FamilyTreeDNA’s New Matrix Shows How Your Matches Are Related to Each Other

Click on any image to enlarge

FamilyTreeDNA’s new reworked Matrix includes relationships, in other words, how your matches are related to each other. But there’s more. It also includes the number of shared segments and the number of cMs shared between your matches.

You can then push those matches through to the chromosome browser to see exactly which segments overlap between you and your matches.

This is a game-changer!!

Why Are These Features Important?

For genealogists, knowing how your matches are related to each other, or not, is a HUGE clue about your common ancestor. Clusters of people who match each other are an important road sign directing you to a specific ancestor who contributed the same DNA segment or segments to all of you.

FamilyTreeDNA just released several VERY cool updates for their Matrix comparison tool. Plus, you get to select a group of 10 people to compare.

The purpose of the Matrix tool is to select Family Finder autosomal matches who are then displayed in a grid matrix for comparison, showing if and how those matches match each other.

Specifically:

  • Do your matches match each other?
  • What is their estimated relationship to each other?
  • How many segments of DNA do they share with each other?
  • How many cMs (centiMorgans) of DNA do they share with each other?

You can then push 7 matches through to the chromosome browser to see if they match on any of the same segments.

Automated Triangulation

If you are comparing bucketed (maternal or paternal) matches, or matches known to belong to the same side of your tree, the shared segments are automatically triangulated.

How cool is this?!!!

Keep in mind, though, that you may be related to someone through multiple ancestors, and they could be from both parent’s sides, so pay attention to the ancestral segment history.

Remember, every segment has its own unique history.

Let’s step through the new Matrix features and see how they work.

Select the Matrix

Navigate to the Matrix tool under “See More” under Autosomal DNA Results and Tools.

Under “Select Matches” you can select “All Matches” to choose from all of your matches, or you can select a grouping of matches to be displayed in the menu, below.

These groupings are shortcuts for you so you don’t have to pick everyone individually. You can also search for a name.

Click on the individuals you want to compare in the Matrix. The people you’ve selected from the group, at left, will appear in the box, at right. That’s who will be compared to each other.

Next, select which type of data will be compared.

I’m selecting “Close Relatives” for this example and “Relationship range.” First, I added my mother so I could see who matches with her.

Then I added the rest of the people I want to compare. In this case, I’ve added my closest matches, even though they are from both sides of my tree.

Relationship Range

I’ve selected “Relationship range,” which will show me how my matches estimated relationships to each other.

Based on the identity of these matches, and how they match each other, I can now determine their ancestral connection.

If I didn’t know who was related maternally and paternally, this grid would remove all doubt became I’m comparing to one of my parents.

If you don’t have a parent, adding close, known relatives on one or both sides will help immensely.

Be sure to make notes about what you’ve discovered on your matches page, and paint to DNAPainter if that’s how you’re tracking your segments to ancestors.

Number of Segments Shared

Now, I’ve selected “Number of segments shared” to compare the same group of people.

You can see the number of shared segments between Mom’s matches. Donald and Cheryl are full siblings.

The display shows how these people match Mom, and each other.

Melissa is Mom’s paternal second cousin. I was able to piece this together with the help of how she matches Mom and Mom’s known paternal first cousins, Cheryl and Donald.

Total cMs Shared

Next, I’m selecting “Total cMs shared” for comparison.

Looking at the number of shared cMs, even if I didn’t know that Donald and Cheryl were full siblings, I would now.

You can also push these through to the chromosome browser. I’ll illustrate in a minute.

Bucketed or Parental Side Matching

My favorite groupings for the new Matrix are the bucketed, meaning parental or maternal “side” matching.”

When your matches are already bucketed, thanks to having linked known matches to their profile card in your tree, the system does a lot of the “side” work for you behind the scenes.

When you select “Maternal, “Paternal” or “Paternal and Maternal” matches, the people who have been bucket to either side, or those related to you on both sides, are listed in the selection box.

I’m selecting 7 of my maternal bucketed matches because I’m going to push them through to the chromosome browser for additional evaluation. I’m not including my mother because I already know these people are related to both me and her, because they are bucketed maternally.

They’re compared in the various matrix configurations.

From the Shared cM comparison table, I can easily click to display matches in the chromosome browser.

If you’re comparing more than 7 people, you’ll need to reduce it to 7. I excluded my Mom because I already know she matches all of them.

Click on the Compare Chromosome Browser at the bottom for the 7 people selected.

I know that cousin Charles descends from Mom’s paternal Lentz line, and has no other connection, so I know that these other cousins who also match me on that same segment are also from Mom’s Lentz line.

I can also tell that the shared segments on chromosome 1 are from Mom’s maternal Lore line.

Shown here are the common ancestors in Mom’s pedigree chart. They are 4 and 5 generations back in time for me.

Look how easy that was!

I love this new Matrix tool.

Triangulation

Because three or more people, including me, match on the same segments, this means they also triangulate.

In the example above, we have two distinct triangulation groups. I’m only showing chromosomes 1-3 for illustration purposes, but there are also more triangulation groups on the other chromosomes. If I add other people, new triangulation groups will form!

Of course, these are my maternal bucketed matches, so I’m safe to reach that conclusion. If my father’s matches were also loaded here, I would have to check the matrix and see if these people also matched each other before I could determine that they triangulate.

Check Your Matches and Upload

Be sure to upload any tests to FamilyTreeDNA that you manage at other vendors, and encourage your cousins to upload too.

This combination of features is unique to FamilyTreeDNA. The more relatives you have available to match, especially when you already know the common ancestor, the better. Be sure to link your matches to their placard in your tree so that FamilyTreeDNA can do the bucketing for you.

Even if you don’t link people, you can still benefit greatly from the new matrix tool by just having your DNA available for matching. The matrix will help you sort out matches and identify who is related to whom, and how.

Take a look! What are you discovering?

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Great News – Both e-Pub and Print Version of “The Complete Guide to FamilyTreeDNA” Now Available Worldwide  

  • Anyone, anyplace, can order the full-color, searchable, e-pub version of The Complete Guide to FamilyTreeDNA – Y-DNA, Mitochondrial, Autosomal and X-DNA from the publisher, Genealogical.com, here.
  • Customers within the US can order the black and white print book from the publisher, here.
  • Customers outside the US can order the print book from their country’s Amazon website. The publisher does not ship print books outside the US due to customs, shipping costs, and associated delays. They arranged to have the book printed by an international printer so that it can be shipped directly to Amazon for order fulfillment without international customers incurring additional expenses and delays. If you ordered the book previously from Amazon and a long delivery time was projected, that should be resolved now and your book should be arriving soon.

Comprehensive

This book is truly comprehensive and includes:

  • 247 pages
  • More than 267 images
  • 288 footnotes
  • 12 charts
  • 68 tips
  • Plus, an 18-page glossary

To view the table of contents, click here. To order, click here.

Thank you, everyone, for your patience and your support.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Complete Guide to FamilyTreeDNA Released in Hardcopy

Just what many of you have been waiting for! The hardcopy print version of the Complete Guide to FamilyTreeDNA has just been released.

As shown in the table of contents below, The Complete Guide to FamilyTreeDNA contains lots of logically organized information! It includes basic education about genetic genealogy and how it works, instructions on using the FamilyTreeDNA tests and tools, plus an extensive glossary.

Enjoy!

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Announcing: The Complete Guide to FamilyTreeDNA; Y-DNA, Mitochondrial, Autosomal and X-DNA

I’m so very pleased to announce the publication of my new book, The Complete Guide to FamilyTreeDNA – Y-DNA, Mitochondrial, Autosomal and X-DNA.

For the first time, the publisher, Genealogical.com, is making the full-color, searchable e-book version available before the hardcopy print version, here. The e-book version can be read using your favorite e-book reader such as Kindle or iBooks.

Update: The hardcopy version was released at the end of May and is available from the publisher in the US and from Amazon internationally.

This book is about more than how to use the FamilyTreeDNA products and interpreting their genealogical meaning, it’s also a primer on the four different types of DNA used for genealogy and how they work:

  • Autosomal DNA
  • Mitochondrial DNA
  • Y-DNA
  • X-DNA

There’s a LOT here, as shown by the table of contents, below

This book is chocked full of great information in one place. As an added bonus, the DNA glossary is 18 pages long.

I really hope you enjoy my new book, in whatever format you prefer.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

DNA: In Search of…Signs of Endogamy

This is the fourth in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to ancestors further back in time as well.

In this article, we discuss endogamy – how to determine if you have it, from what population, and how to follow the road signs.

After introductions, we will be covering the following topics:

  • Pedigree collapse and endogamy
  • Endogamous groups
  • The challenge(s) of endogamy
  • Endogamy and unknown close relatives (parents, grandparents)
  • Ethnicity and Populations
  • Matches
  • AutoClusters
  • Endogamous Relationships
  • Endogamous DNA Segments
  • “Are Your Parents Related?” Tool
  • Surnames
  • Projects
  • Locations
  • Y DNA, Mitochondrial DNA, and Endogamy
  • Endogamy Tools Summary Tables
    • Summary of Endogamy Tools by Vendor
    • Summary of Endogamous Populations Identified by Each Tool
    • Summary of Tools to Assist People Seeking Unknown Parents and Grandparents

What Is Endogamy and Why Does It Matter?

Endogamy occurs when a group or population of people intermarry among themselves for an extended period of time, without the introduction of many or any people from outside of that population.

The effect of this continual intermarriage is that the founders’ DNA simply gets passed around and around, eventually in small segments.

That happens because there is no “other” DNA to draw from within the population. Knowing or determining that you have endogamy helps make sense of DNA matching patterns, and those patterns can lead you to unknown relatives, both close and distant.

This Article

This article serves two purposes.

  • This article is educational and relevant for all researchers. We discuss endogamy using multiple tools and examples from known endogamous people and populations.
  • In order to be able to discern endogamy when we don’t know who our parents or grandparents are, we need to know what signs and signals to look for, and why, which is based on what endogamy looks like in people who know their heritage.

There’s no crystal ball – no definitive “one-way” arrow, but there are a series of indications that suggest endogamy.

Depending on the endogamous population you’re dealing with, those signs aren’t always the same.

If you’re sighing now, I understand – but that’s exactly WHY I wrote this article.

We’re covering a lot of ground, but these road markers are invaluable diagnostic tools.

I’ve previously written about endogamy in the articles:

Let’s start with definitions.

Pedigree Collapse and Endogamy

Pedigree collapse isn’t the same as endogamy. Pedigree collapse is when you have ancestors that repeat in your tree.

In this example, the parents of our DNA tester are first cousins, which means the tester shares great-grandparents on both sides and, of course, the same ancestors from there on back in their tree.

This also means they share more of those ancestors’ DNA than they would normally share.

John Smith and Mary Johnson are both in the tree twice, in the same position as great-grandparents. Normally, Tester Smith would carry approximately 12.5% of each of his great-grandparents’ DNA, assuming for illustration purposes that exactly 50% of each ancestor’s DNA is passed in each generation. In this case, due to pedigree collapse, 25% of Tester Smith’s DNA descends from John Smith, and another 25% descends from Mary Johnson, double what it would normally be. 25% is the amount of DNA contribution normally inherited from grandparents, not great-grandparents.

While we may find first cousin marriages a bit eyebrow-raising today, they were quite common in the past. Both laws and customs varied with the country, time, social norms, and religion.

Pedigree Collapse and Endogamy is NOT the Same

You might think that pedigree collapse and endogamy is one and the same, but there’s a difference. Pedigree collapse can lead to endogamy, but it takes more than one instance of pedigree collapse to morph into endogamy within a population. Population is the key word for endogamy.

The main difference is that pedigree collapse occurs with known ancestors in more recent generations for one person, while endogamy is longer-term and systemic in a group of people.

Picture a group of people, all descended from Tester Smith’s great-grandparents intermarrying. Now you have the beginnings of endogamy. A couple hundred or a few hundred years later, you have true endogamy.

In other words, endogamy is pedigree collapse on a larger scale – think of a village or a church.

My ancestors’ village of Schnait, in Germany, is shown above in 1685. One church and maybe 30 or 40 homes. According to church and other records, the same families had inhabited this village, and region, for generations. It’s a sure bet that both pedigree collapse and endogamy existed in this small community.

If pedigree collapse happens over and over again because there are no other people within the community to marry, then you have endogamy. In other words, with endogamy, you assuredly DO have historical pedigree collapse, generally back in time, often before you can identify those specific ancestors – because everyone descends from the same set of founders.

Endogamy Doesn’t Necessarily Indicate Recent Pedigree Collapse

With deep, historic endogamy, you don’t necessarily have recent pedigree collapse, and in fact, many people do not. Jewish people are a good example of this phenomenon. They shared ancestors for hundreds or thousands of years, depending on which group we are referring to, but in recent, known, generations, many Jewish people aren’t related. Still, their DNA often matches each other.

The good news is that there are telltale signs and signals of endogamy.

The bad news is that not all of these are obvious, meaning as an aid to people seeking clues about unknown close relatives, and other “signs” aren’t what they are believed to be.

Let’s step through each endogamy identifier, or “hint,” and then we will review how we can best utilize this information.

First, let’s take a look at groups that are considered to be endogamous.

Endogamous Groups

Jewish PeopleSpecifically groups that were isolated from other groups of Jewish (and other) people; Ashkenazi (Germany, Northern France, and diaspora), Sephardic (Spanish, Iberia, and diaspora), Mizrahi (Israel, Middle Eastern, and diaspora,) Ethiopian Jews, and possibly Jews from other locations such as Mountain Jews from Kazakhstan and the Caucasus.

AcadiansDescendants of about 60 French families who settled in “Acadia” beginning about 1604, primarily on the island of Nova Scotia, and intermarried among themselves and with the Mi’kmaq people. Expelled by the English in 1755, they were scattered in groups to various diasporic regions where they continued to intermarry and where their descendants are found today. Some Acadians became the Cajuns of Louisiana.

Anabaptist Protestant FaithsAmish, Mennonite, and Brethren (Dunkards) and their offshoots are Protestant religious sects founded in Europe in the 14th, 15th, and 16th centuries on the principle of baptizing only adults or people who are old enough to choose to follow the faith, or rebaptizing people who had been previously baptized as children. These Anabaptist faiths tend to marry within their own group or church and often expel those who marry outside of the faith. Many emigrated to the American colonies and elsewhere, seeking religious freedom. Occasionally those groups would locate in close proximity and intermarry, but not marry outside of other Anabaptist denominations.

Native American (Indigenous) People – all indigenous peoples found in North and South America before European colonization descended from a small number of original founders who probably arrived at multiple times.

Indigenous Pacific Islanders – Including indigenous peoples of Australia, New Zealand, and Hawaii prior to colonization. They are probably equally as endogamous as Native American people, but I don’t have specific examples to share.

Villages – European or other villages with little inflow or whose residents were restricted from leaving over hundreds of years.

Other groups may have significant multiple lines of pedigree collapse and therefore become endogamous over time. Some people from Newfoundland, French Canadians, and Mormons (Church of Jesus Christ of Latter-Day Saints) come to mind.

Endogamy is a process that occurs over time.

Endogamy and Unknown Relatives

If you know who your relatives are, you may already know you’re from an endogamous population, but if you’re searching for close relatives, it’s helpful to be able to determine if you have endogamous heritage, at least in recent generations.

If you know nothing about either parent, some of these tools won’t help you, at least not initially, but others will. However, as you add to your knowledge base, the other tools will become more useful.

If you know the identity of one parent, this process becomes at least somewhat easier.

In future articles, we will search specifically for parents and each of your four grandparents. In this article, I’ll review each of the diagnostic tools and techniques you can use to determine if you have endogamy, and perhaps pinpoint the source.

The Challenge

People with endogamous heritage are related in multiple, unknown ways, over many generations. They may also be related in known ways in recent generations.

If both of your parents share the SAME endogamous culture or group of relatives:

  • You may have significantly more autosomal DNA matches than people without endogamy, unless that group of people is under-sampled. Jewish people have significantly more matches, but Native people have fewer due to under-sampling.
  • You may experience a higher-than-normal cM (centiMorgan) total for estimated relationships, especially more distant relationships, 3C and beyond.
  • You will have many matches related to you on both your maternal and paternal sides.
  • Parts of your autosomal DNA will be the same on both your mother’s and father’s sides, meaning your DNA will be fully identical in some locations. (I’ll explain more in a minute.)

If either (or both) of your parents are from an endogamous population, you:

  • Will, in some cases, carry identifying Y and mitochondrial DNA that points to a specific endogamous group. This is true for Native people, can be true for Jewish people and Pacific Islanders, but is not true for Anabaptist people.

One Size Does NOT Fit All

Please note that there is no “one size fits all.”

Each or any of these tools may provide relevant hints, depending on:

  • Your heritage
  • How many other people have tested from the relevant population group
  • How many close or distant relatives have tested
  • If your parents share the same heritage
  • Your unique DNA inheritance pattern
  • If your parents, individually, were fully endogamous or only partly endogamous, and how far back generationally that endogamy occurred

For example, in my own genealogy, my maternal grandmother’s father was Acadian on his father’s side. While I’m not fully endogamous, I have significantly more matches through that line proportionally than on my other lines.

I have Brethren endogamy on my mother’s side via her paternal grandmother.

Endogamous ancestors are shown with red stars on my mother’s pedigree chart, above. However, please note that her maternal and paternal endogamous ancestors are not from the same endogamous population.

However, I STILL have fewer matches on my mother’s side in total than on my father’s side because my mother has recent Dutch and recent German immigrants which reduces her total number of matches. Neither of those lines have had as much time to produce descendants in the US, and Europe is under-sampled when compared with the US where more people tend to take DNA tests because they are searching for where they came from.

My father’s ancestors have been in the US since it was a British Colony, and I have many more cousins who have tested on his side than mother’s.

If you looked at my pedigree chart and thought to yourself, “that’s messy,” you’d be right.

The “endogamy means more matches” axiom does not hold true for me, comparatively, between my parents – in part because my mother’s German and Dutch lines are such recent immigrants.

The number of matches alone isn’t going to tell this story.

We are going to need to look at several pieces and parts for more information. Let’s start with ethnicity.

Ethnicity and Populations

Ethnicity can be a double-edged sword. It can tell you exactly nothing you couldn’t discern by looking in the mirror, or, conversely, it can be a wealth of information.

Ethnicity reveals the parts of the world where your ancestors originated. When searching for recent ancestors, you’re most interested in majority ethnicity, meaning the 50% of your DNA that you received from each of your parents.

Ethnicity results at each vendor are easy to find and relatively easy to understand.

This individual at FamilyTreeDNA is 100% Ashkenazi Jewish.

If they were 50% Jewish, we could then estimate, and that’s an important word, that either one of their parents was fully Jewish, and not the other, or that two of their grandparents were Jewish, although not necessarily on the same side.

On the other hand, my mother’s ethnicity, shown below, has nothing remarkable that would point to any majority endogamous population, yet she has two.

The only hint of endogamy from ethnicity would be her ~1% Americas, and that isn’t relevant for finding close relatives. However, minority ancestry is very relevant for identifying Native ancestors, which I wrote about, here.

You can correlate or track your ethnicity segments to specific ancestors, which I discussed in the article, Native American & Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments, here.

Since I wrote that article, FamilyTreeDNA has added the feature of ethnicity or population Chromosome Painting, based on where each of your populations fall on your chromosomes.

In this example on chromosome 1, I have European ancestry (blue,) except for the pink Native segment, which occurs on the following segment in the same location on my mother’s chromosome 1 as well.

Both 23andMe, and FamilyTreeDNA provide chromosome painting AND the associated segment information so you can identify the relevant ancestors.

Ancestry is in the process of rolling out an ethnicity painting feature, BUT, it has no segment or associated matching information. While it’s interesting eye candy, it’s not terribly useful beyond the ethnicity information that Ancestry already provides. However, Jonny Perl at DNAPainter has devised a way to estimate Ancestry’s start and stop locations, here. Way to go Jonny!

Now all you need to do is convince your Ancestry matches to upload their DNA file to one of the three databases, FamilyTreeDNA, MyHeritage, and GEDMatch, that accept transfers, aka uploads. This allows matching with segment data so that you can identify who matches you on that segment, track your ancestors, and paint your ancestral segments at DNAPainter.

I provided step-by-step instructions, here, for downloading your raw DNA file from each vendor in order to upload the file to another vendor.

Ethnicity Sides

Three of the four DNA testing vendors, 23andMe, FamilyTreeDNA, and recently, Ancestry, attempt to phase your ethnicity DNA, meaning to assign it to one parental “side” or the other – both in total and on each chromosome.

Here’s Ancestry’s SideView, where your DNA is estimated to belong to parent 1 and parent 2. I detailed how to determine which side is which, here, and while that article was written specifically pertaining to Ancestry’s SideView, the technique is relevant for all the vendors who attempt to divide your DNA into parents, a technique known as phasing.

I say “attempt” because phasing may or may not be accurate, meaning the top chromosome may not always be parent 1, and the bottom chromosome may not always be chromosome 2.

Here’s an example at 23andMe.

See the two yellow segments. They are both assigned as Native. I happen to know one is from the mother and one is from the father, yet they are both displayed on the “top” chromosome, which one would interpret to be the same parent.

I am absolutely positive this is not the case because this is a close family member, and I have the DNA of the parent who contributed the Native segment on chromosome 1, on the top chromosome. That parent does not have a Native segment on chromosome 2 to contribute. So that Native segment had to be contributed by the other parent, but it’s also shown on the top chromosome.

The DNA segments circled in purple belong together on the same “side” and were contributed to the tester by the same parent. The Native segment on chromosome 2 abuts a purple African segment, suggesting perhaps that the ancestor who contributed that segment was mixed between those ethnicities. In the US, that suggests enslavement.

The other African segments, circled, are shown on the second chromosome in each pair.

To be clear, parent 1 is not assigned by the vendors to either mother or father and will differ by person. Your parent 1, or the parent on the top chromosome may be your mother and another person’s parent 1 may be their father.

As shown in this example, parents can vary by chromosome, a phenomenon known as “strand swap.” Occasionally, the DNA can even be swapped within a chromosome assignment.

You can, however, get an idea of the division of your DNA at any specific location. As shown above, you can only have a maximum of two populations of DNA on any one chromosome location.

In our example above, this person’s majority ancestry is European (blue.) On each chromosome where we find a minority segment, the opposite chromosome in the same location is European, meaning blue.

Let’s look at another example.

At FamilyTreeDNA, the person whose ethnicity painting is shown below has a Native American (pink) ancestor on their father’s side. FamilyTreeDNA has correctly phased or identified their Native segments as all belonging to the second chromosome in each pair.

Looking at chromosome 18, for example, most of their father’s chromosome is Native American (pink). The other parent’s chromosome is European (dark blue) at those same locations.

If one of the parents was of one ethnicity, and the other parent is a completely different ethnicity, then one bar of each chromosome would be all pink, for example, and one would be entirely blue, representing the other ethnicity.

Phasing ethnicity or populations to maternal and paternal sides is not foolproof, and each chromosome is phased individually.

Ethnicity can, in some cases, give you a really good idea of what you’re dealing with in terms of heritage and endogamy.

If someone had an Ashkenazi Jewish father and European mother, for example, one copy of each chromosome would be yellow (Ashkenazi Jewish), and one would be blue (European.)

However, if each of their parents were half European Jewish and half European (not Jewish), then their different colored segments would be scattered across their entire set of chromosomes.

In this case, both of the tester’s parents are mixed – European Jewish (green) and Western Europe (blue.) We know both parents are admixed from the same two populations because in some locations, both parents contributed blue (Western Europe), and in other locations, both contributed Jewish (green) segments.

Both MyHeritage and Ancestry provide a secondary tool that’s connected to ethnicity, but different and generally in more recent times.

Ancestry’s DNA Communities

While your ethnicity may not point to anything terribly exciting in terms of endogamy, Genetic Communities might. Ancestry says that a DNA Community is a group of people who share DNA because their relatives recently lived in the same place at the same time, and that communities are much smaller than ethnicity regions and reach back only about 50-300 years.

Based on the ancestors’ locations in the trees of me and my matches, Ancestry has determined that I’m connected to two communities. In my case, the blue group is clearly my father’s line. The orange group could be either parent, or even a combination of both.

My endogamous Brethren could be showing up in Maryland, Pennsylvania, and Ohio, but it’s uncertain, in part, because my father’s ancestral lines are found in Virginia, West Virginia, and Maryland too.

These aren’t useful for me, but they may be more useful for fully endogamous people, especially in conjunction with ethnicity.

My Acadian cousin’s European ethnicity isn’t informative.

However, viewing his DNA Communities puts his French heritage into perspective, especially combined with his match surnames.

I wrote about DNA Communities when it was introduced with the name Genetic Communities, here.

MyHeritage’s Genetic Groups

MyHeritage also provides a similar feature that shows where my matches’ ancestors lived in the same locations as mine.

One difference, though, is that testers can adjust their ethnicity results confidence level from high, above, to low, below where one of my Genetic Groups overlaps my ethnicity in the Netherlands.

You can also sort your matches by Genetic Groups.

The results show you not only who is in the group, but how many of your matches are in that group too, which provides perspective.

I wrote about Genetic Groups, here.

Next, let’s look at how endogamy affects your matches.

Matches

The number of matches that a person has who is from an entirely endogamous community and a person with no endogamy may be quite different.

FamilyTreeDNA provides a Family Matching feature that triangulates your matches and assigns them to your paternal or maternal side by using known matches that you have linked to their profile cards in your tree. You must link people for the Family Matching feature known as “bucketing” to be enabled.

The people you link are then processed for shared matches on the same chromosome segment(s). Triangulated individuals are then deposited in your maternal, paternal, and both buckets.

Obviously, your two parents are the best people to link, but if they haven’t tested (or uploaded their DNA file from another vendor) and you have other known relatives, link them using the Family Tree tab at the top of your personal page.

I uploaded my Ancestry V4 kit to use as an example for linking. Let’s pretend that’s my sister. If I had not already linked my Ancestry V4 kit to “my sister’s” profile card, I’d want to do that and link other known individuals the same way. Just drag and drop the match to the correct profile card.

Note that a full or half sibling will be listed as such at FamilyTreeDNA, but an identical twin will show as a potential parent/child match to you. You’re much more likely to find a parent than an identical twin, but just be aware.

I’ve created a table of FamilyTreeDNA bucketed match results, by category, comparing the number of matches in endogamous categories with non-endogamous.

Total Matches Maternal Matches Paternal Matches Both % Both % DNA Unassigned
100% Jewish 34,637 11,329 10,416 4,806 13.9 23.3
100% Jewish 32,973 10,700 9,858 4,606 14 23.7
100% Jewish 32,255 9,060 10,970 3,892 12 25.8
75% Jewish 24,232 11,846 Only mother linked Only mother linked Only mother linked
100% Acadian 8093 3826 2299 1062 13 11
100% Acadian 7828 3763 1825 923 11.8 17
Not Endogamous 6760 3845 1909 13 0.19 14.5
Not Endogamous 7723 1470 3317 6 0.08 38
100% Native American 1,115 Unlinked Unlinked Unlinked
100% Native American 885 290 Unknown Can’t calculate without at least one link on both sides

The 100% Jewish, Acadian, and Not Endogamous testers both have linked their parents, so their matches, if valid (meaning not identical by chance, which I discussed here,) will match them plus one or the other parent.

One person is 75% Jewish and has only linked their Jewish mother.

The Native people have not tested their parents, and the first Native person has not linked anyone in their tree. The second Native person has only linked a few maternal matches, but their mother has not tested. They are seeking their father.

It’s very difficult to find people who are fully Native as testers. Furthermore, Native people are under-sampled. If anyone knows of fully Native (or other endogamous) people who have tested and linked their parents or known relatives in their trees, and will allow me to use their total match numbers anonymously, please let me know.

As you can see, Jewish, Acadian, and Native people are 100% endogamous, but many more Jewish people than Native people have tested, so you CAN’T judge endogamy by the total number of matches alone.

In fact, in order:

  • Fully Jewish testers have about 4-5 times as many matches as the Acadian and Non-endogamous testers
  • Acadian and Non-endogamous testers have about 5-6 times as many matches as the Native American testers
  • Fully Jewish people have about 30 times more matches than the Native American testers

If a person’s endogamy with a particular population is only on their maternal or paternal side, they won’t have a significant number of people related to both sides, meaning few people will fall into the “Both” bucket. People that will always be found in the ”Both” bucket are full siblings and their descendants, along with descendants of the tester, assuming their match is linked to their profiles in the tester’s tree.

In the case of our Jewish testers, you can easily see that the “Both” bucket is very high. The Acadians are also higher than one would reasonably expect without endogamy. A non-endogamous person might have a few matches on both sides, assuming the parents are not related to each other.

A high number of “Both” matches is a very good indicator of endogamy within the same population on both parents’ sides.

The percentage of people who are assigned to the “Both” bucket is between 11% and 14% in the endogamous groups, and less than 1% in the non-endogamous group, so statistically not relevant.

As demonstrated by the Native people compared to the Jewish testers, the total number of matches can be deceiving.

However, being related to both parents, as indicated by the “Both” bucket, unless you have pedigree collapse, is a good indicator of endogamy.

Of course, if you don’t know who your relatives are, you can’t link them in your tree, so this type of “hunt” won’t generally help people seeking their close family members.

However, you may notice that you’re matching people PLUS both of their parents. If that’s the case, start asking questions of those matches about their heritage.

A very high number of total matches, as compared to non-endogamous people, combined with some other hints might well point to Jewish heritage.

I included the % DNA Unassigned category because this category, when both parents are linked, is the percentage of matches by chance, meaning the match doesn’t match either of the tester’s parents. All of the people with people listed in “Both” categories have linked both of their parents, not just maternal and paternal relatives.

Matching Location at MyHeritage

MyHeritage provides a matching function by location. Please note that it’s the location of the tester, but that may still be quite useful.

The locations are shown in the most-matches to least-matches order. Clicking on the location shows the people who match you who are from that location. This would be the most useful in situations where recent immigration has occurred. In my case, my great-grandfather from the Netherlands arrived in the 1860s, and my German ancestors arrived in the 1850s. Neither of those groups are endogamous, though, unless it would be on a village level.

AutoClusters

Let’s shift to Genetic Affairs, a third-party tool available to everyone.

Using their AutoCluster function, Genetic Affairs clusters your matches together who match both each other and you.

This is an example of the first few clusters in my AutoCluster. You can see that I have several colored clusters of various sizes, but none are huge.

Compare that to the following endogamous cluster, sample courtesy of EJ Blom at Genetic Affairs.

If your AutoCluster at Genetic Affairs looks something like this, a huge orange blob in the upper left hand corner, you’re dealing with endogamy.

Please also note that the size of your cluster is also a function of both the number of testers and the match threshold you select. I always begin by using the defaults. I wrote about using Genetic Affairs, here.

If you tested at or transferred to MyHeritage, they too license AutoClusters, but have optimized the algorithm to tease out endogamous matches so that their Jewish customers, in particular, don’t wind up with a huge orange block of interrelated people.

You won’t see the “endogamy signature” huge cluster in the corner, so you’re less likely to be able to discern endogamy from a MyHeritage cluster alone.

The commonality between these Jewish clusters at MyHeritage is that they all tend to be rather uniform in size and small, with lots of grey connecting almost all the blocks.

Grey cells indicate people who match people in two colored groups. In other words, there is often no clear division in clusters between the mother’s side and the father’s side in Jewish clusters.

In non-endogamous situations, even if you can’t identify the parents, the clusters should still fall into two sides, meaning a group of clusters for each parent’s side that are not related to each other.

You can read more about Genetic Affairs clusters and their tools, here. DNAGedcom.com also provides a clustering tool.

Endogamous Relationships

Endogamous estimated relationships are sometimes high. Please note the word, “sometimes.”

Using the Shared cM Project tool relationship chart, here, at DNAPainter, people with heavy endogamy will discover that estimated relationships MAY be on the high side, or the relationships may, perhaps, be estimated too “close” in time. That’s especially true for more distant relationships, but surprisingly, it’s not always true. The randomness of inheritance still comes into play, and so do potential unknown relatives. Hence, the words “may” are bolded and underscored.

Unfortunately, it’s often stated as “conventional wisdom” that Jewish matches are “always” high, and first cousins appear as siblings. Let’s see what the actual data says.

At DNAPainter, you can either enter the amount of shared DNA (cM), or the percent of shared DNA, or just use the chart provided.

I’ve assembled a compilation of close relationships in kits that I have access to or from people who were generous enough to share their results for this article.

I’ve used Jewish results, which is a highly endogamous population, compared with non-endogamous testers.

The “Jewish Actual” column reports the total amount of shared DNA with that person. In other words, someone to their grandparent. The Average Range is the average plus the range from DNAPainter. The Percent Difference is the % difference between the actual number and the DNAPainter average.

You’ll see fully Jewish testers, at left, matching with their family members, and a Non-endogamous person, at right, matching with their same relative.

Relationship Jewish Actual Percent Difference than Average Average -Range Non-endogamous Actual Percent Difference than Average
Grandparent 2141 22 1754 (984-2482) 1742 <1 lower
Grandparent 1902 8.5 1754 (984-2482) 1973 12
Sibling 3039 16 2613 (1613-3488) 2515 3.5 lower
Sibling 2724 4 2613 (1613-3488) 2761 5.5
Half-Sibling 2184 24 1759 (1160-2436) 2127 21
Half-Sibling 2128 21 1759 (1160-2436) 2352 34
Aunt/Uncle 2066 18.5 1741 (1201-2282) 1849 6
Aunt/Uncle 2031 16.5 1741 (1201-2282) 2097 20
1C 1119 29 866 (396-1397) 959 11
1C 909 5 866 (396-1397) 789 9 lower
1C1R 514 19 433 (102-980) 467 8
1C1R 459 6 433 (102-980) 395 9 lower

These totals are from FamilyTreeDNA except one from GEDMatch (one Jewish Half-sibling).

Totals may vary by vendor, even when matching with the same person. 23andMe includes the X segments in the total cMs and also counts fully identical segments twice. MyHeritage imputation seems to err on the generous side.

However, in these dozen examples:

  • You can see that the Jewish actual amount of DNA shared is always more than the average in the estimate.
  • The red means the overage is more than 100 cM larger.
  • The percentage difference is probably more meaningful because 100 cM is a smaller percentage of a 1754 grandparent connection than compared to a 433 cM 1C1R.

However, you can’t tell anything about endogamy by just looking at any one sample, because:

  • Some of the Non-Endogamous matches are high too. That’s just the way of random inheritance.
  • All of the actual Jewish match numbers are within the published ranges, but on the high side.

Furthermore, it can get more complex.

Half Endogamous

I requested assistance from Jewish genealogy researchers, and a lovely lady, Sharon, reached out, compiled her segment information, and shared it with me, granting permission to share with you. A HUGE thank you to Sharon!

Sharon is half-Jewish via one parent, and her half-sibling is fully Jewish. Their half-sibling match to each other at Ancestry is 1756 cM with a longest segment of 164 cM.

How does Jewish matching vary if you’re half-Jewish versus fully Jewish? Let’s look at 21 people who match both Sharon and her fully Jewish half-sibling.

Sharon shared the differences in 21 known Jewish matches with her and her half-sibling. I’ve added the Relationship Estimate Range from DNAPainter and colorized the highest of the two matches in yellow. Bolding in the total cM column shows a value above the average range for that relationship.

Total Matching cMs is on the left, with Longest Segment on the right.

While this is clearly not a scientific study, it is a representative sample.

The fully Jewish sibling carries more Jewish DNA, which is available for other Jewish matches to match as a function of endogamy (identical by chance/population), so I would have expected the fully Jewish sibling to match most if not all Jewish testers at a higher level than the half-Jewish sibling.

However, that’s not universally what we see.

The fully Jewish sibling is not always the sibling with the highest number of matches to the other Jewish testers, although the half-Jewish tester has the larger “Longest Segment” more often than not.

Approximately two-thirds of the time (13/21), the fully Jewish person does have a higher total matching cM, but about one-third of the time (8/21), the half-Jewish sibling has a higher matching cM.

About one-fourth of the time (5/21), the fully Jewish sibling has the longest matching segment, and about two-thirds of the time (13/21), the half-Jewish sibling does. In three cases, or about 14% of the time, the longest segment is equal which may indicate that it’s the same segment.

Because of endogamy, Jewish matches are more likely to have:

  • Larger than average total cM for the specific relationship
  • More and smaller matching segments

However, as we have seen, neither of those are definitive, nor always true. Jewish matches and relationships are not always overestimated.

Ancestry and Timber

Please note that Ancestry downweights some matches by removing some segments using their Timber algorithm. Based on my matches and other accounts that I manage, Ancestry does not downweight in the 2-3rd cousin category, which is 90 cM and above, but they do begin downweighting in the 3-4th cousin category, below 90 cM, where my “Extended Family” category begins.

If you’ve tested at Ancestry, you can check for yourself.

By clicking on the amount of DNA you share with your match on your match list at Ancestry, shown above, you will be taken to another page where you will be able to view the unweighted shared DNA with that match, meaning the amount of DNA shared before the downweighting and removal of some segments, shown below.

Given the downweighting, and the information in the spreadsheet provided by Sharon, it doesn’t appear that any of those matches would have been in a category to be downweighted.

Therefore, for these and other close matches, Timber wouldn’t be a factor, but would potentially be in more distant matches.

Endogamous Segments

Endogamous matches tend to have smaller and more segments. Small amounts of matching DNA tend to skew the total DNA cM upwards.

How and why does this happen?

Ancestral DNA from further back in time tends to be broken into smaller segments.

Sometimes, especially in endogamous situations, two smaller segments, at one time separated from each other, manage to join back together again and form a match, but the match is only due to ancestral segments – not because of a recent ancestor.

Please note that different vendors have different minimum matching cM thresholds, so smaller matches may not be available at all vendors. Remember that factors like Timber and imputation can affect matching as well.

Let’s take a look at an example. I’ve created a chart where two ancestors have their blue and pink DNA broken into 4 cM segments.

They have children, a blue child and a pink child, and the two children, shown above, each inherited the same blue 4 cM segment and the same pink 4 cM segment from their respective parents. The other unlabeled pink and blue segments are not inherited by these two children, so those unlabeled segments are irrelevant in this example.

The parents may have had other children who inherited those same 4 cM labeled pink and blue segments as well, and if not, the parents’ siblings were probably passing at least some of the same DNA down to their descendants too.

The blue and pink children had children, and their children had children – for several generations.

Time passed, and their descendants became an endogamous community. Those pink and blue 4 cM segments may at some time be lost during recombination in the descendants of each of their children, shown by “Lost pink” and “Lost blue.”

However, because there is only a very limited amount of DNA within the endogamous community, their descendants may regain those same segments again from their “other parent” during recombination, downstream.

In each generation, the DNA of the descendant carrying the original blue or pink DNA segment is recombined with their partner. Given that the partners are both members of the same endogamous community, the two people may have the same pink and/or blue DNA segments. If one parent doesn’t carry the pink 4 cM segment, for example, their offspring may receive that ancestral pink segment from the other parent.

They could potentially, and sometimes do, receive that ancestral segment from both parents.

In our example, the descendants of the blue child, at left, lost the pink 4 cM segment in generation 3, but a few generations later, in generation 11, that descendant child inherited that same pink 4 cM segment from their other parent. Therefore, both the 4 cM blue and 4 cM pink segments are now available to be inherited by the descendants in that line. I’ve shown the opposite scenario in the generational inheritance at right where the blue segment is lost and regained.

Once rejoined, that pink and blue segment can be passed along together for generations.

The important part, though, is that once those two segments butt up against each other again during recombination, they aren’t just two separate 4 cM segments, but one segment that is 8 cM long – that is now equal to or above the vendors’ matching threshold.

This is why people descended from endogamous populations often have the following matching characteristics:

  • More matches
  • Many smaller segment matches
  • Their total cM is often broken into more, smaller segments

What does more, smaller segments, look like, exactly?

More, Smaller Segments

All of our vendors except Ancestry have a chromosome browser for their customers to compare their DNA to that of their matches visually.

Let’s take a look at some examples of what endogamous and non-endogamous matches look like.

For example, here’s a screen shot of a random Jewish second cousin match – 298 cM total, divided into 12 segments, with a longest segment of 58 cM,

A second Jewish 2C with 323 cM total, across 19 segments, with a 69 cM longest block.

A fully Acadian 2C match with 600 cM total, across 27 segments, with a longest segment of 69 cM.

A second Acadian 2C with 332 cM total, across 20 segments, with a longest segment of 42 cM.

Next, a non-endogamous 2C match with 217 cM, across 7 segments, with a longest segment of 72 cM.

Here’s another non-endogamous 2C example, with 169 shared cM, across 6 segments, with a longest segment of 70 cM.

Here’s the second cousin data in a summary table. The take-away from this is the proportion of total segments

Tester Population Total cM Longest Block Total Segments
Jewish 2C 298 58 12
Jewish 2C 323 69 19
Acadian 2C 600 69 27
Acadian 2C 332 42 20
Non-endogamous 2C 217 72 7
Non-endogamous 2C 169 70 6

You can see more examples and comparisons between Native American, Jewish and non-endogamous DNA individuals in the article, Concepts – Endogamy and DNA Segments.

I suspect that a savvy mathematician could predict endogamy based on longest block and total segment information.

Lara Diamond, a mathematician, who writes at Lara’s Jewnealogy might be up for this challenge. She just published compiled matching and segment information in her Ashkenazic Shared DNA Survey Results for those who are interested. You can also contribute to Laura’s data, here.

Endogamy, Segments, and Distant Relationships

While not relevant to searching for close relatives, heavily endogamous matches 3C and more distant, to quote one of my Jewish friends, “dissolve into a quagmire of endogamy and are exceedingly difficult to unravel.”

In my own Acadian endogamous line, I often simply have to label them “Acadian” because the DNA tracks back to so many ancestors in different lines. In other words, I can’t tell which ancestor the match is actually pointing to because the same DNA segments or segments is/are carried by several ancestors and their descendants due to founder effect.

The difference with the Acadians is that we can actually identify many or most of them, at least at some point in time. As my cousin, Paul LeBlanc, once said, if you’re related to one Acadian, you’re related to all Acadians. Then he proceeded to tell me that he and I are related 137 different ways. My head hurts!

It’s no wonder that endogamy is incredibly difficult beyond the first few generations when it turns into something like multi-colored jello soup.

“Are Your Parents Related?” Tool

There’s another tool that you can utilize to determine if your parents are related to each other.

To determine if your parents are related to each other, you need to know about ROH, or Runs of Homozygosity (ROH).

ROH means that the DNA on both strands or copies of the same chromosome is identical.

For a few locations in a row, ROH can easily happen just by chance, but the longer the segment, the less likely that commonality occurs simply by chance.

The good news is that you don’t need to know the identity of either of your parents. You don’t need either of your parent’s DNA tests – just your own. You’ll need to upload your DNA file to GEDmatch, which is free.

Click on “Are your parents related?”

GEDMatch analyzes your DNA to see if any of your DNA, above a reasonable matching threshold, is identical on both strands, indicating that you inherited the exact same DNA from both of your parents.

A legitimate match, meaning one that’s not by chance, will include many contiguous matching locations, generally a minimum of 500 SNPs or locations in a row. GEDmatch’s minimum threshold for identifying identical ancestral DNA (ROH) is 200 cM.

Here’s my result, including the graphic for the first two chromosomes. Notice the tiny green bars that show identical by chance tiny sliver segments.

I have no significant identical DNA, meaning my parents are not related to each other.

Next, let’s look at an endogamous example where there are small, completely identical segments across a person’s chromosome

This person’s Acadian parents are related to each other, but distantly.

Next, let’s look at a Jewish person’s results.

You’ll notice larger green matching ROH, but not over 200 contiguous SNPs and 7 cM.

GEDMatch reports that this Jewish person’s parents are probably not related within recent generations, but it’s clear that they do share DNA in common.

People whose parents are distantly related have relatively small, scattered matching segments. However, if you’re seeing larger ROH segments that would be large enough to match in a genealogical setting, meaning multiple greater than 7 cM and 500 SNPs,, you may be dealing with a different type of situation where cousins have married in recent generations. The larger the matching segments, generally, the closer in time.

Blogger Kitty Cooper wrote an article, here, about discovering that your parents are related at the first cousin level, and what their GEDMatch “Are Your Parents Related” results look like.

Let’s look for more clues.

Surnames

There MAY be an endogamy clue in the surnames of the people you match.

Viewing surnames is easier if you download your match list, which you can do at every vendor except Ancestry. I’m not referring to the segment data, but the information about your matches themselves.

I provided instructions in the recent article, How to Download Your DNA Match Lists and Segment Files, here.

If you suspect endogamy for any reason, look at your closest matches and see if there is a discernable trend in the surnames, or locations, or any commonality between your matches to each other.

For example, Jewish, Acadian, and Native surnames may be recognizable, as may locations.

You can evaluate in either or both of two ways:

  • The surnames of your closest matches. Closest matches listed first will be your default match order.
  • Your most frequently occurring surnames, minus extremely common names like Smith, Jones, etc., unless they are also in your closest matches. To utilize this type of matching, sort the spreadsheet in surname order and then scan or count the number of people with each surname.

Here are some examples from our testers.

Jewish – Closest surname matches.

  • Roth
  • Weiss
  • Goldman
  • Schonwald
  • Levi
  • Cohen
  • Slavin
  • Goodman
  • Sender
  • Trebatch

Acadian – Closest surname matches.

  • Bergeron
  • Hebert
  • Bergeron
  • Marcum
  • Muise
  • Legere
  • Gaudet
  • Perry
  • Verlander
  • Trombley

Native American – Closest surname matches.

  • Ortega
  • Begay
  • Valentine
  • Hayes
  • Montoya
  • Sun Bear
  • Martin
  • Tsosie
  • Chiquito
  • Yazzie

You may recognize these categories of surnames immediately.

If not, Google is your friend. Eliminate common surnames, then Google for a few together at a time and see what emerges.

The most unusual surnames are likely your best bets.

Projects

Another way to get some idea of what groups people with these surnames might belong to is to enter the surname in the FamilyTreeDNA surname search.

Go to the main FamilyTreeDNA page, but DO NOT sign on.

Scroll down until you see this image.

Type the surname into the search box. You’ll see how many people have tested with that surname, along with projects where project administrators have included that surname indicating that the project may be of interest to at least some people with that surname.

Here’s a portion of the project list for Cohen, a traditional Jewish surname.

These results are for Muise, an Acadian surname.

Clicking through to relevant surname projects, and potentially contacting the volunteer project administrator can go a very long way in helping you gather and sift information. Clearly, they have an interest in this topic.

For example, here’s the Muise surname in the Acadian AmerIndian project. Two great hints here – Acadian heritage and Halifax, Nova Scotia.

Repeat for the balance of surnames on your list to look for commonalities, including locations on the public project pages.

Locations

Some of the vendor match files include location information. Each person on your match list will have the opportunity at the vendor where they tested to include location information in a variety of ways, either for their ancestors or themselves.

Where possible, it’s easiest to sort or scan the download file for this type of information.

Ancestry does not provide or facilitate a match list, but you can still create your own for your closest 20 or 30 matches in a spreadsheet.

MyHeritage provides common surname and ancestral location information for every match. How cool is that!

Y DNA, Mitochondrial DNA, and Endogamy

Haplogroups for both Y and mitochondrial DNA can indicate and sometimes confirm endogamy. In other cases, the haplogroup won’t help, but the matches and their location information just might.

FamilyTreeDNA is the only vendor that provides Y DNA and mitochondrial DNA tests that include highly granular haplogroups along with matches and additional tools.

23andMe provides high-level haplogroups which may or may not be adequate to pinpoint a haplogroup that indicates endogamy.

Of course, only males carry Y DNA that tracks to the direct paternal (surname) line, but everyone carries their mother’s mitochondrial DNA that represents their mother’s mother’s mother’s, or direct matrilineal line.

Some haplogroups are known to be closely associated with particular ethnicities or populations, like Native Americans, Pacific Islanders, and some Jewish people.

Haplogroups reach back in time before genealogy and can give us a sense of community that’s not available by either looking in the mirror or through traditional records.

This Native American man is a member of high-level haplogroup Q-M242. However, some men who carry this haplogroup are not Native, but are of European or Middle Eastern origin.

I entered the haplogroup in the FamilyTreeDNA Discover tool, which I wrote about, here.

Checking the information about this haplogroup reveals that their common ancestor descended from an Asian man about 30,000 years ago.

The migration path in the Americans explains why this person would have an endogamous heritage.

Our tester would receive a much more refined haplogroup if he upgraded to the Big Y test at FamilyTreeDNA, which would remove all doubt.

However, even without additional testing, information about his matches at FamilyTreeDNA may be very illuminating.

The Q-M242 Native man’s Y DNA matches men with more granular haplogroups, shown above, at left. On the Haplogroup Origins report, you can see that these people have all selected the “US (Native American)” country option.

Another useful tool would be to check the public Y haplotree, here, and the public mitochondrial tree here, for self-reported ancestor location information for a specific haplogroup.

Here’s an example of mitochondrial haplogroup A2 and a few subclades on the public mitochondrial tree. You can see that the haplogroup is found in Mexico, the US (Native,) Canada, and many additional Caribbean, South, and Central American countries.

Of course, Y DNA and mitochondrial DNA (mtDNA) tell a laser-focused story of one specific line, each. The great news, if you’re seeking information about your mother or father, the Y is your father’s direct paternal (surname) line, and mitochondrial is your mother’s direct matrilineal line.

Y and mitochondrial DNA results combined with ethnicity, autosomal matching, and the wide range of other tools that open doors, you will be able to reveal a great deal of information about whether you have endogamous heritage or not – and if so, from where.

I’ve provided a resource for stepping through and interpreting your Y DNA results, here, and mitochondrial DNA, here.

Discover for Y DNA Only

If you’re a female, you may feel left out of Y DNA testing and what it can tell you about your heritage. However, there’s a back door.

You can utilize the Y DNA haplogroups of your closest autosomal matches at both FamilyTreeDNA and 23andMe to reveal information

Haplogroup information is available in the download files for both vendors, in addition to the Family Finder table view, below, at FamilyTreeDNA, or on your individual matches profile cards at both 23andMe and FamilyTreeDNA.

You can enter any Y DNA haplogroup in the FamilyTreeDNA Discover tool, here.

You’ll be treated to:

  • Your Haplogroup Story – how many testers have this haplogroup (so far), where the haplogroup is from, and the haplogroup’s age. In this case, the haplogroup was born in the Netherlands about 250 years ago, give or take 200 years. I know that it was 1806 or earlier based on the common ancestor of the men who tested.
  • Country Frequency – heat map of where the haplogroup is found in the world.
  • Notable Connections – famous and infamous (this haplogroup’s closest notable person is Leo Tolstoy).
  • Migration Map – migration path out of Africa and through the rest of the world.
  • Ancient Connections – ancient burials. His closest ancient match is from about 1000 years ago in Ukraine. Their shared ancestor lived about 2000 years ago.
  • Suggested Projects – based on the surname, projects that other matches have joined, and haplogroups.
  • Scientific Details – age estimates, confidence intervals, graphs, and the mutations that define this haplogroup.

I wrote about the Discover tool in the article, FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages.

Endogamy Tools Summary Tables

Endogamy is a tough nut sometimes, especially if you’re starting from scratch. In order to make this topic a bit easier and to create a reference tool for you, I’ve created three summary tables.

  • Various endogamy-related tools available at each vendor which will or may assist with evaluating endogamy
  • Tools and their ability to detect endogamy in different groups
  • Tools best suited to assist people seeking information about unknown parents or grandparents

Summary of Endogamy Tools by Vendor

Please note that GEDMatch is not a DNA testing vendor, but they accept uploads and do have some tools that the testing vendors do not.

 Tool 23andMe Ancestry FamilyTreeDNA MyHeritage GEDMatch
Ethnicity Yes Yes Yes Yes Use the vendors
Ethnicity Painting Yes + segments Yes, limited Yes + segments Yes
Ethnicity Phasing Yes Partial Yes No
DNA Communities No Yes No No
Genetic Groups No No No Yes
Family Matching aka Bucketing No No Yes No
Chromosome Browser Yes No Yes Yes Yes
AutoClusters Through Genetic Affairs No Through Genetic Affairs Yes, included Yes, with subscription
Match List Download Yes, restricted # of matches No Yes Yes Yes
Projects No No Yes No
Y DNA High-level haplogroup only No Yes, full haplogroup with Big Y, matching, tools, Discover No
Mitochondrial DNA High-level haplogroup only No Yes, full haplogroup with mtFull, matching, tools No
Public Y Tree No No Yes No
Public Mito Tree No No Yes No
Discover Y DNA – public No No Yes No
ROH No No No No Yes

Summary of Endogamous Populations Identified by Each Tool

The following chart provides a guideline for which tools are useful for the following types of endogamous groups. Bolded tools require that both parents be descended from the same endogamous group, but several other tools give more definitive results with higher amounts of endogamy.

Y and mitochondrial DNA testing are not affected by admixture, autosomal DNA or anything from the “other” parent.

Tool Jewish Acadian Anabaptist Native Other/General
Ethnicity Yes No No Yes Pacific Islander
Ethnicity Painting Yes No No Yes Pacific Islander
Ethnicity Phasing Yes, if different No No Yes, if different Pacific Islander, if different
DNA Communities Yes Possibly Possibly Yes Pacific Islander
Genetic Groups Yes Possibly Possibly Yes Pacific Islander
Family Matching aka Bucketing Yes Yes Possibly Yes Pacific Islander
Chromosome Browser Possibly Possibly Yes, once segments or ancestors identified Possibly Pacific Islander, possibly
Total Matches Yes, compared to non-endogamous No No No No, unknown
AutoClusters Yes Yes Uncertain, probably Yes Pacific Islander
Estimated Relationships High Not always Sometimes No Sometimes Uncertain, probably
Relationship Range High Possibly, sometimes Possibly Possibly Possibly Pacific Islander, possibly
More, Smaller Segments Yes Yes Probably Yes Pacific Islander, probably
Parents Related Some but minimal Possibly Uncertain Probably similar to Jewish Uncertain, Possibly
Surnames Probably Probably Probably Not Possibly Possibly
Locations Possibly Probably Probably Not Probably Probably Pacific Islander
Projects Probably Probably Possibly Possibly Probably Pacific Islander
Y DNA Yes, often Yes, often No Yes Pacific Islander
Mitochondrial DNA Yes, often Sometimes No Yes Pacific Islander
Y public tree Probably not alone No No Yes Pacific Islander
MtDNA public tree Probably not No No Yes Pacific Islander
Y DNA Discover Yes Possibly Probably not, maybe projects Yes Pacific Islander

Summary of Endogamy Tools to Assist People Seeking Unknown Parents and Grandparents

This table provides a summary of when each of the various tools can be useful to:

  • People seeking unknown close relatives
  • People who already know who their close relatives are, but are seeking additional information or clues about their genealogy

I considered rating these on a 1 to 10 scale, but the relative usefulness of these tools is dependent on many factors, so different tools will be more or less useful to different people.

For example, ethnicity is very useful if someone is admixed from different populations, or even 100% of a specific endogamous population. It’s less useful if the tester is 100% European, regardless of whether they are seeking close relatives or not. Conversely, even “vanilla” ethnicity can be used to rule out majority or recent admixture with many populations.

Tools Unknown Close Relative Seekers Known Close Relatives – Enhance Genealogy
Ethnicity Yes, to identify or rule out populations Yes
Ethnicity Painting Yes, possibly, depending on population Yes, possibly, depending on population
Ethnicity Phasing Yes, possibly, depending on population Yes, possibly, depending on population
DNA Communities Yes, possibly, depending on population Yes, possibly, depending on population
Genetic Groups Possibly, depending on population Possibly, depending on population
Family Matching aka Bucketing Not if parents are entirely unknown, but yes if one parent is known Yes
Chromosome Browser Unlikely Yes
AutoClusters Yes Yes, especially at MyHeritage if Jewish
Estimated Relationships High Not No
Relationship Range High Not reliably No
More, Smaller Segments Unlikely Unlikely other than confirmation
Match List Download Yes Yes
Surnames Yes Yes
Locations Yes Yes
Projects Yes Yes
Y DNA Yes, males only, direct paternal line, identifies surname lineage Yes, males only, direct paternal line, identifies and correctly places surname lineage
Mitochondrial DNA Yes, both sexes, direct matrilineal line only Yes, both sexes, direct matrilineal line only
Public Y Tree Yes for locations Yes for locations
Public Mito Tree Yes for locations Yes for locations
Discover Y DNA Yes, for heritage information Yes, for heritage information
Parents Related – ROH Possibly Less useful

Acknowledgments

A HUGE thank you to several people who contributed images and information in order to provide accurate and expanded information on the topic of endogamy. Many did not want to be mentioned by name, but you know who you are!!!

If you have information to add, please post in the comments.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches Katherine Borges https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

FamilyTreeDNA Relaunch – New Feature Overview

The brand-new FamilyTreeDNA website is live!

I’m very pleased with the investment that FamilyTreeDNA has made in their genealogy platform and tools. This isn’t just a redesign, it’s more of a relaunch.

I spoke with Dr. Lior Rauchberger, CEO of myDNA, the parent company of FamilyTreeDNA briefly yesterday. He’s excited too and said:

“The new features and enhancements we are releasing in July are the first round of updates in our exciting product roadmap. FamilyTreeDNA will continue to invest heavily in the advancement of genetic genealogy.”

In other words, this is just the beginning.

In case you were wondering, all those features everyone asked for – Lior listened.

Lior said earlier in 2021 that he was going to do exactly this and he’s proven true to his word, with this release coming just half a year after he took the helm. Obviously, he hit the ground running.

A few months ago, Lior said that his initial FamilyTreeDNA focus was going to be on infrastructure, stability, and focusing on the customer experience. In other words, creating a foundation to build on.

The new features, improvements, and changes are massive and certainly welcome.

I’ll be covering the new features in a series of articles, but in this introductory article, I’m providing an overview so you can use it as a guide to understand and navigate this new release.

Change is Challenging

I need to say something here.

Change is hard. In fact, change is the most difficult challenge for humans. We want improvements, yet we hate it when the furniture is rearranged in our “room.” However, we can’t have one without the other.

So, take a deep breath, and let’s view this as a great new adventure. These changes and tools will provide us with a new foundation and new clues. Think of this as finding long-lost documents in an archive about your ancestors. If someone told me that there is a potential for discovering the surname of one of my elusive female ancestors in an undiscovered chest in a remote library, trust me, I’d be all over it – regardless of where it was or how much effort I had to expend to get there. In this case, I can sit right here in front of my computer and dig for treasure.

We just need to learn to navigate the new landscape in a virtual room. What a gift!

Let’s start with the first thing you’ll see – the main page when you sign in.

Redesigned Main Page

The FamilyTreeDNA main page has changed. To begin with, the text is darker and the font is larger across the entire platform. OMG, thank you!!!

The main page has been flipped left to right, with results on the left now. Projects, surveys, and other information, along with haplogroup badges are on the right. Have you answered any surveys? I don’t think I even noticed them before. (My bad!)

Click any image to enlarge.

The top tabs have changed too. The words myTree and myProjects are now gone, and descriptive tabs have replaced those. The only “my” thing remaining is myOrigins. This change surprises me with myDNA being the owner.

The Results & Tools tab at the top shows the product dropdowns.

The most popular tabs are shown individually under each product, with additional features being grouped under “See More.”

Every product now has a “See More” link where less frequently used widgets will be found, including the raw data downloads. This is the Y DNA “See More” dropdown by way of example.

You can see the green Updated badge on the Family Finder Matches tab. I don’t know if that badge will always appear when customers have new matches, or if it’s signaling that all customers have updated Family Finder Matches now.

We’ll talk about matches in the Family Finder section.

The Family Finder “See More” tab includes the Matrix, ancientOrigins, and the raw data file download.

The mitochondrial DNA section, titled Maternal Line Ancestry, mtDNA Results and Tools includes several widgets grouped under the “See More” tab.

Additional Tests and Tools

The Additional Tests and Tools area includes a link to your Family Tree (please do upload or create one,) Public Haplotrees, and Advanced Matches.

Public haplotrees are free-to-the-public Y and mitochondrial DNA trees that include locations. They are also easily available to FamilyTreeDNA customers here.

Please note that you access both types of trees from one location after clicking the Public Haplotrees page. The tree defaults to Y-DNA, but just click on mtDNA to view mitochondrial haplogroups and locations. Both trees are great resources because they show the location flags of the earliest known ancestors of the testers within each haplogroup.

Advanced Matches used to be available from the menu within each test type, but since advanced matching includes all three types of tests, it’s now located under the Additional Tests and Tools banner. Don’t forget about Advanced Matches – it’s really quite useful to determine if someone matches you on multiple types of tests and/or within specific projects.

Hey, look – I found a tooltip. Just mouse over the text and tabs on various pages to see where tooltips have been added.

Help and Help Center

The new Help Center is debuting in this release. The former Learning Center is transitioning to the Help Center with new, updated content.

Here’s an example of the new easy-to-navigate format. There’s a search function too.

Each individual page, test type, and section on your personal home page has a “Helpful Information” button.

On the main page, at the top right, you’ll see a new Help button.

Did you see that Submit Feedback link?

If you click on the Help Center, you’ll be greeted with context-sensitive help.

I clicked through from the dashboard, so that’s what I’m seeing. However, other available topics are shown at left.

I clicked on both of the links shown and the content has been updated with the new layout and features. No wonder they launched a new Help Center!

Account Settings

Account settings are still found in the same place, and those pages don’t appear to have changed. However, please keep in mind that some settings make take up to 24 hours to take effect.

Family Finder Rematching

Before we look at what has changed on your Family Finder pages, let’s talk about what happened behind the scenes.

FamilyTreeDNA has been offering the Family Finder test for 11 years, one of two very early companies to enter that marketspace. We’ve learned so much since then, not only about DNA itself, but about genetic genealogy, matching, triangulation, population genetics, how to use these tools, and more.

In order to make improvements, FamilyTreeDNA changing the match criteria which necessitated rematching everyone to everyone else.

If you have a technology background of any type, you’ll immediately realize that this is a massive, expensive undertaking requiring vast computational resources. Not only that, but the rematching has to be done in tandem with new kits coming in, coordinated for all customers, and rolled out at once. Based on new matches and features, the user interface needed to be changed too, at the same time.

Sounds like a huge headache, right?

Why would a company ever decide to undertake that, especially when there is no revenue for doing so? The answer is to make functionality and accuracy better for their customers. Think of this as a new bedrock foundation for the future.

FamilyTreeDNA has made computational changes and implemented several features that require rematching:

  • Improved matching accuracy, in particular for people in highly endogamous populations. People in this category have thousands of matches that occur simply because they share multiple distant ancestors from within the same population. That combination of multiple common ancestors makes their current match relationships appear to be closer in time than they are. In order to change matching algorithms, FamilyTreeDNA had to rewrite their matching software and then run matching all over to enable everyone to receive new, updated match results.
  • FamilyTreeDNA has removed segments below 6 cM following sustained feedback from the genealogical community.
  • X matching has changed as well and no longer includes anyone as an X match below 6 cM.
  • Family Matching, meaning paternal, maternal and both “bucketing” uses triangulation behind the scenes. That code also had to be updated.
  • Older transfer kits used to receive only closer matches because imputation was not in place when the original transfer/upload took place. All older kits have been imputed now and matched with the entire database, which is part of why you may have more matches.
  • Relationship range calculations have changed, based on the removal of microsegments, new matching methodology and rematching results.
  • FamilyTreeDNA moved to hg37, known as Build 37 of the human genome. In layman’s terms, as scientists learn about our DNA, the human map of DNA changes and shifts slightly. The boundary lines change somewhat. Versions are standardized so all researchers can use the same base map or yardstick. In some cases, early genetic genealogy implementers are penalized because they will eventually have to rematch their entire database when they upgrade to a new build version, while vendors who came to the party later won’t have to bear that internal expense.

As you can see, almost every aspect of matching has changed, so everyone was rematched against the entire database. You’ll see new results. Some matches may be gone, especially distant matches or if you’re a member of an endogamous population.

You’ll likely have new matches due to older transfer kits being imputed to full compatibility. Your matches should be more accurate too, which makes everyone happy.

I understand a white paper is being written that will provide more information about the new matching algorithms.

Ok, now let’s check out the new Family Finder Matches page.

Family Finder Matches

FamilyTreeDNA didn’t just rearrange the furniture – there’s a LOT of new content.

First, a note. You’ll see “Family Finder” in some places, and “Autosomal DNA” in other places. That’s one and the same at FamilyTreeDNA. The Family Finder test is their autosomal test, named separately because they also have Y DNA and mitochondrial DNA tests.

When you click on Family Finder matches for the first time, you will assuredly notice one thing and will probably notice a second.

First, you’ll see a little tour that explains how to use the various new tools.

Secondly, you will probably see the “Generating Matches” notice for a few seconds to a few minutes while your match list is generated, especially if the site is busy because lots of people are signing on. I saw this message for maybe a minute or two before my match list filled.

This should be a slight delay, but with so many people signing in right now, my second kit took longer. If you receive a message that says you have no matches, just refresh your page. If you had matches before, you DO have matches now.

While working with the new interface this morning, I’ve found that refreshing the screen is the key to solving issues.

My kits that have a few thousand matches loaded Family Matching (bucketing) immediately, but this (Jewish) kit that has around 30,000 matches received this informational message instead. FamilyTreeDNA has removed the little spinning icon. If you mouse over the information, you’ll see the following message:

This isn’t a time estimate. Everyone receives the same message. The message didn’t even last long enough for me to get a screenshot on the first kit that received this message. The results completed within a minute or so. The Family Matching buckets will load as soon as the parental matching is ready.

These delays should only happen the first time, or if someone has a lot of matches that they haven’t yet viewed. Once you’ve signed in, your matches are cached, a technique that improves performance, so the loading should be speedy, or at least speedier, during the second and subsequent visits.

Of course, right now, all customers have an updated match list, so there’s something new for everyone.

Getting Help

Want to see that tutorial again?

Click on that little Help box in the upper right-hand corner. You can view the Tutorial, look at Quick References that explain what’s on this page, visit the Help Center or Submit Feedback.

Two Family Finder Matches Views – Detail and Table

The first thing you’ll notice is that there are two views – Detail View and Table View. The default is Detail View.

Take a minute to get used to the new page.

Detail View – Filter Matches by Match Type

I was pleased to see new filter buttons, located in several places on the page.

The Matches filter at left allows you to display only specific relationship levels, including X-Matches which can be important in narrowing matches to a specific subset of ancestors.

You can display only matches that fall within certain relationship ranges. Note the new “Remote Relative” that was previously called speculative.

Parental Matching and Filtering by Test Type or Trees

All of your matches are displayed by default, of course, but you can click on Paternal, Maternal or Both, like before to view only matches in those buckets. In order for the Family Matching bucketing feature to be enabled, you must attach known relatives’ DNA matches to their proper place in your tree.

Please note that I needed to refresh the page a couple of times to get my parental matches to load the first time. I refreshed a couple of times to be sure that all of my bucketed matches loaded. This should be a first-time loading blip.

There’s a new filter button to the right of the bucketing tabs.

You can now filter by who has trees and who has taken which kinds of tests.

You can apply multiple filters at the same time to further narrow your matches.

Important – Clearing Filters

It’s easy to forget you have a filter enabled. This section is important, in part because Clear Filter is difficult to find.

The clear filter button does NOT appear until you’ve selected a filter. However, after applying that filter, to clear it and RESET THE MATCHES to unfiltered, you need to click on the “Clear Filter” button which is located at the top of the filter selections, and then click “Apply” at the bottom of the menu. I looked for “clear filter” forever before finding it here.

You’re welcome😊

Enhanced Search

Thank goodness, the search functionality has been enhanced and simplified too. Full name search works, both here and on the Y DNA search page.

If you type in a surname without selecting any search filters, you’ll receive a list of anyone with that word in their name, or in their list of ancestral surnames. This does NOT include surnames in their tree if they have not added those surnames to their list of ancestral surnames.

Notice that your number of total matches and bucketed people will change based on the results of this search and any filters you have applied.

I entered Estes in the search box, with no filters. You can see that I have a total of 46 matches that contain Estes in one way or another, and how they are bucketed.

Estes is my birth surname. I noticed that three people with Estes in their information are bucketed maternally. This is the perfect example of why you can’t assume a genetic relationship based on only a surname. Those three people’s DNA matches me on my mother’s side. And yes, I confirmed that they matched my mother too on that same segment or segments.

Search Filters

You can also filter by haplogroup. This is very specific. If you select mitochondrial haplogroup J, you will only receive Family Finder matches that have haplogroup J, NOT J1 or J1c or J plus anything.

If you’re looking for your own haplogroup, you’ll need to type your full haplogroup in the search box and select mtDNA Haplogroup in the search filter dropdown.

Resetting Search Results

To dismiss search results, click on the little X. It’s easy to forget that you have initiated a search, so I need to remember to dismiss searches after I’m finished with each one.

Export Matches

The “Export CSV” button either downloads your entire match list, or the list of filtered matches currently selected. This is not your segment information, but a list of matches and related information such as which side they are bucketed on, if any, notes you’ve made, and more.

Your segment information is available for download on the chromosome browser.

Sort By

The Sort By button facilitates sorting your matches versus filtering your matches. Filters ONLY display the items requested, while sorts display all of the items requested, sorting them in a particular manner.

You can sort in any number of ways. The default is Relationship Range followed by Shared DNA.

Your Matches – Detail View

A lot has changed, but after you get used to the new interface, it makes more sense and there are a lot more options available which means increased flexibility. Remember, you can click to enlarge any of these images.

To begin with, you can see the haplogroups of your matches if they have taken a Y or mitochondrial DNA test. If you match someone, you’ll see a little check in the haplogroup box. I’m not clear whether this means you’re a haplogroup match or that person is on your match list.

To select people to compare in the chromosome browser, you simply check the little square box to the left of their photo and the chromosome browser box pops up at the bottom of the page. We’ll review the chromosome browser in a minute.

The new Relationship Range prediction is displayed, based on new calculations with segments below 6 cM removed. The linked relationship is displayed below the range.

A linked relationship occurs when you link that person to their proper place in your tree. If you have no linked relationship, you’ll see a link to “assign relationship” which takes you to your tree to link this person if you know how you are related.

The segments below 6 cM are gone from the Shared DNA total and X matches are only shown if they are 6 cM or above.

In Common With and Not In Common With

In Common With and Not In Common With is the little two-person icon at the right.

Just click on the little person icon, then select “In Common With” to view your shared matches between you, that match, and other people. The person you are viewing matches in common with is highlighted at the top of the page, with your common matches below.

You can stack filters now. In this example, I selected my cousin, Don, to see our common matches. I added the search filter of the surname Ferverda, my mother’s maiden name. She is deceased and I manage her kit. You can see that my cousin Don and I have 5 total common matches – four maternal and one both, meaning one person matches me on both my maternal and paternal lines.

It’s great news that now Cousin Don pops up in the chromosome browser box at the bottom, enabling easy confusion-free chromosome segment comparisons directly from the In Common With match page. I love this!!!.

All I have to do now is click on other people and then on Compare Relationship which pushes these matches through to the chromosome browser. This is SOOOO convenient.

You’ll see a new tree icon at right on each match. A dark tree means there’s content and a light tree means this person does not have a tree. Remember, you can filter by trees with content using the filter button beside “Both”.

Your notes are shown at far right. Any person with a note is dark grey and no note is white.

If you’re looking for the email contact information, click on your match’s name to view their placard which also includes more detailed ancestral surname information.

Family Finder – Table View

The table view is very similar to the Detail View. The layout is a bit different with more matches visible in the same space.

This view has lots of tooltips on the column heading bar! Tooltips are great for everyone, but especially for people just beginning to find their way in the genetic genealogy world.

I’ll have to experiment a bit to figure out which view I prefer. I’d like to be able to set my own default for whichever view I want as my default. In fact, I think I’ll submit that in the “Submit Feedback” link. For every suggestion, I’m going to find something really positive to say. This was an immense overhaul.

Chromosome Browser

Let’s look at the chromosome Browser.

You can arrive at the Chromosome Browser by selecting people on your match page, or by selecting the Chromosome Browser under the Results and Tools link.

Everything is pretty much the same on the chromosome browser, except the default view is now 6 cM and the smaller segments are gone. You can also choose to view only segments above 10 cM.

If you have people selected in the chromosome browser and click on Download Segments in the upper right-hand corner, it downloads the segments of only the people currently selected.

You can “Clear All” and then click on Download All Segments which downloads your entire segment file. To download all segments, you need to have no people selected for comparison.

The contents of this file are greatly reduced as it now contains only the segments 6 cM and above.

Family Tree

No, the family tree has not changed, and yes, it needs to, desperately. Trust me, the management team is aware and I suspect one of the improvements, hopefully sooner than later, will be an improved tree experience.

Y DNA

The Y DNA page has received an update too, adding both a Detail View and a Table View with the same basic functionality as the Family Finder matching above. If you are reading this article for Y DNA only, please read the Family Finder section to understand the new layout and features.

Like previously, the match comparison begins at the 111 marker level.

However, there’s a BIG difference. If there are no matches at this level, YOU NEED TO CLICK THE NEXT TAB. You can easily see that this person has matches at the 67 level and below, but the system no longer “counts down” through the various levels until it either finds a level with a match or reaches 12 markers.

If you’re used to the old interface, it’s easy to think you’re at the final destination of 12 markers with no matches when you’re still at 111.

Y DNA Detail View

The Y-DNA Detail and Table views features are the same as Family Finder and are described in that section.

The new format is quite different. One improvement is that the Paternal Country of Origin is now displayed, along with a flag. How cool is that!

The Paternal Earliest Known Ancestor and Match Date are at far right. Note that match dates have been reset to the rerun date. At this point, FamilyTreeDNA is evaluating the possibility of restoring the original match date. Regardless, you’ll be able to filter for match dates when new matches arrive.

Please check to be sure you have your Country of Origin, Earliest Known Ancestor, and mapped location completed and up to date.

Earliest Known Ancestor

If you haven’t completed your Earliest Known Ancestor (EKA) information, now’s the perfect time. It’s easy, so let’s do it before you forget.

Click on the Account Settings gear beneath your name in the right-hand upper corner. Click on Genealogy, then on Earliest Known Ancestors and complete the information in the red boxes.

  • Direct paternal line means your father’s father’s father’s line – as far up through all fathers as you can reach. This is your Y DNA lineage, but females should complete this information on general principles.
  • Direct maternal line means your mother’s mother’s mother’s line – as far up through all mothers that you can reach. This is your mitochondrial DNA lineage, so relevant for both males and females.

Completing all of the information, including the location, will help you and your matches as well when using the Matches Map.

Be sure to click Save when you’re finished.

Y DNA Filters

Y DNA has more filter options than autosomal.

The Y DNA filter, located to the right of the 12 Markers tab allows testers to filter by:

  • Genetic distance, meaning how many mutations difference between you and your matches
  • Groups meaning group projects that the tester has joined
  • Tree status
  • Match date
  • Level of test taken

If none of your matches have taken the 111 marker test or you don’t match anyone at that level, that test won’t show up on your list.

Y DNA Table View

As with Family Finder, the Table View is more condensed and additional features are available on the right side of each match. For details, please review the Family Finder section.

If you’re looking for the old Y DNA TiP report, it’s now at the far right of each match.

The actual calculator hasn’t changed yet. I know people were hoping for the new Y DNA aging in this release, but that’s yet to follow.

Other Pages

Other pages like the Big Y and Mitochondrial DNA did not receive new features or functionality in this release, but do sport new user-friendly tooltips.

I lost track, but I counted over 100 tooltips added across the platform, and this is just the beginning.

There are probably more new features and functionality that I haven’t stumbled across just yet.

And yes, we are going to find a few bugs. That’s inevitable with something this large. Please report anything you find to FamilyTreeDNA.

Oh wait – I almost forgot…

New Videos

I understand that there are in the ballpark of 50 new videos that are being added to the new Help Center, either today or very shortly.

When I find out more, I’ll write an article about what videos are available and where to find them. People learn in various ways. Videos are often requested and will be a popular addition. I considered making videos, but that’s almost impossible for anyone besides the vendor because the names on screens either need to be “fake” or the screen needs to be blurred.

So hurray – very glad to hear these are imminent!

Stay Tuned

Stay tuned for new developments. As Lior said, FamilyTreeDNA is investing heavily in genetic genealogy and there’s more to come.

My Mom used to say that the “proof is in the pudding.” I’d say the myDNA/FamilyTreeDNA leadership team has passed this initial test with flying colors.

Of course, there’s more to do, but I’m definitely grateful for this lovely pudding. Thank you – thank you!

I can’t wait to get started and see what new gems await.

Take a Look!

Sign in and take a look for yourself.

Do you have more matches?

Are your matches more accurate?

How about predicted relationships?

How has this new release affected you?

What do you like the best?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

A Triangulation Checklist Born From the Question; “Why NOT Use Close Relatives for Triangulation?”

One of my readers asked why we don’t use close relatives for triangulation.

This is a great question because not using close relatives for triangulation seems counter-intuitive.

I used to ask my kids and eventually my students and customers if they wanted the quick short answer or the longer educational answer.

The short answer is “because close relatives are too close to reliably form the third leg of the triangle.” Since you share so much DNA with close relatives, someone matching you who is identical by chance can also match them for exactly the same reason.

If you trust me and you’re good with that answer, wonderful. But I hope you’ll keep reading because there’s so much to consider, not to mention a few gotchas. I’ll share my methodology, techniques, and workarounds.

We’ll also discuss absolutely wonderful ways to utilize close relatives in the genetic genealogical process – just not for triangulation.

At the end of this article, I’ve provided a working triangulation checklist for you to use when evaluating your matches.

Let’s go!

The Step-by-Step Educational Answer😊

Some people see “evidence” they believe conflicts with the concept that you should not use close relatives for triangulation. I understand that, because I’ve gone down that rathole too, so I’m providing the “educational answer” that explains exactly WHY you should not use close relatives for triangulation – and what you should do.

Of course, we need to answer the question, “Who actually are close relatives?”

I’ll explain the best ways to best utilize close relatives in genetic genealogy, and why some matches are deceptive.

You’ll need to understand the underpinnings of DNA inheritance and also of how the different vendors handle DNA matching behind the scenes.

The purpose of autosomal DNA triangulation is to confirm that a segment is passed down from a particular ancestor to you and a specific set of your matches.

Triangulation, of course, implies 3, so at least three people must all match each other on a reasonably sized portion of the same DNA segment for triangulation to occur.

Matching just one person only provides you with one path to that common ancestor. It’s possible that you match that person due to a different ancestor that you aren’t aware of, or due to chance recombination of DNA.

It’s possible that your or your match inherited part of that DNA from your maternal side and part from your paternal side, meaning that you are matching that other person’s DNA by chance.

I wrote about identical by descent (IBD), which is an accurate genealogically meaningful match, and identical by chance (IBC) which is a false match, in the article Concepts – Identical by…Descent, State, Population and Chance.

I really want you to understand why close relatives really shouldn’t be used for triangulation, and HOW close relative matches should be used, so we’re going to discuss all of the factors that affect and influence this topic – both the obvious and little-understood.

  • Legitimate Matches
  • Inheritance and Triangulation
  • Parental Cross-Matching
  • Parental Phasing
  • Automatic Phasing at FamilyTreeDNA
  • Parental Phasing Caveats
  • Pedigree Collapse
  • Endogamy
  • How Many Identical-by-Chance Matches Will I Have?
  • DNA Doesn’t Skip Generations (Seriously, It Doesn’t)
  • Your Parents Have DNA That You Don’t (And How to Use It)
  • No DNA Match Doesn’t Mean You’re Not Related
  • Imputation
  • Ancestry Issues and Workarounds
  • Testing Close Relatives is VERY Useful – Just Not for Triangulation
  • Triangulated Matches
  • Building Triangulation Evidence – Ingredients and a Recipe
  • Aunts/Uncles
  • Siblings
  • How False Positives Work and How to Avoid Them
  • Distant Cousins Are Best for Triangulation & Here’s Why
  • Where Are We? A Triangulation Checklist for You!
  • The Bottom Line

Don’t worry, these sections are logical and concise. I considered making this into multiple articles, but I really want it in one place for you. I’ve created lots of graphics with examples to help out.

Let’s start by dispelling a myth.

DNA Doesn’t Skip Generations!

Recently, someone emailed to let me know that they had “stopped listening to me” in a presentation when I said that if a match did not also match one of your parents, it was a false match. That person informed me that they had worked on their tree for three years at Ancestry and they have “proof” of DNA skipping generations.

Nope, sorry. That really doesn’t happen, but there are circumstances when a person who doesn’t understand either how DNA works, or how the vendor they are using presents DNA results could misunderstand or misinterpret the results.

You can watch my presentation, RootsTech session, DNA Triangulation: What, Why and How, for free here. I’m thrilled that this session is now being used in courses at two different universities.

DNA really doesn’t skip generations. You CANNOT inherit DNA that your parents didn’t have.

Full stop.

Your children cannot inherit DNA from you that you don’t carry. If you don’t have that DNA, your children and their descendants can’t have it either, at least not from you. They of course do inherit DNA from their other parent.

I think historically, the “skipping generations” commentary was connected to traits. For example, Susie has dimples (or whatever) and so did her maternal grandmother, but her mother did not, so Susie’s dimples were said to have “skipped a generation.” Of course, we don’t know anything about Susie’s other grandparents, if Susie’s parents share ancestors, recessive/dominant genes or even how many genetic locations are involved with the inheritance of “dimples,” but I digress.

DNA skipping generations is a fallacy.

You cannot legitimately match someone that your parent does not, at least not through that parent’s side of the tree.

But here’s the caveat. You can’t match someone one of your parents doesn’t with the rare exception of:

  • Relatively recent pedigree collapse that occurs when you have the same ancestors on both sides of your tree, meaning your parents are related, AND
  • The process of recombination just happened to split and recombine a segment of DNA in segments too small for your match to match your parents individually, but large enough when recombined to match you.

We’ll talk about that more in a minute.

However, the person working with Ancestry trees can’t make this determination because Ancestry doesn’t provide segment information. Ancestry also handles DNA differently than other vendors, which we’ll also discuss shortly.

We’ll review all of this, but let’s start at the beginning and explain how to determine if our matches are legitimate, or not.

Legitimate Matches

Legitimate matches occur when the DNA of your ancestor is passed from that ancestor to their descendants, and eventually to you and a match in an unbroken pathway.

Unbroken means that every ancestor between you and that ancestor carried and then passed on the segment of the ancestor’s DNA that you carry today. The same is true for your match who carries the same segment of DNA from your common ancestor.

False positive matches occur when the DNA of a male and female combine randomly to look like a legitimate match to someone else.

Thankfully, there are ways to tell the difference.

Inheritance and Triangulation

Remember, you inherit two copies of each of your chromosomes 1-22, one copy from your mother and one from your father. You inherit half of the DNA that each parent carries, but it’s mixed together in you so the labs can’t readily tell which nucleotide, A, C, T, or G you received from which parent. I’m showing your maternal and paternal DNA in the graphic below, stacked neatly together in a column – but in reality, it could be AC in one position and CA in the next.

For matching all that matters is the nucleotide that matches your match is present in one of those two locations. In this case, A for your mother’s side and C for your father’s side. If you’re interested, you can read more about that in the article, Hit a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters.

You can see in this example that you inherited all As from your Mom and all Cs from your Dad.

  • A legitimate maternal match would match you on all As on this particular example segment.
  • A legitimate paternal match would match you on all Cs on this particular segment.
  • A false positive match will match you on some random combination of As and Cs that make it look like they match you legitimately, but they don’t.
  • A false positive match will NOT match either your mother or your father.

To be very clear, technically a false positive match DOES match your DNA – but they don’t match your DNA because you share a common ancestor with your match. They match you because random recombination on their side causes you to match each other by chance.

In other words, if part of your DNA came from your Mom’s side and part from your Dad’s but it randomly fell in the correct positional order, you’d still match someone whose DNA was from only their mother or father’s side. That’s exactly the situation shown above and below.

Looking at our example again, it’s evident that your identical by chance (IBC) match’s A locations (1, 3, 5, 7 & 9) will match your Mom. C locations (2, 4, 6 8, & 10) will match your Dad, but the nonmatching segments interleaved in-between that match alternating parents will prevent your match from matching either of your parents. In other words, out of 10 contiguous locations in our example, your IBC match has 5 As alternated with 5 Cs, so they won’t match either of your parents who have 10 As or 10 Cs in a row.

This recombination effect can work in either direction. Either or both matching people’s DNA could be randomly mixed causing them to match each other, but not their parents.

Regardless of whose DNA is zigzagging back and forth between maternal and paternal, the match is not genealogical and does not confirm a common ancestor.

This is exactly why triangulation works and is crucial.

If you legitimately match a third person, shown below, on your maternal side, they will match you, your first legitimate maternal match, and your Mom because they carry all As. But they WON’T match the person who is matching you because they are identical by chance, shown in grey below.

The only person your identical by chance match matches in this group is you because they match you because of the chance recombination of parental DNA.

That third person WILL also match all other legitimate maternal matches on this segment.

In the graphic above, we see that while the grey identical by chance person matches you because of the random combination of As from your mother and Cs from your father, your legitimate maternal matches won’t match your identical by chance match.

This is the first step in identifying false matches.

Parental Cross-Matching

Removing the identical by chance match, and adding in the parents of your legitimate maternal match, we see that your maternal match, above, matches you because you both have all As inherited from one parent, not from a combination of both parents.

We know that because we can see the DNA of both parents of both matches in this example.

The ideal situation occurs when two people match and they have both had their parents tested. We need to see if each person matches the other person’s parents.

We can see that you do NOT match your match’s father and your match does NOT match your father.

You do match your match’s mother and your match does match your mother. I refer to this as Parental Cross-matching.

Your legitimate maternal matches will also match each other and your mother if she is available for testing.

All the people in yellow match each other, while the two parents in gray do not match any of your matches. An entire group of legitimate maternal matches on this segment, no matter how many, will all match each other.

If another person matches you and the other yellow people, you’ll still need to see if you match their parents, because if not, that means they are matching you on all As because their two parents DNA combined just happened, by chance, to contribute an A in all of those positions.

In this last example, your new match, in green, matches you, your legitimate match and both of your mothers, BUT, none of the four yellow people match either of the new match’s parents. You can see that the new green match inherited their As from the DNA of their mother and father both, randomly zigzagging back and forth.

The four yellow matches phase parentally as we just proved with cross matching to parents. The new match at first glance appears to be a legitimate match because they match all of the yellow people – but they aren’t because the yellow people don’t match the green person’s parents.

To tell the difference between legitimate matches and identical by chance matches, you need two things, in order.

  • Parental matching known as parental phasing along with parental cross-matching, if possible, AND
  • Legitimate identical by descent (IBD) triangulated matches

If you have the ability to perform parental matching, called phasing, that’s the easiest first step in eliminating identical by chance matches. However, few match pairs will have parents for everyone. You can use triangulation without parental phasing if parents aren’t available.

Let’s talk about both, including when and how close relatives can and cannot be used.

Parental Phasing

The technique of confirming your match to be legitimate by your match also matching one of your parents is called parental phasing.

If we have the parents of both people in a match pair available for matching, we can easily tell if the match does NOT match either parent. That’s Parental Cross Matching. If either match does NOT match one of the other person’s parents, the match is identical by chance, also known as a false positive.

See how easy that was!

If you, for example, is the only person in your match pair to have parents available, then you can parentally phase the match on your side if your match matches your parents. However, because your match’s parents are unavailable, your match to them cannon tbe verified as legitimate on their side. So you are not phased to their parents.

If you only have one of your parents available for matching, and your match does not match that parent, you CANNOT presume that because your match does NOT match that parent, the match is a legitimate match for the other, missing, parent.

There are four possible match conditions:

  • Maternal match
  • Paternal match
  • Matches neither parent which means the match is identical by chance meaning a false positive
  • Matches both parents in the case of pedigree collapse or endogamy

If two matching people do match one parent of both matches (parental cross-matching), then the match is legitimate. In other words, if we match, I need to match one of your parents and you need to match one of mine.

It’s important to compare your matches’ DNA to generationally older direct family members such as parents or grandparents, if that’s possible. If your grandparents are available, it’s possible to phase your matches back another generation.

Automatic Phasing at FamilyTreeDNA

FamilyTreeDNA automatically phases your matches to your parents if you test that parent, create or upload a GEDCOM file, and link your test and theirs to your tree in the proper places.

FamilyTreeDNA‘s Family Matching assigns or “buckets” your matches maternally and paternally. Matches are assigned as maternal or paternal matches if one or both parents have tested.

Additionally, FamilyTreeDNA uses triangulated matches from other linked relatives within your tree even if your parents have not tested. If you don’t have your parents, the more people you identify and link to your tree in the proper place, the more people will be assigned to maternal and paternal buckets. FamilyTreeDNA is the only vendor that does this. I wrote about this process in the article, Triangulation in Action at Family Tree DNA.

Parental Phasing Caveats

There are very rare instances where parental phasing may be technically accurate, but not genealogically relevant. By this, I mean that a parent may actually match one of your matches due to endogamy or a population level match, even if it’s considered a false positive because it’s not relevant in a genealogical timeframe.

Conversely, a parent may not match when the segment is actually legitimate, but it’s quite rare and only when pedigree collapse has occurred in a very specific set of circumstances where both parents share a common ancestor.

Let’s take a look at that.

Pedigree Collapse

It’s not terribly uncommon in the not-too-distant past to find first cousins marrying each other, especially in rather closely-knit religious communities. I encounter this in Brethren, Mennonite and Amish families often where the community was small and out-marrying was frowned upon and highly discouraged. These families and sometimes entire church congregations migrated cross-country together for generations.

When pedigree collapse is present, meaning the mother and father share a common ancestor not far in the past, it is possible to inherit half of one segment from Mom and the other half from Dad where those halves originated with the same ancestral couple.

For example, let’s say the matching segment between you and your match is 12 cM in length, shown below. You inherited the blue segment from your Dad and the neighboring peach segment from Mom – shown just below the segment numbers. You received 6 cM from both parents.

Another person’s DNA does match you, shown in the bottom row, but they are not shown on the DNA match list of either of your parents. That’s because the DNA segments of the parents just happened to recombine in 6 cM pieces, respectively, which is below the 7 cM matching threshold of the vendor in this example.

If the person matched you at 12 cM where you inherited 8 cM from one parent and 4 from the other, that person would show on one parent’s match list, but not the other. They would not be on the parent’s match list who contributed only 4 cM simply because the DNA divided and recombined in that manner. They would match you on a longer segment than they match your parent at 8 cM which you might notice as “odd.”

Let’s look at another example.

click to enlarge image

If the matching segment is 20 cM, the person will match you and both of your parents on different pieces of the same segment, given that both segments are above 7 cM. In this case, your match who matches you at 20 cM will match each of your parents at 10 cM.

You would be able to tell that the end location of Dad’s segment is the same as the start location of Mom’s segment.

This is NOT common and is NOT the “go to” answer when you think someone “should” match your parent and does not. It may be worth considering in known pedigree collapse situations.

You can see why someone observing this phenomenon could “presume” that DNA skipped a generation because the person matches you on segments where they don’t match your parent. But DNA didn’t skip anything at all. This circumstance was caused by a combination of pedigree collapse, random division of DNA, then random recombination in the same location where that same DNA segment was divided earlier. Clearly, this sequence of events is not something that happens often.

If you’ve uploaded your DNA to GEDmatch, you can select the “Are your parents related?” function which scans your DNA file for runs of homozygosity (ROH) where your DNA is exactly the same in both parental locations for a significant distance. This suggests that because you inherited the exact same sequence from both parents, that your parents share an ancestor.

If your parents didn’t inherit the same segment of DNA from both parents, or the segment is too short, then they won’t show as “being related,” even if they do share a common ancestor.

Now, let’s look at the opposite situation. Parental phasing and ROH sometimes do occur when common ancestors are far back in time and the match is not genealogically relevant.

Endogamy

I often see non-genealogical matching occur when dealing with endogamy. Endogamy occurs when an entire population has been isolated genetically for a long time. In this circumstance, a substantial part of the population shares common DNA segments because there were few original population founders. Much of the present-day population carries that same DNA. Many people within that population would match on that segment. Think about the Jewish community and indigenous Americans.

Consider our original example, but this time where much of the endogamous population carries all As in these positions because one of the original founders carried that nucleotide sequence. Many people would match lots of other people regardless of whether they are a close relative or share a distant ancestor.

People with endogamous lines do share relatives, but that matching DNA segment originated in ancestors much further back in time. When dealing with endogamy, I use parental phasing as a first step, if possible, then focus on larger matches, generally 20 cM or greater. Smaller matches either aren’t relevant or you often can’t tell if/how they are.

At FamilyTreeDNA, people with endogamy will find many people bucketed on the “Both” tab meaning they triangulate with people linked on both sides of the tester’s tree.

An example of a Jewish person’s bucketed matches based on triangulation with relatives linked in their tree is shown above.

Your siblings, their children, and your children will be related on both your mother’s and father’s sides, but other people typically won’t be unless you have experienced either pedigree collapse where you are related both maternally and paternally through the same ancestors or you descend from an endogamous population.

How Many Identical-by-Chance Matches Will I Have?

If you have both parents available to test, and you’re not dealing with either pedigree collapse or endogamy, you’ll likely find that about 15-20% of your matches don’t match your parents on the same segment and are identical by chance.

With endogamy, you’ll have MANY more matches on your endogamous lines and you’ll have some irrelevant matches, often referred to as “false positive” matches even though they technically aren’t, even using parental phasing.

Your Parents Have DNA That You Don’t

Sometimes people are confused when reviewing their matches and their parent’s match to the same person, especially when they match someone and their parent matches them on a different or an additional segment.

If you match someone on a specific segment and your parents do not, that’s a false positive FOR THAT SEGMENT. Every segment has its own individual history and should be evaluated individually. You can match someone on two segments, one from each parent. Or three segments, one from each parent and one that’s identical by chance. Don’t assume.

Often, your match will match both you and your parent on the same segment – which is a legitimate parentally phased match.

But what if your match matches your parent on a different segment where they don’t match you? That’s a false positive match for you.

Keep in mind that it is possible for one of your matches to match your parent on a separate or an additional segment that IS legitimate. You simply didn’t inherit that particular segment from your parent.

That’s NOT the same situation as someone matching you that does NOT match one of your parents on the same segment – which is an identical by chance or false match.

Your parent having a match that does not match you is the reverse situation.

I have several situations where I match someone on one segment, and they match my parent on the same segment. Additionally, that person matches my parent on another segment that I did NOT inherit from that parent. That’s perfectly normal.

Remember, you only inherit half of your parent’s DNA, so you literally did NOT inherit the other half of their DNA. Your mother, for example, should have twice as many matches as you on her side because roughly half of her matches won’t match you.

That’s exactly why testing your parents and close family members is so critical. Their matches are as valid and relevant to your genealogy as your own. The same is true for other relatives, such as aunts and uncles with whom you share ALL of the same ancestors.

You need to work with your family member’s matches that you don’t share.

No DNA Match Doesn’t Mean You’re Not Related

Some people think that not matching someone on a DNA test is equivalent to saying they aren’t related. Not sharing DNA doesn’t mean you’re not related.

People are often disappointed when they don’t match someone they think they should and interpret that to mean that the testing company is telling them they “aren’t related.” They are upset and take issue with this characterization. But that’s not what it means.

Let’s analyze this a bit further.

First, not sharing DNA with a second cousin once removed (2C1R) or more distant does NOT mean you’re NOT related to that person. It simply means you don’t share any measurable DNA ABOVE THE VENDOR THRESHOLD.

All known second cousins match, but about 10% of third cousins don’t match, and so forth on up the line with each generation further back in time having fewer cousins that match each other.

If you have tested close relatives, check to see if that cousin matches your relatives.

Second, it’s possible to match through the “other” or unexpected parent. I certainly didn’t think this would be the case in my family, because my father is from Appalachia and my mother’s family is primarily from the Netherlands, Germany, Canada, and New England. But I was wrong.

All it took was one German son that settled in Appalachia, and voila, a match through my mother that I surely thought should have been through my father’s side. I have my mother’s DNA and sure enough, my match that I thought should be on my father’s side matches Mom on the same segment where they match me, along with several triangulated matches. Further research confirmed why.

I’ve also encountered situations where I legitimately match someone on both my mother’s and father’s side, on different segments.

Third, imputation can be important for people who don’t match and think they should. Imputation can also cause matching segment length to be overreported.

Ok, so what’s imputation and why do I care?

Imputation

Every DNA vendor today has to use some type of imputation.

Let me explain, in general, what imputation is and why vendors use it.

Over the years, DNA processing vendors who sell DNA chips to testing companies have changed their DNA chips pretty substantially. While genealogical autosomal tests test about 700,000 DNA locations, plus or minus, those locations have changed over time. Today, some of these chips only have 100,000 or so chip locations in common with chips either currently or previously utilized by other vendors.

The vendors who do NOT accept uploads, such as 23andMe or Ancestry, have to develop methods to make their newest customers on their DNA processing vendor’s latest chip compatible with their first customer who was tested on their oldest chip – and all iterations in-between.

Vendors who do accept transfers/uploads from other vendors have to equalize any number of vendors’ chips when their customers upload those files.

Imputation is the scientific way to achieve this cross-platform functionality and has been widely used in the industry since 2017.

Imputation, in essence, fills in the blanks between tested locations with the “most likely” DNA found in the human population based on what’s surrounding the blank location.

Think of the word C_T. There are a limited number of letters and words that are candidates for C_T. If you use the word in a sentence, your odds of accuracy increase dramatically. Think of a genetic string of nucleotides as a sentence.

Imputation can be incorrect and can cause both false positive and false negative matches.

For the most part, imputation does not affect close family matches as much as more distant matches. In other words, imputation is NOT going to cause close family members not to match.

Imputation may cause more distant family members not to match, or to have a false positive match when imputation is incorrect.

Imputation is actually MUCH less problematic than I initially expected.

The most likely effect of imputation is to cause a match to be just above or below the vendor threshold.

How can we minimize the effects of imputation?

  • Generally, the best result will be achieved if both people test at the same vendor where their DNA is processed on the same chip and less imputation is required.
  • Upload the results of both people to both MyHeritage and FamilyTreeDNA. If your match results are generally consistent at those vendors, imputation is not a factor.
  • GEDmatch does not use imputation but attempts to overcome files with low overlapping regions by allowing larger mismatch areas. I find their matches to be less accurate than at the various vendors.

Additionally, Ancestry has a few complicating factors.

Ancestry Issues

AncestryDNA is different in three ways.

  • Ancestry doesn’t provide segment information so it’s impossible to triangulate or identify the segment or chromosome where people match. There is no chromosome browser or triangulation tool.
  • Ancestry down-weights and removes some segments in areas where they feel that people are “too matchy.” You can read Ancestry’s white papers here and here.

These “personal pileup regions,” as they are known, can be important genealogically. In my case, these are my mother’s Acadian ancestors. Yes, this is an endogamous population and also suffers from pedigree collapse, but since this is only one of my mother’s great-grandparents, this match information is useful and should not be removed.

  • Ancestry doesn’t show matches in common if the shared segments are less than 20cM. Therefore, you may not see someone on a shared match list with a relative when they actually are a shared match.

If two people both match a third person on less than a 20 cM segment at Ancestry, the third person won’t appear on the other person’s shared match list. So, if I match John Doe on 19 cM of DNA, and I looked at the shared matches with my Dad, John Doe does NOT appear on the shared match list of me and my Dad – even though he is a match to both of us at 19 cM.

The only way to determine if John Doe is a shared match is to check my Dad’s and my match list individually, which means Dad and I will need to individually search for John Doe.

Caveat here – Ancestry’s search sometimes does not work correctly.

Might someone who doesn’t understand that the shared match list doesn’t show everyone who shares DNA with both people presume that the ancestral DNA of that ancestor “skipped a generation” because John Doe matches me with a known ancestor, and not Dad on our shared match list? I mean, wouldn’t you think that a shared match would be shown on a tab labeled “Shared Matches,” especially since there is no disclaimer?

Yes, people can be forgiven for believing that somehow DNA “skipped” a generation in this circumstance, especially if they are relatively inexperienced and they don’t understand Ancestry’s anomalies or know that they need to or how to search for matches individually.

Even if John Doe does match me and Dad both, we still need to confirm that it’s on the same segment AND it’s a legitimate match, not IBC. You can’t perform either of these functions at Ancestry, but you can elsewhere.

Ancestry WorkArounds

To obtain this functionality, people can upload their DNA files for free to both FamilyTreeDNA and MyHeritage, companies that do provide full shared DNA reporting (in common with) lists of ALL matches and do provide segment information with chromosome browsers. Furthermore, both provide triangulation in different ways.

Matching is free, but an inexpensive unlock is required at both vendors to access advanced tools such as Family Matching (bucketing) and triangulation at Family Tree DNA and phasing/triangulation at MyHeritage.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

MyHeritage actually brackets triangulated segments for customers on their chromosome browser, including parents, so you get triangulation and parental phasing at the same time if you and your parent have both tested or uploaded your DNA file to MyHeritage. You can upload, for free, here.

In this example, my mother is matching to me in red on the entire length of chromosome 18, of course, and three other maternal cousins triangulate with me and mother inside the bracketed portion of chromosome 18. Please note that if any one of the people included in the chromosome browser comparison do not triangulate, no bracket is drawn around any others who do triangulate. It’s all or nothing. I remove people one by one to see if people triangulate – or build one by one with my mother included.

I wrote about Triangulation in Action at MyHeritage, here.

People can also upload to GEDmatch, a third-party site. While GEDmatch is less reliable for matching, you can adjust your search thresholds which you cannot do at other vendors. I don’t recommend routinely working below 7 cM. I occasionally use GEDmatch to see if a pedigree collapse segment has recombined below another vendor’s segment matching threshold.

Do NOT check the box to prevent hard breaks when selecting the One-to-One comparison. Checking that box allows GEDmatch to combine smaller matching segments into mega-segments for matching.

I wrote about Triangulation in Action at GEDmatch, here.

Transferring/Uploading Your DNA 

If you want to transfer your DNA to one of these vendors, you must download the DNA file from one vendor and upload it to another. That process does NOT remove your DNA file from the vendor where you tested, unless you select that option entirely separately.

I wrote full step-by-step transfer/upload instructions for each vendor, here.

Testing Close Relatives Is VERY Useful – Just Not for Triangulation

Of course, your best bet if you don’t have your parents available to test is to test as many of your grandparents, great-aunts/uncles, aunts, and uncles as possible. Test your siblings as well, because they will have inherited some of the same and some different segments of DNA from your parents – which means they carry different pieces of your ancestors’ DNA.

Just because close relatives don’t make good triangulation candidates doesn’t mean they aren’t valuable. Close relatives are golden because when they DO share a match with you, you know where to start looking for a common ancestor, even if your relative matches that person on a different segment than you do.

Close relatives are also important because they will share pieces of your common ancestor’s DNA that you don’t. Their matches can unlock the answers to your genealogy questions.

Ok, back to triangulation.

Triangulated Matches

A triangulated match is, of course, when three people all descended from a common ancestor and match each other on the same segment of DNA.

That means all three people’s DNA matches each other on that same segment, confirming that the match is not by chance, and that segment did descend from a common ancestor or ancestral couple.

But, is this always true? You’re going to hate this answer…

“It depends.”

You knew that was coming, didn’t you! 😊

It depends on the circumstances and relationships of the three people involved.

  • One of those three people can match the other two by chance, not by descent, especially if two of those people are close relatives to each other.
  • Identical by chance means that one of you didn’t inherit that DNA from one single parent. That zigzag phenomenon.
  • Furthermore, triangulated DNA is only valid as far back as the closest common ancestor of any two of the three people.

Let’s explore some examples.

Building Triangulation Evidence – Ingredients and a Recipe

The strongest case of triangulation is when:

  • You and at least two additional cousins match on the same segment AND
  • Descend through different children of the common ancestral couple

Let’s look at a valid triangulated match.

In this first example, the magenta segment of DNA is at least partially shared by four of the six cousins and triangulates to their common great-grandfather. Let’s say that these cousins then match with two other people descended from different children of their great-great-great-grandparents on this same segment. Then the entire triangulation group will have confirmed that segment’s origin and push the descent of that segment back another two generations.

These people all coalesce into one line with their common great-grandparents.

I’m only showing 3 generations in this triangulated match, but the concept is the same no matter how many generations you reach back in time. Although, over time, segments inherited from any specific ancestor become smaller and smaller until they are no longer passed to the next generation.

In this pedigree chart, we’re only tracking the magenta DNA which is passed generation to generation in descendants.

Eventually, of course, those segments become smaller and indistinguishable as they either aren’t passed on at all or drop below vendor matching thresholds.

This chart shows the average amount of DNA you would carry from each generational ancestor. You inherit half of each parent’s DNA, but back further than that, you don’t receive exactly half of any ancestor’s DNA in any generation. Larger segments are generally cut in two and passed on partially, but smaller segments are often either passed on whole or not at all.

On average, you’ll carry 7 cM of your eight-times-great-grandparents. In reality, you may carry more or you may not carry any – and you are unlikely to carry the same segment as any random other descendants but we know it happens and you’ll find them if enough (or the right) descendants test.

Putting this another way, if you divide all of your approximate 7000 cM of DNA into 7 cM segments of equal length – you’ll have 1000 7 cM segments. So will every other descendant of your eight-times-great-grandparent. You can see how small the chances are of you both inheriting that same exact 7 cM segment through ten inheritance/transmission events, each. Yet it does happen.

I have several triangulated matches with descendants of Charles Dodson and his wife, Anne through multiple of their 9 (or so) children, ten generations back in my tree. Those triangulated matches range from 7-38 cM. It’s possible that those three largest matches at 38 cM could be related through multiple ancestors because we all have holes in our trees – including Anne’s surname.

Click to enlarge image

It helps immensely that Charles Dodson had several children who were quite prolific as well.

Of course, the further back in time, the more “proof” is necessary to eliminate other unknown common ancestors. This is exactly why matching through different children is important for triangulation and ancestor confirmation.

The method we use to confirm the common ancestor is that all of the descendants who match the tester on the same segment all also match each other. This greatly reduces the chances that these people are matching by chance. The more people in the triangulation group, the stronger the evidence. Of course, parental phasing or cross-matching, where available is an added confirmation bonus.

In our magenta inheritance example, we saw that three of the males and one of the females from three different descendants of the great-grandparents all carry at least a portion of that magenta segment of great-grandpa’s DNA.

Now, let’s take a look at a different scenario.

Why can’t siblings or close relatives be used as two of the three people needed for triangulation?

Aunts and Uncles

We know that the best way to determine if a match is valid is by parental phasing – your match also matching to one of your parents.

If both parents aren’t available, looking for close family matches in common with your match is the next hint that genealogists seek.

Let’s say that you and your match both match your aunt or uncle in common or their children.

You and your aunts or uncles matching DNA only pushes your common ancestor back to your grandparents.

At that point, your match is in essence matching to a segment that belongs to your grandparents. Your matches’ DNA, or your grandparents’ DNA could have randomly recombined and you and your aunt/cousins could be matching that third person by chance.

Ok, then, what about siblings?

Siblings

The most recent common ancestor (MRCA) of you and someone who also matches your sibling is your parents. Therefore, you and your sibling actually only count as one “person” in this scenario. In essence, it’s the DNA of your parent(s) that is matching that third person, so it’s not true triangulation. It’s the same situation as above with aunts/uncles, except the common ancestor is closer than your grandparents.

The DNA of your parents could have recombined in both siblings to look like a match to your match’s family. Or vice versa. Remember Parental Cross-Matching.

If you and a sibling inherited EXACTLY the same segment of your Mom’s and Dad’s DNA, and you match someone by chance – that person will match your sibling by chance as well.

In this example, you can see that both siblings 1 and 2 inherited the exact same segments of DNA at the same locations from both of their parents.

Of course, they also inherited segments at different locations that we’re not looking at that won’t match exactly between siblings, unless they are identical twins. But in this case, the inherited segments of both siblings will match someone whose DNA randomly combined with green or magenta dots in these positions to match a cross-section of both parents.

How False Positives Work and How to Avoid Them

We saw in our first example, displayed again above, what a valid triangulated match looks like. Now let’s expand this view and take a look more specifically at how false positive matches occur.

On the left-hand (blue) side of this graphic, we see four siblings that descend through their father from Great-grandpa who contributed that large magenta segment of DNA. That segment becomes reduced in descendants in subsequent generations.

In downstream generations, we can see gold, white and green segments being added to the DNA inherited by the four children from their ancestor’s spouses. Dad’s DNA is shown on the left side of each child, and Mom’s on the right.

  • Blue Children 1 and 2 inherited the same segments of DNA from Mom and Dad. Magenta from Dad and green from Mom.
  • Blue Child 3 inherited two magenta segments from Dad in positions 1 and 2 and one gold segment from Dad in position 3. They inherited all white segments from Mom.
  • Blue Child 4 inherited all gold segments from Dad and all white segments from Mom.

The family on the blue left-hand side is NOT related to the pink family shown at right. That’s important to remember.

I’ve intentionally constructed this graphic so that you can see several identical by chance (IBC) matches.

Child 5, the first pink sibling carries a white segment in position 1 from Dad and gold segments in positions 2 and 3 from Dad. From Mom, they inherited a green segment in position 1, magenta in position 2 and green in position 3.

IBC Match 1 – Looking at the blue siblings, we see that based on the DNA inherited from Pink Child 5’s parents, Pink Child 5 matches Blue Child 4 with white, gold and gold in positions 1-3, even though they weren’t inherited from the same parent in Blue Child 4. I circled this match in blue.

IBC Match 2 – Pink Child 5 also matches Blue Children 1 and 2 (red circles) because Pink Child 5 has green, magenta, and green in positions 1-3 and so do Blue Children 1 and 2. However, Blue Children 1 and 2 inherited the green and magenta segments from Mom and Dad respectively, not just from one parent.

Pink Child 5 matches Blue Children 1, 2 and 4, but not because they match by descent, but because their DNA zigzags back and forth between the blue children’s DNA contributed by both parents.

Therefore, while Pink Child 5 matches three of the Blue Children, they do not match either parent of the Blue Children.

IBC Match 3 – Pink Child 6 matches Blue Child 3 with white, magenta and gold in positions 1-3 based on the same colors of dots in those same positions found in Blue Child 3 – but inherited both paternally and maternally.

You can see that if we had the four parents available to test, that none of the Pink Children would match either the Blue Children’s mother or father and none of the Blue Children would match either of the Pink Children’s mother or father.

This is why we can’t use either siblings or close family relatives for triangulation.

Distant Cousins Are Best for Triangulation & Here’s Why

When triangulating with 3 people, the most recent common ancestor (MRCA) intersection of the closest two people is the place at which triangulation turns into only two lines being compared and ceases being triangulation. Triangle means 3.

If siblings are 2 of the 3 matching people, then their parents are essentially being compared to the third person.

If you, your aunt/uncle, and a third person match, your grandparents are the place in your tree where three lines converge into two.

The same holds true if you’re matching against a sibling pair on your match’s side, or a match and their aunt/uncle, etc.

The further back in your tree you can push that MRCA intersection, the more your triangulated match provides confirming evidence of a common ancestor and that the match is valid and not caused by random recombination.

That’s exactly what the descendants of Charles Dodson have been able to do through triangulation with multiple descendants from several of his children.

It’s also worth mentioning at this point that the reason autosomal DNA testing uses hundreds/thousands of base pairs in a comparison window and not 3 or 6 dots like in my example is that the probability of longer segments of DNA simply randomly matching by chance is reduced with length and SNP density which is the number of SNP locations tested within that cM range.

Hence a 7 cM/500 SNP minimum is the combined rule of thumb. At that level, roughly half of your matches will be valid and half will be identical by chance unless you’re dealing with endogamy. Then, raise your threshold accordingly.

Ok, So Where are We? A Triangulation Checklist for You!

I know this has been a relatively long educational article, but it’s important to really understand that testing close relatives is VERY important, but also why we can’t effectively use them for triangulation.

Here’s a handy-dandy summary matching/triangulation checklist for you to use as you work through your matches.

  • You inherit half of each of your parents’ DNA. There is no other place for you to obtain or inherit your DNA. There is no DNA fairy sprinkling you with DNA from another source:)
  • DNA does NOT skip generations, although in occasional rare circumstances, it may appear that this happened. In this situation, it’s incumbent upon you, the genealogist, to PROVE that an exception has occurred if you really believe it has. Those circumstances might be pedigree collapse or perhaps imputation. You’ll need to compare matches at vendors who provide a chromosome browser, triangulation, and full shared match list information. Never assume that you are the exception without hard and fast proof. We all know about assume, right?
  • Your siblings inherit half of your parents’ DNA too, but not the same exact half of your parent’s DNA that you other siblings did (unless they are identical twins.) You may inherit the exact same DNA from either or both of your parents on certain segments.
  • Your matches may match your parents on different or an additional segment that you did not inherit.
  • Every segment has an individual history. Evaluate every matching segment separately. One matching segment with someone could be maternal, one paternal, and one identical by chance.
  • You can confirm matches as valid if your match matches one of your parents, and you match one of your match’s parents. Parental Phasing is when your match matches your parent. Parental Cross-Matching is when you both match one of each other’s parents. To be complete, both people who match each other need to match one of the parents of the other person. This rule still holds even if you have a known common ancestor. I can’t even begin to tell you how many times I’ve been fooled.
  • 15-20% (or more with endogamy) of your matches will be identical by chance because either your DNA or your match’s DNA aligns in such a way that while they match you, they don’t match either of your parents.
  • Your siblings, aunts, and uncles will often inherit the same DNA as you – which means that identical by chance matches will also match them. That’s why we don’t use close family members for triangulation. We do utilize close family members to generate common match hints. (Remember the 20 cM shared match caveat at Ancestry)
  • While your siblings, aunts, and uncles are too close to use for triangulation, they are wonderful to identify ancestral matches. Some of their matches will match you as well, and some will not because your close family members inherited segments of your ancestor’s DNA that you did not. Everyone should test their oldest family members.
  • Triangulate your close family member’s matches separately from your own to shed more light on your ancestors.
  • Endogamy may interfere with parental phasing, meaning you may match because you and/or your match may have inherited some of the same DNA segment(s) from both sides of your tree and/or more DNA than might otherwise be expected.
  • Pedigree collapse needs to be considered when using parental phasing, especially when the same ancestor appears on both sides of your family tree. You may share more DNA with a match than expected.
  • Conversely, with pedigree collapse, your match may not match your parents, or vice versa, if a segment happens to have recombined in you in a way that drops the matching segments of your parents beneath the vendor’s match threshold.
  • While you will match all of your second cousins, you will only match approximately 90% of your third cousins and proportionally fewer as your relationship reaches further back in time.
  • Not being a DNA match with someone does NOT mean you’re NOT related to them, unless of course, you’re a second cousin (2C) or closer. It simply means you don’t carry any common ancestral segments above vendor thresholds.
  • At 2C or closer, if you’re not a DNA match, other alternative situations need to be considered – including the transfer/upload of the wrong person’s DNA file.
  • Imputation, a scientific process required of vendors may interfere with matching, especially in more distant relatives who have tested on different platforms.
  • Imputation artifacts will be less obvious when people are more closely related, meaning closer relatives can be expected to match on more and larger segments and imputation errors make less difference.
  • Imputation will not cause close relatives, meaning 2C or closer, to not match each other.
  • In addition to not supporting segment matching information, Ancestry down-weights some segments, removes some matching DNA, and does not show shared matches below 20cM, causing some people to misinterpret their lack of common matches in various ways.
  • To resolve questions about matching issues at Ancestry, testers can transfer/upload their DNA files to MyHeritage, FamilyTreeDNA, and GEDmatch and look for consistent matches on the same segment. Start and end locations may vary to some extent between vendors, but the segment size should be basically in the same location and roughly the same size.
  • GEDmatch does not use imputation but allows larger non-matching segments to combine as a single segment which sometimes causes extremely “generous” matches. GEDmatch matching is less reliable than FamilyTreeDNA or MyHeritage, but you can adjust the matching thresholds.
  • The best situation for matching is for both people to test at the same vendor who supports and provides segment data and a chromosome browser such as 23andMe, FamilyTreeDNA, or MyHeritage.
  • Siblings cannot be used for triangulation because the most recent common ancestor (MRCA) between you and your siblings is your parents. Therefore, the “three” people in the triangulation group is reduced to two lines immediately.
  • Uncles and aunts should not be used for triangulation because the most recent common ancestors between you and your aunts and uncles are your grandparents.
  • Conversely, you should not consider triangulating with siblings and close family members of your matches as proof of an ancestral relationship.
  • A triangulation group of 3 people is only confirmation as far back as when two of those people’s lines converge and reach a common ancestor.
  • Identical by chance (IBC) matching occurs when DNA from the maternal and paternal sides are mixed positionally in the child to resemble a maternal/paternal side match with someone else.
  • Identical by chance DNA admixture (when compared to a match) could have occurred in your parents or grandparent’s generation, or earlier, so the further back in time that people in a triangulation group reach, the more reliable the triangulation group is likely to be.
  • The larger the segments and/or the triangulation group, the stronger the evidence for a specific confirmed common ancestor.
  • Early families with a very large number of descendants may have many matching and triangulated members, even 9 or 10 generations later.
  • While exactly 50% of each ancestor’s DNA is not passed in each generation, on average, you will carry 7 cM of your ancestors 10 generations back in your tree. However, you may carry more, or none.
  • The percentage of matching descendants decreases with each generation beyond great-grandparents.
  • The ideal situation for triangulation is a significant number of people, greater than three, who match on the same reasonably sized segment (7 cM/500 SNP or larger) and descend from the same ancestor (or ancestral couple) through different children whose spouses in descendant generations are not also related.
  • This means that tree completion is an important factor in match/triangulation reliability.
  • Triangulating through different children of the ancestral couple makes it significantly less likely that a different unknown common ancestor is contributing that segment of DNA – like an unknown wife in a descendant generation.

Whew!!!

The Bottom Line

Here’s the bottom line.

  1. Don’t use close relatives to triangulate.
  2. Use parents for Parental Phasing.
  3. Use Parental Cross-Matching when possible.
  4. Use close relatives to look for shared common matches that may lead to triangulation possibilities.
  5. Triangulate your close relatives’ DNA in addition to your own for bonus genealogical information. They will match people that you don’t.
  6. For the most reliable triangulation results, use the most distant relatives possible, descended through different children of the common ancestral couple.
  7. Keep this checklist of best practices, cautions, and caveats handy and check the list as necessary when evaluating the strength of any match or triangulation group. It serves as a good reminder for what to check if something seems “off” or unusual.

Feel free to share and pass this article (and checklist) on to your genealogy buddies and matches as you explain triangulation and collaborate on your genealogy.

Have fun!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research

RootsTech Connect 2021: Comprehensive DNA Session List

I wondered exactly how many DNA sessions were at RootsTech this year and which ones are the most popular.

Unfortunately, we couldn’t easily view a list of all the sessions, so I made my own. I wanted to be sure to include every session, including Tips and Tricks and vendor sessions that might only be available in their booths. I sifted through every menu and group and just kept finding more and more buried DNA treasures in different places.

I’m sharing this treasure chest with you below. And by the way, this took an entire day, because I’ve listed the YouTube direct link AND how many views each session had amassed today.

Two things first.

RootsTech Sessions

As you know, RootsTech was shooting for TED talk format this year. Roughly 20-minute sessions. When everything was said and done, there were five categories of sessions:

  • Curated sessions are approximately 20-minute style presentations curated by RootsTech meaning that speakers had to submit. People whose sessions were accepted were encouraged to break longer sessions into a series of two or three 20-minute sessions.
  • Vendor booth videos could be loaded to their virtual boots without being curated by RootsTech, but curated videos by their employees could also be loaded in the vendor booths.
  • DNA Learning Center sessions were by invitation and provided by volunteers. They last generally between 10-20 minutes.
  • Tips and Tricks are also produced by volunteers and last from 1 to 15 minutes. They can be sponsored by a company and in some cases, smaller vendors and service providers utilized these to draw attention to their products and services.
  • 1-hour sessions tend to be advanced and not topics could be easily broken apart into a series.

Look at this amazing list of 129 DNA or DNA-related sessions that you can watch for free for the next year. Be sure to bookmark this article so you can refer back easily.

Please note that I started compiling this list for myself and I’ve shortened some of the session names. Then I realized that if I needed this, so do you.

Top 10 Most-Viewed Sessions

I didn’t know whether I should list these sessions by speaker name, or by the most views, so I’m doing a bit of both.

Drum roll please…

The top 10 most viewed sessions as of today are:

Speaker/Vendor Session Title Type Link Views
Libby Copeland How Home DNA Testing Has Redefined Family History Curated Session https://youtu.be/LsOEuvEcI4A 13,554
Nicole Dyer Organize Your DNA Matches in a Diagram Tips and Tricks https://youtu.be/UugdM8ATTVo 6175
Roberta Estes DNA Triangulation: What, Why, and How 1 hour https://youtu.be/nIb1zpNQspY 6106
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 1 Curated Session https://youtu.be/bB7VJeCR6Bs 5866
Amy Williams Ancestor Reconstruction: Why, How, Tools Curated Session https://youtu.be/0D6lAIyY_Nk 5637
Drew Smith Before You Test Basics Part 1 Curated Session https://youtu.be/wKhMRLpefDI 5079
Nicole Dyer How to Interpret a DNA Cluster Chart Tips and Tricks https://youtu.be/FI4DaWGX8bQ 4982
Nicole Dyer How to Evaluate a ThruLines Hypothesis Tips and Tricks https://youtu.be/ao2K6wBip7w 4823
Kimberly Brown Why Don’t I Match my Match’s Matches DNA Learning Center https://youtu.be/A8k31nRzKpc 4593
Rhett Dabling, Diahan Southard Understanding DNA Ethnicity Results Curated Session https://youtu.be/oEt7iQBPfyM 4287

Libby Copeland must be absolutely thrilled. I noticed that her session was featured over the weekend in a highly prominent location on the RootsTech website.

Sessions by Speaker

The list below includes the English language sessions by speaker. I apologize for not being able to discern which non-English sessions are about DNA.

Don’t let a smaller number of views discourage you. I’ve watched a few of these already and they are great. I suspect that sessions by more widely-known speakers or ones whose sessions were listed in the prime-real estate areas have more views, but what you need might be waiting just for you in another session. You don’t have to pick and choose and they are all here for you in one place.

Speaker/Vendor Session Title Type Link Views
Alison Wilde SCREEN Method: A DNA Match Note System that Really Helps DNA Learning Center https://youtu.be/WaNnh_v1rwE 791
Amber Brown Genealogist-on-Demand: The Help You Need on a Budget You Can Afford Curated Session https://youtu.be/9KjlD6GxiYs 256
Ammon Knaupp Pattern of Genetic Inheritance DNA Learning Center https://youtu.be/Opr7-uUad3o 824
Amy Williams Ancestor Reconstruction: Why, How, Tools Curated Session https://youtu.be/0D6lAIyY_Nk 5637
Amy Williams Reconstructing Parent DNA and Analyzing Relatives at HAPI-DNA, Part 1 Curated Session https://youtu.be/MZ9L6uPkKbo 1021
Amy Williams Reconstructing Parent DNA and Analyzing Relatives at HAPI-DNA, Part 2 Curated Session https://youtu.be/jZBVVvJmnaU 536
Ancestry DNA Matches Curated Session https://youtu.be/uk8EKXLQYzs 743
Ancestry ThruLines Curated Session https://youtu.be/RAwimOgNgUE 1240
Ancestry Ancestry DNA Communities: Bringing New Discoveries to Your Family History Research Curated Session https://youtu.be/depeGW7QUzU 422
Andre Kearns Helping African Americans Trace Slaveholding Ancestors Using DNA Curated Session https://youtu.be/mlnSU5UM-nQ 2211
Barb Groth I Found You: Methods for Finding Hidden Family Members Curated Session https://youtu.be/J93hxOe_KC8 1285
Beth Taylor DNA and Genealogy Basics DNA Learning Center https://youtu.be/-LKgkIqFhL4 967
Beth Taylor What Do I Do With Cousin Matches? DNA Learning Center https://youtu.be/LyGT9B6Mh00 1349
Beth Taylor Using DNA to Find Unknown Relatives DNA Learning Center https://youtu.be/WGJ8IfuTETY 2166
David Ouimette I Am Adopted – How Do I Use DNA to Find My Parents? Curated Session https://youtu.be/-jpKgKMLg_M 365
Debbie Kennett Secrets and Surprises: Uncovering Family History Mysteries through DNA Curated Session https://youtu.be/nDnrIWKmIuA 2899
Debbie Kennett Genetic Genealogy Meets CSI Curated Session https://youtu.be/sc-Y-RtpEAw 589
Diahan Southard What is a Centimorgan Tips and Tricks https://youtu.be/uQcfhPU5QhI 2923
Diahan Southard Using the Shared cM Project DNA Learning Center https://youtu.be/b66zfgnzL0U 3172
Diahan Southard Understanding Ethnicity Results DNA Learning Center https://youtu.be/8nCMrf-yJq0 1587
Diahan Southard Problems with Shared Centimorgans DNA Learning Center https://youtu.be/k7j-1yWwGcY 2494
Diahan Southard 4 Next Steps for Your DNA Curated Session https://youtu.be/poRyCaTXvNg 3378
Diahan Southard Your DNA Questions Answered Curated Session https://youtu.be/uUlZh_VYt7k 3454
Diahan Southard You Can Do the DNA – We Can Help Tips and Tricks https://youtu.be/V5VwNzcVGNM 763
Diahan Southard What is a DNA Match? Tips and Tricks https://youtu.be/Yt_GeffWhC0 314
Diahan Southard Diahan’s Tips for DNA Matches Tips and Tricks https://youtu.be/WokgGVRjwvk 3348
Diahan Southard Diahan’s Tips for Y DNA Tips and Tricks https://youtu.be/QyH69tk-Yiw 620
Diahan Southard Diahan’s Tips about mtDNA testing Tips and Tricks https://youtu.be/6d-FNY1gcmw 2142
Diahan Southard Diahan’s Tips about Ethnicity Results Tips and Tricks https://youtu.be/nZFj3zCucXA 1597
Diahan Southard Diahan’s Tips about Which DNA Test to Take Tips and Tricks https://youtu.be/t–4R8H8q0U 2043
Diahan Southard Diahan’s Tips about When Your Matches Don’s Respond Tips and Tricks https://youtu.be/LgHtM3nS60o 3009
Diahan Southard Three Next Steps: Using Known Matches Tips and Tricks https://youtu.be/z1SVq8ME42A 118
Diahan Southard Three Next Steps: MRCA/DNA and the Paper Trail Tips and Tricks https://youtu.be/JB0cVyk-Y4Q 80
Diahan Southard Three Next Steps: Start With Known Matches Tips and Tricks https://youtu.be/BSNhaQCNtAo 68
Diahan Southard Three Next Steps: Additional Tools Tips and Tricks https://youtu.be/PqNPBLQSBGY 140
Diahan Southard Three Next Steps: Ancestry ThruLines Tips and Tricks https://youtu.be/KWayyAO8p_c 335
Diahan Southard Three Next Steps: MyHeritage Theory of Relativity Tips and Tricks https://youtu.be/Et2TVholbAE 80
Diahan Southard Three Next Steps: Who to Test Tips and Tricks https://youtu.be/GyWOO1XDh6M 111
Diahan Southard Three Next Steps: Genetics vs Genealogy Tips and Tricks https://youtu.be/Vf0DC5eW_vA 294
Diahan Southard Three Next Steps: Centimorgan Definition Tips and Tricks https://youtu.be/nQF935V08AQ 201
Diahan Southard Three Next Steps: Shared Matches Tips and Tricks https://youtu.be/AYcR_pB6xgA 233
Diahan Southard Three Next Steps: Case Study – Finding an MRCA Tips and Tricks https://youtu.be/YnlA9goeF7w 256
Diahan Southard Three Next Steps: Why Use DNA Tips and Tricks https://youtu.be/v-o4nhPn8ww 266
Diahan Southard Three Next Steps: Finding Known Matches Tips and Tricks https://youtu.be/n3N9CnAPr18 688
Diana Elder Using DNA Ethnicity Estimates in Your Research Tips and Tricks https://youtu.be/aJgUK3TJqtA 1659
Diane Elder Using DNA in a Client Research Project to Solve a Family Mystery 1 hour https://youtu.be/ysGYV6SXxR8 1261
Donna Rutherford DNA and the Settlers of Taranaki, New Zealand Curated Session https://youtu.be/HQxFwie4774 214
Drew Smith Before You Test Basics Part 1 Curated Session https://youtu.be/wKhMRLpefDI 5079
Drew Smith Before You Test Basics Part 2 Curated Session https://youtu.be/Dopx04UHDpo 2769
Drew Smith Before You Test Basics Part 3 Curated Session https://youtu.be/XRd2IdtA-Ng 2360
Elena Fowler Whakawhanaungatanga Using DNA – It’s Complicated (Māori heritage) Curated Session https://youtu.be/6XTPMzVnUd8 470
Elena Fowler Whakawhanaungatanga Using DNA – FamilyTreeDNA (Māori heritage) Curated Session https://youtu.be/fM85tt5ad3A 269
Elena Fowler Whakawhanaungatanga Using DNA – Ancestry (Māori heritage) Curated Session https://youtu.be/-byO6FOfaH0 191
Esmee Mortimer-Taylor Living DNA: Anathea Ring – Her Story Tips and Tricks https://youtu.be/MTE4UFKyLRs 189
Esmee Mortimer-Taylor Living DNA: Coretta Scott King Academy – DNA Results Reveal Tips and Tricks https://youtu.be/CK1EYcuhqmc 82
Fonte Felipe Ethnic Filters and DNA Matches: The Way Forward to Finding Your Lineage Curated Session https://youtu.be/mt2Rv2lpj7o 553
FTDNA – Janine Cloud Big Y: What is it? Why Do I Need It? Curated Session https://youtu.be/jiDcjWk4cVI 2013
FTDNA – Sherman McRae Using DNA to Find Ancestors Lost in Slavery Curated Session https://youtu.be/i3VKwpmttBI 738
Jerome Spears Elusive Distant African Cousins: Using DNA, They Can Be Found Curated Session https://youtu.be/fAr-Z78f_SM 335
Karen Stanbary Ruling Out Instead of Ruling In: DNA and the GPS in Action 1 hour https://youtu.be/-WLhIHlSyLE 548
Katherine Borges DNA and Lineage Societies Tips and Tricks https://youtu.be/TBYGyLHHAOI 451
Kimberly Brown Why Don’t I Match my Match’s Matches DNA Learning Center https://youtu.be/A8k31nRzKpc 4593
Kitty Munson Cooper Basics of Unknown Parentage Research Using DNA Part 1 Curated Session https://youtu.be/2f3c7fJ74Ig 2931
Kitty Munson Cooper Basics of Unknown Parentage Research Using DNA Part 2 Curated Session https://youtu.be/G7h-LJPCywA 1222
Lauren Vasylyev Finding Cousins through DNA Curated Session https://youtu.be/UN7WocQzq78 1979
Lauren Vasylyev, Camille Andrus Finding Ancestors Through DNA Curated Session https://youtu.be/4rbYrRICzrQ 3919
Leah Larkin Untangling Endogamy Part 1 Curated Session https://youtu.be/0jtVghokdbg 2291
Leah Larkin Untangling Endogamy Part 2 Curated Session https://youtu.be/-rXLIZ0Ol-A 1441
Liba Casson-Budell Shining a Light on Jewish Genealogy Curated Session https://youtu.be/pHyVz94024Y 162
Libby Copeland How Home DNA Testing Has Redefined Family History Curated Session https://youtu.be/LsOEuvEcI4A 13,554
Linda Farrell Jumpstart your South African research Curated Session https://youtu.be/So7y9_PBRKc 339
Living DNA How to do a Living DNA Swab Tips and Tricks https://youtu.be/QkbxhqCw7Mo 50
Lynn Broderick Ethical Considerations Using DNA Results Curated Session https://youtu.be/WMcRiDxPy2k 249
Mags Gaulden Importance and Benefits of Y DNA Testing DNA Learning Center https://youtu.be/MVIiv0H7imI 1032
Maurice Gleeson Using Y -DNA to Research Your Surname Curated Session https://youtu.be/Ir4NeFH_aJs 1140
Melanie McComb Georgetown Memory Project: Preserving the Stories of the GU272 Curated Session https://youtu.be/Fv0gHzTHwPk 320
Michael Kennedy What Can You Do with Your DNA Test? DNA Learning Center https://youtu.be/rKOjvkqYBAM 616
Michelle Leonard Understanding X-Chromosome DNA Matching Curated Session https://youtu.be/n784kt-Xnqg 775
MyHeritage How to Analyze DNA Matches on MH Curated Session https://youtu.be/gHRvyQYrNds 1192
MyHeritage DNA – an Overview Curated Session https://youtu.be/AIRGjEOg_xo 389
MyHeritage Advanced DNA Tools Curated Session https://youtu.be/xfZUAjI5G_I 762
MyHeritage How to Get Started with Your DNA Matches Tips and Tricks https://youtu.be/rU_dq1vt6z4 1901
MyHeritage How to Filter and Sort Your DNA Matches Tips and Tricks https://youtu.be/aJ7dRwMTt90 1008
Nicole Dyer How to Interpret a DNA Cluster Chart Tips and Tricks https://youtu.be/FI4DaWGX8bQ 4982
Nicole Dyer How to Evaluate a ThruLines Hypothesis Tips and Tricks https://youtu.be/ao2K6wBip7w 4823
Nicole Dyer Organize Your DNA Matches in a Diagram Tips and Tricks https://youtu.be/UugdM8ATTVo 6175
Nicole Dyer Research in the Southern States Curated Session https://youtu.be/Pouw_yPrVSg 871
Olivia Fordiani Understanding Basic Genetic Genealogy DNA Learning Center https://youtu.be/-kbGOFiwH2s 810
Pamela Bailey Information Wanted: Reuniting an American Family Separated by Slavery Tips and Tricks https://youtu.be/DPCJ4K8_PZw 105
Patricia Coleman Getting Started with DNA Painter DNA Learning Center https://youtu.be/Yh_Bzj6Atck 1775
Patricia Coleman Adding MyHeritage Data to DNA Painter DNA Learning Center https://youtu.be/rP9yoCGjkLc 458
Patricia Coleman Adding 23andMe Data to DNA Painter DNA Learning Center https://youtu.be/pJBAwe6s0z0 365
Penny Walters Mixing DNA with Paper Trail DNA Learning Center https://youtu.be/PP4SjdKuiLQ 2693
Penny Walters Collaborating with DNA Matches When You’re Adopted DNA Learning Center https://youtu.be/9ioeCS22HlQ 1222
Penny Walters Differences in Ethnicity Between My 6 Children DNA Learning Center https://youtu.be/RsrXLcXRNfs 400
Penny Walters Differences in DNA Results Between My 6 Children DNA Learning Center https://youtu.be/drnzW3FXScI 815
Penny Walters Ethical Dilemmas in DNA Testing DNA Learning Center https://youtu.be/PRPoc0nB4Cs 437
Penny Walters Adoption – Background Context Curated Session https://youtu.be/qC1_Ln8WCNg 1054
Penny Walters Adoption – Utilizing DNA Testing to Construct a Bio Family Tree Curated Session https://youtu.be/zwJ5QofaGTE 941
Penny Walters Adoption – Ethical Dilemmas and Varied Consequences of Looking for Bio Family Curated Session https://youtu.be/ZLcHHTSfCIE 576
Penny Walters I Want My Mummy: Ancient and Modern Egypt Curated Session https://youtu.be/_HRO50RtzFk 311
Rebecca Whitman Koford BCG: Brief Step-by-Step Tour of the BCG Website Tips and Tricks https://youtu.be/YpV9bKG6sXk 317
Renate Yarborough Sanders DNA Understanding the Basics DNA Learning Center https://youtu.be/bX_flUQkBEA 2713
Renate Yarborough Sanders To Test or Not to Test DNA Learning Center https://youtu.be/58-qzvN4InU 1048
Rhett Dabling Finding Ancestral Homelands Through DNA Curated Session https://youtu.be/k9zixg4uL1I 505
Rhett Dabling, Diahan Southard Understanding DNA Ethnicity Results Curated Session https://youtu.be/oEt7iQBPfyM 4287
Richard Price Finding Biological Family Tips and Tricks https://youtu.be/L9C-SGVRZLM 101
Robert Kehrer Will They Share My DNA (Consent, policies, etc.) DNA Learning Center https://youtu.be/SUo-jpTaR1M 480
Robert Kehrer What is a Centimorgan? DNA Learning Center https://youtu.be/dopniLw8Fho 1194
Roberta Estes DNA Triangulation: What, Why and How 1 hour https://youtu.be/nIb1zpNQspY 6106
Roberta Estes Mother’s Ancestors DNA Learning Center https://youtu.be/uUh6WrVjUdQ 3074
Robin Olsen Wirthlin How Can DNA Help Me Find My Ancestors? Curated Session https://youtu.be/ZINiyKsw0io 1331
Robin Olsen Wirthlin DNA Tools Bell Curve Tips and Tricks https://youtu.be/SYorGgzY8VQ 1207
Robin Olsen Wirthlin DNA Process Trees Guide You in Using DNA in Family History Research Tips and Tricks https://youtu.be/vMOQA3dAm4k 1708
Shannon Combs-Bennett DNA Basics Made Easy DNA Learning Center https://youtu.be/4JcLJ66b0l4 1560
Shannon Combs-Bennett DNA Brick Walls DNA Learning Center https://youtu.be/vtFkT_PSHV0 450
Shannon Combs-Bennett Basics of Genetic Genealogy Part 1 Curated Session https://youtu.be/xEMbirtlBZo 2263
Shannon Combs-Bennett Basics of Genetic Genealogy Part 2 Curated Session https://youtu.be/zWMPja1haHg 1424
Steven Micheleti, Joanna Mountain Genetic Consequences of the Transatlantic Slave Trade Part 1 Curated Session https://youtu.be/xP90WuJpD9Q 2284
Steven Micheleti, Joanna Mountain Genetic Consequences of the Transatlantic Slave Trade Part 2 Curated Session https://youtu.be/McMNDs5sDaY 742
Thom Reed How Can Connecting with Ancestors Complete Us? Curated Session https://youtu.be/gCxr6W-tkoY 392
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 1 Curated Session https://youtu.be/bB7VJeCR6Bs 5866
Tim Janzen Tracing Ancestral Lines in the 1700s Using DNA Part 2 Curated Session https://youtu.be/scOtMyFULGI 3008
Ugo Perego Strengths and Limitations of Genetic Testing for Family History DNA Learning Center https://youtu.be/XkBK1y-LVaE 480
Ugo Perego A Personal Genetic Journey DNA Learning Center https://youtu.be/Lv9CSU50xCc 844
Ugo Perego Discovering Native American Ancestry through DNA Curated Session https://youtu.be/L1cs748ctx0 884
Ugo Perego Mitochondrial DNA: Our Maternally-Inherited Family History Curated Session https://youtu.be/Z5bPTUzewKU 599
Vivs Laliberte Introduction to Y DNA DNA Learning Center https://youtu.be/rURyECV5j6U 752
Yetunde Moronke Abiola 6% Nigerian: Tracing my Missing Nigerian Ancestor Curated Session https://youtu.be/YNQt60xKgyg 494

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Genealogy Tree Replacement – Should I or Shouldn’t I?

Eventually, every serious genealogist faces the question of tree replacement at vendors – whether they should do it at all, and if so, how to proceed safely.

I’ve started to write this article a couple of times now, but I hesitate to publish articles when I haven’t tried all the different scenarios.

In this case, I haven’t, but I’m sharing what I DO know and why I’ve made the choice I have so that you can do your own research on the rest. Keep in mind that software changes from time to time, so information that you find online about this topic may be stale and it’s always best to confirm with the vendor in question before making a major change.

I use RootsMagic on my computer for my master tree, but I also have trees at Ancestry, MyHeritage, and Family Tree DNA so that I can derive the maximum benefit from those DNA/research platforms. This, of course, leads to the challenge of keeping multiple trees up to date – and the inevitable question of replacing trees.

Why Might You Want to Replace a Tree?

Let’s say you uploaded a tree from your genealogy software on your computer years ago to the various sites and now you’ve made a lot of changes.

Or, let’s say you didn’t want to upload your entire tree originally, so you created an abbreviated tree at the various sites.

Initially, that’s what I did, creating a direct line ancestors-only tree to upload. I had incorporated lots of non-documented information into my tree on my computer over the past many decades and I certainly didn’t want to share information online without verifying. I don’t want to be “THAT” person who spreads bad information, even unintentionally.

Now, let’s say you’ve continued your research and you want to share more than the original tree you uploaded or created at a vendor. You don’t want to update individual trees in 3 or 4 places though.

Or, let’s say that while you originally included an ancestors-only tree, now you want to add children and extend to current so that ThruLines at Ancestry, Theories of Family Relativity at MyHeritage and Phased Family Matching at Family Tree DNA can work more effectively. I uploaded my original “ancestors only” trees before those products were introduced.

What are the effects of deleting an existing tree and uploading a new tree at the various vendors? Should you or shouldn’t you?

Deleting Trees – BAD IDEA

First, if you ARE going to replace your tree, DON’T delete your existing tree first.

Deleting a tree breaks all of the links you’ve established – both to records, connected DNA kits, and some DNA tools. Any notes or groupings will be gone as well. Let’s look at each vendor individually.

Please keep in mind that there may be additional issues that I’m not aware of because I have not personally deleted my primary tree at any vendor.

Ancestry – If you delete an existing tree, your ThruLines will be gone and will likely regenerate differently with a new tree. Of course, that may be part of why you want to upload a new tree. Any documents you’ve saved to people in your existing tree will be gone and the links to those documents as well.

You can, of course, download the documents to your computer one by one. Downloading your tree does NOT download associated documents from Ancestry. Conversely, uploading trees doesn’t either, no matter where you upload it.

You can sync some desktop genealogy software applications with Ancestry. Both RootsMagic and Family Tree Maker synchronize your tree on your desktop with your Ancestry tree. Some software is better suited in synchronizing “both directions” than others. Syncing issues in user groups are quite prevalent.

Warning: I do not sync. If you’re going to try syncing between the two sources, I would recommend experimenting on a tree that is NOT your primary tree either at Ancestry or on your desktop, and reading extensively before attempting. Check user groups for the software in question to see what issues are being encountered. Also, be sure you have a current backup and check that synchronizing worked correctly before proceeding further.

If you delete your tree at Ancestry and upload a new tree, you will need to reconnect your DNA test or tests that you manage under the DNA tab, then the settings gear at right.

You’ll then need to redo any work such as TreeTags, notes, comments or saving records that you’ve already performed.

In essence, you’re uploading a blank slate.

MyHeritage – If you delete an existing tree, your Theories of Family Relativity. any Smart Matches, notes or records will be deleted along with any photos that you’ve linked. Furthermore, your DNA kits associated with people in your tree will lose their names when they become disconnected.

MyHeritage provides free software called Family Tree Builder for your desktop that does synchronize your tree with MyHeritage, including records.

MyHeritage has also collaborated with members of the Church of Jesus Christ of Latter-day Saints (LDS) to import a portion of their tree from FamilySearch into MyHeritage, and keep the trees synchronized.

Caveat: I have not used the Family Tree Builder software or the LDS sync feature.

If you delete your tree and upload a new tree, you’ll need to reconnect your DNA and that of any kits you manage to your tree. In order NOT to lose the names on your kits, do that in reverse order, meaning upload the new tree, reassign the DNA kit to the proper person on the new tree before deleting the old tree.  Beware of same name people when making this assignment.

You can reassign kits under the DNA tab, “Manage DNA kits,” then the three dots at right of the kit you want to reassign.

MyHeritage runs the Theories of Family Relativity (TOFR) algorithm periodically, every few months. You won’t get new TOFR until they run the software again. If you delete your tree, be prepared to wait on TOFR and redo everything you’ve currently done to anyone in your tree.

Just like with Ancestry, you’re uploading a blank slate.

Family Tree DNA – If you delete your tree, links to any DNA tests that you have connected to the appropriate people in your tree will be broken. Assigning family members to their proper place in your tree is required for Family Matching to function.

Family Matching utilizes the DNA of relatives you’ve linked in your tree by comparing in common segment matches between you, them, and other people to identify shared matches as maternal or paternal.

If you delete your tree and upload a new tree, you will need to reconnect your family members under the myTree tab at the top of your page. You can connect matches for the Family Finder autosomal test, Y DNA, and mitochondrial – whichever tests you’ve taken. If you only have a few matches that you’ve linked, relinking is no problem. If you have a lot, it’s more time-consuming.

Beware: Uploading very large trees is problematic due to file size and/or bandwidth. Call support before attempting.

My recommendation would be to include direct line ancestors, their spouses, descendants of those ancestors with spouses, but not unrelated (to you) spouses trees. In other words, your sister-in-law’s family isn’t relevant to your genetic genealogy.

23andMe – 23andMe does not support trees in the traditional sense, so uploading is not possible. You can, however, link to a current public tree that you’ve created elsewhere which can be viewed by your matches. To enter a tree link, look under the settings option (gear), then under “Edit enhanced profile.”

click to enlarge

When providing a link, be sure the tree you link to is public, not private.

Alternatives

At both Ancestry and MyHeritage, which are the two vendors who offer genealogical records and the ability to save records to people in your tree, you can upload multiple trees to the same account, presuming you have a current subscription.

If you don’t have the option to sync through your desktop software, or aren’t comfortable doing so, you can upload a more robust tree, but keep in mind that any records you save to the new tree will be lost if you delete that one in the future too.

If you’re going to upload a new tree, upload the new tree BEFORE deleting the old tree.

Connect any records person by person before deleting the old tree. That way, you don’t have to search for those records all over again.

I would let the old tree sit idle for some time so that you know you’ve retrieved everything. There’s no rush to delete the old tree.

Of course, a third methodology is to maintain multiple trees. That’s actually what I do. Here’s why.

My Methodology

I use the third alternative that certainly isn’t ideal, but I maintain four separate trees. I hear you cringing, but it really isn’t as awful as it sounds – and it’s infinitely better than redoing everything because I’m an active researcher and have thousands of connected records.

  • One tree lives on my computer where I update information and add new people, including speculative – although they are clearly noted as such. I also include massive notes – in some cases much longer than notes fields at vendors typically allow. I download documents to a folder on my computer with that person’s name from all subscription sites. I also write my 52 Ancestor’s articles using documentation from all sites that I compile in one place on my system. I also back up my system religiously, meaning every night, automatically.
  • One tree lives at Ancestry where I add links to my 52 Ancestor stories, save documents found at Ancestry and extend lines as I work on them. I don’t add extensive side branches. I have included all of my direct ancestors for at least 10 generations, or as far back as I can document, along with their children and grandchildren to enable Thrulines and green leaf hints.
  • One tree lives at MyHeritage where I upload and link many photos because I can easily enhance and colorize them and see my ancestors more clearly. I link ancestors in my tree to my published ancestor stories, save documents and use the same approach with the MyHeritage tree that I do with Ancestry, including extending families for my ancestors to enable the formation of Theories of Family Relatively. I methodically work all of my DNA matches and AutoClusters, recording my findings in comments.
  • One tree lives at Family Tree DNA where I include all of my direct line ancestors to about 10 generations. I extend each ancestral branch to include each DNA match as I identify our common ancestor and how my match fits into my tree. At Family Tree DNA, linking each match to the proper place in their tree enables additional people to be assigned as maternal or paternal which is their methodology of triangulation.

Summary – To Replace or Not to Replace?

Yes, I’m painfully aware that maintaining 4 trees is a pain in the patoot, but each vendor, except for 23andMe of course, provides important features that are sacrificed with the deletion and replacement of trees. The more you take advantage of the vendor’s features, the more difficult it is to redo your work.

The only tree I would consider replacing would be the one at Family Tree DNA because there are no genealogy records attached. Genealogy research records are not a business they’re in.

The only useful portion at FamilyTreeDNA is the ancestral line and the branches that descend to other testers and I simply add those branches manually as needed.

Having said that, I would never replace any tree, anyplace, with my “master tree” that lives on my computer system.

If you are considering replacing your tree, particularly at either Ancestry or MyHeritage, I strongly suggest that you contact support at the vendor in question to discuss the ramifications BEFORE you take that step.

Once done, there is no “undo” button, so be sure that you really want to make that decision and proceed in well-thought-out, measured, “no regret” steps.

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books