feels like it has been forever.

This is it for me until RootsTech. My schedule is absolutely jam-packed slammed busy, but I will try to write and publish something everyday so you folks can “come along” with me.

I have a media pass this year, so I’ll be trying to grab photos of people, including the main stage speakers, and asking what are hopefully relevant questions. Maybe some behind the scenes things too. I’m not sure how much access we have.

There are sure to be some interesting surprises, planned or unplanned. There always are. Personally, I’m just extremely grateful that RootsTech wasn’t this week, given their 2 feet of snow, or I would have been interviewing people in the hotel lobby and maybe coordinating games of Euchre or perhaps modifying Jeopardy for “Who’s Your Ancestor?” “I’ll take pilgrims for $200.”

It would be miserable to be snowed in literally one block from the FamilySearch Library and not be able to get there. Mother Nature, hopefully, has gotten this out of her system as this week promises to be less weather-challenged. Knock wood!

____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Relatives at RootsTech – How to Use & Connect with DNA

Relatives at RootsTech is back and I’m so very glad to see it.

Let me show you how to use this wonderful tool, including tips for how to get even more out of the experience.

It’s important to start now to accumulate your cousins, because there’s a display limit of 300 in each category, so you’ll want to begin recording your findings so that as more people sign up and are added to your list, you don’t “lose” the earlier relatives.

Let’s start with my link. Click here.

You’ll be prompted to sign in to your FamilySearch account, or create one. If you don’t have an account, create one now.

Right now, the number of participants is doubling every few days.

Let’s take a look at how Relatives at RootsTech works and how it can benefit you.

Surnames

At first glance, the surname tool doesn’t look terribly exciting, but there’s a hidden gem, especially for newer genealogists.

I entered my surname and one other, knowing there is probably no common locations other than the US. Kvochick is very rare and unique.

The results show two interesting things. First, the genesis of the surname, and second, the total number of people in the FamilySearch tree in both of the common locations for both surnames.

Be sure to try variant spellings too.

After you sign in, you’ll be asked to update your profile which is how you join in on the fun. If you signed up for Relatives at RootsTech last year, that doesn’t count for this year. You need to opt-in for this year’s festivities.

RootsTech Relatives

After you sign in, you’ll see how many of your relatives have joined.

Of the 60,461 total who have joined, according to the FamilySearch tree, I’m related to about 15% of them. That sure gives new perspective to how many people we’re related to. And just think if those brick walls didn’t exist. We’d be related to just about everyone. Far enough back, we’re all related, literally.

Your Relatives at RootsTech are displayed in three ways.

By location, ancestor or family line.

Relatives by Location

Your first view will be by all locations (including people who did not select a location,) but displayed in closest to most distant relationship order. For me, that’s the most interesting part.

These people, my closest relatives, are the people most likely to have critical pieces of information that I don’t have or know about. Like family stories, or photos, for example.

I know one of these people, but not the rest. I’m dying to know who they are and how we are related.

For me, the map itself isn’t terribly useful, but it would be if some members of your family were from distinct locations.

Not everyone opts in to have their location displayed. The “173” in the center is the people who generically selected United States.

Relatives by Family Line

The Family Line display shows you the number of people by parent or grandparent. Unfortunately, you can only view 300 of your matches in each line, which is disappointing.

However, there’s a better way to view your relatives.

Relatives by Ancestor

For me, the best way to view relatives is by ancestor. This also circumvents the 300 limit to some extent, unless you have more than 300 relatives for any one ancestor.

I have two relatives who also descend from Curtis Benjamin Lore. It’s Jen and Jill again, my closest relatives.

I’m quite interested in these people, because Curtis is my great-grandfather and he was a very interesting man. I know Jen and Jill are interested in genealogy too, or they would not have signed up for RootsTech Relatives, this year, in the past few days. This is not a stale list.

I’ll be messaging them as soon as I’m finished with this article!!!

Please note that FamilySearch does not label half-relationships accurately.

Jen and Jill are my HALF second cousins twice removed, which will affect the expected amount of shared DNA. Their ancestors, Edith and Maude were half-sisters through their father, not full sisters. One of the reasons I’m so interested in communicating with Jen and Jill is because I’m not at all sure that those half-sisters knew each other existed.

Maintaining Contact

For each relative found, you can view your relationship, message them, or add them to your contact list. Be aware – your contact list “saves” this person, but it does not tell you how you’re related. That’s where either a Word document, with screen shots of how you’re related, or a spreadsheet where you can detail that information is important.

If you have messaged people in the past, those messages are still in your message box in the upper right-hand corner.

I generally provide my email address when I message relatives.

Displaying the Relationship

If you click on the “Relationship” button, you’ll see how FamilySearch believes you’re related to each match.

My relationship with an Acadian cousin, beginning with our common ancestor, is shown above. Grab a screen shot so you can remember. I drop them into a spreadsheet or Word document.

These matches are based on FamilySearch’s one world type of tree. I don’t have to tell you to be cautious because, like any tree, there are erroneous connections. This connection, at least on my side (left hand,) seems to be accurate. I don’t have Jeanne Chebrat’s second marriage to Jehan Piorier in my file, so I’ll need to check that out. Many times FamilySearch, WikiTree, Ancestry, or MyHeritage has connected documents or sources. In this case, here’s the WikiTree entry for Jeanne.

See, I’ve found something interesting already.

Search for People

On the toolbar, if you click on the right arrow, you’ll notice there’s one more option – Search.

If you think one your cousins might be attending, either virtually or in person, you can search by surname. I entered Estes out of curiosity.

This is quite interesting, because some other poor soul is also named Roberta Estes. You KNOW I’ll be messaging her. I’m pretty sure I know who this is, because we’ve been getting mixed up for years. Unless, of course there are actually three of us interested in genealogy.

However, where this Search option really shines is if you’re looking for males who descend from a particular line as candidates for Y-DNA testing.

Bingo!

I suggest doing this name search for each surname in your tree.

The Share Button is Critically Important

Sharing is the key to encouraging people to participate.

This button on the main page is how I generated the link for you to use to see if we’re related.

There’s a “Share” button in several locations. However, you’ll want to be sure you know exactly what you’re sharing. In some cases, it will be the surname comparison information or other information that you’re viewing. 

However, on the bottom of your Relatives pages, Share will generate a message link to/through several programs or apps so people can sign in to see if they are related to you.

You can also just copy the link and send it to someone in a text message or otherwise.

If you generate a message to share, you’ll see what will be posted, so you’ll know for sure exactly what you’re sharing. I wanted to post the link for my friends on Facebook to see if we are related, and that’s exactly what was generated.

If you follow the link to see if we are related, be sure to tell me, or anyone else whose link you follow.

Next, Connect with DNA

Relatives for RootsTech is a wonderful segway into DNA testing.

Remember, with the 300-relative limit, different searches will produce different results including people that won’t be included due to the 300 limit in other searches. Be creative and search in multiple ways. Add your relatives to your spreadsheet or Word document, then record whether they’ve DNA tested, at which vendor(s) and if you match there.

There are various ways to utilize Relatives at RootsTech for DNA.

  • Y-DNA candidates for the direct paternal line for males – The Search by surname can provide you with Y-DNA testing candidates. They may already have tested their Y-DNA with FamilyTreeDNA or their autosomal DNA with at least one vendor, so just message them and ask. Tell them which databases you’re in. Viewing Relatives by Ancestor can be very useful for this same purpose, especially if you have multiple unrelated lines with the same surname.
  • Mitochondrial DNA – the Relatives by Ancestor tool is very useful for locating mitochondrial DNA testing candidates, especially since you can easily see how they are descended from your common ancestor. Mitochondrial DNA is passed from women through all females to the current generation, which can be male or female. Any of your cousins, of either sex, are candidates so long as they descend from your target ancestor through all females.
  • DNA Pedigree Chart – If you’re building your own DNA Pedigree Chart with the Y-DNA and mitochondrial DNA of each ancestral line, consider offering a DNA testing scholarship to people who carry those lines that are missing in your DNA Pedigree Chart.
  • Testing Candidates – Anyone is a good candidate for autosomal testing. No second cousin or closer has ever not matched. Ask your cousins if they have tested and tell them which DNA databases you are in. Furthermore, suggest that they upload their DNA to FamilyTreeDNA and MyHeritage for free to utilize their tools and find matches that aren’t in the other databases. GEDmatch isn’t a testing company, but is another free database where you may find people who tested at Ancestry. Unfortunately, Ancestry does not provide segment information for matching or painting, so hopefully you’ll be able to find your Ancestry matches elsewhere.
  • Databases – Be sure you’re in all of the databases (Ancestry, 23andMe, FamilyTreeDNA, MyHeritage and GEDmatch) so you can be found and you can find your relatives.
  • DNAPainter – If you’re painting your segments at DNAPainter, you can paint your matching segments from 23andMe, FamilyTreeDNA, MyHeritage or GEDmatch. Ancestry is the only vendor that does not provide matching segment information for their customers.
  • DNA Search – If your cousin has used their actual name when registering at FamilySearch, sort by ancestor, then search your DNA matches at the various vendors for that cousin’s name. The beauty of Relatives at RootsTech is that the relationship is already sorted by ancestor, so that piece of the puzzle has already been assembled for you, which is exactly the opposite of most DNA matches. Of course, this does not preclude errors or connections through multiple ancestors.

Limited Time – March 31 is the End

If I had a FamilySearch genie and could get one wish, it would be that they would leave Relatives for RootsTech up and available until the next RootsTech. I need time to work on these relationships.

However, that’s not the case, and Relatives for RootsTech ends on March 31st.

Therefore, it’s important to begin building your spreadsheet, or however you’re going to record your relatives, NOW. Check your list often so none of those precious matches will roll off of your list and become unavailable. Access to the complete relative match list, meaning no 300 limit would be my second wish from the FamilySearch genie.

To preserve the ability to communicate with your relatives, message them now or at least add them to your contact list – WITH A NOTE IN YOUR SPREADSHEET AS TO HOW YOU’RE RELATED. Otherwise, that information will not be available after March 31st.

You’ll want to use the same spreadsheet from year to year, as some of the relatives signing up this year probably did last year too.

Ready, Set, Relatives at RootsTech

Have fun. Be sure to let me know if we’re related and how!!!

____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

ThruLines Suggests Potential Ancestors – How Accurate Are They?

I wanted to evaluate the accuracy of Ancestry’s ThruLines suggested Potential Ancestors when compared with a tree I know is accurate. I conducted an experiment where I created a small tree on Ancestry for a DNA tester that included only the first two generations, meaning grandparents and great-grandparents.

Click to enlarge any image.

This gave Ancestry enough data to work with and means that for the upstream ancestors, Ancestry’s ThruLines suggested specific people as ancestors.

How well did Ancestry do? Are the Potential Ancestors suggested by Ancestry accurate? How do they make those suggestions anyway? Are they useful?

I do have a second, completely separate, full tree connected to my other DNA test, and I do know who those ancestors are, or, in some cases, I know who they aren’t. I’ve had the privilege of working intensively on my genealogy for decades, so I can easily compare what is known and proven, or what has been disproven, to Ancestry’s suggested Potential Ancestors.

We’ll start with the great-grandparents’ generation, but first, let’s talk about how ThruLines works. I’ve previously written about ThruLines here and here.

How ThruLines Works

ThruLines is a tool for people who have taken an AncestryDNA test and who link themselves to their position on their tree. Linking is a critical step. If you don’t link the DNA test to the proper profile, the tester won’t have ThruLines. I provided step-by-step instructions, here.

I want to emphasize this again, ThruLines is a TOOL, not an answer. It may or may not be accurate and it’s entirely UP TO YOU to take that hint, run with it, and verify or disprove. Ancestry is providing you with a hint.

Essentially, the more ancestors that you provide to Ancestry, generally, the better they can do when suggesting additional Potential Ancestors. They do need something to work with. I wrote about that in the article Optimizing Your Tree at Ancestry for More Hints and DNA ThruLines.

If you don’t provide at least your parents and at least your grandparents in a tree, it’s unlikely that Ancestry will be able to provide Potential Ancestors for you.

I added two generations above the parents in this experiment in order to provide Ancestry with a significant “hook” to latch onto to connect with:

  • Other DNA testers who match the tester AND
  • Other people’s trees, whether the tree-owners have tested their DNA or not

So yes, to be clear, Ancestry DOES:

  • Use the trees of other people whose DNA you match AND have the same ancestors in their tree
  • Along with the trees of people you don’t match (or who haven’t DNA tested,) to propose ancestors for you

ThruLines only reaches back to ancestors within 7 generations, meaning the ancestor is the tester’s 5th great-grandparent or closer.

Most suggested Potential Ancestors in ThruLines have descendants who have tested and are DNA matches to you, but not necessarily all.

On your tree itself, the ThruLines “3 people” icon shows on the ancestors that have Thrulines.

Click to enlarge

Looking at this graphic of my tree, you can see that ThruLines ends at the 7th generation, but Potential Ancestors continue to be suggested beyond 7 generations. Note generation 9, below, which is beyond ThruLines but has Potential Ancestors suggested based entirely on other people’s trees.

ThruLines stops at 7 generations, but Potential Ancestor suggestions do not.

In the above example, in generation 7, Michael McDowell (1720-1755) is a known ancestor and has a ThruLine, but his wife is unknown. Ancestry has suggested a Potential Mother for Michael McDowell (1747-1840) who is also the spouse of Michael McDowell (1720-1755).

Here’s the ThruLines suggestion for Michael McDowell’s wife.

Ironically, there are no DNA matches for either Michael or Eleanor. However, there are DNA matches for their child who clearly descends from Michael. This may be an example of a situation where the other testers are beyond the 7th generation, so they don’t show as matches for our tester in Michael’s generation. The other possibility, of course, is a glitch in ThruLines.

(For those familiar with the Michael McDowell (1720-1755) lineage, Eleanor is his mother, not his wife. His wife is unknown, so this Potential Ancestor is incorrect.)

Potential Ancestors Without DNA Matches

A person may still be suggested as a Potential Ancestor even without any DNA matches.

I have seen situations where a parent has DNA matches to several ThruLine ancestors, but their child has the same suggested ancestor with zero DNA matches listed because the child and the match are one generation too far removed to be listed as a DNA match on ThruLines.

Yet, if you search the child’s match list for the individual listed as a DNA match to their parent through that ancestor, that match is also on the child’s match list.

In the chart that follows, you can see that ancestors in the midrange of generations have many DNA matches, but as you approach the 7th generation, the number of matches drops significantly, and some even have zero. That’s because both people of a match pair have to be within the generational boundary for ThruLines to list them as matches.

In some cases, the ancestor is not suggested for the child in ThruLines because the ancestor is the 6th great-grandparent of the child. If you look directly at the child’s tree, the Potential Ancestor may be suggested there.

Points to Remember

  • The difference between ThruLines and Potential Ancestors is that Potential Ancestors are still suggested beyond the hard 7 generation or 5 GG boundary for ThruLines.
  • ThruLines may suggest Potential Ancestors with or without DNA matches.
  • Potential Ancestors, either within or beyond ThruLines must connect to someone in your tree, or another Potential Ancestor or ancestors who connect to someone in your tree.

Incorrect Ancestors and Discrepancies

An incorrect ancestor can be listed in multiple people’s trees, and Ancestry will suggest that incorrect ancestor for you based on the associated trees. At one point, I did a survey of the number of people who had the incorrect Virginia wife listed for my ancestor, Abraham Estes, and the first 150 trees I viewed had the wrong wife. We have church record proof of her death in England before his children were born by his colonial Virginia wife. Garbage in, garbage out.

That doesn’t mean those trees aren’t useful. In some cases, the information “saved” to that person in those incorrect trees shows you exactly what is out there and can’t be correct. For example, if there is a death record and burial for someone, they can’t also be alive 50 years later in another location. Or someone born in 1780 can’t have been a Revolutionary War veteran. Sometimes you’ll discover same name confusion, or multiple people who have been conflated into one. Other times, you may actually find valid hints for your own ancestor misplaced in someone else’s tree. Always evaluate.

You “should” have the same number of matches to the man and woman of a couple if neither of them had descendants with another partner, but sometimes that doesn’t happen. I would presume that’s due to tree discrepancies among your matches or other trees on Ancestry.

If the same ancestor is listed with multiple name spellings or similar differences, I have no idea how Ancestry determines which version to present to you as a Potential Ancestor. That’s why ThruLines are hints. Ancestry does show you the various trees they utilized and allows you to peruse them for hints for that suggested ancestor.

Just click on the Evaluate button. Unfortunately, neither of these trees have any records for this ancestor.

If you click on the tree, you are then given the opportunity to add Eleanor (meaning the potential ancestor) to your tree from their tree.

I STRONGLY, STRONGLY suggest that you DO NOT do this. By adding information directly from other people’s trees, you’re introducing any errors from their tree into your tree as well.

If you click through to their tree, you’ll often find that they used someone else’s tree as their “source,” so misinformation propagates easily. Seeing “Ancestry Family Trees” as a source, especially in multiple records, provides you with an idea of the research style of that tree owner. This also conveys the message to less-experienced researchers that copy/pasting from other trees is a valid source.

Use this information provided as hints and do your own research and evaluation.

Where Do Potential Ancestors Come From?

Let’s view an example of an incorrect Potential Ancestor suggestion and proof-steps you can utilize to help validate or potentially disprove the suggestion.

We know that George Middleton Clarkston/Clarkson is NOT the father of James Lee Clarkson based on Y-DNA testing where the descendants of the two men not only don’t match, they have a completely different haplogroup. They do not share a common paternal ancestor. Furthermore, proven descendant groups of both men do not have autosomal DNA matches.

However, George Middleton Clarkson is suggested as a Potential Ancestor in ThruLines as the father of James Lee Clarkson.

Mousing over the ThruLines placard shows 98 DNA matches to other people who claim descent from George Middleton Clarkson. How is it possible to have 98 matches with descendants of George Middleton Clarkson, yet he’s not my ancestor?

Many people just see that “98,” which is a high number and think, “well, of course he’s my ancestor, otherwise, I wouldn’t match all those descendants.” It’s not that simple or straightforward though. It’s certainly possible to all be wrong together, especially if you’re dealing with long-held assumptions in the genealogy community and trees copies from other people’s trees for decades.

To view the ThruLine detail for George Middleton Clarkson, just click on the placard.

The ThruLine for George Middleton Clarkson has three attributed children with DNA matches. Let’s evaluate.

  • ThruLines Child 1 is my own James Lee Clarkson that has been erroneously attached to George Middleton Clarkson. However, the Y-DNA of the three various lines, above, does not match. That erroneous connection alone counts for 80 of those 98 matches. If all of those people who match me do descend from our common ancestor, James, those matches all make sense.

According to early histories, James Lee Clarkson was believed to be George’s son based on geographic proximity between the state of Franklin in eastern Tennessee and Russell County, Virginia, but then came DNA testing which said otherwise.

This DNA grouping from the Clarkson/Claxton DNA Project at FamilyTreeDNA shows that the men, above, which includes descendants of James Lee Claxton/Clarkson, all match each other.

  • ThruLines Child 2 is Thomas Clarkston who has 17 DNA matches through 7 of his children.

By clicking on the green evaluate button for Thomas, we see that two of the DNA related trees have records, but three do not.

The first tree is quite interesting for a number of reasons.

  1. Thomas Clarkson is found in Lee County, VA, in relatively close proximity to where James Lee Clarkson is first found in Russell County, VA as an adult in 1795.
  2. There is no actual documentation to connect Thomas Clarkson with George Middleton Clarkson who was hung in 1787 in the lost State of Franklin, Tennessee, now Washington and Greene Counties in Tennessee. It has been “accepted” for years that Thomas descends from George Middleton based on information reportedly passed down within that family long before the internet.

The Claxton/Clarkson DNA Project at FamilyTreeDNA shows the Thomas lineage. This lineage reaches back into England based on Y-DNA matches – a huge and important hint for the Thomas descendants that they won’t be able to obtain anyplace else.

Note that Thomas’s Y-DNA does not match that of James Lee Clarkson/Claxton which means these people must match me through a different line. That’s not surprising given that many of the families of this region intermarried for generations.

  • ThruLines Child 3 is David Claxton, who has one DNA match, so let’s look at that by clicking on the green evaluate button.

You’ll see that this ancestor through David Claxton was recommended based on:

  • One DNA match with a tree with 0 source records, and
  • Zero Ancestry member trees of people whose DNA I don’t match, or that haven’t DNA tested

Checking this tree shows no sources for the following generations either, so I have no way to evaluate the accurace of the tree.

However, I did track his descendants for a generation or so and found them in Wilson County, TN, which allowed me to find them in the Clarkson/Claxton Y DNA Project at FamilyTreeDNA.

In the Clarkson/Claxton DNA project, we see that this David Claxton of Wilson County, TN is in a third DNA group that does not match either the James Lee Claxton or the Thomas Claxton line.

Furthermore, look at the hints for the descendants of David Claxton based on the Y-DNA matches. This link appears to reach back to a Clayton in Kirkington, Yorkshire.

ThruLines Conflation

In this case, three men of similar or the same surnames were cobbled together as sons of George Middleton Clarkson where clearly, based on Y-DNA testing, those three men are not related to each other paternally and do not share a common paternal ancestor. They cannot all three be descendants of George Middleton Clarkson.

It’s amazing how much is missed and erroneously inferred by NOT testing Y-DNA. In very short order, we just proved that the ThruLine that connected all three of these men to George Middleton Clarkson as their ancestor is inaccurate.

In defense of Ancestry, they simply used user-submitted erroneous trees – but you have it within YOUR power to search further, and to utilize Y-DNA or mitochondrial DNA testing for additional clarification. This Clarkson/Claxton information was freely available, publicly, by just checking.

You can find surname or other projects at FamilyTreeDNA, by scrolling down, here, or simply google “<surname you seek> DNA Project.”

How Can These People All Match the Tester?

If we know that the male Claxton/Clarkson line is not the link between these matches, then why and how do these people all DNA match the tester? That’s a great question.

It’s possible that:

  • They match the tester through a different ancestor
  • There has been a genetic disconnect in the Claxton/Clarkson line and the match is through the mother, not the Claxton/Clarkson male
  • Some of the other testers’ genealogy is in error by including George Middleton Clarkson in their trees
  • People accept the George Middleton Clarkson suggestion, adding him to their tree, propagating erroneous information
  • The descendants of James Lee Clarkson/Claxton match because he is their common ancestor, but connecting him to George Middleton Clarkson is erroneous
  • The 15 cM match (and potentially others) is identical by chance
  • The Y-DNA disproved this possibility in this case. In other cases, the matches could have been from the same biological Clarkson/Claxton line, but the testers have their ancestor incorrectly attached to George Middleton Clarkson/Claxton. In this case, we can’t say which of David Claxton, James Lee Claxton and/or Thomas Claxton are or are not individually erroneously connected to George Middleton Clarkson, but we know for a fact that David’s, James’ and Thomas’s descendant’s Y-DNA does not match each other, so they can’t all three be descendants of George Middleton Clarkston. Furthermore, there is no solid evidence that ANY of these three men are his descendant. We know that these three men do not share a common direct paternal ancestor.

I recommend for every male line that you check the relevant Y-DNA project at FamilyTreeDNA and see if the information there confirms or conflicts with a suggested ancestor, or if a descendant hasn’t yet tested. I also STRONGLY recommend that a male in the relevant surname line that carries that surname be asked to test in order to verify the lineage.

ThruLine Ranking

I’m going to rank Ancestry’s suggested Potential Ancestors by awarding points for accuracy on their Potential Ancestor ThruLines suggestions and subtracting points for incorrect Potential Ancestor suggestions. This chart is at the end with links to my 52 Ancestor’s articles for those ancestors.

OK, let’s take a look, beginning with the great-grandparent generation.

Great-Grandparents

I entered all of these ancestors and they are connected to their children, the tester’s grandparents. They are not connected to their parents for purposes of this article, although I do know who the parents are, so let’s see how Ancestry does making Potential Ancestor suggestions through ThruLines.

Ancestors (above example) that are NOT framed by a dotted line and who are NOT labeled as a “Potential Ancestor” have been connected in their tree by the DNA tester, meaning you.

The next generations, below, are all framed by dotted lines, meaning they are Potential Ancestor suggestions provided by Ancestry. Potential Ancestors are always clearly marked with the green bar.

Eight 2nd Great Grandparents

In this generation, because I have not connected them, Ancestry has suggested Potential Ancestors for all sixteen 2X Great-Grandparents.

I’ve provided gold stars for the correct ancestor information meaning both the name and the birth and death date within a year or a decade when they died between census years.

Of these 16, three are completely accurate and the rest were at least partially accurate.

I repeated this process for each one of the suggested Potential Ancestors in the 3rd, 4th and 5th great grandparent categories as well, completing a ranking chart as I went.

Ranking Chart

I’ve ranked Ancestry’s accuracy in their Potential Ancestor recommendations.

  • +2 points means the name AND birth and death years are accurate within a year or decade if they died within a census boundary
  • +1 point means that EITHER the name OR the birth and death dates are (mostly) accurate, but not both
  • 0 means uncertain, so neither positive or negative
  • -1 point means that NEITHER the name NOR birth and death dates are accurate but it’s clear that this is meant to be the correct person. In other words, with some work, this hint could point you in the right direction, but in and of itself, it is inaccurate.
  • -2 means that the person suggested is the wrong person

I’ve been generous where there was some question. I’ve linked these ancestors where I’ve written their 52 Ancestors stories. [LNU] means last name unknown. It’s worth noting that one of the trees Ancestry has available to utilize for Potential Ancestors is my own accurate tree with many source documents for my ancestors.

# Generation Ancestry Name & Birth/Death Years Correct Name & Birth/Death Years # Matches Points Awarded Y or mtDNA Confirmed
1 2nd GGP John R. Estes 1788-1885 John. R. Estes 1787-1885 110 2 Yes
2 2nd GGP Nancy Ann Moore 1789-1865 Ann Moore or Nancy Ann Moore c1785-1860/1870 112 1 Need mtDNA through all females
3 2nd GGP Lazarus Dotson 1785-1861 Lazarus Dodson 1795-1861 46 -1 Yes
4 2nd GGP Elizabeth Campbell 1802-1842 Elizabeth Campbell c 1802-1827/1830 46 1 Yes
5 2nd GGP Elijah R. Vannoy 1782-1850 Elijah Vannoy 1784-1850s 82 -1 Yes
6 2nd GGP Rebecca Lois McNeil 1781-1839 Lois McNiel c1786-c1830s 81 -1 Yes
7 2nd GGP William Crumley ?-1859 William Crumley 1788-1859 97 1 Yes
8 2nd GGP Lydia Brown Crumley 1796-1847 Lydia Brown c1781-1830/1840 112 -1 Yes
9 2nd GGP Henry Bolton 1741-1846 Henry Frederick Bolton 1762-1846 152 -1 Yes
10 2nd GGP Nancy Mann 1777-1841 Nancy Mann c1780-1841 134 1 Yes
11 2nd GGP William Herrel 1803-1859 William Harrell/Herrell c1790-1859 31 1 Yes
12 2nd GGP Mary McDowell 1785-1871 Mary McDowell 1785-after 1872 45 2 Yes
13 2nd GGP Fairwick Clarkson 1800-1874 Fairwix/Fairwick Clarkson/Claxton 1799/1800-1874 82 2 Yes
14 2nd GGP Agnes Sander Muncy 1803-1880 Agnes Muncy 1803-after 1880 106 1 Yes
15 2nd GGP Thomas Charles Speak 1805-1843 Charles Speak 1804/1805-1840/1850 60 1 Yes
16 2nd GGP Ann McKee 1805-1860 Ann McKee 1804/1805-1840/1850 60 1 Yes
17 3rd GGP George M. Estes 1763-1859 George Estes 1763-1859 76 1 Yes
18 3rd GGP Mary C. Younger 1766-1850 Mary Younger c1766-1820/1830 75 -1 Yes
19 3rd GGP William Moore 1756-1810 William Moore 1750-1826 72 1 Yes
20 3rd GGP Susannah Harwell 1748-1795 Lucy [LNU] 1754-1832 69 -2 Need Lucy’s mtDNA through all females
21 3rd GGP Lazarous Dotson 1760-1826 Lazarus Dodson 1760-1826 42 1 Yes
22 3rd GGP Janet Jane Campbell 1762-1826 Jane [LNU] c1760-1830/1840 38 -2 Need mtDNA through all females
23 3rd GGP John Campbell 1772-1836 John Campbell c1772-1838 65 1 Yes
24 3rd GGP Jane Dobkins 1780-1860 Jane Dobkins c1780-c1860 22 2 Yes
25 3rd GGP Francis Vanoy/Vannoy 1746-1822 Daniel Vannoy 1752-after 1794 76 -2 Yes
26 3rd GGP Millicent “Millie” Henderson 1755-1822 Sarah Hickerson 1752/1760-before 1820 76 -2 Need mtDNA through all females
27 3rd GGP William McNeil/McNeal 1760-1830 William McNiel c1760-c1817 116 1 Yes
28 3rd GGP Elizabeth Shepherd McNeil 1766-1820 Elizabeth Shepherd 1766-1830/1840 115 -1 Yes
29 3rd GGP William Crumley 1767-1837 William Crumley c1767-c1839 59 1 Yes
30 3rd GGP Hannah Hanner “Hammer” 1770-1814 unknown 60 -2 Have her mtDNA
31 3rd GGP Jotham Sylvanis Brown 1765-1859 Jotham Brown c1740-c1799 100 -2 Yes
32 3rd GGP Ruth Johnston Brown Phoebe Cole 1747-1802 97 -2 Incorrect person but have correct mtDNA
33 3rd GGP Henry Bolton 1720-1757 Henry Bolton 1729-1765 88 1 Yes
34 3rd GGP Sarah Corry 1729-1797 Sarah Corry 1729-1797 80 2 Need mtDNA through all females
35 3rd GGP Robert James Mann 1753-1801 James Mann 1745-? 77 -1 Need Y-DNA
36 3rd GGP Mary Jane Wilson 1760-1801 Mary Brittain Cantrell c1755-? 80 -2 Incorrect but have correct mtDNA
37 3rd GGP John Herrell 1761-1829 John Harrold c1750-1825 19 -1 Yes
38 3rd GGP Hallie Mary [LNU] c1750-1826 18 -2 Need mtDNA through all females
39 3rd GGP Michael McDowell-McDaniel 1737-1834 Michael McDowell c17471840 25 -2 Yes
40 3rd GGP Sarah Isabel “Liza” Hall Isabel [LNU] c1753-1840/1850 27 -2 Need mtDNA through all females
41 3rd GGP James Lee Clarkson 1775-1815 James Lee Clarkson c1775-1815 170 2 Yes
42 3rd GGP Sarah Helloms Cook 1775-1863 Sarah Cook 1775-1863 188 1 Yes
43 3rd GGP Samuel Munsey-Muncy 1767-1830 Samuel Muncy after 1755-before 1820 108 1 Yes
44 3rd GGP Anne W. Workman 1768-1830 Anne Nancy Workman 1760/1761-after 1860 107 -1 Yes
45 3rd GGP Rev. Nicholas Speak 1782-1852 Nicholas Speak/Speaks 1782-1852 93 2 Yes
46 3rd GGP Sarah Faires Speak 1782-1865 Sarah Faires 1786-1865 93 -1 Yes
47 3rd GGP Andrew McKee 1760-1814 Andrew McKee c1760-1814 86 2 Yes
48 3rd GGP Elizabeth 1765-1839 Elizabeth [LNU] c1767-1838 88 2 Yes
49 4th GGP Moses Estes 1742-1815 Moses Estes c1742-1813 27 1 Yes
50 4th GGP Luremia Susannah Combes 1747-1815 Luremia Combs c1740-c1820 33 -1 Need mtDNA through all females
51 4th GGP Marcus Younger 1735-1816 Marcus Younger 1730/1740-1816 30 2 Yes
52 4th GGP Susanna Hart* 1725-1806 Susanna [possibly] Hart c1740-before 1805 26 -1 Yes
53 4th GGP William Moore 1725-1757 James Moore c1718-c1798 25 -2 Yes
54 4th GGP Margaret Hudspeth 1725-1808 Mary Rice c1723-c1778/1781 26 -2 Need Mary Rice mtDNA through all females
55 4th GGP Samuel “Little Sam” Harwell 1716-1793 Incorrect 36 -2
56 4th GGP Abigail Anne Jackson 1712-1793 Incorrect 33 -2
57 4th GGP Rawleigh “Rolly” Dodson 1730-1793 Raleigh Dodson 1730-c1794 19 2 Yes
58 4th GGP Elizabeth Mary Booth 1728-1793 Mary [LNU] c1730-1807/1808 27 -2 Need Mary’s mtDNA through all females
59 4th GGP Nancy Ann Steele 1728-1836 Unknown mother of Jane [LNU], wife of Lazarus Dodson 16 -2 Need Jane’s mtDNA through all females
60 4th GGP James Campbell 1742-1931 Charles Campbell c1750-c1825 28 -2 Y DNA confirmed NOT this line
61 4th GGP Letitia Allison 1759-1844 Incorrect 31 -2
62 4th GGP Jacob Dobkins 1750-1833 Jacob Dobkins 1751-1835 91 1 Yes
63 4th GGP Dorcas (Darcas) Johnson 1750-1831 Darcus Johnson c1750-c1835 92 2 Yes
64 4th GGP John Francis Vannoy 1719-1778 John Francis Vannoy 1719-1778 47 2 Yes
65 4th GGP Susannah Baker Anderson 1720-1816 Susannah Anderson c1721-c1816 59 2 Need mtDNA through all females
66 4th GGP Thomas Hildreth Henderson 1736-1806 Charles Hickerson c1725-before 1793 37 -2 Have Hickerson Y-DNA
67 4th GGP Mary Frances “Frankie” McIntire 1735-1811 Mary Lytle c1730-before 1794 37 -2 Need mtDNA from all females
68 4th GGP Rev. George W. McNeil 1720-1805 George McNiel c1720-1805 143 1 Yes
69 4th GGP Mary Sarah Coates 1732-1782 Sarah/Sallie or Mary [maybe] Coates c1740-1782/1787 139 1 Need mtDNA through all females
70 4th GGP John James Sheppard Shepherd 1734-1810 Robert Shepherd 1739-1817 136 -2 Have Shepherd Y-DNA
71 4th GGP Sarah Ann Rash 1732-1810 Sarah Rash 1748-1829 178 -1 Yes
72 4th GGP John Crumbley 1737-1794 William Crumley 1736-1793 77 -2 Have Crumley Y-DNA
73 4th GGP Hannah Mercer 1742-1774 Hannah Mercer c1740-c1773 73 2 Yes
74 4th GGP John Hanner (Hainer) Incorrect 19 -2
75 4th GGP Jotham Brown 1740-1799 Incorrect 183 -2 Have Brown Y-DNA
76 4th GGP Phoebe Ellen Johnston 1742-1810 Incorrect 182 -2
77 4th GGP Moses Johnston 1746-1828 Incorrect 45 -2
78 4th GGP Eleanor Havis 1753-1837 Incorrect 47 -2
79 4th GGP Henry Boulton 1693-1737 John Bolton before 1693-after 1729 23 -2 Have Bolton Y-DNA
80 4th GGP Elizabeth Bryan 1658-1742 Elizabeth Goaring 1795-1729 22 -2 Need mtDNA through all females
81 4th GGP Thomas Curry (Corry) 1705-1729 Thomas Curry 1705-1729 25 2 Need Curry Y-DNA
82 4th GGP Monique “Moniky” Curry 1704-1729 Monique Demazares 1705-1729 25 1 Need mtDNA through all females
83 4th GGP Robert James Mann 1740-1787 John Mann 1725-1774 26 -2 Need Mann Y-DNA
84 4th GGP Sarah Susannah McCloskey 1716-1797 Frances Carpenter 1728-1833 28 -2 Need mtDNA through all females
85 4th GGP Benjamin “Col. Ben” Colonel Wilson 1733-1814 Incorrect 28 -2
86 4th GGP Mary Ann Seay 1735-1814 Incorrect 29 -2
87 4th GGP John Hugh McDowell 1695-1742 Michael McDowell c1720-after 1755 7 -2 Incorrect but have correct Y-DNA McDowell Y-DNA
88 4th GGP Mary Magdalena Woods 1705-1800 Incorrect 8 -2
89 4th GGP Ebenezer Hall 1721-1801 Incorrect 6 -2
90 4th GGP Dorcas Abbott Hall 1728-1797 Incorrect 6 -2
91 4th GGP George Middleton Clarkston/Clarkson 1745-1787 Incorrect 98 -2 Incorrect but have correct Clarkson Y-DNA
92 4th GGP Catherine Middleton 1764-1855 Incorrect 94 -2
93 4th GGP William Henry Cook 1750-1920 Joel Cook before 1755 – ? 83 -2 Need Cook Y-DNA
94 4th GGP Elizabeth Wall 1747-1826 Alcy [LNU] c 1755-? 91 -2 Yes
95 4th GGP Obediah Samuel Muncy 1735-1806 Samuel Muncy 1740-1799 33 -1 Yes
96 4th GGP UFN Obediah Muncy wife Unknowen (sic) 1728-1843 Agnes Craven 1745-1811 27 -2 Need Agnes Craven Need mtDNA through all females
97 4th GGP Joseph Workman 1732-1813 Joseph Workman c1736-c1813 64 2 Yes
98 4th GGP Phoebe McRay McMahon 1745-1826 Phoebe McMahon c1741-after 1815 64 1 Yes
99 4th GGP Charles Beckworth Speake/Speaks 1741-1794 Charles Speake c1731-1794 47 1 Yes
100 4th GGP Jane Connor 1742-1789 Incorrect, unknown first wife 40 -2 Need mtDNA through all females
101 4th GGP Gideon Farris 1748-1818 Gideon Faires before 1749-1821 54 -1 Yes
102 4th GGP Sarah Elizabeth McSpadden 1745-1821 Sarah McSpadden c1745-c1820 55 1 Yes
103 4th GGP Hugh McKee 1720-1795 Unknown 34 -2
104 4th GGP Mary Nesbit 1732-1795 Unknown 35 -2
105 4th GGP Private (sic) Unknown father of Elizabeth, wife of Andrew McKee 35 -2
106 4th GGP Anna Elizabeth Carney [wife of “private”] Incorrect 35 -2
107 5th GGP Moses Estes 1711-1788 Moses Estes 1711-1787 13 2 Yes
108 5th GGP Elizabeth Jones “Betty” Webb 1718-1782 Elizabeth [LNU] 1715/1720-1772/1782 5 -2 No known daughters
109 5th GGP George W. Combs 1714-1798 John Combs 1705-1762 6 -2 Need Combs Y-DNA
110 5th GGP Phebe Wade ?-1830 Incorrect 6 -2 Need mtDNA of John Combs first wife through all females
111 5th GGP Sarah Ferguson 1700-1781 Incorrect 3 -2
112 5th GGP Anthony Hart 1700-? Possibly Anthony Hart but no evidence 3 0
113 5th GGP Charles Rev. Moore 1685-1734 Incorrect 4 -2
114 5th GGP Mary Margaret Barry Moore 1690-1748 Incorrect 4 -2
115 5th GGP Ralph Hudspeth II* 1690-1776 Incorrect 9 -2
116 5th GGP Mary Carter 1699-1737 Incorrect 3 -2
117 5th GGP Samuel Harwell 1674-1767 Incorrect 3 -2
118 5th GGP Mary Ann Coleman*8th Ggm (sic) 1678-1723 incorrect 6 -2
119 5th GGP Ambrose (Sar) Jackson 1695-1745 Incorrect 6 -2
120 5th GGP Anne Amy Wyche 1692-1765 Incorrect 6 -2
121 5th GGP George E Dodson (DNA) (sic) 1702-1770 George Dodson 1702-after 1756 23 -1 Yes
122 5th GGP Margaret Dogett Dagord 1708-1770 Margaret Dagord 1708-? 24 1 Need mtDNA through all females
123 5th GGP James Booth 1700-1741 Incorrect 4 -2
124 5th GGP Frances Dale Booth (15great aunt) (sic) 1688-1777 Incorrect 3 -2
125 5th GGP Samuel Scurlock Steele 1709-1790 Incorrect 2 -2
126 5th GGP Robert R. Campbell 1718-1810 Incorrect 34 -2
127 5th GGP Lady: Letitia Crockett 1719-1760 Incorrect 8 -2
128 5th GGP John A. Dobkins 1717-1783 John Dobkins c1710-c1788 20 1 Yes
129 5th GGP Mary Elizabeth Betty Moore 1739-1815 Elizabeth [LNU] c1711-? 20 -2 Need mtDNA through all females
130 5th GGP Peter Johnson 1715-1796 Peter Johnson/Johnston c1720-c1794 0 1 Yes
131 5th GGP Mary Polly Phillips 1729-1790 Mary Polly Phillips c1726-? 1 2 Need mtDNA through all females
132 5th GGP Francis Janzen Vannoy Van Noy 1688-1774 Francis Vannoy 1688-1774 8 1 Yes
133 5th GGP Rebecca Anna Catherine Anderson 1698-1785 Rebecca Annahh Andriesen/ Anderson 1697-1727 13 -1 Need mtDNA through all females
134 5th GGP Cornelius Anderson (Andriessen) 1670-1724 Kornelis Andriesen 1670-1724 5 2 Yes
135 5th GGP Annetje Annah Opdyck 1670-1746 Annetje Opdyck c1675-after 1746 5 2 Need mtDNA through all females
136 5th GGP Thomas Hildret Henderson 1715-1794 Incorrect

 

3 -2
137 5th GGP Mary Frisby 1709-1794 Incorrect 3 -2
138 5th GGP Alexander (Alex) McEntire 1707-1802 Incorrect 12 -2
139 5th GGP Hannah Janet McPherson 1711-1792 Incorrect 15 -2
140 5th GGP Thomas James McNeil 1699-1803 Incorrect 25 -2
141 5th GGP Mary Hannah Parsons 1697-1784 Incorrect 27 -2
142 5th GGP John Coates 1699-1732 Incorrect 21 -2
143 5th GGP Sarah Ann Titcombe 1710-1732 Incorrect 22 -2
144 5th GGP George Sheppard, Shepherd 1716-1751 George Shepherd c1700-1751 42 1 Have Shepherd Y-DNA
145 5th GGP Elizabeth Mary Angelicke Day (Daye) 1699-? Elizabeth Mary Angelica Daye 1699-after 1750 41 1 Need mtDNA through all females
146 5th GGP Joseph Rash 1722-1776 Joseph Rash before 1728-c1767 36 1 Yes
147 5th GGP Mary Warren 1726-1792 Mary Warren 1726-? 36 1 Yes
148 5th GGP James L Crumley/Cromley 1712-1784 James Crumley c1711-1764 11 -1 Yes
149 5th GGP Catherine Bowen Gilkey 1712-1784 Catherine [LNU] c1712-c1790 11 -1 Need mtDNA through all females
150 5th GGP Edward Willis Mercer 1704-1763 Edward Mercer 1704-1763 5 1 Yes
151 5th GGP Ann Lueretias Coats 1710-1763 Ann [LNU] 1699/1705-c1786/1790 5 -2 Need mtDNA through all females
152 5th GGP Daniel Brown 1710-1798 Incorrect 39 -2
153 5th GGP Mary Brown 1717-1777 Incorrect 40 -2
154 5th GGP Zopher “Elder” Johnson/Johnston* 1700-1804 Incorrect 51 -2
155 5th GGP Elizabeth Williamson Cooper 1703-1794 Incorrect 49 -2
156 5th GGP Joseph Benjamin Johnson (6th ggf) (sic) 1709-1795 Incorrect 3 -2
157 5th GGP Elizabeth Shepard 1709-1786 Incorrect 3 -2
158 5th GGP John (Boulware) Havis (Rev/war) (sic) 1728-1807 Incorrect 4 -2
159 5th GGP Susannah Gentile Boullier (Boulware) 1733-1817 Incorrect 3 -2
160 5th GGP Henry Boulton Jr. 1652-1720 Incorrect 22 -2
161 5th GGP Elizabeth Bryan 1658-1742 Incorrect, linked in two generations Duplicate not processing -2
162 5th GGP Norton Bryan 1634-1672 Incorrect 2 -2
163 5th GGP Elizabeth Middlemore 1640-1658 Incorrect 2 -2
164 5th GGP Guillam Demazure 1685-1706 Guillam Demazares before 1685-after 1705 2 2 Need Y-DNA
165 5th GGP Marie Demazure 1686-1705 Marie [LNU] before 1686-after 1705 2 1 Need mtDNA through all females
166 5th GGP John Robert Mann {Minnis} 1711-1772 Incorrect 3 -2
167 5th GGP Anne Vincent 1711-1747 Incorrect 3 -2
168 5th GGP Joseph David McCluskey 1693-1756 Incorrect 3 -2
169 5th GGP Barbara S Rohlflag 1695-1755 Incorrect 3 -2
170 5th GGP Willis Wilson, Jr. 1710-1794 Incorrect 4 -2
171 5th GGP Elizabeth Goodrich ?-1789 Incorrect 4 -2
172 5th GGP Reverend James Matthew Seay 1696-1757 Incorrect 7 -2
173 5th GGP Elizabeth (James M Seay) Wilson or Lewis 1696-1752 Incorrect 6 -2
174 5th GGP Ephriam Samuel McDowell 1673-1774 Murtough McDowell before 1700-1752 0 -2 Yes
175 5th GGP Margaret Elizabeth Irvine 1674-1728 Eleanor [LNU] before 1700-after 1730 1 -2 Need mtDNA through all females
176 5th GGP Michael Marion Woods 1684-1782 Incorrect 9 -2
177 5th GGP Mary Catherine Woods 1690-1742 Incorrect 9 -2
178 5th GGP Joseph Hall 1680-1750 Incorrect 0 -2
179 5th GGP Sarah Kimball Hall Haley 1686-1752 Incorrect 0 -2
180 5th GGP Edward Abbott 1702-759 Incorrect 0 -2
181 5th GGP Dorcas Mehitable Chandler 1704-1748 Incorrect 0 -2
182 5th GGP James Anderson Clarkston 1717-1816 Incorrect 17 -2
183 5th GGP Thomasina Elizabeth Middleton 1720-1796 Incorrect 17 -2
184 5th GGP Harlace Middleton Incorrect 5 -2
185 5th GGP Capt. Vallentine Felty Kuke Cook 1730-1797 Incorrect 25 -2
186 5th GGP Michael Wall 1728-1749 Incorrect 11 -2
187 5th GGP Rebecca Chapman 1725-1791 Incorrect 11 -2
188 5th GGP Samuel Scott Muncy 1712-1786 Samuel Muncy 1712-after 1798 50 -1 Yes
189 5th GGP Mary Daughtery Skidmore 1710-1797 Mary Skidmore c1710-1811 51 -1 Need mtDNA through all females
190 5th GGP Abraham Woertman Workman 1709-1749 Abraham Workman 1709-1813 26 1 Yes
191 5th GGP Hannah Annetje (Smith) Workman 1706-1747 Annetie Smith 1714-? 26 1 Need mtDNA through all females
192 5th GGP Hugh McMahon 1699-1749 Hugh McMahon 1699-1749 17 2 Need Y-DNA
193 5th GGP Agnas Norton 1699-1747 Agnas Norton after 1700-? 17 2 Need mtDNA through all females
194 5th GGP Thomas Bowling Speake V 1698-1765 Thomas Speak c1634-1681 11 -2 Yes
195 5th GGP Jane Barton/Brisco Smoote 1714-1760 Elizabeth Bowling 1641-before 1692 12 -2 No known daughters
196 5th GGP William Farris 1714-1776 William Faires/Farris before 1728-1776 11 1 Yes
197 5th GGP Deborah Johnson Faries 1734-1812 Deborah [LNU] 1734-1812 11 1 Need mtDNA through all females
198 5th GGP Thomas of Borden’s Grant McSpadden 1720-1765 Thomas McSpadden c1721-1785 19 1 Yes
199 5th GGP Mary Dorothy Edmondson (Edmundson, Edmiston, Edmisten) 1721-1786 Dorothy [possibly Edmiston] 1721-? 28 1 Yes
200 5th GGP Thomas Alexander McKee, Sr 1693-1769 Incorrect 7 -2
201 5th GGP Tecumseh Margaret Opessa Pekowi 1695-1780 Incorrect 6 -2
202 5th GGP Thomas F Nesbit 1707-1783 Incorrect 7 -2
203 5th GGP Jean McKee 1707-1790 Incorrect 7 -2
Total -163

Please note that I will provide a free Y-DNA testing scholarship at FamilyTreeDNA for any male descending through all men from the male ancestor where it’s noted that Y-DNA is needed. Y-DNA is typically the surname line in most western countries.

I will also provide a mitochondrial DNA testing scholarship at FamilyTreeDNA for anyone who descends from the women where it’s noted that mitochondrial DNA is needed. Mitochondrial DNA passes through all females to the current generation, which can be male or female.

If this is you or a family member, please reach out to me.

The Scores

Of the 203 ancestors for which Ancestry provided a Potential Ancestor, they could have amassed a total of 406 points if each one provided an accurate name and accurate birth and death dates within a reasonable margin. If they were completely wrong on every one, they could have earned a negative score of -406.

Ancestry’s ThruLine accuracy score was -163, meaning they were wrong more than right. Zero was the break-even point where there was equally as much accurate information as inaccurate.

In fairness though, the older ancestors are more likely to be wrong than the more recent ones, and there are more older ancestors given that ancestors double in each generation. Once Ancestry provided a wrong ancestor, they continued down that wrong path on up the tree, so once the path was incorrect, it never recovered.

Regardless of why, Ancestry suggested incorrect information, and as we know, many people take that information to heart as gospel. In fact, many people even call these *TrueLines* instead of *ThruLines*.

Ok, how did Ancestry do?

Category Total Percent
+2 – Both Name and Date Accurate or Within Range 24 11.82%
+1 – Name and/or Date Partly Accurate 41 20.2%
0 – Uncertain 1 0.49%
-1 – Neither Name nor Date Accurate, but Enough Context to Figure Out With Research 22 10.84%
-2 – Inaccurate, the wrong person 115 56.65%

 Take Aways – Lessons Learned

This leads us to the lessons learned portion.

  • Never, ever, take ThruLines or Potential Ancestors at face value. They are hints and nothing more. Ancestry states that “ThruLines uses Ancestry trees to suggest how you may be related to your DNA matches through common ancestors.” (Bolding is mine.)
  • Verify everything.
  • Never simply copy something from another tree or accept a hint of any kind without a thorough evaluation. No, your ancestor probably did not zigzag back and forth across the country every other year in the 1800s. If you think they did, then you’ll need lots of information to prove that unusual circumstance. Extraordinary circumstances require extraordinary proof.
  • Never add extraneous “things” to names like “DNA match” or name someone “Private,” unless, of course, that was actually their name. Extraneous “pieces” in names confuses Ancestry’s search routines too, so you’re hurting your own chances of finding relevant information about your ancestor, not to mention ThruLines for others.
  • Naming someone “Private” isn’t useful if they are attached to other non-private people as ancestors, siblings and descendants. Just sayin…
  • Once the first incorrect ancestor is suggested, ThruLines continues to go up the incorrect tree.
  • In the the older or oldest generations, a small number of DNA matches for a particular ancestor may simply mean that lots of people are beyond the ThruLines match reporting thresholds. Unfortunately, Ancestry does NOT have a function where you can hunt for matches by ancestor.
  • In the the older or oldest generations, a small number of DNA matches may also mean it’s either the wrong ancestor, or they have few descendants, or few have tested.
  • The number of matches, in either direction, is not directly predictive of the accuracy of the suggested ancestor.
  • One of the best ways to validate ancestor accuracy is to match other descendants through multiple children of the ancestor, assuming that the children have been assigned to that ancestor properly. Recall George Middleton Clarkson where the three male children assigned to him do not have the same Y-DNA.
  • Another validation technique is to also match descendants of both parents of the ancestor(s) in question, through multiple children.
  • Remember that paper trail documentation is an extremely important aspect of genealogy.
  • Do not rely on trees without sources, or on trees with sources without verifying that every source is actually referencing this specific person.
  • Same name confusion is a very real issue.
  • For male ancestors, always check the Y-DNA projects at FamilyTreeDNA to verify that males attached as children have descendants with matching Y-DNA.
  • Always test males for their surname line. You never know when you’ll either prove or disprove a long-held belief, or discover that someplace, there has been a biological break in that line.
  • Y-DNA matches can provide extremely valuable information on earlier ancestral lines which may lead to breaking through your brick wall.
  • Mitochondrial DNA testing and matching of descendants is sometimes the only way of proving maternity or discovering matches to earlier ancestors.
  • Both Y-DNA and mitochondrial DNA, via haplogroups, can provide origins information for that one specific line, meaning you don’t have to try to figure out which ancestor contributed some percentage of ethnicity or population-based DNA.
  • Everyone can test their mitochondrial DNA, inherited from their direct matrilineal line, and men can test their Y-DNA, which is their surname line.
  • Remember that ThruLines can only be as good as the trees upon which it relies.
  • Review the source trees for each Potential Ancestor provided, evaluating each source carefully, including notes, images and web links. You just never know where that diamond is hiding.

How Can Ancestry Improve ThruLines, Potential Ancestors and Provide Customers with Better Tools?

To improve ThruLines and/or Potential Ancestors, Ancestry could:

  • My #1 request would be to implement a “search by ancestor” feature for DNA matches. This would be especially beneficial for situations where matches are beyond the 5GG threshold, or if someone is testing a hypothesis to see if they match descendants of a particular person.
  • Provide a “dismiss” function, or even a function where a customer could provide a reason why they don’t believe a connection or suggestion is accurate. This could travel with that link for other users as well so people can benefit from commentary from and collaboration with others.
  • Provide all DNA matches to people who share a specific ancestor, even if one person is beyond the 5 GG level. Currently, if both people are beyond that threshold, the match won’t show for either, so that’s no problem. The hybrid way it works today is both confusing and misleading and the hard cutoff obfuscates matches that have the potential to be extremely useful. Often this is further exacerbated by the 20 cM thresold limit on shared matches.
  • Add a feature similar to the now defunct NADs (New Ancestor Discoveries) where Ancestry shows you a group of your matches that descend from common ancestors, but those ancestors are NOT connected to anyone in your tree. However, DO NOT name the tool New Ancestor Discoveries because these people may not be, and often are not, your ancestors. If you’re related to a group of people who all have these people in THEIR tree as ancestors, that alone is a powerful hint. You might be descended from their ancestors, from the spouse of one of their children – something. But it’s information to work with when you have brick walls where Ancestry cannot connect someone as a potential ancestor directly to someone in your tree. Even locations of those brick-wall-breaker possible ancestors would be a clue. In fact, it’s not terribly different than the Potential Ancestors today, except today’s Potential Ancestors are entirely tree based (beyond ThruLines) and dependent upon connecting with someone in your tree. These new Brick-Wall-Breaker Potential Ancestors are (1.) NOT connected to your tree, and (2.) are all a result of DNA matches with people who have these ancestors in their tree.
  • If you already map your segment information at DNAPainter, the Brick-Wall-Breaker ancestral lineage connection would be immediately evident if Ancestry provided DNA segment location information. In other words, there are answers and significant hints that could be available to Ancestry’s customers.
  • Extend ThruLines for (at least) another two generations. Today ThruLines ends at the point that many people begin running into brick walls about the time the US census began. Using a 25-year generation, the current algorithm gives you 175 years (about 1825 starting with the year 2000), and a 30-year generation gives you 210 years (about 1790). Extending that two additional generations would give testers two more generations, several more Potential Ancestors, and 50-60 more years, approaching or reaching across the US colonial threshold.
  • Extending ThruLines and adding that Brick-Wall-Breaker functionality wouldn’t be nearly as important if customers could search by ancestor and download their match with direct ancestor information, similar to the other vendors, but since we can’t, we’re completely reliant on ThruLines and Potential Ancestors for automated connections by ancestor. Downloading your match list including a list of each person’s direct ancestors and matching segments would provide resources for many of these customer needs, without Ancestry having to do significant major development. If nothing else, it could be an interim stepping-stone.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Project Administrators: How to Prepare Your Project for FamilyTreeDNA’s New Group Time Tree

Last week, FamilyTreeDNA  gave us a sneak peek into their new Group Time Tree that displays Big Y testers in time tree format within group projects that they have joined. I wrote about this in the article, Sneak Preview: Introducing the FamilyTreeDNA Group Time Tree.

The Group Time Tree is an excellent way to recruit new members, because people can see how other people with the same surname fit together in terms of common ancestors. Additionally, the time tree shows when they are related meaning TMRCA, time to the most recent common ancestor.

Here’s an example of the Estes project group time tree with some of the subgroups I’ve defined selected.

Click to enlarge any image

Feel free to view the public Estes project, here, and the Estes Group Time Tree, here.

View my subgroupings, and how they appear on the Group Time Tree. See if that’s how you want your project to work. You can use the search box to search for your own project, or other projects.

Preparation

As a volunteer project administrator, there are a number of things you’ll either need to do, or may want to do to prepare for the wider introduction of the exciting Group Time Tree. You’ll want your project members to benefit as much as possible.

Project Must Be Publicly Displayed

In order for your project to be able to be displayed in the Group Time Tree format, it must be a public project, meaning it has a public presence and viewing is not restricted to members only. The minimal selection for the Group Time Tree is that Y SNPs must be public.

Under Project Administration, Public Website, you’ll see the following configuration options.

Please click to enlarge

  • “Display Project Statistics” must be checked to facilitate displaying the Country Map showing the locations around the world of your Big Y project members.
  • You will want to enable the members Surname, and the Earliest Known Ancestor if you want them to display in the Group Time Tree. If at least one of these is not selected, the Group Time Tree will not be displayed.
  • Option 1: Under “YDNA Options,” at right, if you select “Public” for “Member DNA Test (YDNA) Results,” both SNP and haplogroup results will be shown in the public project, but of course, only Big Y tester’s results are shown on the Group Time Tree. You do NOT have to select public here to enable the Group Time Tree, but if you DON’T select public here, then you MUST select “Public” for “Y DNA SNP” (Option 2) or the Group Time Tree will not be enabled.
  • If you select either “Project Members Only” or “Do Not Display” for “Member DNA Test (YDNA) Results,” there will be no public project display for individual results.
  • Option 2: If you do NOT select “Public” for “Y-DNA SNP”, there will be no Group Time Tree display unless the “Member DNA Test (YDNA) Results” (Option 1) are set to Public.

In other words, for the Group Time Tree to be enabled, Option 1 or Option 2 MUST be set to “Public.”

Here’s a chart to help.

Field Selection Group Time Tree Result
Display Project Statistics Not selected No Country Map displayed.
Display Project Statistics Selected Country Map Displayed if group project publicly enabled.
Members Last Name and/or Earliest Known Ancestor Must select one or both If at least one is not selected, Group Time Tree is not enabled.
Option 1: Member DNA Test (YDNA) Results Public STR and haplogroup results show in BOTH the traditional public project display and the Group Time Tree.
Option 1: Member DNA Test (YDNA) Results Project Members Only or Do Not Display Will not display in the traditional project display. If this option is set to anything but Public, then Option 2 must be Public to enable the Group Time Tree.
Option 2: Y-DNA SNP Public Will display Group Time Tree even if Member DNA Test Results are not public.
Option 2: Y-DNA SNP Not Public Will NOT display Group Time Tree unless Option 1 set to Public.
Option 1 and Option 2 Neither set to Public No public group project display and no Group Time Tree.
Option 1 and Option 2 Both set to Public Public display of STR results, haplogroup, SNP results, and Group Time Tree.

Don’t forget to “Save” when you’re finished with your project configuration.

Country Map

For the Country Map to be displayed, you must enable the Project Statistics, above.

The Country Map reflects Big Y results for everyone within the project. If you do not want to include the Y-DNA of men within the project who not associated with the direct paternal surname of the project, you can disable the public display of their Y-DNA results.

An example would be a male who has joined a surname project because he is autosomally related to the surname, but does not carry the Y-DNA of that surname ancestor. I have this situation a LOT in the Estes project, because I “gather” my family members there and encourage cousins to join.

Here’s how to disable the display of those results within the project.

Suppress Display of Tests of Individuals

Select Public Results Display Settings.

Then, select the option for what you wish to implement for the various project members.

Options are:

  • Show Y DNA
  • Hide Y DNA
  • Show mtDNA
  • Hide mtDNA

Group Project Subgroupings

In the Estes project, I opted to colorize the descendants of Abraham Estes, the immigrant, all teal. Now, with the new Group Time Tree subgroup display, I may wish to change that. I might want the descendants of different sons to be different colors.

I definitely want different genetic Estes lineages to be different colors.

If you have people in your project whose Y-DNA is not relevant to the project, and you don’t want to suppress the display of their Y DNA results, you can group them together in a separate subgroup so you can deselect that group altogether when displaying the Group Time Tree, although their results will appear on the Country Map.

You can create subgroups and then group members under Project Administration, Member Subgrouping.

Weekly Updates

The Group Time Tree is only updated once a week, so there will be approximately a week’s delay after you make project configuration changes before you will see the results reflected in the Group Time Tree.

That’s why it’s a good idea to review your settings now so that when it goes live, you’ll be ready and it will display the way you want.

Padlock

If one of your project members has a padlock in place of their surname and Paternal Ancestor, they are a project member but have not opted-in to the public display within the project.

In their own settings, they can change that by Opting-In to the Group Project Profile Sharing. You can provide them with these instructions.

Under Account Settings, select Project Preferences.

Then, scroll down to Group Project Profile.

Select Opt-in to Sharing.

Encourage Big Y Upgrades and General Fund Donations

I’ve been encouraging everyone in my projects to upgrade to the Big Y-700 and providing several scholarships. Don’t hesitate to send bulk emails to your project members asking for general fund donations to upgrade someone who is willing but needs a scholarship. I’ve had amazingly good luck with the scholarship approach and the Big Y results benefit everyone in the project, including women who don’t have a Y chromosome to test.

Encourage Members to Complete Earliest Known Ancestor and Locations

The three haplotrees supported by FamilyTreeDNA  all depend on location information:

  • The Public Y-DNA and Mitochondrial DNA Haplotrees include country flags
  • The Discover Haplogroup tool includes the Country Frequency and country flags under the Haplogrop Story
  • The Group Time Tree includes country flags for the Earliest Known Ancestor (EKA) of individual testers

Please encourage members to complete their Earliest Known Ancestor name and location. Remember, this information is NOT extracted from uploaded trees.

In a few days, I’ll publish step-by-step instructions for how to add EKA and location information.

Now is a good time to update your project selections so you’ll be ready for the official rollout of the Group Time Tree.

Accessing Your Group Time Tree

Until the official rollout, there are two ways to access your group’s time tree:

  1. Click here and then enter the name of the group project in the search box.
  2. Replace the word “estes” with your project’s exact name in the following url: https://discover.familytreedna.com/groups/estes/tree

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Sneak Preview: Introducing the FamilyTreeDNA Group Time Tree

Drum roll please!!!

This is a sneak peek of a new tool being rolled out by FamilyTreeDNA in a VERY EARLY BETA soft launch.

Right now, the only way to view the Group Time Tree is by using the link to my group project, below, then, search for a different project name. I’ll show you, but first, let’s talk about this VERY COOL new tool for Big Y group project results.

The Group Time Tree is a feature that group project administrators and project members have wanted for a VERY long time!

At FamilyTreeDNA, the words “group” and “project” are both used to describe Group Projects which are projects run by volunteer administrators. FamilyTreeDNA customers can join any number of projects to collaborate with other testers who have a common interest.

Four basic types of public group projects exist:

  • Surname Group Projects
  • Haplogroup Group Project
  • Geographic Group Projects which can include other types of special interests
  • Mitochondrial Lineage Group Projects

What Does the Regular Discover Time Tree Do?

The Discover tool that was recently introduced (here) provides a Time Tree view of any specific haplogroup (but no surnames or ancestors) in relation to:

  • Big Y testers (not SNP-only testers and not STR results because they can’t be used for time-to-most-recent-common-ancestor (TMRCA) calculations)
  • Ancient Connections
  • Notable Connections

Using the regular Discover Haplogroup took, here’s an example of the haplogroups of the Estes (and other) men, beginning with the R-BY154784 lineage near the bottom. Time is at the top. The only way you know they are Estes men is because I told you. The Discover tool is haplogroup specific, not surname specific.

What Does the New Group Time Tree Do?

The brand-new Group Time Tree is an extension of the Discover technology, but focused within projects and includes both surnames and earliest known ancestors for people who have opted-in to have their results display in public group projects. This tool only works for group projects that have the public display enabled, and includes only data that the administrator has included. Not all administrators have enabled the display of the “Paternal Ancestor” field, for example.

Now, you can see Big Y group project members:

  • All mapped together on a genetic time tree, or
  • By project subgroups defined by the project administrator

I want to provide a friendly reminder that this is a BETA tool and will be fully rolled out in the not-too-distant future. In the meantime, it’s fun to have a sneak preview!!!

Estes DNA Group Project

Before going further, here are some screen shots of the Estes DNA Group Project for comparison.

I’ve created multiple color-coded groups within the project based on the genealogy and Y-DNA matches of the participants. The teal groups all descend from the Estes line from Kent, England, and match each other. Since not every man with an Estes surname descends from this line, there are also other color-identified groups.

Additionally, in the Estes project, I do not restrict members to males with the Estes surname, so there are several non-Estes men who have joined. Their Y-DNA shows in the project so I have placed them in an “Autosomal – Not Y DNA” group because they are Estes-related autosomally, not through the direct Y-DNA surname line.

I’ve grouped other clusters of Estes-surname males who do not descend from the Kent line into other color-coded groups, which turned out to be extremely beneficial for the new Group Time Tree.

Let’s see how the Estes Project works with the new Group Time Tree.

The Estes Group Time Tree

Here’s the link to the Estes Group Time Tree. I’ll be using the Estes data for this article, then show you how to view other group projects of your choosing from this link. So please read these instructions.

The Group Time Tree shows a genetic family tree of direct paternal lineages on a time scale. It shows how Big Y tested members of Group Projects are related to each other and when their shared ancestors are estimated to have lived.

Click on any image to enlarge

This is the first display I see.

Looking around, I notice the menu.

Select either “All search results” or the group or groups you want to view.

If you compare the groups above on the menu to the project screen shots, you’ll notice that the colors along the left side equate to the colors of the project subgroupings. We have Eastridge, meaning those who are not genetically Estes, then “Estes Autosomal, Not Y DNA,” then a group of teal project groupings who descend from the Estes Kent line.

I clicked on “Select All Search Results” which displayed everyone in the project from all haplogroups. This resulted in the Estes men being scrunched on the right-hand side, below, due to the long timeframe involved, which is not useful.

What is VERY useful is the Paternal Ancestor column which is the earliest known ancestor (EKA) for each tester’s line. Hopefully, this will encourage everyone to enter their EKA and location. You can find instructions, here.

Ok, let’s “De-select all” and just focus on specific groups.

Much better. I can see a much more relevant timeline for the men in the line being researched. The Estes men are no longer scrunched up along the right side because the left-to-right time is much shorter – 1500ish vs 100,000ish years.

The colored dot on the location flag indicates which colored group these men have been assigned to by the project administrator.

It’s very easy to see if two groups (or two men) descend from the same paternal line.

Next, I added the Eastridge group back into the display as an experiment.

The common ancestor between the single Eastridge Big Y tester and the Estes men is back in the Stone Age, about 35,000 BCE.

I do feel compelled to mention that this information can’t necessarily be extrapolated for all Eastridge men, because there are a few men with Eastridge surnames that are actually genetically Estes men. Someplace along the line, the name got changed. This is the perfect example of why every man needs to test their Y-DNA.

You can remove the menu by clicking on Subgroups.

You make the menu re-appear by clicking on Subgroups again.

I LOVE – LOVE – LOVE that I can see the ancestors and the clusters and I didn’t have to do this grouping myself. These men could have been in one big group in the project and the software would have created the clusters for me.

For example, there has been debate for decades about whether or not Moses Estes of South Carolina was descended from Abraham Estes, the immigrant, and if so, through which son.

Based on the Big Y-700 test (the Big Y-500 did not reveal this) and clustering, we know assuredly that Moses Estes of SC:

  • Descended from the Kent line
  • Descended from Abraham who has mutation R-BY490
  • Did NOT descend from Abraham’s son Moses whose descendants have mutation R-ZS3700

I’ve been keeping this project spreadsheet for years now. It’s wonderful to be able to see a genetic tree visualization. The Big Y men are blocked in red.

I’m hopeful that the balance of the men who have NOT yet taken the Big Y-700 will upgrade now because there’s so much more to learn. This is especially true for men who reach a brick wall prior to Abraham. The Big Y-700 test, perhaps combined with STRs, will place them in a lineage.

I’m sure that we would discover new haplogroups among Abraham’s descendants if they would all upgrade. There are more men who have not tested at the Big Y level than those that have.

Display Options

Under display options, you can add Ancient or Notable connections, remove confidence bars, and adjust the tree height.

Discoveries for Administrators

As a project administrator, one thing I discovered is that I might want to regroup within some of my projects to take full advantage of the color coding on the Group Time Tree. If you are a project administrator, you may want to ponder the same.

I also discovered that when I clicked on Country Map, I did not have Project Statistics enabled.

If you make project configuration changes, this report will only be updated weekly, so it’s not immediate.

The country map shows the distribution of all the countries within the project, not specific groups within projects

You can view Country Maps in either map or table format, but remember that if the project is a surname project and includes autosomal testers, the map view will not be representative of the surname itself. This view shows all groups.

Viewing Another Group Project

To view a different group project, simply enter that project name in the search box. For now, this is how you’ll be able to view group projects until this tool is fully rolled out.

I entered the surname “Speak” and was presented with these options.

Obviously, the surname Speak or a variation is found in these projects. Just click to view.

Your Turn

If you have not yet taken or upgraded to the Big Y-700 test, now’s the time. Order or upgrade, here.

If you have already taken the Big Y-700 test, or want to view a project, click on this link, and search for your project of choice.

Have fun!!!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

The Best of 2022

It’s that time of year where we look both backward and forward.

Thank you for your continued readership! Another year under our belts!

I always find it interesting to review the articles you found most interesting this past year.

In total, I published 97 articles in 2022, of which 56 were directly instructional about genetic genealogy. I say “directly instructional,” because, as you know, the 52 Ancestors series of articles are instructional too, but told through the lives of my ancestors. That leaves 41 articles that were either 52 Ancestors articles, or general in nature.

It has been quite a year.

2022 Highlights

In a way, writing these articles serves as a journal for the genetic genealogy community. I never realized that until I began scanning titles a year at a time.

Highlights of 2022 include:

Which articles were your favorites that were published in 2022, and why?

Your Favorites

Often, the topics I select for articles are directly related to your comments, questions and suggestions, especially if I haven’t covered the topic previously, or it needs to be featured again. Things change in this industry, often. That’s a good thing!

However, some articles become forever favorites. Current articles don’t have enough time to amass the number of views accumulated over years for articles published earlier, so recently published articles are often NOT found in the all-time favorites list.

Based on views, what are my readers’ favorites and what do they find most useful?

In the chart below, the 2022 ranking is not just the ranking of articles published in 2022, but the ranking of all articles based on 2022 views alone. Not surprisingly, six of the 15 favorite 2022 articles were published in 2022.

The All-Time Ranking is the ranking for those 2022 favorites IF they fell within the top 15 in the forever ranking, over the entire decade+ that this blog has existed.

Drum roll please!!!

Article Title Publication Date 2022 Ranking All-Time Ranking
Concepts – Calculating Ethnicity Percentages January 2017 1 2
Proving Native American Ancestry Using DNA December 2012 2 1
Ancestral DNA Percentages – How Much of Them in in You? June 2017 3 5
AutoKinship at GEDmatch by Genetic Affairs February 2022 4
442 Ancient Viking Skeletons Hold DNA Surprises – Does Your Y or Mitochondrial DNA Match? Daily Updates Here September 2020 5
The Origins of Zana of Abkhazia July 2021 6
Full or Half Siblings April 2019 7 15
Ancestry Rearranged the Furniture January 2022 8
DNA from 459 Ancient British Isles Burials Reveals Relationships – Does Yours Match? February 2022 9
DNA Inherited from Grandparents and Great-Grandparents January 2020 10
Ancestry Only Shows Shared Matches of 20 cM and Greater – What That Means & Why It Matters May 2022 11
How Much Indian Do I Have in Me??? June 2015 12 8
Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links March 2022 13
FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages June 2022 14
Ancient Ireland’s Y and Mitochondrial DNA – Do You Match??? November 2020 15

2023 Suggestions

I have a few articles already in the works for 2023, including some surprises. I’ll unveil one very soon.

We will be starting out with:

  • Information about RootsTech where I’ll be giving at least 7 presentations, in person, and probably doing a book signing too. Yes, I know, 7 sessions – what was I thinking? I’ve just missed everyone so very much.
  • An article about how accurately Ancestry’s ThruLines predicts Potential Ancestors and a few ways to prove, or disprove, accuracy.
  • The continuation of the “In Search Of” series.

As always, I’m open for 2023 suggestions.

In the comments, let me know what topics you’d like to see.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Concepts: Your Matches on the Same Segment are NOT Necessarily Related to Each Other

Just because two (or more) people match you on the same segment does NOT mean they are related to each other.

This is a fundamental concept of DNA matching and of using a chromosome browser.

I want to make this concept crystal clear.

This past week, I’ve had two people contact me with the same question that’s based up on a critical misunderstanding, or maybe just lack of understanding.

It’s not intuitive – in fact, it’s counter-intuitive. I understand why they don’t understand.

It seems logical that if two or more people show up as a match to you on the chromosome browser, on the same segment, you’ve hit a home run and all you need to do is to identify their common ancestor who will also be your common ancestor, or at least related. Right?

NOT SO FAST!

Let’s walk through this, step-by-step. Once you “get it,” you’ll never forget it, and you can use this to help other people understand too. Please notice there are lots of links here to other articles I’ve written if you need refreshers or help with terms.

Yay! – I’ve Got Matches

OK, so you’ve just discovered that you have a close match with three people, on the same segment. You’re thrilled! Maybe you’re trying to identify your grandparent, so first or second cousin matches are VERY exciting for you.

They are also close enough matches with large enough segments that you don’t need to worry about false positive matches, meaning identical by chance.

Let’s take a look. I’m using FamilyTreeDNA because that’s where the majority of my family has tested, plus they have a nice chromosome browser and their unique matrix tool.

We have three nice-sized matches to people estimated to be my first or second cousins. I’ve selected all three and compared them in the chromosome browser. The large red match is 87 cM and the blue and teal matches are 39 cM each, and completely within the 87 cM segment, so completely overlapping.

I’ve hit the mother-lode, right?

All I need to do is identify THEIR common ancestor and I’ll surely find mine.

Right???

Nope

Just because they all three match ME on this same segment does NOT mean they all match each other and are from the same side of my family. All three people DO NOT NECESSARILY have the same ancestor. From this information alone, we cannot tell.

I know this seems counterintuitive, especially since you’re seeing them all on MY chromosomes – which are the background pallet.

However, remember that I have two chromosomes. One from my father and one from my mother.

These matches are ALWAYS FROM THE PERSPECTIVE OF THE TESTER.

So, I’m going to see matches in exactly the same location – matches on my mother’s chromosome and matches on my father’s chromosomes – painted on the same segment locations of my chromosome.

Let’s prove that in the simplest of ways.

Mom and Dad

This is my kit, compared with my Dad and Mom.

I only took a screen shot of my first several chromosomes, but you can see that I match both of my parents on the full length of each chromosome – on the same exact segments.

I am the background – the pallet upon which my matches are painted.

First, my father is painted, then my mother – their match to me displayed on my chromosomes.

I assure you, my father and mother are NOT related to each other. I’ll prove it.

I could simply select one parent, then look for the other parent on the shared matches list.

Or, I could use the Matrix tool, especially if I wanted to see if a group of people are related to me and also to each other.

The Matrix

The Matrix tool is available under “See More,” in the Autosomal DNA Results & Tools section.

The Matrix allows you to select 10 or fewer matches to see if they are matches to each other. We already know they are matches to you.

I added my parents into the matrix.

My parents do not match each other, meaning they are not genetically related, because their intersecting cell is not blue.

Next, let’s select those three other people I match and see if they match each other.

Yes indeed, we can see that Cheryl and Donald match each other, but Amos matches NEITHER Cheryl nor Don. Yet, the segments of Cheryl and Donald, who had the 39 cM blue and teal segments on the chromosome browser fall entirely within Amos’s 87 cM segment.

Therefore, if Cheryl and Donald do not match Amos, that means that Cheryl and Donald are from one side of my family, and Amos is from the other. This is absolutely true in this instance because we are comparing the exact same segment on my DNA, so everyone has to match me maternally or paternally, or by chance (IBC.) The segment size alone removes the possibility of IBC.

Each parent gave me one copy of chromosome 4, so everyone who matches me on chromosome 4 must match one or the other parent on that chromosome segment.

I’ve added my parents back into the comparison, at the bottom, with the three matches on chromosome 4. Now you can see that same segment again, and everyone matches me, parents included, of course.

There’s no way to tell the difference whether the blue, red and teal match is on my mother’s or father’s side without additional information.

Again, let’s prove it.

Everybody, Let’s Dance

I added my Mom and Dad back into the matrix.

You can see that Mom and Cheryl and Donald all match each other, plus me of course, by inference because these are my matches.

You can see that Amos and my Dad match each other, and me of course, but not the other people.

Settled

So, we’ve settled that, right.

In my case, I could provide this great example, because I do in fact have parental tests to use for comparison.

You can see when I remove my Dad and Amos that Cheryl and Donald and my Mom all match each other. If I were to remove my Mom, Cheryl and Donald would match each other.

If I remove Mom, Donald and Cheryl, Dad and Amos match each other.

Of course, you may not have either of your parents’ DNA to use as an anchor for matching. You may, in fact, be searching for a parent or close relative.

If you do have “anchor people,” by all means, use them. In fact, upload or create a tree, link your anchor people and as many others as possible to their profiles in your tree at FamilyTreeDNA so your matches will be automatically bucketed, meaning assigned maternally or paternally. FamilyTreeDNA is the only company that offers linking and triangulated bucketing.

But, if you’re searching for your parents or know nothing about your family, you won’t have an anchor point, so what’s next?

What’s Next?

Using a combination of matching, shared matches and the matrix, you can create your own grouping of matches.

My suggestion is to start with your 10 closest matches.

Pull all 10 into the matrix.

Remember, you will match these people across your chromosomes. The only question the matrix answers is “do my matches match each other,” and a “yes” doesn’t’ necessarily mean they match each other on the same line you match either or both of them on.

I’ve noted how each person is related to me.

You can see that there’s a large block of matches on my paternal side. Some are labeled “Father- both.” These people are related both maternally and paternally to my father, because either the families intermarried, or they are descendants of my paternal grandparents.

Three, Donald, Dennis and Cheryl are related on my mother’s side, but it’s worth noting that Dennis doesn’t match Cheryl or Donald. That doesn’t mean he’s not on my mother’s side, it simply means he descends through her maternal line, not the paternal line like Donald and Cheryl. Remember, we’re not comparing people who match on the same chromosome this time – we’re comparing my closest matches across all chromosomes, so it makes sense that my mother’s maternal matches won’t match her paternal matches, but they would both match Mom if she were in the matrix. Clearly they all match me or they would not be in my match list in the first place.

You could also run a Genetic Affairs AutoCluster or AutoTree to cluster your matches for you into groups, although you can’t select specifically which individuals to include, except by upper and lower thresholds.

Regardless of the method you select, you still need to do the homework to figure out the common ancestors, but it’s a lot easier knowing who also match each other.

Circling Back to the Beginning

Now, when you see those two or three or more people all matching you on the same segment on the chromosome browser, you KNOW that you can’t immediately assume they match you and therefore are all related to each other. It’s possible, and even probable that some of them will match you because they match your mother’s chromosome and some will match your father’s chromosome – so they are from different sides of your family.

The Matrix tool shows you, for groups of 10 or less, who also matches each other.

What you are doing by determining if multiple people share common segments and match each other is triangulation. I wrote about triangulation at each company in the articles below:

Unfortunately, Ancestry does not provide a chromosome browser, so triangulation is not possible, but Ancestry does provide shared matching with some caveats. However, some Ancestry customers do upload their DNA file to FamilyTreeDNA, MyHeritage or GEDmatch. You can find step-by-step download/upload instructions for all vendors, here.

Additional Resources

You’ve probably noticed there are lots of links in this article to other articles that I’ve written. You might want to go back and take a look at those if you’re in the process of educating yourself or need help wrapping your head around the “same segment address – two parents – your matches are not created equal” phenomenon.

Here are a couple of additional articles that will help you understand matching on both parents’ sides, and how to get the most out of matching, segments, triangulation and chromosome browsers.

I prepared a triangulation resource summary article, here:

Enjoy!!
____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Chromosomes and Genealogy

Sometimes people ask about how chromosomes relate to genealogy. Every single one of us started with that question, right?

Are chromosomes different sizes, and does that matter? What are the mystery terms, cMs and SNPs? How does all of this intersect with genealogy? Do I care?

These are all great questions, and of course, there are different ways to answer. Let’s start with some basics.

Chromosomes 1-22

First, you have two copies of each of chromosomes 1-22.

The karyogram above, a photo taken through a microscope, courtesy of the National Human Genome Research Institute, shows the chromosomes of a human male. I’ve added the numbering and labeled the X and Y chromosomes (23).

You inherit one copy of each chromosome from each of your parents. You can see the two halves of each chromosome, above. One half of each chromosome is contributed by the person’s mother, and the other half is contributed by the father.

That’s why DNA matching works, and each match can be designated as “maternal” or “paternal,” depending on how your match is related to you.

Each match will be related either maternally, paternally, or sometimes, both. Of course, that’s presuming the matches are identical by descent, and not identical by chance, but that’s a different discussion. For this article, we’re referencing valid matches with whom you share common ancestors – whether you know who they are or not.

Your 23rd chromosome is different than chromosomes 1-22.

Chromosome 23 Determines a Child’s Sex

Your 23rd chromosome is your sex-determination chromosome and is inherited differently.

You still inherit one copy of chromosome 23 from each parent.

  • Males inherit a Y chromosome from their father, which is what makes males male.
  • Males inherit an X chromosome from their mother.
  • Females inherit an X chromosome from both parents, which makes them female.
Chromosome 23 Father Contributes Mother Contributes
Male Child Y chromosome X chromosome
Female Child X chromosome X chromosome

Because males don’t inherit an X chromosome from their father, X chromosome matching for genealogy has a unique and specific pattern of descent which allows testers to immediately eliminate some potential common ancestors.

The Y chromosome can be tested separately for males and follows the direct paternal line. You can read about the 4 Kinds of DNA for Genetic Genealogy, here.

The X chromosome is quite useful for genealogy due to its unique inheritance path and is included by both FamilyTreeDNA and 23andMe in matching.

Picture This

Three of the four major vendors, plus GEDmatch, provide a visual match depiction of your chromosomes using a chromosome browser:

Unfortunately, Ancestry does not provide a chromosome browser or segment location information.

Using your chromosomes as the canvas, matches to your father and mother are shown using the chromosome browser at FamilyTreeDNA, below.

You can see that a tester matches both parents on the entire covered region of all of their chromosomes. The beginning and the end tips of each chromosome sometimes aren’t covered, and neither are some other regions that are very SNP-location-poor. Omitted regions are shown by hashes. Regions that are light grey, but not hashed, are covered, but the match’s test didn’t produce results in that region.

This is why you may have a slightly different size match with one parent versus the other, especially if they both didn’t test at the same vendor at the same time.

The chromosome browser graphic visually answers the chromosome size question, but there’s more to this answer. It’s easy to see that there’s a significant difference in the physical chromosome size, but there’s more to the story.

SNPs – Chromosome Street Addresses

SNPs, known as Single Nucleotide Polymorphisms, are mutations recorded at specific addresses on chromosomes. Each chromosome holds a specific number of addresses that are read during sequencing and used for match comparison.

All of your other matches that are not parent-child and not your identical twin will match on some subset of these locations.

The Rest of the Answer – Centimorgans and SNPs

Centimorgans (cMs) are units of recombination used to measure genetic distance. You can read a scientific definition here.

For our conceptual purposes, think of centimorgans as lines on a football field. They represent distance on the chromosome.

SNPs are locations that are compared between two people to see if a match occurs.

Think of SNPs as addresses for blades of grass on that football field where an expected value occurs. If values at that address are different, then they don’t match. If values are the same, then they do match. For autosomal DNA matching, we look for long runs of SNPs that match between two people to confirm a common ancestor.

Think of SNPs as blades of grass growing between the lines on the football field. In some areas, especially in my yard, there will be many fewer blades of grass between those lines than there would be on either a well-maintained football field, or maybe a manicured golf course. You can think of the lighter green bands as sparse growth and the darker green bands as dense growth.

If the distance between 2 lines on the football field is 8 cM, for example, and there are 700 blades of grass growing there, you’ll be a match to another person if (almost) all of your blades of grass between those 2 lines match, assuming the match threshold is minimally 8 cM and 700 SNPs.

For purposes of autosomal DNA, the combination of centimorgans (distance,) and the number of SNPs (locations) within that distance measurement determines if someone is considered a match to you. In other words, you’re listed as a match if the shared DNA is over the minimum or selected thresholds. Think of track and field hurdles. To get to the end (a match), you have to get over all of the hurdles!

For example, a threshold of 8 cM and 700 SNPs means that anyone who matches you equal to or greater than both of these cumulative thresholds will be displayed as a match. Centimorgans and SNPs work in tandem to ensure valid matches.

A Second Yardstick

So, the second measure of chromosome size is the number of cMs from the beginning to the end of the chromosome, and the number of SNPs on that chromosome.

Different vendors, and different DNA testing chips cover slightly different regions. This is my match with my mother, which shows:

  • Total matching cMs on each chromosome
  • Total matching SNPs on each chromosome
  • SNP Density, which is a calculation (cM/SNPs) showing how “thick” the SNP grass is on each chromosome

The higher the matching number of cMs, especially in a row (longest segment,) the higher quality the match, and the closer the relationship.

Note that endogamous, or intermarried populations, may need separate interpretations. I discussed the signs of endogamy in this article.

Calculating Matches

Some vendors provide the ability to select your match cM and SNP thresholds, and others make those selections for you. Most vendors no longer display the number of matching SNPs, given that SNP-poor regions are, for the most part, automatically eliminated, although you can view them in your matching segment download file. In other words, the vendors simply take care of this for you. The accepted rule of thumb has always been that 500 (some said 700) or fewer SNPs was too small to be genealogically relevant, regardless of the cM match size.

Vendors include numerous and varying factors in determining match quality and potential relationships, including:

  • Total shared DNA, meaning total matching cM
  • Longest shared, meaning contiguously matching DNA block
  • X matching
  • Sex of tester (especially with respect to X matching)
  • Endogamy flags
  • Half versus fully identical DNA regions (to positively identify relationships such as half vs full siblings)
  • Triangulated segments
  • Family Matching (maternal and paternal bucketing) at FamilyTreeDNA
  • Tree matching

Not all vendors include all factors, and each vendor utilizes proprietary algorithms for features like triangulation.

The question isn’t chromosome size or even match size alone, but the quality of the match plus additive genealogical features like Theories of Family Relativity at MyHeritage to identify common and even previously unknown ancestors.

Be sure to test at the primary vendors or upload for free to MyHeritage, FamilyTreeDNA and GEDmatch to receive as many matches as possible. You just never know where that match you really need is hiding!

Enjoy!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA Black Friday is Here

Yes, I know it’s not Friday yet, but the DNA Black Friday sales have started, and sale dates are limited, so here we go.

These are the best prices I’ve ever seen at both FamilyTreeDNA and MyHeritage. If you’ve been waiting to purchase a DNA test for that special someone, there’s never been a better time.

Remember, to jump-start your genetic genealogy, test close or targeted relatives in addition to yourself:

  • Parents, or if both parents are not available, full and half-siblings
  • If neither parents nor siblings are available, your siblings’ descendants
  • Grandparents or descendants of your grandparents – aunts, uncles, or their descendants
  • Cousins descended from great-grandparents or other known ancestors
  • Y and mitochondrial DNA descendants of specific, targeted ancestors

For yourself, you’ll want to fish in all the ponds by taking an autosomal test or uploading a DNA file to each of the four vendors. Upload/download instructions are available here.

Everyone can test their own mitochondrial DNA to learn about your mother’s direct matrilineal line, and males can test their Y-DNA to unveil information about their patrilineal or surname line. Women, you can test your father’s, brother’s, or paternal uncle’s Y-DNA.

I’ve written a DNA explainer article, 4 Kinds of DNA for Genetic Genealogy, which you might find helpful. Please feel free to pass it on.

Vendor Offerings

FamilyTreeDNA

Free shipping within the US for orders of $79 or more

FamilyTreeDNA is the only major testing company that offers multiple types of tests, meaning Y-DNA, mitochondrial and autosomal. You can also get your toes wet with introductory level tests for Y DNA (37 and 111 marker tests), or you can go for the big gun right away with the Big Y-700.

This means that if you’ve purchased tests in the past, you can upgrade now. Upgrade pricing is shown below. Click here to sign on to your account to purchase an upgrade or additional product.

At FamilyTreeDNA, by taking advantage of autosomal plus Y-DNA and mitochondrial DNA, you will get to know your ancestors in ways not possible elsewhere. You can even identify or track them using your myOrigins painted ethnicity segments.

FamilyTreeDNA divides your Family Finder matches maternal and paternally for you if you create or upload a tree and link known testers. How cool is this?!!!

MyHeritage

The MyHeritage DNA test is on sale for $36, the best autosomal test price I’ve ever seen anyplace.

MyHeritage has a significant European presence and I find European matches at MyHeritage that aren’t anyplace else. MyHeritage utilizes user trees and DNA matches to construct Theories of Family Relativity that shows how you and your matches may be related.

Remember, you can upload the raw data file from the MyHeritage DNA test to both FamilyTreeDNA and GEDmatch for free.

Free shipping on 2 kits or more.

This sale ends at the end-of-day on Black Friday.

You can combine your DNA test with a MyHeritage records subscription with a free trial, here.

Ancestry

The AncestryDNA test is $59, here. With Ancestry’s super-size DNA database, you’re sure to get lots of matches and hints via ThruLines.

You can get free shipping if you’re an Amazon Prime member.

If you order an AncestryDNA test, you can upload the raw DNA file to FamilyTreeDNA, MyHeritage and GEDmatch for free. Unfortunately, Ancestry does not accept uploads from other vendors.

23andMe

The 23andMe Ancestry + Traits DNA test is $79, here. 23andMe is well known for its Ancestry Composition (ethnicity) results and one-of-a-kind genetic tree.

The 23andMe Ancestry + Traits + Health test is now $99, here.

You can get free shipping if you’re an Amazon Prime member.

If you order either of the 23andMe tests, you can upload the raw data file to FamilyTreeDNA, MyHeritage, and GEDmatch for free. Unfortunately, 23andMe does not accept uploads from other vendors.

Can’t Wait!!

This is always my favorite time of the year because I know that beginning soon, we will all be receiving lots of new matches from people who purchased or received DNA tests during the holiday season.

  • What can you do to enhance your genealogy?
  • Have you ordered Y and mitochondrial DNA tests for yourself and people who carry the Y and mitochondrial DNA of your ancestors?
  • Are you in all of the autosomal databases?
  • Who are you ordering tests for?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Y DNA Genealogy Case Study: SNPs, STRs & Autosomal – Why the Big Y-700 Rocks!

An expanded version of this article, including the genealogical aspects written for the Speak family, is available here. There is significantly more DNA information and analysis in this article, including STR values and autosomal analysis which can sometimes augment Y DNA results.

In 2004, 18 years ago, I founded the Speak(e)(s) Family DNA Project at FamilyTreeDNA in collaboration with the Speaks Family Association (SFA).

The goal of the Association broadly was to share research and to determine if, and how, the various Speak lines in America were related. The “rumor” was that the family was from England, but no one knew for sure. We didn’t even know who was actually “in” the family, or how many different families there might be.

The good news is that to answer these types of questions, you don’t need a huge study, and with today’s tools, you certainly don’t need 18 years. Don’t let that part scare you. In fact, any Speak(e)(s) man who takes a Y-DNA test today will have the answer plopped into his lap thanks to earlier testers.

When I established the Speaks DNA Project, our goal was stated, in part, as follows:

This project was begun to determine the various Speak(e)(s) lines around the world. According to family legend, the original ancestor came to England with William the Conqueror and his last name then was L’Espec. It was later spelled Speke and then the derivatives of Speake, Speak, Speakes, and Speaks carried by descendants today.

We knew there was a Thomas Speak (c1634-1681) who settled in St. Mary’s County, MD by 1661 and had two sons, John the InnKeeper or InnHolder (1665-1731) and Bowling (c1674-1755), named after his mother’s birth surname.

Fast forwarding two or three generations, my ancestor, Nicholas Speak or Speaks was born about 1782 and was first found in Washington County, Virginia in 1804 when he married Sarah Faires. That’s a long way from Maryland. Who was Nicholas? Who were his parents? How did Nicholas get to Washington County, Virginia? There aren’t any other Speaks men, or women, in Washington County. Was he dropped fully grown by the stork?

In 2005, I attended my first Speaks Family Association Convention and gave an introductory talk about Y-DNA. Speaks males volunteered to test.

By the 2006 Convention, we had 8 Y-DNA testers.

At first, everything was fine. Two testers each from Thomas the Immigrant through sons John and Bowling.

  • Thomas, Bowling and then two different sons. They matched.
  • Thomas, John, and his son Richard. They matched too.
  • All four men above match each other.

Everything’s good, right?

Not so fast…

Then, a father/son pair tested who were also supposed to descend from the Thomas, Bowling, and Thomas line. Thankfully, they matched each other, but they did NOT match the other descendants of Thomas the Immigrant.

Because we had multiple men through both of Thomas the Immigrant’s sons, we had confirmed the Y-DNA STR marker signature of Thomas – which means that the father/son pair had experienced a genetic disconnect, or, they were actually descended from a different Speak line.

That wasn’t all though. Two more men tested who believed they descended from Thomas the Immigrant through John and then Richard. They didn’t match each other, nor any of the other men either.

This was a difficult, painful situation, and not what was anticipated. Of course, I reviewed the results privately with the men involved before presenting them at the convention, and only did so with their permission.

In an effort to identify their genealogical lines, we discovered seven other mentions of early colonial Speak immigrants, including one named Thomas.

Over time, we would discover additional Y-DNA genetic Speak lines.

Bonus Cousin

Y-DNA also revealed an amazing new cousin, Henry, who didn’t know who his father was, but thanks to DNA, discovered he is a genetic Speaks AND identified his father.

In 2006, our Y-DNA haplogroup was known only as I1b1. We knew it was fairly rare and found in the rough Dinaric Alps border region between Bosnia and Croatia.

We weren’t wrong. We were just early. Our ancestors didn’t stop in the Alps.

Haplogroups have come a long way since that time.

Today, using the new maps in the Discover tool, the migration path into Europe-proper looks like this.

By the 2009 Convention, more Speaks men were taking Y-DNA tests, but we still had no idea where the Speaks line originated overseas.

The Holy Grail

The Holy Grail of Y-DNA testing is often a match with a man either from the “old country,” wherever that is, or someone who unquestionably knows where their ancestor is from. Through a match with them, other testers get to jump the pond too.

In early 2010, a man in New Zealand was interested in taking a Y-DNA test and knew where, in England, his ancestors originated.

A few weeks later, the New Zealand tester matched our Thomas Speaks, the Immigrant, line, which meant our ancestors might be from where his ancestors were from. Where was that?

Gisburn.

Gisburn? Where the heck was Gisburn?

Gisburn

Gisburn is a tiny, ancient village in Lancashire, England located in the Ribble Valley on the old Roman road. It appears in the Domesday Book of 1086 as Ghiseburne and is believed to have been established in the 9th century.

This was no longer speculation or unsourced oral history, but actual genetic evidence.

We knew that Thomas Speake, the Immigrant, was Catholic. Maryland was a safe haven for Catholics hoping to escape persecution in England.

Thomas was rumored to have been born to a John, but we had no idea where that rumor arose.

Was our Thomas born in Gisburn too?

Shortly, we discovered that St. Mary’s Church in Gisburn held 50 marked Speaks burials in addition to many unmarked graves.

Next, we discovered that the records of St. Mary’s and All Saints Church in Whalley, eleven miles from Gisburn, held pages and pages of Speak family records. The earliest Speak burial there was in 1540.

In 2011, the SFA Convention was held near Thomas and Bowlng Speak’s land in Charles County, Maryland. My Convention presentation contained a surprise – the information about our Gisburn match, and what we had found. A Y-DNA match, plus church records, and graves. How could that get better?

I showed this cemetery map from St. Mary’s Church in Gisburn, where our New Zealand cousin’s family was buried.

It felt like we were so excruciatingly close, but still so far away.

We knew unquestionably that we were in the neighborhood, but where was our Thomas born?

Who was his family?

I closed with this photo of St. Mary’s in Gisburn and famously said, “I don’t know about you, but I want to stand there.”

It was a throw-away comment, or so I thought, but as it turned out, it wasn’t.

2013 – The Trip Home

Gisburn

Two years later, our Convention was held in Lancashire, and indeed, I got to stand there.

So did our Speak cousin from New Zealand whose Y-DNA test bulldozed this brick wall for us. To be clear, had this ONE PERSON not tested, we would NOT have known where to dig for records, or where to visit.

St. Mary’s Church was surrounded by the cemetery, with many Speak stones. The church itself was built as a defensive structure sometime before 1135 with built-in arrowslits for archers in many locations, including the tower. Our family history was thick and rich here.

St. Mary’s Church in Whalley

Our next stop was St. Mary’s Church in Whalley, where Henry Speke was granted a lease in 1540.

This church is ancient, built in the 1200s, replacing an earlier church in the same location, and stunningly beautiful.

The little green men carved into the wooden choir seats are a wink and a nod to an earlier pagan era. Our ancestors would have known that era too.

In addition to the churches in Gisburn and Whalley, we visited St. Leonard’s Church in Downham which is a chapelry of the church in Whalley.

Downham

This church, in the shadow of Pendle Hill, proved to be quite important to our hunt for family.

Downham, on the north side of Pendle Hill was small then, and remains a crossroad village today with a population of about 150 people, including Twiston.

Twiston is located less than 3 miles away, yet it’s extremely remote, at the foot or perhaps on the side of Pendle Hill.

During our visit, Lord Clitheroe provided us with a transcription of the Downham church records wherein one Thomas Speak was baptized on January 1, 1633/34, born to Joannis, the Latin form of John, in nearby Twiston.

Is this Thomas our Thomas the Immigrant who was born about that same time? We still don’t know. There are clues but they are inconclusive and some conflict with each other.

Records in this area are incomplete. A substantial battle was fought in Whalley in 1643. Churches were often used for quartering soldiers and horses. Minister’s notes could well have been displaced, or books destroyed entirely. There could easily have been more than one Thomas born about this time.

Probate files show that in 1615, “John Speake of Twiston, husbandman” mentions his son William and William’s children, including John who was the administrator of his will. For John to be an administrator, he had to be age 21 or over, so born in 1594 or earlier. Some John Speak married Elizabeth Biesley at Whalley in 1622 and is believed to be the John Speak Sr. recorded in Downham Parish Registers.

The Whalley, Gisburn, and Twiston Speake families are closely connected. The difference may well be that our Thomas’s line remained secretly Catholic, so preferred the “uninhabited” areas of the remote Twiston countryside. Even today, Gisburn is described as being “rural, surrounded by hilly and relatively unpopulated areas.” And that’s Gisburn, with more than 500 residents. Downham is much smaller, about 20% of the size of Gisburn.

What do we know about Twiston?

Twiston

Twiston is too small to even be called a hamlet. The original farm and corn mill was owned originally by Whalley Abbey at least since the 1300s and stands near an old lime kiln, probably in use since Roman times.

This is where you know the earth holds the DNA of your ancestors, and their blood watered the landscape.

When the Speak family lived here, it was considered a “wild and lawless region” by local authorities, probably due in part to its remoteness – not to mention the (ahem) rebellious nature of the inhabitants.

If you were a Catholic, living in a hotbed of “recussants,” and trying to be invisible, Twiston, nestled at the base of Pendle Hill would be a location where you might be able to successfully disappear among those of like mind.

Yes, of course, you’d show up, hold your nose, and baptize your baby in the Anglican church because you needed to, but then you would retreat into the deep hillside woodlands until another mandatory church appearance was required.

The road to Twiston was twisty, rock-lined, and extremely narrow, with rock walls on both sides. If only these ancient buildings and stone walls could speak, share their stories, and reveal their secrets.

Old documents, however, do provide some insight.

This document, originally penned in Latin, was provided by the Lancashire archives.

John Speak, in 1609, was a farmer, with a house (messauge), garden, orchard, 10 acres of farmland, 5 of meadow, and 10 acres of pasture.

Indeed, Twiston is where John Speak lived. If the Thomas born in Twiston to Joannis, Latin for John, in 1633 and baptized on January 1, 1633/34 in old St. Leonard’s Church in Downham is our Thomas, this is his birth location.

For our family, this is, indeed, hallowed ground.

Local Testers

Prior to our visit, we published small ads in local newspapers and contacted historical societies. We found several Speak(e)(s) families and invited them to dinner where the after-dinner speaker explained all about DNA testing. You probably can’t see them clearly, but there are numerous DNA kits lying on the table, just waiting for people to have a swab party.

Our guests brought their family histories, and one of those families traced their line to…you guessed it…Twiston.

Five men from separate Speak families tested. None of them knew of any connection between their families, and all presumed they were not related.

I carried those men’s DNA tests back in my hand luggage like the gold that they were.

They were wrong. All five men matched each other’s Y-DNA and our Thomas Speake line. We got busy connecting the dots genealogically, as best we could given the paucity of extant records.

  • Two of our men descended from Henry Speak born in 1650 who married Alice Hill and lived in Downham/Twiston.
  • Two of our men descended from John Speak born about 1540 who married Elina Singleton and lived in Whalley.
  • Two of our men, including our New Zealand tester, descend from John born sometime around 1700, probably in Gisburn where his son, James, was born about 1745.

We indeed confirmed that we had found our way “home” and that our Speake family has lived there a long time. But how long?

2022 DNA Analysis

Today, the Speaks family DNA Project has 146 members comprised of:

  • 105 autosomal testers
  • 32 Speak Y-DNA testers
  • 24 of whom are Thomas the Immigrant descendants
  • 8 Big Y testers

Over the years, we’ve added another goal. We need to determine HOW a man named Aaron Lucky Speaks is related to the rest of us.

Autosomal DNA confirms that Aaron Luckey is related, but we need more information.

Aaron Lucky is first found in 1787 purchasing land and on the 1790 Iredell County, NC census. We finally located a Y-DNA tester and confirmed that his paternal line is indeed the Lancashire Speaks line, but how?

After discovering that all 5 Lancashire Speaks men descend from the same family as Thomas the Immigrant, we spent a great deal of time trying to both sort them out, and tie the family lines together using STR 25-111 markers, with very limited success.

Can Y-DNA make that connection for us, even though the records can’t?

Yes, but we needed to upgrade several testers, preferably multiple people from each line to the Big Y-700 test.

The Y-DNA Block Tree

When men take or upgrade to a Big Y-700 DNA test, they receive the most detailed information possible, including all available (700+) STR markers plus the most refined haplogroup, including newly discovered mutations in their own test, placing them as a leaf on the very tip of their branch of the tree of mankind.

The only other men “in that branch neighborhood” are their closest relatives. Sometimes they match exactly and are sometimes separated by a single or few mutations. Testers with 30 or fewer mutations difference are shown on the Block Tree by name. Eight Speaks men have taken or upgraded to the Big Y test, providing information via matching that we desperately needed.

This Big Y block tree view shown below is from the perspective of a descendant of Nicholas Speaks (b1782) and includes the various mutations that define branches, shown as building blocks. Each person shown on the Block Tree is a match to the tester with 30 or fewer mutations difference.

Think of haplogroups as umbrellas. Each umbrella shelters and includes everything beneath it.

At the top of this block tree, we have one solid blue block that forms an umbrella over all three branches beneath it. The top mutation name is I-BY14004, which is the haplogroup name associated with that block.

We have determined that all of the Speak men descended from the Lancashire line are members of haplogroup I-BY14004 and therefore, fall under that umbrella. The other haplogroup names in the same block mean that as other men test, a new branch may split off beneath the I-BY14004 branch.

Next, let’s look at the blue block at far left.

The Lancashire men, meaning those who live there, plus our New Zealand tester, also carry additional mutations that define haplogroup I-BY14009, which means that our Thomas the Immigrant line split off from theirs before that mutation was formed.

They all have that mutation, and Thomas didn’t, but he has a mutation that they don’t. This is how the tree forms branches.

Thomas the Immigrant’s line has the mutation defining haplogroup I-FTA21638, forming an umbrella over both of Thomas the Immigrant’s sons – meaning descendants of both sons carry this mutation.

Bowling’s line is defined by haplogroup I-BY215064, but John’s line does not carry this mutation, so John’s descendants are NOT members of this haplogroup, which turns out to be quite important.

We are very fortunate that one of Thomas’s sons, Bowling, developed a mutation, because it allows us to differentiate between Bowling and his brother, John’s, descendants easily if testers take the Big Y test.

Those teal Private Variants are haplogroups-in-waiting, meaning that when someone else tests, and matches that variant, it will be named and become a haplogroup, splitting the tree in that location by forming a new branch.

Aaron Luckey Speak

As you can see, the descendants of Aaron Lucky Speak, bracketed in blue above, carry the Bowling line mutation, so Aaron Luckey descends from one of Bowling’s sons. That makes sense, especially since two of Bowling’s grandsons are also found in Iredell County during the same timeframe and are candidates to be Aaron Luckey’s father.

Here’s a different view of the Big Y testers along with STR Y-DNA testers in a spreadsheet that I maintain.

Thomas the Immigrant (tan band top row) is shown with son, Bowling, who carries haplogroup BY215064. Bowling’s descendants are tan too, near the bottom.

Thomas’s son, John the InnKeeper, shown in the blue bar does NOT have the BY215064 mutation that defines Bowling’s group.

However, the bright green Aaron Lucky line, disconnected at far right, does have the Bowling mutation, BY215064, so this places Aaron Luckey someplace beneath Bowling, meaning his descendant. We just don’t know where he fits yet. The key word is yet.

Can STR Markers Be Utilized for Lineage Grouping?

Sometimes we can utilize STR marker mutations for subgrouping within haplogroups, but in this case, we cannot because STR mutations in this family have:

  • Occurred independently in different lines
  • Potentially back mutated

Between both of these issues, STR mutations are inconsistent and, therefore, in this case, entirely unreliable. I have found this phenomenon repeatedly in DNA projects that I manage where the genealogy line of descent is known and documented.

Let’s analyze the STR mutations.

I’ve created a table based on our 26 Y-DNA testers. However, not everyone tested at 111 markers, so there is a mix.

You can view the Speak DNA Project results, here.

I’ve divided the testers into the same groupings indicated by genealogy combined with the Big Y SNP mutations, which do agree with each other. Those groups are:

  • The Lancaster men that never left, except for the New Zealand tester whose ancestor left just two generations ago. They all share a defining SNP which provides them with an identifying haplogroup that the American line does not have.
  • The Thomas the Immigrant line through son Bowling.
    • The Aaron Luckey line who descends, somehow, from Bowling.
  • The Thomas the Immigrant line through son John the InnKeeper.
  • Two men who have provided no genealogy

We already know that Aaron Luckey descends from Bowling, somehow, but I’m keeping them separate just in case STR values can be helpful.

Let’s look at a total of five STR markers where multiple descendants have experienced mutations and see if we can discern any message. The mutations in the bright yellow Lancashire groups on the project page are summarized and analyzed in the chart, below.

You read the chart below, as follows:

  • For marker DYS-19, the testers who have a value of 16 – then the numbers indicated the number of testers in that group with that value. The Lancaster group has 5, the Bowling group has 7, the Aaron Luckey group has 4, and so forth.
  • The next row, colored the same, shows the value of 17 for marker DYS19.
  • Rows for values of the same marker are colored the same.

This chart does not include several markers where there are one-offs, meaning one mutation in the entire group, or one in each of two different groups that are different from each other. This chart includes markers with mutations that occur in multiple descendants only.

If these mutations were predictive and could be used for lineage assignment, we would expect to see the same mutation only within one of the lines, descended from a common ancestor, consistently, and not scattered across multiple lines.

Let’s start our analysis with the only marker that may be consistently predictive in this group. Marker DYS389ii has an ancestral value of 28, We know this because that value is consistently found in all of the Speaks descendants. A value of 29 is ONLY found in the 4 descendants of Aaron Luckey, and the value of 29 is consistently found in all of his known descendants who have tested. Therefore, it could be predictive.

However, given the nature of STR mutations, it’s difficult to place a lot of confidence in STR-based lineage predictions. Let’s look at the other four markers.

  • Marker DYS19 has a value of 16 in every line, which would be the ancestral value. However, we also find a mutation of 17 in 1 of Bowling’s children, and in 2 of John the InnKeeper’s descendants. That can’t be lineage-defining.
  • Looking at the CDY a/b marker, we find one instance of 35/36, which is a one-off. I wouldn’t have included it if I wasn’t using the other two combinations as examples. The values of 36/36 are found in every line except for the one with no genealogy and only one person has tested at 111 markers. A value of 36/37 is found in only the Bowling line, but not the Aaron Luckey line. The MRCA, or most recent common ancestor between the Bowling descendants is his son, Thomas of Zachia. The best candidates for Aaron Luckey’s father are two of Thomas of Zachia’s sons, but his descendants have a hodgepodge mixture of the two values, so this, again, cannot be a lineage-defining marker.
  • Looking at DYS534, we see a 15 in one of Bowling’s descendants and in 4 of John the InnKeeper’s descendants. Obviously not lineage-specific. There’s a value of 16 in every line which would be ancestral.
  • A value of 33 at DYS710 is found in every lineage, so would be the ancestral value. The value of 34 is found once in each line except for Bowling, which precludes it from being lineage-defining.

Inconsistent lineage results is one of the best reasons to purchase or upgrade to the Big Y-700 test.

Unfortunately, STR placement and lineage determination can be very deceptive and lead genealogists astray. At one time, we didn’t have advanced tools like the Big Y, but today we do.

STR Tests Are Useful When…

To be clear, STR marker tests, meaning the 37 and 111 marker tests available for purchase today, ARE very useful for:

  • Matching other testers
  • Identifying surnames of interest
  • Ruling out a connection, meaning determining that you don’t match a particular line
  • Introductory testing with limited funds that provides matching, a high-level haplogroup, and additional tools. You can always upgrade to the Big Y-700 test.

However, the Big Y-700 is necessary to place groups of people reliably into lineages and determine relationships accurately.

In some cases, autosomal DNA is useful, but in this case, autosomal doesn’t augment Y-DNA due, in part, to record loss and incomplete genealogy in the generations following Thomas of Zachia.

Family Finder Autosomal Analysis

In total, we have the following total Family Finder testers whose genealogy is confirmed:

  • 8 Aaron Luckey
  • 6 Lancashire testers
  • 15 John the InnKeeper testers
  • 33 Bowling testers

An autosomal analysis shows that Aaron Luckey Speak’s descendants match each other (green to green) most closely than they match either of Thomas the Immigrant’s sons, Bowling (tan) or John’s (blue) descendants. We would expect Aaron Luckey’s descendants to match each other the most closely, of course.

The numbers in the cells are total matching centiMorgans/longest segment cM match.

Click on any image to enlarge

Aaron Luckey’s descendants don’t collectively match John or Bowling’s descendants more closely than the other group using centiMorgans as the comparison. Although they match more of Bowling’s descendants (21%) than John’s (13%). This too would be expected since we know Aaron Luckey descends from Bowling’s line, not John’s.

At best, Aaron Luckey’s descendants are 8 or 9 generations removed from a common ancestor with other descendants of Thomas of Zachia, making them 6th or 7th cousins, plus another couple of generations back to Thomas the Immigrant. We can’t differentiate genetically between sibling ancestors or cousin lines at this distance.

Furthermore, we have a large gap in known descendants beneath Thomas of Zachia, other than Charles Beckworth Speak’s son Nicholas’s line. We have at least that many other testers in the project who don’t can’t confirm their Speaks ancestral lineage.

Combining genetic and genealogy information, we know that both Charles Beckworth Speak and Thomas Bowling Speak, in yellow, are found in Iredell County, NC. The children of Thomas of Zachia, shown in purple, are born in the 1730s and any one of them could potentially be the father of Aaron Luckey.

The men in green, including William, Bowling’s other son, are also candidates to be Aaron Luckey’s ancestor, although the two yellow men are more likely due to geographic proximity. They are both found in Iredell County.

We don’t know anything about William’s children, if any, nor much about Edward. John settled in Kentucky. Nicholas (green) stayed in Maryland.

There may be an additional generation between Charles Beckworth Speak (yellow) and Nicholas (born 1782), also named Charles. There’s a lot of uncertainty in this part of the tree.

It seems that Aaron’s middle name of Lucky is likely to be very significant. Aaron Luckey’s descendants may be able to search their autosomal matches for a Luckey family, found in both Iredell County AND Maryland, which may assist with further identification and may help identify Aaron’s father.

If all of the Speak men who took STR tests would upgrade to the Big Y, it’s probable that more branches would be discovered through those Private Variants, and it’s very likely that Aaron Luckey could be much more accurately placed on the tree. Another Aaron Luckey Speak Big Y-700 DNA tester would be useful too.

Connecting the Genetic Dots in England

What can we discern about the Speak family in the US and in Lancashire?

Reaching back in time, before Thomas the Immigrant was born about 1633, what can we tell about the Speak family, how they are connected, and when?

The recently introduced Discover tool allows us to view Y-DNA haplogroups and when they were born, meaning when the haplogroup-defining mutation occurred.

The Time Tree shows the haplogroups, in black above the profile dots. The scientifically calculated approximate dates of when those haplogroups were “born,” meaning when those mutations occurred, are found across the top.

I’ve added genealogical information, in red, at right.

  • Reading from the bottom red dot, Bowling’s haplogroup was born about the year 1660. Bowling was indeed born in 1674, so that’s VERY close
  • Moving back in time, Thomas’s haplogroup was born about 1617, and Thomas himself was born about 1633, but his birth certainly could have been a few years earlier.
  • The Lancashire testers’ common haplogroup was born about 1636, and the earliest known ancestor of those men is Henry, born in Twiston in 1650.
  • The common Speak ancestor of BOTH the Lancashire line and the Thomas the Immigrant line was born about 1334. The earliest record of any Speak was Henry Speke, of Whalley, born before 1520.

The lines of Thomas the Immigrant and the Lancashire men diverged sometime between about 1334, when the umbrella mutation for all Speaks lines was born, and about 1617 when we know the mutation defining the Thomas the Immigrant line formed and split off from the Lancashire line.

But that’s not all.

Surprise!

As I panned out and viewed the block tree more broadly, I noticed something.

This is quite small and difficult to read, so let me explain. At far left is the branch for our Speaks men. The common ancestor of that group was born about 1334 CE, meaning “current era,” as we’ve discussed.

Continuing up the tree, we see that the next haplogroup umbrella occurs about 1009 CE, then the year 850 at the top is the next umbrella, encompassing everything beneath.

Looking to the right, the farthest right blocks date to 1109 CE, then 1318 CE, then progressing on down the tree branch to the bottom, I see one surname in three separate blocks.

What is that name?

Here, let me enlarge the chart for you!

Standish.

The name is Standish, as in Myles Standish, the Pilgrim.

Miles is our relative, and even though he has a different surname, we share a common ancestor, probably before surnames were adopted. Our genetic branches divided about the year 1000.

The Discover tool also provides Notable Connections for each haplogroup, so I entered one of the Speaks haplogroups, and sure enough, the closest Speak Notable Connection is Myles Standish 1584-1656.

And look, there’s the Standish Pew in Chorley, another church that we visited during our Lancashire trip because family members of Thomas Speake’s Catholic wife, Elizabeth Bowling, are found in the Chorley church records.

Our common ancestor with the Standish line was born in about the year 850. Our line split off, as did the Standish line about the year 1000. That’s about 1000 years ago, or 30-40 generations.

Our family names are still found in the Chorley church records

Ancient Connections

The Discover tool also provides Ancient Connections from archaeological digs, by haplogroup.

Sure enough, there’s an ancient sample on the Time Tree named Heslerton 20641.

Checking the Discover Ancient Connections, the man named Heslerton 20641 is found in West Heslerton, Yorkshire, and lived about the year 450-650, based on carbon dating.

The mutation identifying the common ancestor between the Speak/Standish men and Heslerton occurred about 2450 BCE, or 4500 years ago. Twiston and West Heslerton are only 83 miles apart.

Where Are We?

What have we learned from the information discovered through genealogy combined with Big Y testing?

  • We found a Speek family in Whalley in 1385.
  • One of our Lancashire testers descends from a John born about 1540 in Whalley.
  • One of our Lancashire testers descends from Henry born about 1650 in Downham/Twiston
  • Thomas Speake was baptized in Downham and born in Twiston in 1733.
  • Our New Zealand tester’s ancestor was found in Gisburn, born about 1745.

All of these locations are within 15 miles of each other.

  • Chorley, where the Standish family is found in the 1500s is located 17 miles South of Whalley. Thomas Speake’s wife, Elizabeth Bowlings’ family is found in the Chorley church records.

What about the L’Espec origin myth?

  • The Speak family clearly did not arrive in 1066 with the Normans.
  • We have no Scandinavian DNA matches.
  • No place is the surname spelled L’Espec in any Lancashire regional records.
  • The Speak family is in the Whalley/Chorley area by 1000 when the Speak/Standish lines diverged
  • The common ancestor with the Standish family lived about the year 850, although that could have occurred elsewhere. Clearly, their common ancestor was in the Chorley/Whalley area by 1000 when their lines diverged.

The cemetery at Whalley includes Anglo-Saxon burials, circa 800-900. The Speak men, with no surname back then, greeted William the Conqueror and lived to tell the tale, along with their Standish cousins, of course. This, in essence, tells us that they were useful peasants, working the land and performing other labor tasks, and not landed gentry.

Little is known of Lancashire during this time, but we do know more generally that the Anglo-Saxons, a Germanic people, arrived in the 5th century when there was little else in this region.

Are our ancestors buried in these and other early Anglo-Saxon graves? I’d wager that the answer is yes. We are likely related one way or another to every family who lived in this region over many centuries.

Y-DNA connected the dots between recent cousins, connected them to their primary line in America, provided a lifeline back to Twiston, Whalley, and Gisburn, and then to the Anglo-Saxons – long before surnames.

Aaron Luckey Speak’s descendants now know that he descends, somehow, from Bowling, likely through one of two sons of Thomas of Zachia. They don’t have the entire answer yet, but they are within two generations, a lot closer than they were before.

And this, all of this, was a result of Big-Y DNA tests. We could not have accomplished any of this without Y-DNA testing.

Our ancestors are indeed speaking across the ages.

We found the road home, that path revealed by the DNA of our ancestors. You can find your road home too.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research