Wherefore Art Thou, Oh Ancestor? – New Generation Tree Chart Suggests Where to Look in Your Matches’ Trees

When you see a DNA match, do you wonder how far back in your trees your common ancestors live? How do you know where to search?

I’ve been working through my DNA match list person by person, reviewing the information and trees for each match, searching for common ancestors.

Whether you’re looking at individual matches, shared matches, clusters or triangulation groups, trees are essential for finding common ancestors.

My favorite vendor-provided tree is my MyHeritage tree. They’ve done a great job, so I’m using their tree for my examples today.

Here’s the question I’m trying to answer – based on how much DNA I share with someone, how far up that person’s tree, roughly, do I need to look for our most recent common ancestor? And, is there something else I can tell?

Tree Size Matters aka How Far Up the Tree Do I Need to Look?

So, if you click on your matches’ trees, how far up their tree do you need to look for a common ancestor? How many times will you need to click to expand their tree beyond the 4 (Ancestry) or 5 (MyHeritage) generations initially displayed, assuming your match has a tree that size? How far out, meaning how many generations do you need to hope and pray they have extended their tree?

Conversely, how many generations do YOU need to include for your tree to be useful for:

  • Other testers to find common ancestors with you
  • Theories of Family Relativity provided by MyHeritage, suggesting common ancestors with other testers
  • ThruLines at Ancestry
  • Family Matching (bucketing) at FamilyTreeDNA which assigns your matches either maternally or paternally. (Note – FamilyTreeDNA is transitioning their trees to the MyHeritage platform.)

If you’re thinking that the size of YOUR tree doesn’t matter, think again.

Not only can the vendors not help you effectively without a tree – genealogy is a collaborative sport. Other people NEED the generations in your tree to locate your common ancestors, just like you NEED to see as many generations in their tree as possible. The vendors NEED as complete a tree as you can provide to help you further.

DNA+Trees Bulldoze Brick Walls

But maybe the most important aspect is that you NEED trees to break through brick walls – especially in conjunction with DNA and tools like clustering that show you visual images of genetic commonality.

We all need to be team players when we have that option – meaning we know who are ancestors are. Our brick walls can be solved, and you can be a puzzle piece of solving brick walls for others too.

Some of my closest friends and cousins are a direct result of DNA matches and genealogy collaboration over the years. (You know who you are!) I’ve even discovered that several friends are cousins too – which I would never have happened without DNA and trees.

Guidelines for What’s Reasonable

What is a reasonable number of generations to peruse for common ancestors?

The answer is – it depends! (I’m sorry…)

Let’s sort through this.

Given that, on AVERAGE, inherited autosomal DNA from a particular ancestor is halved in each successive generation during recombination between the parents, we can calculate the expected average. However, in reality – DNA isn’t always halved. Sometimes segments are passed intact, divided but not in half, or not inherited at all. That’s why you may not match some third cousins, but match some 7th cousins. Random recombination is, in fact, random.

Every segment has its own individual history.

That’s part of the reason we use triangulation, to confirm that a specific segment originated with a particular couple or ancestral line.

Here are a few rules of thumb, with links to articles that explain the various terms and concepts:

  • There are no known instances of second cousins or closer NOT matching.
  • Some (but not all) people find their common ancestor in the first 5 or 6 generations.
  • Many people have proven, triangulated matches to the 10th generation, but those are more difficult to prove, often due to incomplete trees (brick walls) at that distance on either your side, your match’s side, or both. I have no brick walls at 5 generations, counting my parents as generation 1, but I have 6 female brick walls in the 6th generation.
  • If you’re lucky, you can spot your common ancestral surname on the first page of your match’s tree – and follow that line back. Note that there may be additional common ancestors, so view each of their lines to the end. The MyHeritage tree makes this super easy!
  • Pedigree collapse, where you, and/or the other person share multiple lines, known or unknown, is a complicating factor. Pedigree collapse often means you share more DNA than would be expected for a specific relationship.
  • Endogamy, which is pedigree collapse on steroids, is real and will cause many smaller matches.
  • Based on the number of distant versus close cousins you have, you will have MANY more smaller matches than larger ones.
  • And last, but not least, some matches, especially smaller ones, are identical by chance (IBC), not identical by descent (IBD).

All of that said, we can estimate the number of generations back in our matches’ trees where we might need to look for that common ancestor.

As I’ve been reviewing all of my matches, I realized that I can look at the match cM size and mentally size up just about where in their tree I will find our common ancestor. In essence, I’ve “bottled that” for you, here.

Using Trees Effectively

One of the reasons I love the MyHeritage tree is that as you need to click further back in trees beyond the generations initially displayed, which occurs often – the next generations open to the right, the earlier generations just shift left and they all remain visible.

I know that might not sound important, but it is – incredibly – especially when you’re evaluating several matches. Otherwise, it’s easy to lose track of where you are in someone’s tree. I have 9 generations open, above, and I can just keep going – with the more recent generations just shifting left.

But there’s more!

When viewing matches’ trees, I can also click on anyone in their tree, and a profile box opens to the left with additional information about that person, leaving the tree open so I don’t lose my place and have to click around to find it again. I can’t even begin to tell you how wonderful this is, and it’s unique to MyHeritage. You can tell the MyHeritage tree was designed by actual genealogists.

This feature is incredibly useful because many, if not most, of the common ancestors with your matches will be beyond the first page displayed.

Thank you, thank you, MyHeritage!!!

Estimating the Number of Generations by the Amount of Shared DNA

How far up the tree you’ll need to look can be estimated by the amount of DNA that you share with a particular match.

Vendors estimate the relationship of DNA matches by either the percentage of shared DNA or the number of shared centimorgans (cMs), but there’s no quick reference to show you, generationally, where to focus in you and your matches’ trees for your common ancestor.

That’s the handy reference Generation Tree Chart that I’ve created here.

In the article, Shared cM Project 2020 Analysis, Comparison and Handy Reference Charts, I compiled information from multiple sources into one chart detailing HOW MUCH DNA can be expected to be shared at various relationship levels. Shared cM Project information is also visualized at DNAPainter

What I need to know now, though, isn’t an estimate of how closely we are related, but how many generations back to look for our common ancestor in my and their trees.

As I’m clicking through my matches, the majority, by far, are smaller than larger. That makes sense, of course, because we have many more distant relatives than close relatives.

At FamilyTreeDNA, I have 8758 matches who are not immediate or close family.

Number of Matches Relationship Range cM Range
10 Half-1C and 1C1R 318-637 cM
4 2C and equivalent 159-318 cM
7 Between 2C-3C, such as half-2C 80-159 cM
79 3C and equivalent 40-80 cM
814 3C-4C and equivalent 20-40 cM
7548 4C and equivalent 9-20 cM
293 Below 4C and equivalent 7-9 cM

I know the people in the first two categories and some of the people in the third category, but the genetic/ancestral scavenger hunt begins there.

All Cousins Are Not Equivalent

You’re probably wondering about the word “equivalent.” Genetically, people of different relationships carry the same amount of expected DNA. We not only have 5th cousins (5C), for example, we have:

  • Half-fifth-cousins
  • Fifth-cousins-once-removed (5C1R)
  • Fifth-cousins-twice-removed (5C2R)
  • And so forth

I wrote about determining cousin relationships, meaning halves and removed,here.

Genetically speaking, a 5C2R carries the same expected amount of shared DNA as a 6C, so they are functional equivalents. How do we resolve this and where do we look in our trees for our common ancestors?

I’m so glad you asked!

Where Do Various Cousin Levels Fall in My Tree?

We know that first cousins share grandparents, but as we get further back in our tree, it’s difficult to remember or calculate how many generations back a 6th cousin is in our tree.

I’ve used my MyHeritage tree to display 1st through 10th cousins, labeled in red, and the generation number they represent, in black. So, my common ancestors with my second cousins are found 3 generations out in my tree.

Making things more challenging, however, is that unless we know the match already, we’re trying to figure out how closely the match is actually related to us based on their DNA. Not all cousins of any level share the same amount of DNA, so the best vendors can do is provide an estimate or relationship range.

To determine our actual relationship, we need to find our most recent common ancestor.

Where, approximately, in my tree would I look for each category of match, especially that huge group of 7548 people?

Good question!

The Generation Tree Chart is Born

I needed a quick reference for approximately how many generations back in time our common ancestors existed by how much DNA we share, so I know how far back in someone’s tree I need to look.

I’ve reorganized the data from my earlier articles and created a new resource.

The Generation Tree Chart

The Generation Tree Chart:

  • Is not meant to identify parents or close relatives.
  • Does not include parents or grandparents.
  • Counts your parents as generation 1. Some people count themselves as generation 1. If you’re discussing this table, keep in mind that you may be one generation “off” in your discussions with someone who counts differently.
  • This chart clusters the relationships according to color, based on how much DNA people of that relationship are expected to share. For example, a first-cousin-twice-removed (1C2R) shares the same expected amount of DNA with you as a second-cousin (2C).
  • All cousin relationships that are expected to share the same amount of DNA are in the same color band.
  • If you’re using this chart with Ancestry’s numbers, use the unweighted (pre-Timber) amount of DNA.

The colored bands correlate to shared DNA, but the shared ancestor isn’t necessarily the same generation back in time.

This is my “show your work” chart. You’ll notice a few things.

  • The “Avg % Shared” column is the amount of shared DNA expected based on a 50% division (recombination) in each generation, which almost never happens exactly.
  • The “Expected cM” column is the expected cM amount based a 50% division in each generation.
  • I’ve incorporated the DNAPainter mean, low and high range for each relationship.
  • The expected number of shared cMs, in the “Expected cM” column is almost always smaller than the “cM Mean” from DNAPainter. The mean is the midpoint reported in the Shared cM Project for all respondents of that relationship who reported their shared DNA – minus the outliers.

This fact that reported is often significantly higher than expected is particularly interesting. In the closer generations, it doesn’t really matter, but beginning about the 6th blue band and the 7th red band in the chart, the mean is often twice the expected amount.

Remember that DNAPainter numbers are based on the Shared cM Project which relies on user-reported relationships and their associated cM match amounts. You can view Blaine Bettinger’s paper about the most recent Shared cM Project version (2020) and his methodologies here.

My theory is that the more distantly people match, the less likely they are to report the relationship accurately. They may be reporting the relationship they believe to be accurate, life a full versus a half cousin, but that’s not actually the case. It’s also possible that there are multiple unknown relationships or pedigree collapse, or both.

Furthermore, from the red band to the end of the chart, the reported amounts are significantly higher than expected, which is probably a function, in part, of “all or nothing” segment transmission. In other words, if someone’s parent carries a 10 cM segment, you’re probably going to inherit all of it or none of it. If it’s actually divided to 5 and 5 cM, you’re not going to see it on any match list.

In my case, I have several 8 cM triangulated matches who descend from common Dodson ancestors whose descendants intermarried a couple of generations later. Therefore, these matches are, respectively, both my 6C2R and 7C3R from the same line (20 cM total match), two matches at 6C1R (66 cM and 19 cM), and one 6C (51 cM). These people also triangulate on multiple segments. Given the high amount of shared DNA for this relationship level, I suspect additional pedigree collapse someplace. At least one person also matches on an unrelated line that I never realized before doing this match-by-match analysis, which opens up new possibilities.

Next, the meat of this chart.

  • The “Generations Back in Tree” column shows where your common ancestor with someone in that cousin generation would be expected. For example, in the first three bands, all of the first cousin variants are found two generations back, and your grandparents are your common ancestors.

All of the 2C variants descend through great-grandparents, which are 3 generations back in your tree.

Plase note that you can easily find the amount of DNA that you share with a match in the “Expected cM” and “Mean” Columns, and look to the right to see the Generations Back in Tree. 

For example, if I have a match where I share 20 cM of DNA, I’m going to be looking between the red band and the second white band. The generations back in tree range from 4-6, or the common ancestor could potentially be further back. In other words, if I’m lucky, I’ll spot common ancestors on the first tree page displayed, but I may well need to display additional generations.

  • The “Common Ancestors” column displays the common ancestor with anyone in that cousin generation. So, anyone in any variation of 3C shares great-great-grandparents with you.
  • “How Many” shows how many great-great-grandparents you have – 8.

Color Bands and Generations

Color bands represent the same amount of expected DNA, but the various relationships that are included in those bands represent at least two different “Generations Back in Tree.”

For example, looking at the green band, the half 1C3R will be found in the grandparents generation, or generation 2, the 2C2R and half 2C1R are in the great-grandparents, or generation 3, and the 3C is found in the great-great-grandparents, or generation 4.

Where I really needed this chart, though, was in the more distant generations. While we are clearly dealing with a range, if I see a match with 11 or 12 cM, our common ancestor is nearly always at least 6 generations out, and often more.

The Net-Net of This Exercise

The majority of my matches, 7548, fall into the red band of 9-20 cM, which should be the 4th or 5th generation, either great-great or GGG-grandparents, but in reality, common ancestors will often be found more distantly in matches’ trees.

Most of your matches will be 20 cM or below, meaning they are at least 4/5 generations distant, or further – which translates to NOT the first tree page displayed. This why using the MyHeritage tree is so convenient, because when you click to the next generations, they just open and it’s VERY easy to quickly click and expand every generation with no back-clicking needed. Tip – when viewing profile cards for their ancestors, be sure to note locations which are important hints too. You can also click to “research this person.”

If your match doesn’t have a tree developed to at least 5 generations, it’s unlikely that you will be able to find a common ancestor for someone with less than a 20 cM match. However, all is not lost because you may recognize a surname, and if you build out the tree for your match, you may find your common ancestor. I build out my matches’ trees often! (Yes, it’s painful and irritating, but just do it! After all, we’re genealogists. We got this.)

For people with smaller cM matches, you may be looking even further out. I have some solid triangulated matches with multiple people at 6 and 7 generations..

The further out in time, the more triangulated people you need to be confident that your common ancestor who contributed that segment is identified correctly. At that distance, most people will have dead end lines and brick walls, probably yourself included.

However, my research methodology has the potential to break through brick walls.

Brick Walls Breakers

When I’m working on match and triangulation clusters, not only am I looking for MY known ancestors, I’m also looking for common surnames, or more specifically, common ancestors between my matches trees.

In some cases, common ancestors only mean that I’m viewing first cousins to each other, but in other cases, those common ancestors between my matches, but not me, MAY POINT DIRECTLY TO A MISSING BRICK WALL ancestor of mine.

Another hint that this might be the case is when the shared cMs seem high relative to how far back your common identified ancestor is in your tree – which is the case with my Dodson cluster. There may be a second relationship obscured there, especially if they match each other more “normally” and it’s only my matches that are higher than expected with multiple people in this cluster.

Research Methodology

If you’re wondering how I approach this process, I use a spreadsheet organized by triangulation cluster because everyone in a triangulation cluster matches each other on a particular segment. This means that the triangulated segment comes from a common ancestor (or is idencal by chance.) Each match has it’s own row in the cluster on my spreadsheet.

This spreadsheet could also be organized by shared match or matrix cluster, but I prefer smaller triangulation clusters where everyone matches each other and me on the same segment – because it points to ONE shared souce of the DNA – meaning one ancestor or ancestral couple.

I downloaded my match list at FamilyTreeDNA where I can see which matches are assigned either maternally or paternally based on identified, linked relationships, and who matches on the same segments. I used that spreadsheet as the foundation of this spreadsheet, but I could also add people who match on that segment and triangulate from other vendors who provide matching segment information, such as MyHeritage.

Using my Dodson example group, this group of people above, on my father’s side, hence the blue color, also triangulates on other segments. Other clusters are significantly larger, with around 50 cluster members.

One person, JA, descends from Dodson cousins who intermarried, which is pedigree collapse, so they may carry more Dodson/Durham DNA than they would otherwise.

If someone has a small tree, I often use traditional genealogy resources to expand their tree if I recognize a surname.

I track my other ancestors’ surnames that I notice in their trees, which provides a clue for additional ancestors. Of course, common surnames sometimes aren’t useful. However, one match, JC, found in this group is a proven Crumley line cousin who has colonial Virginia ancestors, but no prior knowledge of a Dodson/Durham line – so this could be a HUGE hint for one of JC’s brick walls.

This example cluster from my mother’s side includes my mother, who I haven’t listed, and also RM, a known second cousin who I tested. Based on his known common ancestors with me, I know immediately that these segment matches all track to John David Miller and Margaret Elizabeth Lentz, or beyond. Sure enough DW has a tree where our common ancestor is David Miller, father of John David Miller, and TK is related to DW based on an obituary. So far, we know this segment originated with David Miller and his wife, Catherine Schaeffer, but we don’t know if the segment originated with the Miller or Schaeffer parent.

One additional cluster member shows a Cyrus Miller out of Pennsylvania and my initial attempt at extending their tree using WikiTree, MyHeritage and Ancestry to find a common ancestor was not fruitful, but a deep dive might well produce more, or the common ancestor could reach back into Europe.

As new people test and match, I can add them to the spreadsheet in the clusters where they fit.

Summary Generation Tree Chart

Here’s a summary version of the Generation Tree Chart for you to use, without the cM high and low ranges, and without the red boxes. This is the one I use the most.

Here’s the full chart, including the ranges, but with no red boxes.

The Bottom Line

To derive the most benefit, we all need to develop our trees as far as possible, and share with others. A rising tide lifts all ships!

It’s impossible to identify common ancestors without trees, which means it’s also impossible to use genetic genealogy to break through brick walls.

Please check your trees at the various vendors, if you have multiple trees, and at WikiTree, to be sure you’ve added your most distant known ancestor in each line.

Link your known relatives to their position in your tree at FamilyTreeDNA, which allows them to triangulate behind the scenes and assign (bucket) your matches either maternally or paternally on your match list.

What new information is waiting for you in your matches? Do you have brick walls that need to fall?

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the affiliate links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Discover’s Ancient Connections – How Are You Related?

When FamilyTreeDNA released the new Mitotree, they also introduced their new mtDNA Discover tool, which is a series of 13 reports about each haplogroup, including one titled Ancient Connections.

Ancient Connections shows you ancient relatives from your direct matrilineal line through a mitochondrial DNA test or through a Y-DNA (preferably Big Y-700) test.

Ancient Connections help you connect the present to the past based on archaeological excavations around the world and DNA sequencing of remains. Ancient Connections links you through your DNA to ancient people, cultures, and civilizations that would be impossible to discover any other way. You don’t have to wonder if it’s accurate, or which line it came from, because you know based on the test you took. Discover’s Ancient Connections track the journey of your ancestors and relatives.

Ancient Connections can be very exciting – and it’s easy to get swept away on a wave of jubilation.

Are those people your ancestors, or relatives, or what? How do you know? How can you figure it out?

So let me just answer that question generally before we step through the examples, so you can unveil your own connections.

  • You are RELATED to both Ancient and Notable Connections. Notable Connections are famous or infamous people who have lived more recently, and their relatives have been tested to identify their haplogroups.
  • It’s VERY unlikely that Ancient Connections are your direct ancestors – but someone in the line that you share IS your ancestor.
  • Many factors enter into the equation of how you are related, such as the haplogroup(s), the timeframe, and the location.
  • The sheer number of people who were living at any specific time makes it very unlikely that any one person with that haplogroup actually was your direct ancestor. They are much more likely to be your distant cousin.

Factors such as whether you share the same haplogroup, similar locations, and the timeframe make a huge difference. Everyone’s situation is different with each Ancient Connection.

Ok, are you ready for some fun???

Let’s find out how to leverage these tools.

Ancient Connections

Ancient connections are fun and can also be quite useful for genealogy.

In this article, I’m going to use a mitochondrial DNA example because full sequence testers at FamilyTreeDNA just received their new Mitotree haplogroup. mtDNA Discover was released with Mitotree, so it’s new too. However, the evaluation process is exactly the same for Y-DNA.

Everyone’s results are unique, so your mileage absolutely WILL vary. What we are going to learn here is a step-by-step analytical process to make sure you’re hearing the message from your ancestors – and interpreting it correctly.

To learn about your new mitochondrial DNA haplogroup and haplotype, read the articles:

Radegonde Lambert

Let’s start with an Acadian woman by the name of Radegonde Lambert. She’s my ancestor, and I wrote about her years ago in the article, Radegonde Lambert (1621/1629-1686/1693), European, Not Native.

At the time, that article caused a bit of a kerfluffle, along with the article, Haplogroup X2b4 is European, Not Native American, because Radegonde’s X2b4 haplogroup had been interpreted by some to mean that her matrilineal ancestors were Native American.

That often happens when a genealogical line abruptly ends and hits a brick wall. What probably began with “I wonder if…”, eventually morphed into “she was Native,” when, in fact, she was not. In Radegonde’s case, it didn’t help any that her haplogroup was X2b4, and some branches of base haplogroup X2 are in fact Native, specifically X2a, However, all branches of X2 are NOT Native, and X2b, which includes X2b4, is not.

The Acadians were French people who established a colony in what is now Nova Scotia in the 1600s. They did sometimes intermarry with the Native people, so either Native or European heritage is always a possibility, and that is exactly why DNA testing is critically important. Let’s just say we’ve had more than one surprise.

I always reevaluate my own work when new data becomes available, so let’s look to see what’s happening with Radegonde Lambert now, with her new haplogroup and mtDNA Discover.

Sign on and Identify Your Haplogroup

You can follow along here, or sign on to your account at FamilyTreeDNA.

The first step is to take note of your new Mitotree haplogroup.

Your haplogroup badge is located near the bottom right of your page after signing in.

The tester who represents Radegonde Lambert has a Legacy Haplogroup of X2b4 and has been assigned a new Mitotree haplogroup of X2b4g.

Click Through to Discover

To view your personal Discover information, click on the Discover link on your dashboard.

You can simply enter a haplogroup in the free version of mtDNA Discover, but customers receive the same categories, but significantly more information if they sign in and click through.

You can follow along on the free version of Discover for haplogroups X2b4 here, and X2b4g here.

Clicking on either the Time Tree, or the Classic Tree shows that a LOT has changed with the Mitotree update.

Each tree has its purpose. Let’s look at the Classic Tree first.

The Classic Tree

I like the Classic Tree because it’s compact, detailed and concise, all in one. Radegonde Lambert’s new haplogroup, X2b4g is a subgroup of X2b4, so let’s start there.

Click on any image to enlarge

Under haplogroup X2b4, several countries are listed, including France. There are also 7 haplotype clusters, which tell you that those testers within the cluster all match each other exactly.

It’s worth noting that the little trowels (which I thought were shovels all along) indicate ancient samples obtained from archaeological digs. In the Discover tools, you’ll find them under Ancient Connections for that haplogroup. We will review those in a minute.

In Mitotree, haplogroup X2b4 has now branched several granular and more specific sub-haplogroups.

Radegonde Lambert’s new haplogroup falls below another new haplogroup, X2b4d’g, which means that haplogroup X2b4d’g is now the parent haplogroup of both haplogroups X2b4d and X2b4g. Both fall below X2b4d’g.

Haplogroup names that include an apostrophe mean it’s an umbrella group from which the two haplogroups descend – in this case, both X2b4d and X2b4g. Apostrophe haplogroups like X2b4d’g are sometimes referred to as Inner Haplogroups.

You can read more about how to understand your haplogroup name, here.

In this case, haplogroup X2b4d’g is defined by mutation G16145A, which is found in both haplogroups X2b4d and X2b4g. Both of those haplogroup have their own defining mutations in addition to G16145A, which caused two branches to form beneath X2b4d’g.

You can see that Radegonde Lambert’s haplogroup X2b4g is defined by mutation C16301T, but right now, that really doesn’t matter for what we’re trying to accomplish.

In descending order, for Radegonde, we have haplogroups:

  • X2b4
  • X2b4d’g
  • X2b4g

Your Match Page

Looking at the tester’s match page, Radegonde’s haplotype cluster number and information about the cluster are found below the haplogroup. You can view your cluster number on:

  • Your match page
  • The Match Time Tree beside your name and those of your matches in the same haplotype cluster
  • The Scientific Details – Variants page

I wrote about haplotype clusters, here.

Click on any image to enlarge

On your match page, which is where most people look first, you are in the same haplogroup and haplotype cluster with anyone whose circle is also checked and is blue. If the little circles are not checked and blue, you don’t share either that haplogroup, haplotype cluster, or haplogroup and haplotype cluster. If you share a haplotype cluster, you will always share the same haplogroup.

Haplotype clusters are important because cluster members match on exactly the same (but less stable) mutations IN ADDITION to haplogroup-defining (more stable) mutations.

However, you may also share an identifiable ancestor with people in different haplotype clusters. Mutations, and back mutations happen – and a lot more often at some mutation locations, which is why they are considered less stable. Normally, though, your own haplotype cluster will hold your closest genealogical matches.

In Discover, you can see that Radegonde’s haplotype cluster, F585777, displays three tester-supplied countries, plus two more. Click on the little plus to expand the countries.

What you’re viewing are the Earliest Known Ancestor (EKA) countries that testers have entered for their direct matrilineal ancestor.

Let’s hope they understood the instructions, and their genealogy information was accurate.

Notice that Canada and France are both probably quite accurate for Radegonde, based on the known history of the Acadians. There were only French and Native women living in Nova Scotia in the 1600s, so Radegonde had to be one or the other.

The US may be accurate for a different tester whose earliest known ancestor (EKA) may have been found in, say, Louisiana. Perhaps that person has hit a brick wall in the US, and that’s all they know.

The US Native American flag is probably attributable to the old “Native” rumor about Radegonde, and the tester didn’t find the Canadian First Nations flag in the “Country of Origin” dropdown list. Perhaps that person has since realized that Radegonde was not Native and never thought to change their EKA designation.

The little globe with “Unknown Origins” is displayed when the tester doesn’t select anything in the “Country of Origin.”

Unfortunately, this person, who knew when Radegonde Lambert lived, did not complete any additional information, and checked the “I don’t know this information” box. Either Canada, or France would have been accurate under the circumstances. If they had tracked Radegonde back to Canada and read about her history, they knew she lived in Canada, was Acadian, and therefore French if she was not Native. Providing location information helps other testers, whose information, in turn, helps you.

Please check your EKA, and if you have learned something new, PLEASE UPDATE YOUR INFORMATION by clicking on the down arrow by your user name in the upper right hand corner, then Account Settings, then Genealogy, then Earliest Known Ancestors.

Don’t hesitate to email your matches and ask them to do the same. You may discover that you have information to share as well. Collaboration is key.

Radegonde’s Discover Haplogroup

First, let’s take a look at Radegonde’s haplogroup, X2b4g, in Discover.

The Discover Haplogroup Story landing page for haplogroup X2b4g provides a good overview. Please READ this page for your own haplogroup, including the little information boxes.

The history of Radegonde’s haplogroup, X2b4g, is her history as well. It’s not just a distant concept, but the history of a woman who is the ancestor of everyone in that haplogroup, but long before surnames. Haplogroups are the only way to lift and peer behind the veil of time to see who our ancestors were, where they lived, and the cultures they were a part of.

We can see that Radegonde’s haplogroup, X2b4g, was born in a woman who lived about 300 CE, Common (or Current) Era, meaning roughly the year 300, which is 1700 years ago, or 1300 years before Radegonde lived.

  • This means that the tester shares a common ancestor with everyone, including any X2b4g remains, between now and the year 300 when haplogroup X2b4g was born.
  • This means that everyone who shares haplogroup X2b4g has the same common female ancestor, in whom the mutation that defines haplogroup X2b4g originated. That woman, the common ancestor of everyone in haplogroup X2b4g, lived about the year 300, or 1700 years ago.
  • Your common ancestor with any one individual in this haplogroup can have lived ANYTIME between very recently (like your Mom) and the date of your haplogroup formation.
  • Many people misinterpret the haplogroup formation date to mean that’s the date of the MRCA, or most recent common ancestor, of any two people. It’s not, the haplogroup formation date is the date when everyone, all people, in the haplogroup shared ONE ancestor.
  • The MRCA, or most recent common ancestor, is your closest ancestor in this line with any one person, and the TMRCA is the “time to most recent common ancestor.” It could be your mother, or if your matrilineal first cousin tested, your MRCA is your grandmother, and the TMRCA is when your grandmother was born – not hundreds or thousands of years ago.
  • Don’t discount mitochondrial DNA testing by thinking that your common ancestor with your matches (MRCA) won’t be found before the haplogroup birth date – the year 300 in Radegonde’s case. The TMRCA for all of Radegonde’s descendants is about 1621 when she was born.
  • The haplogroup birth date, 1700 years ago, is the common ancestor for EVERYONE in the haplogroup, taken together.
  • Mitochondrial DNA is useful for BOTH recent genealogy and also reveals more distant ancestors.
  • Looking back in time helps us understand where Radegonde’s ancestors lived, which cultures they were part of, and where.

There are two ways to achieve that: Radegonde’s upstream or parent haplogroups, and Ancient Connections.

Parent Haplogroups

X2b4g split from X2b4d’g, the parent haplogroup of BOTH X2b4d and X2b4g, around 3700 years ago, or about 1700 BCE (Before Common (or Current) Era).

Looking at either the Classic Tree, the Time Tree (above) or the Match Time Tree, you can see that haplogroup X2b4g has many testers, and none provide any locations other than France, Canada, the US, unknown, and one Native in the midst of a large haplotype cluster comprised of French and Canadian locations. Due to the size of the cluster, it’s only partially displayed in the screen capture above.

You can also see that sister haplogroup X2b4d split from X2b4d’g around the year 1000, and the ancestors of those two testers are reported in Norway.

Many, but not all of the X2b4g testers are descendants of Radegonde. Even if everyone is wrong and Radegonde is not French, that doesn’t explain the other matches, nor how X2b4g’s sister haplogroup is found in Norway.

Clearly, Radegonde isn’t Native, but there’s still more evidence to consider.

Let’s dig a little deeper using Radegonde’s Ancient Connections.

Ancient Connections

While ancestor and location information are user-provided, Ancient Connections are curated from scientifically published papers. There’s no question about where those remains were found.

When signed in to your account, if you’ve taken the mtFull Sequence test, clicking on the Ancient Connections tab in Discover shows a maximum of around 30 Ancient Connections. If you’re viewing the free version of Discover, or you’ve only tested at the HVR1 or HVR1+HVR2 levels, you’ll see two of your closer and one of your most distant Ancient Connections. It’s easy to upgrade to the mtFull.

In Discover, the first group of Ancient Connections are genetically closest to you in time, and the last connections will be your most distant. Some connections may be quite rare and are noted as such.

Please keep in mind that oldest, in this case, Denisova 8 and Sima de los Huesos, will never roll off your list. However, as new studies are released and the results are added to the tree, you may well receive new, closer matches. New results are being added with each Discover update.

It’s very exciting to see your Ancient Connections, but I need to say three things, loudly.

  1. Do NOT jump to conclusions.
  2. These remains are probably NOT YOUR ANCESTORS, but definitely ARE your distant cousins.
  3. Ancient Connections ARE wonderful hints, especially when taken together with each other and additional information.

It’s VERY easy to misinterpret Ancient Connections because you’re excited. I’ve done exactly that. To keep the assumption monster from rearing its ugly head, I have to take a breath and ask myself a specific set of questions. I step through the logical analysis process that I’m sharing with you.

The first thing I always want to know is where the genetically closest set of remains was found, when, and what we know about them, so let’s start there. Keep in mind that the closest remains genetically may not be the most recent set of remains to have lived. For example, my own haplogroup will be the closest genetically, but that person may have lived 2000 years ago. An Ancient Connection in a more distant haplogroup may have lived only 1000 years ago. The closest person genetically is NOT the same as the person who lived the most recently.

Our tester, Radegonde’s descendant, has no Ancient Connections in haplogroup X2b4g or X2b4d’g, but does have two in haplogroup X2b4, so let’s start there.

Discover provides a substantial amount of information about each set of ancient remains. Click on the results you want to view, and the information appears below.

Radegonde’s first Ancient Connection is Carrowkeel 534. The graphic shows the tester, the Ancient Connection being viewed, and their shared ancestor’s haplogroup. In this case, the shared ancestor haplogroup of Carrowkeel 534 and the tester is X2b4, who lived about 5000 years ago.

It’s very easy to look at Carrowkeel 534, become smitten, and assume that this person was your ancestor.

By Shane Finan – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35098411

It’s especially easy if you WANT that person to be your ancestor. Carrowkeel 534 was buried in a passage tomb in County Sligo, Ireland. I’ve been there.

However, don’t let your emotions get involved – at least not yet.

This is the first example of the steps that determine that these remains are NOT YOUR ANCESTOR.

  • Carrowkeel 534 was a male, and we all know that males do not pass on their mitochondrial DNA. Well, that’s an inconvenient fact.😊
  • There are two sets of X2b4 remains in Ancient Connections. Carrowkeel 534 remains are about 4600-5000 years old, and your common ancestor with them lived about 5000 years ago. However, Radegonde was French and migration from Ireland to France is not typical.
  • The other set of X2b4 remains, Ladoga 16, lived more recently, between the years of 900 and 1200 (or 800-1100 years ago), but they are found in Russia.
  • Radegonde’s parent haplogroup, X2b4d’g was born about 3700 years ago, which excludes the Russian remains from being Radegonde’s direct ancestor.
  • Radegonde’s common ancestor with both these sets of remains lived about 5000 years ago, but these remains were not found even close to each other.

In fact, these remains, if walking, are about 3299 km (2049 miles) apart, including two major water crossings.

  • Given that Radegonde is probably French, finding her ancestor around 5000 years ago in an Irish passage tomb in County Sligo, or in a location east of St. Petersburg, is extremely unlikely.

What IS likely, though, is that X2b4d’g descendants of your common ancestor with both sets of remains, 5000 years ago, went in multiple directions, meaning:

  • Radegonde’s ancestor found their way to France and along the way incurred the mutations that define X2b4d’g and X2b4g by the year 1600 when she lived, or about four hundred years ago.
  • Another X2b4 descendant found their way to what is today Ireland between 4600 and 5000 years ago
  • A third X2b4 descendant found their way to Russia between 800-1100 years ago, and 5000 years ago

If any question remains about the genesis of Radegonde’s ancestors being Native, Ancient Connections disproves it – BUT – there’s still an opportunity for misunderstanding, which we’ll see in a few minutes.

Ancient Connections Analysis Chart

I’ve created an analysis chart, so that I can explain the findings in a logical way.

Legend:

  • Hap = Haplogroup
  • M=male
  • F=female
  • U=unknown

Please note that ancient samples are often degraded and can be missing important mutations. In other words, the tree placement may be less specific for ancient samples. Every ancient sample is reviewed by FamilyTreeDNA’s genetic anthropologist before it’s placed on the tree.

Ancient samples use carbon dating to determine ages. Sometimes, the carbon date and the calculated haplogroup age are slightly “off.” The haplogroup age is a scientific calculation based on a genetic clock and is not based on either genealogy or ancient burials. The haplogroup age may change as the tree matures and more branches are discovered.

I’m dividing this chart into sections because I want to analyze the findings between groups.

The first entry is the earliest known ancestor of the current lineage – Radegonde Lambert, who was born about 1621, or roughly 400 years ago. I’ve translated all of the years into “years ago” to avoid any confusion.

If you wish to do the same, with CE (Current or Common Era) dates, subtract the date from 2000. 300 CE= (2000-300) or1700 years ago. With BCE dates, add 2000 to the BCE number. 1000 BCE= (1000+2000) or 3000 years ago.

Connection Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada -Acadian X2b4g 1700 X2b4 5000
Carrowkeel 534 (M) 4600-5100 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
  • Age Years Ago – When the Ancient Connection lived
  • Hap Age Years Ago – When the haplogroup of the Ancient Connection (X2b4) originated, meaning was born
  • Shared Hap Age Years Ago – When the Shared Ancestor of everyone in the Shared Haplogroup originated (was born)

In this first section, the haplogroup of the Ancient Connections and the Shared Haplogroup is the same, but that won’t be the case in the following sections. Radegonde Lambert’s haplogroup is different than her shared haplogroup with the Ancient Connections.

Let’s assume we are starting from scratch with Radegonde.

The first question we wanted to answer is whether or not Radegonde is European, presumably French like the rest of the Acadians, or if she was Native. That’s easy and quick.

Native people crossed Beringia, arriving from Asia someplace between 12,000 and 25,000 years ago in multiple waves of migration that spread throughout both North and South America.

Therefore, given that the first two samples, Carrowkeel 534 and Ladoga 16, share haplogroup X2b4, an upstream haplogroup with Radegonde Lambert, and haplogroup X2b4 was formed around 5000 years ago, the answer is that Radegonde’s X2b4 ancestor, whoever that was, clearly lived in Europe, NOT the Americas.

According to Discover, Haplogroup X2b4:

  • Was formed about 5000 years ago
  • Has 16 descendant haplogroups
  • Has 29 unnamed lineages (haplotype clusters or individuals with no match)
  • Includes testers whose ancestors are from 23 countries

The Country Frequency map shows the distribution of X2b4, including all descendant haplogroups. Please note that the percentages given are for X2b4 as a percentage of ALL haplogroups found in each colored country. Don’t be misled by the relative physical size of the US and Canada as compared to Europe.

The table view shows the total number of self-identified locations of the ancestors of people in haplogroup X2b4 and all downstream haplogroups.

The Classic Tree that we looked at earlier provides a quick view of X2b4, each descendant haplogroup and haplotype cluster, and every country provided by the 331 X2b4 testers.

For the X2b4 Ancient Connections, we’ve already determined:

  • That Radegonde’s ancestors were not Native
  • Carrowkeel 534 is a male and cannot be Radegonde’s ancestor. It’s extremely likely that Carrowkeel 534’s mother is not Radegonda’s ancestor either, based on several factors, including location.
  • Based on dates of when Ladoga 16 lived, and because he’s a male, he cannot be the ancestor of Radegonde Lambert.

Radegonda’s haplogroup was formed long before Ladoga 16 lived. Each Ancient Connection has this comparative Time Tree if you scroll down below the text.

  • Both Carrowkeel and Ladoga share an ancestor with our tester, and Radegonde, about 5000 years ago.

Think about how many descendants the X2b4 ancestor probably had over the next hundreds to thousands of years.

  • We know one thing for sure, absolutely, positively – X2b4 testers and descendant haplogroups live in 32 countries. People migrate – and with them, their haplogroups.

What can we learn about the genealogy and history of Radegonde Lambert and her ancestors?

We find the same haplogroup in multiple populations or cultures, at different times and in multiple places. Country boundaries are political and fluid. What we are looking for are patterns, or sometimes, negative proof, which is often possible at the continental level.

X2b4, excluding downstream haplogroups, is found in the following locations:

  • Bulgaria
  • Canada (2)
  • Czech Republic
  • England (2)
  • Finland (2)
  • France (3)
  • Germany (4)
  • Portugal
  • Scotland (2)
  • Slovakia (2)
  • Sweden (2)
  • UK (2)
  • Unknown (11)
  • US (2)

Note that there are three people in France with haplogroup X2b4 but no more refined haplogroup.

Looking at X2b4’s downstream haplogroups with representation in France, we find:

  • X2b4a (none)
  • X2b4b (none)
  • X2b4b1 (1)
  • X2b4d’g (none)
  • X2b4d (none)
  • X2b4g (24) – many from Radegonde’s line
  • X2b4e and subgroups (none)
  • X2b4f (none)
  • X2b4j and subgroups (none)
  • X2b4k (none)
  • X2b4l (1)
  • X2b4m (none)
  • X2b4n and subgroups (none)
  • X2b4o (none)
  • X2b4p (none)
  • X2b4r (none)
  • X2b4+16311 (none)

I was hoping that there would be an Ancient Connection for X2b4, X2b4d’g, or X2b4g someplace in or even near France – because that makes logical sense if Radegonde is from France.

All I can say is “not yet,” but new ancient sites are being excavated and papers are being released all the time.

Ok, so moving back in time, let’s see what else we can determine from the next set of Ancient Connections. Haplogroup X2b1”64 was formed about 5050 years ago.

Connection Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050 years ago
Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050

Our first group ended with haplogroup X2b4, and our second group consists of haplogroup X2b1”64, the parent haplogroup of X2b4. X2b1”64 is a significantly larger haplogroup with many downstream branches found throughout Europe, parts of western Asia, the Levant, India, and New Zealand (which probably reflects a colonial era settler). The Country Frequency Map and Table are found here.

X2b1”64 is just slightly older than X2b4, but it’s much more widespread, even though they were born about the same time. Keep in mind that haplogroup origination dates shift as the tree is developed.

  • These seven individuals who share X2b1”64 as their haplogroup could be related to each other individually, meaning their MRCA, anytime between when they lived and when their haplogroup was formed.
  • The entire group of individuals all share the same haplogroup, so they all descend from the one woman who formed X2b1”64 about 5050 years ago. She is the shared ancestor of everyone in the haplogroup.

One X2b4 and one X2b1”64 individual are found in the same archaeological site in Russia. Their common ancestor would have lived between the time they both lived, about 800 years ago, to about 5000 years ago. It’s also possible that one of the samples could be incomplete.

A second X2b1”64 Ancient Connection is found in the Court Tomb in County Clare, Ireland, not far from the Carrowkeel 534 X2b4 site.

However, Monte Sirai is fascinating, in part because it’s not found near any other site. Monte Sirai is found all the way across France, on an island in the Tyrrhenian Sea.

It may be located “across France” today, but we don’t know that the Phoenician Monte Sirai site is connected with the Irish sites. We can’t assume that the Irish individuals arrived as descendants of the Monte Sirai people, even though it would conveniently fit our narrative – crossing France. Of course, today’s path includes ferries, which didn’t exist then, so if that trip across France did happen, it could well have taken a completely different path. We simply don’t know and there are very few samples available.

Three Ancient Connections are found in the Rössberga site in Sweden and another in  Denmark.

Adding all of the Ancient sites so far onto the map, it looks like we have two clusters, one in the northern latitudes, including Denmark, Sweden, and Russia, and one in Ireland with passage burials, plus one single Connection in Monte Sirai.

If I were to approximate a central location between all three, that might be someplace in Germany or maybe further east. But remember, this is 5000 years ago and our number of samples, as compared to the population living at the time is EXTREMELY LIMITED.

Let’s move on to the next group of Ancient Connections, who have different haplogroups but are all a subset of haplogroup X2.

Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050
Ross Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050
Barcin 31 (M) 8236-8417 Derekoy, Turkey – Neolithic Anatolia Ceramic X2m2’5’7^ 9200 X2b”aq 13,000
Abasar 55 (M) 500-800 Abasár Bolt-tető, Abasar, Hungary – Medieval Hungary X2m1e 5350 X2b”aq 13,000
Gerdrup 214 3779-3889 Gerdrup, Sealand, Denmark – Middle Bronze Age X2c1 3400 X2+225 13,000
Sweden Skara 275 800-1100 Varnhem, Skara, Sweden – Viking Sweden X2c1 3400 X2+225 13,000
Kopparsvik 225 950-1100 Gotland, Sweden – Viking Sweden X2z 5650 X2+225 13,000
Sandomierz 494 900-1100 Sandomierz, Poland – Viking Poland X2c2b 1650 X2+225 13,000
Kennewick man 8390-9250 Kennewick, Washington – Native American X2a2’3’4^ 10,450 X2 13,000
Roopkund 39 80-306 Roopkund Lake, Uttarakhand, India – Historical India X2d 13,000 X2 13,000

The next several Ancient Connections have haplogroups that are a subgroup of haplogroup X2. These people lived sometime between 500 years ago in Hungary, and 8390-9250 years ago when Kennewick Man lived in the present-day state of Washington in the US. Kennewick Man merits his own discussion, so let’s set him aside briefly while we discuss the others.

The important information to be gleaned here isn’t when these people lived, but when Radegonde shared a common ancestor with each of them. The shared haplogroup with all of these individuals was born about 13,000 years ago.

Looking at the map again, and omitting both X2 samples, we can see that the descendants of that shared ancestor 13,000 years ago are found more widely dispersed.

Including these additional burials on our map, it looks like we have a rather large Swedish and Viking cluster, where several of the older burials occurred prior to the Viking culture. We have a Southeastern Europe cluster, our two Irish tomb burials, and our remaining single Monte Sirai Phoenician burial on the island of Sardinia.

Stepping back one more haplogroup to X2, which was born about the same time, we add a burial in India, and Kennewick Man.

The Migration Map

The Migration map in Discover provides two different features.

  • The first is the literal migration map for the various ancestral haplogroups as they migrated out of Africa, if in fact yours did, culminating in your base haplogroup. In this case, the base haplogroup is X2, which is shown with the little red circle placed by FamilyTreeDNA. I’ve added the red squares, text and arrows for emphasis.
  • The second feature is the mapped Ancient Connections, shown with little brown trowels. Clicking on each one opens a popup box.

After haplogroup X2 was formed, it split into haplogroups X2a and X2b.

The X2a group, Kennewick Man’s ancestors, made their way eastward, across eastern Russia to Beringia where they crossed into the Americas.

They either crossed Beringia, follow the Pacific coastline, or both, eventually making their way inland, probably along the Hood River, to where Kennewick Man was found some 2,800 years later on the banks of the Kennewick River.

The X2b group made their way westward, across western Europe to a location, probably France, where Radegonde Lamberts’ ancestors lived, and where Radegonde set sail for Nova Scotia.

After being separated for nearly 13,000 years, the descendants of the single woman who founded haplogroup X2 and lived someplace in central Asia around 13,000 years ago would find themselves on opposite coasts of the same continent.

So, no, Radegonde Lambert was not Native American, but her 600th matrilineal cousin or so, Kennewick Man, absolutely was.

Radegonde Lambert and Kennewick Man

Here’s where confirmation bias can rear its ugly head. If you’re just scanning the Ancient Connections and see Kennewick Man, it would be easy to jump to conclusions, leap for joy, slap a stamp of “confirmed Native American” on Radegonde Lambert, and never look further. And if one were to do that, they would be wrong.

Let’s work through our evaluation process using Discover.

Radegonde Lambert and Kinnewick Man, an early Native American man whose remains were found Kennewick, Washington in 1996, are both members of the broader haplogroup X2. Kennewick Man lived between 8290 and 9350 years ago, and their shared ancestor lived about 13,000 years ago – in Asia, where mitochondrial haplogroup X2 originated. This is the perfect example of one descendant line of a haplogroup, X2 in this case, going in one direction and a second one traveling in the opposite direction.

Two small groups of people were probably pursuing better hunting grounds, but I can’t help but think of a tundra version of the Hatfields and McCoys and cousin spats.

“I’m going this way. There are better fish on that side of the lake, and I won’t have to put up with you.”

“Fine, I’m going that way. There are more bears and better hunting up there anyway.”

Their wives, who are sisters, “Wait, when will I ever see my sister again?”

One went east and one went west.

X2a became Native American and X2b became European.

Looking back at our information about Kennewick Man, his haplogroup was born significantly before he lived.

He was born about 8390-9250 years ago, so let’s say 8820 years ago, and his haplogroup was born 10,500 years ago, so about 1680 years before he lived. That means there were many generations of women who carried that haplogroup before Kennewick Man.

Let’s Compare

Discover has a compare feature.

I want to Compare Radegonde Lambert’s haplogroup with Kennewick Man’s haplogroup X2a2’3’4^.

The Compare tool uses the haplogroup you are viewing, and you enter a second haplogroup to compare with the first.

The ancestral path to the shared ancestor, meaning their shared haplogroup, is given for each haplogroup entered. That’s X2 in this case. Then, from the shared haplogroup back in time to Mitochondrial Eve.

I prefer to view this information in table format, so I created a chart and rounded the haplogroup ages above X2.

Hap Age – Years Ago Radegonde’s Line Shared Ancestors and Haplogroups Kennewick’s Line Hap Age – Years Ago
143,000 mt-Eve
130,000 L1”7
119,000 L2”7
99,000 L2’3’4’6
92,000 L3’4’6
73,500 L3’4
61,000 L3
53,000 N
53,000 N+8701
25,000 X
22,500 X1’2’3’7’8
13,000 X2 – Asia
13,000 X2+225 X2a 10,500
12,900 X2b”aq X2a2’3’4^ 10,400 Kennewick Man born c 8800 years ago
11,000 X2b
5,500 X2b1”64
5,000 X2b4
1,900 X2b4d’g
Radegonde Lambert born c 1661 – 400 years ago 1,700 X2b4g

More Ancient Connections

Radegonde Lambert’s matrilineal descendants have an additional dozen Ancient Connections that are found in upstream haplogroup N-8701. Their shared ancestors with Radegonde reach back to 53,000 years ago in a world far different than the one we inhabit today. I’m not going to list or discuss them, except for one.

Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050
Barcin 31 (M) 8236-8417 Derekoy, Turkey – Neolithic Anatolia Ceramic X2m2’5’7^ 9200 X2b”aq 13,000
Abasar 55 (M) 500-800 Abasár Bolt-tető, Abasar, Hungary – Medieval Hungary X2m1e 5350 X2b”aq 13,000
Gerdrup 214 3779-3889 Gerdrup, Sealand, Denmark – Middle Bronze Age X2c1 3400 X2+225 13,000
Kopparsvik 225 950-1100 Gotland, Sweden – Viking Sweden X2z 5650 X2+225 13,000
Sandomierz 494 900-1100 Sandomierz, Poland – Viking Poland X2c2b 1650 X2+225 13,000
Sweden Skara 275 800-1100 Varnhem, Skara, Sweden – Viking Sweden X2c1 3400 X2+225 13,000
Kennewick man 8390-9250 Kennewick, Washington – Native American X2a2’3’4^ 10,450 X2 13,000
Roopkund 39 80-306 Roopkund Lake, Uttarakhand, India – Historical India X2d 13,000 X2 13,000
Ranis 10 43,500-47,000 Ranis, Germany – LRJ Hunger Gatherer N3’10 53,000 N+8701 53,000
Zlatý kůň woman 47,000 Czech Republic – N+8701 53,000 N+8701 53,000

Zlatý kůň Woman

Zlatý kůň Woman lived some 43,000 years ago and her remains were discovered in the Czech Republic in 1950.

Believed to be the first anatomically modern human to be genetically sequenced, she carried about 3% Neanderthal DNA. Europeans, Asians and indigenous Americans carry Neanderthal DNA as well.

Unlike many early remains, Zlatý kůň Woman’s facial bones have been scanned and her face approximately reconstructed.

There’s something magical about viewing a likeness of a human that lived more than 40,000 years ago, and to whom I’m at least peripherally related.

Like all other Ancient Connections, it’s unlikely that I descend from Zlatý kůň Woman herself, but she is assuredly my very distant cousin.

What else do we know about Zlatý kůň Woman? Quoting from her Ancient Connection:

She lived during one of the coldest periods of the last ice age, surviving in harsh tundra conditions as part of a small hunter-gatherer group. She died as a young adult, though the cause of death remains unknown.

Her brain cavity was larger than that of modern humans in the comparative database, another trait showing Neanderthal affinity. While the exact colors of her features cannot be determined from available evidence, researchers created both a scientific grayscale model and a speculative version showing her with dark curly hair and brown eyes.

Zlatý kůň Woman may or may not have direct descendants today, but her haplogroup ancestors certainly do, and Radegonde Lambert is one of them, which means Radegonde’s matrilineal ancestors and descendants are too.

Ancient Connections for Genealogy

While Ancient Connections are fun, they are more than just amusing.

You are related through your direct matrilineal (mitochondrial) line to every one of your mtDNA Discover Ancient Connections. Everyone, males and females, can take a mitochondrial DNA test.

I find people to test for the mitochondrial DNA of each of my ancestral lines – like Radegonde Lambert, for example. I wrote about various methodologies to find your lineages, or people to test for them, in the article, Lineages Versus Ancestors – How to Find and Leverage Yours.

Radegonde’s mitochondrial DNA is the only key I have into her past, both recent and distant. It’s the only prayer I have of breaking through that brick wall, now or in the future.

Interpreted correctly, and with some luck, the closer Ancient Connections can provide genealogical insight into the origins of our ancestors. Not just one ancestor, but their entire lineage. While we will never know their names, we can learn about their cultural origins – whether they were Vikings, Phoenicians or perhaps early Irish buried in Passage Graves.

On a different line, an Ancient Connection burial with an exact haplogroup match was discovered beside the Roman road outside the European town where my ancestral line was believed to have been born.

Ancient Connections are one small glimpse into the pre-history of our genetic line. There are many pieces that are missing and will, in time, be filled in by ancient remains, Notable Connections, and present-day testers.

Check your matches and your Ancient Connections often. You never know when that magic piece of information you desperately need will appear.

What is waiting for you?

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

FamilyTreeDNA’s New Matrix Shows How Your Matches Are Related to Each Other

Click on any image to enlarge

FamilyTreeDNA’s new reworked Matrix includes relationships, in other words, how your matches are related to each other. But there’s more. It also includes the number of shared segments and the number of cMs shared between your matches.

You can then push those matches through to the chromosome browser to see exactly which segments overlap between you and your matches.

This is a game-changer!!

Why Are These Features Important?

For genealogists, knowing how your matches are related to each other, or not, is a HUGE clue about your common ancestor. Clusters of people who match each other are an important road sign directing you to a specific ancestor who contributed the same DNA segment or segments to all of you.

FamilyTreeDNA just released several VERY cool updates for their Matrix comparison tool. Plus, you get to select a group of 10 people to compare.

The purpose of the Matrix tool is to select Family Finder autosomal matches who are then displayed in a grid matrix for comparison, showing if and how those matches match each other.

Specifically:

  • Do your matches match each other?
  • What is their estimated relationship to each other?
  • How many segments of DNA do they share with each other?
  • How many cMs (centiMorgans) of DNA do they share with each other?

You can then push 7 matches through to the chromosome browser to see if they match on any of the same segments.

Automated Triangulation

If you are comparing bucketed (maternal or paternal) matches, or matches known to belong to the same side of your tree, the shared segments are automatically triangulated.

How cool is this?!!!

Keep in mind, though, that you may be related to someone through multiple ancestors, and they could be from both parent’s sides, so pay attention to the ancestral segment history.

Remember, every segment has its own unique history.

Let’s step through the new Matrix features and see how they work.

Select the Matrix

Navigate to the Matrix tool under “See More” under Autosomal DNA Results and Tools.

Under “Select Matches” you can select “All Matches” to choose from all of your matches, or you can select a grouping of matches to be displayed in the menu, below.

These groupings are shortcuts for you so you don’t have to pick everyone individually. You can also search for a name.

Click on the individuals you want to compare in the Matrix. The people you’ve selected from the group, at left, will appear in the box, at right. That’s who will be compared to each other.

Next, select which type of data will be compared.

I’m selecting “Close Relatives” for this example and “Relationship range.” First, I added my mother so I could see who matches with her.

Then I added the rest of the people I want to compare. In this case, I’ve added my closest matches, even though they are from both sides of my tree.

Relationship Range

I’ve selected “Relationship range,” which will show me how my matches estimated relationships to each other.

Based on the identity of these matches, and how they match each other, I can now determine their ancestral connection.

If I didn’t know who was related maternally and paternally, this grid would remove all doubt became I’m comparing to one of my parents.

If you don’t have a parent, adding close, known relatives on one or both sides will help immensely.

Be sure to make notes about what you’ve discovered on your matches page, and paint to DNAPainter if that’s how you’re tracking your segments to ancestors.

Number of Segments Shared

Now, I’ve selected “Number of segments shared” to compare the same group of people.

You can see the number of shared segments between Mom’s matches. Donald and Cheryl are full siblings.

The display shows how these people match Mom, and each other.

Melissa is Mom’s paternal second cousin. I was able to piece this together with the help of how she matches Mom and Mom’s known paternal first cousins, Cheryl and Donald.

Total cMs Shared

Next, I’m selecting “Total cMs shared” for comparison.

Looking at the number of shared cMs, even if I didn’t know that Donald and Cheryl were full siblings, I would now.

You can also push these through to the chromosome browser. I’ll illustrate in a minute.

Bucketed or Parental Side Matching

My favorite groupings for the new Matrix are the bucketed, meaning parental or maternal “side” matching.”

When your matches are already bucketed, thanks to having linked known matches to their profile card in your tree, the system does a lot of the “side” work for you behind the scenes.

When you select “Maternal, “Paternal” or “Paternal and Maternal” matches, the people who have been bucket to either side, or those related to you on both sides, are listed in the selection box.

I’m selecting 7 of my maternal bucketed matches because I’m going to push them through to the chromosome browser for additional evaluation. I’m not including my mother because I already know these people are related to both me and her, because they are bucketed maternally.

They’re compared in the various matrix configurations.

From the Shared cM comparison table, I can easily click to display matches in the chromosome browser.

If you’re comparing more than 7 people, you’ll need to reduce it to 7. I excluded my Mom because I already know she matches all of them.

Click on the Compare Chromosome Browser at the bottom for the 7 people selected.

I know that cousin Charles descends from Mom’s paternal Lentz line, and has no other connection, so I know that these other cousins who also match me on that same segment are also from Mom’s Lentz line.

I can also tell that the shared segments on chromosome 1 are from Mom’s maternal Lore line.

Shown here are the common ancestors in Mom’s pedigree chart. They are 4 and 5 generations back in time for me.

Look how easy that was!

I love this new Matrix tool.

Triangulation

Because three or more people, including me, match on the same segments, this means they also triangulate.

In the example above, we have two distinct triangulation groups. I’m only showing chromosomes 1-3 for illustration purposes, but there are also more triangulation groups on the other chromosomes. If I add other people, new triangulation groups will form!

Of course, these are my maternal bucketed matches, so I’m safe to reach that conclusion. If my father’s matches were also loaded here, I would have to check the matrix and see if these people also matched each other before I could determine that they triangulate.

Check Your Matches and Upload

Be sure to upload any tests to FamilyTreeDNA that you manage at other vendors, and encourage your cousins to upload too.

This combination of features is unique to FamilyTreeDNA. The more relatives you have available to match, especially when you already know the common ancestor, the better. Be sure to link your matches to their placard in your tree so that FamilyTreeDNA can do the bucketing for you.

Even if you don’t link people, you can still benefit greatly from the new matrix tool by just having your DNA available for matching. The matrix will help you sort out matches and identify who is related to whom, and how.

Take a look! What are you discovering?

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Leave No Stone Unturned, No Ancestor Behind: 10 Easy Steps to Capture DNA Clues

There’s a lot, a whole lot that DNA testing can tell you. Not just your own tests, but the genetic information carried by your relatives that you do not.

Recently, I’ve been reviewing my brick walls, which led me to realize there are several ancestors who are missing their mitochondrial DNA and/or Y-DNA  results. I need these to learn more about my ancestors that can’t be revealed any other way – and to break down those pesky brick walls.

I’ve solved two mysteries recently, one thanks to a Big Y-700 test, and a second very unexpectedly thanks to mitochondrial DNA – both thanks to cousins who tested. These revelations were very encouraging, especially since there’s no way other than DNA for me to break through these brick walls. The mitochondrial test had been sitting there, waiting for what seemed like forever until just the right other person tested.

I am in the process of unlocking several brick-walled ancestors by providing testing scholarships to people who are appropriately descended from known ancestors in those lines.

Don’t leave information on the table. If I were to tell you there even MIGHT be a book available about your family, you’d overturn Heaven and Earth to find it – but you don’t need to do that. All you need to do is order DNA tests for cousins.

All cousins can provide useful autosomal DNA results, but you do need to find appropriate cousins for Y-DNA and mitochondrial DNA testing.

I’m sharing the steps for how I accomplish this! You’ll be amazed at what’s out there – and someone may already have tested!

Take Advantage of the Holidays

I’m sharing NOW because it’s the holidays and you’re likely to gather with people you don’t see any other time – and because the best sale of the year for both Y-DNA and mitochondrial DNA lasts from now through the end of the year.

These two factors combined mean strike while the iron is hot.

Prices for new tests and bundles are at an all-time low.

If you or your relatives have already taken a lower-level test, now is the time to upgrade to either the Big Y-700 or the mtFull Sequence test.

Step 1 – Test Yourself and Your Known Family

If you’re a male, order both the Big Y-700 test and mitochondrial DNA tests.

Be sure to click on “See More” for more useful tools.

When you receive your results, be sure to click on all of the tabs in your results, and do the same by clicking through to Discover from your account. Discover has 13 more goodies for you to help with your genealogy.

Both your personal page and Discover are essentially chapters of your own personal book about your DNA results. 25 very interesting chapters, to be precise, that are uniquely you.

I’ve written about understanding Y-DNA results here, and mitochondrial results here. My book, Complete Guide to FamilyTreeDNA, covers both along with Discover.

Discover provides robust information for Y-DNA haplogroups. If you’ve taken a Big Y-700 test, you’ll want to click through from your page to receive additional, personalized and more robust information than is available through the free public Discover tool. That said, the public version of Discover is an amazing tool for everyone.

After the new Mitotree is released for mitochondrial DNA, mitochondrial haplogroups will be available in Discover too.

I can’t even begin to stress how important these tools are – in particular the Time Tree, the Group Time Tree for members of group projects, and the Match Time Tree for your own matches.

Who Can Test For What?

Once you’ve tested yourself, you will want to take a look in your pedigree chart at branches further up your tree to see who can be tested to represent specific ancestors.

Let’s begin with my father’s side.

A mother contributes her mitochondrial DNA to all of her children, so your father carries the mitochondrial DNA of his mother.

If you’re a female, and your father is available to test, you’ll want to test BOTH his mitochondrial DNA and Y-DNA, because there’s no way for you to obtain that information from your own test. Females don’t have a Y chromosome, and men don’t pass on their mitochondrial DNA.

If you’re a male, you can test your own mitochondrial DNA and Y-DNA, but you’ll need to test your father’s mitochondrial DNA to obtain his mother’s. You might still want to test your father’s Y-DNA, however, because you may discover a personal family haplogroup. How cool is that??!! Your own tiny branch on the tree of mankind!

Your father’s mitochondrial DNA provides you with mitochondrial matches and haplogroup information for your paternal grandmother – in this case, Ollie Bolton.

If your father and his siblings can’t test, then all of the children of your paternal aunts carry your paternal grandmother’s mitochondrial DNA.

If they have no children or they can’t test, then the children of Ollie Bolton’s mother, Margaret Claxton/Clarkson all carry her mitochondrial DNA, and the children of Ollie’s sisters continue the line of descent through all daughters to the current generation.

The male children of Joseph “Dode” Bolton and Margaret Claxton carry his Y-DNA. Fortunately, that’s not one of our missing haplogroups.

Yes, you may have to climb up your tree and climb down various branches to find a testing candidate.

One of the reasons I’m using this example is because, while I have a high-level haplogroup for my grandmother, Ollie Bolton, we need a full sequence tester – and I’m offering a mitochondrial DNA testing scholarship for anyone descending from Margaret Claxton (or her direct female ancestors) through all females to the current generation, which can be male.

Ok, now let’s switch to the maternal side of your tree.

On the other side of your tree, your maternal grandfather or your mother’s brothers will provide the Y-DNA of your mother’s father’s line. Your mother’s uncles or their sons will provide your grandfather’s Y-DNA line, too. In this case, that’s John Whitney Ferverda, who carries the Y-DNA of his father, Hiram Bauke Ferverda/Ferwerda.

Your maternal grandfather or his siblings will provide the mitochondrial DNA of their mother, Evaline Louise Miller.

If they are deceased or can’t test, for mitochondrial DNA, look to the children of Evaline Miller’s daughters or their descendants through all females to the current generation, which can be male.

And yes, in case you’re wondering, I do need Evaline Miller’s mitochondrial line too and am offering a scholarship.

You might have noticed that I’ve been inching my way up my tree. All of my immediate relatives have passed over already, so I’m now looking for testers that I don’t know but who I’m related to.

If you’re seeing family members anytime soon, figure out if their Y-DNA, mitochondrial DNA, or autosomal DNA would be useful for your common genealogy. Take advantage of the opportunity.

Next, you’ll want to figure out which ancestors need haplogroups and locate appropriate cousins.

Step 2 – Identify Ancestors Who Need Haplogroups

Peruse your tree to determine which of your ancestors you need haplogroup information for. To make it easy, on my computer, but never in a public tree anyplace, I store the haplogroup of my ancestor as a “middle name” so I can easily see which ones I have and which ones I need. Sometimes, I have a high-level haplogroup and either need a new tester or someone to upgrade.

Sometimes, I have one tester from a line but need a second for confirmation.

In this example, I’m not missing confirmation on any Y-DNA haplogroups (although I am further upstream on different lines,) but I do need four different mitochondrial DNA lineages.

For easy reference, make a list of all of the lines you can’t confirm with two testers from different children of the same ancestor.

You just might get lucky and discover that someone has already tested!

Step 3 – Check FamilyTreeDNA Projects

Check FamilyTreeDNA Projects to see if someone has already tested to represent those ancestors on your list.

Click here for the Group Project Search. It’s located at the very bottom of the main FamilyTreeDNA page in the footer.

I’m going to use Estes as an example since I’m the volunteer administrator of that project and am very familiar with the lineages.

I’m searching for projects that include the surname Estes.

The projects displayed on the list are projects where the volunteer administrators listed Estes as a possible surname of interest. It doesn’t mean those projects will be of interest to everyone or every line with that surname, but evaluate each project listed.

You probably want the surname project, but if there’s not a surname project for your surname, try alternate spellings or consider checking other projects.

You can see at the bottom that 384 people of both sexes by the surname of Estes have tested at FamilyTreeDNA.

Now, let’s look at the Estes project. Note that not everyone with the Estes surname has joined the Estes project.

I’ve clicked on the “Estes” link which takes me to an additional information page where I can read a description and click to view the project.

For the Estes project, you do not have to join to view the results. Nor does your surname have to be Estes. All Estes descendants of any line are welcome. Everyone can benefit from the Advanced Matching within project feature to see who else you match within the project by selecting a wide range of individual and combined filters.

Click on the Project Website link shown in the search results.

If you’re searching for a male Estes ancestor, you’ll want to review the project’s Y-DNA Results and the Group Time Tree, for sure, and possibly the Map as well.

Let’s pretend I’m trying to determine if anyone has tested who descends from my ancestor, Abraham Estes, the founding Estes ancestor in Virginia who arrived in the mid-1600s.

In the Estes project, the volunteer administrator has divided the Estes male participants by sons of Abraham, the immigrant. Only three are shown here, but there are several.

Some of the participants have completed their Earliest Known Ancestor information, in the red box. Sometimes people don’t think to update these when they make breakthroughs.

If you descend from Abraham’s son, Sylvester, three men have taken the Big Y-700. That’s the test results you need.

If you descend from Abraham’s son, Abraham, no project participants have taken the Big-Y test to represent that line, although six people have tested, so that’s great news. Maybe you can offer an upgrade scholarship to one or some of those men.

In other words, to establish the haplogroup for that lineage, at least two men need to test or upgrade to the Big Y-700, preferably through two different sons of the common ancestor. A new, more defining haplogroup is often formed every two or three generations for Y-DNA.

Your genetic pedigree chart looks a lot like your genealogy pedigree chart.

Click any image to enlarge

The project Group Time Tree shows selected groups of men who have taken Big Y tests, along with their Earliest Known Ancestor, if they’ve provided the information. This is one of the reasons why the Big Y-700 is so critically important to genealogy. The time granularity is amazing and can answer the question of whether men by the same surname descend from the same common ancestor – and when.

If you’ve taken a Family Finder autosomal test at FamilyTreeDNA, or uploaded an autosomal file from another vendor, you may match one of these men or another male that descends from the Estes line if they, too, have taken an autosomal test.

This same process applies to mitochondrial DNA, but generally surname projects aren’t (as) relevant for mitochondrial DNA since the surname changes every generation. However, sometimes other projects, such as the Acadian AmerIndian Project are quite beneficial if you have Acadian ancestry, or a geographic or regional project like the French Heritage Project, or something like the American Indian Project.

Another great way to find testers is by utilizing your Family Finder test.

Step 4 – Family Finder at FamilyTreeDNA

The next step is to see if you match anyone with the surname you’re searching for by using your autosomal test results, so select your Family Finder Matches.

At FamilyTreeDNA you’ll want to search your matches by the surname you seek. This surname search lists any tester who has that surname, or anyone who has entered that surname in their surname list. Please note that this search does NOT read ancestors in your matches’ trees. You’ll still need to view trees.

Reviewing the 32 Estes Family Finder matches reveals several men, but one man with the Estes surname has already taken a Y-DNA 25-marker test, so he would be an excellent candidate to offer a Big Y-700 upgrade scholarship. If he’s not interested or doesn’t respond, there are several more men to contact.

Click on your match’s name to display the profile card, along with the Earliest Known Ancestors, both Y-DNA and mitochondrial DNA haplogroups if they have tested, and the assigned haplogroup based on their testing level.

Craft an email and offer a testing scholarship. This will help both of you. I’ll provide a sample email at the end of this article.

If you match a female with an Estes surname, her father, brother, uncle or cousin may either have already tested or be willing.

If you match someone who has a different surname, that means they have an Estes surname in their surname list and may know a potential tester. If your match has a tree, click to check.

I’ve found that matching through a company where you’ve both tested is the easiest way to encourage someone to take an additional test, but certainly, it’s not the only way.

Step 5 – WikiTree

WikiTree is a quick and easy way to see if anyone has taken Y-DNA or mitochondrial DNA test that should reflect a particular ancestor’s Y-DNA or mitochondrial DNA.

I just googled “Moses Estes 1711-1787 WikiTree” and clicked to view.

Each ancestor includes both Y-DNA and mitochondrial DNA information, in addition to people who descend from that ancestor through only autosomal lines.

In this case, two men have provided their Y-DNA results that pertain to Moses Estes. They have tested at different levels, which is why they have different haplogroups. That doesn’t mean either is “wrong,” one is just more refined than the other. You can correlate their kit number with the Estes surname project. People often don’t update their haplogroup information at WikiTree when it’s updated at FamilyTreeDNA.

Please note that if the genealogy is wrong, either at WikiTree or individually, the haplogroup may not reflect the appropriate lineage for the ancestor. Check to be sure that there’s no conflict showing between two testers for the same ancestor. For example, the same ancestor clearly can’t have two different base haplogroups, like E and R. The Discover Compare tool can help you evaluate if two haplogroups are in the same part of the Y-DNA tree.

When possible, it’s always best to test a close family member to represent your lineage even if someone else has already tested.

Scan down the list of autosomal testers for that ancestor to see if there’s someone with the Estes surname.

WikiTree provides additional tools to find descendants.

Sign in to WikiTree. You’ll see the ID of the profile you’re viewing – in this case – Estes-167. Click the down arrow and select “Descendants.”

This view shows all descendants through five generations, but you can click on DNA Descendants to see only Y-DNA descendants, X-DNA, or mitochondrial DNA descendants for female ancestors.

You may find people who are living and have added themselves who you can contact to offer a DNA testing scholarship.

Step 6 – MyHeritage

At MyHeritage, you can also search your DNA matches by surname.

Click on “Review DNA Match” to view more detail, including locations. Look to see if you have a Theory of Family Relativity Match which suggests how you may be related. That’s golden!

There’s no Y-DNA information at MyHeritage, BUT, you can search by surname and view DNA matches that either carry that surname or have that surname in their tree as an ancestor.

I have a total of 75 “Estes” matches, and other than the kits that I manage, searching through my matches shows:

  • Two Estes men connected to the same small tree, but that’s OK, I’m a genealogist!

  • One Estes male match with a Theory of Family Relativity. My lucky day!

You can contact your match easily through the MyHeritage messaging system and offer a DNA testing scholarship at FamilyTreeDNA. You may also want to share your email address.

MyHeritage customers may not be familiar with Y-DNA or mitochondrial DNA testing, so you might want to share this article about the 4 Kinds of DNA for Genealogy.

MyHeritage testers can also upload their DNA file to FamilyTreeDNA for free to receive autosomal matches plus a complimentary mid-range Y-DNA haplogroup. This free haplogroup is not even close to the detailed resolution of a Big Y-700 test, but it’s something, and it may well be an enticing first step for people who are only familiar with autosomal testing.

Step 7 – At Ancestry

At Ancestry, select DNA Matches and then search by surname.

You can search by the surname of the tester, which is very useful, or by people who have Estes in their trees.

I started with the surname Estes, because it’s the most straightforward and I may find a perfect male candidate for Y-DNA. If someone’s “screen name” doesn’t show as Estes, they won’t appear in the results of this search. In other words, if your Ancestry screen name is “robertaestes” you won’t show in this search, but “Roberta Estes” will.

For mitochondrial DNA, you would want to search for the surname in your matches’ trees. Unfortunately, you cannot search for the specific ancestor in someone’s tree, at least not directly.

Of my 19 Estes surname matches, ten are males, and of them:

  • Three have unlinked trees
  • Three have very small linked trees, but I can work on extending those if need be
  • Three have public linked trees AND a common ancestor, which means ThruLines

I can review which ancestor we share by clicking on my match’s name

The Estes side of this man’s tree has only one person and is marked “private,” but Ancestry has suggested common ancestors based on other people’s trees. (Yes, I know trees are dicey, but bear with me.)

It’s also worth mentioning that you can be related through multiple lines. I share surnames from Acadian lines with this man, but that really doesn’t matter here because I’m only using autosomal matching to find an Estes male.

Click on “View Relationship” to see our common Estes ancestor’s ThruLine.

The ThruLine shows how Ancestry thinks we’re related on the Estes line.

I can also click on “View ThruLines” to see all Thrulines for John R. Estes, which shows four additional males, some of which did NOT appear in the Estes surname search, and some of which don’t appear further up the tree. In other words, check all Estes ThruLine ancestor generations.

Don’t rely solely on Ancestry’s surname search.

Go directly to your ThruLines on the DNA menu.

Ancestry only reaches back seven generations, which for me is Moses Estes and Luremia Combs. Moses has 95 matches, but he has been given some incorrect children. Again, for this purpose, it doesn’t matter. Within all ThruLine matches, I found three Estes males who all descend through John R. Estes. Check every generation.

However, Luremia Combs shows promise for mitochondrial DNA descendants. Unfortunately, only two of her daughters are represented in ThruLines, and both of their descendants descend through Luremia’s grandsons. That’s too bad, because I need Luremia’s mitochondrial DNA line.

It’s easy to message your Ancestry matches. You may want to mention that they can upload their DNA file to FamilyTreeDNA for free where they will receive more matches and males will receive a complimentary mid-level Y-DNA haplogroup.

Please note that, in general, ThruLines need to be evaluated very carefully and are prone to errors, especially if you accept Ancestry’s suggestions of ancestors instead of carefully building out your own tree. Regardless, you can still find Estes cousin matches in your match list and by using ThruLines to find people that do not show up in an “Estes” match search.

Step 8 – At 23andMe

At 23andMe, you can search for anyone who either has the Estes surname or has included that surname in their “Family surnames” list. Keep in mind that your matches at 23andMe are restricted to either 1500 if you don’t have a subscripition, or about 4500 if you do have a subscription.

On my match list, I have two males with the Estes surname.

23andMe provides a mid-level Y-DNA haplogroup. You can’t use this to confirm the lineage when comparing with FamilyTreeDNA, especially given that 23andMe provides no genealogy or user-provided tree, but it is a clue.

Both Estes men at 23andMe have Y-DNA haplogroup R-CTS241. You could use this in some cases to potentially eliminate these matches at 23andMe. For example, if men in your lineage in the Estes project are in haplogroup R and your 23andMe matches are showing as haplogroup E, or any other base haplogroup, their common ancestor is tens of thousands of years ago.

Comparing the 23andMe haplogroup, which in this case is about 4500 years old, to contemporary testers who have taken the Big Y-700, which reaches within a few generations, isn’t terribly useful. These matches are extremely useful to identify individuals to reach out to for further information and potentially offer a Y-DNA testing scholarship at FamilyTreeDNA.

Remember, this also applies to females who have included Estes in their family surnames, given that they may have Estes male relatives.

By clicking to view your match, you can see if they have provided Family Background information, including a link to a family tree someplace.

Sometimes, there’s great information here, and other times, nothing.

You can’t verify this lineage without genealogy information.

I suggest leaving a genealogy-focused message, including where they can see your tree in addition to your Estes connection. Also include your e-mail.

You may want to say that if they descend appropriately, you have a Y-DNA or mitochondrial DNA testing scholarship, or you may want to wait to see how they descend. You can also ask if they have already taken a Y-DNA or mitochondrial DNA test at FamilyTreeDNA.

Step 9 – FamilySearch and Relatives at RootsTech

We’re getting ready for RootsTech 2025 which takes place in March. In the month or so before the last two RootsTechs, FamilySearch provided an absolutely wonderful tool called “Relatives at RootsTech.”

I’ve written about this several times, but essentially, you can see, by ancestor, other people who are registered both in-person and virtually for RootsTech, and how they descend.

Here’s an example.

In both years, I’ve found several people who descended from common ancestors AND were very willing to take the relevant DNA test. That’s a huge win-win for everyone.

The best part is that because these people have freshly registered for RootsTech, the reply rate is almost 100%.

I’ll write about this as soon as RootsTech makes it available this year. Fingers crossed that they do!

Step 10 – Social Media

Social media wouldn’t be my first choice to find DNA testers, but I have found perfectly willing cousins this way. You may be less successful on Facebook or other social media platforms, but if you’re striking out elsewhere, there’s absolutely no downside to trying.

You can enter a surname and search on Facebook, but I prefer to do a Google search like “Estes genealogy on Facebook” or even just “Estes genealogy,” which will produce far more widespread information, some of which may be irrelevant.

That Facebook Google search provided the names of two groups. People join groups because they have an interest, and I’ve had good luck in Facebook genealogy groups.

A Search of “Estes” on Facebook itself, then selecting “people” provided a list of Estes Facebook users.

I’ve had far better luck by joining a group that is focused on Estes genealogy, or even a county genealogy group that includes Estes families, than individuals. People who join any Estes group or project likely have an interest in that surname.

If you have a common surname, or there’s a park named after your surname, like Estes Park, you’ll probably want to focus by using Google searches for Estes genealogy.

The Descendants of Abraham Estes Facebook group has 222 members, of whom at least 31 are males with the Estes surname. Facebook just might be an underestimated resource.

If there isn’t a genealogy-focused group for your surname, you might want to consider starting one and encouraging people to join.

It can’t hurt, and it just might help. Before you start reaching out to random people on Facebook, please do a privacy checkup – I wrote about how, here.

Sale Prices

Remember, the sale prices at FamilyTreeDNA for new tests and upgrades last through year-end.

In my experience, it’s best to test as soon as someone agrees. You never know what will happen otherwise. I’ve had people pass away before they could swab. And yes, we’ve done funeral home swabs, too.

There’s no one-size-fits-all, but here’s a rough draft contact letter.

Potential Contact Letter

You’ll want to include several critical pieces of information.

Essentially:

  • Introduce yourself
  • Say their full name on their test AND the testing company in the title of an email. I manage many tests and if I receive an email that says, “Hi, can you tell me how we match” without telling me which person they match, I can’t even begin to answer.
  • Explain your genealogy connection
  • State your purpose in writing
  • Explain how a specific test will help them too
  • Offer to answer questions

Be sure to modify this letter to reflect your own voice and circumstances. You don’t want this to read like a form letter.

Dear cousin (insert their full name here,)

It was so nice to find our DNA match at <company name> (or we share a common ancestor, or appropriate circumstance.) (If you are managing someone else’s kit, say the name of who they match and explain that you manage their DNA kit.)

I descend from (ancestor plus birth and death date) who lived in Halifax County, Virginia and was married to (spouse.) You can view my tree at (insert link that does not require a subscription for viewing unless you match them on that platform. I use MyHeritage because everyone can view their trees)

I would very much like to confirm that our line descends from Abraham Estes (or relevant information meaning your reason for wanting them to test.)

Given that my surname is x (or I’m a female), we need to test the Y-DNA of a male who is descended from (ancestor) through all males to the current generation. (Or mitochondrial DNA descended through females to the current generation which can be male.)

FamilyTreeDNA provides this testing and shows who you match on that specific line using the Y chromosome (mitochondrial DNA).

This testing may connect us with earlier ancestors. Genetics can be used to determine when we share common Estes ancestors with others who test, where we come from overseas, and when. Even if we match ancient DNA samples that may tell us where our ancestors lived before surnames. In other words, where did we come from?

(Include a nice paragraph, but not a book about your ancestral lineage here.)

I have a DNA testing scholarship for someone from this line and you are the perfect candidate. I would like to take advantage of the current sales. If you’re interested, I only need two things from you.

First, permission so that I can order (or upgrade) and pay for the test, and second, an address where to send the test (unless it’s an upgrade). (If it’s an upgrade at FamilyTreeDNA, they can use a stored sample or will sent them a new kit if there’s not enough DNA.)

If you have any questions, please let me know. I’m very excited that we may be able to learn more about our heritage.

Please email me at xxx or call me at xxx if you have questions.

Your name

I know one person who offers to review results over Zoom. Someone else stresses that the tester’s email is attached to their test and they are always in control of their results. Another person asks them to join a project they manage to assure that they can follow their matches over time.

Customize this communication in your own voice and to fit the circumstances of each match.

It’s just me, but since I’m ordering while the tests are on sale, unless the person uploads their DNA file from another vendor, I add on a Family Finder test too and explain why. You never know if they will match you or another cousin, and they may have that match that eventually breaks down the next brick wall. Shared matches are powerful evidence and it’s a lot easier to add that test on now than try to contact them again later.

You Don’t Know What You Don’t Know

Which ancestors do you need Y-DNA or mitochondrial DNA results for? Methodically check each line.

There’s so much to learn. Don’t leave information on the table by virtue of omission.

Leave no stone unturned!

You don’t know what you don’t know.

Who’s waiting out there for you?

____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Great News – Both e-Pub and Print Version of “The Complete Guide to FamilyTreeDNA” Now Available Worldwide  

  • Anyone, anyplace, can order the full-color, searchable, e-pub version of The Complete Guide to FamilyTreeDNA – Y-DNA, Mitochondrial, Autosomal and X-DNA from the publisher, Genealogical.com, here.
  • Customers within the US can order the black and white print book from the publisher, here.
  • Customers outside the US can order the print book from their country’s Amazon website. The publisher does not ship print books outside the US due to customs, shipping costs, and associated delays. They arranged to have the book printed by an international printer so that it can be shipped directly to Amazon for order fulfillment without international customers incurring additional expenses and delays. If you ordered the book previously from Amazon and a long delivery time was projected, that should be resolved now and your book should be arriving soon.

Comprehensive

This book is truly comprehensive and includes:

  • 247 pages
  • More than 267 images
  • 288 footnotes
  • 12 charts
  • 68 tips
  • Plus, an 18-page glossary

To view the table of contents, click here. To order, click here.

Thank you, everyone, for your patience and your support.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Complete Guide to FamilyTreeDNA Released in Hardcopy

Just what many of you have been waiting for! The hardcopy print version of the Complete Guide to FamilyTreeDNA has just been released.

As shown in the table of contents below, The Complete Guide to FamilyTreeDNA contains lots of logically organized information! It includes basic education about genetic genealogy and how it works, instructions on using the FamilyTreeDNA tests and tools, plus an extensive glossary.

Enjoy!

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Top Ten RootsTech 2022 DNA Sessions + All DNA Session Links

The official dates of RootsTech 2022 were March 3-5, but the sessions and content in the vendor booths are still available. I’ve compiled a list of the sessions focused on DNA, with web links on the RootsTech YouTube channel

YouTube reports the number of views, so I was able to compile that information as of March 8, 2022.

I do want to explain a couple of things to add context to the numbers.

Most speakers recorded their sessions, but a few offered live sessions which were recorded, then posted later for participants to view. However, there have been glitches in that process. While the sessions were anticipated to be available an hour or so later, that didn’t quite happen, and a couple still aren’t posted. I’m sure the presenters are distressed by this, so be sure to watch those when they are up and running.

The Zoom rooms where participants gathered for the live sessions were restricted to 500 attendees. The YouTube number of views does not include the number of live viewers, so you’ll need to add an additional number, up to 500.

When you see a number before the session name, whether recorded or live, that means that the session is part of a series. RootsTech required speakers to divide longer sessions into a series of shorter sessions no longer than 15-20 minutes each. The goal was for viewers to be able to watch the sessions one after the other, as one class, or separately, and still make sense of the content. Let’s just say this was the most challenging thing I’ve ever done as a presenter.

For recorded series sessions, these are posted as 1, 2 and 3, as you can see below with Diahan Southard’s sessions. However, with my live session series, that didn’t happen. It looks like my sessions are a series, but when you watch them, parts 1, 2 and 3 are recorded and presented as one session. Personally, I’m fine with this, because I think the information makes a lot more sense this way. However, it makes comparisons difficult.

This was only the second year for RootsTech to be virtual and the conference is absolutely HUGE, so live and learn. Next year will be smoother and hopefully, at least partially in-person too.

When I “arrived” to present my live session, “Associating Autosomal DNA Segments With Ancestors,” my lovely moderator, Rhett, told me that they were going to livestream my session to the RootsTech page on Facebook as well because they realized that the 500 Zoom seat limit had been a problem the day before with some popular sessions. I have about 9000 views for that session and more than 7,400 of them are on the RootsTech Facebook page – and that was WITHOUT any advance notice or advertising. I know that the Zoom room was full in addition. I felt kind of strange about including my results in the top ten because I had that advantage, but I didn’t know quite how to otherwise count my session. As it turns out, all sessions with more than 1000 views made it into the top ten so mine would have been there one way or another. A big thank you to everyone who watched!

I hope that the RootsTech team notices that the most viewed session is the one that was NOT constrained by the 500-seat limited AND was live-streamed on Facebook. Seems like this might be a great way to increase session views for everyone next year. Hint, hint!!!

I also want to say a huge thank you to all of the presenters for producing outstanding content. The sessions were challenging to find, plus RootsTech is always hectic, even virtually. So, I know a LOT of people will want to view these informative sessions, now that you know where to look and have more time. Please remember to “like” the session on YouTube as a way of thanking your presenter.

With 140 DNA-focused sessions available, you can watch a new session, and put it to use, every other day for the next year! How fun is that! You can use this article as your own playlist.

Please feel free to share this article with your friends and genealogy groups so everyone can learn more about using DNA for genealogy.

Ok, let’s look at the top 10. Drum roll please…

Top 10 Most Viewed RootsTech Sessions

Session Title Presenter YouTube Link Views
1 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
2 1. What to Do with Your DNA Test Results in 2022 (part 1 of 3) Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
3 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
4 2. What to Do with Your DNA Test Results in 2022 (part 2 of 3) Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
5 Latest DNA Painter Releases DNAPainter Jonny Perl (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
6 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
7 3. What to Do with Your DNA Test Results in 2022 (part 3 of 3) Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
8 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
9 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

10 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers

 

All DNA-Focused Sessions

I know you’ll find LOTS of goodies here. Which ones are your favorites?

  Session Presenter YouTube Link Views
1 Estimating Relationships by Combining DNA from Multiple Siblings Amy Williams https://www.youtube.com/watch?v=xs1U0ohpKSA 201
2 Overview of HAPI-DNA.org Amy Williams https://www.youtube.com/watch?v=FjNiJgWaBeQ 126
3 How do AncestryDNA® Communities help tell your story? | Ancestry® Ancestry https://www.youtube.com/watch?v=EQNpUxonQO4 183

 

4 AncestryDNA® 201 Ancestry – Crista Cowan https://www.youtube.com/watch?v=lbqpnXloM5s

 

494
5 Genealogy in a Minute: Increase Discoveries by Attaching AncestryDNA® Results to Family Tree Ancestry – Crista Cowan https://www.youtube.com/watch?v=iAqwSCO8Pvw 369
6 AncestryDNA® 101: Beginner’s Guide to AncestryDNA® | Ancestry® Ancestry – Lisa Elzey https://www.youtube.com/watch?v=-N2usCR86sY 909
7 Hidden in Plain Sight: Free People of Color in Your Family Tree Cheri Daniels https://www.youtube.com/watch?v=FUOcdhO3uDM 179
8 Finding Relatives to Prevent Hereditary Cancer ConnectMyVariant – Dr. Brian Shirts https://www.youtube.com/watch?v=LpwLGgEp2IE 63
9 Piling on the chromosomes Debbie Kennett https://www.youtube.com/watch?v=e14lMsS3rcY 465
10 Linking Families With Rare Genetic Condition Using Genealogy Deborah Neklason https://www.youtube.com/watch?v=b94lUfeAw9k 43
11 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=FENAKAYLXX4 7428
12 1. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=hemY5TuLmGI 1780
13 2. What to Do with Your DNA Test Results in 2022 Diahan Southard https://www.youtube.com/watch?v=mIllhtONhlI 2448
14 DNA Testing For Family History Diahan Southard https://www.youtube.com/watch?v=kCLuOCC924s 84

 

15 Understanding Your DNA Ethnicity Estimate at 23andMe Diana Elder

 

https://www.youtube.com/watch?v=xT1OtyvbVHE 66
16 Understanding Your Ethnicity Estimate at FamilyTreeDNA Diana Elder https://www.youtube.com/watch?v=XosjViloVE0 73
17 DNA Monkey Wrenches Katherine Borges https://www.youtube.com/watch?v=Thv79pmII5M 245
18 Advanced Features in your Ancestral Tree and Fan Chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=4u5Vf13ZoAc 425
19 DNA Painter Introduction DNAPainter – Jonny Perl https://www.youtube.com/watch?v=Rpe5LMPNmf0 1983
20 Getting Segment Data from 23andMe DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=8EBRI85P3KQ 134
21 Getting segment data from FamilyTreeDNA DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=rWnxK86a12U 169
22 Getting segment data from Gedmatch DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=WF11HEL8Apk 163
23 Getting segment data from Geneanet DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=eclj8Ap0uK4 38
24 Getting segment data from MyHeritage DNA matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=9rGwOtqbg5E 160
25 Inferred Chromosome Mapping: Maximize your DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
26 Keeping track of your genetic family tree in a fan chart DNAPainter – Jonny Perl https://www.youtube.com/watch?v=W3Hcno7en94 806

 

27 Mapping a DNA Match in a Chromosome Map DNAPainter – Jonny Perl https://www.youtube.com/watch?v=A61zQFBWaiY 423
28 Setting up an Ancestral Tree and Fan Chart and Exploring Tree Completeness DNAPainter – Jonny Perl https://www.youtube.com/watch?v=lkJp5Xk1thg 77
29 Using the Shared cM Project Tool to Evaluate DNA Matches DNAPainter – Jonny Perl https://www.youtube.com/watch?v=vxhn9l3Dxg4 763
30 Your First Chromosome Map: Using your DNA Matches to Link Segments to Ancestors DNAPainter – Jonny Perl https://www.youtube.com/watch?v=tzd5arHkv64 688
31 DNA Painter for absolute beginners DNAPainter (Jonny Perl) https://www.youtube.com/watch?v=JwUWW4WHwhk 1196
32 Latest DNA Painter Releases DNAPainter (live) https://www.youtube.com/watch?v=iLBThU8l33o 2230 + live viewers
33 Unraveling your genealogy with DNA segment networks using AutoSegment from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=rVpsJSqOJZI

 

162
34 Unraveling your genealogy with genetic networks using AutoCluster Evert-Jan Blom https://www.youtube.com/watch?v=ZTKSz_X7_zs 201

 

 

35 Unraveling your genealogy with reconstructed trees using AutoTree & AutoKinship from Genetic Affairs Evert-Jan Blom https://www.youtube.com/watch?v=OmDQoAn9tVw 143
36 Research Like a Pro with DNA – A Genealogist’s Guide to Finding and Confirming Ancestors with DNA Family Locket Genealogists https://www.youtube.com/watch?v=NYpLscJJQyk 183
37 How to Interpret a DNA Network Graph Family Locket Genealogists – Diana Elder https://www.youtube.com/watch?v=i83WRl1uLWY 393
38 Find and Confirm Ancestors with DNA Evidence Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=DGLpV3aNuZI 144
39 How To Make A DNA Network Graph Family Locket Genealogists – Nicole Dyer https://www.youtube.com/watch?v=MLm_dVK2kAA 201
40 Create A Family Tree With Your DNA Matches-Use Lucidchart To Create A Picture Worth A Thousand Words Family Locket Genealogists – Robin Wirthlin https://www.youtube.com/watch?v=RlRIzcW-JI4 270
41 Charting Companion 7 – DNA Edition Family Tree Maker https://www.youtube.com/watch?v=k2r9rkk22nU 316

 

42 Family Finder Chromosome Browser: How to Use FamilyTreeDNA https://www.youtube.com/watch?v=w0_tgopBn_o 750

 

 

43 FamilyTreeDNA: 22 Years of Breaking Down Brick Walls FamilyTreeDNA https://www.familysearch.org/rootstech/session/familytreedna-22-years-of-breaking-down-brick-walls Not available
44 Review of Autosomal DNA, Y-DNA, & mtDNA FamilyTreeDNA  – Janine Cloud https://www.youtube.com/watch?v=EJoQVKxgaVY 77
45 Who Is FamilyTreeDNA? FamilyTreeDNA – Bennett Greenspan https://www.youtube.com/watch?v=MHFtwoatJ-A 2946
46 Part 1: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=ra1cjGgvhRw 684

 

47 Part 2: How to Interpret Y-DNA Results, A Walk Through the Big Y FamilyTreeDNA – Casimir Roman https://www.youtube.com/watch?v=CgqcjBD6N8Y

 

259
48 Big Y-700: A Brief Overview FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=IefUipZcLCQ 96
49 Mitochondrial DNA & The Million Mito Project FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=5Zppv2uAa6I 179
50 Mitochondrial DNA: What is a Heteroplasmy FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=ZeGTyUDKySk 57
51 Y-DNA Big Y: A Lifetime Analysis FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=E6NEU92rpiM 154
52 Y-DNA: How SNPs Are Added to the Y Haplotree FamilyTreeDNA – Janine Cloud https://www.youtube.com/watch?v=CGQaYcroRwY 220
53 Family Finder myOrigins: Beginner’s Guide FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=VrJNpSv8nlA 88
54 Mitochondrial DNA: Matches Map & Results for mtDNA FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=YtA1j01MOvs 190
55 Mitochondrial DNA: mtDNA Mutations Explained FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=awPs0cmZApE 340

 

56 Y-DNA: Haplotree and SNPs Page Overview FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=FOuVhoMD-hw 432
57 Y-DNA: Understanding the Y-STR Results Page FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=gCeZz1rQplI 148
58 Y-DNA: What Is Genetic Distance? FamilyTreeDNA – Katy Rowe https://www.youtube.com/watch?v=qJ6wY6ILhfg 149
59 DNA Tools: myOrigins 3.0 Explained, Part 1 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=ACgY3F4-w78 74

 

60 DNA Tools: myOrigins 3.0 Explained, Part 2 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=h7qU36bIFg0 50
61 DNA Tools: myOrigins 3.0 Explained, Part 3 FamilyTreeDNA – Paul Maier https://www.youtube.com/watch?v=SWlGPm8BGyU 36
62 African American Genealogy Research Tips FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=XdbkM58rXIQ 153

 

63 Connecting With My Ancestors Through Y-DNA FamilyTreeDNA – Sherman McRae https://www.youtube.com/watch?v=xbo1XnLkuQU 200
64 Join The Million Mito Project FamilyTreeDNA (Join link) https://www.familysearch.org/rootstech/session/join-the-million-mito-project link
65 View the World’s Largest mtDNA Haplotree FamilyTreeDNA (Link to mtDNA tree) https://www.familytreedna.com/public/mt-dna-haplotree/L n/a
66 View the World’s Largest Y Haplotree FamilyTreeDNA (Link to Y tree) https://www.familytreedna.com/public/y-dna-haplotree/A link
67 A Sneak Peek at FamilyTreeDNA Coming Attractions FamilyTreeDNA (live) https://www.youtube.com/watch?v=K9sKqNScvnE 1270 + live viewers

 

68 DNA Upload: How to Transfer Your Autosomal DNA Data FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=CS-rH_HrGlo 303
69 Family Finder myOrigins: How to Compare Origins With Your DNA Matches FamilyTreeDNA -Katy Rowe https://www.youtube.com/watch?v=7mBmWhM4j9Y 145
70 Join Group Projects at FamilyTreeDNA FamilyTreeDNA link to learning center article) https://www.familysearch.org/rootstech/session/join-group-projects-at-familytreedna link

 

71 Product Demo – Unraveling your genealogy with reconstructed trees using AutoKinship GEDmatch https://www.youtube.com/watch?v=R7_W0FM5U7c 803
72 Towards a Genetic Genealogy Driven Irish Reference Genome Gerard Corcoran https://www.youtube.com/watch?v=6Kx8qeNiVmo 155

 

73 Discovering Biological Origins in Chile With DNA: Simple Triangulation Gonzalo Alexis Luengo Orellana https://www.youtube.com/watch?v=WcVby54Uigc 40
74 Cousin Lynne: An Adoption Story International Association of Jewish Genealogical Societies https://www.youtube.com/watch?v=AptMcV4_B4o 111
75 Using DNA Testing to Uncover Native Ancestry Janine Cloud https://www.youtube.com/watch?v=edzebJXepMA 205
76 1. Forensic Genetic Genealogy Jarrett Ross https://www.youtube.com/watch?v=0euIDZTmx5g 58
77 Reunited and it Feels so Good Jennifer Mendelsohn https://www.youtube.com/watch?v=X-hxjm7grBE 57

 

78 Genealogical Research and DNA Testing: The Perfect Companions Kimberly Brown https://www.youtube.com/watch?v=X82jA3xUVXk 80
79 Finding a Jewish Sperm Donor Kitty Munson Cooper https://www.youtube.com/watch?v=iKRjFfNcpug 164
80 Using DNA in South African Genealogy Linda Farrell https://www.youtube.com/watch?v=HXkbBWmORM0 141
81 Using DNA Group Projects In Your Family History Research Mags Gaulden https://www.youtube.com/watch?v=0tX7QDib4Cw 165
82 2. The Expansion of Genealogy Into Forensics Marybeth Sciaretta https://www.youtube.com/watch?v=HcEO-rMe3Xo 35

 

83 DNA Interest Groups That Keep ’em Coming Back McKell Keeney (live) https://www.youtube.com/watch?v=HFwpmtA_QbE 180 plus live viewers
84 Searching for Close Relatives with Your DNA Results Mckell Keeney (live) https://www.familysearch.org/rootstech/session/searching-for-close-relatives-with-your-dna-results Not yet available
85 Top Ten Reasons To DNA Test For Family History Michelle Leonard https://www.youtube.com/watch?v=1B9hEeu_dic 181
86 Top Tips For Identifying DNA Matches Michelle Leonard https://www.youtube.com/watch?v=-3Oay_btNAI 306
87 Maximising Messages Michelle Patient https://www.youtube.com/watch?v=4TRmn0qzHik 442
88 How to Filter and Sort Your DNA Matches MyHeritage https://www.youtube.com/watch?v=fmIgamFDvc8 88
89 How to Get Started with Your DNA Matches MyHeritage https://www.youtube.com/watch?v=JPOzhTxhU0E 447

 

90 How to Track DNA Kits in MyHeritage` MyHeritage https://www.youtube.com/watch?v=2W0zBbkBJ5w 28

 

91 How to Upload Your DNA Data to MyHeritage MyHeritage https://www.youtube.com/watch?v=nJ4RoZOQafY 82
92 How to Use Genetic Groups MyHeritage https://www.youtube.com/watch?v=PtDAUHN-3-4 62
My Story: Hope MyHeritage https://www.youtube.com/watch?v=qjyggKZEXYA 133
93 MyHeritage Keynote, RootsTech 2022 MyHeritage https://www.familysearch.org/rootstech/session/myheritage-keynote-rootstech-2022 Not available
94 Using Labels to Name Your DNA Match List MyHeritage https://www.youtube.com/watch?v=enJjdw1xlsk 139

 

95 An Introduction to DNA on MyHeritage MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=1I6LHezMkgc 60
96 Using MyHeritage’s Advanced DNA Tools to Shed Light on Your DNA Matches MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=Pez46Xw20b4 110
97 You’ve Got DNA Matches! Now What? MyHeritage – Daniel Horowitz https://www.youtube.com/watch?v=gl3UVksA-2E 260
98 My Story: Lizzie and Ayla MyHeritage – Elizbeth Shaltz https://www.youtube.com/watch?v=NQv6C8G39Kw 147
99 My Story: Fernando and Iwen MyHeritage – Fernando Hermansson https://www.youtube.com/watch?v=98-AR0M7fFE 165

 

100 Using the Autocluster and the Chromosome Browser to Explore Your DNA Matches MyHeritage – Gal Zruhen https://www.youtube.com/watch?v=a7aQbfP7lWU 115

 

101 My Story : Kara Ashby Utah Wedding MyHeritage – Kara Ashby https://www.youtube.com/watch?v=Qbr_gg1sDRo 200
102 When Harry Met Dotty – using DNA to break down brick walls Nick David Barratt https://www.youtube.com/watch?v=8SdnLuwWpJs 679
103 How to Add a DNA Match to Airtable Nicole Dyer https://www.youtube.com/watch?v=oKxizWIOKC0 161
104 How to Download DNA Match Lists with DNAGedcom Client Nicole Dyer https://www.youtube.com/watch?v=t9zTWnwl98E 124
105 How to Know if a Matching DNA Segment is Maternal or Paternal Nicole Dyer https://www.youtube.com/watch?v=-zd5iat7pmg 161
106 DNA Basics Part I Centimorgans and Family Relationships Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=SI1yUdnSpHA 372
107 DNA Basics Part II Clustering and Connecting Your DNA Matches Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=ECs4a1hwGcs 333
108 DNA Basics Part III Charting Your DNA Matches to Get Answers Origins International, Inc. dba Origins Genealogy https://www.youtube.com/watch?v=qzybjN0JBGY 270
109 2. Using Cluster Auto Painter Patricia Coleman https://www.youtube.com/watch?v=-nfLixwxKN4 691
110 3. Using Online Irish Records Patricia Coleman https://www.youtube.com/watch?v=mZsB0l4z4os 802
111 Exploring Different Types of Clusters Patricia Coleman https://www.youtube.com/watch?v=eEZBFPC8aL4 972

 

112 The Million Mito Project: Growing the Family Tree of Womankind Paul Maier https://www.youtube.com/watch?v=cpctoeKb0Kw 541
113 The Tree of Mankind Age Estimates Paul Maier https://www.youtube.com/watch?v=jjkL8PWAEwk 1638
114 Y-DNA and Mitochondrial DNA Testing Plans Paul Woodbury https://www.youtube.com/watch?v=akymSm0QKaY 168
115 Finding Biological Family Price Genealogy https://www.youtube.com/watch?v=4xh-r3hZ6Hw 137
116 What Y-DNA Testing Can Do for You Richard Hill https://www.youtube.com/watch?v=a094YhIY4HU 191
117 Extending Time Horizons with DNA Rob Spencer (live) https://www.youtube.com/watch?v=wppXD1Zz2sQ 1037 + live viewers
118 DNA for Native American Ancestry by Roberta Estes Roberta Estes https://www.youtube.com/watch?v=EbNyXCFfp4M 212
119 1. Associating Autosomal DNA Segments With Ancestors Roberta Estes (live) https://www.youtube.com/watch?v=_IHSCkNnX48

 

~9000: 1019 + 500 live viewers + 7,400+ Facebook
120 1. What Can I Do With Ancestral DNA Segments? Roberta Estes (live) https://www.youtube.com/watch?v=Suv3l4iZYAQ 325 plus live viewers

 

121 Native American DNA – Ancient and Contemporary Maps Roberta Estes (live) https://www.youtube.com/watch?v=dFTl2vXUz_0 212 plus 483 live viewers

 

122 How Can DNA Enhance My Family History Research? Robin Wirthlin https://www.youtube.com/watch?v=f3KKW-U2P6w 102
123 How to Analyze a DNA Match Robin Wirthlin https://www.youtube.com/watch?v=LTL8NbpROwM 367
124 1. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=AIJyphGEZTA 82

 

125 2. Jewish Ethnicity & DNA: History, Migration, Genetics Schelly Talalay Dardashti https://www.youtube.com/watch?v=VM3MCYM0hkI 72
126 Ask us about DNA Talking Family History (live) https://www.youtube.com/watch?v=kv_RfR6OPpU 96 plus live viewers
127 1. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=WNhErW5UVKU

 

183
128 2. An Introduction to Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=CRpQ8EVOShI 110

 

129 Common Problems When Doing Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=hzFxtBS5a8Y 68
130 Cross Visual Phasing to Go Back Another Generation Tanner Blair Tolman https://www.youtube.com/watch?v=MrrMqhfiwbs 64
131 DNA Basics Tanner Blair Tolman https://www.youtube.com/watch?v=OCMUz-kXNZc 155
132 DNA Painter and Visual Phasing Tanner Blair Tolman https://www.youtube.com/watch?v=2-eh1L4wOmQ 155
133 DNA Painter Part 2: Chromosome Mapping Tanner Blair Tolman https://www.youtube.com/watch?v=zgOJDRG7hJc 172
134 DNA Painter Part 3: The Inferred Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=96ai8nM4lzo

 

100
135 DNA Painter Part 4: The Distinct Segment Generator Tanner Blair Tolman https://www.youtube.com/watch?v=Pu-WIEQ_8vc 83
136 DNA Painter Part 5: Ancestral Trees Tanner Blair Tolman https://www.youtube.com/watch?v=dkYDeFLduKA 73
137 Understanding Your DNA Ethnicity Results Tanner Blair Tolman https://www.youtube.com/watch?v=4tAd8jK6Bgw 518
138 What’s New at GEDmatch Tim Janzen https://www.youtube.com/watch?v=AjA59BG_cF4

 

515
139 What Does it Mean to Have Neanderthal Ancestry? Ugo Perego https://www.youtube.com/watch?v=DshCKDW07so 190
140 Big Y-700 Your DNA Guide https://www.youtube.com/watch?v=rIFC69qswiA 143
141 Next Steps with Your DNA Your DNA Guide – Diahan Southard (live) https://www.familysearch.org/rootstech/session/next-steps-with-your-dna Not yet available

Additions:

142  Adventures of an Amateur Genetic Genealogist – Geoff Nelson https://www.familysearch.org/rootstech/session/adventures-of-an-amateur-genetic-genealogist     291 views

____________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free, to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

AutoKinship at GEDmatch by Genetic Affairs

Genetic Affairs has created a new version of AutoKinship at GEDmatch. The new AutoKinship report adds new features, allows for more kits to be included in the analysis, and integrates multiple reports together:

  • AutoCluster – the autoclusters we all know and love
  • AutoSegment – clusters based on segments
  • AutoTree – reconstructed tree based on GEDCOM files of you and your matches, even if you don’t have a tree
  • AutoKinship – the original AutoKinship report provided genetic trees. The new AutoKinship report includes AutoTree, combines both, and adds features called AutoKinship Tree. (Trust me on this one – you’ll see in a minute!)
  • Matches
    • Common Ancestors with your ancestors
    • Common Ancestors between matches, even if they don’t match your tree
    • Common Locations

Maybe the best news is that some reports provide automatic triangulation because, at GEDmatch, it’s possible to not only see how you match multiple people, but also if those people match each other on that same segment. Of course, triangulation requires three-way matching in addition to the identification of common ancestors which is part of what AutoKinship provides, in multiple ways.

Let’s step through the included reports and features one at a time, using my clusters as an example.

Order Your Report

As a Tier 1 GEDmatch customer, sign in, select AutoKinship and order your report.

Note that there are now two clustering settings, the default setting and one that will provide more dense clusters. The last setting is the default setting for AutoKinship, since it has been shown to produce better AutoKinship results.

You can also select the number of kits to consider. Since this tool is free with a GEDmatch Tier 1 subscription, you can start small and rerun if you wish, as often as you wish.

Currently, a maximum of 500 matches can be included, but that will be increased to 1000 in the future. Your top 500 matches will be included that fall within the cM matching parameters specified.

I’m leaving this at the maximum 400 cM threshold, so every match below that is included. I generally leave this default threshold because otherwise my closest matches will be in a huge number of clusters which may cause processing issues.

For a special use case where you will want to increase the cM threshold, see the Special Use Cases section near the end of this article.

You can select a low number of matches, like 25 or 50 which is particularly useful if you want to examine the closest matches of a kit without a tree.

Keep in mind that there is currently a maximum processing time of 10 minutes allowed per report. This means that if you have large clusters, which are the last ones processed, you may not have AutoKinship results for those clusters.

This also means that if you select a high cM threshold and include all 500 allowable matches, you will receive the report but the AutoKinship results may not be complete.

When finished, your report will be delivered to you as a download link with an attached zipped file which you will need to save someplace where you can find it.

Unzip

If you’re a PC user, you’ll need to unzip or extract the files before you can use the files. You’ll see the zipper on the file.

If you don’t extract the contents, you can click on the file to open which will display a list of the files, so it looks like the files are extracted, but they aren’t.

You can see that the file is still zipped.

You can click on the html file which will display the AutoCluster correctly too, but when you click on any other link within that file, you’ll receive this error message if the file is still zipped.

If this happens to you, it means the file is still zipped. Close the files you have open, right click on the yellow zipped file folder and “extract all.”

Then click on the HTML link again and everything should work.

Ok, on to the fun part – the tools.

Tools

I’ve written about most of these tools individually before, except for the new combinations of course. I’ve put all of the Genetic Affairs Tools, Instructions and Resources in one article that you can find here.

I recommend that you take a look to be sure you’re using each tool to its greatest advantage.

AutoCluster

Click on the html file and watch your AutoCluster fly into place. I always, always love this part.

The first thing I noticed about my AutoCluster at GEDmatch is that it’s HUGE! I have a total of 144 clusters and that’s just amazing!

Information about the cluster file, including the number of matches, maximum and minimum cM used for the report, and minimum cluster size appears beneath your cluster chart.

22 people met the criteria but didn’t have other matches that did, so they are listed for my review, but not included in the cluster chart.

At first glance, the clusters look small, but don’t despair, they really aren’t.

My clusters only look small because the tool was VERY successful, and I have many matches in my clusters. The chart has to be scaled to be able to display on a computer monitor.

New Layout

Genetic Affairs has introduced a new layout for the various included tools.

Each section opens to provide a brief description of the tool and what is occurring. This new tool includes four previous tools plus a new one, AutoCluster Tree, as follows:

AutoCluster

AutoCluster first organizes your DNA matches into shared match clusters that likely represent branches of your family. Everyone in a cluster will likely be on the same ancestral line, although the MRCA between any of the matches and between you and any match may vary. The generational level of the clusters may vary as well. One may be your paternal grandmother’s branch, another may be your paternal grandfather’s father’s branch.

AutoSegment

AutoSegment organizes your matches based on triangulating segments. AutoSegment employs the positional information of segments (chromosome and start and stop position) to identify overlapping segments in order to link DNA matches. In addition, triangulated data is used to collaborate these links. Using the user defined minimum overlap of a DNA segment we perform a clustering of overlapping DNA segments to identify segment clusters. The overlap is calculated in centimorgans using human genetic recombination maps. Another aspect of overlapping segments is the fact that some regions of our genome seem to have more matches as compared to the other regions. These so-called pile-up areas can influence the clustering. The removal of known pile-up regions based on the paper of Li et al 2014 is optional and is not performed for this analysis However, a pileup report is provided that allows you to examine your genome for pileup regions.

AutoTree

By comparing the tree of the tested person and the trees from the members of a certain cluster, we can identify ancestors that are common amongst those trees. First, we collect the surnames that are present in the trees and create a network using the similarity between surnames. Next, we perform a clustering on this network to identify clusters of similar surnames. A similar clustering is performed based on a network using the first names of members of each surname cluster. Our last clustering uses the birth and death years of members of a cluster to find similar persons. As a consequence, initially large clusters (based on the surnames) are divided up into smaller clusters using the first name and birth/death year clustering.

AutoKinship

AutoKinship automatically predicts family trees based on the amount of DNA your DNA matches share with you and each other. Note that AutoKinship does not require any known genealogical trees from your DNA matches. Instead, AutoKinship looks at the predicted relationships between your DNA matches, and calculates many different paths you could all be related to each other. The probabilities used by this AutoKinship analysis are based on simulated data for GEDmatch matches and are kindly provided by Brit Nicholson (methodology described here). Based on the shared cM data between shared matches, we create different trees based on the putative relationships. We then use the probabilities to test every scenario which are then ranked.

AutoKinship Tree

Predicted trees from the AutoTree analysis are based on genealogical trees shared by the DNA matches and, if available, shared by the tested person. The relationships between DNA matches based on their common ancestors as provided AutoTree are used to perform an AutoKinship analysis and are overlayed on the predicted AutoKinship tree.

AutoKinship Tree is New

AutoKinship Tree is the new feature that combines the features of both AutoTree and AutoKinship. You receive:

  • Common ancestors between you and your matches
  • Trees of people who don’t share your common ancestors but share ancestors with each other
  • Combined with relationship predictions and
  • A segment analysis

Of course, the relative success of the tree tools depends upon how many people have uploaded GEDCOM files.

Big hint, if you haven’t uploaded your family tree, do so now. If you are an adoptee or searching for a parent and don’t know who your ancestors are, AutoKinship Tree does its best without your tree information, and you will still benefit from the trees of others combined with predicted relationships based on DNA.

It’s easier to show you than to tell you, so let’s step through my results one section at a time.

I’m going to be using cluster 5 which has 32 members and cluster 136 which has 8 members. Ironically, cluster 136 is a much more useful cluster, with 8 good matches, than cluster 5 which includes 32 people.

Results of the AutoKinship Analyses

As you scroll down your results, you’ll see a grid beneath the Explanation area.

It’s easy to see which cluster received results for each tool. My cluster 5 has results in each category, along with surnames. (Notice that you can search for surnames which displays only the clusters that contain that surname.)

I can click on each icon to see what’s there waiting for me.

Additionally, you can click at the top on the blue middle “here” for an overview of all common ancestors. Who can resist that, right?

Click on the ancestor’s name or the tree link to view more information.

You can also view common locations too by clicking on the blue “here” at far right. A location, all by itself, is a HUGE hint.

Clicking on the tree link shows you the tree of the tester with ancestors at that location. I had several others from North Carolina, generally, and other locations specifically. Let’s take a look at a few examples.

Common Ancestor Clusters

Click on the first blue link to view all common ancestors.

Common Ancestor Clusters summarize all of the clusters by ancestor. In other words, if any of your matches have ancestors in common in their tree, they are listed here.

These clusters include NOT just the people who share ancestors in a tree with you, but who also share known ancestors with each other BUT NOT YOU. That may be incredibly important when you are trying to identify your ancestors – as in brick walls. Your ancestors may be their ancestors too, or your common segments might lead to your common ancestors if you complete their tree.

There are other important hints too.

In my case, above, Jacob Lentz is my known ancestor.

However, Sarah Barron is not my ancestor, nor is John Vincent Dodson. They are the descendants of my Dodson ancestor though. I recognized that surname and those people. In other instances, recognizing a common geography may be your clue for figuring out how you connect.

In the cluster column at left, you can see the cluster number in which these people are found.

Common Locations Table

Clicking on the second link provides a Common Location Table

Some locations are general, like a state, and others are town, county or even village names. Whatever people have included in their GEDCOM files that can be connected.

Looking at this first entry, I recognize some of the ancestral surnames of Karen’s ancestors. The fact that we are found in the same cluster and share DNA indicates a common ancestor someplace.

Check for this same person in additional locations, then, look at their tree.

Ok, back to the AutoKinship Analysis Table and Cluster 136.

Cluster 136

I’m going to use Cluster 136 as an example because this cluster has generated great reports using all of the tools, indicated by the icon under each column heading. Some clusters won’t have enough information for everything so the tools generate as much as possible.

Scrolling down to Cluster 136 in the AutoCluster Information report, just beneath the list of clusters, I can see my 8 matches in that cluster.

Of course, I can click on the links for specific information, or contact them via email. At the end of this article in the “Tell Me Everything” section, I’ll provide a way to retrieve as much information as possible about any one match. For now, let’s move to the AutoTree.

Cluster 136 AutoTree

Clicking on the icon under AutoTree shows me how two of the matches in this cluster are related to each other and myself.

Note that the centimorgan badges listed refer to the number of cM that I share with each of these people, not how much they share with each other.

Click on any of the people to see additional information.

When I click on J Lentz m F Moselman, a popup box shows me how this couple is related to me and my matches.

Of course, you can also view the Y DNA or mitochondrial DNA haplogroups if the testers have provided that information when they set up their GEDmatch profile information.

Just click on the little icons.

If the testers have not provided that information, you can always check at FamilyTreeDNA or 23andMe, if they have tested at either of those vendors, to view their haplogroup information.

Today, GEDmatch kit numbers are assigned randomly, but in the early days, before Genesis, the leading letter of A meant AncestryDNA, F or T for FamilyTreeDNA, M for 23andMe and H for MyHeritage. If the kit number is something else, perform a one-to-one or a one-to-many report which will display the source of their DNA file.

The small number, 136 in this case, beside the cM number indicates the cluster or clusters that these people are members of. Some people are members of multiple clusters

Let’s see what’s next.

Cluster 136 Common Ancestors

Clicking on the Ancestors icon provides a report that shows all of the Ancestor Clusters in cluster 136.

The difference between this ancestor chart and the larger chart is that this only shows ancestors for cluster 136, while the larger chart shows ancestors for the entire AutoCluster report.

Cluster 136 Locations

All of the locations shown are included in trees of people who cluster together in cluster 136. Of course, this does NOT mean that these locations are all relevant to cluster 136. However, finding my own tree listed might provide an important clue.

Using the location tool, I discover 5 separate location clusters. This location cluster includes me with each tester’s ancestors who are found in Montgomery County, Ohio.

The difference between this chart for cluster 136 only and the larger location chart is that every location in this chart is relevant for people who all cluster together meaning we all share some ancestral line.

Viewing the trees of other people in the cluster may suggest ancestors or locations that are essential for breaking down brick walls.

Cluster 136 AutoKinship

Clicking on the anchor in the AutoKinship column provides a genetically reconstructed tree based on how closely each of the people match me, and each other. Clearly, in order to be able to provide this prediction, information about how your matches also match each other, or don’t, is required.

Again, the cM amount shown is the cM match with me, not with each other. However, if you click on a match, a popup will be shown that shows the shared cM between that person and the other matches as well as the relationship prediction between them in this tree

So, Bill matches David with a total of 354.3 cM and they are positioned as first cousins once removed in this tree. The probability of the match being a 1C1R (first cousin once removed) is 64.9%, meaning of course that other relationships are possible.

Note that Bill and David ALSO share a segment with me in autosegment cluster 185, on chromosome 3.

It’s important to note that while 136 is the autocluster number, meaning that colored block on the report, WITHIN clusters, autosegment clusters are formed and numbered. 

Each autosegment cluster receives its own number and the numbers are for the entire report. You will have more autosegment clusters than autoclusters, because at least some of the colorful autoclusters will contain more than one segment cluster.

Remember, autoclusters are those colorful boxes of matches that fly into place. Autosegment clusters are the matching triangulated clusters on chromosomes and they are represented by the blue bars, shown below.

AutoCluster 136 contains 5 different autosegment clusters, but Bill is only included in one of those autosegment clusters.

You’ll notice that there are some people, like Robin at the bottom, who do match some other people in the cluster, but either not enough people, or not enough overlapping DNA to be included as an autocluster member.

The small colored chromosomes with numbers, boxed in red, indicate the chromosome on which this person matches me.

If you click on that chromosome icon, you’ll see a popup detailing everyone who matches me on that segment.

Note that in some cases a member of a segment cluster, like Robin, did not make it in the AutoCluster cluster. You can spot these occurrences by scrolling down and looking at the cluster column which will then be empty for that particular match.

Reconstructed AutoKinship Trees in Most Likely Order

Scrolling down the page, next we see that we have multiple possible trees to view. We are shown the most likely tree first.

Tree likelihood is constructed based on the combined probability of my matching cM to an individual plus their likely relationship to each other based on the amount of DNA they share with each other as well.

In my case, all of the first 8 trees are equally as likely to be accurate, based on autosomal genetic relationships only. The ninth tree is only very slightly less likely to be accurate.

The X chromosome is not utilized separately in this analysis, nor are Y or mitochondrial DNA haplogroups if provided.

DNA Relationship Matrix

Continuing to scroll down, we next see the DNA matrix that shows relationships for cluster 5 in a grid format. Click on “Download Relationship Matrix” to view in a spreadsheet.

Keep scrolling for the next view which is the Individual Segment Cluster Information

Individual Segment Cluster Information

Remember that we are still focused on only one cluster – in this case, cluster 136. Each cluster contains people who all match at least some subset of other people in the cluster. Some people will match each other and the tested person on the same chromosome segment, and some won’t. What we generally see within clusters are “subclusters” of people who match each other on different chromosomes and segments. Also, some matches from cluster 136 might match other people but those matches might not be a member of cluster 136.

In autocluster 136, I have 14 DNA segments that converge into 5 segment clusters with my matches. Here’s segment cluster 185 that consists of two people in addition to me. Note that for individuals to be included in these segment clusters at GEDmatch, they must triangulate with people in the same segment cluster.

From left to right, we see the following information:

  • AutoCluster number 136, shown below

  • Segment cluster 185. This is a segment cluster within autocluster 136.

  • Segment cluster 185 occurs on chromosome 3, between the designated start and stop locations.
  • The segment representation shows the overlapping portions of the two matches, to me. You can easily see that they overlap almost exactly with each other as well.
  • The SNP count is shown, followed by the name and cM count.

Cluster 136 AutoKinship Tree

The AutoKinship Tree column is different from the AutoKinship column in one fundamental way. The new AutoKinship Tree feature combines the genealogical AutoTree and the genetic AutoKinship output together in one report.

You can see that the “prior” genealogical tree information that one of my matches also descends from Jacob Lentz (and wife, if you click further) has now been included. The matches without trees have been reconstructed around the known genealogy based on how they match me and each other.

I was already aware of how I’m related to Bill, David, *C and *R, but I don’t know how I am related to these other people. Based on their kit identifier, I can go to the vendor where they tested and utilize tools there, and I can check to see if they have uploaded their DNA files elsewhere to discover additional records information or critical matches. Now at least I know where in the tree to search.

Cluster 136 AutoSegment

Clicking on AutoSegment provides you with segment information. Each cluster is painted on your chromosomes.

By hovering over the darkly colored segments, which are segment clusters, you can view who you match, although to view multiple matches, continue scrolling.

In the next section, you’ll see the two segment clusters contained wholly within cluster 136.

Following that is the same information for segment clusters partially linked to cluster 136, but not contained wholly within 136.

Bonus – Tell Me Everything – Individual Match Clusters

We’ve focused specifically on the AutoKinship tools, but if you’re interested in “everything” about one specific match, you can approach things from that perspective too. I often look at a cluster, then focus on individuals, beginning with those I can identify which focuses my search.

If you click on any person in your match list, you’ll receive a report focusing on that person in your autocluster.

Let’s use cousin Bill as an example. I know how he’s related to me.

You can choose to display your chosen cluster by:

  • Cluster
  • Number of shared matches
  • Shared cM with the tester
  • Name

I would suggest experimenting with all of the options and see which one displays information that is most useful to the question you’re trying to answer.

Beneath the cluster for Bill, you’ll see the relevant information about the cluster itself. Bill has cluster matches on two different chromosomes.

The AutoCluster Cluster member Information report shows you how much DNA each cluster member shares with the tested person, which is me, and with each other cluster member. It’s easy to see at a glance who Bill is most closely related to by the number of cMs shared.

Only one of Bill’s chromosomes, #3, is included in clusters, but this tells me immediately that this/these segments on chromosome 3 triangulate between me, Bill, and at least one other person.

Segments shown in orange (chromosome 22) match me, but are not included in a cluster.

Special Use Cases – Unknown People

For adoptees and people trying to figure out how they are related to closer relatives, especially those without a tree, this new combined AutoKinship tool is wonderful.

400 cM is the upper default limit when running the report, meaning that close family members will not be included because they would be included in many clusters. However, you can make a different selection. If you’re trying to determine how several closely related people intersect, select a high threshold to include everyone.

Select a lower number of matches, like 25 or 50.

In this example, ‘no limit” was selected as the upper total match threshold and 25 closest matches.

AutoKinship then constructs a genetic tree and tells you which trees are possible and most likely. If some people do have trees, that common ancestor information would be included as well.

Note that when matches occur over the 400 cM threshold, there will be too many common chromosome matches so the chromosome numbers are omitted. Just check the other reports.

This tool would have helped a great deal with a recent close match who didn’t know how they are related to my family.

You can see this methodology in action and judge its accuracy by reconstructing your own family, assuming some of your known family members have uploaded to GEDmatch. Try it out.

It’s a Lot!

I know there’s a lot here to absorb, but take your time and refer back to this article as needed.

This flexible new tool combines DNA matching, genealogy trees, genetic trees, locations, autoclusters, a chromosome browser, and triangulation. It took me a few passes and working with different clusters to understand and absorb the information that is being provided.

For people who don’t know who their parents or close relatives are, these tools are amazing. Not only can they determine who they are related to, and who is related to each other, but with the use of trees, they can view common ancestors which provides possible ancestors for them too.

For people painting their triangulated segments at DNAPainter, AutoKinship provides triangulation groups that can be automatically painted using the Cluster Auto Painter, here, plus helps to identify that common ancestor. You can read more about DNAPainter, here.

For people seeking to break down brick walls, AutoKinship Tree provides assistance by providing tree matching between your matches for common ancestors NOT IN YOUR TREE, but that ARE in theirs. Your brick walls are clearly not (yet) identified in your tree, although that’s our fervent hope, right?

Even if your matches’ trees don’t go far enough back, as a genealogist, you can extend those trees further to hopefully reveal a previously unknown common ancestor.

The Best Things You Can Do

Aside from DNA testing, the three best things you can do to help yourself, and your clusters are:

  • Upload your GEDCOM file, complete with locations, so you have readily available trees. Ask your matches to do so as well. Trees help you and others too.
  • Encourage people you match at Ancestry who provides no chromosome segment information or chromosome browser to upload a copy of their DNA files and tree.
  • Test your family members and cousins, and encourage them to upload their DNA and their trees. Offer to assist them. You can find step-by-step download/upload instructions here.

Have fun!

______________________________________________________________

Sign Up Now – It’s Free!

If you enjoyed this article, subscribe to DNAeXplain for free to automatically receive new articles by email each week.

Here’s the link. Just look for the little grey “follow” button on the right-hand side on your computer screen below the black title bar, enter your e-mail address, and you’re good to go!

In case you were wondering, I never have nor ever will share or use your e-mail outside of the intended purpose.

Share the Love

You can always forward these articles to friends or share by posting links on social media. Who do you know that might be interested?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Identify Your Ancestors – Follow Nested Ancestral Segments

I don’t think that we actively think about our DNA segments as nested ancestors, like Russian Matryoshka dolls, but they are.

That’s exactly why segment information is critical for genealogists. Every segment, and every portion of a segment, has an incredibly important history. In fact, you could say that the further back in time we can track a segment, the more important it becomes.

Let’s see how to unveil nested segments. I’ll use my chromosome 20 as an example because it’s a smaller chromosome. But first, let’s start with my pedigree chart.

Pedigree

Click images to enlarge.

Before we talk about nested segments that originated with specific ancestors, it’s important to take a look at the closest portion of my maternal pedigree chart. My DNA segments came from and through these people. I’ll be working with the first 5 generations, beginning with my mother as generation #1.

Generation 1 – Parents

In the first generation, we receive a copy of each chromosome from each parent. I have a copy of chromosome 20 from my mother and a copy from my father.

At FamilyTreeDNA, you can see that I match my mother on the entire tested region of each chromosome.

Therefore, the entire length of each of my chromosomes is assigned to both mother and father because I received a copy from each parent. I’m fortunate that my mother’s DNA was able to be tested before she passed away.

We see that each copy of chromosome 20 is a total of 110.20 cM long with 17,695 SNPs.

Of course, my mother inherited the DNA on her chromosome 20 from multiple ancestors whose DNA combined in her parents, a portion of which was inherited by my mother. Mom received one chromosome from each of her parents.

I inherited only one copy of each chromosome (In this case, chromosome 20) from Mom, so the DNA of her two parents was divided and recombined so that I inherited a portion of my maternal chromosome 20 from both of my maternal grandparents.

Identifying Maternal and Paternal Matches

Associating matches with your maternal or paternal side is easy at FamilyTreeDNA because their Family Finder matching does it automatically for you if you upload (or create) a tree and link matches that you can identify to their proper place in your tree.

FamilyTreeDNA then uses that matching segment information from known, identified relatives in your tree to place people who match you both on at least one significant-sized segment in the correct maternal, paternal, (or both) buckets. That’s triangulation, and it happens automatically. All you have to do is click on the Maternal tab to view your triangulated maternal matches. As you can see, I have 1432 matches identified as maternal. 

Some other DNA testing companies and third-party tools provide segment information and various types of triangulation information, but they aren’t automated for your entire match list like Family Finder matching at FamilyTreeDNA.

You can read about triangulation in action at MyHeritage, here, 23andMe, here, GEDmatch, here, and DNAPainter, which we’ll use, here. Genetic Affairs AutoKinship tool incorporates triangulation, as does their AutoSegment Triangulation Cluster Tool at GEDmatch. I’ve compiled a reference resource for triangulation, here.

Every DNA testing vendor has people in their database that haven’t tested anyplace else. Your best strategy for finding nested segments and identifying matches to specific ancestors is to test at or transfer your DNA file to every vendor plus GEDmatch where people who test at Ancestry sometimes upload for matching. Ancestry does not provide segment information or a chromosome browser so you’ll sometimes find Ancestry testers have uploaded to GEDmatch, FamilyTreeDNA  or MyHeritage where segment information is readily available. I’ve created step-by-step download/upload instructions for all vendors, here.

Generation 2 – Grandparents

In the second generation, meaning that of my grandparents, I inherited portions of my maternal and paternal grandmother’s and grandfather’s chromosomes.

My maternal and paternal chromosomes can be divided into two pieces or groups each, one for each grandparent.

Using DNAPainter, we can see my father’s chromosome 20 on top and my mother’s on the bottom. I have previously identified segments assigned to specific ancestors which are represented by different colors on these chromosomes. You can read more about how to use DNAPainter, here.

We can divide the DNA inherited from each parent into the DNA inherited from each grandparent based on the trees of people we match. If we test cousins from each side, assigning segments maternally or paternally becomes much, much easier. That’s exactly why I’ve tested several.

For the rest of this article, I’m focusing only on my mother’s side because the concepts and methods are the same regardless of whether you’re working on your maternal side or your paternal side.

Using DNAPainter, I expanded my mother’s chromosome 20 in order to see all of the people I’ve painted on my mother’s side.

DNAPainter allows us to paint matching segments from multiple testing vendors and assign them to specific ancestors as we identify common ancestors with our matches.

Based on these matches, I’ve divided these maternal matches into two categories:

  • Maternal grandmother, meaning my mother’s mother, bracketed in red boxes
  • Maternal grandfather, meaning my mother’s father, bracketed in black boxes.

The text and arrows in these graphics refer to the colors of the brackets/boxes, and NOT the colors of the segments beside people’s names. For example, if you look at the large black box at far right, you’ll see several people, with their matching segments identified by multiple colored bars. The different colored segments (bars) mean I’ve associated the match with different ancestors in multiple or various levels of generations.

Generation 3 – Great-grandparents

Within those maternal and paternal grandparent segments, more nested information is available.

The black Ferverda grandfather segments are further divided into black, from Hiram Ferverda, and gold from his wife Eva Miller. The same concept applies to the red grandmother segments which are now divided into red representing Nora Kirsch and purple representing Curtis Lore, her husband.

While I have only been able to assign the first four segments (at the top) to one person/ancestor, there’s an entire group of matches who share the grouping of segments at right, in gold, descended through Eva Miller. The Miller line is Brethren and Mennonite with lots of testers, so this is a common pattern in my DNA matches.

Eva Miller, the gold ancestor, has two parents, Margaret Elizabeth Lentz and John David Miller, so her segments would come from those two sides.

Generation 4 and 5 – Fuschia Segment

I was able to track the segment shown in fuschia indicated by the blue arrow to Jacob Lentz and his wife Fredericka Ruhle, German immigrant ancestors. Other people in this same match (triangulation) group descend from Margaret Elizabeth Lentz and John David Miller – but that fuschia match is the one that shows us where that segment originated. This allows us to assign that entire gold/blue bracketed set of segments to a specific ancestor or ancestral couple because they triangulate, meaning they all match me and each other.

Therefore, all of the segments that match with the fuschia segment also track back to Jacob Lentz and Fredericka Ruhle, or to their ancestors. We would need people who descend from Jacob’s parents and/or Fredericka’s parents to determine the origins of that segment.

In other words, we know all of these people share a common source of that segment, even if we don’t yet know exactly who that common ancestor was or when they lived. That’s what the process of tracking back discovers.

To be very clear, I received that segment through Jacob and Fredericka, but some of those matches who I have not been able to associate with either Jacob or Fredericka may descend from either Jacob or Fredericka’s ancestors, not Jacob and Fredericka themselves. Connecting the dots between Jacob/Fredericka and their ancestors may be enlightening as to the even older source of that segment.

Let’s take a look at nested segments on my pedigree chart.

Nested Pedigree

Click to enlarge.

You can see the progression of nesting on my pedigree chart, using the same colors for the brackets/boxes. The black Ferverda box at the grandparent level encompasses the entire paternal side of my mother’s ancestry, and the red includes her mother’s entire side. This is identical to the DNAPainter graphic, just expressed on my pedigree chart instead of my chromosome 20.

Then the black gets broken into smaller nested segments of black, gold and fuschia, while the red gets broken into red and purple.

If I had more matches that could be assigned to ancestors, I would have even more nested levels. Of course, if I was using all of my chromosomes, not just 20, I would be able to go back further as well.

You can see that as we move further back in time, the bracketed areas assigned to each color become smaller and smaller, as do the actual segments as viewed on my DNAPainter chromosomes.

Segments Get Progressively Smaller

You can see in the pedigree chart and segment painting above that the segments we inherit from specific ancestors divide over time. As we move further and further back in our tree, the segments inherited from any specific ancestor get smaller and smaller too.

Dr. Paul Maier in the MyOrigins 3.0 White Paper provides this informative graphic that shows the reduction in segments and the number of ancestors whose DNA we carry reaching back in time.

I refer to this as a porcupine chart.

Eventually, we inherit no segments from red ancestors, and the pieces of DNA that we inherit from the distant blue ancestors become so small and fragmented that they cannot be positively identified as coming from a specific ancestor when compared to and matched with other people. That’s why vendors don’t show small segment matches, although different vendors utilize different segment thresholds.

The debate about how small is too small continues, but the answer is not simply segment size alone. There is no one-size-fits-all answer.

As segments become smaller, the probability, or chances that we match another person by chance (IBC) increases. Proof that someone shares a specific ancestor, especially when dealing with increasingly smaller segments is a function of multiple factors, such as tree completeness for both people, shared matches, parental match confirmation, and more. I wrote about What Constitutes Proof, here.

In the Family Finder Matching White Paper, Dr. Maier provides this chart reflecting IBD (Identical By Descent) and IBC (Identical By Chance) segments and the associated false positivity rate. That means how likely you are to match someone on a segment of that size by chance and NOT because you both share the DNA from a common ancestor.

I wrote Concepts: Identical by Descent, State, Population and Chance to help you better understand how this works.

In the chart below, I’ve combined the generations, relationships, # of ancestors, assuming no duplicates, birth year range based on an approximate 30-year generation, percent of DNA assuming exactly half of each ancestor’s DNA descends in each generation (which we know isn’t exactly accurate), and the average amount of total inherited cMs using that same assumption.

Note that beginning with the 7th generation, on average, we can expect to inherit less than 1% of the DNA of an ancestor, or approximately 55 total cM which may be inherited in multiple segments.

The amount of actual cMs inherited in each generation can vary widely and explains why, beginning with third cousins, some people won’t share DNA from a common ancestor above the various vendor matching thresholds. Yet, other cousins several generations removed will match. Inheritance is random.

Parallel Inheritance

In order to match someone else descended from that 11th generation ancestor, BOTH you AND your match will need to have inherited the exact SAME DNA segment, across 11 generations EACH in order to match. This means that 11 transmission events for each person will need to have taken place in parallel with that identical segment being passed from parent to child in each line. For 22 rolls of the genetic dice in a row, the same segment gets selected to be passed on.

You can see why we all need to work to prove that distant matches are valid.

The further back in time we work, the more factors we must take into consideration, and the more confirming proof is needed that a match with another individual is a result of a shared ancestor.

Having said that, shared distant matches ARE the key to breaking through brick-wall ancestors. We just need to be sure we are chasing the real deal and not a red herring.

Exciting Possibilities

The most exciting possibility is that some segments are actually passed intact for several generations, meaning those segments don’t divide into segments too small for matching.

For example, the 22 cM fuschia segment that tracks through generations 4 and 5 to Jacob Lentz and Fredericka Ruhle has been passed either intact or nearly intact to all of those people who stack up and match each other and me on that segment. 22 cM is definitely NOT a small segment and we know that it descended from either Jacob or Fredericka, or perhaps combined segments from each. In any case, if someone from the Lentz line in Germany tested and matched me on that segment (and by inference, the rest of these people too), we would know that segment descended to me from Jacob Lentz – or at least the part we match on if we don’t match on the entire segment.

This is exactly what nested segments are…breadcrumbs to ancestors.

Part of that 22cM segment could be descended from Jacob and part from Fredericka. Then of Jacob’s portion, for example, pieces could descend from both his mother and father.

This is why we track individual segments back in time to discern their origin.

The Promise of the Future

The promise of the future is when a group of other people triangulate on a reasonably sized segment AND know where it came from. When we match that triangulation group, their identified segment may well help break down our brick walls because we match all of them on that same segment.

It is exactly this technique that has helped me identify a Womack segment on my paternal line. I still haven’t identified our common ancestor, but I have confirmed that the Womacks and my Moore/Rice family interacted as neighbors 8 generations ago and likely settled together in Amelia county, migrating from eastern Virginia. In time, perhaps I’ll be able to identify the common Womack ancestor and the link into either my Moore or Rice lines.

I’m hoping for a similar breakthrough on my mother’s side for Philip Jacob Miller’s wife, Magdalena, 7 generations back in my tree. We know Magdalena was Brethren and where they lived when they took up housekeeping. We don’t know who her parents were. However, there are thousands of Miller descendants, so it’s possible that eventually, we will be able to break down that brick wall by using nested segments – ours and people who descend from Magdalena’s siblings, aunts, and uncles.

Whoever those people were, at least some of their descendants will likely match me and/or my cousins on at least one nested Miller segment that will be the same segment identified to their ancestors.

Genealogy is a team sport and solving puzzles using nested segments requires that someone out there is working on identifying triangulated segments that track to their common ancestors – which will be my ancestors too. I have my fingers crossed that someone is working on that triangulation group and I find them or they find me. Of course, I’m working to triangulate and identify my segments to specific ancestors – hoping for a meeting in the middle – that much-desired bridge to the past.

By the time you’ve run out of other records, nested segments are your last chance to identify those elusive ancestors. 

Do you have genealogical brick walls that nested segments could solve?

__________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here. You can also subscribe to receive emails when I publish articles by clicking the “Follow” button at www.DNAexplain.com.

You’re always welcome to forward articles or links to friends.

You Can Help Out and It’s Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

A Triangulation Checklist Born From the Question; “Why NOT Use Close Relatives for Triangulation?”

One of my readers asked why we don’t use close relatives for triangulation.

This is a great question because not using close relatives for triangulation seems counter-intuitive.

I used to ask my kids and eventually my students and customers if they wanted the quick short answer or the longer educational answer.

The short answer is “because close relatives are too close to reliably form the third leg of the triangle.” Since you share so much DNA with close relatives, someone matching you who is identical by chance can also match them for exactly the same reason.

If you trust me and you’re good with that answer, wonderful. But I hope you’ll keep reading because there’s so much to consider, not to mention a few gotchas. I’ll share my methodology, techniques, and workarounds.

We’ll also discuss absolutely wonderful ways to utilize close relatives in the genetic genealogical process – just not for triangulation.

At the end of this article, I’ve provided a working triangulation checklist for you to use when evaluating your matches.

Let’s go!

The Step-by-Step Educational Answer😊

Some people see “evidence” they believe conflicts with the concept that you should not use close relatives for triangulation. I understand that, because I’ve gone down that rathole too, so I’m providing the “educational answer” that explains exactly WHY you should not use close relatives for triangulation – and what you should do.

Of course, we need to answer the question, “Who actually are close relatives?”

I’ll explain the best ways to best utilize close relatives in genetic genealogy, and why some matches are deceptive.

You’ll need to understand the underpinnings of DNA inheritance and also of how the different vendors handle DNA matching behind the scenes.

The purpose of autosomal DNA triangulation is to confirm that a segment is passed down from a particular ancestor to you and a specific set of your matches.

Triangulation, of course, implies 3, so at least three people must all match each other on a reasonably sized portion of the same DNA segment for triangulation to occur.

Matching just one person only provides you with one path to that common ancestor. It’s possible that you match that person due to a different ancestor that you aren’t aware of, or due to chance recombination of DNA.

It’s possible that your or your match inherited part of that DNA from your maternal side and part from your paternal side, meaning that you are matching that other person’s DNA by chance.

I wrote about identical by descent (IBD), which is an accurate genealogically meaningful match, and identical by chance (IBC) which is a false match, in the article Concepts – Identical by…Descent, State, Population and Chance.

I really want you to understand why close relatives really shouldn’t be used for triangulation, and HOW close relative matches should be used, so we’re going to discuss all of the factors that affect and influence this topic – both the obvious and little-understood.

  • Legitimate Matches
  • Inheritance and Triangulation
  • Parental Cross-Matching
  • Parental Phasing
  • Automatic Phasing at FamilyTreeDNA
  • Parental Phasing Caveats
  • Pedigree Collapse
  • Endogamy
  • How Many Identical-by-Chance Matches Will I Have?
  • DNA Doesn’t Skip Generations (Seriously, It Doesn’t)
  • Your Parents Have DNA That You Don’t (And How to Use It)
  • No DNA Match Doesn’t Mean You’re Not Related
  • Imputation
  • Ancestry Issues and Workarounds
  • Testing Close Relatives is VERY Useful – Just Not for Triangulation
  • Triangulated Matches
  • Building Triangulation Evidence – Ingredients and a Recipe
  • Aunts/Uncles
  • Siblings
  • How False Positives Work and How to Avoid Them
  • Distant Cousins Are Best for Triangulation & Here’s Why
  • Where Are We? A Triangulation Checklist for You!
  • The Bottom Line

Don’t worry, these sections are logical and concise. I considered making this into multiple articles, but I really want it in one place for you. I’ve created lots of graphics with examples to help out.

Let’s start by dispelling a myth.

DNA Doesn’t Skip Generations!

Recently, someone emailed to let me know that they had “stopped listening to me” in a presentation when I said that if a match did not also match one of your parents, it was a false match. That person informed me that they had worked on their tree for three years at Ancestry and they have “proof” of DNA skipping generations.

Nope, sorry. That really doesn’t happen, but there are circumstances when a person who doesn’t understand either how DNA works, or how the vendor they are using presents DNA results could misunderstand or misinterpret the results.

You can watch my presentation, RootsTech session, DNA Triangulation: What, Why and How, for free here. I’m thrilled that this session is now being used in courses at two different universities.

DNA really doesn’t skip generations. You CANNOT inherit DNA that your parents didn’t have.

Full stop.

Your children cannot inherit DNA from you that you don’t carry. If you don’t have that DNA, your children and their descendants can’t have it either, at least not from you. They of course do inherit DNA from their other parent.

I think historically, the “skipping generations” commentary was connected to traits. For example, Susie has dimples (or whatever) and so did her maternal grandmother, but her mother did not, so Susie’s dimples were said to have “skipped a generation.” Of course, we don’t know anything about Susie’s other grandparents, if Susie’s parents share ancestors, recessive/dominant genes or even how many genetic locations are involved with the inheritance of “dimples,” but I digress.

DNA skipping generations is a fallacy.

You cannot legitimately match someone that your parent does not, at least not through that parent’s side of the tree.

But here’s the caveat. You can’t match someone one of your parents doesn’t with the rare exception of:

  • Relatively recent pedigree collapse that occurs when you have the same ancestors on both sides of your tree, meaning your parents are related, AND
  • The process of recombination just happened to split and recombine a segment of DNA in segments too small for your match to match your parents individually, but large enough when recombined to match you.

We’ll talk about that more in a minute.

However, the person working with Ancestry trees can’t make this determination because Ancestry doesn’t provide segment information. Ancestry also handles DNA differently than other vendors, which we’ll also discuss shortly.

We’ll review all of this, but let’s start at the beginning and explain how to determine if our matches are legitimate, or not.

Legitimate Matches

Legitimate matches occur when the DNA of your ancestor is passed from that ancestor to their descendants, and eventually to you and a match in an unbroken pathway.

Unbroken means that every ancestor between you and that ancestor carried and then passed on the segment of the ancestor’s DNA that you carry today. The same is true for your match who carries the same segment of DNA from your common ancestor.

False positive matches occur when the DNA of a male and female combine randomly to look like a legitimate match to someone else.

Thankfully, there are ways to tell the difference.

Inheritance and Triangulation

Remember, you inherit two copies of each of your chromosomes 1-22, one copy from your mother and one from your father. You inherit half of the DNA that each parent carries, but it’s mixed together in you so the labs can’t readily tell which nucleotide, A, C, T, or G you received from which parent. I’m showing your maternal and paternal DNA in the graphic below, stacked neatly together in a column – but in reality, it could be AC in one position and CA in the next.

For matching all that matters is the nucleotide that matches your match is present in one of those two locations. In this case, A for your mother’s side and C for your father’s side. If you’re interested, you can read more about that in the article, Hit a Genealogy Home Run Using Your Double-Sided Two-Faced Chromosomes While Avoiding Imposters.

You can see in this example that you inherited all As from your Mom and all Cs from your Dad.

  • A legitimate maternal match would match you on all As on this particular example segment.
  • A legitimate paternal match would match you on all Cs on this particular segment.
  • A false positive match will match you on some random combination of As and Cs that make it look like they match you legitimately, but they don’t.
  • A false positive match will NOT match either your mother or your father.

To be very clear, technically a false positive match DOES match your DNA – but they don’t match your DNA because you share a common ancestor with your match. They match you because random recombination on their side causes you to match each other by chance.

In other words, if part of your DNA came from your Mom’s side and part from your Dad’s but it randomly fell in the correct positional order, you’d still match someone whose DNA was from only their mother or father’s side. That’s exactly the situation shown above and below.

Looking at our example again, it’s evident that your identical by chance (IBC) match’s A locations (1, 3, 5, 7 & 9) will match your Mom. C locations (2, 4, 6 8, & 10) will match your Dad, but the nonmatching segments interleaved in-between that match alternating parents will prevent your match from matching either of your parents. In other words, out of 10 contiguous locations in our example, your IBC match has 5 As alternated with 5 Cs, so they won’t match either of your parents who have 10 As or 10 Cs in a row.

This recombination effect can work in either direction. Either or both matching people’s DNA could be randomly mixed causing them to match each other, but not their parents.

Regardless of whose DNA is zigzagging back and forth between maternal and paternal, the match is not genealogical and does not confirm a common ancestor.

This is exactly why triangulation works and is crucial.

If you legitimately match a third person, shown below, on your maternal side, they will match you, your first legitimate maternal match, and your Mom because they carry all As. But they WON’T match the person who is matching you because they are identical by chance, shown in grey below.

The only person your identical by chance match matches in this group is you because they match you because of the chance recombination of parental DNA.

That third person WILL also match all other legitimate maternal matches on this segment.

In the graphic above, we see that while the grey identical by chance person matches you because of the random combination of As from your mother and Cs from your father, your legitimate maternal matches won’t match your identical by chance match.

This is the first step in identifying false matches.

Parental Cross-Matching

Removing the identical by chance match, and adding in the parents of your legitimate maternal match, we see that your maternal match, above, matches you because you both have all As inherited from one parent, not from a combination of both parents.

We know that because we can see the DNA of both parents of both matches in this example.

The ideal situation occurs when two people match and they have both had their parents tested. We need to see if each person matches the other person’s parents.

We can see that you do NOT match your match’s father and your match does NOT match your father.

You do match your match’s mother and your match does match your mother. I refer to this as Parental Cross-matching.

Your legitimate maternal matches will also match each other and your mother if she is available for testing.

All the people in yellow match each other, while the two parents in gray do not match any of your matches. An entire group of legitimate maternal matches on this segment, no matter how many, will all match each other.

If another person matches you and the other yellow people, you’ll still need to see if you match their parents, because if not, that means they are matching you on all As because their two parents DNA combined just happened, by chance, to contribute an A in all of those positions.

In this last example, your new match, in green, matches you, your legitimate match and both of your mothers, BUT, none of the four yellow people match either of the new match’s parents. You can see that the new green match inherited their As from the DNA of their mother and father both, randomly zigzagging back and forth.

The four yellow matches phase parentally as we just proved with cross matching to parents. The new match at first glance appears to be a legitimate match because they match all of the yellow people – but they aren’t because the yellow people don’t match the green person’s parents.

To tell the difference between legitimate matches and identical by chance matches, you need two things, in order.

  • Parental matching known as parental phasing along with parental cross-matching, if possible, AND
  • Legitimate identical by descent (IBD) triangulated matches

If you have the ability to perform parental matching, called phasing, that’s the easiest first step in eliminating identical by chance matches. However, few match pairs will have parents for everyone. You can use triangulation without parental phasing if parents aren’t available.

Let’s talk about both, including when and how close relatives can and cannot be used.

Parental Phasing

The technique of confirming your match to be legitimate by your match also matching one of your parents is called parental phasing.

If we have the parents of both people in a match pair available for matching, we can easily tell if the match does NOT match either parent. That’s Parental Cross Matching. If either match does NOT match one of the other person’s parents, the match is identical by chance, also known as a false positive.

See how easy that was!

If you, for example, is the only person in your match pair to have parents available, then you can parentally phase the match on your side if your match matches your parents. However, because your match’s parents are unavailable, your match to them cannon tbe verified as legitimate on their side. So you are not phased to their parents.

If you only have one of your parents available for matching, and your match does not match that parent, you CANNOT presume that because your match does NOT match that parent, the match is a legitimate match for the other, missing, parent.

There are four possible match conditions:

  • Maternal match
  • Paternal match
  • Matches neither parent which means the match is identical by chance meaning a false positive
  • Matches both parents in the case of pedigree collapse or endogamy

If two matching people do match one parent of both matches (parental cross-matching), then the match is legitimate. In other words, if we match, I need to match one of your parents and you need to match one of mine.

It’s important to compare your matches’ DNA to generationally older direct family members such as parents or grandparents, if that’s possible. If your grandparents are available, it’s possible to phase your matches back another generation.

Automatic Phasing at FamilyTreeDNA

FamilyTreeDNA automatically phases your matches to your parents if you test that parent, create or upload a GEDCOM file, and link your test and theirs to your tree in the proper places.

FamilyTreeDNA‘s Family Matching assigns or “buckets” your matches maternally and paternally. Matches are assigned as maternal or paternal matches if one or both parents have tested.

Additionally, FamilyTreeDNA uses triangulated matches from other linked relatives within your tree even if your parents have not tested. If you don’t have your parents, the more people you identify and link to your tree in the proper place, the more people will be assigned to maternal and paternal buckets. FamilyTreeDNA is the only vendor that does this. I wrote about this process in the article, Triangulation in Action at Family Tree DNA.

Parental Phasing Caveats

There are very rare instances where parental phasing may be technically accurate, but not genealogically relevant. By this, I mean that a parent may actually match one of your matches due to endogamy or a population level match, even if it’s considered a false positive because it’s not relevant in a genealogical timeframe.

Conversely, a parent may not match when the segment is actually legitimate, but it’s quite rare and only when pedigree collapse has occurred in a very specific set of circumstances where both parents share a common ancestor.

Let’s take a look at that.

Pedigree Collapse

It’s not terribly uncommon in the not-too-distant past to find first cousins marrying each other, especially in rather closely-knit religious communities. I encounter this in Brethren, Mennonite and Amish families often where the community was small and out-marrying was frowned upon and highly discouraged. These families and sometimes entire church congregations migrated cross-country together for generations.

When pedigree collapse is present, meaning the mother and father share a common ancestor not far in the past, it is possible to inherit half of one segment from Mom and the other half from Dad where those halves originated with the same ancestral couple.

For example, let’s say the matching segment between you and your match is 12 cM in length, shown below. You inherited the blue segment from your Dad and the neighboring peach segment from Mom – shown just below the segment numbers. You received 6 cM from both parents.

Another person’s DNA does match you, shown in the bottom row, but they are not shown on the DNA match list of either of your parents. That’s because the DNA segments of the parents just happened to recombine in 6 cM pieces, respectively, which is below the 7 cM matching threshold of the vendor in this example.

If the person matched you at 12 cM where you inherited 8 cM from one parent and 4 from the other, that person would show on one parent’s match list, but not the other. They would not be on the parent’s match list who contributed only 4 cM simply because the DNA divided and recombined in that manner. They would match you on a longer segment than they match your parent at 8 cM which you might notice as “odd.”

Let’s look at another example.

click to enlarge image

If the matching segment is 20 cM, the person will match you and both of your parents on different pieces of the same segment, given that both segments are above 7 cM. In this case, your match who matches you at 20 cM will match each of your parents at 10 cM.

You would be able to tell that the end location of Dad’s segment is the same as the start location of Mom’s segment.

This is NOT common and is NOT the “go to” answer when you think someone “should” match your parent and does not. It may be worth considering in known pedigree collapse situations.

You can see why someone observing this phenomenon could “presume” that DNA skipped a generation because the person matches you on segments where they don’t match your parent. But DNA didn’t skip anything at all. This circumstance was caused by a combination of pedigree collapse, random division of DNA, then random recombination in the same location where that same DNA segment was divided earlier. Clearly, this sequence of events is not something that happens often.

If you’ve uploaded your DNA to GEDmatch, you can select the “Are your parents related?” function which scans your DNA file for runs of homozygosity (ROH) where your DNA is exactly the same in both parental locations for a significant distance. This suggests that because you inherited the exact same sequence from both parents, that your parents share an ancestor.

If your parents didn’t inherit the same segment of DNA from both parents, or the segment is too short, then they won’t show as “being related,” even if they do share a common ancestor.

Now, let’s look at the opposite situation. Parental phasing and ROH sometimes do occur when common ancestors are far back in time and the match is not genealogically relevant.

Endogamy

I often see non-genealogical matching occur when dealing with endogamy. Endogamy occurs when an entire population has been isolated genetically for a long time. In this circumstance, a substantial part of the population shares common DNA segments because there were few original population founders. Much of the present-day population carries that same DNA. Many people within that population would match on that segment. Think about the Jewish community and indigenous Americans.

Consider our original example, but this time where much of the endogamous population carries all As in these positions because one of the original founders carried that nucleotide sequence. Many people would match lots of other people regardless of whether they are a close relative or share a distant ancestor.

People with endogamous lines do share relatives, but that matching DNA segment originated in ancestors much further back in time. When dealing with endogamy, I use parental phasing as a first step, if possible, then focus on larger matches, generally 20 cM or greater. Smaller matches either aren’t relevant or you often can’t tell if/how they are.

At FamilyTreeDNA, people with endogamy will find many people bucketed on the “Both” tab meaning they triangulate with people linked on both sides of the tester’s tree.

An example of a Jewish person’s bucketed matches based on triangulation with relatives linked in their tree is shown above.

Your siblings, their children, and your children will be related on both your mother’s and father’s sides, but other people typically won’t be unless you have experienced either pedigree collapse where you are related both maternally and paternally through the same ancestors or you descend from an endogamous population.

How Many Identical-by-Chance Matches Will I Have?

If you have both parents available to test, and you’re not dealing with either pedigree collapse or endogamy, you’ll likely find that about 15-20% of your matches don’t match your parents on the same segment and are identical by chance.

With endogamy, you’ll have MANY more matches on your endogamous lines and you’ll have some irrelevant matches, often referred to as “false positive” matches even though they technically aren’t, even using parental phasing.

Your Parents Have DNA That You Don’t

Sometimes people are confused when reviewing their matches and their parent’s match to the same person, especially when they match someone and their parent matches them on a different or an additional segment.

If you match someone on a specific segment and your parents do not, that’s a false positive FOR THAT SEGMENT. Every segment has its own individual history and should be evaluated individually. You can match someone on two segments, one from each parent. Or three segments, one from each parent and one that’s identical by chance. Don’t assume.

Often, your match will match both you and your parent on the same segment – which is a legitimate parentally phased match.

But what if your match matches your parent on a different segment where they don’t match you? That’s a false positive match for you.

Keep in mind that it is possible for one of your matches to match your parent on a separate or an additional segment that IS legitimate. You simply didn’t inherit that particular segment from your parent.

That’s NOT the same situation as someone matching you that does NOT match one of your parents on the same segment – which is an identical by chance or false match.

Your parent having a match that does not match you is the reverse situation.

I have several situations where I match someone on one segment, and they match my parent on the same segment. Additionally, that person matches my parent on another segment that I did NOT inherit from that parent. That’s perfectly normal.

Remember, you only inherit half of your parent’s DNA, so you literally did NOT inherit the other half of their DNA. Your mother, for example, should have twice as many matches as you on her side because roughly half of her matches won’t match you.

That’s exactly why testing your parents and close family members is so critical. Their matches are as valid and relevant to your genealogy as your own. The same is true for other relatives, such as aunts and uncles with whom you share ALL of the same ancestors.

You need to work with your family member’s matches that you don’t share.

No DNA Match Doesn’t Mean You’re Not Related

Some people think that not matching someone on a DNA test is equivalent to saying they aren’t related. Not sharing DNA doesn’t mean you’re not related.

People are often disappointed when they don’t match someone they think they should and interpret that to mean that the testing company is telling them they “aren’t related.” They are upset and take issue with this characterization. But that’s not what it means.

Let’s analyze this a bit further.

First, not sharing DNA with a second cousin once removed (2C1R) or more distant does NOT mean you’re NOT related to that person. It simply means you don’t share any measurable DNA ABOVE THE VENDOR THRESHOLD.

All known second cousins match, but about 10% of third cousins don’t match, and so forth on up the line with each generation further back in time having fewer cousins that match each other.

If you have tested close relatives, check to see if that cousin matches your relatives.

Second, it’s possible to match through the “other” or unexpected parent. I certainly didn’t think this would be the case in my family, because my father is from Appalachia and my mother’s family is primarily from the Netherlands, Germany, Canada, and New England. But I was wrong.

All it took was one German son that settled in Appalachia, and voila, a match through my mother that I surely thought should have been through my father’s side. I have my mother’s DNA and sure enough, my match that I thought should be on my father’s side matches Mom on the same segment where they match me, along with several triangulated matches. Further research confirmed why.

I’ve also encountered situations where I legitimately match someone on both my mother’s and father’s side, on different segments.

Third, imputation can be important for people who don’t match and think they should. Imputation can also cause matching segment length to be overreported.

Ok, so what’s imputation and why do I care?

Imputation

Every DNA vendor today has to use some type of imputation.

Let me explain, in general, what imputation is and why vendors use it.

Over the years, DNA processing vendors who sell DNA chips to testing companies have changed their DNA chips pretty substantially. While genealogical autosomal tests test about 700,000 DNA locations, plus or minus, those locations have changed over time. Today, some of these chips only have 100,000 or so chip locations in common with chips either currently or previously utilized by other vendors.

The vendors who do NOT accept uploads, such as 23andMe or Ancestry, have to develop methods to make their newest customers on their DNA processing vendor’s latest chip compatible with their first customer who was tested on their oldest chip – and all iterations in-between.

Vendors who do accept transfers/uploads from other vendors have to equalize any number of vendors’ chips when their customers upload those files.

Imputation is the scientific way to achieve this cross-platform functionality and has been widely used in the industry since 2017.

Imputation, in essence, fills in the blanks between tested locations with the “most likely” DNA found in the human population based on what’s surrounding the blank location.

Think of the word C_T. There are a limited number of letters and words that are candidates for C_T. If you use the word in a sentence, your odds of accuracy increase dramatically. Think of a genetic string of nucleotides as a sentence.

Imputation can be incorrect and can cause both false positive and false negative matches.

For the most part, imputation does not affect close family matches as much as more distant matches. In other words, imputation is NOT going to cause close family members not to match.

Imputation may cause more distant family members not to match, or to have a false positive match when imputation is incorrect.

Imputation is actually MUCH less problematic than I initially expected.

The most likely effect of imputation is to cause a match to be just above or below the vendor threshold.

How can we minimize the effects of imputation?

  • Generally, the best result will be achieved if both people test at the same vendor where their DNA is processed on the same chip and less imputation is required.
  • Upload the results of both people to both MyHeritage and FamilyTreeDNA. If your match results are generally consistent at those vendors, imputation is not a factor.
  • GEDmatch does not use imputation but attempts to overcome files with low overlapping regions by allowing larger mismatch areas. I find their matches to be less accurate than at the various vendors.

Additionally, Ancestry has a few complicating factors.

Ancestry Issues

AncestryDNA is different in three ways.

  • Ancestry doesn’t provide segment information so it’s impossible to triangulate or identify the segment or chromosome where people match. There is no chromosome browser or triangulation tool.
  • Ancestry down-weights and removes some segments in areas where they feel that people are “too matchy.” You can read Ancestry’s white papers here and here.

These “personal pileup regions,” as they are known, can be important genealogically. In my case, these are my mother’s Acadian ancestors. Yes, this is an endogamous population and also suffers from pedigree collapse, but since this is only one of my mother’s great-grandparents, this match information is useful and should not be removed.

  • Ancestry doesn’t show matches in common if the shared segments are less than 20cM. Therefore, you may not see someone on a shared match list with a relative when they actually are a shared match.

If two people both match a third person on less than a 20 cM segment at Ancestry, the third person won’t appear on the other person’s shared match list. So, if I match John Doe on 19 cM of DNA, and I looked at the shared matches with my Dad, John Doe does NOT appear on the shared match list of me and my Dad – even though he is a match to both of us at 19 cM.

The only way to determine if John Doe is a shared match is to check my Dad’s and my match list individually, which means Dad and I will need to individually search for John Doe.

Caveat here – Ancestry’s search sometimes does not work correctly.

Might someone who doesn’t understand that the shared match list doesn’t show everyone who shares DNA with both people presume that the ancestral DNA of that ancestor “skipped a generation” because John Doe matches me with a known ancestor, and not Dad on our shared match list? I mean, wouldn’t you think that a shared match would be shown on a tab labeled “Shared Matches,” especially since there is no disclaimer?

Yes, people can be forgiven for believing that somehow DNA “skipped” a generation in this circumstance, especially if they are relatively inexperienced and they don’t understand Ancestry’s anomalies or know that they need to or how to search for matches individually.

Even if John Doe does match me and Dad both, we still need to confirm that it’s on the same segment AND it’s a legitimate match, not IBC. You can’t perform either of these functions at Ancestry, but you can elsewhere.

Ancestry WorkArounds

To obtain this functionality, people can upload their DNA files for free to both FamilyTreeDNA and MyHeritage, companies that do provide full shared DNA reporting (in common with) lists of ALL matches and do provide segment information with chromosome browsers. Furthermore, both provide triangulation in different ways.

Matching is free, but an inexpensive unlock is required at both vendors to access advanced tools such as Family Matching (bucketing) and triangulation at Family Tree DNA and phasing/triangulation at MyHeritage.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

MyHeritage actually brackets triangulated segments for customers on their chromosome browser, including parents, so you get triangulation and parental phasing at the same time if you and your parent have both tested or uploaded your DNA file to MyHeritage. You can upload, for free, here.

In this example, my mother is matching to me in red on the entire length of chromosome 18, of course, and three other maternal cousins triangulate with me and mother inside the bracketed portion of chromosome 18. Please note that if any one of the people included in the chromosome browser comparison do not triangulate, no bracket is drawn around any others who do triangulate. It’s all or nothing. I remove people one by one to see if people triangulate – or build one by one with my mother included.

I wrote about Triangulation in Action at MyHeritage, here.

People can also upload to GEDmatch, a third-party site. While GEDmatch is less reliable for matching, you can adjust your search thresholds which you cannot do at other vendors. I don’t recommend routinely working below 7 cM. I occasionally use GEDmatch to see if a pedigree collapse segment has recombined below another vendor’s segment matching threshold.

Do NOT check the box to prevent hard breaks when selecting the One-to-One comparison. Checking that box allows GEDmatch to combine smaller matching segments into mega-segments for matching.

I wrote about Triangulation in Action at GEDmatch, here.

Transferring/Uploading Your DNA 

If you want to transfer your DNA to one of these vendors, you must download the DNA file from one vendor and upload it to another. That process does NOT remove your DNA file from the vendor where you tested, unless you select that option entirely separately.

I wrote full step-by-step transfer/upload instructions for each vendor, here.

Testing Close Relatives Is VERY Useful – Just Not for Triangulation

Of course, your best bet if you don’t have your parents available to test is to test as many of your grandparents, great-aunts/uncles, aunts, and uncles as possible. Test your siblings as well, because they will have inherited some of the same and some different segments of DNA from your parents – which means they carry different pieces of your ancestors’ DNA.

Just because close relatives don’t make good triangulation candidates doesn’t mean they aren’t valuable. Close relatives are golden because when they DO share a match with you, you know where to start looking for a common ancestor, even if your relative matches that person on a different segment than you do.

Close relatives are also important because they will share pieces of your common ancestor’s DNA that you don’t. Their matches can unlock the answers to your genealogy questions.

Ok, back to triangulation.

Triangulated Matches

A triangulated match is, of course, when three people all descended from a common ancestor and match each other on the same segment of DNA.

That means all three people’s DNA matches each other on that same segment, confirming that the match is not by chance, and that segment did descend from a common ancestor or ancestral couple.

But, is this always true? You’re going to hate this answer…

“It depends.”

You knew that was coming, didn’t you! 😊

It depends on the circumstances and relationships of the three people involved.

  • One of those three people can match the other two by chance, not by descent, especially if two of those people are close relatives to each other.
  • Identical by chance means that one of you didn’t inherit that DNA from one single parent. That zigzag phenomenon.
  • Furthermore, triangulated DNA is only valid as far back as the closest common ancestor of any two of the three people.

Let’s explore some examples.

Building Triangulation Evidence – Ingredients and a Recipe

The strongest case of triangulation is when:

  • You and at least two additional cousins match on the same segment AND
  • Descend through different children of the common ancestral couple

Let’s look at a valid triangulated match.

In this first example, the magenta segment of DNA is at least partially shared by four of the six cousins and triangulates to their common great-grandfather. Let’s say that these cousins then match with two other people descended from different children of their great-great-great-grandparents on this same segment. Then the entire triangulation group will have confirmed that segment’s origin and push the descent of that segment back another two generations.

These people all coalesce into one line with their common great-grandparents.

I’m only showing 3 generations in this triangulated match, but the concept is the same no matter how many generations you reach back in time. Although, over time, segments inherited from any specific ancestor become smaller and smaller until they are no longer passed to the next generation.

In this pedigree chart, we’re only tracking the magenta DNA which is passed generation to generation in descendants.

Eventually, of course, those segments become smaller and indistinguishable as they either aren’t passed on at all or drop below vendor matching thresholds.

This chart shows the average amount of DNA you would carry from each generational ancestor. You inherit half of each parent’s DNA, but back further than that, you don’t receive exactly half of any ancestor’s DNA in any generation. Larger segments are generally cut in two and passed on partially, but smaller segments are often either passed on whole or not at all.

On average, you’ll carry 7 cM of your eight-times-great-grandparents. In reality, you may carry more or you may not carry any – and you are unlikely to carry the same segment as any random other descendants but we know it happens and you’ll find them if enough (or the right) descendants test.

Putting this another way, if you divide all of your approximate 7000 cM of DNA into 7 cM segments of equal length – you’ll have 1000 7 cM segments. So will every other descendant of your eight-times-great-grandparent. You can see how small the chances are of you both inheriting that same exact 7 cM segment through ten inheritance/transmission events, each. Yet it does happen.

I have several triangulated matches with descendants of Charles Dodson and his wife, Anne through multiple of their 9 (or so) children, ten generations back in my tree. Those triangulated matches range from 7-38 cM. It’s possible that those three largest matches at 38 cM could be related through multiple ancestors because we all have holes in our trees – including Anne’s surname.

Click to enlarge image

It helps immensely that Charles Dodson had several children who were quite prolific as well.

Of course, the further back in time, the more “proof” is necessary to eliminate other unknown common ancestors. This is exactly why matching through different children is important for triangulation and ancestor confirmation.

The method we use to confirm the common ancestor is that all of the descendants who match the tester on the same segment all also match each other. This greatly reduces the chances that these people are matching by chance. The more people in the triangulation group, the stronger the evidence. Of course, parental phasing or cross-matching, where available is an added confirmation bonus.

In our magenta inheritance example, we saw that three of the males and one of the females from three different descendants of the great-grandparents all carry at least a portion of that magenta segment of great-grandpa’s DNA.

Now, let’s take a look at a different scenario.

Why can’t siblings or close relatives be used as two of the three people needed for triangulation?

Aunts and Uncles

We know that the best way to determine if a match is valid is by parental phasing – your match also matching to one of your parents.

If both parents aren’t available, looking for close family matches in common with your match is the next hint that genealogists seek.

Let’s say that you and your match both match your aunt or uncle in common or their children.

You and your aunts or uncles matching DNA only pushes your common ancestor back to your grandparents.

At that point, your match is in essence matching to a segment that belongs to your grandparents. Your matches’ DNA, or your grandparents’ DNA could have randomly recombined and you and your aunt/cousins could be matching that third person by chance.

Ok, then, what about siblings?

Siblings

The most recent common ancestor (MRCA) of you and someone who also matches your sibling is your parents. Therefore, you and your sibling actually only count as one “person” in this scenario. In essence, it’s the DNA of your parent(s) that is matching that third person, so it’s not true triangulation. It’s the same situation as above with aunts/uncles, except the common ancestor is closer than your grandparents.

The DNA of your parents could have recombined in both siblings to look like a match to your match’s family. Or vice versa. Remember Parental Cross-Matching.

If you and a sibling inherited EXACTLY the same segment of your Mom’s and Dad’s DNA, and you match someone by chance – that person will match your sibling by chance as well.

In this example, you can see that both siblings 1 and 2 inherited the exact same segments of DNA at the same locations from both of their parents.

Of course, they also inherited segments at different locations that we’re not looking at that won’t match exactly between siblings, unless they are identical twins. But in this case, the inherited segments of both siblings will match someone whose DNA randomly combined with green or magenta dots in these positions to match a cross-section of both parents.

How False Positives Work and How to Avoid Them

We saw in our first example, displayed again above, what a valid triangulated match looks like. Now let’s expand this view and take a look more specifically at how false positive matches occur.

On the left-hand (blue) side of this graphic, we see four siblings that descend through their father from Great-grandpa who contributed that large magenta segment of DNA. That segment becomes reduced in descendants in subsequent generations.

In downstream generations, we can see gold, white and green segments being added to the DNA inherited by the four children from their ancestor’s spouses. Dad’s DNA is shown on the left side of each child, and Mom’s on the right.

  • Blue Children 1 and 2 inherited the same segments of DNA from Mom and Dad. Magenta from Dad and green from Mom.
  • Blue Child 3 inherited two magenta segments from Dad in positions 1 and 2 and one gold segment from Dad in position 3. They inherited all white segments from Mom.
  • Blue Child 4 inherited all gold segments from Dad and all white segments from Mom.

The family on the blue left-hand side is NOT related to the pink family shown at right. That’s important to remember.

I’ve intentionally constructed this graphic so that you can see several identical by chance (IBC) matches.

Child 5, the first pink sibling carries a white segment in position 1 from Dad and gold segments in positions 2 and 3 from Dad. From Mom, they inherited a green segment in position 1, magenta in position 2 and green in position 3.

IBC Match 1 – Looking at the blue siblings, we see that based on the DNA inherited from Pink Child 5’s parents, Pink Child 5 matches Blue Child 4 with white, gold and gold in positions 1-3, even though they weren’t inherited from the same parent in Blue Child 4. I circled this match in blue.

IBC Match 2 – Pink Child 5 also matches Blue Children 1 and 2 (red circles) because Pink Child 5 has green, magenta, and green in positions 1-3 and so do Blue Children 1 and 2. However, Blue Children 1 and 2 inherited the green and magenta segments from Mom and Dad respectively, not just from one parent.

Pink Child 5 matches Blue Children 1, 2 and 4, but not because they match by descent, but because their DNA zigzags back and forth between the blue children’s DNA contributed by both parents.

Therefore, while Pink Child 5 matches three of the Blue Children, they do not match either parent of the Blue Children.

IBC Match 3 – Pink Child 6 matches Blue Child 3 with white, magenta and gold in positions 1-3 based on the same colors of dots in those same positions found in Blue Child 3 – but inherited both paternally and maternally.

You can see that if we had the four parents available to test, that none of the Pink Children would match either the Blue Children’s mother or father and none of the Blue Children would match either of the Pink Children’s mother or father.

This is why we can’t use either siblings or close family relatives for triangulation.

Distant Cousins Are Best for Triangulation & Here’s Why

When triangulating with 3 people, the most recent common ancestor (MRCA) intersection of the closest two people is the place at which triangulation turns into only two lines being compared and ceases being triangulation. Triangle means 3.

If siblings are 2 of the 3 matching people, then their parents are essentially being compared to the third person.

If you, your aunt/uncle, and a third person match, your grandparents are the place in your tree where three lines converge into two.

The same holds true if you’re matching against a sibling pair on your match’s side, or a match and their aunt/uncle, etc.

The further back in your tree you can push that MRCA intersection, the more your triangulated match provides confirming evidence of a common ancestor and that the match is valid and not caused by random recombination.

That’s exactly what the descendants of Charles Dodson have been able to do through triangulation with multiple descendants from several of his children.

It’s also worth mentioning at this point that the reason autosomal DNA testing uses hundreds/thousands of base pairs in a comparison window and not 3 or 6 dots like in my example is that the probability of longer segments of DNA simply randomly matching by chance is reduced with length and SNP density which is the number of SNP locations tested within that cM range.

Hence a 7 cM/500 SNP minimum is the combined rule of thumb. At that level, roughly half of your matches will be valid and half will be identical by chance unless you’re dealing with endogamy. Then, raise your threshold accordingly.

Ok, So Where are We? A Triangulation Checklist for You!

I know this has been a relatively long educational article, but it’s important to really understand that testing close relatives is VERY important, but also why we can’t effectively use them for triangulation.

Here’s a handy-dandy summary matching/triangulation checklist for you to use as you work through your matches.

  • You inherit half of each of your parents’ DNA. There is no other place for you to obtain or inherit your DNA. There is no DNA fairy sprinkling you with DNA from another source:)
  • DNA does NOT skip generations, although in occasional rare circumstances, it may appear that this happened. In this situation, it’s incumbent upon you, the genealogist, to PROVE that an exception has occurred if you really believe it has. Those circumstances might be pedigree collapse or perhaps imputation. You’ll need to compare matches at vendors who provide a chromosome browser, triangulation, and full shared match list information. Never assume that you are the exception without hard and fast proof. We all know about assume, right?
  • Your siblings inherit half of your parents’ DNA too, but not the same exact half of your parent’s DNA that you other siblings did (unless they are identical twins.) You may inherit the exact same DNA from either or both of your parents on certain segments.
  • Your matches may match your parents on different or an additional segment that you did not inherit.
  • Every segment has an individual history. Evaluate every matching segment separately. One matching segment with someone could be maternal, one paternal, and one identical by chance.
  • You can confirm matches as valid if your match matches one of your parents, and you match one of your match’s parents. Parental Phasing is when your match matches your parent. Parental Cross-Matching is when you both match one of each other’s parents. To be complete, both people who match each other need to match one of the parents of the other person. This rule still holds even if you have a known common ancestor. I can’t even begin to tell you how many times I’ve been fooled.
  • 15-20% (or more with endogamy) of your matches will be identical by chance because either your DNA or your match’s DNA aligns in such a way that while they match you, they don’t match either of your parents.
  • Your siblings, aunts, and uncles will often inherit the same DNA as you – which means that identical by chance matches will also match them. That’s why we don’t use close family members for triangulation. We do utilize close family members to generate common match hints. (Remember the 20 cM shared match caveat at Ancestry)
  • While your siblings, aunts, and uncles are too close to use for triangulation, they are wonderful to identify ancestral matches. Some of their matches will match you as well, and some will not because your close family members inherited segments of your ancestor’s DNA that you did not. Everyone should test their oldest family members.
  • Triangulate your close family member’s matches separately from your own to shed more light on your ancestors.
  • Endogamy may interfere with parental phasing, meaning you may match because you and/or your match may have inherited some of the same DNA segment(s) from both sides of your tree and/or more DNA than might otherwise be expected.
  • Pedigree collapse needs to be considered when using parental phasing, especially when the same ancestor appears on both sides of your family tree. You may share more DNA with a match than expected.
  • Conversely, with pedigree collapse, your match may not match your parents, or vice versa, if a segment happens to have recombined in you in a way that drops the matching segments of your parents beneath the vendor’s match threshold.
  • While you will match all of your second cousins, you will only match approximately 90% of your third cousins and proportionally fewer as your relationship reaches further back in time.
  • Not being a DNA match with someone does NOT mean you’re NOT related to them, unless of course, you’re a second cousin (2C) or closer. It simply means you don’t carry any common ancestral segments above vendor thresholds.
  • At 2C or closer, if you’re not a DNA match, other alternative situations need to be considered – including the transfer/upload of the wrong person’s DNA file.
  • Imputation, a scientific process required of vendors may interfere with matching, especially in more distant relatives who have tested on different platforms.
  • Imputation artifacts will be less obvious when people are more closely related, meaning closer relatives can be expected to match on more and larger segments and imputation errors make less difference.
  • Imputation will not cause close relatives, meaning 2C or closer, to not match each other.
  • In addition to not supporting segment matching information, Ancestry down-weights some segments, removes some matching DNA, and does not show shared matches below 20cM, causing some people to misinterpret their lack of common matches in various ways.
  • To resolve questions about matching issues at Ancestry, testers can transfer/upload their DNA files to MyHeritage, FamilyTreeDNA, and GEDmatch and look for consistent matches on the same segment. Start and end locations may vary to some extent between vendors, but the segment size should be basically in the same location and roughly the same size.
  • GEDmatch does not use imputation but allows larger non-matching segments to combine as a single segment which sometimes causes extremely “generous” matches. GEDmatch matching is less reliable than FamilyTreeDNA or MyHeritage, but you can adjust the matching thresholds.
  • The best situation for matching is for both people to test at the same vendor who supports and provides segment data and a chromosome browser such as 23andMe, FamilyTreeDNA, or MyHeritage.
  • Siblings cannot be used for triangulation because the most recent common ancestor (MRCA) between you and your siblings is your parents. Therefore, the “three” people in the triangulation group is reduced to two lines immediately.
  • Uncles and aunts should not be used for triangulation because the most recent common ancestors between you and your aunts and uncles are your grandparents.
  • Conversely, you should not consider triangulating with siblings and close family members of your matches as proof of an ancestral relationship.
  • A triangulation group of 3 people is only confirmation as far back as when two of those people’s lines converge and reach a common ancestor.
  • Identical by chance (IBC) matching occurs when DNA from the maternal and paternal sides are mixed positionally in the child to resemble a maternal/paternal side match with someone else.
  • Identical by chance DNA admixture (when compared to a match) could have occurred in your parents or grandparent’s generation, or earlier, so the further back in time that people in a triangulation group reach, the more reliable the triangulation group is likely to be.
  • The larger the segments and/or the triangulation group, the stronger the evidence for a specific confirmed common ancestor.
  • Early families with a very large number of descendants may have many matching and triangulated members, even 9 or 10 generations later.
  • While exactly 50% of each ancestor’s DNA is not passed in each generation, on average, you will carry 7 cM of your ancestors 10 generations back in your tree. However, you may carry more, or none.
  • The percentage of matching descendants decreases with each generation beyond great-grandparents.
  • The ideal situation for triangulation is a significant number of people, greater than three, who match on the same reasonably sized segment (7 cM/500 SNP or larger) and descend from the same ancestor (or ancestral couple) through different children whose spouses in descendant generations are not also related.
  • This means that tree completion is an important factor in match/triangulation reliability.
  • Triangulating through different children of the ancestral couple makes it significantly less likely that a different unknown common ancestor is contributing that segment of DNA – like an unknown wife in a descendant generation.

Whew!!!

The Bottom Line

Here’s the bottom line.

  1. Don’t use close relatives to triangulate.
  2. Use parents for Parental Phasing.
  3. Use Parental Cross-Matching when possible.
  4. Use close relatives to look for shared common matches that may lead to triangulation possibilities.
  5. Triangulate your close relatives’ DNA in addition to your own for bonus genealogical information. They will match people that you don’t.
  6. For the most reliable triangulation results, use the most distant relatives possible, descended through different children of the common ancestral couple.
  7. Keep this checklist of best practices, cautions, and caveats handy and check the list as necessary when evaluating the strength of any match or triangulation group. It serves as a good reminder for what to check if something seems “off” or unusual.

Feel free to share and pass this article (and checklist) on to your genealogy buddies and matches as you explain triangulation and collaborate on your genealogy.

Have fun!!!

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Books

Genealogy Research