Cheat Sheet: Mitochondrial Matches, Haplotype Clusters, and Haplogroups

One of the questions I often receive about mitochondrial DNA matching at FamilyTreeDNA is which mutations are included, which are excluded, from what type of matching, and why.

There are three types of matching for full sequence (mtFull) testers.

  1. Match page matching
  2. Haplotype matching
  3. Haplogroup-only matching

Each match type is different and provides something unique and beneficial.

People who have not upgraded to the mtFull, full sequence test, meaning they have only taken the older HVR1 or HVR1+HVR2 level test, don’t have full haplogroups, because only about 1000 of the 16,569 locations were tested with the earlier partial tests. You can easily upgrade to receive your full sequence results.

Navigate Using Your Dashboard

Aftersigning in to your account, you access the following information from your dashboard:

  • Your matches
  • Information about your matches, as maps showing where their earliest known ancestor (EKA) lived
  • mtDNA Discover

Match Types and Discover

Click to enlarge any image

Two types of matches show on your matches page, and one type is displayed only on Discover.

Match types are:

  1. Matches on your mtDNA Matches page under Genetic Distance – which means you match with less than three mutations difference, shown as a, “1 step”, “2 step” or “3 step” mutation. Locations 309 and 315 are EXCLUDED from the mismatch calculation because they are very unreliable and mutate often.
  2. Haplotype matching and clusters – Your haplotype is your exact DNA sequence and is assigned an F number. If you match someone whose F number is checked (in blue), it means you are an exact match with them and everyone in the same Haplotype Cluster, INCLUDING locations 309 and 315. Exact haplotype matches always show on your Matches page. If you have any mismatch, including 309 and 315, you will NOT share the same haplotype. A haplotype match is indicated by a little check mark beside the F number of your match, which means you and anyone else with that same haplotype number form a haplotype cluster.
  3. Haplogroup-only matching – which means you don’t match on your Matches page, because you have more than three mutations difference, but you do match at the haplogroup level, which you can see on Discover.

Since people who form a haplotype cluster match exactly on all markers, INCLUDING 309 and 315, you cannot be a haplotype cluster match with someone you don’t match exactly under Genetic Distance on your Matches page. You will always share the same haplogroup, too.

Now let’s look at the variations you might encounter.

Genetic Distance = Exact Match, But Different Haplotype Cluster

You can match someone exactly under Genetic Distance on your matches page, since that calculation excludes locations 309 and 315, but have a different haplotype because you don’t match that person on either 309 or 315, or both.

In this example, the tester and their match don’t share a haplotype, so the box isn’t checked. If the box was checked, it would indicate that their haplotypes match exactly, including 309 and 315. The box isn’t checked, so they aren’t a member of the same haplotype cluster.

In some cases, locations 309 and 315 can be genealogically useful, and in others, they are not. It’s up to you to do the genealogical research work and make that determination.

A Match, But Different a Haplotype and Haplogroup

You may match someone in a different haplogroup with less than three mutations difference, meaning a Genetic Distance of three steps or less. Even though you are members of a different, but closely related haplogroup, they are still shown on your match list because you share less than three mutations difference.

You and your match may share an identifiable common ancestor if at least one of the haplogroups formed more recently in time.

Discounting locations 309 and 315, this match has a Genetic Distance of “1 step”, meaning that there is one mutation difference, and that mutation forms the new haplogroup of J1c2f3. Their legacy haplogroup, before Mitotree, was J1c2f, the same as mine.

You may think that a different haplogroup means a match far different in time, but that’s not necessarily true.

In this example, it’s easy to see that people who are members of three different haplogroups trace back to the same common ancestor a few generations earlier. So even though these testers have different haplogroups, it doesn’t necessarily mean that their common ancestors are far back in time. Don’t summarily dismiss different but closely related haplogroup matches.

The same goes for haplotypes and haplotype clusters, so don’t ignore matches with different haplotypes that may be very genealogically useful.

Haplogroup-Only Matches

You won’t see haplogroup-only matches on your Match list if you mismatch on more than three locations. You’ll only see them in mtDNA Discover.

While three mismatches probably indicates a match before the adoption of surnames, that’s not necessarily the case, especially if the tester(s) have a heteroplasmy. I wrote about heteroplasmies, here.

Haplogroup-only matches can still be quite useful because all haplogroup members share a common ancestor at a specific point in time. Every haplogroup member shares common ancestors between the haplogroup’s formation date and the present-day testers. The most recent common ancestor (MRCA) with any one person or group of people can be anytime between the haplogroup formation date and your own generation.

Remember that the haplogroup name, such as J1c2f or V216a2, was a real living person. We just don’t know her name, and in many cases, never will. She’s still contributing valuable information about our ancestors, though, and perhaps about traceable genealogy..

You CAN see haplogroup-only matches on Discover. If you are a member of a Haplotype Cluster, you’ll match everyone in that cluster. However, on your Matches page, you may not match everyone else that shares your haplogroup.

As you can see on the Time Tree, above, there are two people in haplogroup V216a2 that are not members of haplotype cluster F9712482.

How do you know if you match everyone in your haplogroup, or if there are some people in your haplogroup that you don’t match?

The easiest way is to compare the Time Tree, which shows everyone in your haplogroup, and nearby haplogroups, to your Match Time Tree, above, which displays only the people you match overlayed onto the Time Tree with their name and their earliest known ancestor, if they entered that information.

As you can see, this tester is a member of the haplotype cluster F9712482 and matches one other person who is a member of haplogroup V216a1. They don’t match the second V216a2 person shown on the Time Tree, but who is missing here on the Match Time Tree when compared to the Time Tree.

How might this information be useful? For starters, your haplogroup-only match may include a country location of interest. Suppose there are several people that you don’t match. Their combined location information may be very useful for you when determining the history of your ancestral haplogroup and where your ancestors may have come from.

In my case, in haplogroup J1c2f, my oldest known ancestor is found in the church records in Wirbenz, Germany, marrying in 1647, but nearly all of my matches, including haplogroup-only matches, are from Scandinavia – Norway and Sweden primarily, with a few scattered elsewhere, which was a HUGE surprise to me. I expected Germany, but that’s not the history of my ancestors prior to 1647.

History beyond written records is invaluable history – and only available to us through non-recombinant DNA, such as Y-DNA (for males only) and mitochondrial DNA for everyone. Both maintain their direct line back through history because neither are ever combined with the DNA of the other parent, so they are never divided like autosomal DNA during recombination.

Cheat Sheet

I’ve created this handy dandy cheat sheet as a memory aid to recall which kinds of mutations are included in what type of matching, and why.

Memory Aid

  • Haplotype Clusters are your closest match buddies – exactly – clustered together. However, genealogically, you might be equally as close to people with other haplotypes. Remember that mutations 309 and 315 are jokers and may throw a monkey-wrench into matching!
  • Matches on your matches page are “serious,” because they ignore those jokers. No 309 and 315 jokers allowed here.
  • Haplogroup-Only Matches can still provide important hints. You need to “Discover” them in mtDNA Discover

To See More

To step through your results using all of the mitochondrial DNA tools, including Discover reports, please refer to my article, Mitochondrial DNA A-Z: A Step-by-Step Guide to Matches, Mitotree and mtDNA Discover.

Thanks for coming to my TED talk😊

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the affiliate links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Mitochondrial DNA A–Z: A Step-by-Step Guide to Matches, Mitotree, and mtDNA Discover

People have been asking for a step-by-step guide for mitochondrial DNA, and here it is!

This article steps testers through all their results, page by page, including a dozen Discover reports, explaining what the information in each tool means. There’s SO MUCH great content provided, and you’ll want to absorb every tidbit.

This is meant to be a roadmap for you – a recipe card to follow to get the most out of your results.

You can either read through this article once, then sign on to your own account, or sign on now and follow along. Yes, this article is long, but it’s also a one-stop shop when you want information about any page or feature. Refer back to this article as needed, and feel free to forward it to others when they receive their results.

I’ve also provided additional resources for you at each step of the way, along with many tips and suggestions to help you help yourself.

I’m using the LeJeune sisters of Acadia as my example – in part because there were several questions about their heritage – including whether they were actually sisters, whether they were Native American, and if a third woman was also a sister.

Think about why you tested, and what you hope to learn so you know where to focus.

Everyone has their own motivation for testing, and we all want to extract as much information as possible. Some answers are genetic – thanks to mitochondrial, Y-DNA, and autosomal testing. Some answers are historical and genealogical. All of them need to mesh nicely together and confirm each other.

When they don’t, if they don’t, we need to understand how to discern the truth.

Every Ancestor Has a Mitochondrial DNA Story to Tell You

Sometimes it’s not our own results we’re analyzing, but the results of another tester – a cousin whose mitochondrial DNA represents a particular shared ancestor. We aren’t restricted to just our own mitochondrial DNA to decipher our ancestors’ stories.

What messages and secrets do those ancestors have to tell us? Our results read like the very best mystery novel ever – except it’s not a novel – it’s fact. And it’s ours!

Mitochondrial DNA is only passed from mothers to their children, never admixed or combined with the DNA of the father, so your mitochondrial DNA today is either exactly the same as that of your ancestors a few generations ago, or very close if a mutation has occurred between when they lived and today’s tester.

One of mitochondrial DNA’s strengths is that it can reach far back in time, it’s message undiluted and uninterrupted by recombination.

The messages from our ancestors are very clear. We just need to understand how to hear what they are telling us.

Step-by-Step Soup to Nuts

We will analyze the mitochondrial DNA results of multiple testers who descend from the LeJeune sisters, Edmee and Catherine, born in 1624 and 1633, respectively, to see what they have to tell their descendants. For a very long time, rumors abounded that their mother was Native American, so we will keep that in mind as we review all matching, Mitotree and mtDNA Discover tools provided by FamilyTreeDNA.

We will also learn how to evaluate seemingly conflicting information.

Soup to nuts – we will incorporate every sliver of information along the way and extract every morsel that can help you. Think of this article as your recipe and the reports and information as ingredients!

To be clear, you don’t HAVE to read all of this or decipher anything if you don’t want to. You can just glance at the matches and be on your way – but if you do – you’re leaving an incredible amount of useful information on the table, along with MANY hints that you can’t find elsewhere.

If there was an out-of-print book about this ancestral line in a rare book collection someplace, as a genealogist, you would drive half-way across the country to access that information. This is your rare book, that updates itself, and you don’t have to do anything other than take a mitochondrial DNA test, or find a cousin to take one for lines you don’t carry..

Come along and join the fun! Your ancestors are waiting!

The LeJeune Question

Recently, I wrote about my ancestor Catherine LeJeune, who was born about 1633, probably in France before her family settled in Acadia, present-day Nova Scotia.

The identity of her parents has been hotly contested and widely debated for a long time.

I intentionally did not address her DNA results in that article because I wanted to establish the historical facts about her life and address her mitochondrial DNA separately. The process we are following to analyze her DNA results is the same process everyone should follow, which is why we are taking this step-by-step approach, complete with detailed explanations.

Often, when people hit a brick wall with an ancestor, especially during European colonization of the Americas, someone suggests that the person surely “must be” Native American. Lack of records is interpreted to add layers of evidence, when, in fact, absence of evidence is not evidence of absence.

For example, for many of the earliest French Acadians, birth and baptism records have NOT been located in France, where massive record loss has been experienced.

Additionally, not all records that do exist have been indexed, transcribed, or digitized. Many are damaged and/or nearly impossible to read. Lack of records does NOT mean that those settlers weren’t French, or in this case, it does NOT indicate that they were Native American. It simply means we are lacking that piece of evidence.

Enter mitochondrial DNA.

This article is focused on how to use mitochondrial DNA to decode these messages from our ancestors. I’m providing a very short summary of the relevant historical factors about the LeJeune sisters so readers can keep this in mind as we review the 17+ tools waiting for us when mitochondrial DNA results are ready.

The First Acadian Settlers

The Acadians were French settlers in what is today Nova Scotia. The first Acadians arrived in LaHeve (LaHave), on the southern coast of Acadia, in 1632 after Acadia was returned to France from English control. There may or may not have been any French families in the original group, but if so, very few. In 1636, another group of settlers arrived, but no LeJeune is on the roster.

At the end of 1636, the fledgling Acadian colony was moved from LaHeve, on the southern coast, to Port Royal, a more protected environment.

While we don’t know exactly when the family of Catherine and Edmee LeJeune arrived, we can bracket the dates. We know that Catherine’s sister, Edmee LeJeune, born about 1624, married another settler, Francois Gautrot, about 1644 in Port Royal, so they had arrived by that time.

Edmee’s 1624 birth year is important for two reasons. First, there were no French settlers in the part of Acadia that became Nova Scotia in 1624, so that clearly demonstrates that Edmee was born in France.

It’s unlikely that Catherine was born in Acadia in 1633 given that the first known families arrived in 1636, and we have their names from the ship roster. Pierre Martin was on the 1636 ship, and Acadian history tells us that his son, Mathieu Martin, was the first French child born in Acadia, about 1636, based on the 1671 census.

We also know that there was an early Acadian man, Jean LeJeune, who was granted land at BelleIsle, near Port Royal, among other Acadian families, but he was deceased before the first Acadian census in 1671. Acadia was under English control again from 1654 to 1670, so Jean LeJeune’s land grant had to have occurred after 1636 and prior to 1654, and is where Catherine LeJeune is found as an adult.

Another source of confusion is that there is a third LeJeune woman, Jeanne LeJeune dit Briard, born about 1659. Her daughter, Catherine Joseph’s 1720 marriage record in Port Royal refers to her mother, Jeanne, as being “d’un nation sauvagé”, giving her parents’ names as Francois Joseph and Jeanne LeJeune “of the Indian Nation.” Jeanne LeJeune dit Briard lived with her first husband in Port Royal, but had relocated to LaHeve by 1708.

You can see why this led to confusion about LeJeune females.

Another male, Pierre LeJeune was associated with LaHeve, which suggests he may have been awarded land there, possibly before the colony moved to Port Royal. One of the reasons that the rumor that Catherine LeJeune had a Native mother is so persistent is the belief that Pierre came over early, as a laborer or soldier, and married a Native woman because there weren’t any European women available.

Pierre may well have arrived as a single man, but there is no shred of evidence to suggest Pierre is the father of the sisters, Catherine LeJeune and Edmee LeJeune. In fact, given that Jeanne was born about 1659, Pierre, if he was her father, may have been born as late as 1627, which makes it impossible for him to have been Catherine and Edmee’s father.

That speculation was before the advent of DNA testing, and before Stephen White discovered that there was also a Jean LeJeune who was awarded land exactly where Catherine is known to have been living a few years later.

While it would be nice to unravel this entire cat’s cradle of confusion, the questions we are seeking to answer definitively here are:

  • Are Catherine LeJeune (born 1633) and Edmee LeJeune (born 1624) actually sisters?
  • Is the mother of Catherine LeJeune and her sister, Edmee LeJeune, Native American or European?
  • Is Jeanne LeJeune dit Briard, born about 1659, “d’un nation sauvagé” another sister of the LeJeune sisters?
  • What else is revealed about the LeJeune sisters and their ancestors? Is there something else we should know?

I’ll provide a summary of the combined evidence after our step-by-step mitochondrial analysis.

Testing for Sisters

Mitochondrial DNA is passed from mothers to all of their children, but only females pass it on.

Since we have two LeJeune females, believed to be sisters, we need mitochondrial DNA from direct matrilineal testers for each woman. This is particularly important because we know unquestionably that Edmee was born in France in 1624, prior to Acadian settlement in New France, so her DNA should be European. If they match, it means that Catherine was born to the same mother who was not Native. If they don’t match, there’s a different message.

In some cases, a match might mean that they were born to females related on the matrilineal line, like first cousins, for example. But in the early days of Acadia, there were no European females other than the handful, less than a dozen, who arrived on the Saint-Jehan in 1636.

Fortunately, we have multiple testers for each woman in two DNA projects at FamilyTreeDNA, the only DNA testing company that provides mitochondrial DNA testing and matching. Testers can join special interest projects, and both the Mothers of Acadia Project, and the Acadian AmerIndian Project have testers who descend from the LeJeune sisters.

I’ve identified 28 descendants of Catherine, and 25 from Edmee, giving us a total of 53 known matrilineal descendants to work with. Not all are shown publicly, in projects. Catherine has a known total of 14 testers, and Edmee has 17 that are shown publicly. All testers are members of haplogroup U6a7a1a.

The fact that the descendants of these women match each other, often exactly, combined with Catholic parish register dispensations for their descendants, when taken together, prove conclusively that Catherine and Edmee were sisters, not paternal half-sisters.

Let’s look at each piece of evidence.

Mitochondrial DNA Results

When the lab finishes processing the mtFull test, the results are posted to the account of the test taker.

Click on any image to enlarge

You’ll see the Maternal Line Ancestry section which displays your mitochondrial mtDNA Results.

The three tabs we will be primarily working with are:

  • mtDNA Matches
  • Matches Maps
  • Discover Haplogroup Reports, which includes another dozen+ reports and an updated Migration Map
  • Advanced Matching

At the bottom right of your page, you’ll see two haplogroup badges.

The one at right is called the “Legacy” haplogroup, which means the haplogroup you were assigned prior to the release of the new Mitotree.

The Mitotree mtDNA Haplogroup, with the green “Beta” at the bottom, is the new Mitotree haplogroup, which I wrote about in a series of articles:

Your old Legacy haplogroup will never change, because it’s the 2016 version that was not updated by the previous tree-keepers. That’s why the FamilyTreeDNA R&D team, me included, developed and birthed the new Mitotree. There were thousands of new haplogroups that could be defined to kick-start our genealogy, so we did.

The mitochondrial tree went from about 5000 branches to over 40,000 in the new Mitotree, each providing additional information to testers.

Not everyone received a new haplogroup, but about 75% of testers did, and another new Mitotree version will be released soon. In order to receive a new haplogroup, testers needed to:

  • Have at least one qualifying, stable mutation that had not been previously used to define a haplogroup
  • Match at least one other person in the same haplogroup branch with the same mutation(s)

In the case of the LeJeune sisters, there were no mutations that met all of the qualifications, so their known descendants did not receive a new haplogroup. That’s fine, though, because it’s not the name but the messages held by the information that’s important – and there’s a LOT to work with.

Let’s start with matches.

Matches

Of course, the first thing everyone does is click to see their matches.

The default is Detail View, but I prefer Table View (top left) because you can see more matches on the same page.

Catherine’s descendant whose matches are shown here has 108 Full Sequence matches, which are labeled as the “Coding Region.” The Coding Regions is the mtFULL test and includes both the HVR1 and HVR2 regions. Viewing Coding Region matches means they have taken the mtFull test, which sequences all 16,569 locations of the mitochondria.

When you click on the “Coding Region”, you are seeing matches to people who took all three test levels, not just the first one or two.

There are three test levels to view:

  1. HVR1
  2. HVR1+HVR2 both
  3. Coding Region, which is in addition to the HVR1+HVR2 regions

You can no longer order three different test levels today, although at one time you could. As costs decreased, it no longer made sense to offer multiple testing levels, and often the HVR1 or HVR1+HVR2 results, which only tested about 500 locations each, would confuse people.

People at the lower HVR1 or HVR1+HVR2 levels, known as mtPlus, can upgrade to the complete mtFull level, and should.

However, because some people only tested at those lower levels, matches are still shown at three levels, with different match thresholds for each level.

Matches at the HVR1 or HVR1+HVR2 levels *might* be entirely irrelevant, reaching back thousands of years. They could also be much more current, and critical to your genealogy, so don’t assume. Just one unstable mutation can cause a mismatch though, and at lower levels, cause you not to match someone with the same ancestor, which is why the full sequence test is so critically important.

For some testers, matches at lower levels sometimes provide the ONLY match to your known ancestor. So don’t skip over them. If you find a critical match there, you can email the tester to see if they will upgrade to the mtFull test.

People who test only at the HVR1 or HVR1+HVR2 level receive a more refined haplogroup after they upgrade, so the haplogroups between the HVR1/HVR2 testers and the full sequence test won’t match exactly. For the LeJeune sisters, the haplogroup for HVR1/HVR2-only testers is U6a and for full sequence testers, it’s U6a7a1a.

While full sequence matches are wonderful, if you’re searching for a particular ancestor and the ONLY place they appear is the HVR1 or HVR1+HVR2 testing levels, you’ll want to pursue the match. You may also want to evaluate lower level matches if their ancestors are from a specific location – like France – even if their earliest known ancestor (EKA) is not your ancestor.

To view your  HVR1 or HVR1+HVR2 matches, just click on either of those links. You’ll see ALL of the results, including everyone who took the full sequence test. In this case, that means that the 217 HVR1 (hypervariable region 1) results will include the 120 coding region (full sequence) tests. I’ve already looked through the full sequence matches, so that’s not what I want.

If you ONLY want to see testers who did NOT take the Full Sequence test, use the Filter option. Select Filter, then the features you seek.

Fortunately, the LeJeune sisters have lots of known descendants at the mtFull level to work with, so we will focus on their full sequence matches.

Your Focus

On the matches page, you’ll be immediately interested in two fields:

  • Maternal Earliest Known Ancestor (EKA) – the direct matrilineal ancestor of your match – unless they got confused and entered someone else
  • Their Tree

Viewing the first several matches only produced one match to someone whose earliest known ancestor (EKA) is listed as Catherine or Edmee LeJeune, but perhaps the next group will be more productive. Note that females’ EKAs, earliest known ancestors, are sometimes challenging, given surname changes. So unfamiliar EKAs could represent generational differences and sometimes offer other hints based on their information.

Shifting to the detail view for a minute, you’ll want to review the genetic distance,  meaning whether you’re an exact match or not.

If you’re not an exact match, a genetic distance of “1 step” means that you match except for one mutation at a specific location.

If you have a genetic distance greater than 3, meaning 4 mutations or more, you won’t be shown as a match on this match list. However, you can still be a haplogroup match, which we’ll discuss in the Discover section.

Essentially, with more than 3 mutations difference, it’s unlikely (but not impossible) that your match is genealogically relevant – meaning you probably won’t be able to identify your most recent common ancestor (MRCA).

However, that doesn’t mean that haplogroup-only matches can’t provide important clues, and we will look under every rock!

A Slight Detour – Confirmation Bias

This is a good place to mention that both ancestors and their location (country) of origin are provided by (some) testers to the best of their ability and understanding.

This tester selected “United States Native American” as the location for their earliest known ancestor. We don’t know why they entered that information. It could be that:

  • The tester did not understand that the maternal country of origin means the direct MATRILINEAL line, not just someplace on the maternal side
  • Selina Sinott was Native on her father’s side, or any line OTHER than her direct matrilineal line.
  • They relied on oral history or made a guess
  • They found the information in someone else’s tree
  • They found all of the LeJeune information confusing (because it is)

The tester has provided no tree, so we can’t do any sleuthing here, but an Ancestry search shows a woman by that name born in 1855 in Starksboro, VT to Louis Senott and Victoria Reya. A further search on Victoria leads me to Marie Lussier who leads me to Marguerite Michel who leads me to Marie Anne Lord (Lore, Laure), who lived in Acadia, whose ancestor is…drum roll…Catherine LeJeune. You get the idea.

Yes, you may need to extend other people’s trees.

The Point

However, and this is the point – if you’re looking for confirmation that the LeJeune sisters were Native American, this ONE tester who entered Native American for an unknown reason is NOT the confirmation you’re looking for. Don’t get sucked into confirmation bias, or into categorically believing what someone else entered without additional information.

You need haplogroup confirmation, but, in this case, you don’t have it. However, if you’re new to genetic genealogy, you don’t know that yet, so hold on. We’re still getting there. This is why we need to review all of the reports.

And trust me, I’m not being critical because there isn’t a single seasoned genealogist who has NOT fallen down the rathole of excited confirmation bias or accepting information without further analysis – me included. We all need to actively guard against it, all the time. Confirm and weigh all of the evidence we do have, and seek missing evidence.

Let’s go back to the match results.

Matches – Haplogroups and Haplotypes

Scrolling down the Table View, the next group of matches shows many more matches to descendants of both Catherine and Edmee LeJeune.

Next, you’ll notice that there’s a Mitotree haplogroup, U6a7a1a, AND an F number. In this case, they are both checked in blue, which means you share the exact same haplogroup with that tester, and the exact same haplotype cluster, which is the F number.

I wrote about haplotype clusters, here.

If NEITHER box is checked, you don’t share either the haplogroup nor the haplotype cluster.

You can match the haplogroup, but not the haplotype cluster, which means the haplogroup box will be checked, but the haplotype cluster will not. If you share the same haplotype cluster, you WILL share the same haplogroup, but the reverse is not true.

What is a Haplotype Cluster, and why do they matter?

Haplotype Clusters

We need to talk about exact matches and what they mean. Yes, I know it seems intuitive, but it isn’t.

There are three types of matches

  • Matching and Genetic Distance on your Match List
  • Haplotype matching
  • Haplogroup matching

Without getting (too much) into the weeds, an Exact Match in the Genetic Distance column on your match list excludes locations 309 and 315 because they are too unstable to be considered reliable for matching. So, 309 and 315 are EXCLUDED from this type of matching. In other words, you may or may not match at either or both of those locations. They are ignored for matching on your match list.

Locations 309 and 315 are also EXCLUDED from haplogroup definitions.

A haplotype F cluster match indicates that everyone in that cluster is an exact match, taking into consideration EVERY mutation, INCLUDING 309 and 315.

309 and 315 Why
Matching and Genetic Distance Excluded Unstable, probably not genealogically relevant and may be deceptive, leading you down a rathole
Haplogroup Definition Excluded Too unstable for tree branching and definition
Haplotype F Clusters Included Might be genealogically useful, so everyone can evaluate the rathole for themselves

Some people think that if they don’t match someone exactly, they can’t have the same ancestor as people who do match exactly, but that’s not true. “Mutations happen” whenever they darned well please. Downstream mutations in stable locations that match between two or more testers will form their own haplogroup branch.

The most distant matches are shown on the last match page, and as you can see below, some descendants of Catherine and Edmee LeJeune have a 1-step difference with our tester, meaning a genetic distance of one, or one mutation (disregarding 309 and 315). One match has a 2-step mutation.

The fact that their F numbers are not the same tells you that their mutations are different from each other, too. If two of those people also matched each other, their F# would be identical.

The mutations that do not (yet) form a haplogroup, and are included in your haplotype cluster, are called Private Variants, and you cannot see the private variants of other people. Clearly, you and anyone in your haplotype cluster share all of the same mutations, including Private Variants.

Evaluating Trees and EKAs

By reviewing the matches, their EKAs, and the trees for the matches of Catherine’s descendants, I was able to create a little mini-tree of sorts. Keep in mind that not everyone with an EKA has a tree, and certainly not everyone who uploaded a tree listed an EKA. So be sure to check both resources. Here’s how to add your EKA, and a one-minute video, here.

The good news is that if your match has a WikiTree link when you click on their tree icon, you know their tree actually reaches back to either Edmee or Catherine if that’s their ancestor, and you’re not dealing with a frustrating, truncated two or three-generation tree, or a private tree. You can add your WikiTree link at FamilyTreeDNA here, in addition to any other tree you’ve linked.

Takeaways from Matches

  • You can identify your common ancestor with other testers. By viewing people’s trees and emailing other testers, you can often reconstruct the trees from the tester back through either Catherine or Edmee LeJeune.
  • Your primary focus should be on the people in your haplotype cluster, but don’t neglect other clusters where you may find descendants of your ancestor.
  • If you see a male EKA name, or something other than a female name in the EKA field, like a location, the tester was confused. Only females pass their mitochondrial DNA to their descendants.
  • If you’re searching for an ancestor whose mitochondrial DNA you don’t carry, use projects and WikiTree to see if you can determine if someone has tested from that line. From viewing the project results, I already knew that the LeJeune sisters had several descendants who had tested.
  • If you’re searching for your ancestor on your match list, and you don’t find them in the full sequence results, use the filter to view people who ONLY took the HVR1 and HVR1+HVR2 tests to see if the results you seek are there. They won’t be on your full sequence match list because they didn’t test at that level. Testers at the lower levels will only have a partial, estimated haplogroup – in this case, U6a.
  • For Edmee and Catherine LeJeune, we have enough testers to ensure that we don’t have just one or two people with the same erroneous genealogy. If you do find someone in a project or at WikiTree claiming descent from the same ancestor, but with a different haplogroup, you’ll need to focus on additional research to verify each step for all testers.

Resources:

Matches Maps

The Matches Map is a great visual resource. That “picture is worth 1000 words” tidbit of wisdom definitely applies here.

Clicking on the Matches Maps displays the locations that your matches entered for their EKA.

In the upper left-hand corner, select “Full Sequence,” and only the full sequence matches will be displayed on the map. All full sequence testers also have HVR1/HVR2 results, so those results will be displayed under that selection, along with people who ONLY took the HVR1 or HVR1/HVR2 tests.

We know that the Acadians originally came from France, and their descendants were forcibly expelled from Nova Scotia in 1755. Families found themselves scattered to various locations along the eastern seaboard, culminating with settlements in Louisiana, Quebec, and in some cases, back in France, so this match distribution makes sense in that context.

Be sure to enlarge the map in case pins are on top of or obscuring each other.

Some people from other locations may be a match, too. Reviewing their information may assist with breaking down the next brick wall. Sometimes, additional analysis reveals that the tester providing the information was confused about what to complete, e.g., male names, and you should disregard that pin.

Takeaways from the Matches Map

  • These results make sense for the LeJeune sisters. I would specifically look for testers with other French EKAs, just in case their information can provide a (desperately needed) clue as to where the LeJeune family was from in France.

  • Reviewing other matches in unexpected locations may provide clues about where ancestors of your ancestor came from, or in this case, where descendants of the LeJeune sisters wound up – such as Marie Josephe Surette in Salem, Massachusetts, Catherine LeJeune’s great-granddaughter.
  • Finding large clusters of pins in an unexpected location suggests a story waiting to be uncovered. My matrilineal ancestor was confirmed in church records in Wirbenz, Germany, in 1647 when she married, but the fact that almost all of my full sequence matches are in Scandinavia, clustered in Sweden and Norway, suggests an untold story, probably involving the 30 Years War in Germany that saw Swedish troop movement in the area where my ancestor lived.
  • For my own mitochondrial DNA test, by viewing trees, EKAs, and other hints, including email addresses, I was able to identify at least a country for 30 of 36 full sequence matches and created my own Google map.
  • You can often add to the locations by creating your own map and including everyone’s results.

Resources:

Mitochondrial DNA Part 4 – Techniques for Doubling Your Useful Matches

Mitochondrial DNA Myth – Mitochondrial DNA is not Useful because the Haplogroups are “Too Old”

Before we move to the Discover Reports, I’m going to dispel a myth about haplogroups, ages, genealogical usefulness, and most recent common ancestors known as MRCAs.

Let me start by saying this out loud. YES, MITOCHONDRIAL DNA IS USEFUL FOR GENEALOGY and NO, OLDER HAPLOGROUPS DO NOT PREVENT MITOCHONDRIAL DNA FROM BEING USEFUL.

Here’s why.

The most recent common ancestor (MRCA) is the person who is the closest common ancestor of any two people.

For example, the mitochondrial DNA MRCA of you and your sibling is your mother.

For your mother and her first cousin, the mitochondrial MRCA is their grandmother on the same side, assuming they both descend from a different daughter. Both daughters carry their mother’s undiluted mitochondrial DNA.

A common complaint about mitochondrial DNA is that “it’s not genealogically useful because the haplogroups are so old” – which is absolutely untrue.

Let’s unravel this a bit more.

The MRCA of a GROUP of people is the first common ancestor of EVERY person in the group with each other.

So, if you’re looking at your tree, the MRCA of you, your sibling, and your mother’s 1C in the example above is also your mother’s grandmother, because your mother’s grandmother is the first person in your tree that ALL of the people in the comparison group descend from.

Taking this even further back in time, your mother’s GGG-grandmother is the MRCA for these five people bolded, and maybe a lot more descendants, too.

At that distance in your tree, you may or may not know the name of the GGG-grandmother and you probably don’t know all of her descendants either.

Eventually, you will hit a genealogical brick wall, but the descendants of that unknown “grandmother” will still match. You have NOT hit a genetic brick wall.

A haplogroup name is assigned to the woman who had a mutation that forms a new haplogroup branch, and she is the MRCA of every person in that haplogroup and all descendant haplogroups.

However, and this is important, the MRCA of any two people, or a group of people may very well be downstream, in your tree, of that haplogroup mother.

As you can clearly see from our example, there are four different MRCAs, depending on who you are comparing with each other.

  • Mom – MRCA of you and your sibling
  • Grandmother – MRCA of you, your sibling, your mom and your mom’s 1C
  • GGG-Grandmother – MRCA of all five bolded descendants
  • Haplogroup formation – MRCA of ALL tested descendants, and all downstream haplogroups, many of whom are not pictured

Many of the testers may, and probably do, form haplotype clusters beneath this haplogroup.

When you are seeking a common ancestor, you really don’t care when everyone in that haplogroup was related, what you seek is the common ancestor between you and another person, or group of people.

If the haplogroup is formed more recently in time, it may define a specific lineage, and in that case, you will care because that haplogroup equates to a woman you can identify genealogically. For example, let’s say that one of Catherine LeJeune’s children formed a specific haplogroup. That would be important because it would be easy to assign testers with that haplogroup to their appropriate lineage. That may well be the case for the two people in haplogroup U6a7a1a2, but lack of a more recent haplogroup for the other testers does not hinder our analysis or reduce mitochondrial DNA’s benefits.

That said, the more people who test, the more possibilities for downstream haplogroup formation. Currently, haplogroup U6a7a1a has 34 unnamed lineages, just waiting for more testers.

Haplogroup ages are useful in a number of ways, but haplogroup usefulness is IN NO WAY DEPRICATED BY THEIR AGE. The haplogroup age is when every single person in that haplogroup shares a common ancestor. That might be useful to know, but it’s not a barrier to genealogy. Unfortunately, hearing that persistent myth causes people to become discouraged, give up and not even bother to test, which is clearly self-defeating behavior. You’ll never know what you don’t know, and you won’t know if you don’t test. That’s my mantra!

The LeJeune sisters provide a clear example.

OK, now on to Discover.

mtDNA Discover

Next, we are going to click through from the mtDNA Results and Tools area on your personal page to Discover Haplogroup Reports. These reports are chapters in your own personal book, handed down from your ancestors.

Discover is also a freely available public tool, but you’ll receive additional and personalized information by clicking through when you are signed into your page at FamilyTreeDNA. Only a subset is available publicly.

mtDNA Discover was released with the new Mitotree and provides fresh information weekly.

Think of Discover as a set of a dozen reports just for your results, with one more, Globetrekker, an interactive haplogroup map, coming soon.

Resources:

When you click through to Discover from your results, Discover defaults to your haplogroup. In this case, that’s U6a7a1a for the LeJeune sisters.

Let’s begin with the first report, Haplogroup Story.

Haplogroup Story

The Haplogroup Story is a landing page that summarizes information about your ancestor’s haplogroup relevant to understanding your ancestor’s history. Please take the time to actually READ the Discover reports, including the information buttons, not just skim them.

Think of Discover as your own personalized book about your ancestors – so you don’t want to miss a word.

You’ll see facts on the left, each one with a little “i” button. Click there or mouse over for more information about how that fact was determined.

When we’re talking about haplogroup U6a7a1a, it sounds impersonal, but we’re really talking about an actual person whose name, in this case, we will never know. We can determine the ancestor of some haplogroups that formed within a genealogical timeframe. The LeJeune ancestor in question is the person in whose generation the final mutation in a long string of mutations created the final “a” in haplogroup U6a7a1a.

Think of these as a long line of breadcrumbs. By following them backwards in time and determining when and where those breadcrumbs were dropped, meaning when and where the mutation occurred, we begin to understand the history of our ancestor – where she was, when, and which cultures and events shaped her life.

U6a7a1a was formed, meaning this ancestor was born, about 50 CE, so about 1950 years ago. This means that the ancestor of ANY ONE PERSON with this haplogroup could have lived anytime between the year 50 CE and the year of their mother’s birth.

This is VERY important, because there is an incredible amount of  misunderstanding about haplogroup ages and what they mean to you.

The year 50 CE is the year that the common ancestor of EVERY PERSON in the haplogroup was born, NOT the year that the common ancestor of any two or more people was born.

By way of illustration, the LeJeune sisters were born in about 1624 and 1633, respectively, not 50 CE, and their most recent common ancestor (MRCA) is their mother, who would have been born between about 1590 and 1608, based on their birth years.

For reference, I’ve created this genealogical tree from individuals who took the mitochondrial DNA test and have identified their mitochondrial lineage on the LeJeune mother’s profile at Wikitree

You can see that both Edmee and Catherine have mitochondrial DNA testers through multiple daughters. I’ve color coded the MRCA individuals within each group, and of course their mother is the MRCA between any two people who each descend from Edmee and Catherine.

Mitochondrial DNA matches to the LeJeune sisters’ descendants could be related to each other anywhere from the current generation (parent/child) to when the haplogroup formed, about 50 CE.

You can easily see that all of these testers, even compared with their most distant relatives in the group, share a common ancestor born between 1590 and about 1608. Other people when compared within the group share MCRAs born about 1717 (blue), 1778 (peach), 1752 (green), 1684 (pink), 1658 (mustard), and 1633 (red).

Soooooo…a haplogroup born in 50 CE does NOT mean that you won’t be able to find any genealogical connection because your common ancestor with another tester was born more than 1900 years ago. It means that the common ancestor of EVERYONE who is a member of haplogroup U6a7a1a (and downstream haplogroups) was born about 50 CE.

The parent haplogroup of U6a7a1a is haplogroup U6a7a1, which was born about 1450 BCE, or about 3450 years ago.

In the graphic, I’ve shown other unknown genealogical lineages from U6a7a1 and also downstream haplogroups.

Haplogroup U6a7a1 is the MRCA, or most recent common ancestor of haplogroup U6a7a1a, and anyone who descends from haplogroup U6a7a1 or any of the 23 downstream lineages from U6a7a1, including 5 descendant haplogroups and 18 unnamed lineages.

The LeJeune haplogroup, U6a7a1a, has 35 descendant lineages. One downstream haplogroup has already been identified – U6a7a1a2 – which means two or more people share at least one common, stable, mutation, in addition to the mutations that form U6a7a1a. Thirty-four other lineages are as yet unnamed.

The fact that there are 34 unnamed lineages means that people with one or more private variants, or unique mutations, are candidates for a new branch to form when someone else tests and matches them, including those variants.

You’re a candidate for a new haplogroup in the future if no one else matches your haplotype cluster number, or, potentially, as the tree splits and branches upstream.

When a second person in a lineage tests, those two people will not only share a common haplotype cluster F#, they will share a new haplogroup too if their common mutation is not excluded because it’s unstable and therefore unreliable.

There are 127 members of haplogroup U6a7a1a today, and their EKAs are noted as being from France, Canada, the US, and other countries that we’ll view on other pages.

Haplogroup U6a7a1a has been assigned two Discover badges:

  • Imperial Age – “an age noted for the formation and global impact of expansive empires in many parts of the world.” In other words, colonization, which is certainly true of the French who battled with the English to colonize New England, Acadia, and New France.
  • mtFull Confirmed (for testers only)

Additionally, the LeJeune sisters have one Rare Notable Connection, and three Rare Ancient Connections, all of which may shed light on their history.

Takeaways from the Haplogroup Story

  • The Haplogroup Story provides an overview of the haplogroup
  • You can easily see how many testers fall into this haplogroup and where they have indicated as the origin of their matrilineal line.
  • The haplogroup may have several new haplogroup seeds – 34 in this case – the number of unnamed lineages
  • You can share this or other Discover pages with others by using the “share page” link in the upper right-hand corner.
  • Don’t be discouraged by the age of the haplogroup, whether it’s recent or older.

Next, let’s look at Country Frequency.

Country Frequency

Country Frequency shows the locations where testers in haplogroup U6a7a1a indicate that their EKA, or earliest known matrilineal ancestor, is found. The Country Frequency information is NOT limited to just your matches, but all testers in haplogroup U6a7a1a, some of whom may not be on your match list. Remember, only people with 3 mutations difference, or fewer, are on your match list.

Haplogroup distribution around the world is very informative as to where your ancestors came from.

There are two tabs under Country Frequency, and I’d like to start with the second one – Table View.

Table View displays all of the user-provided country locations. Note that the Haplogroup Frequency is the percentage of total testers in which this haplogroup is found in this particular country. These frequencies are almost always quite small and are location-based, NOT haplogroup based.

There are now 40,000 haplogroups, and in haplogroup U, the LeJeune sisters are 6 branches down the tree with U6a7a1a.

In total, 127 testers are members of haplogroup U6a7a1a, and 42 of those claim that their ancestor is from France, which comprises 1% of the people who have taken the full sequence mitochondrial DNA test whose ancestor is from that location.

Let’s do the math so you can see how this is calculated and why it’s typically so small. For our example, let’s say that 8000 people in the database have said their matrilineal ancestor is from France. Of the 127 haplogroup U6a7a1a members, 42 say their ancestor is from France. Divide 42 by 8,000, which is 0.00525, and round to the nearest percentage – which is 1%.

The best aspect of this page is that you can see a nice summary of the locations where people indicate that their earliest known U6a7a1a ancestor was found.

Please note that the last entry, “Unknown Origins,” is the bucket that everyone who doesn’t provide a location falls into. That row is not a total but includes everyone who didn’t provide location information.

These location results make sense for the LeJeune sisters – maybe except for Ireland and Belgium. Some people don’t understand the directions, meaning that a matrilineal ancestor or direct maternal ancestor is NOT your literal “oldest” ancestor on your mother’s side of the tree who lived to be 105, but your mother-to-mother-to-mother-to-mother ancestor, so check to see if these people with unusual locations are in your match list and view their tree or reach out to them.

We don’t know why the person who selected Native American made that choice, but I’d bet it has to do with confusion about the “other” LeJeune female, Jeanne LeJeune dit Briard. Based on Catherine and her sister, Edmee LeJeune’s haplogroup through more than 50 testers, U6a7a1a, Native is incorrect.

Of course, that tester wouldn’t have known that if they completed their EKA information before they tested. Perhaps they entered information based on the stories they had heard, or flawed genealogy, and didn’t think to go back and correct it when their results were ready, indicating that Native was mistaken.

On the “Map View” tab, the locations are shown using a heat map, where the highest percentages are the darkest. Here, both France and Canada are the darkest because that’s the most common selection for this haplogroup with 1% each, while the rest of the countries registered with less <1%.

These colors are comparative to each other, meaning that there is no hard and fast line in the sand that says some percentage or greater is always red.

To summarize these two tables, because this is important:

  • The Table View shows you how many people selected a specific country for their ancestor’s location, but the frequency is almost always very low because it’s based on the total number of testers in the entire database, comprised of all haplogroups, with ancestors from that country.
  • The Map View shows you a heat map for how frequently a particular location was selected, as compared to other locations, for this haplogroup.

To view the difference between adjacent haplogroups, I always compare at least one haplogroup upstream. In this case, that’s the parent haplogroup, U6a7a1.

The Parent Haplogroup

If you look at haplogroup U6a7a1, just one haplogroup upstream, you’ll see that for Mauritania, the total number of U6a7a1 descendants tested is only “1”, but the haplogroup frequency in Mauritania is 10% which means that there are only 10 people who have been tested in the database altogether from Mauritania – and one person is haplogroup U6a7a1.

However, due to substantial under-sampling of the Mauritania population, the frequency for Mauritania, 10%, is higher than any other location.

Also, remember, these are user-reported ancestor locations, and we have no idea if or how these people determined that their ancestor is actually from Mauritania.

Please only enter actual known locations. For example, we don’t want haplogroup U6a7a1 members to look at this informatoin, then add Mauritania as their location because now they “know” that their ancestor is from Mauritania.

On the Map View, Mauritania is dark red because the percentage is so high – never mind that there are only 10 testers who report matrilineal ancestors from there, and only one was U6a7a1.

This map illustrates one reason why taking the full sequence test is important. Viewing partial haplogroups can be deceiving.

Catherine and Edmee LeJeune’s matrilineal descendants who only tested at the HVR1 or HVR1+HVR2 level receive a predicted haplogroup of U6a, born about 21,000 years ago. That’s because the full 16,569 locations of the mitochondria need to be tested in order to obtain a full haplogroup, as opposed to about 500 locations in the HVR1 and HVR1/2, each, respectively.

U6a – The Result for HVR1/HVR2-Only Testers

So, let’s look at what haplogroup U6a reveals, given that it’s what early LeJeune descendants who ordered the lower-level tests will see.

In the Table View for U6a, below, you see that the top 5 counties listed by haplogroup frequency are five North African countries.

A total of 801 people are assigned to haplogroup U6a, meaning the majority, 757, report their ancestors to be from someplace else. If two people from the Western Sahara (Sahrawi) comprise 67% of the people who tested, we know there are only three people who have tested and selected that location for their ancestors.

If you didn’t understand how the display works, you’d look at this report and see that the “top 5” countries are North African, and it would be easy to interpret this to mean that’s where Catherine and Edmee’s ancestors are from. That’s exactly how some people have interpreted their results.

Scrolling on down the Table View, 50 testers report France, and 10 report the US, respectively, with France showing a Haplogroup Frequency of 1% and the US <1%.

The balance of U6a testers’ ancestors are from a total of 57 other countries, plus another 366 who did not select a location. Not to mention that U6a was born 21,000 years ago, and a lot has happened between then and the 1620/1630s when Catherine and Edmee were born to a French mother.

The real “problem” of course is that haplogroup U6a is only a partial haplogroup.

The U6a map shows the highest frequency based on the number of testers per country, which is why it’s dark red, but the Table View reports that the actual number of U6a testers reporting any specific country. France has 50. Next is the US, also with 50, which often means people are brick-walled here. You can view the U6a table for yourself, here.

Why is this relevant for Catherine and Edmee LeJeune? It’s very easy to misinterpret the map, and for anyone viewing U6a results instead of U6a7a1a results, it’s potentially genealogically misleading.

Use Country Frequency with discretion and a full understanding of what you’re viewing, especially for partial haplogroups from HVR1/HVR2 results or autosomal results from any vendor.

If someone tells you that the LeJeune sisters are from someplace other than France, ask where they found the information. If they mention Africa, Morocco or Portugal, you’ll know precisely where they derived the information.

This information is also available on your Maternal Line Ancestry page, under “See More,” just beneath the Matches tab. Haplogroup Origins and Ancestral Origins present the same information in a different format.

Discover is a significant improvement over those reports, but you’ll still need to read carefully, understand the message, and digest the information.

Takeaways from Country Frequency

  • Evaluate the results carefully and be sure to understand how the reports work.
  • Use complete, not partial haplogroups when possible.
  • The Haplogroup Frequency is the number of people assigned to this haplogroup divided by the entire number of people in the database who report that country location for their matrilineal ancestor. It is NOT the percentage of people in ONLY haplogroup U6a7a1a from a specific country.
  • Table view shows the number of testers with this haplogroup, with the percentage calculated per the number of people who have tested in that country location.
  • The Map shows the highest frequency based on the number of testers per country.
  • Use the map in conjunction with the haplogroup age to better understand the context of the message.

Globetrekker, which has not yet been released, will help by tracking your ancestors’ paths from their genesis in Africa to where you initially find that lineage.

Before we move on to the Mitotree, let’s take a minute to understand genetic trees.

About Genetic Trees

The Mitotree is a genetic tree, also called a phylogenetic tree, that generally correlates relatively closely with a genealogical tree. The more testers in a particular haplogroup, the more accurate the tree.

FamilyTreeDNA provides this disclaimer information about the genetic tree. The Mitotree you see is a nice and neat published tree. The process of building the tree is somewhat like making sausage – messy. In this case, the more ingredients, the better the result.

The more people that test, the more genetic information is available to build and expand the tree, and the more accurate it becomes.

The recent Mitotree releases have moved the haplogroup “dates” for the LeJeune sisters from about 21,000 years ago for HVR1/HVR2 U6a testers to 50 CE for full sequence testers, and this may well be refined in future tree releases.

Mutations

Mutations and how to interpret them can be tricky – and this short section is meant to be general, not specific.

Sometimes mutations occur, then reverse themselves, forming a “back mutation”, which is usually counted as a branch defining a new haplogroup. If a back mutation happens repeatedly in the same haplogroup, like a drunken sailor staggering back and forth, that mutation is then omitted from haplogroup branch formation, but is still counted as a mismatch between two testers.

A heteroplasmy is the presence of two or more distinct results for a specific location in different mitochondria in our bodies. Heteroplasmy readings often “come and go” in results for different family members, because they are found at varying threshold levels in different family members, causing mismatches. Heteroplasmies are currently counted only if any person has 20% or greater of two different nucleotides. So, if you have a 19% heteroplasmy read for a particular location, and your sister has 21%, you will “not” have a heteroplasmic condition reported, but she will, and the location will be reported as a mismatch.

If you have a heteroplasmy and another family member does not, or vice versa, it’s counted as as a “mismatch,” meaning you and that family member will find yourselves in different haplotype clusters. Hetroplasmies do not presently define new tree branches. I wrote about heteroplasmies, here.

Takeaways from the Genetic Tree Disclaimer

  • DNA is fluid, mutations happen, and all mutations are not created equal.
  • Thankfully, you really don’t need to understand the nitty-gritty underpinnings of this because the scientists at FamilyTreeDNA have translated your results into reports and features that take all of this into consideration.
  • Testing more people helps refine the tree, which fills in the genetic blanks, refining the dates, and expanding branches of the tree.

Resources:

Ok, now let’s look at the Time Tree

Time Tree

The Time Tree displays your haplogroup on the Mitotree timeline. In other words, it shows us how old the haplogroup is in relation to other haplogroups, and testers.

The Time Tree displays the country locations of the ancestors of testers who are members of that and descendant or nearby haplogroups. You can view the haplogroup U6a7a1a Time Tree, here, and follow along if you wish. Of course, keep in mind that the tree is a living, evolving entity and will change and evolve over time as updated tree versions are released.

Mousing over the little black profile image, which is the person in whom this haplogroup was born, pops up information about the haplogroup. Additionally, you’ll see black bars with a hashed line between them. This is the range of the haplogroup formation date. Additional details about the range can be found on the Scientific Details tab, which we’ll visit shortly.

On your Matches tab, remember that each match has both a haplogroup and a haplogroup cluster F# listed.

On the Time Tree, individual testers are shown at right, with their selected country of origin. In this case, you’ll see the person who selected “Native American” at the top, followed by France, Canada, the US, and other flags.

Haplogroup U6a7a1a includes several haplotype clusters, designated by the rounded red brackets. In this view, we can see several people who have haplotype cluster matches. Everyone has a haplotype assignment, but a haplotype cluster is not formed until two people match exactly.

In the Time Tree view, above, you can see two clusters with two members each, and the top of a third cluster at the bottom.

In case you’re wondering why some of the globes are offset a bit, they positionally reflect the birth era of the tester, rounded to the closest 25 years, if the birth year is provided under Account Settings. If not, the current tester position defaults to 1950.

Scrolling down to the next portion of the window shows that the third cluster is VERY large. Inside the cluster, we see Belgium, Canada, and France, but we aren’t even halfway through the cluster yet.

Continuing to scroll, we see the cluster number, F7753329, in the middle of the cluster, along with the French flag, two from Ireland, four from the US, and the beginning of the large unknown group.

In this fourth screenshot, at the bottom of the display, we see the balance of haplotype cluster #F7753329, along with eight more people who are not members of that haplotype cluster, nor any other haplotype cluster.

Finally, at the bottom, we find haplogroup U6a7a1a2, a descendant haplogroup of U6a7a1a. Are they descendants of the LeJeune sisters?

Looking back at our tester’s match list, the two people who belong to the new haplogroup U6a7a1a2 haven’t provided any genealogical information. No EKA or tree, unfortunately. The haplogroup formation date is estimated as about 1483, but the range extends from about 1244-1679 at the 95th percentile. In other words, these two people could be descendants of:

  • Either Catherine or Edmee LeJeune, but not both, since all of their descendants would be in U6a7a1a2.
  • An unknown sister to Catherine and Edmee.
  • A descendant line of an ancestor upstream of Catherine and Edmee.

Takeaways from the Time Tree

  • The visualization of the matches and haplotype clusters illustrates that the majority of the haplogroup members are in the same haplogroup cluster.
  • Given that two women, sisters, are involved, we can infer that all of the mutations in this haplotype cluster were common to their mother as well.
  • Haplotype cluster #F7753329 includes 19 testers from Catherine and 17 from Edmee.
  • Downstream haplogroup U6a7a1a2 was born in a daughter of haplogroup U6a7a1a, as early as 1244 or as late as 1679. Genealogy information from the two testers could potentially tell us who the mutation arose in, and when.
  • As more haplogroup U6a7a1a2 testers provide information, the better the information about the haplogroup will become, and the formation date can be further refined.

Smaller haplotype clusters have a story to tell too, but for those, we’ll move to the Match Time Tree.

Match Time Tree

The Match Time Tree is one of my favorite reports and displays your matches on the Time Tree. This feature is only available for testers, and you must be signed in to view your Match Time Tree.

By selecting “Share Mode”, the system obfuscates first names and photos so you can share without revealing the identity of your matches. I wrote about using “Share Mode” here. I have further blurred surnames for this article.

The Match Time Tree incorporates the tree view, with time, the names of your matches PLUS their EKA name and country, assuming they have entered that information. This is one of the reasons why the EKA information is so important.

This display is slightly different than the Time Tree, because it’s one of the features you only receive if you’ve taken the mtFull test and click through to Discover from your account.

The Time Tree view is the same for everyone, but the Match Time Tree is customized for each tester.

Your result is shown first, along with your haplotype cluster if you are a member of one.

You can easily see the names of the EKAs below the obfuscated testers’ names.

While we immediately know that descendants of both Catherine and Edmee are found in the large cluster #F7753329, we don’t yet know which ancestors are included in other haplotype clusters.

Haplogroup U6a7a1a includes two smaller haplotype clusters with 2 people each.

We know a few things about each of these clusters:

  • The people in each cluster have mutations that separate them from everyone else except the other person in their cluster
  • The results are identical matches to the other person in the cluster, including less reliable locations such as 309 and 315
  • There are other locations that are excluded from haplogroup formation, but are included in matching, unlike 309 and 315.
  • Given that they match only each other exactly, AND they did not form a new haplogroup, we know that their common unique mutation that causes them to match only each other exactly is unreliable or unstable, regardless of whether it’s 309, 315, a heteroplasmy, or another marker on the list of filtered or excluded variants.

Only the tester can see their own mutations. By inference, they know the mutations of the people in their haplotype cluster, because they match exactly.

If you’re a member of a cluster and you’re seeking to determine your common ancestor, you’ll want to analyze each cluster. I’ve provided two examples, below, one each for the red and purple clusters.

Red Haplotype Cluster #F3714849

Only one person in the red cluster has included their EKA, and the tree of the second person only reaches to three generations. Tracking that line backwards was not straightforward due to the 1755 expulsion of the Acadians from Nova Scotia.

The second person listed their EKA as Edmee LeJeune, but they have a private tree at MyHeritage, so their matches can’t see anything. I wonder if they realize that their matches can’t view their tree.

We are left to wonder if both people descend from Edmee LeJeune, and more specifically, a common ancestor more recently – or if the unstable mutation that they share with each other is simply happenstance.

E-mailing these testers would be a good idea.

Purple Haplotype Cluster #F2149611

Evaluating the purple cluster reveals that the common ancestor is Catherine LeJeune. The question is twofold – how are these two people related downstream from Catherine, and how unstable is their common mutation or mutations.

Fortunately, both people have nice trees that track all the way back to Catherine.

Unfortunately, their MRCA is Francoise, the daughter of Catherine. I say unfortunately, because two additional testers also descend from Francoise, and they don’t have the haplotype cluster mutation. This tells us that the cluster mutation is unreliable and probably not genealogically relevant because it occurred in two of Francoise’s children’s lines independently, but not all four.

In other words, that specific mutation just happened to occur in those two people.

This is exactly why some mutations are not relied upon for haplogroup definition.

Takeaways from the Match Time Tree

  • The time tree is a wonderful visualization tool that shows all of your matches, their EKAs and countries, if provided, in haplotype clusters, on the Time Tree. This makes it easy to see how closely people are related and groups them together.
  • On your match page, you can easily click through to view your matches’ trees.
  • You can use both haplotype clusters (sometimes reliable) and downstream haplogroups (reliable) to identify and define lineages on your family tree. For example, if a third person matches the two in haplogroup U6a7a1a2, the child haplogroup of U6a7a1a, and you could determine the common ancestor of any two of the three, you have a good idea of the genealogical placement of the third person as well.
  • You know that if people form a haplotype cluster, but not a new haplogroup, that their common haplotype cluster-defining mutation is less reliable and may not be genealogically relevant.
  • On the other hand, those less reliable mutations may not be reliable enough for haplogroup definition, but may be relevant to your genealogy and could possibly define lineage splits. Notice all my weasel words like “may,” “may not” and “possibly.” Also, remember our purple cluster example where we know that the mutation in question probably formed independently and is simply chance.
  • I can’t unravel the ancestors of the red cluster – and if I were one of those two people, especially if I didn’t know who my ancestor was, I’d care a lot that the other person didn’t provide a useful tree. Don’t forget that you can always reach out via email, offer to collaborate, and ask nicely for information.
  • We need EKAs, so please encourage your matches to enter their EKA, upload a tree or link to a MyHeritage tree, and enter a Wikitree ID in their FamilyTreeDNA profile, all of which help to identify common ancestors.

Resources:

Classic Tree

FamilyTreeDNA invented the Time Tree and Match Time Tree to display your results in a genealogically friendly way, but there is important information to be gleaned from other tree formats as well.

The Classic Tree presents the Mitotree, haplogroup and haplotype information in the more traditional format of viewing phylogenetic trees, combining their beneficial features. There’s a lot packed in here.

In this default view, all of the Display Options are enabled. We are viewing the LeJeune haplogroup, U6a7a1a, with additional information that lots of people miss.

The countries identified as the location of testers’ earliest known ancestors (EKA) are shown.

Listed just beneath the haplogroup name, five people are members of this haplogroup and are NOT in a haplotype cluster with anyone else, meaning they have unique mutations. When someone else tests and matches them, depending on their mutation(s), a new haplogroup may be formed. If they match exactly, then at least a new haplotype cluster will be formed.

Portions of three haplotype clusters are shown in this screenshot, designated by the F numbers in the little boxes.

Additional information is available by mousing over the images to the right of the haplogroup name.

Mousing over the badge explains the era in which the haplogroup was born. Rapid expansion was taking place, meaning that people were moving into new areas.

Mousing over the date explains that the scientists behind the Mitotree are 95% certain about the date range of the birth of this haplogroup, rounded to 50 CE. Remember, your common ancestor with ALL haplogroup members reaches back to this approximate date, but your common ancestor with any one, or a group, of testers is sometime between the haplogroup formation date, 50 CE, and the present day.

Mousing over the year shows the confidence level, and the date range at that level. These dates will probably be refined somewhat in the future.

If haplogroup members have private variants, it’s likely or at least possible that a new branch will split from this one as more people test

Mousing over the star displays the confidence level of the structure of this portion of the Mitotree based on what could be either confusing or conflicting mutations in the tree. For haplogroup U6a7a1a, there’s no question about the topology, because it has a 10 of 10 confidence rating. In other words, this branch is very stable and not going to fall off the tree.

Every haplogroup is defined by at least one mutation that is absent in upstream branches of the tree. Mutations are called variants, because they define how this sample, or branch, varies from the rest of the branches in the Mitotree.

These two mutations, A2672G and T11929C, are the haplogroup-defining mutations for U6a7a1a. Everyone in haplogroup U6a7a1a will have these two mutations in addition to all of the mutations that define directly upstream haplogroups (with extremely rare exceptions). Haplogroup-defining mutations are additive.

There may be more haplogroup-defining mutations than are displayed, so click on the little paper icons to copy to your clipboard.

You can view upstream haplogroups and downstream haplogroups, if there are any, by following the back arrows to upstream haplogroups, and lines to downstream haplogroups.

For example, I clicked on the arrow beside haplogroup U6a7a1a to view its parent haplogroup, U6a7a1, and a second time to view its parent, haplogroup U6a7a. If I click on the back arrow for U6a7a, I’ll continue to climb up the tree.

Beneath U6a7a, you can see the haplogroup branches, U6a7a1a and U6a7a2.

Beneath U6a7a1, you’ll notice:

  • People who don’t share haplotype clusters with anyone
  • Three haplotype clusters
  • Five descendant haplogroups from U6a7a1, including the LeJeune sister’s haplogroup U6a7a1a.

To expand any haplogroup, just click on the “+”.

You may see icons that are unfamiliar. Mouse over the image or click on the “Show Legend” slider at upper right to reveal the decoder ring, I mean, legend.

You can read more about the symbols and how haplogroups are named, here, and see more about types of mutations in the Scientific Details section.

Takeaways from the Classic Tree

  • The Classic Tree provides a quick summary that includes important aspects of a haplogroup, including when it was formed, which mutations caused it’s formation, and each branch’s confidence level.
  • It’s easy to back your way up the tree to see where your ancestor’s founding haplogroups were located, which speaks to your ancestor’s history. Patterns, paths, and consistency are the key.
  • Ancient DNA locations in your tree can provide a very specific location where a haplogroup was found at a given point in time, but that doesn’t necessarily mean that’s where the haplogroup was born, or that they are your ancestor. We will get to that shortly.
  • You can share this page with others using the “Share Page” function at the top right.

Ancestral Path

The Ancestral Path is a stepping-stone chart where you can view essential information about each haplogroup in one row, including:

  • Age and era
  • Number of years between haplogroups
  • Number of subclades
  • Number of modern-day testers who belong to this haplogroup
  • Number of Ancient Connections that belong to this haplogroup, including all downstream haplogroups

This “at a glance” history of your haplogroup is the “at a glance” history of your ancestors.

The number in the column titled “Immediate Descendants”, which is the number of descendant haplogroups, tells a story.

If you see a large, or “larger” number there, that indicates that several “child” haplogroups have been identified. Translated, this means that nothing universally terrible has occurred to wipe most of the line out, like a volcano erupting, or a famine or plague that would constitute a constraining bottleneck event. Your ancestors’ children survived and apparently thrived, creating many descendant downstream haplogroups, known as an expansion event.

If you see a smaller number, such as rows 5, 7, 8, 9, and 13, each of which have only two surviving branches, yours and another, several branches probably didn’t survive to the present day. This may reflect a bottleneck where only a few people survived or the lines became extinct over time, having no descendants today. Either that, or the right people haven’t yet tested. Perhaps they are living in a particularly undersampled region of the world, a tiny village someplace, or there aren’t many left.

The two most recent haplogroups have the most subclades, indicating that your ancestors were successfully reproducing in the not-too-distant past. Mutations occurred because they randomly do, creating new haplogroups, and several haplogroup members have tested today. Hopefully, genealogy can connect us further.

The next column, “Tested Modern Descendants,” tallies the total number of testers as it rolls up the tree. So, each haplogroup includes the testers in its downstream (child) haplogroups. The 127 people in haplogroup U6a7a1a include the two people in haplogroup U6a7a1a2, and the 226 people in haplogroup U6a7a1 include the 127 people in haplogroup U6a7a1a.

Looking at other types of trees and resources for each haplogroup can suggest where our ancestors were at that time, perhaps correlating with world or regional history that pertains to the lives of those ancestors.

In our case, the LeJeune sisters’ ancestors did well between 3450 years ago through the formation of U6a7a1a, about 1950 years ago. 3500 years ago, in Europe, settlements were being fortified, leadership was emerging as complex social patterns formed, and trade networks developed that spanned the continent and beyond.

Between 20,000 and 3,450 years ago, not so much. This correlates to the time when early European farmers were moving from Anatolia, bringing agriculture to Europe en masse. However, they were not the first people in Europe. Early modern humans arrived and lived in small groups about 50,000 years ago.

And they very nearly didn’t survive. Many lines perished.

Takeaways from the Ancestral Path

  • The Ancestral Path shows the stepping stones back to Mitochondrial Eve, dropping hints along the way where expansions occurred, meaning that your ancestors were particularly successful, or conversely, where a bottleneck occurred and the lineage was in jeopardy of extinction.
  • In some cases, where a lot of time has passed between haplogroups, such as 8,000 years between U and U6, we’re seeing the effect of lineages dying out. However, with each new tester, there’s the possibility of a previously undiscovered branch split being discovered. That’s precisely what happened with haplogroup L7.

Migration Map

The Discover Migration Map shows the path that your ancestor took out of Africa, and where your base ancestral haplogroup was formed.

Mousing over the little red circle displays the haplogroup, and the area where it originated. Based on this location where U6 was found some 31,000 years ago, we would expect to find U6 and subgroups scattered across North Africa, the Levant, and of course, parts of Eurasia and Europe.

It’s interesting that, based on what we know using multiple tools, it appears that haplogroup U initially crossed between the Horn of Africa and the Arabian Peninsula, at the present-day Strait of Bab-el-Mandeb. Today, that crossing is about 15 nautical miles, but the sea level was much lower during earlier times in history, including the last glacial maximum. Humans would have seen land across the water, and could potentially have swum, drifted, or perhaps used early boats.

Over the next 10,000+ years, haplogroup U trekked across the Arabian peninsula into what is present-day Iran, probably moving slowly, generation by generation, then turning back westward, likely in a small group of hunter-gatherers, crossing the Nile Delta into North Africa, present-day Egypt.

They probably fished along the Nile. Food would have been plentiful along rivers and the sea.

It’s exciting to know that the ancestors of the LeJeune sisters lived right here, perhaps for millennia.

There’s more, however.

The Migration Map shows the location of the genetically closest Ancient DNA results to your haplogroup, obtained from archaeological excavations. This mapped information essentially anchors haplogroup branches in locations in both space and time.

Ancient DNA samples are represented by tiny brown trowels. Clicking on each trowel provides summary information about the associated sample(s) in that location.

Takeaways from the Migration Map

  • Scientists have estimated the location where your base haplogroup originated. For the LeJeune sisters, that’s haplogroup U6 in North Africa along the Mediterranean Sea.
  • The trowels show the locations of the genetically closest archaeological samples, aka Ancient Connections, in the FamilyTreeDNA data base.
  • These Ancient Connections displayed on the map may change. New samples are added regularly, so your older samples, except for the oldest two, which remain in place for each tester, will roll off your list when genetically closer Ancient Connections become available.
  • There are no Ancient Connections for the LeJeune sisters in France today, but keep in mind that Europe is closely connected. Today’s French border is only about 25 miles as the crow flies from Goyet, Belgium. France, sea to sea, is only about 500 miles across, and at its closest two points, less than 250 miles.
  • Samples found at these locations span a large timeframe.

There’s a LOT more information to be found in the Ancient Connections.

Ancient Connections

Ancient Connections is one of my favorite Discover features. This information would never have been available, nor synthesized into a usable format, prior to the introduction of Mitotree and mtDNA Discover. Ancient Connections unite archaeology with genealogy.

  • The first thing I need to say about Ancient Connections is that it’s unlikely that these individuals are YOUR direct ancestors. Unlikely does not mean impossible, but several factors, such as location and timeframe need to be considered.
  • What is certain is that, based on their mitochondrial haplogroup, you SHARE a common ancestor at some point in time.
  • Ancient samples can be degraded, with missing genetic location coverage. That means that not every mutation or variant may be able to be read.
  • Different labs maintain different quality criteria, and location alignments may vary, at least somewhat, lab to lab. While this is always true, it’s particularly relevant when comparing ancient DNA results which are already degraded.
  • Samples are dated by archaeologists using a variety of methodologies. FamilyTreeDNA relies on the dates and historical eras provided in the academic papers, but those dates may be a range, or contain errors.
  • Obtaining information from ancient DNA samples isn’t as easy or straightforward as testing living people.

However, the resulting information is still VERY useful and incredibly interesting – filling in blanks with data that could never be discerned otherwise.

Many people mistakenly assume that these Ancient Connections are their ancestors, and most of the time, not only is that not the case, it’s also impossible. For example, a woman who lived in 1725 cannot be the ancestor of two sisters who were born in 1624 and 1633, respectively.

When you click on Ancient Connections, you see a maximum of about 30 Ancient Connections. Information about the genetically closest burial is displayed first, with the most distant last on the list.

Please note that the final two are the oldest and will (likely) never change, or “roll off” your list, unless an even older sample is discovered. When new samples become available and are genetically closer, the oldest other samples, other than the oldest two, do roll off to make space for the closer haplogroups and their corresponding samples.

Obviously, you’ll want to read every word about these burials, because nuggets are buried there. I strongly encourage you to read the associated papers, because these publications reveal snippets of the lives of your haplogroup ancestors and their descendants.

The small pedigree at right illustrates the relationship between the ancient sample and the haplogroup of the tester. Three things are listed:

  1. El Agujero 8, the name assigned by the authors of the paper that published the information about this ancient sample
  2. The haplogroup of the LeJeune descendant who tested
  3. The haplogroup of their common ancestor.

If no haplogroup is specifically stated for the ancient sample, the sample is the same haplogroup as the common shared ancestor (MRCA), meaning the tester and the ancient sample share the same haplogroup.

The Time Tree beneath the description shows the tester’s haplogroup, (or the haplogroup being queried), the ancient sample, and their common ancestral haplogroup.

Let’s analyze this first sample, El Agujero 8.

  • The person whose remains were sampled lived about 1375 years ago (I’ve averaged the range), in the Canary Islands, and is part of the Guanche culture.
  • The Guanche are the indigenous people of the Canary Islands, already established there before the arrival of Europeans and the Spanish conquest of the 1400s.
  • The Guanche people are believed to have arrived in the Canaries sometime in the first millennium BCE (2000-3000 years ago) and were related to the Berbers of North Africa.
  • This makes sense if you consider the Migration map and geographic proximity.
  • Haplogroup U6a7a1, the haplogroup of El Agujero 8, is the shared ancestral haplogroup with the LeJeune sisters.
  • That woman, U6a7a1, lived around 1450 BCE, or 3450 years ago, probably someplace in North Africa, the Mediterranean basin, or even in the Nile Delta region, given the correlation between the Canary Islands settlement, the Berbers, and the Migration Map.
  • This does NOT mean that the ancestor of the LeJeune sisters lived in the Canary Islands. It means that a descendant of their MRCA, haplogroup U6a6a1, the shared common ancestor with the LeJeune sisters, lived in the Canary Islands.

Ancient Connections Chart Analysis Methodology

I create an Ancient Connection chart for each haplogroup I’m dealing with. We’re analyzing the LeJeune sisters today, but I track and analyze the haplogroup for every ancestor whose haplogroup I can find, or for whom I can find a descendant to test.

In this chart, YA=years ago and is based on the year 2000. KYA=thousand years ago, so 10 KYA is 10,000 years ago.

Name Person Lived Location & Culture Haplogroup, Date & Age Shared (MRCA) Haplogroup, Date & Age Note
LeJeune Sisters Born 1624 & 1633 French Acadian U6a7a1a,

50 CE,

1950 YA

U6a7a1a,

50 CE,

1950 YA

In Acadia by 1643/44
El Agujero 8 1375 CE Canary Islands, Guanche U6a7a1

1450 BCE, 3450 YA

U6a7a1 1450 BCE, 3450 YA Guanche arrived in Canaries in 1st millennium BCE, related to Berbers
Djebba 20824 6000 BCE Jebba, Bājah, Tunisia, Neolithic U6a3f3’4’5

c 5000 BCE, 7000 YA

U6a1”9

19,000 BCE, 21,000 YA

This archaeology site is on the northernmost point of North Africa
Djebba 20825 5900 BCE Djebba, Bājah, Tunisia, Neolithic U6a1”9

19,000 BCE, 21,000 YA

U6a1”9

19,000 BCE, 21,000 YA

This archaeology site is on the northernmost point of North Africa
Egyptian Mummy 2973 200 BCE Abusir el-Meleq, Giza, Egypt, Ptolemaic Kingdom U6a3h^,

1450 BCE,

3450 YA

U6a1”9

19,000 BCE, 21,000 YA

Nile Delta probably, paper says they share ancestry with near easterners
Egyptian Mummy 2888 100 BCE Abusir el-Meleq, Giza, Egypt, Ptolemaic Kingdom U6a2a’c,

11,000 BCE,

13,000 YA

U6a1”9

19,000 BCE, 21,000 YA

Nile Delta probably, paper says they share ancestry with near easterners
Segorbe Giant (6’3”) 1050 CE Plaza del Almudín, Valencia, Spain, Islamic necropolis burial U6a1a1, 14,000 BCE, 16,000 YA

 

U6a1”9

19,000 BCE, 21,000 YA

Paper says his genetic makeup is Berber and Islamic Spain, buried in Islamic style on right side facing Mecca.
Sweden Skara 1050 CE Varnhem, Skara, Sweden, Viking Swedish culture U6a1a3a, 7350 BCE, 9350 YA, U6a1”9

19,000 BCE, 21,000 YA

Viking burial

 

Chapelfield 696 1180 CE Chapelfield, Norwich, England, Ashkenazi Jewish Medieval age U6a1b1b. 400 BCE,

2400 YA

 

U6a1”9

19,000 BCE, 21,000KYA

Possibly the 1190 antisemitic Norwich massacre
Montana Mina 38 1200 CE Montana Mina, Lanzarote, Spain (Canary Islands), Guanche culture U6a1a1b1 U6a1”9

19,000 BCE, 21,000 YA

Guanche arrived in Canaries in 1st millennium BCE, related to Berbers
Amina 1725 CE Gaillard Center, Charleston, South Carolina, Enslaved African American burials U6a5b’f’g,

9550 BCE, 11,550 YA,

U6a1”9

19,000 BCE, 21,000 YA

Remains of pre-Civil War enslaved Africans unearthed in Charleston, SC
Doukanet el Khoutifa 22577 4400 BCE Doukanet el Khoutifa, Mars, Tunisia, Maghrebi cultural group U6b,

6500 BCE, 8500 YA

 

U6a’b’d’e, 23,000 BCE, 25,000 YA Late Stone Age, shows some admixture with European Hunter-Gatherers, possibly back and forth from Sicily
Guanche 12 625 CE Tenerife, Spain (Canary Islands), Guanche, Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Guanche arrived in the Canaries in 1st millennium BCE, related to Berbers
Guanche 14 775 CE Tenerife, Spain (Canary Islands), Guanche, Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Antocojo 27 875 CE Antocojo, La Gomera, Spain (Canary Islands) U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Guanche 13 900 CE Cave, Tenerife, Spain (Canary Islands), Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Guanche 1 1090 CE Cave, Tenerife, Spain (Canary Islands), Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Barranco Majona 30 1325 CE Barranco Majona, La Gomera, Spain (Canary Islands), Guanche late Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Kostenki 14 36,000 BCE Markina Gora, Kostyonki, Voronezh Oblast, Russia U2,

43,000 BCE, 45,000 YA

 

U,

43,000 BCE, 45,000 YA

European/Asian steppe earliest hunter-gatherers. Farming didn’t arrive until 10 KYA. Admixture from Asia as well.
Kostenki 12 31,000 BCE Volkovskaya, Voronezh region, Russian Federation. U2c’e,

43,000 BCE, 45,000 YA

 

U,

43,000 BCE, 45,000 YA

Early hunter-gatherer
Krems 3 29,000 BCE Wachtberg in Krems, Lower Austria, Austria, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Endured the ice age, sophisticated toolmaking, Venus figures, mobile lifestyle, mammoth hunters
Krems Twin 1 28,800 BCE Left bank of the Danube, Krems-Wachtberg, Austria, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Double grave for twins, 1 newborn, one age about 50 days
Krems Twin 2 28,800 BCE Left bank of the Danube, Krems-Wachtberg, Austria, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Ditto above
Vestonice 13 28,900 BCE Pavlovské Hills, South Moravia, Czech Republic, Grevettian culture U8b^,

37,000 BCE, 39,000 YA

 

U,

43,000 BCE, 45,000 YA

Ice Age Europe, few samples before farming introduced. Believe these Gravettian individuals are from a single founder population before being displaced across a wide European region.
Vestonice 14 28,900 BCE Dolni Vestonice, Brezi, Czech Republic, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Ditto above
Vestonice 16 28,900 BCE Dolni Vestonice, Brezi, Czech Republic, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Ditto above
Grotta delle Mura child 15,100 BCE Grotta delle Mura, Bari, Italy, Paleolithic Italian culture U2”10,

43,000 BCE, 45,000 YA

U,

43,000 BCE, 45,000 YA

This baby, interred in a small shoreline cave, was less than 9 months old and had blue eyes
Goyette Q2 13,100 BCE Troisième Caverne, Goyet, Belgium, Magdaleian culture named after the La Madeleine rock shelter in France U8a,

10,000 BCE,

12,000 YA

 

U,

43,000 BCE, 45,000 YA

These hunter-gatherer people may have been responsible for the repopulation of Northern Europe. Cave art, such as that at Altamira, in Northern Spain is attributed to the Magdalenian culture.
Villabruna 1 12,000 BCE Villabruna, Italy, Paleolithic culture U5b2b,

9700 BCE,

11,700 YA

 

U,

43,000 BCE, 45,000 YA

Rock shelter in northern Italy where this man was buried with grave goods typical of a hunter and covered in painted stones with drawings. The walls were painted in red ochre.
Oberkasel 998 12,000 BCE Oberkassel , Bonn, Germany, Western Hunter-Gatherer culture U5b1 U,

43,000 BCE, 45,000 YA

Double burial found in a quarry with 2 domesticated dogs and grave goods. Genis classification was uncertain initially as they were deemed, “close to Neanderthals.”

Creating a chart serves multiple functions.

  1. First, it allows you to track connections methodically. As more become available, older ones fall off the list, but not off your chart.
  2. Second, it allows you to analyze the results more carefully.
  3. Third, it “encourages” you to spend enough time with these ancient humans to understand and absorb information about their lives, travels, and migrations – all of which relate in some way to your ancestors.

When creating this chart, I looked up every shared haplogroup to determine their location and what could be discerned about each one, because their story is the history of the LeJeune sisters, and my history too.

Ok, so I can’t help myself for a minute here. Bear with me while we go on a little Ancient Connections tour. After all, history dovetails with genetics.

How cool is it that the LeJeune sisters’ ancestor, around 20,000 years ago, who lived someplace in the Nile Delta, gave birth to the next 1000 (or so) generations?

Of course, the Great Pyramids weren’t there yet. They were built abotu 4600 years ago.

Those women gave birth to two women about 2200 years ago whose mummified remains were found in the Pyramids at Giza. The associated paper described Egypt in this timeframe as a cultural crossroads which both suffered and benefitted from foreign trade, conquest and immigration from both the Greeks and Romans.

You can read more about burials from this timeframe in The Beautiful Burial in Roman Egypt, here. A crossroads is not exactly what I was expecting, but reading the papers is critically important in understanding the context of the remains. This book is but one of 70 references provided in the paper.

Some burials have already been excavated, and work continues in the expansive pyramid complex.

The Egyptian sun is unforgiving, but Giza eventually gives up her secrets. Will more distant cousins of the LeJeune sisters be discovered as burial chambers continue to be excavated?

We know little about the lives of the women interred at Giza, but the life of another Ancient Connection, Amina, strikes chords much closer to home.

Amina, an enslaved woman, is another descendant of that woman who lived 20,000 years ago. She too is related to the Giza mummies.

Amina was discovered in a previously unknown burial ground in downtown Charleston, SC, that held the remains of enslaved people who had been brought, shackled, from Africa to be sold. Amina’s remains convey her story – that she was kidnapped, forced into the Middle Passage, and miraculously survived. She succumbed around 1725 in Charleston, SC, near the wharf, probably where her prison ship docked.

Charleston was a seaport where more than a quarter million enslaved people disembarked at Gadsden’s Wharf, awaiting their fate on the auction block. The location where Amina’s burial was found is only about 1000 feet from the wharf and is now, appropriately, considered sacred ground. Ohhh, how I’d like to share this information with Amina.

A hundred years earlier, a different ancestor of that women who lived 20,000 years ago gave birth to the mother of the LeJeune sisters, someplace in France.

Moving further back in time, another distant cousin was unearthed at the Kostyonki–Borshchyovo archaeological complex near the Don River in Russia.

Photographed by Andreas Franzkowiak (User:Bullenwächter) – Archäologisches Museum Hamburg und Stadtmuseum Harburg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=58260865

Markina Gora is an incredibly famous location yielding both specimens included here, as well as this famous Venus figurine from the Gravettian culture, dating from about 27,000 years ago.

Bust of Kostenki 14 reconstructed from the burial.

The earliest of these hunter-gatherers in Europe, believed to be a small group of humans, interbred with Neanderthals. Kostenki 14 carried Neanderthal introgression dating back to about 54,000 years ago.

A layer of volcanic ash, thought to be from a volcano near Naples that erupted about 39,000 years ago, is found above the remains, speaking to events that our ancestors survived after this man lived.

I know we’ve traveled far back in history from the LeJeune sisters, but these ancient humans, the MRCA of each upstream haplogroup, are our ancestors, too.

What does all this mean?

At first glance, it’s easy to assume that all of the locations are relevant to our direct ancestors. Not only that, many people assume that all of these people ARE our ancestors. They aren’t.

Creating the Ancient Conenctions Chart should help you gain perspective about how these people are related to you, your ancestors, and each other.

Each individual person is connected to you and your ancestors in various ways – and their stories weave into yours.

Discover provides everyone has a mini-Timeline for each Ancient Connection. It’s easy to see that the tester, who tested in the modern era, since the year 1950, is not descended from El Agujaro 8, who lived in the 1300s and whose common (shared) haplogroup with the tester, U6a7a1, was born between 2100 BCE and 900 BCE, or between 4100 and 2900 years ago. The most probable date is about 3450 years ago.

The Timeline for each ancient sample includes:

  1. Your haplogroup’s mean birth year
  2. Ancient Connection’s birth year
  3. Ancient Connection’s haplogroup mean birth year, if different from the common haplogroup (in the example above, 3 and 4 are the same)
  4. Birth year of your common ancestor (MRCA), which is your common haplogroup

It’s easy to see the relevant information for each sample, but it’s not easy to visualize the trees together, so I’m creating a “rough” tree in Excel to help visualize the “big picture”, meaning all of the Ancient Connections.

How Do I Know Which Ancient Connections Even MIGHT Be My Ancestors and How We Are All Related?

That’s a great question and is exactly why I created this chart in an ancient haplogroup spreadsheet.

Click on any image to enlarge

In this chart, you can see the LeJeune sisters, in red, at the bottom, and their direct line hereditary haplogroups, in purple, descending from haplogroup U at the top.

Branching to the left and right from intersections with their purple hereditary haplogroups are other branches that the LeJeune sisters don’t share directly. However, the ancient remains that carry those haplogroups are “haplocousins” at a distant point in time, with our LeJeune sisters.

There only two burials that carry the same ancestral haplogroup as the LeJeune sisters:

  1. El Agujero 8, haplogroup U6a7a1 who lived in the Canary Islands in the year 1275
  2. Djebba 20825, who lived in Tunisia about 6,100 years ago

Clearly, Djebba, with a common haplogroup that lived about 21,000 years ago cannot be the ancestor of the LeJeune sisters, but they share a common ancestor. If Djebba was an ancestor of the LeJeune sisters, then Djebba would also descend from haplogroup U6a7, born about 20,600 years ago, like the LeJeune sisters do.

A cursory glance might suggest that since the sample, El Agujero 8 lived in the Canary Islands about 1275, haplogroup U6a7a1 was born there. However, if you read the papers associated with all of the samples found in the Canaries, Tunisia, Spain and other locations, you’ll discover that these populations moved back and forth across the Mediterranean. You’ll also discover that the earliest European haplogroup U samples found in Europe are believed to be the founders of haplogroup U in Europe. It’s possible that U6 dispersed into Italy and Spain, regions with significant exchange with North Africa.

It’s extremely unlikely that El Agujero 8, who lived about the year 1275 CE, was the ancestor of the LeJeune sisters, but it’s not entirely impossible. What’s more likely is that they descended from a common population that moved between Spain, the Canaries, and North Africa where other similar burials are found, like Tunisia. We know that Rome largely conquered France during the Gallic Wars (56-50 BCE), so it’s not terribly surprising that we find haplogroup U6a7a1 and descendants scattered throughout Europe, the Iberian peninsula, the Roman empire, and North Africa.

Sometime between the birth of haplogroup U6a7a1, about 3450 years ago, the descendants of that woman found their way both to France before the 1600s and also to the Canaries before 1275.

Takeaways from Ancient Connections

  • I recommend that you read the associated academic papers and publications that provide the Ancient Connections mitochondrial haplogroups. Those publications are chock full of important cultural information.
  • Globetrekker, which won’t be released until some time after the next release of the Mitotree, will help with tracking the path of your ancestors, especially where it’s complex and uncertain.
  • The “haplosisters” and “haplocousins” of the French LeJeune sisters are quite diverse, including Egyptian pyramid burials in Giza, a Muslim necropolis burial in Spain, a Viking in Sweden, indigenous Canary Islanders, a Tunisian site on the Northern-most tip of Africa, a Jewish burial in England, an enslaved woman in South Carolina, the Markina Gora site in Russia, caves in Austria, the Czech Republic, Belgium, Germany and Italy.
  • Ancient Connections are more than just interesting. On another genealogical line, I found a necropolis burial with my ancestor’s haplogroup located about 9 km from where my ancestor is believed to have lived, dating from just a few hundred years earlier.
  • FamilyTreeDNA adds more Ancient Connections weekly.

Resources

Notable Connections

Notable Connections are similar to Ancient Connections, except they are generally based on modern-day or relatively contemporary testers and associated genealogy. Some samples are included in both categories.

Three Notable Connections are included with the public version of Discover, and additional Notable Connections are provided, when available, for testers who click through from their account.

Some Notable Connections may be close enough in time to be useful for genealogy based on their haplogroup, their haplogroup history, and the tester’s history as well.

In this case, the closest two Notable Connections are both included in Ancient Connections, so we know that the rest won’t be closer in time.

The common ancestor, meaning common haplogroup, of Cheddar Man and the rest, reaches all the way back to haplogroup U, born about 45,000 years ago, so these particular Notable Connections can be considered “fun facts.”

However, if the first (closest) notable connection was a famous person who lived in France in the 1600s, and was the same or a close haplogroup, that could be VERY beneficial information.

Takeaways from Notable Connections

  • Mostly, Notable Connections are just for fun – a way to meet your haplocousins.
  • Notable Connections are a nice way to emphasize that we are all connected – it’s only a matter of how far back in time.
  • That said, based on the haplogroup, location and date, you may find Notable Connections that hold hints relevant to your ancestry.

Scientific Details

Scientific Details includes two pages: Age Estimates and Variants.

Scientific Details Age Estimates

Haplogroup ages are calculated using a molecular clock that estimates when the mutation defining a particular haplogroup first arose in a woman.

Since we can’t go back in time, test everyone, and count every single generation between then and now – scientists have to reconstruct the phylogenetic tree.

The more people who test, the more actual samples available to use to construct and refine the Mitotree.

The “mean” is the date calculated as the most likely haplogroup formation date.

The next most likely haplogroup formation range is the 68% band. As you can see, it’s closest to the center.

The 95% and 99% likelihood bands are most distant.

I know that 99% sounds “better” than 68%, but in this case, it isn’t. In fact, it’s just the opposite – 99% takes in the widest range, so it includes nearly all possibile dates, but the center of the range is the location most likely to be accurate.

The full certainty range is the entire 100% range, but is extremely broad. The mean is  the date I normally use, UNLESS WE ARE DEALING WITH CONTEMPORARY DATES.

For example, if the LeJeune sisters’ haplogroup was formed in 1550 CE at the mean, I’d be looking at the entire range. Do their approximate birth years of 1624 and 1633 fall into the 68% range, or the 95% range, and what are the years that define those ranges?

Scientific Details Variants

Next, click on the Variants tab.

To view your haplotype cluster, the F#, and your private variants, slide “Show private variants” at upper right above the black bar to “on.” This feature is only available for testers who sign in and click through to mtDNA Discover from their page.

The Variants tab provides lots of information, beginning with a summary of your:

  • Haplotype cluster F number, which I’ve blurred
  • Private variants, if any
  • End-of-branch haplogroup information

The most granular information is shown first.

Your haplotype cluster number is listed along with any private variants available to form a new haplogroup. In this case, there are no private variants for these haplotype cluster members. Every cluster is different.

Just beneath that, listed individually, are the variants, aka SNPs, aka mutations that identify each haplogroup. The haplogroup with the red square is yours.

Everyone in this haplogroup shares these two mutations: A2672G and T11929C. Because two variants define this haplogroup, it’s possible that one day it will split if future testers have one but not the other variant.

Information in the following columns provides details about each mutation. For example, the first mutation shown for haplogroup U6a7a1a is a transition type SNP mutation in the coding region, meaning it’s only reported in the full sequence test, where the A (Adenine) nucleotide, which is ancestral, mutated to a G (Guanine) nucleotide which is derived. This is essentially before (reference) and after (derived).

If you mouse over the Weight column, you’ll see a brief explanation of how each mutation is ranked. Essentially, rarer mutation types and locations are given more weight than common or less stable mutation types and/or locations.

Mutations with orange and red colors are less stable than green mutations.

Following this list from top to bottom essentially moves you back in time from the most recently born haplogroup, yours, to haplogroup L1”7, the first haplogroup in this line to branch from Mitochondrial Eve, our common ancestor who lived about 143,000 years ago in Africa.

View More

Clicking on the “View More” dropdown exposes additional information about the various types of mutations and Filtered Variants. Filtered Variants, in the current version of the Mitotree, are locations combined with specific mutation types that are excluded from branch formation.

Please note that this list may change from time to time as the tree is updated.

Takeaways from Scientific Details

  • Based on the Age Estimate for haplogroup U6a7a1a, it’s most likely to have formed about the year 29, but could have formed anytime between about 186 BCE and 230 CE. While this range may not be terribly relevant for older haplogroups, ranges are very important for haplogroups formed in a genealogical era.
  • People who are members of this example haplotype cluster do not have any private variants, so they are not candidates to receive a new haplogroup unless the upstream tree structure itself changes, which is always possible.
  • A significant amount of additional scientific information is available on these two tabs.
  • A list of locations currently excluded from haplogroup formation is displayed by clicking on the “View more” dropdown, along with information about various types of mutations. This list will probably change from time to time as the tree is refined.

Compare

Compare is a feature that allows you to compare two haplogroups side by side.

Let’s say we have an additional woman named LeJeune in Acadia, aside from Catherine and Edmee. As it happens, we do, and for a very long time, assumptions were made that these three women were all sisters.

Jeanne LeJeune dit Briard was born about 1659 and died after 1708. She is the daughter of unknown parents, but her father is purported to be Pierre LeJeune born about 1656, but there’s no conclusive evidence about any of that.

Jeanne LeJeune dit Briard married twice, first to Francois Joseph. Their daughter, Catherine Joseph’s marriage record in 1720 lists Jeanne, Catherine’s mother, as “of the Indian Nation.”

Several direct matrilineal descendants of Jeanne LeJeune dit Briard have joined the Acadian AmerIndian DNA Project, revealing her new Mitotree haplogroup as haplogroup A2f1a4+12092, which is Native American.

If Jeanne LeJeune dit Briard born about 1659, and Edmee and Catherine LeJeune, born about 1624 and 1633, respectively, are full or matrilineal half-siblings, their mitochondrial DNA haplogroups would match, or very closely if a new branch had formed in a descendant since they lived.

Let’s use the Compare feature to see if these two haplogroups are even remotely close to each other.

Click on “Compare.”

The first haplogroup is the one you’re searching from, and you’ll choose the one to compare to.

Click on “Search a haplogroup” and either select or type a haplogroup.

The two haplogroups are shown in the little pedigree chart. The origin dates of both haplogroups are shown, with their common shared ancestor (MRCA) positioned at the top. The most recent common, or shared, ancestor between Jeanne LeJeune dit Briard, who was “of the Indian Nation” and Catherine and Edmee LeJeune is haplogroup N+8701, a woman born about 53,000 years ago.

There is absolutely NO QUESTION that these three women DO NOT share the same mother.

Jeanne LeJeune dit Briard is matrilineally Native, and sisters Caterine and Edmee LeJeune are matrilineally European.

Takeaways from Compare

  • The MRCA between Jeanne LeJeune dit Briard and sisters, Edmee and Catherine LeJeune is about 53,000 years ago.
  • Jeanne was clearly not their full or maternal sister.
  • Compare provides an easy way to compare two haplogroups.

Suggested Projects

Projects at FamilyTreeDNA are run by volunteer project administrators. Some projects are publicly viewable, and some are not. Some project results pages are only visible to project members or are completely private, based on settings selected by the administrator.

When testers join projects, they can elect to include or exclude their results from the public project display pages, along with other options.

The “Suggested Projects” report in Discover provides a compilation of projects that others with the haplogroup you’re viewing have joined. Keep in mind that they might NOT have joined due to their mitochondrial DNA. They may have joined because of other genealogical lines.

While these projects aren’t actually “suggested”, per se, for you to join, they may be quite relevant. Viewing projects that other people with this haplogroup have joined can sometimes provide clues about the history of the haplogroup, or their ancestors, and therefore, your ancestors’ journey.

Remember, you (probably) won’t match everyone in your haplogroup on your matches page, or the Match Time Tree, so projects are another avenue to view information about the ancestors and locations of other people in this haplogroup. The projects themselves may provide clues. The haplogroup projects will be relevant to either your haplogroup, or a partial upstream haplogroup.

The haplogroup U6 project includes multiple U6 daughter haplogroups, not just U6a7a1a, and includes testers whose ancestors are from many locations.

The U6 project has labeled one group of 38 members the “Acadian cluster.” Of course, we find many descendants of Catherine and Edmee LeJeune here, along with testers who list their earliest known ancestor (EKA) as a non-Acadian woman from a different location.

The ancestors of Martha Hughes, who lived in Lynn, Massachusetts, and Mary Grant from Bathhurst, New Brunswick may well be descendants of Edmee or Catherine.

Or, perhaps they are a descendant of another person who might be a connection back to France. If you’re the Hughes or Grant tester, you may just have tested your way through a brick wall – and found your way to your LeJeune ancestors. If you’re a LeJeune descendant, you might have found a link through one of those women to France. Clearly, in either case, additional research is warranted.

For descendants of Catherine and Edmee, you’re looking for other testers, probably from France, whose ancestors are unknown or different from Edmee and Catherine. That doesn’t mean their genealogy is accurate, but it does merit investigation.

Check to see if someone with that EKA is on your match list, then check their tree.

For Catherine and Edmee LeJeune, other than Martha and Mary, above, there was only one EKA name of interest – a name of royalty born in 1606. However, research on Marie Bourbon shows that she was not the mother of the LeJeune sisters, so that tester is either incorrect, or confused about what was supposed to be entered in the EKA field – the earliest known direct matrilineal ancestor.

You may also find people in these projects who share your ancestor, but have not upgraded to the full sequence test. They will have a shorter version of the haplogroup – in this case, just U6a. If they are on your match list and their results are important to your research, you can reach out to them and ask if they will upgrade.

If you’re working on an ancestor whose mitochondrial DNA you don’t carry, you can contact the project administrator and ask them to contact that person, offering an upgrade.

Takeaways from Suggested Projects

  • Suggested Projects is a compilation of projects that other people with this haplogroup have joined. Haplogroup-specific projects will be relevant, but others may or may not be.
  • Testers may have joined other projects based on different lineages that are not related to their mitochondrial line.

We’re finished reviewing the 12 Discover reports, but we aren’t finished yet with the LeJeune analysis.

Another wonderful feature offered by FamilyTreeDNA is Advanced Matching, which allows you to search using combinations of tests and criteria. You’ll find Advanced Matching on your dashboard.

Advanced Matching

Advanced Matching, found under “Additional Tests and Tools,” is a matching tool for mitochondrial DNA and other tests that is often overlooked.

You select any combination of tests to view people who match you on ALL of the combined tests or criteria.

Be sure to select “yes” for “show only people I match in all selected tests,” which means BOTH tests. Let’s say you match 10 people on both the mitochondrial DNA and Family Finder tests. By selecting “Yes,” you’ll see only those 10 people. Otherwise you’ll get the list of everyone who matches you on both tests individually. If you have 100 mitochondrial matches, and 2000 autosomal matches, you’ll see all 2100 people – which is not at all what you want. You wanted ONLY the people who match you on both tests – so be sure to select “yes.”

The combination of the FMS, full sequence test, plus Family Finder displays just the people you match on both tests – but keep in mind that it’s certainly possible that you match those people because of different ancestors. This does NOT mean you match on both tests thanks to the LeJeune sisters. You could match another tester because of a different Acadian, or other, ancestor.

This is especially true in endogamous populations, or groups, like the Acadians, with a significant degree of pedigree collapse.

Advanced Matching Tip

You can also select to match within specific projects. This may be especially useful for people who don’t carry the mitochondrial DNA of the LeJeune sisters, but descend from them.

Switching to my own test, I’ve selected Family Finder, and the Acadian AmerIndian Project, which means I’ll see everyone who matches me on the Family Finder test AND is a member of that project.

Given that I’ve already identified the haplogroup of Catherine LeJeune, I can use known haplogroups to filter autosomal matches, especially in focused projects such as the Acadian AmerIndian Project. This helps immensely to identify at least one way you’re related to other testers.

By clicking on the match’s name, I can see their EKA information. By clicking on their trees, I can verify the ancestral line of descent.

Of course, in Acadian genealogy, I’m probably related to these cousins through more than one ancestor, but using Advanced Matching, then sorting by haplogroup is a great way to identify at least one common ancestor!

Takeaways from Advanced Matching

  • Advanced Matching is a wonderful tool, but make sure you’re using it correctly. Click “Yes” to “Show only people I match in all selected tests.” Please note that if you select all three levels of mtDNA test, and you don’t match at the HVR1 level due to a mutation, that person won’t be shown as a match because you don’t match them on all test levels selected. I only select “FMS” and then my second test.
  • You may match someone on either Y-DNA or mitochondrial DNA and the autosomal Family Finder through different ancestral lines.
  • Advanced Matching is a great way to see who you match within a project of specific interest – like the Acadian AmerIndian Project for the LeJeune sisters.
  • You will match people outside of projects, so don’t limit your analysis.

Drum Roll – LeJeune Analysis

It’s finally time to wrap up our analysis.

The original questions we wanted to answer were:

  • Were Edmee and Catherine LeJeune actually sisters?
  • Was their mother Native American?
  • Was the third woman, Jeanne LeJeune dit Briard, also their sister?
  • Are there any other surprises we need to know about?

We now have answers, so let’s review our evidence.

  • Based on the haplogroup of Edmee and Catherine LeJeune both, U6a7a1a, which is clearly NOT of Native American origin, we can conclude that they are NOT Native American through their matrilineal side.
  • Native American haplogroups are subsets of five base haplogroups, and U is not one of them.

There’s other information to be gleaned as well.

  • Based on the haplogroup of Jeanne LeJeune dit Briard, A2f1a4+12092, plus her daughter’s marriage record, we can conclude that (at least) her mother was Native American.
  • Based on Jeanne’s Native American haplogroup alone, we can conclude that she is not the full sister of the Catherine and Edmee LeJeune.
  • Based on Jeanne’s birth date, about 1659, it’s clear that she cannot be the full sibling of Catherine born about 1633, and Edmee LeJeune, born about 1624, and was probably a generation too late to be their paternal half sister. Later lack of dispensations also suggests that they were not half-siblings.
  • Based on the known Acadian history, confirmed by contemporaneous records, we can state conclusively that Edmee LeJeune was born in France and Catherine probably was as well. The first Acadian settlement did not occur until 1632, and the first known families arrived in 1636.
  • Based on the fact that Catherine and Edmee’s haplogroups match, and many of their descendants’ mitochondrial DNA matches exactly, combined with later dispensations, we can conclude that Catherine and Edmee were sisters.
  • We can conclusively determine that Catherine and Edmee were NOT Native on their matrilineal side, and given that they were born in France, their father would have been European as well. However, we cannot determine whether their descendants married someone who was either Native or partially Native.
  • We know that information for partial haplogroup U6a, provided for HVR1 and HVR1+HVR2-only testers is not necessarily relevant for full sequence haplogroup U6a7a1a.
  • The recent Mitotree release has moved the haplogroup “dates” for the LeJeune sisters from about 21,000 years ago for HVR1/HVR2 U6a testers to 50 CE for full sequence testers,. These dates may well be refined in future tree releases.
  • Having multiple testers has provided us with an avenue to garner a massive amount of information about the LeJeune sisters, in spite of the fact that their haplogroup was born about 50 CE.
  • The LeJeune sisters are related to, but not descended from many very interesting Ancient Connections. Using our Ancient Connections spreadsheet, we can rule out all but one Ancient Connection as being a direct ancestor of the LeJeune sisters, but they are all “haplocousins,” and share common ancestors with the sisters.
  • While we cannot rule out the genetically closest Ancient Connection, El Agujero 8, who lived about 1275 CE in the Canary Islands as their direct ancestor, it’s very unlikely. It’s more probable that they share a common ancestor in haplogroup U6a7a1 who lived about 3450 years ago, whose descendants spread both into France by the 1600s and the Canary Islands by the 1200s.

By now, you’re probably thinking to yourself that you know more about my ancestors than your own. The good news is that mitochodnrial DNA testing and mtDNA Discover is available for everyone – so you can learn as much or more about your own ancestors.

Spread Encouragement – Be a Positive Nellie!

Unfortunately, sometimes people are discouraged from mitochondrial DNA testing because they are told that mitochondrial haplogroups are “too old,” and matches “are too distant.” Remember that the MRCA of any two people, or groups of people is sometime between the haplogroup formation date, and the current generation – and that’s the information we seek for genealogy.

Furthermore, it’s those distant matches, beyond the reach of autosomal matching, that we need to break down many brick walls – especially for female ancstors. I offer testing scholarships for ancestors whose mitochondrial DNA is not yet represented. It’s information I can’t obtain any other way, and I’ve broken through many brick walls!

We don’t know what we don’t know, and we’ll never know unless we take the test.

Imagine how much could be gained and how many brick walls would fall if everyone who has tested their autosomal DNA would also take a mitochondrial DNA test.

Which ancestors mitochodrial DNA do you need? The best place to start is with your own, plus your father’s, which gives you both grandmother’s mtDNA and directly up those lines until you hit that brick wall that needs to fall.

Additional Resources

Roberta’s Books:

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the affiliate links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

The East Coast Genetic Genealogy Conference – ECGGC – Register Now for the Best of the Best

The East Coast Genetic Genealogy Conference, ECGGC, focuses entirely on genetic genealogy, an indispensable tool for all genealogists.

The 3-day conference with 32 speakers and 35 sessions takes place on September 12-14, and is open for registration now. Sessions are available for viewing through 2025, so if you miss something or have other plans, you can catch them later.

While I love in-person conferences, I also love virtual ones because they provide the opportunity to view presentations and see speakers’ sessions that I wouldn’t otherwise be able to attend.

ECGGC is virtual and streams live this year. Take a look at the 2025 program here and speakers, here.

Who is Speaking?

I’m looking forward to binge-watching every session. The speakers are all top-notch experts in their field. There is something for everyone here, no matter your experience level or focus!

Because it’s virtual, you don’t have to make choices between sessions.

Mitochondrial DNA 

I’m sure it won’t surprise anyone to learn that I’m speaking about mitochondrial DNA this year, given the release of Mitotree. Being a member of the Million Mito Project Team has been a dream come true.

Come learn about Mitotree: What It Is, How We Did It, and What It Means to You.

Not only is Mitotree groundbreaking, rewriting the tree of humankind, and a huge leap forward for matrilineal genealogy, it’s also an amazing scientific achievement. The team coupled Mitotree with mtDNA Discover to provide genealogists with a dozen custom reports – and now brick walls are falling.

The Mitotree Science Team and DNA Academy

After dinner on Saturday evening, ECGGC hosts DNA Academy, which, this year, focuses on Mitotree with Mitotree science team members. An ECGGC excluside,  Mitotree scientists assemble in a panel format, giving short presentations in their area of expertise and revealing the backstory of how Mitotree happened.

Hosted by Mags Gaulden, I’ll be there, along with Dr. Paul Maier, who will discuss how Mitotree was developed and constructed, and Dr. Miguel Vilar, who will discuss his focus on genetic anthropology and the development of the Mitotree.

Come share our joy and hear about our struggles, too. We have a fantastic team that loves to educate, and there will be plenty of time for Q&A.

I suppose it would appear biased were I to suggest that DNA Academy, alone, is well worth the conference registration fee😊

But Wait, There’s Even More

In addition to the speakers, ECGGC offers time for online socializing along with a virtual Exhibit Hall. I really encourage everyone to check out the vendors, because their exhibitor fees help fund the conference.

I’m excited and look forward to seeing all of you in September. Don’t forget to register here for either online attendance or viewing the sessions later.

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the affiliate links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Mitotree Q&A for Everyone

I recently presented Mitotree Webinar – What It Is, How We Did It, and What Mitotree Means to You at Legacy Family Tree Webinars. It’s still free to view through June 13th, and after that, it’s available in the webinar library with a subscription. The 31-page syllabus is also a subscription feature.

Thank you to all 1000+ of you who attended and everyone else who has since watched the webinar – or will now.

We had a limited amount of time for Q&A at the end, so Geoff, our host, was kind enough to send me the list of questions from the Chat, and I’m doing the Q&A here. But keep in mind, please, that I’m assuming when I answer that you’ve watched the webinar or are familiar with how the new Mitotree and tools work.

That said, I think this Q&A can help everyone who is interested in mitochondrial DNA. Your genealogy gift from your mother and her female lineage.

Just a quick reminder that the mitochondrial DNA test tracks your direct matrilineal line only, meaning your mother’s mother’s mother’s line on up your tree until you run out of mothers. Of course, our goal is always to break through that brick wall.

This is a wonderful opportunity, because, unlike autosomal DNA, mitochondrial DNA is not admixed with the DNA of the other parent, so it’s a straight line look back directly up your mother’s female line.

Aha Moment!

Geoff said at the end that he had an aha moment during the webinar. Both males and females have mitochondrial DNA inherited from their mother, so we think of testing our own – but forget to obtain the mitochondrial DNA of our father. Testing your father’s mitochondrial DNA means obtaining your paternal grandmother’s mitochondrial DNA, so test your father to learn about his mother’s maternal line.

And it’s Father’s Day shortly.

Q&A

I’ve combined and summarized similar questions to make this short and sweet. Well, as short and sweet as I can make anything!

  • Can I benefit from Discover even if I don’t have a full sequence test?

You can benefit from the free FamilyTreeDNA Discover tool with any haplogroup, even a partial haplogroup. Be sure to click the down arrow and select mtDNA before entering the haplogroup if you’re using the public version.

However, to gain the most advantage from your test results and Discover, and to receive your closest matches, you need the full sequence test, called the mtFull, which you can purchase here. If you took one of the lower-level “Plus” tests, years ago, click here to sign in and upgrade or check your account to see if you have the full sequence test.

  • What benefits do I receive if I click through to Discover from my account versus using the public version of Discover?

Click any image to enlarge

If you click through to Discover directly from your FamilyTreeDNA account, you will receive features and additional information that are not available in the free, public version of Discover.

You’ll receive additional Notable Connections and up to 30 Ancient Connections based on how many are available and relevant for you.

You’ll also be able to view the Match Time tree, showing your matches, their earliest known ancestors, and where they fit in your haplogroup and haplotype cluster. In this example, two EKAs hinted at a common lineage, which turned out to be accurate after I did some digging.

I think the Match Time Tree is indispensable – the best thing since sliced bread!

The Scientific Details report is also customized for you with your Haplotype Cluster and your private variants.

  • Will a child and their mother always have the same haplogroup?

Yes, but if one of them has a mutation that the other doesn’t, or a heteroplasmy, they may be in a different haplotype cluster.

Also, they both need to have taken the full sequence test. Otherwise, the one who did not take the full sequence test will only have a partial haplogroup until they upgrade.

We will talk more about edge cases in Q&A on down the list.

Great question. Sign in to your account.

In the Maternal Line Ancestry section, which is mitochondrial DNA, check to see if both the Plus and Full boxes are pink. If so, you have taken both and you’ll have a new Mitotree haplogroup and haplotype cluster.

If the “Full” box is grey, you can either click there or at the top where it says “Add Ons and Upgrades” to upgrade to the full sequence test.

  • Why is it called the Million Mito Project? What were you counting?

When we first launched the project, we hoped for a million full sequence samples to build the initial tree. After removing duplicates, such as parent/child, partial sequence samples such as HVR1/2, unreliable samples from PhyloTree, and including FamilyTreeDNA  testers and academic samples, we had between one-third and half a million samples when we launched. The Mitotree and Discover are growing with new testers and groups of samples from archaeological studies, academic samples, and other publicly available resources, following quality analysis, of course.

  • Is there a way to confirm that I submitted an mtDNA to the Mito Tree project? I think I submitted my mom’s when you first started, but my husband recently tested, and I don’t remember if we opted him in at that time.

The science team at FamilyTreeDNA  is using all of the full sequence tests in the construction of the Mitotree, so you don’t need to do anything special.

  • Do or can haplotype F numbers (haplotype clusters) ever become haplogroups?

The answer is maybe. (I know – I’m sorry!)

If you have private variants in addition to your haplotype cluster, then yes, those are haplogroup seeds.

This is my result and I have no additional private variants left to use.

If you don’t have any private variants, or mutations, left over, then no, you won’t receive a new haplogroup for this reason. However, if for some reason the haplogroup splits upstream, you might receive a new haplogroup in the future due to that split.

In addition to the webinar, I wrote about haplotype clusters in the article, Mitochondrial DNA: What is a Haplotype Cluster and How Do I Find and Use Mine?

  • How can mitochondrial DNA and the Mitotree be useful for breaking down genealogy in various parts of the world?

There are two aspects to mitochondrial DNA testing.

The first is to connect genealogically, if possible. To do that, you’ll be paying attention to your matches EKAs (earliest known ancestors), their trees, and their locations. You may well need to do some genealogy digging and build out some trees for others.

The second aspect is to learn more about that lineage before you can connect genealogically. Where did they come from? Do they share a haplogroup with any Ancient Connections, and what cultures do they share? Where did they come from most recently in the world, and where do the breadcrumbs back in time lead?

I wrote about this in the article, New Mitotree Haplogroups and How to Utilize Them for Genealogy.

Sometimes, DNA testing of any type is simply a waiting game until the right person tests and matches you. That’s one reason it bothers me so much to see people “not recommend” mitochondrial DNA testing. We all need more testers so we can have more matches.

  • When will Globetrekker for mtDNA be available?

I don’t know and neither does the team. The Mitotree is still being refined. For example, we are adding thousands of samples to the tree right now from multiple locations around the world. I probably wouldn’t expect Globetrekker until the tree is officially out of Beta, and no, I don’t know when that will happen either. It’s difficult to know when you’re going to be “finished” with something that has never been done before.

While it’s not Globetrekker, you do have the Matches Map to work with, and the Migration Map in Discover, which also shows the locations of your Ancient Connections.

  • During the webinar, Roberta mentioned that her ancestor is German, but she discovered her ancestors were Scandinavian. Can you expand about the “event” that explained this unexpected discovery.

In my case, the church records for the tiny village where my ancestor lived in Germany begin right after the 30 Years’ War, which was incredibly destructive. Looking at Swedish troop movements in Germany, the army of Gustavus Adolphus of Sweden marched through the region with more than 18,000 soldiers. Women accompanied the baggage trains, providing essential, supportive roles and services to the soldiers and military campaign. I’ll never know positively, of course, but given that the majority of my full sequence matches are in Scandinavia, mostly Sweden, and not in Germany, it’s a reasonable hypothesis.

People often receive surprises in their results, and the history of the region plays a big role in the stories of our ancestors.

You don’t know what you don’t know, until you test and follow the paths ahd hints revealed.

  • Why do I have fewer matches in the HVR2 region than the HVR1 region?

Think of the mitochondria as a clock face.

The older (now obsolete) HVR1 test tested about 1000 locations, from about 11-noon and the HVR2/3 region tested another 1000 locations, from about noon-1 PM. The full sequence test tests the full 16,569 locations of the entire mitochondria.

Each level has its own match threshold. So, if you have one mutation at either the HVR1 or HVR2/3 level, combined, you are not considered a match. For example, you can match 10 people at the HVR1 level, and have a mutation in the HVR2 level that 4 people don’t share, so you’ll only match 6 people at the HVR2 level.

If you have one mutation in the HVR1 region, you won’t match anyone in either the HVR1 or HVR1/HVR2 regions.

At the full sequence level, you can have three mutation differences (GD 3) and still be considered a match.

So, the short answer is that you probably have a mutation that some of your matches at the HVR2 level don’t have.

In addition to matches on your Matches page, you will (probably) have haplogroup matches that aren’t on your match list, so check Discover for those.

  • I have HVR1/HVR2 matches, but none at the full sequence level. Why?

It’s possible that none of your matches have tested at that level.

You have no mutations in the HVR1/2 region, or you would not be a match. If your HVR1/2 matches have tested at the full sequence level, then you have more than 3 mutations difference in the coding region.

  • Why do I match people at the full sequence level but not HVR1/2?

The match threshold at the HVR1/2 level is 1, so if you have one mismatch, you’re not listed as a match. However, at the full sequence level, the GD (genetic distance) is 3 mismatches. This tells me you have a mismatch in the HVR1 region, which also precludes HVR2 matching, but less than 4 mutations total. Click on the little “i” button above each match level on the matches page.

  • Why don’t all of my matches show on the Match Time Tree?

Only full sequence matches can show on the Match Time Tree, because they are the only testers who can receive a full haplogroup.

  • How does a heteroplasmy interfere with mtDNA research?

Heteroplasmies, where someone carries two different nucleotides at the same location in different mitochondrial in their body, are both extremely fascinating and equally as frustrating.

Heteroplasmies can interfere with your matching because you might have a T nucleotide in a specific location, which matches the reference model, so no mutation – like 16362T. Your mother might have a C in that location, so T16362C, which is a mutation from T to C. Your aunt or sister might have both a T and a C, which means she is shown with letter Y, so 16362Y, which means she has more than 20% of both. All three of you probably have some of each, but it’s not “counted” as a heteroplasmy unless it’s over 20%.

The challenge is how to match these people with these different values accurately, and how heteroplasmies should “count” for matching.

I wrote about this in the article What is a Heteroplasmy and Why Do I Care?

Bottom line is this – if you are “by yourself” and have no matches, or you don’t match known relatives exactly, suspect a heteroplasmy. If you ask yourself, “What the heck is going on?” – rule out a heteroplasmy. Check out my article and this heteroplasmy article in the FamilyTreeDNA help center.

  • Someone asked about the X chromosome and may have been confusing it with mitochondrial DNA. The X chromosome is not the same as mitochondrial DNA.

The confusion stems from the fact that both are associated with inheritance from the maternal line. Everyone inherits their mitochondrial DNA from their mother. Men inherit their X chromosome ONLY from their mother, because their father gives them a Y chromosome, which makes them a male. Females inherit an X chromosome from both parents. And yes, there are medical exceptions, but those are unusual.

I wrote about this in the article, X Matching and Mitochondrial DNA is Not the Same Thing.

  • How do you determine the location of the last mutation? A tester and their aunt are from one country, and another man in the same haplogroup is from another country, but he has tested only the HVR1/HVR2 level.

There are really two answers here.

First, you can’t really compare your full sequence new Mitotree haplogroup with a partial haplogroup based on only the HVR1/2 test. Chances are very good that if he upgraded to a full sequence test, he would receive a more complete haplogroup, and one that might be near the tester’s haplogroup, but perhaps not the same.

For example, my full sequence haplogroup is J1c2f. I have matches with people who only tested at the HVR1/HVR2 level, but they can only be predicted to haplogroup J, with no subgroup, because they are missing about 14,000 locations that are included in the full sequence test.

Using the Discover Compare feature, comparing haplogroup J to J1c2f clearly shows that the mutations that define haplogroup J1c2f happened long after the mutation(s) that define haplogroup J.

You can use other Discover tools such as the Match Time Tree (if you click through from your account), the Time Tree, the Ancestral Path and the Classic Tree to see when the various haplogroups were born.

  • My mother took the full sequence test in 2016, so should I look for an upgrade now? She is deceased so can’t retest.

First, I’m sorry for your loss, but so glad you have her DNA tests.

The good news is that you ordered the full sequence right away, so you don’t need to worry about an upgrade failing later. In this case, there is no upgrade because the full sequence tests all 16,569 locations.

Additionally, had you needed an upgrade, or wanted to do a Family Finder test, for example, FamilyTreeDNA stores the DNA vials for future testing, so you could potentially run additional tests.

And lastly, since we’re talking mitochondrial DNA, which you inherit from your mother with no admixture from your father, your mtDNA should match hers exactly, so you could test in proxy for her, had she not already tested.

  • Has anything changed in Native American haplogroups?

Absolutely. About 75% of testers received a new haplogroup and that includes people with Native American matrilineal ancestors.

For example, my Native ancestor was haplogroup A2f1a, formed about 50 CE and is now A2f1a4-12092, formed about 1600 CE, so has moved 2 branches down the tree and about 1500 years closer. My ancestor was born about 1683. Her descendant has 58 full sequence matches, 22 in the same haplogroup, and 16 people in their haplotype cluster.

I’m so excited about this, because it helps provide clarity about her ancestors and where they were before she entered my genealogy by marrying a French settler.

  • Are mtDNA mutations the same or similar to autosomal SNPs?

A SNP is a single nucleotide polymorphism, which means a single variation in a specific location. So yes, a mutation is a change in a nucleotide at a genetic location in Y-DNA, autosomal DNA, or mitochondrial DNA.

  • Can we filter or sort our matches by haplotype on our match page?

Not yet. Generally, your closest matches appear at or near the top of your match list. Of course, you can use the Discover Match Time Tree and you can download your matches in a CSV file. (Instructions are further down in Q&A.)

  • Is there a way to make it more obvious that the EKA should be in their matrilineal line? There are so many men as EKAs!

So frustrating. The verbiage has been changed and maybe needs to be revised again, but of course, that doesn’t help with the people who have already entered males. We know males aren’t the source of mitochondrial DNA.

When I see males listed as an EKA, I send the match a pleasant note. I’m not sure they make the connection between what they entered and what is being displayed to their matches. If they have included or linked to a tree, I tell them who, in their tree, is their mtDNA EKA.

I’ve written about how to correctly add an Earliest Known Ancestor. I’ll update that article and publish again so that you can forward those instructions to people with no EKA, or male EKAs.

  • I love learning about my ancient connections. I have a new match due to the updates, who is from a neighboring area to my great-great-great-grandmother.

I love, love, LOVE Ancient Connections. They tell me who my ancestors were before I have any prayer of identifying them individually. Then I can read up on the culture from which they sprang.

I’ve also had two situations where Ancient Connections have been exceptionally useful.

One is an exact haplogroup match to my ancestor, and the burial was in a necropolis along the Roman road about 3-4 km outside the medieval “city” where my ancestor lived.

In a second case, there were two villages in different parts of the same country, hundreds of miles apart, and one burial from about 200 years before my ancestor lived was found about 10 km from one of those villages. While this isn’t conclusive, it’s certainly evidence.

  • What does the dashed line on the Time Tree mean?

Dashed lines on the time tree can mean two things.

The red dashed line, red arrow above, is the haplogroup formation date range and correlates to the dates at the top of Time Tree, not show in this screen shot. You can also read about those dates and how they are calculated on the Scientific Details tab in Discover.

The brown dashed lines, green arrow above, connect an ancient sample to its haplogroup, but the sample date is earlier than the estimated haplogroup.

At first this doesn’t make sense, until you realize that ancient samples are sometimes carbon dated, sometimes dated by proximity to something else, and sometimes dated based on the dates of the cemetery or cultural dig location.

Archaeological samples can also be contaminated, or have poor or low coverage. In other words, at this point in time, the samples are listed, but would need to be individually reviewed before shifting the haplogroup formation date. Haplogroup formation dates are based on present day testers.

  • A cousin and I have been mtDNA tested. What might be gained by testing our other six female cousins/10 or so male cousins?

Probably not much, so here’s how I would approach this.

I would test one cousin who descends from another daughter of the EKA, if possible. This helps to sift out if a haplogroup-defining mutation has occurred.

If you or that cousin has private variants left over after their haplotype cluster is formed,  testing a second person from that line may well results in a new haplogroup formation for that branch.

I absolutely would ask every single one of those cousins to take an autosomal test, however, because you never know what tools the future will bring, and we want to leverage every single segment of DNA that our ancestors carried. Testing cousins in the only way to find those.

  • In the Mitotree, I am grouped in a haplogroup that, according to the Mitotree Match Time Tree, branched off only about 200 years ago and has four mtDNA testers in it, including me. In fact, my earliest known maternal line ancestor I found using pen-and-paper genealogy was indeed born around 230 years ago and is also the known maternal ancestor for one of these three testers – confirming the Mitotree grouping is correct. But the other two matches in this haplogroup are completely unknown to me. Unfortunately, they do not have a tree online, and they did not respond to several messages. Is there any way to find out more about them using the new Mitotree tools?

First of all, this is great news. Having said that, I share your frustration. However, you’re a genealogist. Think of yourself as a sleuth.

I’d start by emailing them, but in this case, you already have. Tell them what you know from your line and ask if their line is from the same area? End with a question for them to answer. Share tidbits from Discover – like Ancient Connections maybe. Something to peak their interest.

Next, put on your sleiuh hat. I’d google their name and email address, and check Facebook and other social media sites. I’d check to see if they match me, or any cousins who have tested, on an autosomal test. If they do match autosomally, use shared matching and the matrix tool. If they are an autosomal match, I’d also check other testing sites to see if they have a tree there.

  • One webinar attendee is haplogroup H1bb7a+151 and is frustrated because they only have eight matches and don’t understand how to leverage this.

Of course, without knowing more, I can’t speak to what they have and have not done, and I certainly understand their frustration. However, in mitochondrial and Y-DNA, you really don’t want thousands of matches. It’s not autosomal. You want close, good matches, and that’s what the Mitotree plus haplotype clusters provide.

Your personal goals also make a lot of difference.

For me, I wanted to verify what I think I know – and received a surprise. I also want to go further back if possible. Then, I want to know the culture my ancestors came from.

First, step through every single one of Discover’s 13 tools and READ EVERY PAGE – not skim. These are chapters in your free book about your ancestor.

Their haplogroup was formed about 1200, so all of those matches will be since that time. The Ancient Connections tell me it’s probably British, maybe Irish – but they will see more from their account than I can see on the public version of Discover.

The Time Tree shows me one haplotype cluster, which is where the tester’s closest matches will probably be, barring a mutation or heteroplasmy.

Looking at the matches, e-mail people, look for common locations in their trees, and see if any of them are also autosomal matches using the Advanced Matching tool.

Looking at the 10 success story examples I used, one man was able to connect 19 of his matches into three groups by doing their genealogy for them. This doesn’t work for everyone, but it will never work if we don’t make the attempt.

  • An attendee would like to search on the Earliest Known Ancestor’s (EKA’s) name field.

I would like that too. You can search on surnames, but that’s often not terribly useful for mitochondrial DNA. The Match Time Tree shows the EKA for all full sequence testers.

In the upper right hand corner of your Matches page, there’s an “Export CSV” file link. Click there to download in a spreadsheet format. The EKA is a column in that file, along with both the new Mitotree haplogroup and haplotype F number, and it’s very easy to do a sort or text search from there.

  • Several questions about why people have so many more autosomal matches than either Y-DNA or mitochondrial.

There are several considerations.

First, autosomal testing became very popular, often based on ethnicity. There are many times more autosomal testers than there are either Y or mitochondrial.

Second, if you look back just six generations, you have 64 lineages. Y-DNA and mtDNA tests one line each and you don’t have to figure out which line. It also reaches back much further in time because it’s not admixed, so nothing washes out or rolls off in each generation like with autosomal.

Third, the Y-DNA and mitochondrial DNA tests are very specific and granular.

More is not necessarily better. You’re looking for refinement – and mitochondrial is just one line. No confusion. Think how happy you’d be if your autosomal matches weren’t all jumbled together and could be placed into 64 neat little baskets. Think how much time we spend sorting them out by shared matches and other criteria. Both Y-DNA and mitochondrial is already sorted out.

I’ve broken through several brick walls with unrecombined Y-DNA and mitochondrial DNA that could never be touched with autosomal – especially older lines where autosomal DNA is either gone or negligible.

  • You mentioned a Facebook group where I can ask questions about mitochondrial DNA?

The mitochondrial DNA Facebook group is the FamilyTreeDNA mtDNA Group, here.

  • To the webinar attendee who came to see me more than 20 years ago at Farmington Hills, Michigan, at one of my first, if not the first, genetic genealogy presentation – thank you!

Thank you for attending then when I really had no idea if ANYONE would come to hear about this new DNA “thing” for genealogy. I remember how nervous I was. And thank you for sticking around, continuing to research, and saying hello now!

Closing Comment

Mitochondrial DNA testing is different than autosomal, of course. It’s often the key to those females’ lines with seemingly insurmountable brick walls.

I attempt to collect the mitochondrial DNA of every ancestor. I trace “up the tree” to find people to test who descend from those ancestors through all women to the current generation, which can be males.

To find testers, I shop:

  • Autosomal matches at FamilyTreeDNA
  • Projects at FamilyTreeDNA
  • WikiTree
  • FamilySearch
  • Ancestry DNA matches
  • Ancestry Thrulines
  • Ancestry trees
  • MyHeritage DNA matches, where ther are a lot more European testers
  • MyHeritage Theories of Family Relativity
  • MyHeritage Cousin Finder
  • Relatives at RootsTech during the month before and after RootsTech when it’s available
  • Facebook Genealogy and family groups that appear relevant

When I find an appropriately descended person, I ask if they have already taken either the Y-DNA or mitochondrial DNA test, whichever one I’m searching for at that moment. If yes, hurray and I ask if they will share at least their haplogroup. If they haven’t tested, I tell them I’m offering a testing scholarship.

I will gladly explain the results if they will share them with me. Collaboration is key and a rising tide lifts all ships.

My mantra in all of this is, “You don’t know what you don’t know, and if you don’t test, you’ll never know.” I’ve missed testing opportunities that I desperately wish I hadn’t, so test your DNA and find testers to represent your ancestors.

I hope you enjoyed the webinar. It’s not too late to watch.

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

The Mystery of the Blue Fugates and Smiths: A Study in Blue Genes and Pedigree Collapse

The story of the Blue Fugates, an Appalachian family, is quite interesting, from a genetic perspective, a genealogical perspective, and a genetic genealogy perspective.

Who Are the Blue Fugates?

Martin Fugate, supposedly an orphan from France, and his bride, Elizabeth Smith, who had married by 1840, have long been attributed as the progenitors of the Blue Fugate Family of Troublesome Creek, in and around Perry County, Kentucky.

Their descendants were known as “The Blue Fugates” and also “The Blue People of Kentucky” because some of their children and descendants carried a recessive autosomal genetic trait, Methemoglobinemia.

Methemoglobinemia causes the skin to appear blue due to an oxygen deficiency in the red blood cells. Some people only exhibit this characteristic, or even just blue tinges in their fingernails and lips, when they are cold or agitated, such as when infants cry. Yet others are very, very blue.

Inheritance

In order for someone to exhibit the autosomal recessive trait of blueness due to Methemoglobinemia, they must inherit a copy of the gene from BOTH PARENTS. That’s why this trait is so rare.

  • If the parents have only one copy each, they are carriers and will not have the condition themselves.
  • If one parent carries either one or two copies, and the other parent does NOT carry a copy, their offspring CANNOT carry two copies of the mutation and will not be blue.
  • If both parents carry a copy, and both parents pass their copy on to their offspring, the offspring will probably exhibit some level of blueness – from just a tinge when they are cold, ill or or upset, to very, very blue.

I’m not a physician, so I’m not delving into the medical specifics of Methemoglobinemia, but suffice it to say that levels of 10-20% of methemoglobin in the blood produce blue skin, higher levels can produce more severe medical conditions, and levels beneath that may not be visually detectible.

What’s important for the genealogy aspect of this story is that both parents must carry a copy AND pass their copy on for the condition to express in their offspring.

We’ve learned a lot since the 1800s when this was first observed in various members of the Fugate family in Perry County, KY, and since the 1960s when this phenomenon was first studied in the Fugate family and their descendants. To be clear, there are also references to the blue Combs and blue Ritchies in and around Perry County – but the common factor is that they have ancestors that descend from the Fugate family AND the Smith family ancestors, both.

During my research, I’ve proven some of what was initially accepted as fact was incorrect – and I’d like to correct the record. Bonus points too, because it’s just such a great genealogy story!

My Interest

I’ve been inordinately interested in the Fugate family for a long time – but not because of their famous blueness.

The Fugate family has been found for more than 225 years alongside my Cook, Claxton, Campbell, and Dobkins families. First, in Russell County, VA, where Josiah Fugate was granted land along Sword’s Creek in 1801 that adjoined Harry Smith, Richard Smith, and others, including my brick-wall ancestor, Joel Cook. Keep in mind that we have never discovered the birth surname of Joel’s wife or Joel’s parents.

Joel’s daughter, Sarah, married James Claxton about 1799 or 1800 in Russell County, and in February of 1802, James Claxton and Zachariah Fugate, among others, were ordered to view and lay out a new road. They were clearly neighbors, living on the same road, and knew each other well. We don’t know who James’ parents were either.

The Fugates first lived adjacent to the Cook, Riley, Stephens, and Claxton families on Mockason Creek in Russell County, then later migrated with the same group of families to Claiborne County where they lived along the Powell River near the Lee County, VA line, and are very closely associated with the Dobkins and Campbell lines.

Sometime between 1802 and 1805, several Russell County families moved 110 miles down the mountain range and settled together on the Powell River in Claiborne County, TN.  About the same time, others from the same cluster moved to what would eventually become Perry County, KY.

In 1805, the Fugates were ordered as road hands on the north side of Wallen’s Ridge in Claiborne County, the part that would become Hancock County in the 1840s, along with James Claxton and several Smiths.

In 1808, James Claxton witnessed a deed to Henley Fugate and John Riley.

The unsubstantiated family rumor, repeated as fact but with no source, has always been that William Fugate married the sister of my John Campbell. If that were true, tracking the Fugates would help me track my Campbells – yet another brick wall. Hence, my early interest in the Fugate family. Until now, I’ve never solved any part of that puzzle.

In 1827, in Claiborne County, Henry Cook, road overseer, is assigned John Riley, Henly Fugate, William Fugate, Fairwick Claxton (son of James who had died in 1815), and others. These families continued to be allied, living close to each other.

In 1842, William Fugate (1799-1855), born to William Fugate and Sarah Jane Stephens in Russell County, is involved in the estate of John Campbell, born about 1772, who had died in 1838. John Campbell was the husband of Jane “Jenny” Dobkins, daughter of Jacob Dobkins (1751-1835).

William Fugate of Claiborne County signed a deposition in 1851 saying he came to Claiborne County, TN, in 1826. Claiborne County is rugged terrain, located on the south side of the Cumberland Gap, where Virginia, Tennessee, and Kentucky intersect.

In 1853, both William Fugate and Jehiel Fugate are neck-deep in lawsuits surrounding the estate of Jacob Dobkins, who died in 1835, lived on Powell River, and whose daughters married John Campbell and his brother George Campbell

I recently discovered that this William Fugate was born about 1799 in Russell County, VA, and according to his son’s death certificate, William’s wife was Nancy Riley, which makes a lot of sense, given the proximity of these families. I must admit, I’m glad to solve this, but I’m also disappointed that he wasn’t married to John Campbell’s sister.

So, why does any of this matter in the Blue Fugate story?

In part, because I knew decades ago that Martin Fugate, of the Kentucky Blue Fugates, was not an orphan from France who had somehow made his way to the eastern shores of Maryland, then to Perry County, KY by 1820 when he supposedly received a land grant. That land grant date doesn’t square with Martin’s birth year of 1820 either, nor his marriage about 1840, both of which are substantiated by the census.

You can see from the information gleaned from Russell County that the Fugate family was there well before 1800. In fact, a Martin Fugate is shown on the 1789 tax list and other Fugates were there earlier, as early as 1771, according to extracted Russell County records in the book “The Fugate Family of Russell County, Virginia” by David Faris. The Fugate descendants continued to press on westward from there. Fugate, unlike Smith, Cook, and even Campbell, is not a common surname.

“Orphan” stories are often early ways that people said “I don’t know”, without saying, “I don’t know where he came from”, so they speculated and said “maybe he was an orphan.” Then that speculation was eventually passed on as fact.

That might have been happening in Perry County in the 1960s, but in Claiborne County in the 1980s, family members were telling me, “Martin waren’t no orphan,” and would roll their eyes and sigh with great exasperation. You could tell this was far from the first time they had had to combat that story. To be clear, the Fugate family lived down along Little Sycamore Creek with my Estes, Campbell and other ancestral families. In the 1980s, I was finding the oldest people possible and talking to them.

Some records in Russell County, where the Fugates of Perry County, KY, and the Fugates of Claiborne County, TN, originated, did and do exist, so could have been researched in the 1960s, but you would have had to know where to look. No one back then knew that the Perry County Fugates originated in Russell County, so they wouldn’t have known to look there. Research wasn’t easy. If they had known to look in Russell County, they would have had to travel there in person to review records. Early records exist in Perry County, too, but in the 1960s, not even the census was available, and people simply didn’t remember back to the early to mid-1800s.

Truthfully, no one would ever have doubted those early stories that had been handed down. They were revered, in all families, and treated as gospel. Those stories were the only connection they had to their ancestors – and the generations inbetween who passed them on. Nope, no one was going to question what Grandpa or Uncle Joe said.

So, in the 1960s, when the Blue Fugates in Perry and adjacent Breathitt County, KY were first studied by Dr. Cawein and his nurse, Ruth Pendergrass, they gathered oral family history and constructed a family pedigree from that information. They documented who was blue from first-hand eye-witness accounts – which would only have stretched back into the late 1800s, best case.

It probably never occurred to anyone to validate or verify earlier information that was provided. Plus, it would have been considered rude. After all, they weren’t genealogists, and they were trying to solve a medical mystery. The information they collected did not conflict with what was known about the disease and how it was transmitted, so they had no reason to doubt its historical accuracy.

The Mystery of the Blue Fugates?

The Blue Fugates were a family renowned for their blue skin – at least some of them had blue skin. That’s part of what makes this story so interesting.

Originally, it was believed that only one progenitor couple was involved, Martin Fugate and his wife, Elizabeth Smith, but now we know there were two. Maybe I should say “at least two.”

Martin Fugate and his bride, Elizabeth Smith, whose first known child was born in 1841, according to the 1850 census, are progenitors of the Blue Fugate Family of Troublesome Creek, but they aren’t the only progenitors.

Martin was not shown in the Perry County, KY 1840 census, but two Zachariah Fugates are present, 8 Fugate families are found in neighboring Breathitt County, more than a dozen in Russell County and surrounding counties in Virginia, and four, including two William Fugates, in Claiborne County, TN. The younger of the two lived next door to John Dobkins, son of deceased Jacob Dobkins.

Martin Fugate (c1820-1899) of Perry County and his second cousin, Zachariah Fugate (1816-1864), who each married a Smith sister, are both progenitors of the Blue Fugates through their common ancestor, their great-grandfather, Martin Fugate, who was born in 1725 and died in 1803 in Russell County, VA.

Obviously, if Martin (c1820-1899) had a Fugate second cousin who also lived in Perry County, Martin wasn’t an orphan. That knowledge is due to more recently available information, like census and other data – and that’s part of what I want to correct.

In 1948, Luke Combs, from Perry County, KY, took his sick wife to the hospital, but Luke’s blueness caused the medical staff to focus on him instead, thinking he was experiencing a medical emergency. He wasn’t. His skin was just blue. In 1974, Dr Charles H. Behlen II said, ‘Luke was just as blue as Lake Louise on a cool summer day.’ The Blue Fugates were “discovered” by the rest of the world, thanks to Luke, but they were nothing new to local people, many of whom did not welcome the notoriety.

In the 1960s, hematologist Madison Cawein III, with the assistance of Ruth Pendergrass, studied 189 members of the extended Fugate family, treated their symptoms, and published his findings. He included a pedigree chart, but not everyone was keen on cooperating with Dr. Cawein’s research project.

The Fugate family history collected for the study was based on two things:

  • Personal knowledge of who respondents knew was blue
  • Remembered oral history beyond the reach of personal knowledge.

That remembered oral history reported that Martin Fugate and Elizabeth Smith’s youngest son, Zachariah Fugate (born in 1871), married his mother’s (older) sister, Mary Smith, (born about 1820), and had a family. I’ve added the dates and information in parentheses, or they would have immediately known that marriage was impossible. Or, more directly, even if they married when Zachariah was 14, Mary would have been 70 years old, and they were certainly not going to produce offspring. This is the second piece of information I want to correct. That marriage never happened, although people were accurate that:

  • Martin Fugate and his wife, Elizabeth Smith, did have a son named Zachariah Fugate
  • One Zachariah Fugate did marry Mary Smith, sister of Elizabeth Smith

It’s just that they were two different Zachariah Fugates, born 75 years apart. Same name confusion strikes again.

I constructed this census table of Martin Fugate with Elizabeth Smith, and Zachariah Fugate with Mary Smith. They lived next door to each other in Perry County – and it seemed that every family reused the same “honoring” names for their children – and had been doing such for generations.

In the 1960s, when the information was being compiled for Dr. Cawein, the census and other documents that genealogists rely on today were not readily available.

Furthermore, genetically, for the mystery Dr. Cawein was attempting to solve, it didn’t really matter, because it was still a Smith female marrying a Fugate male. I know that it made no difference today, but he wouldn’t have known that then. To track down the source of the blueness, he needed to identify who was blue and as much about their ancestors as possible.

The Zachariah Fugate (1816-1864) who married Elizabeth Smith’s sister, Mary Smith, was Martin Fugate’s second cousin by the same name, Zachariah. Both Martin (c1820-1899) and his second cousin, Zachariah (c1816-1864), married to Smith sisters, had blue children, which helps cement the fact that the responsible genes were passed down through BOTH the Fugate and Smith lines, and weren’t just random mutations or caused by environmental or other factors.

Proof

In case you’re wondering exactly how I confirmed that Martin and Zachariah did indeed marry Elizabeth and Mary Smith – their children’s birth and death records confirmed it. These records correlate with the census.

Unlike most states, Kentucky has some pre-1900 birth and death records.

Wilson Fugate’s birth in February, 1855 was recorded, naming both of his parents, Martin Fugate and Elizabeth Smith.

Martin Fugate and Elizabeth Smith’s son, Henley or Hendley, died in 1920, and his death certificate gave the names of both parents. Betty is a nickname for Elizabeth.

On the same page with Wilson Fugate’s birth, we find a birth for Zachariah Fugate and Mary Smith, too.

Hannah Fugate was born in December 1855.

Zachariah Fugate and Mary Smith’s son, Zachariah died in 1921, and his death certificate gives his parents as Zach Fugate and Polly Smith, a nickname for Mary.

There are more death records for children of both sets of parents.

Both couples, Martin Fugate and Elizabeth Smith, and Zachariah Fugate and Mary Smith, are progenitors of the Blue Fugate family.

Of Martin’s 10 known children, 4 were noticeably “blue” and lived long, healthy lives. At least two of Zachariah’s children were blue as well.

Some people reported that Martin, himself, had deep blue skin. If so, then both of his parents would have carried that genetic mutation and passed it to him.

Unfortunately, color photography didn’t exist when Martin (c1820-1899), lived, so we don’t know for sure. For Martin’s children to exhibit blue skin, they would have had to inherit a copy of the gene from both parents, so we know that Martin’s wife, Elizabeth, also inherited the mutation from one of her parents. Ditto for Zachariah Fugate and Mary Smith. The chances of two families who both carry such a rare mutation meeting AND having two of their family members marry are infinitesimally small.

Dr. Cawein’s Paper

In 1964, Dr. Cawein published his findings, but only with a pedigree chart with no names. What was included was an explanation about how remote and deep the hills and hollows were, and that out-migration was almost impossible, explaining the propensity to marry cousins.

Legend:

  • Measured – Found to have elevated methemoglobin
  • Measured – Found to have decreased methemoglobin
  • Not measured – Reported to be “blue”
  • Measured – Found to be normal

Cawein further stated that data was collected by interviewing family members who personally knew the individual in question and could say if they were actually blue.

Cawein erroneously reported that “Martin Fugate was an orphan born about 1800, landed in Maryland, obtained a land grant in Perry County, KY in 1820, and married a local gal. From 1820 to about 1930, the population consisted of small, isolated groups living in creek valleys and intermarriage was quite common.” Bless his heart.

Later, geneticist Ricky Lewis wrote about the Blue Fugates, sharing, among other things, the provenance of that “blue” family photo that circulates on the internet, revealing that it is a composite that was assembled and colorized back in 1982. She also erroneously stated that, “after extensive inbreeding in the isolated community—their son married his aunt, for example—a large pedigree of “blue people” of both sexes arose.” Bless her heart too.

Dr. Lewis is incorrect that their son married his aunt – but she’s right that intermarriage between the families is responsible for the blue descendants. In colonial America, and elsewhere, cousin marriages were fairly common – everyplace. You married who you saw and knew. You saw your family and neighbors, who were generally your extended family. No left-handed apology needed.

Pedigree collapse, sharing the same ancestors in multiple places in your tree, is quite common in genealogy, as is endogamy among isolated populations.

Today, things have changed somewhat. People move into and out of an area. The younger generation moves away a lot more and has for the past 100+ years. Most people know their first cousins, but you could easily meet a second or third cousin and never know you were related.

While early stories reported that Martin Fugate (c1820-1899) was an orphan from France, mysteriously appearing in Kentucky around 1820, later genealogical evidence as well as genetic research proves that Martin Fugate was actually born about 1820, in Russell County, VA and his ancestors, over several generations, had followed the typical migration path across Virginia into Kentucky.

We’ve also proven that Martin’s son, Zachariah (born 1871) was not the Zachariah who married Elizabeth Smith’s sister, Mary, who was 50 years old when Zachariah was born.

What else do we know about these families?

The Back Story

Compared to the Smith story, the Fugate story was “easy.”

Don’t laugh, but I spent several days compiling information and charting this in a way I could see and understand in one view.

I hesitate to share this, but I’m going to because it’s how I think. I also put together a very basic Fugate tree at Ancestry, here. Many children and siblings are missing. I was just trying to get this straight in my mind.

Click to enlarge any image

This spreadsheet is color-coded:

  • The text of each lineage has a specific color. For example, Fugates are blue.
  • Some people (or couples) are found in multiple descendants’ lines and are duplicated in the tree. Duplicated people also have a cell background color. For example, Mahala Richey (Ritchey, Ritchie) is highlighted yellow. James and Alexander Richey have green text and apricot background because they are duplicated.
  • The generation of parents who had blue children is marked with black boxes and the label “Blue Kids.”
  • Only the blue kids for this discussion are listed below those couples.
  • The bluest person was Luna Fugate (1886-1964).
  • While Luna’s husband, John Stacey, also descended from the Smith/Combs line, only one of their children expressed the blue trait. That child’s lips turned blue when they cried. John and Luna were actually related in three ways. Yes, my head hurts.
  • The last known “blue” person was Luna Fugate’s great-grandchild, whose name I’ve obfuscated.

Ok, let’s start with the blue Fugates on our spreadsheet. You’ll probably want to follow along on the chart.

Martin Fugate (1725-1803) and wife Sarah, had several children, but only two, the ones whose grandchildren married Smith sisters are known to have had blue children.

On our chart, you can see that Martin (1725-1803) is blue, and so is Son 1, William Fugate and Sarah Stephens, along with Son 2, Benjamin Fugate and Hannah Devers. Both William and Benjamin are mentioned in Martin’s estate in 1803 in Russell County, VA.

Two generations later, Martin Fugate (c1820-1899) and Elizabeth Smith had four blue children, and Zachariah Fugate (c1816-1864) and Mary Smith had at least two blue children. Furthermore, Zachariah Fugate’s sister, Hannah (1811-1877), married James Monroe Richie.

The Richey’s are green, and you can see them on both the left and right of the chart. Hannah’s husband descended from the same Richey line that Elizabeth Smith did. It was no surprise when their child, Mahala Ritchie (1854-1922), married Levi Fugate, to whom she was related three ways, they became the parents of a blue child. Their daughter, Luna Fugate, was known as “the Bluest of the Blue Fugates.”

Mahala Ritchie (1854-1922) could have inherited her blue gene (or genes) from either her mother Hannah Fugate, or her father, James Monroe Ritchie, or both. We don’t know if Hannah was blue or not.

We do know that Mahala married Levi Fugate, her third cousin through the Fugate line, and her third and fourth cousin also through the Richie and Grigsby lines, respectively. This is the perfect example of pedigree collapse.

You can see the purple Grigsby lines in the center and to the right of the pedigree chart too, with Benjamin Grigsby, highlighted in blue, being common to both lineages.

Zachariah Fugate (1816-1864) and Mary Smith had at least two blue sons, but I am not tracking them further. Suffice it to say that Blue John married Letha Smith, his first cousin, the granddaughter of Richard Smith and Nancy Elitia Combs. Lorenzo, “Blue Anze”, married a Fugate cousin, so it’s no surprise that Zachariah and Mary were also progenitor couples of the Blue Fugates.

Martin’s son, Levi Fugate, married Mahala Ritchie, mentioned above, and had Luna Fugate who would have been personally known to Dr. Cawein. Luna, pictured above, at left, was known as the bluest of the Blue Fugates.

Luna married John Stacey who some thought wasn’t related to Luna, so it was confusing why they had one child that was slightly blue. However, John turns out to be Luna’s second cousin, third cousin once removed and first cousin once removed through three different lines. His great-grandparents were Richard Smith and Nancy Combes. Since one of their children had a slight blue tinge, John, while not visibly blue himself, clearly carried the blue gene.

Where Did the Blue Gene Come From?

The parents of Elizabeth Smith and Mary Smith were Richard Smith and Nancy (Eletia) Combs. His Smith ancestors include both the Richeys and Caldwells.

James Richey (1724-1888) married Margaret Caldwell (1729-1802) and his father, Alexander Richey (1690-1749) married Jeanne Caldwell (1689-1785). While the Caldwell females weren’t closely related, Jeanne was the daughter of Joseph Alexander Caldwell (1657-1730) and Jane McGhie, and Margaret Caldwell (1729-1802) was the great-granddaughter of that couple. The Caldwells are shown in magenta, with both Richey/Caldwell couples shown as duplicates. The Richey are highlighted in apricot, and the Caldwell’s with a light grey background. It was difficult to show how these lines connect, so that’s at the very top of the pedigree chart.

When just viewing the Smith-Combs line, it’s easier to view in the Ancestry pedigree.

The Smith, Richey, Combs, Grigsby, and Caldwell lines are all repeated in different locations in the trees, such as with Hannah Fugate’s husband. These repeated ancestors make it almost impossible for us to determine where in the Smith ancestral tree that blue gene originated.

We don’t know which of these ancestral lines actually contributed the blue gene.

Can We Figure Out Where the Blue Gene Came From?

How could we potentially unravel this mystery?

We know for sure that the blue gene in the Fugate side actually descends from Martin Fugate who was born in 1725, or his wife, Sarah, whose surname is unknown, because their two great-grandchildren, Martin (c1820-1899) and Zachariah (1816-1864) who both married Smith sisters had blue children. For those two intervening generations between Martin Fugate (1725-1803) and those two great-grandsons, that blue gene was quietly being passed along, just waiting for a blue Fugate gene carrier to meet another blue gene carrier. They found them in the Smith sisters.

None of Martin (1725-1803) and Sarah’s other children were known to have had any blue children or descendants. So either they didn’t carry the blue gene, or they didn’t marry someone else who did – that we know of.

We can’t tell on the Smith side if the blue gene descends from the Smith, Richey, Grigsby or Caldwell ancestors, or maybe even an unknown ancestor.

How can we narrow this down?

If a Fugate in another geographic location married someone from one of these lineages, say Grigsby, for example, and they had blue offspring, and neither of them shared any of the other lineages, then we could narrow the blue gene in the Smith line to the Grigsby ancestor.

Unfortunately, in Perry and surrounding counties in Kentucky, that would be almost impossible due to intermarriage and pedigree collapse. Even if you “think you know” that there’s no connection through a third line, given the deep history and close proximity of the families, the possibility of unknown ancestry or an unexpected parent is always a possibility.

Discover

While the blue gene is not connected to either Y-DNA or mitochondrial DNA, we do have the Fugate’s Y-DNA haplogroup and the Smith sisters’ mitochondrial DNA.

Y-DNA

The Big Y-700 haplogroup for the Martin Fugate (c1820-1899) line is R-FTA50432, which you can see, here..

You can see the Blue Fugate Family by clicking on Notable Connections.

If you’re a male Fugate descendant who descends from anyone other than Martin Fugate (c1820-c1899), and you take a Big Y test, you may well discover a new haplogroup upstream of Martin (c1820-1899) that represents your common Fugate ancestor.

If you descend from Martin, you may find youself in either of the two haplogroups shown for Martin’s descendants, or you could split the line to form a new haplogroup.

We don’t have the mitochondrial DNA of Martin Fugate (c1820-1899), which would be the mitochondrial DNA of his mother, Nancy Noble. We also don’t have the the mtDNA of Mary (Polly) Wells, the mother of Zachariah Fugate (c1816-1864). If you descend from either of these women in a direct matrilineal line, through all women, please take a mitochondrial DNA test and reach out. FamilyTreeDNA will add it as a Notable Connection.

We do, however, have the mitochondrial DNA of Elizabeth and Mary Smith

Mitochondrial DNA of Elizabeth and Mary Smith

The mitochondrial DNA of both Elizabeth and Mary Smith follows their mother’s line – Nancy Combs through Nancy (Eletia?) Grigsby. Nancy’s mother is unknown, other than the possible first name of Margaret.

Nancy Grigsby’s descendant is haplogroup K1a61a1, which you can see here.

The Blue Fugates show under Notable Connections.

The Smith sisters’ haplogroup, K1a61a1, tells us immediately that their ancestor is European, eliminating other possibilities.

The time tree on Discover is quite interesting

Haplogroup K1a61a1 was formed about the year 1400. Descendants of this haplogroup are found in the UK, Scotland, England, several unknown locations, and one person who selected Native American, which is clearly in error. Haplogroup K is not Native American.

By focusing on the haplotype clusters, identified by the F numbers in the elongated ovals, our tester may be able to identify the mother of Nancy Grigsby, or upstream lineages that they can work back downstream to find someone who married Thomas Grigsby.

This story is far from over. In fact, a new chapter may just be beginning.

If you’re a Fugate, or a Fugate descendant, there’s still lots to learn, even if autosomal DNA is “challenging,” to say the least, thanks to pedigree collapse. Testing known females lineages can help us sort which lines are which, and reveal their hidden stories.

Other resources if you want to read more about the Fugates: The Blue People of Troublesome Creek, Fugates of Kentucky: Skin Bluer than Lake Louise, Those Old Kentucky Blues: An Interrupted Case Study, and Finding the Famous Paintings of the Blue People of Kentucky.

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Discover’s Ancient Connections – How Are You Related?

When FamilyTreeDNA released the new Mitotree, they also introduced their new mtDNA Discover tool, which is a series of 13 reports about each haplogroup, including one titled Ancient Connections.

Ancient Connections shows you ancient relatives from your direct matrilineal line through a mitochondrial DNA test or through a Y-DNA (preferably Big Y-700) test.

Ancient Connections help you connect the present to the past based on archaeological excavations around the world and DNA sequencing of remains. Ancient Connections links you through your DNA to ancient people, cultures, and civilizations that would be impossible to discover any other way. You don’t have to wonder if it’s accurate, or which line it came from, because you know based on the test you took. Discover’s Ancient Connections track the journey of your ancestors and relatives.

Ancient Connections can be very exciting – and it’s easy to get swept away on a wave of jubilation.

Are those people your ancestors, or relatives, or what? How do you know? How can you figure it out?

So let me just answer that question generally before we step through the examples, so you can unveil your own connections.

  • You are RELATED to both Ancient and Notable Connections. Notable Connections are famous or infamous people who have lived more recently, and their relatives have been tested to identify their haplogroups.
  • It’s VERY unlikely that Ancient Connections are your direct ancestors – but someone in the line that you share IS your ancestor.
  • Many factors enter into the equation of how you are related, such as the haplogroup(s), the timeframe, and the location.
  • The sheer number of people who were living at any specific time makes it very unlikely that any one person with that haplogroup actually was your direct ancestor. They are much more likely to be your distant cousin.

Factors such as whether you share the same haplogroup, similar locations, and the timeframe make a huge difference. Everyone’s situation is different with each Ancient Connection.

Ok, are you ready for some fun???

Let’s find out how to leverage these tools.

Ancient Connections

Ancient connections are fun and can also be quite useful for genealogy.

In this article, I’m going to use a mitochondrial DNA example because full sequence testers at FamilyTreeDNA just received their new Mitotree haplogroup. mtDNA Discover was released with Mitotree, so it’s new too. However, the evaluation process is exactly the same for Y-DNA.

Everyone’s results are unique, so your mileage absolutely WILL vary. What we are going to learn here is a step-by-step analytical process to make sure you’re hearing the message from your ancestors – and interpreting it correctly.

To learn about your new mitochondrial DNA haplogroup and haplotype, read the articles:

Radegonde Lambert

Let’s start with an Acadian woman by the name of Radegonde Lambert. She’s my ancestor, and I wrote about her years ago in the article, Radegonde Lambert (1621/1629-1686/1693), European, Not Native.

At the time, that article caused a bit of a kerfluffle, along with the article, Haplogroup X2b4 is European, Not Native American, because Radegonde’s X2b4 haplogroup had been interpreted by some to mean that her matrilineal ancestors were Native American.

That often happens when a genealogical line abruptly ends and hits a brick wall. What probably began with “I wonder if…”, eventually morphed into “she was Native,” when, in fact, she was not. In Radegonde’s case, it didn’t help any that her haplogroup was X2b4, and some branches of base haplogroup X2 are in fact Native, specifically X2a, However, all branches of X2 are NOT Native, and X2b, which includes X2b4, is not.

The Acadians were French people who established a colony in what is now Nova Scotia in the 1600s. They did sometimes intermarry with the Native people, so either Native or European heritage is always a possibility, and that is exactly why DNA testing is critically important. Let’s just say we’ve had more than one surprise.

I always reevaluate my own work when new data becomes available, so let’s look to see what’s happening with Radegonde Lambert now, with her new haplogroup and mtDNA Discover.

Sign on and Identify Your Haplogroup

You can follow along here, or sign on to your account at FamilyTreeDNA.

The first step is to take note of your new Mitotree haplogroup.

Your haplogroup badge is located near the bottom right of your page after signing in.

The tester who represents Radegonde Lambert has a Legacy Haplogroup of X2b4 and has been assigned a new Mitotree haplogroup of X2b4g.

Click Through to Discover

To view your personal Discover information, click on the Discover link on your dashboard.

You can simply enter a haplogroup in the free version of mtDNA Discover, but customers receive the same categories, but significantly more information if they sign in and click through.

You can follow along on the free version of Discover for haplogroups X2b4 here, and X2b4g here.

Clicking on either the Time Tree, or the Classic Tree shows that a LOT has changed with the Mitotree update.

Each tree has its purpose. Let’s look at the Classic Tree first.

The Classic Tree

I like the Classic Tree because it’s compact, detailed and concise, all in one. Radegonde Lambert’s new haplogroup, X2b4g is a subgroup of X2b4, so let’s start there.

Click on any image to enlarge

Under haplogroup X2b4, several countries are listed, including France. There are also 7 haplotype clusters, which tell you that those testers within the cluster all match each other exactly.

It’s worth noting that the little trowels (which I thought were shovels all along) indicate ancient samples obtained from archaeological digs. In the Discover tools, you’ll find them under Ancient Connections for that haplogroup. We will review those in a minute.

In Mitotree, haplogroup X2b4 has now branched several granular and more specific sub-haplogroups.

Radegonde Lambert’s new haplogroup falls below another new haplogroup, X2b4d’g, which means that haplogroup X2b4d’g is now the parent haplogroup of both haplogroups X2b4d and X2b4g. Both fall below X2b4d’g.

Haplogroup names that include an apostrophe mean it’s an umbrella group from which the two haplogroups descend – in this case, both X2b4d and X2b4g. Apostrophe haplogroups like X2b4d’g are sometimes referred to as Inner Haplogroups.

You can read more about how to understand your haplogroup name, here.

In this case, haplogroup X2b4d’g is defined by mutation G16145A, which is found in both haplogroups X2b4d and X2b4g. Both of those haplogroup have their own defining mutations in addition to G16145A, which caused two branches to form beneath X2b4d’g.

You can see that Radegonde Lambert’s haplogroup X2b4g is defined by mutation C16301T, but right now, that really doesn’t matter for what we’re trying to accomplish.

In descending order, for Radegonde, we have haplogroups:

  • X2b4
  • X2b4d’g
  • X2b4g

Your Match Page

Looking at the tester’s match page, Radegonde’s haplotype cluster number and information about the cluster are found below the haplogroup. You can view your cluster number on:

  • Your match page
  • The Match Time Tree beside your name and those of your matches in the same haplotype cluster
  • The Scientific Details – Variants page

I wrote about haplotype clusters, here.

Click on any image to enlarge

On your match page, which is where most people look first, you are in the same haplogroup and haplotype cluster with anyone whose circle is also checked and is blue. If the little circles are not checked and blue, you don’t share either that haplogroup, haplotype cluster, or haplogroup and haplotype cluster. If you share a haplotype cluster, you will always share the same haplogroup.

Haplotype clusters are important because cluster members match on exactly the same (but less stable) mutations IN ADDITION to haplogroup-defining (more stable) mutations.

However, you may also share an identifiable ancestor with people in different haplotype clusters. Mutations, and back mutations happen – and a lot more often at some mutation locations, which is why they are considered less stable. Normally, though, your own haplotype cluster will hold your closest genealogical matches.

In Discover, you can see that Radegonde’s haplotype cluster, F585777, displays three tester-supplied countries, plus two more. Click on the little plus to expand the countries.

What you’re viewing are the Earliest Known Ancestor (EKA) countries that testers have entered for their direct matrilineal ancestor.

Let’s hope they understood the instructions, and their genealogy information was accurate.

Notice that Canada and France are both probably quite accurate for Radegonde, based on the known history of the Acadians. There were only French and Native women living in Nova Scotia in the 1600s, so Radegonde had to be one or the other.

The US may be accurate for a different tester whose earliest known ancestor (EKA) may have been found in, say, Louisiana. Perhaps that person has hit a brick wall in the US, and that’s all they know.

The US Native American flag is probably attributable to the old “Native” rumor about Radegonde, and the tester didn’t find the Canadian First Nations flag in the “Country of Origin” dropdown list. Perhaps that person has since realized that Radegonde was not Native and never thought to change their EKA designation.

The little globe with “Unknown Origins” is displayed when the tester doesn’t select anything in the “Country of Origin.”

Unfortunately, this person, who knew when Radegonde Lambert lived, did not complete any additional information, and checked the “I don’t know this information” box. Either Canada, or France would have been accurate under the circumstances. If they had tracked Radegonde back to Canada and read about her history, they knew she lived in Canada, was Acadian, and therefore French if she was not Native. Providing location information helps other testers, whose information, in turn, helps you.

Please check your EKA, and if you have learned something new, PLEASE UPDATE YOUR INFORMATION by clicking on the down arrow by your user name in the upper right hand corner, then Account Settings, then Genealogy, then Earliest Known Ancestors.

Don’t hesitate to email your matches and ask them to do the same. You may discover that you have information to share as well. Collaboration is key.

Radegonde’s Discover Haplogroup

First, let’s take a look at Radegonde’s haplogroup, X2b4g, in Discover.

The Discover Haplogroup Story landing page for haplogroup X2b4g provides a good overview. Please READ this page for your own haplogroup, including the little information boxes.

The history of Radegonde’s haplogroup, X2b4g, is her history as well. It’s not just a distant concept, but the history of a woman who is the ancestor of everyone in that haplogroup, but long before surnames. Haplogroups are the only way to lift and peer behind the veil of time to see who our ancestors were, where they lived, and the cultures they were a part of.

We can see that Radegonde’s haplogroup, X2b4g, was born in a woman who lived about 300 CE, Common (or Current) Era, meaning roughly the year 300, which is 1700 years ago, or 1300 years before Radegonde lived.

  • This means that the tester shares a common ancestor with everyone, including any X2b4g remains, between now and the year 300 when haplogroup X2b4g was born.
  • This means that everyone who shares haplogroup X2b4g has the same common female ancestor, in whom the mutation that defines haplogroup X2b4g originated. That woman, the common ancestor of everyone in haplogroup X2b4g, lived about the year 300, or 1700 years ago.
  • Your common ancestor with any one individual in this haplogroup can have lived ANYTIME between very recently (like your Mom) and the date of your haplogroup formation.
  • Many people misinterpret the haplogroup formation date to mean that’s the date of the MRCA, or most recent common ancestor, of any two people. It’s not, the haplogroup formation date is the date when everyone, all people, in the haplogroup shared ONE ancestor.
  • The MRCA, or most recent common ancestor, is your closest ancestor in this line with any one person, and the TMRCA is the “time to most recent common ancestor.” It could be your mother, or if your matrilineal first cousin tested, your MRCA is your grandmother, and the TMRCA is when your grandmother was born – not hundreds or thousands of years ago.
  • Don’t discount mitochondrial DNA testing by thinking that your common ancestor with your matches (MRCA) won’t be found before the haplogroup birth date – the year 300 in Radegonde’s case. The TMRCA for all of Radegonde’s descendants is about 1621 when she was born.
  • The haplogroup birth date, 1700 years ago, is the common ancestor for EVERYONE in the haplogroup, taken together.
  • Mitochondrial DNA is useful for BOTH recent genealogy and also reveals more distant ancestors.
  • Looking back in time helps us understand where Radegonde’s ancestors lived, which cultures they were part of, and where.

There are two ways to achieve that: Radegonde’s upstream or parent haplogroups, and Ancient Connections.

Parent Haplogroups

X2b4g split from X2b4d’g, the parent haplogroup of BOTH X2b4d and X2b4g, around 3700 years ago, or about 1700 BCE (Before Common (or Current) Era).

Looking at either the Classic Tree, the Time Tree (above) or the Match Time Tree, you can see that haplogroup X2b4g has many testers, and none provide any locations other than France, Canada, the US, unknown, and one Native in the midst of a large haplotype cluster comprised of French and Canadian locations. Due to the size of the cluster, it’s only partially displayed in the screen capture above.

You can also see that sister haplogroup X2b4d split from X2b4d’g around the year 1000, and the ancestors of those two testers are reported in Norway.

Many, but not all of the X2b4g testers are descendants of Radegonde. Even if everyone is wrong and Radegonde is not French, that doesn’t explain the other matches, nor how X2b4g’s sister haplogroup is found in Norway.

Clearly, Radegonde isn’t Native, but there’s still more evidence to consider.

Let’s dig a little deeper using Radegonde’s Ancient Connections.

Ancient Connections

While ancestor and location information are user-provided, Ancient Connections are curated from scientifically published papers. There’s no question about where those remains were found.

When signed in to your account, if you’ve taken the mtFull Sequence test, clicking on the Ancient Connections tab in Discover shows a maximum of around 30 Ancient Connections. If you’re viewing the free version of Discover, or you’ve only tested at the HVR1 or HVR1+HVR2 levels, you’ll see two of your closer and one of your most distant Ancient Connections. It’s easy to upgrade to the mtFull.

In Discover, the first group of Ancient Connections are genetically closest to you in time, and the last connections will be your most distant. Some connections may be quite rare and are noted as such.

Please keep in mind that oldest, in this case, Denisova 8 and Sima de los Huesos, will never roll off your list. However, as new studies are released and the results are added to the tree, you may well receive new, closer matches. New results are being added with each Discover update.

It’s very exciting to see your Ancient Connections, but I need to say three things, loudly.

  1. Do NOT jump to conclusions.
  2. These remains are probably NOT YOUR ANCESTORS, but definitely ARE your distant cousins.
  3. Ancient Connections ARE wonderful hints, especially when taken together with each other and additional information.

It’s VERY easy to misinterpret Ancient Connections because you’re excited. I’ve done exactly that. To keep the assumption monster from rearing its ugly head, I have to take a breath and ask myself a specific set of questions. I step through the logical analysis process that I’m sharing with you.

The first thing I always want to know is where the genetically closest set of remains was found, when, and what we know about them, so let’s start there. Keep in mind that the closest remains genetically may not be the most recent set of remains to have lived. For example, my own haplogroup will be the closest genetically, but that person may have lived 2000 years ago. An Ancient Connection in a more distant haplogroup may have lived only 1000 years ago. The closest person genetically is NOT the same as the person who lived the most recently.

Our tester, Radegonde’s descendant, has no Ancient Connections in haplogroup X2b4g or X2b4d’g, but does have two in haplogroup X2b4, so let’s start there.

Discover provides a substantial amount of information about each set of ancient remains. Click on the results you want to view, and the information appears below.

Radegonde’s first Ancient Connection is Carrowkeel 534. The graphic shows the tester, the Ancient Connection being viewed, and their shared ancestor’s haplogroup. In this case, the shared ancestor haplogroup of Carrowkeel 534 and the tester is X2b4, who lived about 5000 years ago.

It’s very easy to look at Carrowkeel 534, become smitten, and assume that this person was your ancestor.

By Shane Finan – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35098411

It’s especially easy if you WANT that person to be your ancestor. Carrowkeel 534 was buried in a passage tomb in County Sligo, Ireland. I’ve been there.

However, don’t let your emotions get involved – at least not yet.

This is the first example of the steps that determine that these remains are NOT YOUR ANCESTOR.

  • Carrowkeel 534 was a male, and we all know that males do not pass on their mitochondrial DNA. Well, that’s an inconvenient fact.😊
  • There are two sets of X2b4 remains in Ancient Connections. Carrowkeel 534 remains are about 4600-5000 years old, and your common ancestor with them lived about 5000 years ago. However, Radegonde was French and migration from Ireland to France is not typical.
  • The other set of X2b4 remains, Ladoga 16, lived more recently, between the years of 900 and 1200 (or 800-1100 years ago), but they are found in Russia.
  • Radegonde’s parent haplogroup, X2b4d’g was born about 3700 years ago, which excludes the Russian remains from being Radegonde’s direct ancestor.
  • Radegonde’s common ancestor with both these sets of remains lived about 5000 years ago, but these remains were not found even close to each other.

In fact, these remains, if walking, are about 3299 km (2049 miles) apart, including two major water crossings.

  • Given that Radegonde is probably French, finding her ancestor around 5000 years ago in an Irish passage tomb in County Sligo, or in a location east of St. Petersburg, is extremely unlikely.

What IS likely, though, is that X2b4d’g descendants of your common ancestor with both sets of remains, 5000 years ago, went in multiple directions, meaning:

  • Radegonde’s ancestor found their way to France and along the way incurred the mutations that define X2b4d’g and X2b4g by the year 1600 when she lived, or about four hundred years ago.
  • Another X2b4 descendant found their way to what is today Ireland between 4600 and 5000 years ago
  • A third X2b4 descendant found their way to Russia between 800-1100 years ago, and 5000 years ago

If any question remains about the genesis of Radegonde’s ancestors being Native, Ancient Connections disproves it – BUT – there’s still an opportunity for misunderstanding, which we’ll see in a few minutes.

Ancient Connections Analysis Chart

I’ve created an analysis chart, so that I can explain the findings in a logical way.

Legend:

  • Hap = Haplogroup
  • M=male
  • F=female
  • U=unknown

Please note that ancient samples are often degraded and can be missing important mutations. In other words, the tree placement may be less specific for ancient samples. Every ancient sample is reviewed by FamilyTreeDNA’s genetic anthropologist before it’s placed on the tree.

Ancient samples use carbon dating to determine ages. Sometimes, the carbon date and the calculated haplogroup age are slightly “off.” The haplogroup age is a scientific calculation based on a genetic clock and is not based on either genealogy or ancient burials. The haplogroup age may change as the tree matures and more branches are discovered.

I’m dividing this chart into sections because I want to analyze the findings between groups.

The first entry is the earliest known ancestor of the current lineage – Radegonde Lambert, who was born about 1621, or roughly 400 years ago. I’ve translated all of the years into “years ago” to avoid any confusion.

If you wish to do the same, with CE (Current or Common Era) dates, subtract the date from 2000. 300 CE= (2000-300) or1700 years ago. With BCE dates, add 2000 to the BCE number. 1000 BCE= (1000+2000) or 3000 years ago.

Connection Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada -Acadian X2b4g 1700 X2b4 5000
Carrowkeel 534 (M) 4600-5100 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
  • Age Years Ago – When the Ancient Connection lived
  • Hap Age Years Ago – When the haplogroup of the Ancient Connection (X2b4) originated, meaning was born
  • Shared Hap Age Years Ago – When the Shared Ancestor of everyone in the Shared Haplogroup originated (was born)

In this first section, the haplogroup of the Ancient Connections and the Shared Haplogroup is the same, but that won’t be the case in the following sections. Radegonde Lambert’s haplogroup is different than her shared haplogroup with the Ancient Connections.

Let’s assume we are starting from scratch with Radegonde.

The first question we wanted to answer is whether or not Radegonde is European, presumably French like the rest of the Acadians, or if she was Native. That’s easy and quick.

Native people crossed Beringia, arriving from Asia someplace between 12,000 and 25,000 years ago in multiple waves of migration that spread throughout both North and South America.

Therefore, given that the first two samples, Carrowkeel 534 and Ladoga 16, share haplogroup X2b4, an upstream haplogroup with Radegonde Lambert, and haplogroup X2b4 was formed around 5000 years ago, the answer is that Radegonde’s X2b4 ancestor, whoever that was, clearly lived in Europe, NOT the Americas.

According to Discover, Haplogroup X2b4:

  • Was formed about 5000 years ago
  • Has 16 descendant haplogroups
  • Has 29 unnamed lineages (haplotype clusters or individuals with no match)
  • Includes testers whose ancestors are from 23 countries

The Country Frequency map shows the distribution of X2b4, including all descendant haplogroups. Please note that the percentages given are for X2b4 as a percentage of ALL haplogroups found in each colored country. Don’t be misled by the relative physical size of the US and Canada as compared to Europe.

The table view shows the total number of self-identified locations of the ancestors of people in haplogroup X2b4 and all downstream haplogroups.

The Classic Tree that we looked at earlier provides a quick view of X2b4, each descendant haplogroup and haplotype cluster, and every country provided by the 331 X2b4 testers.

For the X2b4 Ancient Connections, we’ve already determined:

  • That Radegonde’s ancestors were not Native
  • Carrowkeel 534 is a male and cannot be Radegonde’s ancestor. It’s extremely likely that Carrowkeel 534’s mother is not Radegonda’s ancestor either, based on several factors, including location.
  • Based on dates of when Ladoga 16 lived, and because he’s a male, he cannot be the ancestor of Radegonde Lambert.

Radegonda’s haplogroup was formed long before Ladoga 16 lived. Each Ancient Connection has this comparative Time Tree if you scroll down below the text.

  • Both Carrowkeel and Ladoga share an ancestor with our tester, and Radegonde, about 5000 years ago.

Think about how many descendants the X2b4 ancestor probably had over the next hundreds to thousands of years.

  • We know one thing for sure, absolutely, positively – X2b4 testers and descendant haplogroups live in 32 countries. People migrate – and with them, their haplogroups.

What can we learn about the genealogy and history of Radegonde Lambert and her ancestors?

We find the same haplogroup in multiple populations or cultures, at different times and in multiple places. Country boundaries are political and fluid. What we are looking for are patterns, or sometimes, negative proof, which is often possible at the continental level.

X2b4, excluding downstream haplogroups, is found in the following locations:

  • Bulgaria
  • Canada (2)
  • Czech Republic
  • England (2)
  • Finland (2)
  • France (3)
  • Germany (4)
  • Portugal
  • Scotland (2)
  • Slovakia (2)
  • Sweden (2)
  • UK (2)
  • Unknown (11)
  • US (2)

Note that there are three people in France with haplogroup X2b4 but no more refined haplogroup.

Looking at X2b4’s downstream haplogroups with representation in France, we find:

  • X2b4a (none)
  • X2b4b (none)
  • X2b4b1 (1)
  • X2b4d’g (none)
  • X2b4d (none)
  • X2b4g (24) – many from Radegonde’s line
  • X2b4e and subgroups (none)
  • X2b4f (none)
  • X2b4j and subgroups (none)
  • X2b4k (none)
  • X2b4l (1)
  • X2b4m (none)
  • X2b4n and subgroups (none)
  • X2b4o (none)
  • X2b4p (none)
  • X2b4r (none)
  • X2b4+16311 (none)

I was hoping that there would be an Ancient Connection for X2b4, X2b4d’g, or X2b4g someplace in or even near France – because that makes logical sense if Radegonde is from France.

All I can say is “not yet,” but new ancient sites are being excavated and papers are being released all the time.

Ok, so moving back in time, let’s see what else we can determine from the next set of Ancient Connections. Haplogroup X2b1”64 was formed about 5050 years ago.

Connection Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050 years ago
Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050

Our first group ended with haplogroup X2b4, and our second group consists of haplogroup X2b1”64, the parent haplogroup of X2b4. X2b1”64 is a significantly larger haplogroup with many downstream branches found throughout Europe, parts of western Asia, the Levant, India, and New Zealand (which probably reflects a colonial era settler). The Country Frequency Map and Table are found here.

X2b1”64 is just slightly older than X2b4, but it’s much more widespread, even though they were born about the same time. Keep in mind that haplogroup origination dates shift as the tree is developed.

  • These seven individuals who share X2b1”64 as their haplogroup could be related to each other individually, meaning their MRCA, anytime between when they lived and when their haplogroup was formed.
  • The entire group of individuals all share the same haplogroup, so they all descend from the one woman who formed X2b1”64 about 5050 years ago. She is the shared ancestor of everyone in the haplogroup.

One X2b4 and one X2b1”64 individual are found in the same archaeological site in Russia. Their common ancestor would have lived between the time they both lived, about 800 years ago, to about 5000 years ago. It’s also possible that one of the samples could be incomplete.

A second X2b1”64 Ancient Connection is found in the Court Tomb in County Clare, Ireland, not far from the Carrowkeel 534 X2b4 site.

However, Monte Sirai is fascinating, in part because it’s not found near any other site. Monte Sirai is found all the way across France, on an island in the Tyrrhenian Sea.

It may be located “across France” today, but we don’t know that the Phoenician Monte Sirai site is connected with the Irish sites. We can’t assume that the Irish individuals arrived as descendants of the Monte Sirai people, even though it would conveniently fit our narrative – crossing France. Of course, today’s path includes ferries, which didn’t exist then, so if that trip across France did happen, it could well have taken a completely different path. We simply don’t know and there are very few samples available.

Three Ancient Connections are found in the Rössberga site in Sweden and another in  Denmark.

Adding all of the Ancient sites so far onto the map, it looks like we have two clusters, one in the northern latitudes, including Denmark, Sweden, and Russia, and one in Ireland with passage burials, plus one single Connection in Monte Sirai.

If I were to approximate a central location between all three, that might be someplace in Germany or maybe further east. But remember, this is 5000 years ago and our number of samples, as compared to the population living at the time is EXTREMELY LIMITED.

Let’s move on to the next group of Ancient Connections, who have different haplogroups but are all a subset of haplogroup X2.

Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050
Ross Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050
Barcin 31 (M) 8236-8417 Derekoy, Turkey – Neolithic Anatolia Ceramic X2m2’5’7^ 9200 X2b”aq 13,000
Abasar 55 (M) 500-800 Abasár Bolt-tető, Abasar, Hungary – Medieval Hungary X2m1e 5350 X2b”aq 13,000
Gerdrup 214 3779-3889 Gerdrup, Sealand, Denmark – Middle Bronze Age X2c1 3400 X2+225 13,000
Sweden Skara 275 800-1100 Varnhem, Skara, Sweden – Viking Sweden X2c1 3400 X2+225 13,000
Kopparsvik 225 950-1100 Gotland, Sweden – Viking Sweden X2z 5650 X2+225 13,000
Sandomierz 494 900-1100 Sandomierz, Poland – Viking Poland X2c2b 1650 X2+225 13,000
Kennewick man 8390-9250 Kennewick, Washington – Native American X2a2’3’4^ 10,450 X2 13,000
Roopkund 39 80-306 Roopkund Lake, Uttarakhand, India – Historical India X2d 13,000 X2 13,000

The next several Ancient Connections have haplogroups that are a subgroup of haplogroup X2. These people lived sometime between 500 years ago in Hungary, and 8390-9250 years ago when Kennewick Man lived in the present-day state of Washington in the US. Kennewick Man merits his own discussion, so let’s set him aside briefly while we discuss the others.

The important information to be gleaned here isn’t when these people lived, but when Radegonde shared a common ancestor with each of them. The shared haplogroup with all of these individuals was born about 13,000 years ago.

Looking at the map again, and omitting both X2 samples, we can see that the descendants of that shared ancestor 13,000 years ago are found more widely dispersed.

Including these additional burials on our map, it looks like we have a rather large Swedish and Viking cluster, where several of the older burials occurred prior to the Viking culture. We have a Southeastern Europe cluster, our two Irish tomb burials, and our remaining single Monte Sirai Phoenician burial on the island of Sardinia.

Stepping back one more haplogroup to X2, which was born about the same time, we add a burial in India, and Kennewick Man.

The Migration Map

The Migration map in Discover provides two different features.

  • The first is the literal migration map for the various ancestral haplogroups as they migrated out of Africa, if in fact yours did, culminating in your base haplogroup. In this case, the base haplogroup is X2, which is shown with the little red circle placed by FamilyTreeDNA. I’ve added the red squares, text and arrows for emphasis.
  • The second feature is the mapped Ancient Connections, shown with little brown trowels. Clicking on each one opens a popup box.

After haplogroup X2 was formed, it split into haplogroups X2a and X2b.

The X2a group, Kennewick Man’s ancestors, made their way eastward, across eastern Russia to Beringia where they crossed into the Americas.

They either crossed Beringia, follow the Pacific coastline, or both, eventually making their way inland, probably along the Hood River, to where Kennewick Man was found some 2,800 years later on the banks of the Kennewick River.

The X2b group made their way westward, across western Europe to a location, probably France, where Radegonde Lamberts’ ancestors lived, and where Radegonde set sail for Nova Scotia.

After being separated for nearly 13,000 years, the descendants of the single woman who founded haplogroup X2 and lived someplace in central Asia around 13,000 years ago would find themselves on opposite coasts of the same continent.

So, no, Radegonde Lambert was not Native American, but her 600th matrilineal cousin or so, Kennewick Man, absolutely was.

Radegonde Lambert and Kennewick Man

Here’s where confirmation bias can rear its ugly head. If you’re just scanning the Ancient Connections and see Kennewick Man, it would be easy to jump to conclusions, leap for joy, slap a stamp of “confirmed Native American” on Radegonde Lambert, and never look further. And if one were to do that, they would be wrong.

Let’s work through our evaluation process using Discover.

Radegonde Lambert and Kinnewick Man, an early Native American man whose remains were found Kennewick, Washington in 1996, are both members of the broader haplogroup X2. Kennewick Man lived between 8290 and 9350 years ago, and their shared ancestor lived about 13,000 years ago – in Asia, where mitochondrial haplogroup X2 originated. This is the perfect example of one descendant line of a haplogroup, X2 in this case, going in one direction and a second one traveling in the opposite direction.

Two small groups of people were probably pursuing better hunting grounds, but I can’t help but think of a tundra version of the Hatfields and McCoys and cousin spats.

“I’m going this way. There are better fish on that side of the lake, and I won’t have to put up with you.”

“Fine, I’m going that way. There are more bears and better hunting up there anyway.”

Their wives, who are sisters, “Wait, when will I ever see my sister again?”

One went east and one went west.

X2a became Native American and X2b became European.

Looking back at our information about Kennewick Man, his haplogroup was born significantly before he lived.

He was born about 8390-9250 years ago, so let’s say 8820 years ago, and his haplogroup was born 10,500 years ago, so about 1680 years before he lived. That means there were many generations of women who carried that haplogroup before Kennewick Man.

Let’s Compare

Discover has a compare feature.

I want to Compare Radegonde Lambert’s haplogroup with Kennewick Man’s haplogroup X2a2’3’4^.

The Compare tool uses the haplogroup you are viewing, and you enter a second haplogroup to compare with the first.

The ancestral path to the shared ancestor, meaning their shared haplogroup, is given for each haplogroup entered. That’s X2 in this case. Then, from the shared haplogroup back in time to Mitochondrial Eve.

I prefer to view this information in table format, so I created a chart and rounded the haplogroup ages above X2.

Hap Age – Years Ago Radegonde’s Line Shared Ancestors and Haplogroups Kennewick’s Line Hap Age – Years Ago
143,000 mt-Eve
130,000 L1”7
119,000 L2”7
99,000 L2’3’4’6
92,000 L3’4’6
73,500 L3’4
61,000 L3
53,000 N
53,000 N+8701
25,000 X
22,500 X1’2’3’7’8
13,000 X2 – Asia
13,000 X2+225 X2a 10,500
12,900 X2b”aq X2a2’3’4^ 10,400 Kennewick Man born c 8800 years ago
11,000 X2b
5,500 X2b1”64
5,000 X2b4
1,900 X2b4d’g
Radegonde Lambert born c 1661 – 400 years ago 1,700 X2b4g

More Ancient Connections

Radegonde Lambert’s matrilineal descendants have an additional dozen Ancient Connections that are found in upstream haplogroup N-8701. Their shared ancestors with Radegonde reach back to 53,000 years ago in a world far different than the one we inhabit today. I’m not going to list or discuss them, except for one.

Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050
Barcin 31 (M) 8236-8417 Derekoy, Turkey – Neolithic Anatolia Ceramic X2m2’5’7^ 9200 X2b”aq 13,000
Abasar 55 (M) 500-800 Abasár Bolt-tető, Abasar, Hungary – Medieval Hungary X2m1e 5350 X2b”aq 13,000
Gerdrup 214 3779-3889 Gerdrup, Sealand, Denmark – Middle Bronze Age X2c1 3400 X2+225 13,000
Kopparsvik 225 950-1100 Gotland, Sweden – Viking Sweden X2z 5650 X2+225 13,000
Sandomierz 494 900-1100 Sandomierz, Poland – Viking Poland X2c2b 1650 X2+225 13,000
Sweden Skara 275 800-1100 Varnhem, Skara, Sweden – Viking Sweden X2c1 3400 X2+225 13,000
Kennewick man 8390-9250 Kennewick, Washington – Native American X2a2’3’4^ 10,450 X2 13,000
Roopkund 39 80-306 Roopkund Lake, Uttarakhand, India – Historical India X2d 13,000 X2 13,000
Ranis 10 43,500-47,000 Ranis, Germany – LRJ Hunger Gatherer N3’10 53,000 N+8701 53,000
Zlatý kůň woman 47,000 Czech Republic – N+8701 53,000 N+8701 53,000

Zlatý kůň Woman

Zlatý kůň Woman lived some 43,000 years ago and her remains were discovered in the Czech Republic in 1950.

Believed to be the first anatomically modern human to be genetically sequenced, she carried about 3% Neanderthal DNA. Europeans, Asians and indigenous Americans carry Neanderthal DNA as well.

Unlike many early remains, Zlatý kůň Woman’s facial bones have been scanned and her face approximately reconstructed.

There’s something magical about viewing a likeness of a human that lived more than 40,000 years ago, and to whom I’m at least peripherally related.

Like all other Ancient Connections, it’s unlikely that I descend from Zlatý kůň Woman herself, but she is assuredly my very distant cousin.

What else do we know about Zlatý kůň Woman? Quoting from her Ancient Connection:

She lived during one of the coldest periods of the last ice age, surviving in harsh tundra conditions as part of a small hunter-gatherer group. She died as a young adult, though the cause of death remains unknown.

Her brain cavity was larger than that of modern humans in the comparative database, another trait showing Neanderthal affinity. While the exact colors of her features cannot be determined from available evidence, researchers created both a scientific grayscale model and a speculative version showing her with dark curly hair and brown eyes.

Zlatý kůň Woman may or may not have direct descendants today, but her haplogroup ancestors certainly do, and Radegonde Lambert is one of them, which means Radegonde’s matrilineal ancestors and descendants are too.

Ancient Connections for Genealogy

While Ancient Connections are fun, they are more than just amusing.

You are related through your direct matrilineal (mitochondrial) line to every one of your mtDNA Discover Ancient Connections. Everyone, males and females, can take a mitochondrial DNA test.

I find people to test for the mitochondrial DNA of each of my ancestral lines – like Radegonde Lambert, for example. I wrote about various methodologies to find your lineages, or people to test for them, in the article, Lineages Versus Ancestors – How to Find and Leverage Yours.

Radegonde’s mitochondrial DNA is the only key I have into her past, both recent and distant. It’s the only prayer I have of breaking through that brick wall, now or in the future.

Interpreted correctly, and with some luck, the closer Ancient Connections can provide genealogical insight into the origins of our ancestors. Not just one ancestor, but their entire lineage. While we will never know their names, we can learn about their cultural origins – whether they were Vikings, Phoenicians or perhaps early Irish buried in Passage Graves.

On a different line, an Ancient Connection burial with an exact haplogroup match was discovered beside the Roman road outside the European town where my ancestral line was believed to have been born.

Ancient Connections are one small glimpse into the pre-history of our genetic line. There are many pieces that are missing and will, in time, be filled in by ancient remains, Notable Connections, and present-day testers.

Check your matches and your Ancient Connections often. You never know when that magic piece of information you desperately need will appear.

What is waiting for you?

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

New Mitotree Haplogroups and How to Utilize Them for Genealogy

Have you received a new Mitotree haplogroup? Or maybe you didn’t? Are you wondering why you might not have received a new haplogroup? How do the new haplogroups work anyway? And how do you work with them?

Great questions!

Approximately 75% of full sequence testers received a new haplogroup with the Mitotree Beta release, which means that about 25% did not. Keep in mind that new sequences are being added to the database, so the tree will be sprouting new haplogroups with each subsequent release.

Check For Your New Haplogroup

Click on any image to enlarge

Sign in to your account at FamilyTreeDNA and look at the Badges in the bottom right corner of your page.

Your Beta haplogroup is your new Mitotree haplogroup, and your Legacy haplogroup is your old one – prior to Mitotree. They may be the same. My haplogroup, shown above, did not change.

This is a good place to note that the tree is not “done,” yet, nor will it ever be. New samples are added daily as more people test and as academic samples from published papers are added to the database as well. Additionally, FamilyTreeDNA is tweaking the algorithm, so the tree branching structure may change from time to time.

When your haplogroup changes, you’ll receive a notification email.

Some people’s haplogroup will remain the same. There can be several reasons why you might not have received a new haplogroup.

Before we discuss that, I’d like to stress that your haplogroup remaining the same isn’t exactly a bad thing because there is SO MUCH new content for everyone. It’s like receiving a whole new book about your mother’s direct matrilineal line.

mtDNA Discover Offers 13 New Reports for Everyone

MtDNA Discover was released with the new Mitotree, and it includes a dozen new reports for EVERY haplogroup.

Discover is available publicly, and also through your FamilyTreeDNA dashboard which provides a customized experience for mtFull testers with additional information that is not available in the free version.

Think of these Discover reports as chapters in your personal book – all about you and your matrilineal ancestors.

The Discover reports are provided in addition to the tools in the mtDNA Results and Tools section of your dashboard on FamilyTreeDNA.

There’s something for everyone, even if you don’t have a new haplogroup. There’s certainly new information that will help with your genealogy and with understanding the history and ancestral journey of your mother’s direct line maternal ancestors.

Three Reasons Why You Might Not Receive a New Haplogroup

Ok, so why might you not have received a new haplogroup?

The first reason that you might not have received a new haplogroup assignment is the simplest. The new tree is only updated periodically.

After your results are returned, and before the next Mitotree version is available, your Mitotree haplogroup Badge will show as “Analyzing.”

If one of your matches is waiting for a new haplogroup, their Mitotree Haplogroup will show as “Pending Analysis.”

There is no published tree-update schedule, but you’ll receive your new haplogroup soon.

However, you can probably determine your new haplogroup quite easily. If you have any exact matches on your mtDNA Match page, their haplogroup will be your haplogroup as well, so check your full sequence mtDNA Matches on your dashboard for a hint.

For, example, here’s one of my exact matches with their haplogroup.

The second reason you might not have a new haplogroup assignment is that you may not have taken the full sequence mitochondrial DNA test – mtFull.

Only testers with full sequence test results can receive an updated haplogroup, because the full mitochondria needs to be tested. The older HVR1/HVR2 Plus tests only tested a fraction of the full sequence – around 1000 locations of the 16,569 locations tested in the full sequence test.

If you have only taken the HVR1 or HVR1/HVR2 level test, you will only have one badge, and it will say “Predicted.”

The haplogroup for the Plus test is predicted at a high level based on those 1000 locations, while the full sequence test tests the entire mitochondria and uses all locations to confirm your most granular and detailed haplogroup possible.

On your dashboard, if both the Plus and Full icons are pink, you have taken the mtFull test. If the “Full” is grey, you have not. You can click on that grey button to upgrade.

You can also navigating to on Add Ons and Upgrades in the top bar to upgrade to the full sequence test.

The third reason why someone might not have received a new haplogroup assignment is if they didn’t match with anyone else who has the same mutations, or variants, for a particular haplogroup.

In other words, if my mitochondrial DNA has had a mutation or two since my assigned haplogroup was formed and no one else has tested that has those exact same mutations, there’s no one else to form a new haplogroup with, but there might be in the future as additional people test and the tree continues to grow.

Think of those additional mutations, called Private Variants, as foundation blocks, or haplogroup seeds since they are still private to you, and not yet used for a haplogroup.

It’s easy to see if you have any Private Variants by clicking on Discover on your mitochondrial dashboard.

Scientific Details – Private Variants, Building Blocks, Haplogroup Seeds

If you have taken the full sequence test, click through to mtDNA Discover from your dashboard. If you aren’t signed in and click through from your dashboard, you won’t be able to see your variants or other information customized for you.

Navigate to Scientific Details, then click on the Variants tab.

Click on image to enlarge

Be sure that “Show private variants” is toggled to “on,” which is blue with a checkmark.

At the very top, you’ll see two things:

  1. Your haplogroup, which is indicated by the solid pink square.
  2. An F number followed by your private variants, if any, and if so, which ones.

I have no private variants or haplogroup seeds available to form a new haplogroup, so I have no ability to receive a more refined haplogroup.

Haplotype Clusters

However, I’m NOT out of luck, because I have something else – a Haplotype Cluster, indicated by having an F#. My Haplotype Cluster is F1752176 and is indicated by the pink outlined box.

I wrote about haplotype clusters in the article, Mitochondrial DNA: What is a Haplotype Cluster and How Do I Find and Use Mine?.

In a nutshell, haplogroups are only formed around reliable, relatively stable mutations, meaning those that are reliable and don’t tend to randomly mutate back and forth.

You may match exactly with a group of other people who share the same haplogroup, PLUS the same unstable mutations that don’t qualify to become haplogroup-defining.

Those groups of two or more people who match exactly on all mutations are members of the same  Haplotype Cluster – and Haplotype Clusters can be INCREDIBLY genealogically useful. In fact, let me go out on a limb here and say that I think they are even more genealogical useful than haplogroups, although both have their strengths. Let’s look at a good example.

Using Haplogroups and Haplotype Clusters Together

My family member, Jim, had a surprise waiting for him in his mitochondrial DNA. When he received his new haplogroup, I took a look to see what new information might be forthcoming.

His legacy haplogroup was V, and his new Mitotree haplogroup is V216a2 which is significantly more refined.

Before Mitotree and Haplotype Clusters, there wasn’t much to differentiate him from his other matches.

Let’s take a look at JUST his genetic information before adding genealogy.

If I click on the Time Tree for haplogroup V216a2, I see two testers with no cluster, meaning no one matches them exactly, and Jim’s cluster number F9712482.

Keep in mind that Jim might not match everyone in his haplogroup – only people at or beneath the matching threshold.

Jim’s new haplogroup, V216a2 was formed about 1056 CE, or about 975 years ago. Note that as the tree changes and becomes more refined, haplogroup formation dates change too. A haplogroup’s birth date is an approximate year when the mutations occurred that define that haplogroup, based on surrounding mutations and mutation rates.

Many people look at a haplogroup, especially one with a birth date of, say, 1056 CE, which is long before the formation of surnames, shrug their shoulders, and give up.

Don’t. Do. That.

So, let me say this as loudly as possible.

A haplogroup’s most recent common ancestor is NOT the EKA (earliest known ancestor) with any individual match. It’s the approximate date when ALL of the people with this haplogroup share a common ancestor.

When looking at haplogroups, don’t let locations thrown you. Keep in mind that country boundaries are fluid. What was at one time Hungary could be Germany or Romania or something else just a few years earlier or later. So don’t discount that information either. Think regions and take into consideration that people move around – and some people enter incorrect genealogy/location information.

Your common ancestor with the people, individually, who share your haplogroup,  is sometime between the haplogroup formation date and today. Everything else is a clue. 

Think about it this way. You share a haplogroup with your mother, and while you are both descended from the woman who lived when your haplogroup was formed – your most recent ancestor with that haplogroup is your mother – not the woman 975 years ago. Your most recent common ancestor (MRCA) with your mother and her sister is your grandmother – a lot closer in time than 1056 CE. 1056 CE the most recent common ancestor (MRCA) date for everyone in the haplogroup, not between you and any one person in particular. The MRCA date for you plus another person is sometime between now and 1056 CE.

So, let’s take a look at Jim’s results.

Finding Jim’s Gold Nugget

Jim has 27 coding region matches, of which six share both his new haplogroup, V216a2, AND Haplotype Cluster F9712482. His other matches are split between three related haplogroups, and multiple haplotype clusters.

Most of his family, meaning three of his grandparents, were from eastern Europe, meaning Germany, Hungary or the Austro-Hungarian empire as it was recorded in American records. Many genealogical records no longer exist in that region, or if they do, you have to know exactly where to look.

We were brick-walled with Jim’s matrilineal great-grandmother, Sophia Smith, who was born about 1877 and seemed to appear out of thin air.

Thanks to the new haplogroups, combined with Haplogroup Clusters, I knew to focus on his matches in this order:

  • Same haplogroup plus same Haplotype Cluster
  • Same haplogroup plus different Haplotype Cluster, because clusters are built around identical but less reliable mutations
  • Related haplogroup – this is unlikely to yield direct genealogical results, but can be very useful in terms of origins

Of Jim’s exact matches with the same Haplotype Cluster, three showed an earliest known ancestor (EKA) and three did not. Three provided a tree, and three did not. Of the trees, one was private and the other two provided no useful insight.

Of the people who provided EKA information, one EKA matches their tree information, one conflicts with their tree. After viewing their tree, it appears that they did not understand that the mitochondrial EKA is the most distant ancestor in your mother’s direct maternal line. They listed someone in their grandmother’s paternal line.

I find this easiest to deal with if I organize the research in a chart for each match.

Match # Earliest Known Ancestor EKA Location Tree Comment
#1 No No No
#2 No No No
#3 No No Yes – Private
#4 Yes – only one name “Egan” with brith and death dates Ireland Yes – Egan is surname of their grandmother EKA person listed tracks up wrong line in tree
#5 Yes Hungary No Elizabeth Schmidt Hornung b1888 d 1930
#6 Yes No Yes – matches EKA Ancestor born NC in 1811, no common names or location

Match #5 provided an EKA, but no tree, showed a country of origin as Hungary, and the identity of her EKA as “Elizabeth Schmidt Hornung b.1888 and d.1930.”

Hmmm…three things of interest here:

  • The location of Hungary, even though the oral history in Jim’s family said his great-grandmother was a Smith from the US, maybe New York. Jim’s family, including Sophia’s husband, was Eastern European. Remember, I couldn’t find any early records for Sophia Smith.
  • Smith is the anglicized version of Schmidt.
  • Hornung may be a married name.

I’m a genealogist, and Jim’s match had provided enough information that I was able to identify her ancestor, Elizabeth Schmidt, and find additional information.

Sure enough, Elizabeth Schmidt immigrated as an adult by herself, married Karl Hornung in Richland County, Ohio, the same location where Jim’s family was living. That information led me to another record, identifying a brother whose marriage license application provided their parents. Elizabeth’s parents were Ignatius Schmidt and Catherine Schlowe, and her sister was Sophia Schmidt, Jim’s great-grandmother. Deeper digging suggests that Ignatius and Catherine were from Timisoara in what is now Romania. I have been unable to confirm with birth, death or marriage records, but that part of Romania was part of the Austro-Hungarian Empire during that timeframe.

Immigration of siblings, alone, at different times after the 1910 census, without their parents, made this particularly difficult, as did cultural and language barriers – but mitochondrial DNA, and Jim’s Haplotype Cluster in particular, provided the key I needed.

Jim’s common ancestor with his Schmidt match is the birth date of Catherine Schlowe, which was probably about 1850 – NOT 1056 CE, which is the haplogroup formation date.

Don’t get discouraged by misinterpreting haplogroup origin information or missing genealogy information. All you need is that one good match. That gold nugget. Don’t forget that you can email your matches and ask for more information.

The Match Time Tree makes all of this easier.

Match Time Tree

The Match Time Tree shows match, haplogroup, location and Haplotype Cluster information all in one place.

It’s easy to use the Match Time Tree to view how all of your matches are grouped, along with their EKA, displayed together in one place.

Here are all of Jim’s matches. They were all originally haplogroup V, but now his matches have been divided into V216, V216a, V216a1, and V216a2 (Jim’s haplogroup).

I’ve obfuscated the names of his matches, but the EKA, when provided, is there. Each person is grouped into their haplotype cluster of exact matches, and the user-provided country of origin for their ancestor is shown by their profile photo.

Jim’s match with the descendant of Elizabeth Schmidt is indicated in the red boxes, and Jim has updated his own EKA and her country of origin.

Who is waiting for you in your match list?

Will extending and building out trees help?

Have you emailed your matches to see what additional information they can provide?

Female ancestors are sometimes the MOST difficult to find, often due to name changes  – so be sure to mine every possible avenue and don’t become discouraged if you don’t immediately see something “familiar.”

Every generation in a female lineage will probably carry a different surname and the match you need may not have researched as far back as your ancestor, or vice versa.

Don’t forget that autosomal matching can play an important role in confirming relationships.

But wait – there’s STILL more about Jim’s ancestors…

There’s Even More to Discover

There’s more to discover about Jim’s ancestors.

Jim’s Discover Ancient Connections tells me that 5200 years ago, Jim shared a common mitochondrial DNA ancestor with two Hungarian and a Slovakian Yamnaya cultural burial whose remains date to about 2800 BCE, or about 4800 years ago.

To be clear, the common haplogroup between Jim and all three burials dates to 5200 years ago, when their common haplogroup was formed, but the remains themselves are from about 4800 years ago – so only about 400 years difference between the haplogroup birth date and when those people lived, died and were buried.

How close are the remains to the location of Jim’s ancestor in Timisoara?

Using Google Maps, I placed the three Yamnaya burial locations (blue pins), plus Timisoara.

The two most distant points, Timisoara to Lesne, Slovakia, walking, is 393 km or 245 miles. The closest burial to Timisoara, located in Sárrétudvari, Hungary, is 157 km  or 119 miles.

So Jim’s ancestors remained in the same general area for someplace between 4,800 and 5,200 years. And, his great-grandmother was born not far from those burials. That alone is an INCREDIBLE find!

So, what happened to the people of the Yamnaya culture? I think we might have gained some insight into that question.

So, there’s even more to discover using Discover.

You don’t know what you don’t know about your matrilineal ancestors, so test your mitochondrial DNA at FamilyTreeDNA and break through those brick walls. I’ve already solved multiple long-standing mysteries and added generations to my own tree.

Plus, I really, REALLY want to know where every single ancestor “came from,” what culture they were a part of, and when. History is part of genealogy – and a part of our ancestral journey that we can’t reach any other way.

Fortunately, your matches, Scientific Details, Time Tree, Match Time Tree, and Ancient Connections help you visualize all of these various situations and aspects of your ancestor’s history, and evaluate your results.

Both haplogroups and Haplotype Clusters provide very fine degrees of granularity that were not previously available. MtDNA Discover adds a dozen new reports, and Ancient Connections allow you to time travel.

Let me know what you discover!

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Mitochondrial DNA: What is a Haplotype Cluster and How Do I Find and Use Mine?

A new feature called Haplotype Clusters was released with the new Mitotree and mtDNA Discover.

MtDNA Discover includes a dozen new reports for EVERY haplogroup. You can use the public version of Discover with any haplogroup.

However, there are additional included features for mtFull testers, and other information provided will be much more detailed and robust because the mtFull test is much more specific than any partial haplogroup.

If you have only taken the older partial-coverage HVR1 or HVR1/HVR2 tests at FamilyTreeDNA, you can sign in and upgrade, or if you have received a partial haplogroup from another source, you can take the mtFull test at FamilyTreeDNA.

OK, I’ve Taken the mtFull Test, So How Do I Access My Discover Reports?

Sign in to your FamilyTreeDNA account, then from your mtDNA dashboard, click through to Discover to access your Discover reports.

Discover reports are in addition to the tools in the mtDNA Results and Tools section of your dashboard on FamilyTreeDNA.

Definitions

Let’s start with some basic definitions.

  • Haplotype – Your individual DNA results at specific adjacent locations that are generally inherited together.

Other people may have the same haplotype as you. If they have mutations that you don’t have, or vice versa, then you have different haplotypes. People with the same haplotypes match exactly on whatever type of DNA is being discussed, such as Y-DNA or mitochondrial DNA, with no mutations or differences. Multiple people who match exactly are considered a Haplotype Cluster.

  • Haplogroup – A group of specific mutations that identify people who share a common genetic clan. Haplogroups, based on a series of mutations, can be traced forward and backward in time.

A haplogroup is a grouping of haplotypes with the same foundation mutations. You will share those mutations with other people in your haplogroup, but you may have other, different mutations that form your haplotype.

  • Other people will have the same haplogroup as you, because a group implies two or more.
  • You may or may not share a haplotype with other people. If you share the exact same haplotype with at least one other person, the two (or more) of you form a Haplotype Cluster

What is a Haplotype Cluster?

Haplotype Clusters are new and have been added to provide additional granularity to the new Mitotree, making results more genealogically useful.

In addition to your mitochondrial DNA haplogroup, you may also have a Haplotype Cluster if you took a full sequence mitochondrial DNA test, called the mtFull.

A mitochondrial DNA haplogroup, such as J1c2f for example, means that everyone within that haplogroup has the same foundation grouping of mutations. You may have additional mutations, or even some missing mutations, based on the older Phylotree Build 17, which was last updated in 2016.

Click to enlarge any image

To see your Extra and Missing Mutations in the Classic, or Phylotree build, on the FamilyTreeDNA mtDNA dashboard, click on “See More,” then on Mutations.

In the recently released Mitotree, which reconstructs the tree of humanity with more than 35,000 new branches, or haplogroups, many of those “extra” or “missing” mutations have been used in the definition of new haplogroups.

At FamilyTreeDNA, on your matches page, you’ll see your matches, like always. Matching has not changed.

You’ll notice that some are exact matches, and some may be “1 step” or more distant. That means they have one qualifying genetic mutation difference from you.

Some mutations have always been excluded from matching because they are unreliable. In my case, location 315.1C is one of those. You can read more about matching here. Matching has NOT been rerun with the release of the new Mitotree, but may be in the future.

The new Haplotype Clusters designate other people who you literally match exactly, with no differences – and no excluded marker locations.

So, let’s compare how I match people and what it means:

  • Haplogroup match – I match these people at the haplogroup level, which can reach back hundreds or even thousands of years ago. In addition, I may match them on both other relevant, reliable mutations, and/or unreliable mutations. On the current matching page, the mtDNA Haplogroup is the PhyloTree Build 17 haplogroup. Before Mitotree, matches to any other haplogroup were not displayed. Now, new haplogroups of my J1c2f matches, if they received a new haplogroup, are shown in the Mitotree Haplogroup column. My common ancestor with a match can have occurred anytime between when the haplogroup was formed and today.

Some people receive partial haplogroup level matches from other testing companies that also don’t include matching. A haplogroup match alone isn’t particularly useful except when it can eliminate a connection.

That’s why we need matching on the Matches page.

  • FamilyTreeDNA Matches Page Match – On the Matches page, I match these people at the haplogroup level as calculated based on Phylotree Build 17, as shown in the mtDNA Haplogroup Column at the Genetic Distance displayed. This means that I match them on the haplogroup markers PLUS possibly other markers.

My first match with Per, above, is listed as an exact match. Before Haplotype Clusters were introduced, I had no way of knowing if I matched him on all of my mutation locations, or just the ones that are NOT excluded from matching. But now I do.

My Haplotype Cluster number is F1752176. I know this because the little circle is checked and blue – meaning this person and I share both a haplogroup in the new Mitotree, and a Haplotype Cluster.

Ronald, above, is a match with a “1 step” Genetic Difference. I know for sure that I match him on the haplogroup markers. I also know that we don’t match on one non-excluded marker – but I have no idea which one. We may also match, or not, on some of the excluded markers. But we are not members of the same Haplotype Cluster. The blue circle is not checked.

You cannot be a member of more than one Haplotype Cluster, because everyone in a Haplotype Cluster must match exactly.

  • Haplotype Cluster – A Haplotype Cluster, if you have one, is a random F number assigned to people whose mitochondrial DNA matches exactly – and by exactly, I mean without excluding unstable or unreliable mutations.

You can see my Haplotype Cluster number, above, in the Mitotree Haplogroup column, in addition to my new Mitotree haplogroup – which is still J1c2f and did not change from the earlier version. In Mitotree, some people will receive new haplogroups, and some will not – based on your and other people’s mutations.

My match with Ronald is one step difference. Our haplogroup is the same, so that circle is checked, but Ronald belongs to a different Haplotype Cluster, so that circle is not checked, and he has a different F number. I can’t see his mutations that are different from mine, but I know he matches everyone else in his Haplotype Cluster exactly.

Let’s look at another example.

Click on any image to enlarge

Looking at my match list, I can see that beneath my matches’ haplogroup, which is the same as mine, F1752176 is checked and the checked circle is blue, which means that I share that Haplotype Cluster with those people. Everyone in that cluster has all of the same mutations in addition to the haplogroup-defining mutations, which is why both the haplogroup and haplotype circles are checked. I match both.

If I look at my Matches page, or the mtDNA Discover Time Tree, or Matches Time Tree, I can see that I have many exact haplotype matches, which means:

  • We all share haplogroup-defining mutations and
  • We match exactly on all other mutations as well

Before Haplotype Clusters were introduced, I had no way of knowing which of these people I matched exactly if no mutations were excluded.

To summarize, a Haplotype Cluster is a group of people who all match each other exactly within a haplogroup. People in Haplotype Clusters always match exactly, which INCLUDES mutations that are EXCLUDED from haplogroup formation and matching.

If you don’t match someone exactly, you’re not in the same Haplotype Cluster. You can either be in a different cluster, or no cluster at all if no one matches you exactly.

Everyone has a Haplotyupe Cluster number, but you will only be a member of a Haplotype Cluster if you have an exact match to at least one other person.

Don’t Ignore Other Clusters

The F number itself isn’t important. What is important is that Haplotype Clusters serve to focus your genealogy on that cluster first. However, understand that because the Haplotype Cluster does include unreliable or fast-mutating markers, it’s possible for you to share a more recent ancestor with people in a different cluster. It depends on the marker and the mutation, so don’t discount that possibility.

Who Can See Haplotype Cluster Mutations?

The only people who know the exact mutations of the people in a specific Haplotype Cluster are the members of that cluster – because they all match exactly.

If you scroll down your match list, you’ll notice that people, like Anastasia, who have a genetic distance of 1 step or greater have a different F Haplotype Cluster number, which is expected.

You may also notice that someone who is an “exact match” with you on the match list is assigned to a different Haplotype Cluster, such as Rose and Per. Rose is not in my Haplotype Cluster, but Per is, even though they are both “exact matches.”

Remember, “matching exactly” on the match list excludes unreliable mutation locations. Haplotype Clusters always match exactly and include all mutations. So, this tells me that I match Per on all mutation locations, regardless of their stability, and I match Rose on all stable locations, and we mismatch on at least one location that was excluded from matching.

However, the only people who know the exactly mutations of any other person are me and Per, because we both share a Haplotype Cluster. People in other clusters, or without a cluster, don’t know and can’t identify the mutations in clusters not their own.

  • The only thing I can tell about my match with Rose is that we don’t share one of the unreliable markers, because we are an “exact match” on the match list which excludes unstable markers. I have no idea whether I carry that unstable marker, or she does, or which marker it is.
  • The only thing I can tell about my match with Anastasia is that we don’t share at least one stable marker, because we are a “1-step” genetic distance, and we could also not share some of the unstable markers. I have no way of identifying those markers.
  • I know that I match Per exactly on all markers, including unstable or unreliable markers.

Included Versus Excluded Markers

Sometimes people who are listed as exact matches on your Matches page are assigned to different Haplotype Clusters. This is because mutations such as 309 and several others are included in Haplotype Clusters, but excluded from matching and haplogroup formation. The reason they are excluded is because they are sometimes unreliable – but they may be useful to your research. They aren’t always unreliable, but it varies on a case-by-case basis, including when the mutation occurred.

Location Haplogroup Formation Matching on Matches Page Haplotype Cluster
309 Excluded Excluded Included

Here’s an example using location 309. While some locations are excluded from matching, their inclusion in the formation of Haplotype Clusters may be very genealogically relevant to you – or perhaps not. That’s where genealogy research becomes important.

Haplotype Clusters give you the ability to focus your research on a specific group of people that you know do, in fact, match you exactly. Just keep in mind that some people in a different Haplotype Cluster, that don’t have a mutation at 309, for example, could have a closer common ancestor. That’s the nature of 309, 315 and other unstable SNPs, especially heteroplasmies, which tend to “come and go,” which I wrote about here. In other words, don’t ignore other Haplotype Clusters that appear on your match list – just begin with your own and evaluate using genealogy..

The Haplotype Cluster number itself isn’t important. What is important is that they serve to focus your genealogy efforts.

Where Else Can I Find My Haplotype Cluster

You can identify your Haplotype Cluster number by looking at your match list, as we have discussed, or by navigating to the Variants tab on the Scientific Details page.

On the variants tab, your haplogroup is marked with the solid red square, along with other information which I have truncated here.

Immediately above your haplogroup, you’ll see your Haplotype Cluster number, if you have one, along with any remaining private variants, aka mutations, that are haplogroup seeds and qualify to potentially become part of a haplogroup in the future.

In my case, this tells me that either all of my mutations are now included in a haplogroup definition, or they are excluded due to their instability or unreliability. Everyone else in this Haplotype Cluster is in exactly the same situation.

The only person who can see your Haplotype Cluster in Discover is you, if you are signed in to FamilyTreeDNA and you toggle “Show Private Variants” to “on.”

Haplotype Clusters as a Subset of Haplogroups

Haplogroups can and do have mutations “beneath” them, meaning haplogroup members may have different mutations or variants, in addition to the mutations used to form the haplogroup. Think of them as twigs or leaves on the tree.

Using the Classic Mitotree view in mtDNA Discover, you’ll notice that haplogroup J1c2f contains six Haplotype Clusters.

Please note that one of these clusters could be people who match the haplogroup definition exactly, and have no additional mutations of any type. They would form their own cluster.

Additionally, above the clusters, there are individual branches listed that don’t (yet) form clusters. You don’t know from looking at the individuals listed by country, such as Sweden, Germany, Norway, and so forth, if these people have only the exact mutations in haplogroup J1c2f, or if they have additional mutations that are unique and no one else has those exact mutations. What you do know is that so far, no one else matches them exactly, but as other people test, they may develop into a HaploType Cluster.

You may not match all of the people in your haplogroup on your matches page, because they may be over the match threshold and have too many mutations difference from you.

Some testers with unique, stable mutations may form new haplogroups as additional people test.

Using the Time Tree, you can see that there are currently 33 people who are in haplogroup J1c2f but do not match anyone else exactly.

The Discover Time Tree

Now that we’ve looked at examples individually, I took a screenshot of my entire haplogroup on the mtDNA Discover Time Tree to get the big picture.

The Time Tree offers a nice visual summary of all of J1c2f, including my full sequence matches, all in one place, along with Haplotype Clusters.

My haplogroup is shown in the black circle, and downstream haplogroups are shown in red circles.

You can see my Haplotype Cluster, which I can identify by the F#. You can see other Haplotype Clusters within my haplogroup, along with some individuals who don’t have any exact matches, who are shown alone on their line.

The Match Time Tree

When you click on Discover Haplogroup Reports from your dashboard, then on the Match Time Tree, you’ll see your matches’ names on your personal Time Tree, along with their self-reported earliest known matrilineal ancestors, in addition to their ancestor’s country of origin.

Here’s an example of a portion of my Match Time Tree with my matches’ names redacted.

With these new Discover and Mitotree tools, you know where to focus your research most closely. Which matches’ trees to view or build out to identify common ancestors, and who to prioritize for communications.

If you have a new haplogroup – that’s wonderful, but you don’t need one to make headway. The clue you need may well be found in your Haplotype Cluster.

There’s so much new information available for you. What can you discover?

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

New “Share” Features at FamilyTreeDNA Blur Match Information and Make Sharing Easy

Have you ever wished you didn’t have to blur or otherwise redact each name and other sensitive information in order to share your DNA match results? Or maybe you’d like to share fun Discover pages? Well, you got your wish!

FamilyTreeDNA has introduced a new “Share” feature in two locations. The first Share feature is available in your personal account after signing in, and two additional features can be found in Discover.

  1. “Share Mode” on your personal page obfuscates the names and photos of your matches.
  2. “Share Mode” in Discover obfuscates the names and photos of your matches on your Match Time Tree.
  3. “Share Page” in Discover shares publicly available pages to social media or provides a sharing link for you.

These are extremely easy to use and help immensely, allowing you to share screenshots on social media and with family without revealing the names of your matches.

I’ll show you, step-by-step, how to use all three.

“Share Mode” in Your Personal Account

When you want to enable Share Mode, you just toggle it on.

Sign in to your account at FamilyTreeDNA.

Select Account Settings beneath your name in the upper right-hand corner.

Under Privacy and Sharing, toggle Share Mode to “ON.” Default is “OFF.”

Sharing turns itself back off each time you sign out, so you’ll need to do this each time you sign on and want to share.

To see the results, let’s take a look at my match page. Sharing works the same way for Y-DNA matching, mitochondrial or Family Finder.

Not only does Share obfuscate your matches’ names, it also blurs their picture, and your information as well, at upper right.

This is wonderful for presenters!

Using “Share Mode” in Discover

On your dashboard, for either Y-DNA or mitochondrial DNA, select “Discover Haplogroup Reports” in the appropriate section.

Discover has two ways to share.

You can share your Match Time Tree, or other pages – using different tools.

Only one Discover page, the Match Time Tree, contains potentially sensitive match information. There’s a “Share Mode” for the Match Time Tree that blurs private information.

However, you may want to share your other Discover reports on social media. “Share Page” provides a quick and easy way to share any publicly available page.

Let’s look at both of those options.

Discover “Share Page”

Every page in Discover, except for the Match Time Tree and Globetrekker, has a “Share Page” icon at the top.

You can share any Discover page on social media (except as noted below), whether you’ve clicked through to Discover from your dashboard, or you’re using the public version of Discover.

In this case, I clicked on “Share Page” to share my Haplogroup Story page to Facebook. On your social media platform of choice, or by sharing the link, your friends can click through to see the page you’ve shared – minus your name and photo.

Please note that there are four Discover pages that either do not share or will display reduced information when using “Share Page,” as follows:

  • Globetrekker is an amazing animated video of your ancestors’ trek across the planet which is reserved for FamilyTreeDNA clients who purchase the Big-Y test or the mtFull, full sequence mitochondrial DNA test. Globetrekker does not use the “Share Page” feature, and is not yet released for mtDNA Discover.
  • Ancient Connections uses the “Share Page” feature, but only publicly displays a few ancient DNA haplogroup matches. Several more are reserved for testers who have taken either the Big-Y or mitochondrial DNA full sequence test, and click through from their dashboard. In a kit I just checked, two or three displayed when shared publicly, but the tester had more than 20 when clicking through his dashboard.
  • Notable Connections uses the “Share Page” feature and functions like Ancient Connections.
  • The Match Time Tree does not use the “Share Page” feature, which populates to social media, but there is a “Share Mode” option which blurs your matches’ sensitive information, similar to your personal page. After blurring, you can take screen shots to share.

Discover Share Mode for the Match Time Tree

The Match Time Tree on Discover is an extension of matching – meaning that your matches are placed on the Time Tree with names of tester-provided Earliest Known Ancestors (EKA) and their country of origin listed.

To view your Match Time Tree, click through to Discover from your FamilyTreeDNA dashboard, then select “Match Time Tree.”

You need to enable “Share Mode” within Discover, even if you had it enabled on your personal page. Toggle “Share Mode” to ON at the top of your Match Time Tree page.

Enabling “Share Mode” obfuscates the names and photos of people on your match list, who now appear on your Discover Time Tree in their proper place. You’re there too!

To share this page publicly, you’ll need to take a screenshot – so please don’t forget to enable “Share Mode” within Discover before doing this.

Benefits of Sharing

The best thing we can do for DNA testing, speaking broadly, is to encourage additional testers who are excited about what they can discover.

Sharing our pages and discoveries on social media is a great way to generate excitement.

Who do you know that might be excited to discover that they share an ancestor with Leo Tolstoy or maybe “Wild Bill” Hickock, even if it’s hundreds of years ago?

How about discovering that an Ancient Connection is a Viking man who was buried in Shestovista, Ukraine about a thousand years ago, and you two shared an ancestor about 1900 years ago? Might that provide a clue about your genealogy? What was the life of your ancestor like?

Or, maybe your friends and relatives would be excited to view the path their ancestors took, marching across the map, until their ancestor arrives on the globe where their haplogroup is most recently anchored?

Trying to get Uncle John or Aunt Mary to test? What kind of information would they think is cool?

A scientist I know especially loves the Ancient Connections that extend far beyond the reach of surnames.

One of my ancestral lines has an ancient DNA match just 9 kilometers from the town where they are rumored to have originated in France. Along the ancient Roman road. How else would I have EVER made this discovery?

The more people that test, the larger the matching pool – and the better for all genealogists.

Thank you to FamilyTreeDNA for introducing “Share Mode,” which makes sharing matches with other researchers effortless, and for “Share Page” within Discover, which makes sharing publicly a breeze!

Who can you share and collaborate with?

______________________________________________________________

Sign Up Now – It’s Free!

If you appreciate this article, subscribe to DNAeXplain for free, to automatically receive new articles by e-mail each week.

Here’s the link. Just look for the black “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

RootsTech 2025 – The Year of Discover and the New Mitotree

Last week, RootsTech was a whirlwind and full of discoveries – which, ironically, was the 2025 theme.

I always take you along with me and share the RootsTech experience, start to finish, so here’s my 2025 “feet on the ground” report.

I might, just might, have overcommitted myself. I taught the half-day DNA Academy,  three more sessions, plus several other commitments such as book signings, get-togethers, and interviews.

One class, “DNA for Native American Genealogy,” was a live webinar from the floor of the expo hall. You can watch that here for free, if you’re interested.

Unfortunately, none of my other sessions were recorded, but I’ll see what other alternative options may be available to bring those to you.

Additionally, I did two book signings at the GenealogyBank booth, along with two other authors, Drew Smith and Sunny Morton. I’m sorry, I don’t have any pictures. I should have asked someone to take some.

There were long lines and books sold out. Still, you can order either of my books, The Complete Guide to FamilyTreeDNA – Y-DNA, Mitochondrial, Autosomal and X-DNA or DNA for Native American Genealogy, at Genealogical.com. Thank you to GenealogyBank for being so welcoming.

The book signing was particularly fun because people shared their success stories or their hopes of what they want to achieve. I met a couple of new cousins too! Even people waiting in line were helping each other with information about research resources.

I had created my “RootsTech plan” for sessions I wanted to attend, but I was only able to actually attend one of those. Several were happening at the same time as mine, or directly before or after. As a presenter, you arrive early to get set up and make sure everything is working correctly.

Then, after your session, attendees have questions and are interested in your topic, which is a good thing. So essentially, you can’t attend sessions either before or after your session either.

Before I share photos, I’d like to share something else.

It’s About the People

I have never attended RootsTech for the classes, although there are wonderful offerings – and I have enjoyed them immensely.

Having said that, for me, the best part of RootsTech is the people. People I know and love but never get to see – many of whom I met in-person at RootsTech initially. I get to meet my blog followers. I meet with or reconnect with friends and cousins from around the world. I am privileged to talk with people about their challenges and their victories – when they’ve broken through a brick wall using DNA that they could never have otherwise achieved. People collaborating and helping each other. It’s all beautiful.

The reason I started blogging in the first place, and the reason all 1750 articles are free, is because I wanted to help people do just that – confirm ancestors, find ancestors, and connect with their fsmily.

My cousins that I’ve met through genealogy are some of my closest friends and closest family members. Outliving everyone is a mixed blessing but it makes me extremely grateful for my various cousins since all of my siblings and close family, with the exception of the next generation, have transitioned to the land of the ancestors.

So, yea, for me, RootsTech is about connecting and reconnecting with the people.

That’s also why I never get anything done because I’m always talking with someone.

Additionally, this particular RootsTech was a celebration.

Mitotree Release

Just a few days before RootsTech, the Million Mito Team at FamilyTreeDNA released the brand new Mitotree, 5 years in the making, reconstructing the tree of humankind to reflect our combined heritage more accurately.

At RootsTech 2020, I was honored to announce the Million Mito Project, and the new Mitotree initiative was born.

At some point, I will write about the deep, personal significance of the Mitotree for me,  but for now, suffice it to say that there is something profoundly moving about rewriting the tree of humankind and in doing so, giving a voice to our ancestors from long ago. Yes, I know many of them are thousands or even tens of thousands of years old, but had they not survived, we would not be here today. Now we can identify who they are and that they lived.

Million Mito Team, left to right, Goran Runfeldt, Dr. Paul Maier, me, Dr. Miguel Vilar, Bennett Greenspan, John Detsikas

Our amazing Dream Team has given life to our ancestors and said their names once again, even if their name is a mitochondrial DNA haplogroup. Four team members, Goran, Paul, me and Bennett were at RootsTech. Where else can you actually approach and speak with the actual scientists?

When I say RootsTech is about the people, I know that I am related to every single individual at RootsTech, it’s just a matter of how far back in time. So are you.

Just think about the significance of that for a minute.

Every. Single. Person.

The other end of the mitochondrial DNA spectrum is genealogy, of course, and the new Mitotree with it’s haplotype clusters brings mitochondrial DNA results into the genealogical timeframe. In future articles, I’ll be writing about each one of the new tools, what they mean, and how to use them.

Dr. Paul Maier, lead scientist doing most of the hard science behind Mitotree, had the much-deserved honor of introducing the Mitotree to genealogists at RootsTech.

I’m not sure the audience understood they were witnessing history unfold, but they clearly were. We needed a drum roll and some balloons!

This wasn’t like most vendor announcements of a new product or feature – this was a major scientific achievement that led to genealogical benefits.

In celebration, I asked my friend to make double helix zipper pulls so that I could give them to colleagues, friends and cousins that I ran into at RootsTech. It’s my way of celebrating and sharing the joy!

Five years is a very long time to work on a project. The Mitotree is a massive accomplishment. Every customer at FamilyTreeDNA who has taken the full sequence test received their new haplogroup either the week before or during RootsTech, AND, the second updated version of the tree was released too.

While this is truly wonderful, the true highlight is the testimonials – seeing how Mitotree is actually helping people break through their brick walls.

Here’s just one.

Breathless Testimonial

I’m going to try to convey this exactly as it happened.

A lady that I don’t know literally runs up to me in the hallway. This isn’t unusual. She was so excited that what she said was one long breathless sentence, which I’m going to try to reconstruct here, although I’m adding a bit of punctuation. I also can’t remember how many “greats” were attached to the “grandmother,” but you’ll get the idea.

Roberta, Roberta, I’m so excited – I just wanted to let you know – I found my ancestor using mitochondrial DNA. I got my new haplogroup and I had like 47 matches before but now they are clustered together so I could focus…and there were three matches in my cluster…and one of them had an EKA but the other didn’t…so I built out the EKA matches’ tree and guess what??? They were from the same place and then I found that her great-great-grandmother’s sister is my great-great-grandmother but she had her surname so now I have more generations too. OMG I ‘m so excited I could never have broken through this wall without mtDNA because I had no surname. This is THE MOST CONSEQUENTIAL DNA TEST I’VE EVER TAKEN, and I’ve taken them all. Thank you, thank you!

And with that she quickly hugged me and ran off to something she was obviously late for.

I never got to say one word, which was fine, but I stood there with tears in my eyes, thinking to myself, “This – this is what it’s all about.”

It doesn’t get better than this!

I want to hear your stories too. I just scaled my fourth brick wall last night using the new Mitotree and mtDNA Discover features.

RootsTech Week

RootsTech week started early for me – as in leaving the house at 3 AM Sunday. I fly on Sunday because the flights are cheaper and because the pre-conference meetings and events begin on Monday.

We took off into the dawn, jetting our way westward through the azure blue sky.

I have never gotten over the majesty and beauty of the Rocky Mountains.

And then, of course, the Great Salt Lake, for which Salt Lake City is named.

Looking at the Salt Palace across the street from the Marriott hotel. The silver building is the new Hyatt which is attached to the conference center behind the windmills which extends another very long block to the right, out of view. The mountain range is visible in the distance, and the beautiful sunset.

Speaking of the Marriott hotel, several people have asked if it was any better this year, and if I got trapped in the fire exit again, like last year.

No, I didn’t get stuck because I didn’t tempt fate again. It looked just the same though, so I’m presuming nothing has changed. Furthermore, there was no heat in my room, so they gave me a space heater and a pass to the concierge level – which they did not do last year.

That was kind of them, but food ran out, and there was only one poor server in the restaurant. I’m not even going to mention the nauseating thing that happened with my food. Let’s just say I’m not picky, but I will NEVER eat there again, and that makes it particularly difficult because there’s very little close by, especially when you’re exhausted.

I’m hoping that RootsTech will negotiate someplace different for speakers in the future. I’ve stayed in a lot of Marriotts and most of them are just fine. I have never had issues like this with any of them, let alone repeat issues year after year.

The good news is that we’re not there for the hotel, and the fun began on Monday.

Monday

My interviews began on Monday morning with “Mondays with Myrt” at the FamilySearch Library, which you can view here beginning about 16 minutes.

Mondays with Myrt is a RootsTech tradition and Myrt incorporates people present in person and tuning in virtually as well. Left to right, Kirsty Gray from England, John Tracy Cunningham, me and Myrt. Kirsty had a huge breakthrough that she shared with us just a few minutes after it happened.

I met John at the ECGGS Conference last October. He’s one of the few people I know whose 8 great-grandparents were born in the same county. I’m so jealous. Mine were either born in or first generation immigrants from four countries.

Sometimes the broadcast waiting area is just as much fun as the actual broadcast – in part because it’s the first day of RootsTech week and everyone is so excited to see their friends that they haven’t seen in forever. Call is a reunion!

Do Kirsty Gray and I look like we’re about to get into mischief?

Behind me is the first group of folks to be interviewed.

Pat Richley-Erickson, aka Myrt, Cheryl Hudson Passey, Laura Wilkinson Hedgecock, and Jenny Horner Hawran.

This is the livestream room at the FamilySearch Library. The waiting area for the next group is to the right, and the three presently being interviewed are sitting on the left beside Myrt.

For those who know Gordon, aka Mr. Myrt, he’s coordinating interviewees outside the livestream room. His job is herding cats and he’s the nicest cat-herder you’ll ever meet!

Pre-RootsTech Library Research

I love the FamilySearch Library. It feels like coming home to me.

So many passionate genealogists at every level – learning and searching. Lots of volunteer helpers available, too.

Normally, I create a research plan for the library, but I had been so utterly slammed between preparing my several RootsTech sessions and the Mitotree release that I hadn’t really been able to prepare anything.

I did, however, have a group of ancestors in mind that settled in the Oley Valley in Pennsylvania, so I decided to focus on the Berks County books.

I won’t bore you with the details, but among other things, I found confirmation that the Hoch surname is also the same as High and Hoy, which explains some very confusing Y-DNA results. So even though I didn’t get much productive time there, I did find something very useful in the land records.

I also ran into cousins and friends, of course, which is why I didn’t get more actual research done.

I knew Judy Nimer Muhn, at left, was going to be at RootsTech as a speaker, and I knew we connected through Acadian lines, but we never took the time to really piece together that puzzle.

My cousins, Mark and Manny were also coming for RootsTech, and to visit the library, for the first time. Mark, Manny and I visited Nova Scotia together in the summer of 2024, chasing our ancestors.

You know, fate is a funny thing.

We all descend from Acadian, Francois Savoie who was born about 1621 in France, but settled in Acadia, today’s Nova Scotia. Mark, Manny and I knew that we are cousins through Francois, but Judy and I did not. Mark, Manny and I ran into a local historian, Charlie Thibodeau, the Acadian Peasant, last year, outside of Port Royal. It just so happened that he was taking another couple to see the remains of the Savoie homestead deep in the salt marshes at BelleIsle.

We asked if we could join them, and Charlie was kind enough to include us. It was a long, brutally hot, tick-infested hike through the swamp, but oh so worth it!

We also found the well, located between three homesteads.

The year before, Judy had been in the same place in Nova Scotia, found the same man, Charlie, at the BelleIsle Hall Acadian Cultural Centre, and he had taken her to the remains of the same homestead.

And here we all four are in Utah.

What are the chances?

Needless to say, we had a LOT to talk about, and still do. Unfortunately, I wasn’t able to get to Judy’s talk, but Mark and Manny attended.

I ran into Katy Rowe-Schurwanz, the FamilyTreeDNA Product Manager at the library too, and look what she’s wearing – a mitochondrial DNA scarf. How cool is that!

The rest of Tuesday and most of Wednesday morning were spent trying to update my several presentations to reflect newly released information by various vendors and practicing the timing of the presentations. I had another interview, and more people were arriving.

I found time to visit Eva’s Bakery about 3 blocks from the Salt Palace. If you’re ever in Salt Lake City, Eva’s is a must! Lunch is wonderful, and so are their French pastries.

Wednesday is “tech prep” day at RootsTech, along with speaker instructions and then the Speaker Dinner.

Steve Rockwood, President and CEO of FamilySearch always delivers an inspirational message and this year did not disappoint.

If you’ve wondered about RootsTech conference stats, they provided this information. I can’t even imagine trying to coordinate all of this – and that’s not including the vendors, expo hall, technology in the presentation rooms, food, security and so much more.

Last year, in 2024, the final attendance numbers were more than 16,000 people in person and 4 million virtual attendees. I noticed a few days ago that there were more than half a million people participating in Relatives at RootsTech, which is still live until April 12th.

On Wednesday evening, after the Speaker’s Dinner, vendors in the Expo Hall were putting the final touches on their booths and preparing for the thousands of excited genealogists who would descend Thursday morning.

Discover

This year’s RootsTech theme was “discover” and attendees were greeted with this display just inside the door.

Attendees listed their discoveries on Post-its and could either post them on the board or plastic boxes, or on the green tree.

I placed my discovery from the day before at the library on the Rootstech tree.

Some people place their wishes here, kind of like a technology wishing well.

I couldn’t help but think of the new Mitotree, now forever green and growing, so I posted a second discovery, “Mitotree.”

Thursday – Opening Day

For those who don’t know, the Salt Palace Convention Center is two lengthy blocks long, a block wide, and two or three stories high, depending on whether you are in the front or rear portion. In other words, it’s massive and you need a map!

The huge Expo Hall with vendors is located in the center on the first floor and vendors have aisle addresses. The show floor is always very busy, and this year was no exception. One of the things I love is that spontaneous conversations just spring up between people who often find commonalities – common ancestors, common locations, and more. People compliment each other and join others at tables. It’s like a big family gathering of sorts.

I always try to walk the entire Expo Hall, because I really enjoy seeing the vendors and their wares, but this year, I never actually had enough time to traverse all the aisles. I took several pictures as I was passing through and running into people, but not nearly enough. I know I missed a lot, but there just wasn’t enough time and I arrived at RootsTech already tired.

However, the energy of RootsTech is like no place else and just infects you.

It’s like you can’t drink from the genealogy firehose fast enough!

Let’s Take a Walk

Ok, come along on a walk with me.

Left to right, Lianne Kruger, a speaker, and Courtney, in the FamilyTreeDNA booth. I believe they said they are cousins.

Daniel Horowitz, genealogist extraordinaire, in the MyHeritage booth. More about MyHeritage’s announcements shortly.

Geoff Rasmussen in the Legacy Family Tree Webinars booth. For those who don’t know, there’s lots of good material at Legacy, and the freshly recorded webinars are always free for a week.

Several vendors offer booth talks, including MyHeritage. I love their photo tools and use their site in some capacity almost daily.

One of the RootsTech traditions is ribbons. Collect one, collect ‘em all. Liv’s ribbons almost reach the floor. I think she wins!

Selfies are also a RootsTech tradition. Me, here with Jonny Perl of DNAPainter fame. I owe Jonny an apology as he asked me if I had a minute, and I had to say no because I was on the way to one of my own classes. I never got back to his booth to view his new features. Sorry Jonny – don’t take it personally!

Jonny released a new Ancestral tree version titled Places, so take a look here at his blog. I need to go look at my ancestors Places.

You’ll find this new feature under Ancestral Trees, Places. These are my most recent 8 generations. Just think of all those brave souls who climbed on a ship and sailed for the unknown. Check this feature out and have fun.

In a booth talk, Dave Vance, Executive Vice-President and General Manager at FamilyTreeDNA is speaking about the three types of DNA, which are, of course, Y-DNA, mitochondrial and autosomal DNA – all useful for genealogy in different ways.

Dave is explaining how in-common-with matches, also known as shared matches, operate with the chromosome browser. You can use the chromosome browser, shared matches, the new Matrix Tool, and download your match segment information at FamilyTreeDNA, a combination of features not available at any other vendor.

WikiTree, a free a moderated one-world-tree is one of my favorite genealogy tools. One of their best features is that you find your ancestor, and in addition to lots of sources, their Y-DNA, mitochondrial DNA, and those who are related autosomally are listed. Here’s my grandfather, for example.

Several DNA connections are listed. The further back in my tree, the more DNA connections are found, becuase those ancestors have more descendants.

WikiTree volunteers were wandering around taking pictures of “WikiTreers” holding fun signs.

Paul Woodbury, a long time researcher with Legacy Tree Genealogists, who specializes in DNA. I don’t take private clients anymore, and regularly refer people to Legacy Tree.

Me with Janine Cloud taking our annual RootsTech selfie. Janine, the Group Projects Manager at FamilyTreeDNA and I co-administer one of those projects and accidentally discovered a few years ago that we are cousins too. How fun is this!!!

I wanted this shirt, but by the time I got back to the booth, it was too late. I’m going to order it online from Carlisle Creations, in case you want one too. This is so me.

Land records are critically important to genealogists. Rebecca Whitman’s class was about plotting land plats. What she’s holding is a surveyor’s chain. You’ve read about chain carriers? This is what they carried to measure land boundaries – literally metes and bounds. Some of my best discoveries have been thanks to land records.

The only session I actually got to attend was Gilad Japhet’s “What’s New and Exciting at MyHeritage.” For those who don’t know, Gilad is the founder and CEO of MyHeritage and it’s always great to hear about the new features straight from the top executive who is, himself, a seasoned genealogist. That’s why he started MyHeritage in the first place – 22 years ago in his living room.

Gilad had several wonderful announcements, but the one I’m most excited about is their new Cousin Finder. Cousin Finder finds and reveals cousins who are DNA candidates if they have not yet taken a DNA test.

I’ll be writing more about the MyHeritage announcements soon, but you can read their blog about Cousin Finder now, here, and their Roundup here about the rest of their announcements!

My Last Class – Reveal Your Maternal Ancestors & Their Stories

My last class at the end of the final day of RootsTech was “Reveal Your Maternal Ancestors & Their Stories – Solving Mitochondrial DNA Puzzles.”

Had I tried to coordinate this presentation with International Women’s Day, I could never have done it, but fate winked and here I was.

I’m often asked what it’s like from the presenters’ perspective. This is one of the smaller ballrooms. My earlier sessions were in larger rooms, maybe 3 times this size. I took this picture about 15 minutes before the session started as people were beginning to drift in.

The amazing RootsTech techs had me wired up to microphones and had verified that the audio and video equipment was working correctly, so now it was just waiting.

My cousin, John Payne, who co-administers the Speaks surname project with me, came by and took this great picture of the two of us. We’ve made huge inroads connecting the various Speake(s) lines in America, plus finally proving our home village in England, thanks to the Big Y-700 test, followed by church records. All is takes, sometimes, is that one critical match.

As I sat there, waiting to begin the mitochondrial DNA session, I couldn’t help but reflect upon all of the women who came before me and how fortunate I was to have been in the right place at the right time to be a member of the Million Mito team.

These are my direct matrilineal ancestors who give me, and my daughter, pictured at left, their mitochondrial DNA. I felt them with me as I sat there, waiting.

The woman at furthest right, Barbara Drechsel (1848-1930), immigrated to Indiana from Germany as a child with her parents in the 1850s. Before her came thousands of generations of women with no photos, of course, and no names before Barbara Freiberger, another eight generations earlier, born about 1621 in Germany.

Before that, which was before church and other records, prior to the 30 Years War, this lineage came from Scandinavia where some of my exact matches are still found today.

Before beginning, I said a positive affirmation and thanked my ancestors – so very honored to introduce them. I know they were proud of me, a member of the team that opened the door to the distant past. I wouldn’t be here if not for every one of their lives.

In this session, I would discuss, for the first time ever, the new Mitotree and my/our connection to all of humanity some 7000 generations ago, more or less.

The mutations we carry over those generations form an unbroken chain of breadcrumbs, connecting us to mitochondrial Eve who lived about 145,000 years ago. We revealed that breakthrough finding in the Haplogroup L7 paper, published in 2022.

I’m still in absolute awe that we have been able to both reach that far back in time AND, at the same time, make the newest haplogroups and haplotype clusters genealogically relevant. I will write more about that soon, but for now, I wrote about the Mitotree release here and you can find articles by Katy Rowe-Schurwanz here and here.

I’m very excited about my new mitochondrial DNA results for my ancestral lines that I track and have already made headway on several.

I’m not the only one.

Not only was I excited about my results, many other people have had breakthroughs too, including Mark Thompson, one of our genealogy AI experts who also spoke at RootsTech. I particularly love his AI generated image.

If you haven’t yet, check your mitochondrial DNA results.

It’s a Wrap

Another year done, another RootsTech under our belts. Hopefully everyone is over the “conference crud” by now and are busily applying their newfound knowledge.

You can view either live-cast sessions or RootsTech webinars, here.

I saw a meme posted sometime during the conference that coined the term “exhausterwhelmulated,” a combination of exhausted, overwhelmed and overstimulated at the same time.

I added exhilarated and elated to the mix and asked ChatGPT to draw me a picture of someone at a genealogy conference feeling those simultaneous emotions.

ChatGPT titled this request “Genealogy Conference Overload,” which made me laugh.

The first two attempts looked like the person had a headache, which I fully understood, so I asked ChatGPT to make the person look happy to be there.

This person, carrying a coffee like I often do, looks like they have just discovered the great irony that they have chased the wrong ancestor for some 20 years – with “laugh or I’ll cry” mania being their overwhelm “go to” in that minute.

This one made me laugh too!

Yes, indeed, I think every single one of us, especially at RootsTech, has experienced this exact adrenaline-fueled emotion.

We leave with a VERY long to-do list, exhausted but full of anticipation and buoyed by excitement. Filled with so much gratitude for our cousins and fellow genealogists, the speakers, vendors, DNA to solve thorny problems, new tools and records, FamilySearch who sponsors RootsTech itself and their amazing employees, plus the legions of the volunteers who make it all work.

Thank you! Thank you! Thank you!

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research