Mitochondrial DNA A–Z: A Step-by-Step Guide to Matches, Mitotree, and mtDNA Discover

People have been asking for a step-by-step guide for mitochondrial DNA, and here it is!

This article steps testers through all their results, page by page, including a dozen Discover reports, explaining what the information in each tool means. There’s SO MUCH great content provided, and you’ll want to absorb every tidbit.

This is meant to be a roadmap for you – a recipe card to follow to get the most out of your results.

You can either read through this article once, then sign on to your own account, or sign on now and follow along. Yes, this article is long, but it’s also a one-stop shop when you want information about any page or feature. Refer back to this article as needed, and feel free to forward it to others when they receive their results.

I’ve also provided additional resources for you at each step of the way, along with many tips and suggestions to help you help yourself.

I’m using the LeJeune sisters of Acadia as my example – in part because there were several questions about their heritage – including whether they were actually sisters, whether they were Native American, and if a third woman was also a sister.

Think about why you tested, and what you hope to learn so you know where to focus.

Everyone has their own motivation for testing, and we all want to extract as much information as possible. Some answers are genetic – thanks to mitochondrial, Y-DNA, and autosomal testing. Some answers are historical and genealogical. All of them need to mesh nicely together and confirm each other.

When they don’t, if they don’t, we need to understand how to discern the truth.

Every Ancestor Has a Mitochondrial DNA Story to Tell You

Sometimes it’s not our own results we’re analyzing, but the results of another tester – a cousin whose mitochondrial DNA represents a particular shared ancestor. We aren’t restricted to just our own mitochondrial DNA to decipher our ancestors’ stories.

What messages and secrets do those ancestors have to tell us? Our results read like the very best mystery novel ever – except it’s not a novel – it’s fact. And it’s ours!

Mitochondrial DNA is only passed from mothers to their children, never admixed or combined with the DNA of the father, so your mitochondrial DNA today is either exactly the same as that of your ancestors a few generations ago, or very close if a mutation has occurred between when they lived and today’s tester.

One of mitochondrial DNA’s strengths is that it can reach far back in time, it’s message undiluted and uninterrupted by recombination.

The messages from our ancestors are very clear. We just need to understand how to hear what they are telling us.

Step-by-Step Soup to Nuts

We will analyze the mitochondrial DNA results of multiple testers who descend from the LeJeune sisters, Edmee and Catherine, born in 1624 and 1633, respectively, to see what they have to tell their descendants. For a very long time, rumors abounded that their mother was Native American, so we will keep that in mind as we review all matching, Mitotree and mtDNA Discover tools provided by FamilyTreeDNA.

We will also learn how to evaluate seemingly conflicting information.

Soup to nuts – we will incorporate every sliver of information along the way and extract every morsel that can help you. Think of this article as your recipe and the reports and information as ingredients!

To be clear, you don’t HAVE to read all of this or decipher anything if you don’t want to. You can just glance at the matches and be on your way – but if you do – you’re leaving an incredible amount of useful information on the table, along with MANY hints that you can’t find elsewhere.

If there was an out-of-print book about this ancestral line in a rare book collection someplace, as a genealogist, you would drive half-way across the country to access that information. This is your rare book, that updates itself, and you don’t have to do anything other than take a mitochondrial DNA test, or find a cousin to take one for lines you don’t carry..

Come along and join the fun! Your ancestors are waiting!

The LeJeune Question

Recently, I wrote about my ancestor Catherine LeJeune, who was born about 1633, probably in France before her family settled in Acadia, present-day Nova Scotia.

The identity of her parents has been hotly contested and widely debated for a long time.

I intentionally did not address her DNA results in that article because I wanted to establish the historical facts about her life and address her mitochondrial DNA separately. The process we are following to analyze her DNA results is the same process everyone should follow, which is why we are taking this step-by-step approach, complete with detailed explanations.

Often, when people hit a brick wall with an ancestor, especially during European colonization of the Americas, someone suggests that the person surely “must be” Native American. Lack of records is interpreted to add layers of evidence, when, in fact, absence of evidence is not evidence of absence.

For example, for many of the earliest French Acadians, birth and baptism records have NOT been located in France, where massive record loss has been experienced.

Additionally, not all records that do exist have been indexed, transcribed, or digitized. Many are damaged and/or nearly impossible to read. Lack of records does NOT mean that those settlers weren’t French, or in this case, it does NOT indicate that they were Native American. It simply means we are lacking that piece of evidence.

Enter mitochondrial DNA.

This article is focused on how to use mitochondrial DNA to decode these messages from our ancestors. I’m providing a very short summary of the relevant historical factors about the LeJeune sisters so readers can keep this in mind as we review the 17+ tools waiting for us when mitochondrial DNA results are ready.

The First Acadian Settlers

The Acadians were French settlers in what is today Nova Scotia. The first Acadians arrived in LaHeve (LaHave), on the southern coast of Acadia, in 1632 after Acadia was returned to France from English control. There may or may not have been any French families in the original group, but if so, very few. In 1636, another group of settlers arrived, but no LeJeune is on the roster.

At the end of 1636, the fledgling Acadian colony was moved from LaHeve, on the southern coast, to Port Royal, a more protected environment.

While we don’t know exactly when the family of Catherine and Edmee LeJeune arrived, we can bracket the dates. We know that Catherine’s sister, Edmee LeJeune, born about 1624, married another settler, Francois Gautrot, about 1644 in Port Royal, so they had arrived by that time.

Edmee’s 1624 birth year is important for two reasons. First, there were no French settlers in the part of Acadia that became Nova Scotia in 1624, so that clearly demonstrates that Edmee was born in France.

It’s unlikely that Catherine was born in Acadia in 1633 given that the first known families arrived in 1636, and we have their names from the ship roster. Pierre Martin was on the 1636 ship, and Acadian history tells us that his son, Mathieu Martin, was the first French child born in Acadia, about 1636, based on the 1671 census.

We also know that there was an early Acadian man, Jean LeJeune, who was granted land at BelleIsle, near Port Royal, among other Acadian families, but he was deceased before the first Acadian census in 1671. Acadia was under English control again from 1654 to 1670, so Jean LeJeune’s land grant had to have occurred after 1636 and prior to 1654, and is where Catherine LeJeune is found as an adult.

Another source of confusion is that there is a third LeJeune woman, Jeanne LeJeune dit Briard, born about 1659. Her daughter, Catherine Joseph’s 1720 marriage record in Port Royal refers to her mother, Jeanne, as being “d’un nation sauvagé”, giving her parents’ names as Francois Joseph and Jeanne LeJeune “of the Indian Nation.” Jeanne LeJeune dit Briard lived with her first husband in Port Royal, but had relocated to LaHeve by 1708.

You can see why this led to confusion about LeJeune females.

Another male, Pierre LeJeune was associated with LaHeve, which suggests he may have been awarded land there, possibly before the colony moved to Port Royal. One of the reasons that the rumor that Catherine LeJeune had a Native mother is so persistent is the belief that Pierre came over early, as a laborer or soldier, and married a Native woman because there weren’t any European women available.

Pierre may well have arrived as a single man, but there is no shred of evidence to suggest Pierre is the father of the sisters, Catherine LeJeune and Edmee LeJeune. In fact, given that Jeanne was born about 1659, Pierre, if he was her father, may have been born as late as 1627, which makes it impossible for him to have been Catherine and Edmee’s father.

That speculation was before the advent of DNA testing, and before Stephen White discovered that there was also a Jean LeJeune who was awarded land exactly where Catherine is known to have been living a few years later.

While it would be nice to unravel this entire cat’s cradle of confusion, the questions we are seeking to answer definitively here are:

  • Are Catherine LeJeune (born 1633) and Edmee LeJeune (born 1624) actually sisters?
  • Is the mother of Catherine LeJeune and her sister, Edmee LeJeune, Native American or European?
  • Is Jeanne LeJeune dit Briard, born about 1659, “d’un nation sauvagé” another sister of the LeJeune sisters?
  • What else is revealed about the LeJeune sisters and their ancestors? Is there something else we should know?

I’ll provide a summary of the combined evidence after our step-by-step mitochondrial analysis.

Testing for Sisters

Mitochondrial DNA is passed from mothers to all of their children, but only females pass it on.

Since we have two LeJeune females, believed to be sisters, we need mitochondrial DNA from direct matrilineal testers for each woman. This is particularly important because we know unquestionably that Edmee was born in France in 1624, prior to Acadian settlement in New France, so her DNA should be European. If they match, it means that Catherine was born to the same mother who was not Native. If they don’t match, there’s a different message.

In some cases, a match might mean that they were born to females related on the matrilineal line, like first cousins, for example. But in the early days of Acadia, there were no European females other than the handful, less than a dozen, who arrived on the Saint-Jehan in 1636.

Fortunately, we have multiple testers for each woman in two DNA projects at FamilyTreeDNA, the only DNA testing company that provides mitochondrial DNA testing and matching. Testers can join special interest projects, and both the Mothers of Acadia Project, and the Acadian AmerIndian Project have testers who descend from the LeJeune sisters.

I’ve identified 28 descendants of Catherine, and 25 from Edmee, giving us a total of 53 known matrilineal descendants to work with. Not all are shown publicly, in projects. Catherine has a known total of 14 testers, and Edmee has 17 that are shown publicly. All testers are members of haplogroup U6a7a1a.

The fact that the descendants of these women match each other, often exactly, combined with Catholic parish register dispensations for their descendants, when taken together, prove conclusively that Catherine and Edmee were sisters, not paternal half-sisters.

Let’s look at each piece of evidence.

Mitochondrial DNA Results

When the lab finishes processing the mtFull test, the results are posted to the account of the test taker.

Click on any image to enlarge

You’ll see the Maternal Line Ancestry section which displays your mitochondrial mtDNA Results.

The three tabs we will be primarily working with are:

  • mtDNA Matches
  • Matches Maps
  • Discover Haplogroup Reports, which includes another dozen+ reports and an updated Migration Map
  • Advanced Matching

At the bottom right of your page, you’ll see two haplogroup badges.

The one at right is called the “Legacy” haplogroup, which means the haplogroup you were assigned prior to the release of the new Mitotree.

The Mitotree mtDNA Haplogroup, with the green “Beta” at the bottom, is the new Mitotree haplogroup, which I wrote about in a series of articles:

Your old Legacy haplogroup will never change, because it’s the 2016 version that was not updated by the previous tree-keepers. That’s why the FamilyTreeDNA R&D team, me included, developed and birthed the new Mitotree. There were thousands of new haplogroups that could be defined to kick-start our genealogy, so we did.

The mitochondrial tree went from about 5000 branches to over 40,000 in the new Mitotree, each providing additional information to testers.

Not everyone received a new haplogroup, but about 75% of testers did, and another new Mitotree version will be released soon. In order to receive a new haplogroup, testers needed to:

  • Have at least one qualifying, stable mutation that had not been previously used to define a haplogroup
  • Match at least one other person in the same haplogroup branch with the same mutation(s)

In the case of the LeJeune sisters, there were no mutations that met all of the qualifications, so their known descendants did not receive a new haplogroup. That’s fine, though, because it’s not the name but the messages held by the information that’s important – and there’s a LOT to work with.

Let’s start with matches.

Matches

Of course, the first thing everyone does is click to see their matches.

The default is Detail View, but I prefer Table View (top left) because you can see more matches on the same page.

Catherine’s descendant whose matches are shown here has 108 Full Sequence matches, which are labeled as the “Coding Region.” The Coding Regions is the mtFULL test and includes both the HVR1 and HVR2 regions. Viewing Coding Region matches means they have taken the mtFull test, which sequences all 16,569 locations of the mitochondria.

When you click on the “Coding Region”, you are seeing matches to people who took all three test levels, not just the first one or two.

There are three test levels to view:

  1. HVR1
  2. HVR1+HVR2 both
  3. Coding Region, which is in addition to the HVR1+HVR2 regions

You can no longer order three different test levels today, although at one time you could. As costs decreased, it no longer made sense to offer multiple testing levels, and often the HVR1 or HVR1+HVR2 results, which only tested about 500 locations each, would confuse people.

People at the lower HVR1 or HVR1+HVR2 levels, known as mtPlus, can upgrade to the complete mtFull level, and should.

However, because some people only tested at those lower levels, matches are still shown at three levels, with different match thresholds for each level.

Matches at the HVR1 or HVR1+HVR2 levels *might* be entirely irrelevant, reaching back thousands of years. They could also be much more current, and critical to your genealogy, so don’t assume. Just one unstable mutation can cause a mismatch though, and at lower levels, cause you not to match someone with the same ancestor, which is why the full sequence test is so critically important.

For some testers, matches at lower levels sometimes provide the ONLY match to your known ancestor. So don’t skip over them. If you find a critical match there, you can email the tester to see if they will upgrade to the mtFull test.

People who test only at the HVR1 or HVR1+HVR2 level receive a more refined haplogroup after they upgrade, so the haplogroups between the HVR1/HVR2 testers and the full sequence test won’t match exactly. For the LeJeune sisters, the haplogroup for HVR1/HVR2-only testers is U6a and for full sequence testers, it’s U6a7a1a.

While full sequence matches are wonderful, if you’re searching for a particular ancestor and the ONLY place they appear is the HVR1 or HVR1+HVR2 testing levels, you’ll want to pursue the match. You may also want to evaluate lower level matches if their ancestors are from a specific location – like France – even if their earliest known ancestor (EKA) is not your ancestor.

To view your  HVR1 or HVR1+HVR2 matches, just click on either of those links. You’ll see ALL of the results, including everyone who took the full sequence test. In this case, that means that the 217 HVR1 (hypervariable region 1) results will include the 120 coding region (full sequence) tests. I’ve already looked through the full sequence matches, so that’s not what I want.

If you ONLY want to see testers who did NOT take the Full Sequence test, use the Filter option. Select Filter, then the features you seek.

Fortunately, the LeJeune sisters have lots of known descendants at the mtFull level to work with, so we will focus on their full sequence matches.

Your Focus

On the matches page, you’ll be immediately interested in two fields:

  • Maternal Earliest Known Ancestor (EKA) – the direct matrilineal ancestor of your match – unless they got confused and entered someone else
  • Their Tree

Viewing the first several matches only produced one match to someone whose earliest known ancestor (EKA) is listed as Catherine or Edmee LeJeune, but perhaps the next group will be more productive. Note that females’ EKAs, earliest known ancestors, are sometimes challenging, given surname changes. So unfamiliar EKAs could represent generational differences and sometimes offer other hints based on their information.

Shifting to the detail view for a minute, you’ll want to review the genetic distance,  meaning whether you’re an exact match or not.

If you’re not an exact match, a genetic distance of “1 step” means that you match except for one mutation at a specific location.

If you have a genetic distance greater than 3, meaning 4 mutations or more, you won’t be shown as a match on this match list. However, you can still be a haplogroup match, which we’ll discuss in the Discover section.

Essentially, with more than 3 mutations difference, it’s unlikely (but not impossible) that your match is genealogically relevant – meaning you probably won’t be able to identify your most recent common ancestor (MRCA).

However, that doesn’t mean that haplogroup-only matches can’t provide important clues, and we will look under every rock!

A Slight Detour – Confirmation Bias

This is a good place to mention that both ancestors and their location (country) of origin are provided by (some) testers to the best of their ability and understanding.

This tester selected “United States Native American” as the location for their earliest known ancestor. We don’t know why they entered that information. It could be that:

  • The tester did not understand that the maternal country of origin means the direct MATRILINEAL line, not just someplace on the maternal side
  • Selina Sinott was Native on her father’s side, or any line OTHER than her direct matrilineal line.
  • They relied on oral history or made a guess
  • They found the information in someone else’s tree
  • They found all of the LeJeune information confusing (because it is)

The tester has provided no tree, so we can’t do any sleuthing here, but an Ancestry search shows a woman by that name born in 1855 in Starksboro, VT to Louis Senott and Victoria Reya. A further search on Victoria leads me to Marie Lussier who leads me to Marguerite Michel who leads me to Marie Anne Lord (Lore, Laure), who lived in Acadia, whose ancestor is…drum roll…Catherine LeJeune. You get the idea.

Yes, you may need to extend other people’s trees.

The Point

However, and this is the point – if you’re looking for confirmation that the LeJeune sisters were Native American, this ONE tester who entered Native American for an unknown reason is NOT the confirmation you’re looking for. Don’t get sucked into confirmation bias, or into categorically believing what someone else entered without additional information.

You need haplogroup confirmation, but, in this case, you don’t have it. However, if you’re new to genetic genealogy, you don’t know that yet, so hold on. We’re still getting there. This is why we need to review all of the reports.

And trust me, I’m not being critical because there isn’t a single seasoned genealogist who has NOT fallen down the rathole of excited confirmation bias or accepting information without further analysis – me included. We all need to actively guard against it, all the time. Confirm and weigh all of the evidence we do have, and seek missing evidence.

Let’s go back to the match results.

Matches – Haplogroups and Haplotypes

Scrolling down the Table View, the next group of matches shows many more matches to descendants of both Catherine and Edmee LeJeune.

Next, you’ll notice that there’s a Mitotree haplogroup, U6a7a1a, AND an F number. In this case, they are both checked in blue, which means you share the exact same haplogroup with that tester, and the exact same haplotype cluster, which is the F number.

I wrote about haplotype clusters, here.

If NEITHER box is checked, you don’t share either the haplogroup nor the haplotype cluster.

You can match the haplogroup, but not the haplotype cluster, which means the haplogroup box will be checked, but the haplotype cluster will not. If you share the same haplotype cluster, you WILL share the same haplogroup, but the reverse is not true.

What is a Haplotype Cluster, and why do they matter?

Haplotype Clusters

We need to talk about exact matches and what they mean. Yes, I know it seems intuitive, but it isn’t.

There are three types of matches

  • Matching and Genetic Distance on your Match List
  • Haplotype matching
  • Haplogroup matching

Without getting (too much) into the weeds, an Exact Match in the Genetic Distance column on your match list excludes locations 309 and 315 because they are too unstable to be considered reliable for matching. So, 309 and 315 are EXCLUDED from this type of matching. In other words, you may or may not match at either or both of those locations. They are ignored for matching on your match list.

Locations 309 and 315 are also EXCLUDED from haplogroup definitions.

A haplotype F cluster match indicates that everyone in that cluster is an exact match, taking into consideration EVERY mutation, INCLUDING 309 and 315.

309 and 315 Why
Matching and Genetic Distance Excluded Unstable, probably not genealogically relevant and may be deceptive, leading you down a rathole
Haplogroup Definition Excluded Too unstable for tree branching and definition
Haplotype F Clusters Included Might be genealogically useful, so everyone can evaluate the rathole for themselves

Some people think that if they don’t match someone exactly, they can’t have the same ancestor as people who do match exactly, but that’s not true. “Mutations happen” whenever they darned well please. Downstream mutations in stable locations that match between two or more testers will form their own haplogroup branch.

The most distant matches are shown on the last match page, and as you can see below, some descendants of Catherine and Edmee LeJeune have a 1-step difference with our tester, meaning a genetic distance of one, or one mutation (disregarding 309 and 315). One match has a 2-step mutation.

The fact that their F numbers are not the same tells you that their mutations are different from each other, too. If two of those people also matched each other, their F# would be identical.

The mutations that do not (yet) form a haplogroup, and are included in your haplotype cluster, are called Private Variants, and you cannot see the private variants of other people. Clearly, you and anyone in your haplotype cluster share all of the same mutations, including Private Variants.

Evaluating Trees and EKAs

By reviewing the matches, their EKAs, and the trees for the matches of Catherine’s descendants, I was able to create a little mini-tree of sorts. Keep in mind that not everyone with an EKA has a tree, and certainly not everyone who uploaded a tree listed an EKA. So be sure to check both resources. Here’s how to add your EKA, and a one-minute video, here.

The good news is that if your match has a WikiTree link when you click on their tree icon, you know their tree actually reaches back to either Edmee or Catherine if that’s their ancestor, and you’re not dealing with a frustrating, truncated two or three-generation tree, or a private tree. You can add your WikiTree link at FamilyTreeDNA here, in addition to any other tree you’ve linked.

Takeaways from Matches

  • You can identify your common ancestor with other testers. By viewing people’s trees and emailing other testers, you can often reconstruct the trees from the tester back through either Catherine or Edmee LeJeune.
  • Your primary focus should be on the people in your haplotype cluster, but don’t neglect other clusters where you may find descendants of your ancestor.
  • If you see a male EKA name, or something other than a female name in the EKA field, like a location, the tester was confused. Only females pass their mitochondrial DNA to their descendants.
  • If you’re searching for an ancestor whose mitochondrial DNA you don’t carry, use projects and WikiTree to see if you can determine if someone has tested from that line. From viewing the project results, I already knew that the LeJeune sisters had several descendants who had tested.
  • If you’re searching for your ancestor on your match list, and you don’t find them in the full sequence results, use the filter to view people who ONLY took the HVR1 and HVR1+HVR2 tests to see if the results you seek are there. They won’t be on your full sequence match list because they didn’t test at that level. Testers at the lower levels will only have a partial, estimated haplogroup – in this case, U6a.
  • For Edmee and Catherine LeJeune, we have enough testers to ensure that we don’t have just one or two people with the same erroneous genealogy. If you do find someone in a project or at WikiTree claiming descent from the same ancestor, but with a different haplogroup, you’ll need to focus on additional research to verify each step for all testers.

Resources:

Matches Maps

The Matches Map is a great visual resource. That “picture is worth 1000 words” tidbit of wisdom definitely applies here.

Clicking on the Matches Maps displays the locations that your matches entered for their EKA.

In the upper left-hand corner, select “Full Sequence,” and only the full sequence matches will be displayed on the map. All full sequence testers also have HVR1/HVR2 results, so those results will be displayed under that selection, along with people who ONLY took the HVR1 or HVR1/HVR2 tests.

We know that the Acadians originally came from France, and their descendants were forcibly expelled from Nova Scotia in 1755. Families found themselves scattered to various locations along the eastern seaboard, culminating with settlements in Louisiana, Quebec, and in some cases, back in France, so this match distribution makes sense in that context.

Be sure to enlarge the map in case pins are on top of or obscuring each other.

Some people from other locations may be a match, too. Reviewing their information may assist with breaking down the next brick wall. Sometimes, additional analysis reveals that the tester providing the information was confused about what to complete, e.g., male names, and you should disregard that pin.

Takeaways from the Matches Map

  • These results make sense for the LeJeune sisters. I would specifically look for testers with other French EKAs, just in case their information can provide a (desperately needed) clue as to where the LeJeune family was from in France.

  • Reviewing other matches in unexpected locations may provide clues about where ancestors of your ancestor came from, or in this case, where descendants of the LeJeune sisters wound up – such as Marie Josephe Surette in Salem, Massachusetts, Catherine LeJeune’s great-granddaughter.
  • Finding large clusters of pins in an unexpected location suggests a story waiting to be uncovered. My matrilineal ancestor was confirmed in church records in Wirbenz, Germany, in 1647 when she married, but the fact that almost all of my full sequence matches are in Scandinavia, clustered in Sweden and Norway, suggests an untold story, probably involving the 30 Years War in Germany that saw Swedish troop movement in the area where my ancestor lived.
  • For my own mitochondrial DNA test, by viewing trees, EKAs, and other hints, including email addresses, I was able to identify at least a country for 30 of 36 full sequence matches and created my own Google map.
  • You can often add to the locations by creating your own map and including everyone’s results.

Resources:

Mitochondrial DNA Part 4 – Techniques for Doubling Your Useful Matches

Mitochondrial DNA Myth – Mitochondrial DNA is not Useful because the Haplogroups are “Too Old”

Before we move to the Discover Reports, I’m going to dispel a myth about haplogroups, ages, genealogical usefulness, and most recent common ancestors known as MRCAs.

Let me start by saying this out loud. YES, MITOCHONDRIAL DNA IS USEFUL FOR GENEALOGY and NO, OLDER HAPLOGROUPS DO NOT PREVENT MITOCHONDRIAL DNA FROM BEING USEFUL.

Here’s why.

The most recent common ancestor (MRCA) is the person who is the closest common ancestor of any two people.

For example, the mitochondrial DNA MRCA of you and your sibling is your mother.

For your mother and her first cousin, the mitochondrial MRCA is their grandmother on the same side, assuming they both descend from a different daughter. Both daughters carry their mother’s undiluted mitochondrial DNA.

A common complaint about mitochondrial DNA is that “it’s not genealogically useful because the haplogroups are so old” – which is absolutely untrue.

Let’s unravel this a bit more.

The MRCA of a GROUP of people is the first common ancestor of EVERY person in the group with each other.

So, if you’re looking at your tree, the MRCA of you, your sibling, and your mother’s 1C in the example above is also your mother’s grandmother, because your mother’s grandmother is the first person in your tree that ALL of the people in the comparison group descend from.

Taking this even further back in time, your mother’s GGG-grandmother is the MRCA for these five people bolded, and maybe a lot more descendants, too.

At that distance in your tree, you may or may not know the name of the GGG-grandmother and you probably don’t know all of her descendants either.

Eventually, you will hit a genealogical brick wall, but the descendants of that unknown “grandmother” will still match. You have NOT hit a genetic brick wall.

A haplogroup name is assigned to the woman who had a mutation that forms a new haplogroup branch, and she is the MRCA of every person in that haplogroup and all descendant haplogroups.

However, and this is important, the MRCA of any two people, or a group of people may very well be downstream, in your tree, of that haplogroup mother.

As you can clearly see from our example, there are four different MRCAs, depending on who you are comparing with each other.

  • Mom – MRCA of you and your sibling
  • Grandmother – MRCA of you, your sibling, your mom and your mom’s 1C
  • GGG-Grandmother – MRCA of all five bolded descendants
  • Haplogroup formation – MRCA of ALL tested descendants, and all downstream haplogroups, many of whom are not pictured

Many of the testers may, and probably do, form haplotype clusters beneath this haplogroup.

When you are seeking a common ancestor, you really don’t care when everyone in that haplogroup was related, what you seek is the common ancestor between you and another person, or group of people.

If the haplogroup is formed more recently in time, it may define a specific lineage, and in that case, you will care because that haplogroup equates to a woman you can identify genealogically. For example, let’s say that one of Catherine LeJeune’s children formed a specific haplogroup. That would be important because it would be easy to assign testers with that haplogroup to their appropriate lineage. That may well be the case for the two people in haplogroup U6a7a1a2, but lack of a more recent haplogroup for the other testers does not hinder our analysis or reduce mitochondrial DNA’s benefits.

That said, the more people who test, the more possibilities for downstream haplogroup formation. Currently, haplogroup U6a7a1a has 34 unnamed lineages, just waiting for more testers.

Haplogroup ages are useful in a number of ways, but haplogroup usefulness is IN NO WAY DEPRICATED BY THEIR AGE. The haplogroup age is when every single person in that haplogroup shares a common ancestor. That might be useful to know, but it’s not a barrier to genealogy. Unfortunately, hearing that persistent myth causes people to become discouraged, give up and not even bother to test, which is clearly self-defeating behavior. You’ll never know what you don’t know, and you won’t know if you don’t test. That’s my mantra!

The LeJeune sisters provide a clear example.

OK, now on to Discover.

mtDNA Discover

Next, we are going to click through from the mtDNA Results and Tools area on your personal page to Discover Haplogroup Reports. These reports are chapters in your own personal book, handed down from your ancestors.

Discover is also a freely available public tool, but you’ll receive additional and personalized information by clicking through when you are signed into your page at FamilyTreeDNA. Only a subset is available publicly.

mtDNA Discover was released with the new Mitotree and provides fresh information weekly.

Think of Discover as a set of a dozen reports just for your results, with one more, Globetrekker, an interactive haplogroup map, coming soon.

Resources:

When you click through to Discover from your results, Discover defaults to your haplogroup. In this case, that’s U6a7a1a for the LeJeune sisters.

Let’s begin with the first report, Haplogroup Story.

Haplogroup Story

The Haplogroup Story is a landing page that summarizes information about your ancestor’s haplogroup relevant to understanding your ancestor’s history. Please take the time to actually READ the Discover reports, including the information buttons, not just skim them.

Think of Discover as your own personalized book about your ancestors – so you don’t want to miss a word.

You’ll see facts on the left, each one with a little “i” button. Click there or mouse over for more information about how that fact was determined.

When we’re talking about haplogroup U6a7a1a, it sounds impersonal, but we’re really talking about an actual person whose name, in this case, we will never know. We can determine the ancestor of some haplogroups that formed within a genealogical timeframe. The LeJeune ancestor in question is the person in whose generation the final mutation in a long string of mutations created the final “a” in haplogroup U6a7a1a.

Think of these as a long line of breadcrumbs. By following them backwards in time and determining when and where those breadcrumbs were dropped, meaning when and where the mutation occurred, we begin to understand the history of our ancestor – where she was, when, and which cultures and events shaped her life.

U6a7a1a was formed, meaning this ancestor was born, about 50 CE, so about 1950 years ago. This means that the ancestor of ANY ONE PERSON with this haplogroup could have lived anytime between the year 50 CE and the year of their mother’s birth.

This is VERY important, because there is an incredible amount of  misunderstanding about haplogroup ages and what they mean to you.

The year 50 CE is the year that the common ancestor of EVERY PERSON in the haplogroup was born, NOT the year that the common ancestor of any two or more people was born.

By way of illustration, the LeJeune sisters were born in about 1624 and 1633, respectively, not 50 CE, and their most recent common ancestor (MRCA) is their mother, who would have been born between about 1590 and 1608, based on their birth years.

For reference, I’ve created this genealogical tree from individuals who took the mitochondrial DNA test and have identified their mitochondrial lineage on the LeJeune mother’s profile at Wikitree

You can see that both Edmee and Catherine have mitochondrial DNA testers through multiple daughters. I’ve color coded the MRCA individuals within each group, and of course their mother is the MRCA between any two people who each descend from Edmee and Catherine.

Mitochondrial DNA matches to the LeJeune sisters’ descendants could be related to each other anywhere from the current generation (parent/child) to when the haplogroup formed, about 50 CE.

You can easily see that all of these testers, even compared with their most distant relatives in the group, share a common ancestor born between 1590 and about 1608. Other people when compared within the group share MCRAs born about 1717 (blue), 1778 (peach), 1752 (green), 1684 (pink), 1658 (mustard), and 1633 (red).

Soooooo…a haplogroup born in 50 CE does NOT mean that you won’t be able to find any genealogical connection because your common ancestor with another tester was born more than 1900 years ago. It means that the common ancestor of EVERYONE who is a member of haplogroup U6a7a1a (and downstream haplogroups) was born about 50 CE.

The parent haplogroup of U6a7a1a is haplogroup U6a7a1, which was born about 1450 BCE, or about 3450 years ago.

In the graphic, I’ve shown other unknown genealogical lineages from U6a7a1 and also downstream haplogroups.

Haplogroup U6a7a1 is the MRCA, or most recent common ancestor of haplogroup U6a7a1a, and anyone who descends from haplogroup U6a7a1 or any of the 23 downstream lineages from U6a7a1, including 5 descendant haplogroups and 18 unnamed lineages.

The LeJeune haplogroup, U6a7a1a, has 35 descendant lineages. One downstream haplogroup has already been identified – U6a7a1a2 – which means two or more people share at least one common, stable, mutation, in addition to the mutations that form U6a7a1a. Thirty-four other lineages are as yet unnamed.

The fact that there are 34 unnamed lineages means that people with one or more private variants, or unique mutations, are candidates for a new branch to form when someone else tests and matches them, including those variants.

You’re a candidate for a new haplogroup in the future if no one else matches your haplotype cluster number, or, potentially, as the tree splits and branches upstream.

When a second person in a lineage tests, those two people will not only share a common haplotype cluster F#, they will share a new haplogroup too if their common mutation is not excluded because it’s unstable and therefore unreliable.

There are 127 members of haplogroup U6a7a1a today, and their EKAs are noted as being from France, Canada, the US, and other countries that we’ll view on other pages.

Haplogroup U6a7a1a has been assigned two Discover badges:

  • Imperial Age – “an age noted for the formation and global impact of expansive empires in many parts of the world.” In other words, colonization, which is certainly true of the French who battled with the English to colonize New England, Acadia, and New France.
  • mtFull Confirmed (for testers only)

Additionally, the LeJeune sisters have one Rare Notable Connection, and three Rare Ancient Connections, all of which may shed light on their history.

Takeaways from the Haplogroup Story

  • The Haplogroup Story provides an overview of the haplogroup
  • You can easily see how many testers fall into this haplogroup and where they have indicated as the origin of their matrilineal line.
  • The haplogroup may have several new haplogroup seeds – 34 in this case – the number of unnamed lineages
  • You can share this or other Discover pages with others by using the “share page” link in the upper right-hand corner.
  • Don’t be discouraged by the age of the haplogroup, whether it’s recent or older.

Next, let’s look at Country Frequency.

Country Frequency

Country Frequency shows the locations where testers in haplogroup U6a7a1a indicate that their EKA, or earliest known matrilineal ancestor, is found. The Country Frequency information is NOT limited to just your matches, but all testers in haplogroup U6a7a1a, some of whom may not be on your match list. Remember, only people with 3 mutations difference, or fewer, are on your match list.

Haplogroup distribution around the world is very informative as to where your ancestors came from.

There are two tabs under Country Frequency, and I’d like to start with the second one – Table View.

Table View displays all of the user-provided country locations. Note that the Haplogroup Frequency is the percentage of total testers in which this haplogroup is found in this particular country. These frequencies are almost always quite small and are location-based, NOT haplogroup based.

There are now 40,000 haplogroups, and in haplogroup U, the LeJeune sisters are 6 branches down the tree with U6a7a1a.

In total, 127 testers are members of haplogroup U6a7a1a, and 42 of those claim that their ancestor is from France, which comprises 1% of the people who have taken the full sequence mitochondrial DNA test whose ancestor is from that location.

Let’s do the math so you can see how this is calculated and why it’s typically so small. For our example, let’s say that 8000 people in the database have said their matrilineal ancestor is from France. Of the 127 haplogroup U6a7a1a members, 42 say their ancestor is from France. Divide 42 by 8,000, which is 0.00525, and round to the nearest percentage – which is 1%.

The best aspect of this page is that you can see a nice summary of the locations where people indicate that their earliest known U6a7a1a ancestor was found.

Please note that the last entry, “Unknown Origins,” is the bucket that everyone who doesn’t provide a location falls into. That row is not a total but includes everyone who didn’t provide location information.

These location results make sense for the LeJeune sisters – maybe except for Ireland and Belgium. Some people don’t understand the directions, meaning that a matrilineal ancestor or direct maternal ancestor is NOT your literal “oldest” ancestor on your mother’s side of the tree who lived to be 105, but your mother-to-mother-to-mother-to-mother ancestor, so check to see if these people with unusual locations are in your match list and view their tree or reach out to them.

We don’t know why the person who selected Native American made that choice, but I’d bet it has to do with confusion about the “other” LeJeune female, Jeanne LeJeune dit Briard. Based on Catherine and her sister, Edmee LeJeune’s haplogroup through more than 50 testers, U6a7a1a, Native is incorrect.

Of course, that tester wouldn’t have known that if they completed their EKA information before they tested. Perhaps they entered information based on the stories they had heard, or flawed genealogy, and didn’t think to go back and correct it when their results were ready, indicating that Native was mistaken.

On the “Map View” tab, the locations are shown using a heat map, where the highest percentages are the darkest. Here, both France and Canada are the darkest because that’s the most common selection for this haplogroup with 1% each, while the rest of the countries registered with less <1%.

These colors are comparative to each other, meaning that there is no hard and fast line in the sand that says some percentage or greater is always red.

To summarize these two tables, because this is important:

  • The Table View shows you how many people selected a specific country for their ancestor’s location, but the frequency is almost always very low because it’s based on the total number of testers in the entire database, comprised of all haplogroups, with ancestors from that country.
  • The Map View shows you a heat map for how frequently a particular location was selected, as compared to other locations, for this haplogroup.

To view the difference between adjacent haplogroups, I always compare at least one haplogroup upstream. In this case, that’s the parent haplogroup, U6a7a1.

The Parent Haplogroup

If you look at haplogroup U6a7a1, just one haplogroup upstream, you’ll see that for Mauritania, the total number of U6a7a1 descendants tested is only “1”, but the haplogroup frequency in Mauritania is 10% which means that there are only 10 people who have been tested in the database altogether from Mauritania – and one person is haplogroup U6a7a1.

However, due to substantial under-sampling of the Mauritania population, the frequency for Mauritania, 10%, is higher than any other location.

Also, remember, these are user-reported ancestor locations, and we have no idea if or how these people determined that their ancestor is actually from Mauritania.

Please only enter actual known locations. For example, we don’t want haplogroup U6a7a1 members to look at this informatoin, then add Mauritania as their location because now they “know” that their ancestor is from Mauritania.

On the Map View, Mauritania is dark red because the percentage is so high – never mind that there are only 10 testers who report matrilineal ancestors from there, and only one was U6a7a1.

This map illustrates one reason why taking the full sequence test is important. Viewing partial haplogroups can be deceiving.

Catherine and Edmee LeJeune’s matrilineal descendants who only tested at the HVR1 or HVR1+HVR2 level receive a predicted haplogroup of U6a, born about 21,000 years ago. That’s because the full 16,569 locations of the mitochondria need to be tested in order to obtain a full haplogroup, as opposed to about 500 locations in the HVR1 and HVR1/2, each, respectively.

U6a – The Result for HVR1/HVR2-Only Testers

So, let’s look at what haplogroup U6a reveals, given that it’s what early LeJeune descendants who ordered the lower-level tests will see.

In the Table View for U6a, below, you see that the top 5 counties listed by haplogroup frequency are five North African countries.

A total of 801 people are assigned to haplogroup U6a, meaning the majority, 757, report their ancestors to be from someplace else. If two people from the Western Sahara (Sahrawi) comprise 67% of the people who tested, we know there are only three people who have tested and selected that location for their ancestors.

If you didn’t understand how the display works, you’d look at this report and see that the “top 5” countries are North African, and it would be easy to interpret this to mean that’s where Catherine and Edmee’s ancestors are from. That’s exactly how some people have interpreted their results.

Scrolling on down the Table View, 50 testers report France, and 10 report the US, respectively, with France showing a Haplogroup Frequency of 1% and the US <1%.

The balance of U6a testers’ ancestors are from a total of 57 other countries, plus another 366 who did not select a location. Not to mention that U6a was born 21,000 years ago, and a lot has happened between then and the 1620/1630s when Catherine and Edmee were born to a French mother.

The real “problem” of course is that haplogroup U6a is only a partial haplogroup.

The U6a map shows the highest frequency based on the number of testers per country, which is why it’s dark red, but the Table View reports that the actual number of U6a testers reporting any specific country. France has 50. Next is the US, also with 50, which often means people are brick-walled here. You can view the U6a table for yourself, here.

Why is this relevant for Catherine and Edmee LeJeune? It’s very easy to misinterpret the map, and for anyone viewing U6a results instead of U6a7a1a results, it’s potentially genealogically misleading.

Use Country Frequency with discretion and a full understanding of what you’re viewing, especially for partial haplogroups from HVR1/HVR2 results or autosomal results from any vendor.

If someone tells you that the LeJeune sisters are from someplace other than France, ask where they found the information. If they mention Africa, Morocco or Portugal, you’ll know precisely where they derived the information.

This information is also available on your Maternal Line Ancestry page, under “See More,” just beneath the Matches tab. Haplogroup Origins and Ancestral Origins present the same information in a different format.

Discover is a significant improvement over those reports, but you’ll still need to read carefully, understand the message, and digest the information.

Takeaways from Country Frequency

  • Evaluate the results carefully and be sure to understand how the reports work.
  • Use complete, not partial haplogroups when possible.
  • The Haplogroup Frequency is the number of people assigned to this haplogroup divided by the entire number of people in the database who report that country location for their matrilineal ancestor. It is NOT the percentage of people in ONLY haplogroup U6a7a1a from a specific country.
  • Table view shows the number of testers with this haplogroup, with the percentage calculated per the number of people who have tested in that country location.
  • The Map shows the highest frequency based on the number of testers per country.
  • Use the map in conjunction with the haplogroup age to better understand the context of the message.

Globetrekker, which has not yet been released, will help by tracking your ancestors’ paths from their genesis in Africa to where you initially find that lineage.

Before we move on to the Mitotree, let’s take a minute to understand genetic trees.

About Genetic Trees

The Mitotree is a genetic tree, also called a phylogenetic tree, that generally correlates relatively closely with a genealogical tree. The more testers in a particular haplogroup, the more accurate the tree.

FamilyTreeDNA provides this disclaimer information about the genetic tree. The Mitotree you see is a nice and neat published tree. The process of building the tree is somewhat like making sausage – messy. In this case, the more ingredients, the better the result.

The more people that test, the more genetic information is available to build and expand the tree, and the more accurate it becomes.

The recent Mitotree releases have moved the haplogroup “dates” for the LeJeune sisters from about 21,000 years ago for HVR1/HVR2 U6a testers to 50 CE for full sequence testers, and this may well be refined in future tree releases.

Mutations

Mutations and how to interpret them can be tricky – and this short section is meant to be general, not specific.

Sometimes mutations occur, then reverse themselves, forming a “back mutation”, which is usually counted as a branch defining a new haplogroup. If a back mutation happens repeatedly in the same haplogroup, like a drunken sailor staggering back and forth, that mutation is then omitted from haplogroup branch formation, but is still counted as a mismatch between two testers.

A heteroplasmy is the presence of two or more distinct results for a specific location in different mitochondria in our bodies. Heteroplasmy readings often “come and go” in results for different family members, because they are found at varying threshold levels in different family members, causing mismatches. Heteroplasmies are currently counted only if any person has 20% or greater of two different nucleotides. So, if you have a 19% heteroplasmy read for a particular location, and your sister has 21%, you will “not” have a heteroplasmic condition reported, but she will, and the location will be reported as a mismatch.

If you have a heteroplasmy and another family member does not, or vice versa, it’s counted as as a “mismatch,” meaning you and that family member will find yourselves in different haplotype clusters. Hetroplasmies do not presently define new tree branches. I wrote about heteroplasmies, here.

Takeaways from the Genetic Tree Disclaimer

  • DNA is fluid, mutations happen, and all mutations are not created equal.
  • Thankfully, you really don’t need to understand the nitty-gritty underpinnings of this because the scientists at FamilyTreeDNA have translated your results into reports and features that take all of this into consideration.
  • Testing more people helps refine the tree, which fills in the genetic blanks, refining the dates, and expanding branches of the tree.

Resources:

Ok, now let’s look at the Time Tree

Time Tree

The Time Tree displays your haplogroup on the Mitotree timeline. In other words, it shows us how old the haplogroup is in relation to other haplogroups, and testers.

The Time Tree displays the country locations of the ancestors of testers who are members of that and descendant or nearby haplogroups. You can view the haplogroup U6a7a1a Time Tree, here, and follow along if you wish. Of course, keep in mind that the tree is a living, evolving entity and will change and evolve over time as updated tree versions are released.

Mousing over the little black profile image, which is the person in whom this haplogroup was born, pops up information about the haplogroup. Additionally, you’ll see black bars with a hashed line between them. This is the range of the haplogroup formation date. Additional details about the range can be found on the Scientific Details tab, which we’ll visit shortly.

On your Matches tab, remember that each match has both a haplogroup and a haplogroup cluster F# listed.

On the Time Tree, individual testers are shown at right, with their selected country of origin. In this case, you’ll see the person who selected “Native American” at the top, followed by France, Canada, the US, and other flags.

Haplogroup U6a7a1a includes several haplotype clusters, designated by the rounded red brackets. In this view, we can see several people who have haplotype cluster matches. Everyone has a haplotype assignment, but a haplotype cluster is not formed until two people match exactly.

In the Time Tree view, above, you can see two clusters with two members each, and the top of a third cluster at the bottom.

In case you’re wondering why some of the globes are offset a bit, they positionally reflect the birth era of the tester, rounded to the closest 25 years, if the birth year is provided under Account Settings. If not, the current tester position defaults to 1950.

Scrolling down to the next portion of the window shows that the third cluster is VERY large. Inside the cluster, we see Belgium, Canada, and France, but we aren’t even halfway through the cluster yet.

Continuing to scroll, we see the cluster number, F7753329, in the middle of the cluster, along with the French flag, two from Ireland, four from the US, and the beginning of the large unknown group.

In this fourth screenshot, at the bottom of the display, we see the balance of haplotype cluster #F7753329, along with eight more people who are not members of that haplotype cluster, nor any other haplotype cluster.

Finally, at the bottom, we find haplogroup U6a7a1a2, a descendant haplogroup of U6a7a1a. Are they descendants of the LeJeune sisters?

Looking back at our tester’s match list, the two people who belong to the new haplogroup U6a7a1a2 haven’t provided any genealogical information. No EKA or tree, unfortunately. The haplogroup formation date is estimated as about 1483, but the range extends from about 1244-1679 at the 95th percentile. In other words, these two people could be descendants of:

  • Either Catherine or Edmee LeJeune, but not both, since all of their descendants would be in U6a7a1a2.
  • An unknown sister to Catherine and Edmee.
  • A descendant line of an ancestor upstream of Catherine and Edmee.

Takeaways from the Time Tree

  • The visualization of the matches and haplotype clusters illustrates that the majority of the haplogroup members are in the same haplogroup cluster.
  • Given that two women, sisters, are involved, we can infer that all of the mutations in this haplotype cluster were common to their mother as well.
  • Haplotype cluster #F7753329 includes 19 testers from Catherine and 17 from Edmee.
  • Downstream haplogroup U6a7a1a2 was born in a daughter of haplogroup U6a7a1a, as early as 1244 or as late as 1679. Genealogy information from the two testers could potentially tell us who the mutation arose in, and when.
  • As more haplogroup U6a7a1a2 testers provide information, the better the information about the haplogroup will become, and the formation date can be further refined.

Smaller haplotype clusters have a story to tell too, but for those, we’ll move to the Match Time Tree.

Match Time Tree

The Match Time Tree is one of my favorite reports and displays your matches on the Time Tree. This feature is only available for testers, and you must be signed in to view your Match Time Tree.

By selecting “Share Mode”, the system obfuscates first names and photos so you can share without revealing the identity of your matches. I wrote about using “Share Mode” here. I have further blurred surnames for this article.

The Match Time Tree incorporates the tree view, with time, the names of your matches PLUS their EKA name and country, assuming they have entered that information. This is one of the reasons why the EKA information is so important.

This display is slightly different than the Time Tree, because it’s one of the features you only receive if you’ve taken the mtFull test and click through to Discover from your account.

The Time Tree view is the same for everyone, but the Match Time Tree is customized for each tester.

Your result is shown first, along with your haplotype cluster if you are a member of one.

You can easily see the names of the EKAs below the obfuscated testers’ names.

While we immediately know that descendants of both Catherine and Edmee are found in the large cluster #F7753329, we don’t yet know which ancestors are included in other haplotype clusters.

Haplogroup U6a7a1a includes two smaller haplotype clusters with 2 people each.

We know a few things about each of these clusters:

  • The people in each cluster have mutations that separate them from everyone else except the other person in their cluster
  • The results are identical matches to the other person in the cluster, including less reliable locations such as 309 and 315
  • There are other locations that are excluded from haplogroup formation, but are included in matching, unlike 309 and 315.
  • Given that they match only each other exactly, AND they did not form a new haplogroup, we know that their common unique mutation that causes them to match only each other exactly is unreliable or unstable, regardless of whether it’s 309, 315, a heteroplasmy, or another marker on the list of filtered or excluded variants.

Only the tester can see their own mutations. By inference, they know the mutations of the people in their haplotype cluster, because they match exactly.

If you’re a member of a cluster and you’re seeking to determine your common ancestor, you’ll want to analyze each cluster. I’ve provided two examples, below, one each for the red and purple clusters.

Red Haplotype Cluster #F3714849

Only one person in the red cluster has included their EKA, and the tree of the second person only reaches to three generations. Tracking that line backwards was not straightforward due to the 1755 expulsion of the Acadians from Nova Scotia.

The second person listed their EKA as Edmee LeJeune, but they have a private tree at MyHeritage, so their matches can’t see anything. I wonder if they realize that their matches can’t view their tree.

We are left to wonder if both people descend from Edmee LeJeune, and more specifically, a common ancestor more recently – or if the unstable mutation that they share with each other is simply happenstance.

E-mailing these testers would be a good idea.

Purple Haplotype Cluster #F2149611

Evaluating the purple cluster reveals that the common ancestor is Catherine LeJeune. The question is twofold – how are these two people related downstream from Catherine, and how unstable is their common mutation or mutations.

Fortunately, both people have nice trees that track all the way back to Catherine.

Unfortunately, their MRCA is Francoise, the daughter of Catherine. I say unfortunately, because two additional testers also descend from Francoise, and they don’t have the haplotype cluster mutation. This tells us that the cluster mutation is unreliable and probably not genealogically relevant because it occurred in two of Francoise’s children’s lines independently, but not all four.

In other words, that specific mutation just happened to occur in those two people.

This is exactly why some mutations are not relied upon for haplogroup definition.

Takeaways from the Match Time Tree

  • The time tree is a wonderful visualization tool that shows all of your matches, their EKAs and countries, if provided, in haplotype clusters, on the Time Tree. This makes it easy to see how closely people are related and groups them together.
  • On your match page, you can easily click through to view your matches’ trees.
  • You can use both haplotype clusters (sometimes reliable) and downstream haplogroups (reliable) to identify and define lineages on your family tree. For example, if a third person matches the two in haplogroup U6a7a1a2, the child haplogroup of U6a7a1a, and you could determine the common ancestor of any two of the three, you have a good idea of the genealogical placement of the third person as well.
  • You know that if people form a haplotype cluster, but not a new haplogroup, that their common haplotype cluster-defining mutation is less reliable and may not be genealogically relevant.
  • On the other hand, those less reliable mutations may not be reliable enough for haplogroup definition, but may be relevant to your genealogy and could possibly define lineage splits. Notice all my weasel words like “may,” “may not” and “possibly.” Also, remember our purple cluster example where we know that the mutation in question probably formed independently and is simply chance.
  • I can’t unravel the ancestors of the red cluster – and if I were one of those two people, especially if I didn’t know who my ancestor was, I’d care a lot that the other person didn’t provide a useful tree. Don’t forget that you can always reach out via email, offer to collaborate, and ask nicely for information.
  • We need EKAs, so please encourage your matches to enter their EKA, upload a tree or link to a MyHeritage tree, and enter a Wikitree ID in their FamilyTreeDNA profile, all of which help to identify common ancestors.

Resources:

Classic Tree

FamilyTreeDNA invented the Time Tree and Match Time Tree to display your results in a genealogically friendly way, but there is important information to be gleaned from other tree formats as well.

The Classic Tree presents the Mitotree, haplogroup and haplotype information in the more traditional format of viewing phylogenetic trees, combining their beneficial features. There’s a lot packed in here.

In this default view, all of the Display Options are enabled. We are viewing the LeJeune haplogroup, U6a7a1a, with additional information that lots of people miss.

The countries identified as the location of testers’ earliest known ancestors (EKA) are shown.

Listed just beneath the haplogroup name, five people are members of this haplogroup and are NOT in a haplotype cluster with anyone else, meaning they have unique mutations. When someone else tests and matches them, depending on their mutation(s), a new haplogroup may be formed. If they match exactly, then at least a new haplotype cluster will be formed.

Portions of three haplotype clusters are shown in this screenshot, designated by the F numbers in the little boxes.

Additional information is available by mousing over the images to the right of the haplogroup name.

Mousing over the badge explains the era in which the haplogroup was born. Rapid expansion was taking place, meaning that people were moving into new areas.

Mousing over the date explains that the scientists behind the Mitotree are 95% certain about the date range of the birth of this haplogroup, rounded to 50 CE. Remember, your common ancestor with ALL haplogroup members reaches back to this approximate date, but your common ancestor with any one, or a group, of testers is sometime between the haplogroup formation date, 50 CE, and the present day.

Mousing over the year shows the confidence level, and the date range at that level. These dates will probably be refined somewhat in the future.

If haplogroup members have private variants, it’s likely or at least possible that a new branch will split from this one as more people test

Mousing over the star displays the confidence level of the structure of this portion of the Mitotree based on what could be either confusing or conflicting mutations in the tree. For haplogroup U6a7a1a, there’s no question about the topology, because it has a 10 of 10 confidence rating. In other words, this branch is very stable and not going to fall off the tree.

Every haplogroup is defined by at least one mutation that is absent in upstream branches of the tree. Mutations are called variants, because they define how this sample, or branch, varies from the rest of the branches in the Mitotree.

These two mutations, A2672G and T11929C, are the haplogroup-defining mutations for U6a7a1a. Everyone in haplogroup U6a7a1a will have these two mutations in addition to all of the mutations that define directly upstream haplogroups (with extremely rare exceptions). Haplogroup-defining mutations are additive.

There may be more haplogroup-defining mutations than are displayed, so click on the little paper icons to copy to your clipboard.

You can view upstream haplogroups and downstream haplogroups, if there are any, by following the back arrows to upstream haplogroups, and lines to downstream haplogroups.

For example, I clicked on the arrow beside haplogroup U6a7a1a to view its parent haplogroup, U6a7a1, and a second time to view its parent, haplogroup U6a7a. If I click on the back arrow for U6a7a, I’ll continue to climb up the tree.

Beneath U6a7a, you can see the haplogroup branches, U6a7a1a and U6a7a2.

Beneath U6a7a1, you’ll notice:

  • People who don’t share haplotype clusters with anyone
  • Three haplotype clusters
  • Five descendant haplogroups from U6a7a1, including the LeJeune sister’s haplogroup U6a7a1a.

To expand any haplogroup, just click on the “+”.

You may see icons that are unfamiliar. Mouse over the image or click on the “Show Legend” slider at upper right to reveal the decoder ring, I mean, legend.

You can read more about the symbols and how haplogroups are named, here, and see more about types of mutations in the Scientific Details section.

Takeaways from the Classic Tree

  • The Classic Tree provides a quick summary that includes important aspects of a haplogroup, including when it was formed, which mutations caused it’s formation, and each branch’s confidence level.
  • It’s easy to back your way up the tree to see where your ancestor’s founding haplogroups were located, which speaks to your ancestor’s history. Patterns, paths, and consistency are the key.
  • Ancient DNA locations in your tree can provide a very specific location where a haplogroup was found at a given point in time, but that doesn’t necessarily mean that’s where the haplogroup was born, or that they are your ancestor. We will get to that shortly.
  • You can share this page with others using the “Share Page” function at the top right.

Ancestral Path

The Ancestral Path is a stepping-stone chart where you can view essential information about each haplogroup in one row, including:

  • Age and era
  • Number of years between haplogroups
  • Number of subclades
  • Number of modern-day testers who belong to this haplogroup
  • Number of Ancient Connections that belong to this haplogroup, including all downstream haplogroups

This “at a glance” history of your haplogroup is the “at a glance” history of your ancestors.

The number in the column titled “Immediate Descendants”, which is the number of descendant haplogroups, tells a story.

If you see a large, or “larger” number there, that indicates that several “child” haplogroups have been identified. Translated, this means that nothing universally terrible has occurred to wipe most of the line out, like a volcano erupting, or a famine or plague that would constitute a constraining bottleneck event. Your ancestors’ children survived and apparently thrived, creating many descendant downstream haplogroups, known as an expansion event.

If you see a smaller number, such as rows 5, 7, 8, 9, and 13, each of which have only two surviving branches, yours and another, several branches probably didn’t survive to the present day. This may reflect a bottleneck where only a few people survived or the lines became extinct over time, having no descendants today. Either that, or the right people haven’t yet tested. Perhaps they are living in a particularly undersampled region of the world, a tiny village someplace, or there aren’t many left.

The two most recent haplogroups have the most subclades, indicating that your ancestors were successfully reproducing in the not-too-distant past. Mutations occurred because they randomly do, creating new haplogroups, and several haplogroup members have tested today. Hopefully, genealogy can connect us further.

The next column, “Tested Modern Descendants,” tallies the total number of testers as it rolls up the tree. So, each haplogroup includes the testers in its downstream (child) haplogroups. The 127 people in haplogroup U6a7a1a include the two people in haplogroup U6a7a1a2, and the 226 people in haplogroup U6a7a1 include the 127 people in haplogroup U6a7a1a.

Looking at other types of trees and resources for each haplogroup can suggest where our ancestors were at that time, perhaps correlating with world or regional history that pertains to the lives of those ancestors.

In our case, the LeJeune sisters’ ancestors did well between 3450 years ago through the formation of U6a7a1a, about 1950 years ago. 3500 years ago, in Europe, settlements were being fortified, leadership was emerging as complex social patterns formed, and trade networks developed that spanned the continent and beyond.

Between 20,000 and 3,450 years ago, not so much. This correlates to the time when early European farmers were moving from Anatolia, bringing agriculture to Europe en masse. However, they were not the first people in Europe. Early modern humans arrived and lived in small groups about 50,000 years ago.

And they very nearly didn’t survive. Many lines perished.

Takeaways from the Ancestral Path

  • The Ancestral Path shows the stepping stones back to Mitochondrial Eve, dropping hints along the way where expansions occurred, meaning that your ancestors were particularly successful, or conversely, where a bottleneck occurred and the lineage was in jeopardy of extinction.
  • In some cases, where a lot of time has passed between haplogroups, such as 8,000 years between U and U6, we’re seeing the effect of lineages dying out. However, with each new tester, there’s the possibility of a previously undiscovered branch split being discovered. That’s precisely what happened with haplogroup L7.

Migration Map

The Discover Migration Map shows the path that your ancestor took out of Africa, and where your base ancestral haplogroup was formed.

Mousing over the little red circle displays the haplogroup, and the area where it originated. Based on this location where U6 was found some 31,000 years ago, we would expect to find U6 and subgroups scattered across North Africa, the Levant, and of course, parts of Eurasia and Europe.

It’s interesting that, based on what we know using multiple tools, it appears that haplogroup U initially crossed between the Horn of Africa and the Arabian Peninsula, at the present-day Strait of Bab-el-Mandeb. Today, that crossing is about 15 nautical miles, but the sea level was much lower during earlier times in history, including the last glacial maximum. Humans would have seen land across the water, and could potentially have swum, drifted, or perhaps used early boats.

Over the next 10,000+ years, haplogroup U trekked across the Arabian peninsula into what is present-day Iran, probably moving slowly, generation by generation, then turning back westward, likely in a small group of hunter-gatherers, crossing the Nile Delta into North Africa, present-day Egypt.

They probably fished along the Nile. Food would have been plentiful along rivers and the sea.

It’s exciting to know that the ancestors of the LeJeune sisters lived right here, perhaps for millennia.

There’s more, however.

The Migration Map shows the location of the genetically closest Ancient DNA results to your haplogroup, obtained from archaeological excavations. This mapped information essentially anchors haplogroup branches in locations in both space and time.

Ancient DNA samples are represented by tiny brown trowels. Clicking on each trowel provides summary information about the associated sample(s) in that location.

Takeaways from the Migration Map

  • Scientists have estimated the location where your base haplogroup originated. For the LeJeune sisters, that’s haplogroup U6 in North Africa along the Mediterranean Sea.
  • The trowels show the locations of the genetically closest archaeological samples, aka Ancient Connections, in the FamilyTreeDNA data base.
  • These Ancient Connections displayed on the map may change. New samples are added regularly, so your older samples, except for the oldest two, which remain in place for each tester, will roll off your list when genetically closer Ancient Connections become available.
  • There are no Ancient Connections for the LeJeune sisters in France today, but keep in mind that Europe is closely connected. Today’s French border is only about 25 miles as the crow flies from Goyet, Belgium. France, sea to sea, is only about 500 miles across, and at its closest two points, less than 250 miles.
  • Samples found at these locations span a large timeframe.

There’s a LOT more information to be found in the Ancient Connections.

Ancient Connections

Ancient Connections is one of my favorite Discover features. This information would never have been available, nor synthesized into a usable format, prior to the introduction of Mitotree and mtDNA Discover. Ancient Connections unite archaeology with genealogy.

  • The first thing I need to say about Ancient Connections is that it’s unlikely that these individuals are YOUR direct ancestors. Unlikely does not mean impossible, but several factors, such as location and timeframe need to be considered.
  • What is certain is that, based on their mitochondrial haplogroup, you SHARE a common ancestor at some point in time.
  • Ancient samples can be degraded, with missing genetic location coverage. That means that not every mutation or variant may be able to be read.
  • Different labs maintain different quality criteria, and location alignments may vary, at least somewhat, lab to lab. While this is always true, it’s particularly relevant when comparing ancient DNA results which are already degraded.
  • Samples are dated by archaeologists using a variety of methodologies. FamilyTreeDNA relies on the dates and historical eras provided in the academic papers, but those dates may be a range, or contain errors.
  • Obtaining information from ancient DNA samples isn’t as easy or straightforward as testing living people.

However, the resulting information is still VERY useful and incredibly interesting – filling in blanks with data that could never be discerned otherwise.

Many people mistakenly assume that these Ancient Connections are their ancestors, and most of the time, not only is that not the case, it’s also impossible. For example, a woman who lived in 1725 cannot be the ancestor of two sisters who were born in 1624 and 1633, respectively.

When you click on Ancient Connections, you see a maximum of about 30 Ancient Connections. Information about the genetically closest burial is displayed first, with the most distant last on the list.

Please note that the final two are the oldest and will (likely) never change, or “roll off” your list, unless an even older sample is discovered. When new samples become available and are genetically closer, the oldest other samples, other than the oldest two, do roll off to make space for the closer haplogroups and their corresponding samples.

Obviously, you’ll want to read every word about these burials, because nuggets are buried there. I strongly encourage you to read the associated papers, because these publications reveal snippets of the lives of your haplogroup ancestors and their descendants.

The small pedigree at right illustrates the relationship between the ancient sample and the haplogroup of the tester. Three things are listed:

  1. El Agujero 8, the name assigned by the authors of the paper that published the information about this ancient sample
  2. The haplogroup of the LeJeune descendant who tested
  3. The haplogroup of their common ancestor.

If no haplogroup is specifically stated for the ancient sample, the sample is the same haplogroup as the common shared ancestor (MRCA), meaning the tester and the ancient sample share the same haplogroup.

The Time Tree beneath the description shows the tester’s haplogroup, (or the haplogroup being queried), the ancient sample, and their common ancestral haplogroup.

Let’s analyze this first sample, El Agujero 8.

  • The person whose remains were sampled lived about 1375 years ago (I’ve averaged the range), in the Canary Islands, and is part of the Guanche culture.
  • The Guanche are the indigenous people of the Canary Islands, already established there before the arrival of Europeans and the Spanish conquest of the 1400s.
  • The Guanche people are believed to have arrived in the Canaries sometime in the first millennium BCE (2000-3000 years ago) and were related to the Berbers of North Africa.
  • This makes sense if you consider the Migration map and geographic proximity.
  • Haplogroup U6a7a1, the haplogroup of El Agujero 8, is the shared ancestral haplogroup with the LeJeune sisters.
  • That woman, U6a7a1, lived around 1450 BCE, or 3450 years ago, probably someplace in North Africa, the Mediterranean basin, or even in the Nile Delta region, given the correlation between the Canary Islands settlement, the Berbers, and the Migration Map.
  • This does NOT mean that the ancestor of the LeJeune sisters lived in the Canary Islands. It means that a descendant of their MRCA, haplogroup U6a6a1, the shared common ancestor with the LeJeune sisters, lived in the Canary Islands.

Ancient Connections Chart Analysis Methodology

I create an Ancient Connection chart for each haplogroup I’m dealing with. We’re analyzing the LeJeune sisters today, but I track and analyze the haplogroup for every ancestor whose haplogroup I can find, or for whom I can find a descendant to test.

In this chart, YA=years ago and is based on the year 2000. KYA=thousand years ago, so 10 KYA is 10,000 years ago.

Name Person Lived Location & Culture Haplogroup, Date & Age Shared (MRCA) Haplogroup, Date & Age Note
LeJeune Sisters Born 1624 & 1633 French Acadian U6a7a1a,

50 CE,

1950 YA

U6a7a1a,

50 CE,

1950 YA

In Acadia by 1643/44
El Agujero 8 1375 CE Canary Islands, Guanche U6a7a1

1450 BCE, 3450 YA

U6a7a1 1450 BCE, 3450 YA Guanche arrived in Canaries in 1st millennium BCE, related to Berbers
Djebba 20824 6000 BCE Jebba, Bājah, Tunisia, Neolithic U6a3f3’4’5

c 5000 BCE, 7000 YA

U6a1”9

19,000 BCE, 21,000 YA

This archaeology site is on the northernmost point of North Africa
Djebba 20825 5900 BCE Djebba, Bājah, Tunisia, Neolithic U6a1”9

19,000 BCE, 21,000 YA

U6a1”9

19,000 BCE, 21,000 YA

This archaeology site is on the northernmost point of North Africa
Egyptian Mummy 2973 200 BCE Abusir el-Meleq, Giza, Egypt, Ptolemaic Kingdom U6a3h^,

1450 BCE,

3450 YA

U6a1”9

19,000 BCE, 21,000 YA

Nile Delta probably, paper says they share ancestry with near easterners
Egyptian Mummy 2888 100 BCE Abusir el-Meleq, Giza, Egypt, Ptolemaic Kingdom U6a2a’c,

11,000 BCE,

13,000 YA

U6a1”9

19,000 BCE, 21,000 YA

Nile Delta probably, paper says they share ancestry with near easterners
Segorbe Giant (6’3”) 1050 CE Plaza del Almudín, Valencia, Spain, Islamic necropolis burial U6a1a1, 14,000 BCE, 16,000 YA

 

U6a1”9

19,000 BCE, 21,000 YA

Paper says his genetic makeup is Berber and Islamic Spain, buried in Islamic style on right side facing Mecca.
Sweden Skara 1050 CE Varnhem, Skara, Sweden, Viking Swedish culture U6a1a3a, 7350 BCE, 9350 YA, U6a1”9

19,000 BCE, 21,000 YA

Viking burial

 

Chapelfield 696 1180 CE Chapelfield, Norwich, England, Ashkenazi Jewish Medieval age U6a1b1b. 400 BCE,

2400 YA

 

U6a1”9

19,000 BCE, 21,000KYA

Possibly the 1190 antisemitic Norwich massacre
Montana Mina 38 1200 CE Montana Mina, Lanzarote, Spain (Canary Islands), Guanche culture U6a1a1b1 U6a1”9

19,000 BCE, 21,000 YA

Guanche arrived in Canaries in 1st millennium BCE, related to Berbers
Amina 1725 CE Gaillard Center, Charleston, South Carolina, Enslaved African American burials U6a5b’f’g,

9550 BCE, 11,550 YA,

U6a1”9

19,000 BCE, 21,000 YA

Remains of pre-Civil War enslaved Africans unearthed in Charleston, SC
Doukanet el Khoutifa 22577 4400 BCE Doukanet el Khoutifa, Mars, Tunisia, Maghrebi cultural group U6b,

6500 BCE, 8500 YA

 

U6a’b’d’e, 23,000 BCE, 25,000 YA Late Stone Age, shows some admixture with European Hunter-Gatherers, possibly back and forth from Sicily
Guanche 12 625 CE Tenerife, Spain (Canary Islands), Guanche, Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Guanche arrived in the Canaries in 1st millennium BCE, related to Berbers
Guanche 14 775 CE Tenerife, Spain (Canary Islands), Guanche, Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Antocojo 27 875 CE Antocojo, La Gomera, Spain (Canary Islands) U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Guanche 13 900 CE Cave, Tenerife, Spain (Canary Islands), Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Guanche 1 1090 CE Cave, Tenerife, Spain (Canary Islands), Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Barranco Majona 30 1325 CE Barranco Majona, La Gomera, Spain (Canary Islands), Guanche late Medieval U6b1a1’6’8’9, 1 BCE,

2100 YA

U6a’b’d’e, 23,000 BCE, 25,000 YA Ditto above
Kostenki 14 36,000 BCE Markina Gora, Kostyonki, Voronezh Oblast, Russia U2,

43,000 BCE, 45,000 YA

 

U,

43,000 BCE, 45,000 YA

European/Asian steppe earliest hunter-gatherers. Farming didn’t arrive until 10 KYA. Admixture from Asia as well.
Kostenki 12 31,000 BCE Volkovskaya, Voronezh region, Russian Federation. U2c’e,

43,000 BCE, 45,000 YA

 

U,

43,000 BCE, 45,000 YA

Early hunter-gatherer
Krems 3 29,000 BCE Wachtberg in Krems, Lower Austria, Austria, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Endured the ice age, sophisticated toolmaking, Venus figures, mobile lifestyle, mammoth hunters
Krems Twin 1 28,800 BCE Left bank of the Danube, Krems-Wachtberg, Austria, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Double grave for twins, 1 newborn, one age about 50 days
Krems Twin 2 28,800 BCE Left bank of the Danube, Krems-Wachtberg, Austria, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Ditto above
Vestonice 13 28,900 BCE Pavlovské Hills, South Moravia, Czech Republic, Grevettian culture U8b^,

37,000 BCE, 39,000 YA

 

U,

43,000 BCE, 45,000 YA

Ice Age Europe, few samples before farming introduced. Believe these Gravettian individuals are from a single founder population before being displaced across a wide European region.
Vestonice 14 28,900 BCE Dolni Vestonice, Brezi, Czech Republic, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Ditto above
Vestonice 16 28,900 BCE Dolni Vestonice, Brezi, Czech Republic, Gravettian culture U5,

32,000 BCE,

34,000 YA

U,

43,000 BCE, 45,000 YA

Ditto above
Grotta delle Mura child 15,100 BCE Grotta delle Mura, Bari, Italy, Paleolithic Italian culture U2”10,

43,000 BCE, 45,000 YA

U,

43,000 BCE, 45,000 YA

This baby, interred in a small shoreline cave, was less than 9 months old and had blue eyes
Goyette Q2 13,100 BCE Troisième Caverne, Goyet, Belgium, Magdaleian culture named after the La Madeleine rock shelter in France U8a,

10,000 BCE,

12,000 YA

 

U,

43,000 BCE, 45,000 YA

These hunter-gatherer people may have been responsible for the repopulation of Northern Europe. Cave art, such as that at Altamira, in Northern Spain is attributed to the Magdalenian culture.
Villabruna 1 12,000 BCE Villabruna, Italy, Paleolithic culture U5b2b,

9700 BCE,

11,700 YA

 

U,

43,000 BCE, 45,000 YA

Rock shelter in northern Italy where this man was buried with grave goods typical of a hunter and covered in painted stones with drawings. The walls were painted in red ochre.
Oberkasel 998 12,000 BCE Oberkassel , Bonn, Germany, Western Hunter-Gatherer culture U5b1 U,

43,000 BCE, 45,000 YA

Double burial found in a quarry with 2 domesticated dogs and grave goods. Genis classification was uncertain initially as they were deemed, “close to Neanderthals.”

Creating a chart serves multiple functions.

  1. First, it allows you to track connections methodically. As more become available, older ones fall off the list, but not off your chart.
  2. Second, it allows you to analyze the results more carefully.
  3. Third, it “encourages” you to spend enough time with these ancient humans to understand and absorb information about their lives, travels, and migrations – all of which relate in some way to your ancestors.

When creating this chart, I looked up every shared haplogroup to determine their location and what could be discerned about each one, because their story is the history of the LeJeune sisters, and my history too.

Ok, so I can’t help myself for a minute here. Bear with me while we go on a little Ancient Connections tour. After all, history dovetails with genetics.

How cool is it that the LeJeune sisters’ ancestor, around 20,000 years ago, who lived someplace in the Nile Delta, gave birth to the next 1000 (or so) generations?

Of course, the Great Pyramids weren’t there yet. They were built abotu 4600 years ago.

Those women gave birth to two women about 2200 years ago whose mummified remains were found in the Pyramids at Giza. The associated paper described Egypt in this timeframe as a cultural crossroads which both suffered and benefitted from foreign trade, conquest and immigration from both the Greeks and Romans.

You can read more about burials from this timeframe in The Beautiful Burial in Roman Egypt, here. A crossroads is not exactly what I was expecting, but reading the papers is critically important in understanding the context of the remains. This book is but one of 70 references provided in the paper.

Some burials have already been excavated, and work continues in the expansive pyramid complex.

The Egyptian sun is unforgiving, but Giza eventually gives up her secrets. Will more distant cousins of the LeJeune sisters be discovered as burial chambers continue to be excavated?

We know little about the lives of the women interred at Giza, but the life of another Ancient Connection, Amina, strikes chords much closer to home.

Amina, an enslaved woman, is another descendant of that woman who lived 20,000 years ago. She too is related to the Giza mummies.

Amina was discovered in a previously unknown burial ground in downtown Charleston, SC, that held the remains of enslaved people who had been brought, shackled, from Africa to be sold. Amina’s remains convey her story – that she was kidnapped, forced into the Middle Passage, and miraculously survived. She succumbed around 1725 in Charleston, SC, near the wharf, probably where her prison ship docked.

Charleston was a seaport where more than a quarter million enslaved people disembarked at Gadsden’s Wharf, awaiting their fate on the auction block. The location where Amina’s burial was found is only about 1000 feet from the wharf and is now, appropriately, considered sacred ground. Ohhh, how I’d like to share this information with Amina.

A hundred years earlier, a different ancestor of that women who lived 20,000 years ago gave birth to the mother of the LeJeune sisters, someplace in France.

Moving further back in time, another distant cousin was unearthed at the Kostyonki–Borshchyovo archaeological complex near the Don River in Russia.

Photographed by Andreas Franzkowiak (User:Bullenwächter) – Archäologisches Museum Hamburg und Stadtmuseum Harburg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=58260865

Markina Gora is an incredibly famous location yielding both specimens included here, as well as this famous Venus figurine from the Gravettian culture, dating from about 27,000 years ago.

Bust of Kostenki 14 reconstructed from the burial.

The earliest of these hunter-gatherers in Europe, believed to be a small group of humans, interbred with Neanderthals. Kostenki 14 carried Neanderthal introgression dating back to about 54,000 years ago.

A layer of volcanic ash, thought to be from a volcano near Naples that erupted about 39,000 years ago, is found above the remains, speaking to events that our ancestors survived after this man lived.

I know we’ve traveled far back in history from the LeJeune sisters, but these ancient humans, the MRCA of each upstream haplogroup, are our ancestors, too.

What does all this mean?

At first glance, it’s easy to assume that all of the locations are relevant to our direct ancestors. Not only that, many people assume that all of these people ARE our ancestors. They aren’t.

Creating the Ancient Conenctions Chart should help you gain perspective about how these people are related to you, your ancestors, and each other.

Each individual person is connected to you and your ancestors in various ways – and their stories weave into yours.

Discover provides everyone has a mini-Timeline for each Ancient Connection. It’s easy to see that the tester, who tested in the modern era, since the year 1950, is not descended from El Agujaro 8, who lived in the 1300s and whose common (shared) haplogroup with the tester, U6a7a1, was born between 2100 BCE and 900 BCE, or between 4100 and 2900 years ago. The most probable date is about 3450 years ago.

The Timeline for each ancient sample includes:

  1. Your haplogroup’s mean birth year
  2. Ancient Connection’s birth year
  3. Ancient Connection’s haplogroup mean birth year, if different from the common haplogroup (in the example above, 3 and 4 are the same)
  4. Birth year of your common ancestor (MRCA), which is your common haplogroup

It’s easy to see the relevant information for each sample, but it’s not easy to visualize the trees together, so I’m creating a “rough” tree in Excel to help visualize the “big picture”, meaning all of the Ancient Connections.

How Do I Know Which Ancient Connections Even MIGHT Be My Ancestors and How We Are All Related?

That’s a great question and is exactly why I created this chart in an ancient haplogroup spreadsheet.

Click on any image to enlarge

In this chart, you can see the LeJeune sisters, in red, at the bottom, and their direct line hereditary haplogroups, in purple, descending from haplogroup U at the top.

Branching to the left and right from intersections with their purple hereditary haplogroups are other branches that the LeJeune sisters don’t share directly. However, the ancient remains that carry those haplogroups are “haplocousins” at a distant point in time, with our LeJeune sisters.

There only two burials that carry the same ancestral haplogroup as the LeJeune sisters:

  1. El Agujero 8, haplogroup U6a7a1 who lived in the Canary Islands in the year 1275
  2. Djebba 20825, who lived in Tunisia about 6,100 years ago

Clearly, Djebba, with a common haplogroup that lived about 21,000 years ago cannot be the ancestor of the LeJeune sisters, but they share a common ancestor. If Djebba was an ancestor of the LeJeune sisters, then Djebba would also descend from haplogroup U6a7, born about 20,600 years ago, like the LeJeune sisters do.

A cursory glance might suggest that since the sample, El Agujero 8 lived in the Canary Islands about 1275, haplogroup U6a7a1 was born there. However, if you read the papers associated with all of the samples found in the Canaries, Tunisia, Spain and other locations, you’ll discover that these populations moved back and forth across the Mediterranean. You’ll also discover that the earliest European haplogroup U samples found in Europe are believed to be the founders of haplogroup U in Europe. It’s possible that U6 dispersed into Italy and Spain, regions with significant exchange with North Africa.

It’s extremely unlikely that El Agujero 8, who lived about the year 1275 CE, was the ancestor of the LeJeune sisters, but it’s not entirely impossible. What’s more likely is that they descended from a common population that moved between Spain, the Canaries, and North Africa where other similar burials are found, like Tunisia. We know that Rome largely conquered France during the Gallic Wars (56-50 BCE), so it’s not terribly surprising that we find haplogroup U6a7a1 and descendants scattered throughout Europe, the Iberian peninsula, the Roman empire, and North Africa.

Sometime between the birth of haplogroup U6a7a1, about 3450 years ago, the descendants of that woman found their way both to France before the 1600s and also to the Canaries before 1275.

Takeaways from Ancient Connections

  • I recommend that you read the associated academic papers and publications that provide the Ancient Connections mitochondrial haplogroups. Those publications are chock full of important cultural information.
  • Globetrekker, which won’t be released until some time after the next release of the Mitotree, will help with tracking the path of your ancestors, especially where it’s complex and uncertain.
  • The “haplosisters” and “haplocousins” of the French LeJeune sisters are quite diverse, including Egyptian pyramid burials in Giza, a Muslim necropolis burial in Spain, a Viking in Sweden, indigenous Canary Islanders, a Tunisian site on the Northern-most tip of Africa, a Jewish burial in England, an enslaved woman in South Carolina, the Markina Gora site in Russia, caves in Austria, the Czech Republic, Belgium, Germany and Italy.
  • Ancient Connections are more than just interesting. On another genealogical line, I found a necropolis burial with my ancestor’s haplogroup located about 9 km from where my ancestor is believed to have lived, dating from just a few hundred years earlier.
  • FamilyTreeDNA adds more Ancient Connections weekly.

Resources

Notable Connections

Notable Connections are similar to Ancient Connections, except they are generally based on modern-day or relatively contemporary testers and associated genealogy. Some samples are included in both categories.

Three Notable Connections are included with the public version of Discover, and additional Notable Connections are provided, when available, for testers who click through from their account.

Some Notable Connections may be close enough in time to be useful for genealogy based on their haplogroup, their haplogroup history, and the tester’s history as well.

In this case, the closest two Notable Connections are both included in Ancient Connections, so we know that the rest won’t be closer in time.

The common ancestor, meaning common haplogroup, of Cheddar Man and the rest, reaches all the way back to haplogroup U, born about 45,000 years ago, so these particular Notable Connections can be considered “fun facts.”

However, if the first (closest) notable connection was a famous person who lived in France in the 1600s, and was the same or a close haplogroup, that could be VERY beneficial information.

Takeaways from Notable Connections

  • Mostly, Notable Connections are just for fun – a way to meet your haplocousins.
  • Notable Connections are a nice way to emphasize that we are all connected – it’s only a matter of how far back in time.
  • That said, based on the haplogroup, location and date, you may find Notable Connections that hold hints relevant to your ancestry.

Scientific Details

Scientific Details includes two pages: Age Estimates and Variants.

Scientific Details Age Estimates

Haplogroup ages are calculated using a molecular clock that estimates when the mutation defining a particular haplogroup first arose in a woman.

Since we can’t go back in time, test everyone, and count every single generation between then and now – scientists have to reconstruct the phylogenetic tree.

The more people who test, the more actual samples available to use to construct and refine the Mitotree.

The “mean” is the date calculated as the most likely haplogroup formation date.

The next most likely haplogroup formation range is the 68% band. As you can see, it’s closest to the center.

The 95% and 99% likelihood bands are most distant.

I know that 99% sounds “better” than 68%, but in this case, it isn’t. In fact, it’s just the opposite – 99% takes in the widest range, so it includes nearly all possibile dates, but the center of the range is the location most likely to be accurate.

The full certainty range is the entire 100% range, but is extremely broad. The mean is  the date I normally use, UNLESS WE ARE DEALING WITH CONTEMPORARY DATES.

For example, if the LeJeune sisters’ haplogroup was formed in 1550 CE at the mean, I’d be looking at the entire range. Do their approximate birth years of 1624 and 1633 fall into the 68% range, or the 95% range, and what are the years that define those ranges?

Scientific Details Variants

Next, click on the Variants tab.

To view your haplotype cluster, the F#, and your private variants, slide “Show private variants” at upper right above the black bar to “on.” This feature is only available for testers who sign in and click through to mtDNA Discover from their page.

The Variants tab provides lots of information, beginning with a summary of your:

  • Haplotype cluster F number, which I’ve blurred
  • Private variants, if any
  • End-of-branch haplogroup information

The most granular information is shown first.

Your haplotype cluster number is listed along with any private variants available to form a new haplogroup. In this case, there are no private variants for these haplotype cluster members. Every cluster is different.

Just beneath that, listed individually, are the variants, aka SNPs, aka mutations that identify each haplogroup. The haplogroup with the red square is yours.

Everyone in this haplogroup shares these two mutations: A2672G and T11929C. Because two variants define this haplogroup, it’s possible that one day it will split if future testers have one but not the other variant.

Information in the following columns provides details about each mutation. For example, the first mutation shown for haplogroup U6a7a1a is a transition type SNP mutation in the coding region, meaning it’s only reported in the full sequence test, where the A (Adenine) nucleotide, which is ancestral, mutated to a G (Guanine) nucleotide which is derived. This is essentially before (reference) and after (derived).

If you mouse over the Weight column, you’ll see a brief explanation of how each mutation is ranked. Essentially, rarer mutation types and locations are given more weight than common or less stable mutation types and/or locations.

Mutations with orange and red colors are less stable than green mutations.

Following this list from top to bottom essentially moves you back in time from the most recently born haplogroup, yours, to haplogroup L1”7, the first haplogroup in this line to branch from Mitochondrial Eve, our common ancestor who lived about 143,000 years ago in Africa.

View More

Clicking on the “View More” dropdown exposes additional information about the various types of mutations and Filtered Variants. Filtered Variants, in the current version of the Mitotree, are locations combined with specific mutation types that are excluded from branch formation.

Please note that this list may change from time to time as the tree is updated.

Takeaways from Scientific Details

  • Based on the Age Estimate for haplogroup U6a7a1a, it’s most likely to have formed about the year 29, but could have formed anytime between about 186 BCE and 230 CE. While this range may not be terribly relevant for older haplogroups, ranges are very important for haplogroups formed in a genealogical era.
  • People who are members of this example haplotype cluster do not have any private variants, so they are not candidates to receive a new haplogroup unless the upstream tree structure itself changes, which is always possible.
  • A significant amount of additional scientific information is available on these two tabs.
  • A list of locations currently excluded from haplogroup formation is displayed by clicking on the “View more” dropdown, along with information about various types of mutations. This list will probably change from time to time as the tree is refined.

Compare

Compare is a feature that allows you to compare two haplogroups side by side.

Let’s say we have an additional woman named LeJeune in Acadia, aside from Catherine and Edmee. As it happens, we do, and for a very long time, assumptions were made that these three women were all sisters.

Jeanne LeJeune dit Briard was born about 1659 and died after 1708. She is the daughter of unknown parents, but her father is purported to be Pierre LeJeune born about 1656, but there’s no conclusive evidence about any of that.

Jeanne LeJeune dit Briard married twice, first to Francois Joseph. Their daughter, Catherine Joseph’s marriage record in 1720 lists Jeanne, Catherine’s mother, as “of the Indian Nation.”

Several direct matrilineal descendants of Jeanne LeJeune dit Briard have joined the Acadian AmerIndian DNA Project, revealing her new Mitotree haplogroup as haplogroup A2f1a4+12092, which is Native American.

If Jeanne LeJeune dit Briard born about 1659, and Edmee and Catherine LeJeune, born about 1624 and 1633, respectively, are full or matrilineal half-siblings, their mitochondrial DNA haplogroups would match, or very closely if a new branch had formed in a descendant since they lived.

Let’s use the Compare feature to see if these two haplogroups are even remotely close to each other.

Click on “Compare.”

The first haplogroup is the one you’re searching from, and you’ll choose the one to compare to.

Click on “Search a haplogroup” and either select or type a haplogroup.

The two haplogroups are shown in the little pedigree chart. The origin dates of both haplogroups are shown, with their common shared ancestor (MRCA) positioned at the top. The most recent common, or shared, ancestor between Jeanne LeJeune dit Briard, who was “of the Indian Nation” and Catherine and Edmee LeJeune is haplogroup N+8701, a woman born about 53,000 years ago.

There is absolutely NO QUESTION that these three women DO NOT share the same mother.

Jeanne LeJeune dit Briard is matrilineally Native, and sisters Caterine and Edmee LeJeune are matrilineally European.

Takeaways from Compare

  • The MRCA between Jeanne LeJeune dit Briard and sisters, Edmee and Catherine LeJeune is about 53,000 years ago.
  • Jeanne was clearly not their full or maternal sister.
  • Compare provides an easy way to compare two haplogroups.

Suggested Projects

Projects at FamilyTreeDNA are run by volunteer project administrators. Some projects are publicly viewable, and some are not. Some project results pages are only visible to project members or are completely private, based on settings selected by the administrator.

When testers join projects, they can elect to include or exclude their results from the public project display pages, along with other options.

The “Suggested Projects” report in Discover provides a compilation of projects that others with the haplogroup you’re viewing have joined. Keep in mind that they might NOT have joined due to their mitochondrial DNA. They may have joined because of other genealogical lines.

While these projects aren’t actually “suggested”, per se, for you to join, they may be quite relevant. Viewing projects that other people with this haplogroup have joined can sometimes provide clues about the history of the haplogroup, or their ancestors, and therefore, your ancestors’ journey.

Remember, you (probably) won’t match everyone in your haplogroup on your matches page, or the Match Time Tree, so projects are another avenue to view information about the ancestors and locations of other people in this haplogroup. The projects themselves may provide clues. The haplogroup projects will be relevant to either your haplogroup, or a partial upstream haplogroup.

The haplogroup U6 project includes multiple U6 daughter haplogroups, not just U6a7a1a, and includes testers whose ancestors are from many locations.

The U6 project has labeled one group of 38 members the “Acadian cluster.” Of course, we find many descendants of Catherine and Edmee LeJeune here, along with testers who list their earliest known ancestor (EKA) as a non-Acadian woman from a different location.

The ancestors of Martha Hughes, who lived in Lynn, Massachusetts, and Mary Grant from Bathhurst, New Brunswick may well be descendants of Edmee or Catherine.

Or, perhaps they are a descendant of another person who might be a connection back to France. If you’re the Hughes or Grant tester, you may just have tested your way through a brick wall – and found your way to your LeJeune ancestors. If you’re a LeJeune descendant, you might have found a link through one of those women to France. Clearly, in either case, additional research is warranted.

For descendants of Catherine and Edmee, you’re looking for other testers, probably from France, whose ancestors are unknown or different from Edmee and Catherine. That doesn’t mean their genealogy is accurate, but it does merit investigation.

Check to see if someone with that EKA is on your match list, then check their tree.

For Catherine and Edmee LeJeune, other than Martha and Mary, above, there was only one EKA name of interest – a name of royalty born in 1606. However, research on Marie Bourbon shows that she was not the mother of the LeJeune sisters, so that tester is either incorrect, or confused about what was supposed to be entered in the EKA field – the earliest known direct matrilineal ancestor.

You may also find people in these projects who share your ancestor, but have not upgraded to the full sequence test. They will have a shorter version of the haplogroup – in this case, just U6a. If they are on your match list and their results are important to your research, you can reach out to them and ask if they will upgrade.

If you’re working on an ancestor whose mitochondrial DNA you don’t carry, you can contact the project administrator and ask them to contact that person, offering an upgrade.

Takeaways from Suggested Projects

  • Suggested Projects is a compilation of projects that other people with this haplogroup have joined. Haplogroup-specific projects will be relevant, but others may or may not be.
  • Testers may have joined other projects based on different lineages that are not related to their mitochondrial line.

We’re finished reviewing the 12 Discover reports, but we aren’t finished yet with the LeJeune analysis.

Another wonderful feature offered by FamilyTreeDNA is Advanced Matching, which allows you to search using combinations of tests and criteria. You’ll find Advanced Matching on your dashboard.

Advanced Matching

Advanced Matching, found under “Additional Tests and Tools,” is a matching tool for mitochondrial DNA and other tests that is often overlooked.

You select any combination of tests to view people who match you on ALL of the combined tests or criteria.

Be sure to select “yes” for “show only people I match in all selected tests,” which means BOTH tests. Let’s say you match 10 people on both the mitochondrial DNA and Family Finder tests. By selecting “Yes,” you’ll see only those 10 people. Otherwise you’ll get the list of everyone who matches you on both tests individually. If you have 100 mitochondrial matches, and 2000 autosomal matches, you’ll see all 2100 people – which is not at all what you want. You wanted ONLY the people who match you on both tests – so be sure to select “yes.”

The combination of the FMS, full sequence test, plus Family Finder displays just the people you match on both tests – but keep in mind that it’s certainly possible that you match those people because of different ancestors. This does NOT mean you match on both tests thanks to the LeJeune sisters. You could match another tester because of a different Acadian, or other, ancestor.

This is especially true in endogamous populations, or groups, like the Acadians, with a significant degree of pedigree collapse.

Advanced Matching Tip

You can also select to match within specific projects. This may be especially useful for people who don’t carry the mitochondrial DNA of the LeJeune sisters, but descend from them.

Switching to my own test, I’ve selected Family Finder, and the Acadian AmerIndian Project, which means I’ll see everyone who matches me on the Family Finder test AND is a member of that project.

Given that I’ve already identified the haplogroup of Catherine LeJeune, I can use known haplogroups to filter autosomal matches, especially in focused projects such as the Acadian AmerIndian Project. This helps immensely to identify at least one way you’re related to other testers.

By clicking on the match’s name, I can see their EKA information. By clicking on their trees, I can verify the ancestral line of descent.

Of course, in Acadian genealogy, I’m probably related to these cousins through more than one ancestor, but using Advanced Matching, then sorting by haplogroup is a great way to identify at least one common ancestor!

Takeaways from Advanced Matching

  • Advanced Matching is a wonderful tool, but make sure you’re using it correctly. Click “Yes” to “Show only people I match in all selected tests.” Please note that if you select all three levels of mtDNA test, and you don’t match at the HVR1 level due to a mutation, that person won’t be shown as a match because you don’t match them on all test levels selected. I only select “FMS” and then my second test.
  • You may match someone on either Y-DNA or mitochondrial DNA and the autosomal Family Finder through different ancestral lines.
  • Advanced Matching is a great way to see who you match within a project of specific interest – like the Acadian AmerIndian Project for the LeJeune sisters.
  • You will match people outside of projects, so don’t limit your analysis.

Drum Roll – LeJeune Analysis

It’s finally time to wrap up our analysis.

The original questions we wanted to answer were:

  • Were Edmee and Catherine LeJeune actually sisters?
  • Was their mother Native American?
  • Was the third woman, Jeanne LeJeune dit Briard, also their sister?
  • Are there any other surprises we need to know about?

We now have answers, so let’s review our evidence.

  • Based on the haplogroup of Edmee and Catherine LeJeune both, U6a7a1a, which is clearly NOT of Native American origin, we can conclude that they are NOT Native American through their matrilineal side.
  • Native American haplogroups are subsets of five base haplogroups, and U is not one of them.

There’s other information to be gleaned as well.

  • Based on the haplogroup of Jeanne LeJeune dit Briard, A2f1a4+12092, plus her daughter’s marriage record, we can conclude that (at least) her mother was Native American.
  • Based on Jeanne’s Native American haplogroup alone, we can conclude that she is not the full sister of the Catherine and Edmee LeJeune.
  • Based on Jeanne’s birth date, about 1659, it’s clear that she cannot be the full sibling of Catherine born about 1633, and Edmee LeJeune, born about 1624, and was probably a generation too late to be their paternal half sister. Later lack of dispensations also suggests that they were not half-siblings.
  • Based on the known Acadian history, confirmed by contemporaneous records, we can state conclusively that Edmee LeJeune was born in France and Catherine probably was as well. The first Acadian settlement did not occur until 1632, and the first known families arrived in 1636.
  • Based on the fact that Catherine and Edmee’s haplogroups match, and many of their descendants’ mitochondrial DNA matches exactly, combined with later dispensations, we can conclude that Catherine and Edmee were sisters.
  • We can conclusively determine that Catherine and Edmee were NOT Native on their matrilineal side, and given that they were born in France, their father would have been European as well. However, we cannot determine whether their descendants married someone who was either Native or partially Native.
  • We know that information for partial haplogroup U6a, provided for HVR1 and HVR1+HVR2-only testers is not necessarily relevant for full sequence haplogroup U6a7a1a.
  • The recent Mitotree release has moved the haplogroup “dates” for the LeJeune sisters from about 21,000 years ago for HVR1/HVR2 U6a testers to 50 CE for full sequence testers,. These dates may well be refined in future tree releases.
  • Having multiple testers has provided us with an avenue to garner a massive amount of information about the LeJeune sisters, in spite of the fact that their haplogroup was born about 50 CE.
  • The LeJeune sisters are related to, but not descended from many very interesting Ancient Connections. Using our Ancient Connections spreadsheet, we can rule out all but one Ancient Connection as being a direct ancestor of the LeJeune sisters, but they are all “haplocousins,” and share common ancestors with the sisters.
  • While we cannot rule out the genetically closest Ancient Connection, El Agujero 8, who lived about 1275 CE in the Canary Islands as their direct ancestor, it’s very unlikely. It’s more probable that they share a common ancestor in haplogroup U6a7a1 who lived about 3450 years ago, whose descendants spread both into France by the 1600s and the Canary Islands by the 1200s.

By now, you’re probably thinking to yourself that you know more about my ancestors than your own. The good news is that mitochodnrial DNA testing and mtDNA Discover is available for everyone – so you can learn as much or more about your own ancestors.

Spread Encouragement – Be a Positive Nellie!

Unfortunately, sometimes people are discouraged from mitochondrial DNA testing because they are told that mitochondrial haplogroups are “too old,” and matches “are too distant.” Remember that the MRCA of any two people, or groups of people is sometime between the haplogroup formation date, and the current generation – and that’s the information we seek for genealogy.

Furthermore, it’s those distant matches, beyond the reach of autosomal matching, that we need to break down many brick walls – especially for female ancstors. I offer testing scholarships for ancestors whose mitochondrial DNA is not yet represented. It’s information I can’t obtain any other way, and I’ve broken through many brick walls!

We don’t know what we don’t know, and we’ll never know unless we take the test.

Imagine how much could be gained and how many brick walls would fall if everyone who has tested their autosomal DNA would also take a mitochondrial DNA test.

Which ancestors mitochodrial DNA do you need? The best place to start is with your own, plus your father’s, which gives you both grandmother’s mtDNA and directly up those lines until you hit that brick wall that needs to fall.

Additional Resources

Roberta’s Books:

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the affiliate links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Discover’s Ancient Connections – How Are You Related?

When FamilyTreeDNA released the new Mitotree, they also introduced their new mtDNA Discover tool, which is a series of 13 reports about each haplogroup, including one titled Ancient Connections.

Ancient Connections shows you ancient relatives from your direct matrilineal line through a mitochondrial DNA test or through a Y-DNA (preferably Big Y-700) test.

Ancient Connections help you connect the present to the past based on archaeological excavations around the world and DNA sequencing of remains. Ancient Connections links you through your DNA to ancient people, cultures, and civilizations that would be impossible to discover any other way. You don’t have to wonder if it’s accurate, or which line it came from, because you know based on the test you took. Discover’s Ancient Connections track the journey of your ancestors and relatives.

Ancient Connections can be very exciting – and it’s easy to get swept away on a wave of jubilation.

Are those people your ancestors, or relatives, or what? How do you know? How can you figure it out?

So let me just answer that question generally before we step through the examples, so you can unveil your own connections.

  • You are RELATED to both Ancient and Notable Connections. Notable Connections are famous or infamous people who have lived more recently, and their relatives have been tested to identify their haplogroups.
  • It’s VERY unlikely that Ancient Connections are your direct ancestors – but someone in the line that you share IS your ancestor.
  • Many factors enter into the equation of how you are related, such as the haplogroup(s), the timeframe, and the location.
  • The sheer number of people who were living at any specific time makes it very unlikely that any one person with that haplogroup actually was your direct ancestor. They are much more likely to be your distant cousin.

Factors such as whether you share the same haplogroup, similar locations, and the timeframe make a huge difference. Everyone’s situation is different with each Ancient Connection.

Ok, are you ready for some fun???

Let’s find out how to leverage these tools.

Ancient Connections

Ancient connections are fun and can also be quite useful for genealogy.

In this article, I’m going to use a mitochondrial DNA example because full sequence testers at FamilyTreeDNA just received their new Mitotree haplogroup. mtDNA Discover was released with Mitotree, so it’s new too. However, the evaluation process is exactly the same for Y-DNA.

Everyone’s results are unique, so your mileage absolutely WILL vary. What we are going to learn here is a step-by-step analytical process to make sure you’re hearing the message from your ancestors – and interpreting it correctly.

To learn about your new mitochondrial DNA haplogroup and haplotype, read the articles:

Radegonde Lambert

Let’s start with an Acadian woman by the name of Radegonde Lambert. She’s my ancestor, and I wrote about her years ago in the article, Radegonde Lambert (1621/1629-1686/1693), European, Not Native.

At the time, that article caused a bit of a kerfluffle, along with the article, Haplogroup X2b4 is European, Not Native American, because Radegonde’s X2b4 haplogroup had been interpreted by some to mean that her matrilineal ancestors were Native American.

That often happens when a genealogical line abruptly ends and hits a brick wall. What probably began with “I wonder if…”, eventually morphed into “she was Native,” when, in fact, she was not. In Radegonde’s case, it didn’t help any that her haplogroup was X2b4, and some branches of base haplogroup X2 are in fact Native, specifically X2a, However, all branches of X2 are NOT Native, and X2b, which includes X2b4, is not.

The Acadians were French people who established a colony in what is now Nova Scotia in the 1600s. They did sometimes intermarry with the Native people, so either Native or European heritage is always a possibility, and that is exactly why DNA testing is critically important. Let’s just say we’ve had more than one surprise.

I always reevaluate my own work when new data becomes available, so let’s look to see what’s happening with Radegonde Lambert now, with her new haplogroup and mtDNA Discover.

Sign on and Identify Your Haplogroup

You can follow along here, or sign on to your account at FamilyTreeDNA.

The first step is to take note of your new Mitotree haplogroup.

Your haplogroup badge is located near the bottom right of your page after signing in.

The tester who represents Radegonde Lambert has a Legacy Haplogroup of X2b4 and has been assigned a new Mitotree haplogroup of X2b4g.

Click Through to Discover

To view your personal Discover information, click on the Discover link on your dashboard.

You can simply enter a haplogroup in the free version of mtDNA Discover, but customers receive the same categories, but significantly more information if they sign in and click through.

You can follow along on the free version of Discover for haplogroups X2b4 here, and X2b4g here.

Clicking on either the Time Tree, or the Classic Tree shows that a LOT has changed with the Mitotree update.

Each tree has its purpose. Let’s look at the Classic Tree first.

The Classic Tree

I like the Classic Tree because it’s compact, detailed and concise, all in one. Radegonde Lambert’s new haplogroup, X2b4g is a subgroup of X2b4, so let’s start there.

Click on any image to enlarge

Under haplogroup X2b4, several countries are listed, including France. There are also 7 haplotype clusters, which tell you that those testers within the cluster all match each other exactly.

It’s worth noting that the little trowels (which I thought were shovels all along) indicate ancient samples obtained from archaeological digs. In the Discover tools, you’ll find them under Ancient Connections for that haplogroup. We will review those in a minute.

In Mitotree, haplogroup X2b4 has now branched several granular and more specific sub-haplogroups.

Radegonde Lambert’s new haplogroup falls below another new haplogroup, X2b4d’g, which means that haplogroup X2b4d’g is now the parent haplogroup of both haplogroups X2b4d and X2b4g. Both fall below X2b4d’g.

Haplogroup names that include an apostrophe mean it’s an umbrella group from which the two haplogroups descend – in this case, both X2b4d and X2b4g. Apostrophe haplogroups like X2b4d’g are sometimes referred to as Inner Haplogroups.

You can read more about how to understand your haplogroup name, here.

In this case, haplogroup X2b4d’g is defined by mutation G16145A, which is found in both haplogroups X2b4d and X2b4g. Both of those haplogroup have their own defining mutations in addition to G16145A, which caused two branches to form beneath X2b4d’g.

You can see that Radegonde Lambert’s haplogroup X2b4g is defined by mutation C16301T, but right now, that really doesn’t matter for what we’re trying to accomplish.

In descending order, for Radegonde, we have haplogroups:

  • X2b4
  • X2b4d’g
  • X2b4g

Your Match Page

Looking at the tester’s match page, Radegonde’s haplotype cluster number and information about the cluster are found below the haplogroup. You can view your cluster number on:

  • Your match page
  • The Match Time Tree beside your name and those of your matches in the same haplotype cluster
  • The Scientific Details – Variants page

I wrote about haplotype clusters, here.

Click on any image to enlarge

On your match page, which is where most people look first, you are in the same haplogroup and haplotype cluster with anyone whose circle is also checked and is blue. If the little circles are not checked and blue, you don’t share either that haplogroup, haplotype cluster, or haplogroup and haplotype cluster. If you share a haplotype cluster, you will always share the same haplogroup.

Haplotype clusters are important because cluster members match on exactly the same (but less stable) mutations IN ADDITION to haplogroup-defining (more stable) mutations.

However, you may also share an identifiable ancestor with people in different haplotype clusters. Mutations, and back mutations happen – and a lot more often at some mutation locations, which is why they are considered less stable. Normally, though, your own haplotype cluster will hold your closest genealogical matches.

In Discover, you can see that Radegonde’s haplotype cluster, F585777, displays three tester-supplied countries, plus two more. Click on the little plus to expand the countries.

What you’re viewing are the Earliest Known Ancestor (EKA) countries that testers have entered for their direct matrilineal ancestor.

Let’s hope they understood the instructions, and their genealogy information was accurate.

Notice that Canada and France are both probably quite accurate for Radegonde, based on the known history of the Acadians. There were only French and Native women living in Nova Scotia in the 1600s, so Radegonde had to be one or the other.

The US may be accurate for a different tester whose earliest known ancestor (EKA) may have been found in, say, Louisiana. Perhaps that person has hit a brick wall in the US, and that’s all they know.

The US Native American flag is probably attributable to the old “Native” rumor about Radegonde, and the tester didn’t find the Canadian First Nations flag in the “Country of Origin” dropdown list. Perhaps that person has since realized that Radegonde was not Native and never thought to change their EKA designation.

The little globe with “Unknown Origins” is displayed when the tester doesn’t select anything in the “Country of Origin.”

Unfortunately, this person, who knew when Radegonde Lambert lived, did not complete any additional information, and checked the “I don’t know this information” box. Either Canada, or France would have been accurate under the circumstances. If they had tracked Radegonde back to Canada and read about her history, they knew she lived in Canada, was Acadian, and therefore French if she was not Native. Providing location information helps other testers, whose information, in turn, helps you.

Please check your EKA, and if you have learned something new, PLEASE UPDATE YOUR INFORMATION by clicking on the down arrow by your user name in the upper right hand corner, then Account Settings, then Genealogy, then Earliest Known Ancestors.

Don’t hesitate to email your matches and ask them to do the same. You may discover that you have information to share as well. Collaboration is key.

Radegonde’s Discover Haplogroup

First, let’s take a look at Radegonde’s haplogroup, X2b4g, in Discover.

The Discover Haplogroup Story landing page for haplogroup X2b4g provides a good overview. Please READ this page for your own haplogroup, including the little information boxes.

The history of Radegonde’s haplogroup, X2b4g, is her history as well. It’s not just a distant concept, but the history of a woman who is the ancestor of everyone in that haplogroup, but long before surnames. Haplogroups are the only way to lift and peer behind the veil of time to see who our ancestors were, where they lived, and the cultures they were a part of.

We can see that Radegonde’s haplogroup, X2b4g, was born in a woman who lived about 300 CE, Common (or Current) Era, meaning roughly the year 300, which is 1700 years ago, or 1300 years before Radegonde lived.

  • This means that the tester shares a common ancestor with everyone, including any X2b4g remains, between now and the year 300 when haplogroup X2b4g was born.
  • This means that everyone who shares haplogroup X2b4g has the same common female ancestor, in whom the mutation that defines haplogroup X2b4g originated. That woman, the common ancestor of everyone in haplogroup X2b4g, lived about the year 300, or 1700 years ago.
  • Your common ancestor with any one individual in this haplogroup can have lived ANYTIME between very recently (like your Mom) and the date of your haplogroup formation.
  • Many people misinterpret the haplogroup formation date to mean that’s the date of the MRCA, or most recent common ancestor, of any two people. It’s not, the haplogroup formation date is the date when everyone, all people, in the haplogroup shared ONE ancestor.
  • The MRCA, or most recent common ancestor, is your closest ancestor in this line with any one person, and the TMRCA is the “time to most recent common ancestor.” It could be your mother, or if your matrilineal first cousin tested, your MRCA is your grandmother, and the TMRCA is when your grandmother was born – not hundreds or thousands of years ago.
  • Don’t discount mitochondrial DNA testing by thinking that your common ancestor with your matches (MRCA) won’t be found before the haplogroup birth date – the year 300 in Radegonde’s case. The TMRCA for all of Radegonde’s descendants is about 1621 when she was born.
  • The haplogroup birth date, 1700 years ago, is the common ancestor for EVERYONE in the haplogroup, taken together.
  • Mitochondrial DNA is useful for BOTH recent genealogy and also reveals more distant ancestors.
  • Looking back in time helps us understand where Radegonde’s ancestors lived, which cultures they were part of, and where.

There are two ways to achieve that: Radegonde’s upstream or parent haplogroups, and Ancient Connections.

Parent Haplogroups

X2b4g split from X2b4d’g, the parent haplogroup of BOTH X2b4d and X2b4g, around 3700 years ago, or about 1700 BCE (Before Common (or Current) Era).

Looking at either the Classic Tree, the Time Tree (above) or the Match Time Tree, you can see that haplogroup X2b4g has many testers, and none provide any locations other than France, Canada, the US, unknown, and one Native in the midst of a large haplotype cluster comprised of French and Canadian locations. Due to the size of the cluster, it’s only partially displayed in the screen capture above.

You can also see that sister haplogroup X2b4d split from X2b4d’g around the year 1000, and the ancestors of those two testers are reported in Norway.

Many, but not all of the X2b4g testers are descendants of Radegonde. Even if everyone is wrong and Radegonde is not French, that doesn’t explain the other matches, nor how X2b4g’s sister haplogroup is found in Norway.

Clearly, Radegonde isn’t Native, but there’s still more evidence to consider.

Let’s dig a little deeper using Radegonde’s Ancient Connections.

Ancient Connections

While ancestor and location information are user-provided, Ancient Connections are curated from scientifically published papers. There’s no question about where those remains were found.

When signed in to your account, if you’ve taken the mtFull Sequence test, clicking on the Ancient Connections tab in Discover shows a maximum of around 30 Ancient Connections. If you’re viewing the free version of Discover, or you’ve only tested at the HVR1 or HVR1+HVR2 levels, you’ll see two of your closer and one of your most distant Ancient Connections. It’s easy to upgrade to the mtFull.

In Discover, the first group of Ancient Connections are genetically closest to you in time, and the last connections will be your most distant. Some connections may be quite rare and are noted as such.

Please keep in mind that oldest, in this case, Denisova 8 and Sima de los Huesos, will never roll off your list. However, as new studies are released and the results are added to the tree, you may well receive new, closer matches. New results are being added with each Discover update.

It’s very exciting to see your Ancient Connections, but I need to say three things, loudly.

  1. Do NOT jump to conclusions.
  2. These remains are probably NOT YOUR ANCESTORS, but definitely ARE your distant cousins.
  3. Ancient Connections ARE wonderful hints, especially when taken together with each other and additional information.

It’s VERY easy to misinterpret Ancient Connections because you’re excited. I’ve done exactly that. To keep the assumption monster from rearing its ugly head, I have to take a breath and ask myself a specific set of questions. I step through the logical analysis process that I’m sharing with you.

The first thing I always want to know is where the genetically closest set of remains was found, when, and what we know about them, so let’s start there. Keep in mind that the closest remains genetically may not be the most recent set of remains to have lived. For example, my own haplogroup will be the closest genetically, but that person may have lived 2000 years ago. An Ancient Connection in a more distant haplogroup may have lived only 1000 years ago. The closest person genetically is NOT the same as the person who lived the most recently.

Our tester, Radegonde’s descendant, has no Ancient Connections in haplogroup X2b4g or X2b4d’g, but does have two in haplogroup X2b4, so let’s start there.

Discover provides a substantial amount of information about each set of ancient remains. Click on the results you want to view, and the information appears below.

Radegonde’s first Ancient Connection is Carrowkeel 534. The graphic shows the tester, the Ancient Connection being viewed, and their shared ancestor’s haplogroup. In this case, the shared ancestor haplogroup of Carrowkeel 534 and the tester is X2b4, who lived about 5000 years ago.

It’s very easy to look at Carrowkeel 534, become smitten, and assume that this person was your ancestor.

By Shane Finan – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35098411

It’s especially easy if you WANT that person to be your ancestor. Carrowkeel 534 was buried in a passage tomb in County Sligo, Ireland. I’ve been there.

However, don’t let your emotions get involved – at least not yet.

This is the first example of the steps that determine that these remains are NOT YOUR ANCESTOR.

  • Carrowkeel 534 was a male, and we all know that males do not pass on their mitochondrial DNA. Well, that’s an inconvenient fact.😊
  • There are two sets of X2b4 remains in Ancient Connections. Carrowkeel 534 remains are about 4600-5000 years old, and your common ancestor with them lived about 5000 years ago. However, Radegonde was French and migration from Ireland to France is not typical.
  • The other set of X2b4 remains, Ladoga 16, lived more recently, between the years of 900 and 1200 (or 800-1100 years ago), but they are found in Russia.
  • Radegonde’s parent haplogroup, X2b4d’g was born about 3700 years ago, which excludes the Russian remains from being Radegonde’s direct ancestor.
  • Radegonde’s common ancestor with both these sets of remains lived about 5000 years ago, but these remains were not found even close to each other.

In fact, these remains, if walking, are about 3299 km (2049 miles) apart, including two major water crossings.

  • Given that Radegonde is probably French, finding her ancestor around 5000 years ago in an Irish passage tomb in County Sligo, or in a location east of St. Petersburg, is extremely unlikely.

What IS likely, though, is that X2b4d’g descendants of your common ancestor with both sets of remains, 5000 years ago, went in multiple directions, meaning:

  • Radegonde’s ancestor found their way to France and along the way incurred the mutations that define X2b4d’g and X2b4g by the year 1600 when she lived, or about four hundred years ago.
  • Another X2b4 descendant found their way to what is today Ireland between 4600 and 5000 years ago
  • A third X2b4 descendant found their way to Russia between 800-1100 years ago, and 5000 years ago

If any question remains about the genesis of Radegonde’s ancestors being Native, Ancient Connections disproves it – BUT – there’s still an opportunity for misunderstanding, which we’ll see in a few minutes.

Ancient Connections Analysis Chart

I’ve created an analysis chart, so that I can explain the findings in a logical way.

Legend:

  • Hap = Haplogroup
  • M=male
  • F=female
  • U=unknown

Please note that ancient samples are often degraded and can be missing important mutations. In other words, the tree placement may be less specific for ancient samples. Every ancient sample is reviewed by FamilyTreeDNA’s genetic anthropologist before it’s placed on the tree.

Ancient samples use carbon dating to determine ages. Sometimes, the carbon date and the calculated haplogroup age are slightly “off.” The haplogroup age is a scientific calculation based on a genetic clock and is not based on either genealogy or ancient burials. The haplogroup age may change as the tree matures and more branches are discovered.

I’m dividing this chart into sections because I want to analyze the findings between groups.

The first entry is the earliest known ancestor of the current lineage – Radegonde Lambert, who was born about 1621, or roughly 400 years ago. I’ve translated all of the years into “years ago” to avoid any confusion.

If you wish to do the same, with CE (Current or Common Era) dates, subtract the date from 2000. 300 CE= (2000-300) or1700 years ago. With BCE dates, add 2000 to the BCE number. 1000 BCE= (1000+2000) or 3000 years ago.

Connection Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada -Acadian X2b4g 1700 X2b4 5000
Carrowkeel 534 (M) 4600-5100 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
  • Age Years Ago – When the Ancient Connection lived
  • Hap Age Years Ago – When the haplogroup of the Ancient Connection (X2b4) originated, meaning was born
  • Shared Hap Age Years Ago – When the Shared Ancestor of everyone in the Shared Haplogroup originated (was born)

In this first section, the haplogroup of the Ancient Connections and the Shared Haplogroup is the same, but that won’t be the case in the following sections. Radegonde Lambert’s haplogroup is different than her shared haplogroup with the Ancient Connections.

Let’s assume we are starting from scratch with Radegonde.

The first question we wanted to answer is whether or not Radegonde is European, presumably French like the rest of the Acadians, or if she was Native. That’s easy and quick.

Native people crossed Beringia, arriving from Asia someplace between 12,000 and 25,000 years ago in multiple waves of migration that spread throughout both North and South America.

Therefore, given that the first two samples, Carrowkeel 534 and Ladoga 16, share haplogroup X2b4, an upstream haplogroup with Radegonde Lambert, and haplogroup X2b4 was formed around 5000 years ago, the answer is that Radegonde’s X2b4 ancestor, whoever that was, clearly lived in Europe, NOT the Americas.

According to Discover, Haplogroup X2b4:

  • Was formed about 5000 years ago
  • Has 16 descendant haplogroups
  • Has 29 unnamed lineages (haplotype clusters or individuals with no match)
  • Includes testers whose ancestors are from 23 countries

The Country Frequency map shows the distribution of X2b4, including all descendant haplogroups. Please note that the percentages given are for X2b4 as a percentage of ALL haplogroups found in each colored country. Don’t be misled by the relative physical size of the US and Canada as compared to Europe.

The table view shows the total number of self-identified locations of the ancestors of people in haplogroup X2b4 and all downstream haplogroups.

The Classic Tree that we looked at earlier provides a quick view of X2b4, each descendant haplogroup and haplotype cluster, and every country provided by the 331 X2b4 testers.

For the X2b4 Ancient Connections, we’ve already determined:

  • That Radegonde’s ancestors were not Native
  • Carrowkeel 534 is a male and cannot be Radegonde’s ancestor. It’s extremely likely that Carrowkeel 534’s mother is not Radegonda’s ancestor either, based on several factors, including location.
  • Based on dates of when Ladoga 16 lived, and because he’s a male, he cannot be the ancestor of Radegonde Lambert.

Radegonda’s haplogroup was formed long before Ladoga 16 lived. Each Ancient Connection has this comparative Time Tree if you scroll down below the text.

  • Both Carrowkeel and Ladoga share an ancestor with our tester, and Radegonde, about 5000 years ago.

Think about how many descendants the X2b4 ancestor probably had over the next hundreds to thousands of years.

  • We know one thing for sure, absolutely, positively – X2b4 testers and descendant haplogroups live in 32 countries. People migrate – and with them, their haplogroups.

What can we learn about the genealogy and history of Radegonde Lambert and her ancestors?

We find the same haplogroup in multiple populations or cultures, at different times and in multiple places. Country boundaries are political and fluid. What we are looking for are patterns, or sometimes, negative proof, which is often possible at the continental level.

X2b4, excluding downstream haplogroups, is found in the following locations:

  • Bulgaria
  • Canada (2)
  • Czech Republic
  • England (2)
  • Finland (2)
  • France (3)
  • Germany (4)
  • Portugal
  • Scotland (2)
  • Slovakia (2)
  • Sweden (2)
  • UK (2)
  • Unknown (11)
  • US (2)

Note that there are three people in France with haplogroup X2b4 but no more refined haplogroup.

Looking at X2b4’s downstream haplogroups with representation in France, we find:

  • X2b4a (none)
  • X2b4b (none)
  • X2b4b1 (1)
  • X2b4d’g (none)
  • X2b4d (none)
  • X2b4g (24) – many from Radegonde’s line
  • X2b4e and subgroups (none)
  • X2b4f (none)
  • X2b4j and subgroups (none)
  • X2b4k (none)
  • X2b4l (1)
  • X2b4m (none)
  • X2b4n and subgroups (none)
  • X2b4o (none)
  • X2b4p (none)
  • X2b4r (none)
  • X2b4+16311 (none)

I was hoping that there would be an Ancient Connection for X2b4, X2b4d’g, or X2b4g someplace in or even near France – because that makes logical sense if Radegonde is from France.

All I can say is “not yet,” but new ancient sites are being excavated and papers are being released all the time.

Ok, so moving back in time, let’s see what else we can determine from the next set of Ancient Connections. Haplogroup X2b1”64 was formed about 5050 years ago.

Connection Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050 years ago
Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050

Our first group ended with haplogroup X2b4, and our second group consists of haplogroup X2b1”64, the parent haplogroup of X2b4. X2b1”64 is a significantly larger haplogroup with many downstream branches found throughout Europe, parts of western Asia, the Levant, India, and New Zealand (which probably reflects a colonial era settler). The Country Frequency Map and Table are found here.

X2b1”64 is just slightly older than X2b4, but it’s much more widespread, even though they were born about the same time. Keep in mind that haplogroup origination dates shift as the tree is developed.

  • These seven individuals who share X2b1”64 as their haplogroup could be related to each other individually, meaning their MRCA, anytime between when they lived and when their haplogroup was formed.
  • The entire group of individuals all share the same haplogroup, so they all descend from the one woman who formed X2b1”64 about 5050 years ago. She is the shared ancestor of everyone in the haplogroup.

One X2b4 and one X2b1”64 individual are found in the same archaeological site in Russia. Their common ancestor would have lived between the time they both lived, about 800 years ago, to about 5000 years ago. It’s also possible that one of the samples could be incomplete.

A second X2b1”64 Ancient Connection is found in the Court Tomb in County Clare, Ireland, not far from the Carrowkeel 534 X2b4 site.

However, Monte Sirai is fascinating, in part because it’s not found near any other site. Monte Sirai is found all the way across France, on an island in the Tyrrhenian Sea.

It may be located “across France” today, but we don’t know that the Phoenician Monte Sirai site is connected with the Irish sites. We can’t assume that the Irish individuals arrived as descendants of the Monte Sirai people, even though it would conveniently fit our narrative – crossing France. Of course, today’s path includes ferries, which didn’t exist then, so if that trip across France did happen, it could well have taken a completely different path. We simply don’t know and there are very few samples available.

Three Ancient Connections are found in the Rössberga site in Sweden and another in  Denmark.

Adding all of the Ancient sites so far onto the map, it looks like we have two clusters, one in the northern latitudes, including Denmark, Sweden, and Russia, and one in Ireland with passage burials, plus one single Connection in Monte Sirai.

If I were to approximate a central location between all three, that might be someplace in Germany or maybe further east. But remember, this is 5000 years ago and our number of samples, as compared to the population living at the time is EXTREMELY LIMITED.

Let’s move on to the next group of Ancient Connections, who have different haplogroups but are all a subset of haplogroup X2.

Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050
Ross Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050
Barcin 31 (M) 8236-8417 Derekoy, Turkey – Neolithic Anatolia Ceramic X2m2’5’7^ 9200 X2b”aq 13,000
Abasar 55 (M) 500-800 Abasár Bolt-tető, Abasar, Hungary – Medieval Hungary X2m1e 5350 X2b”aq 13,000
Gerdrup 214 3779-3889 Gerdrup, Sealand, Denmark – Middle Bronze Age X2c1 3400 X2+225 13,000
Sweden Skara 275 800-1100 Varnhem, Skara, Sweden – Viking Sweden X2c1 3400 X2+225 13,000
Kopparsvik 225 950-1100 Gotland, Sweden – Viking Sweden X2z 5650 X2+225 13,000
Sandomierz 494 900-1100 Sandomierz, Poland – Viking Poland X2c2b 1650 X2+225 13,000
Kennewick man 8390-9250 Kennewick, Washington – Native American X2a2’3’4^ 10,450 X2 13,000
Roopkund 39 80-306 Roopkund Lake, Uttarakhand, India – Historical India X2d 13,000 X2 13,000

The next several Ancient Connections have haplogroups that are a subgroup of haplogroup X2. These people lived sometime between 500 years ago in Hungary, and 8390-9250 years ago when Kennewick Man lived in the present-day state of Washington in the US. Kennewick Man merits his own discussion, so let’s set him aside briefly while we discuss the others.

The important information to be gleaned here isn’t when these people lived, but when Radegonde shared a common ancestor with each of them. The shared haplogroup with all of these individuals was born about 13,000 years ago.

Looking at the map again, and omitting both X2 samples, we can see that the descendants of that shared ancestor 13,000 years ago are found more widely dispersed.

Including these additional burials on our map, it looks like we have a rather large Swedish and Viking cluster, where several of the older burials occurred prior to the Viking culture. We have a Southeastern Europe cluster, our two Irish tomb burials, and our remaining single Monte Sirai Phoenician burial on the island of Sardinia.

Stepping back one more haplogroup to X2, which was born about the same time, we add a burial in India, and Kennewick Man.

The Migration Map

The Migration map in Discover provides two different features.

  • The first is the literal migration map for the various ancestral haplogroups as they migrated out of Africa, if in fact yours did, culminating in your base haplogroup. In this case, the base haplogroup is X2, which is shown with the little red circle placed by FamilyTreeDNA. I’ve added the red squares, text and arrows for emphasis.
  • The second feature is the mapped Ancient Connections, shown with little brown trowels. Clicking on each one opens a popup box.

After haplogroup X2 was formed, it split into haplogroups X2a and X2b.

The X2a group, Kennewick Man’s ancestors, made their way eastward, across eastern Russia to Beringia where they crossed into the Americas.

They either crossed Beringia, follow the Pacific coastline, or both, eventually making their way inland, probably along the Hood River, to where Kennewick Man was found some 2,800 years later on the banks of the Kennewick River.

The X2b group made their way westward, across western Europe to a location, probably France, where Radegonde Lamberts’ ancestors lived, and where Radegonde set sail for Nova Scotia.

After being separated for nearly 13,000 years, the descendants of the single woman who founded haplogroup X2 and lived someplace in central Asia around 13,000 years ago would find themselves on opposite coasts of the same continent.

So, no, Radegonde Lambert was not Native American, but her 600th matrilineal cousin or so, Kennewick Man, absolutely was.

Radegonde Lambert and Kennewick Man

Here’s where confirmation bias can rear its ugly head. If you’re just scanning the Ancient Connections and see Kennewick Man, it would be easy to jump to conclusions, leap for joy, slap a stamp of “confirmed Native American” on Radegonde Lambert, and never look further. And if one were to do that, they would be wrong.

Let’s work through our evaluation process using Discover.

Radegonde Lambert and Kinnewick Man, an early Native American man whose remains were found Kennewick, Washington in 1996, are both members of the broader haplogroup X2. Kennewick Man lived between 8290 and 9350 years ago, and their shared ancestor lived about 13,000 years ago – in Asia, where mitochondrial haplogroup X2 originated. This is the perfect example of one descendant line of a haplogroup, X2 in this case, going in one direction and a second one traveling in the opposite direction.

Two small groups of people were probably pursuing better hunting grounds, but I can’t help but think of a tundra version of the Hatfields and McCoys and cousin spats.

“I’m going this way. There are better fish on that side of the lake, and I won’t have to put up with you.”

“Fine, I’m going that way. There are more bears and better hunting up there anyway.”

Their wives, who are sisters, “Wait, when will I ever see my sister again?”

One went east and one went west.

X2a became Native American and X2b became European.

Looking back at our information about Kennewick Man, his haplogroup was born significantly before he lived.

He was born about 8390-9250 years ago, so let’s say 8820 years ago, and his haplogroup was born 10,500 years ago, so about 1680 years before he lived. That means there were many generations of women who carried that haplogroup before Kennewick Man.

Let’s Compare

Discover has a compare feature.

I want to Compare Radegonde Lambert’s haplogroup with Kennewick Man’s haplogroup X2a2’3’4^.

The Compare tool uses the haplogroup you are viewing, and you enter a second haplogroup to compare with the first.

The ancestral path to the shared ancestor, meaning their shared haplogroup, is given for each haplogroup entered. That’s X2 in this case. Then, from the shared haplogroup back in time to Mitochondrial Eve.

I prefer to view this information in table format, so I created a chart and rounded the haplogroup ages above X2.

Hap Age – Years Ago Radegonde’s Line Shared Ancestors and Haplogroups Kennewick’s Line Hap Age – Years Ago
143,000 mt-Eve
130,000 L1”7
119,000 L2”7
99,000 L2’3’4’6
92,000 L3’4’6
73,500 L3’4
61,000 L3
53,000 N
53,000 N+8701
25,000 X
22,500 X1’2’3’7’8
13,000 X2 – Asia
13,000 X2+225 X2a 10,500
12,900 X2b”aq X2a2’3’4^ 10,400 Kennewick Man born c 8800 years ago
11,000 X2b
5,500 X2b1”64
5,000 X2b4
1,900 X2b4d’g
Radegonde Lambert born c 1661 – 400 years ago 1,700 X2b4g

More Ancient Connections

Radegonde Lambert’s matrilineal descendants have an additional dozen Ancient Connections that are found in upstream haplogroup N-8701. Their shared ancestors with Radegonde reach back to 53,000 years ago in a world far different than the one we inhabit today. I’m not going to list or discuss them, except for one.

Identity Age Years Ago Location & Cultural Group Hap Hap Age Years Ago Shared Hap Shared Hap Age Years Ago
Radegonde Lambert (F) 400 France or Canada X2b4g 1700
Carrowkeel 534 (M) 5100-4600 Sligo, Ireland – Neolithic Europe X2b4 5000 X2b4 5000
Ladoga 16 (M) 800-1100 Ladoga, Russia Fed – Viking Russia X2b4 5000 X2b4 5000
Parknabinnia 186 (M) 5516-5359 Clare, Ireland – Neolithic Europe X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 2 (M) 5339-5025 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 29 (M) 5366-5100 Vastergotland, Sweden – Funnel Beaker and Early Plague X2b1”64 5516-5259 X2b1”64 Before 5050
Rössberga 38 (M) 5340-5022 Vastergotland, Sweden – Funnel Beaker X2b1”64 5516-5259 X2b1”64 Before 5050
Monte Sirai 797263 (U) 2600-2400 Monte Sirai, Italy (Sardinia) – Phoenicians X2b35a1 3350 X2b1”64 5050
Bogovej 361 (F) 1000-1100 Lengeland, Denmark – Viking Denmark X2b1”64 5516-5259 X2b1”64 5050
Ladoga 410 (M) 800-1000 Leningrad Oblast, Russia – Viking Russia X2b1”64 5516-5259 X2b1”64 5050
Barcin 31 (M) 8236-8417 Derekoy, Turkey – Neolithic Anatolia Ceramic X2m2’5’7^ 9200 X2b”aq 13,000
Abasar 55 (M) 500-800 Abasár Bolt-tető, Abasar, Hungary – Medieval Hungary X2m1e 5350 X2b”aq 13,000
Gerdrup 214 3779-3889 Gerdrup, Sealand, Denmark – Middle Bronze Age X2c1 3400 X2+225 13,000
Kopparsvik 225 950-1100 Gotland, Sweden – Viking Sweden X2z 5650 X2+225 13,000
Sandomierz 494 900-1100 Sandomierz, Poland – Viking Poland X2c2b 1650 X2+225 13,000
Sweden Skara 275 800-1100 Varnhem, Skara, Sweden – Viking Sweden X2c1 3400 X2+225 13,000
Kennewick man 8390-9250 Kennewick, Washington – Native American X2a2’3’4^ 10,450 X2 13,000
Roopkund 39 80-306 Roopkund Lake, Uttarakhand, India – Historical India X2d 13,000 X2 13,000
Ranis 10 43,500-47,000 Ranis, Germany – LRJ Hunger Gatherer N3’10 53,000 N+8701 53,000
Zlatý kůň woman 47,000 Czech Republic – N+8701 53,000 N+8701 53,000

Zlatý kůň Woman

Zlatý kůň Woman lived some 43,000 years ago and her remains were discovered in the Czech Republic in 1950.

Believed to be the first anatomically modern human to be genetically sequenced, she carried about 3% Neanderthal DNA. Europeans, Asians and indigenous Americans carry Neanderthal DNA as well.

Unlike many early remains, Zlatý kůň Woman’s facial bones have been scanned and her face approximately reconstructed.

There’s something magical about viewing a likeness of a human that lived more than 40,000 years ago, and to whom I’m at least peripherally related.

Like all other Ancient Connections, it’s unlikely that I descend from Zlatý kůň Woman herself, but she is assuredly my very distant cousin.

What else do we know about Zlatý kůň Woman? Quoting from her Ancient Connection:

She lived during one of the coldest periods of the last ice age, surviving in harsh tundra conditions as part of a small hunter-gatherer group. She died as a young adult, though the cause of death remains unknown.

Her brain cavity was larger than that of modern humans in the comparative database, another trait showing Neanderthal affinity. While the exact colors of her features cannot be determined from available evidence, researchers created both a scientific grayscale model and a speculative version showing her with dark curly hair and brown eyes.

Zlatý kůň Woman may or may not have direct descendants today, but her haplogroup ancestors certainly do, and Radegonde Lambert is one of them, which means Radegonde’s matrilineal ancestors and descendants are too.

Ancient Connections for Genealogy

While Ancient Connections are fun, they are more than just amusing.

You are related through your direct matrilineal (mitochondrial) line to every one of your mtDNA Discover Ancient Connections. Everyone, males and females, can take a mitochondrial DNA test.

I find people to test for the mitochondrial DNA of each of my ancestral lines – like Radegonde Lambert, for example. I wrote about various methodologies to find your lineages, or people to test for them, in the article, Lineages Versus Ancestors – How to Find and Leverage Yours.

Radegonde’s mitochondrial DNA is the only key I have into her past, both recent and distant. It’s the only prayer I have of breaking through that brick wall, now or in the future.

Interpreted correctly, and with some luck, the closer Ancient Connections can provide genealogical insight into the origins of our ancestors. Not just one ancestor, but their entire lineage. While we will never know their names, we can learn about their cultural origins – whether they were Vikings, Phoenicians or perhaps early Irish buried in Passage Graves.

On a different line, an Ancient Connection burial with an exact haplogroup match was discovered beside the Roman road outside the European town where my ancestral line was believed to have been born.

Ancient Connections are one small glimpse into the pre-history of our genetic line. There are many pieces that are missing and will, in time, be filled in by ancient remains, Notable Connections, and present-day testers.

Check your matches and your Ancient Connections often. You never know when that magic piece of information you desperately need will appear.

What is waiting for you?

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Mitotree is Born

Mitotree is born and I can hardly contain my excitement.

The Million Mito R&D team members, along with many others at FamilyTreeDNA, are proud to introduce the new Mitotree and mtDNA Discover, which were brought to life thanks to one pivotal entrepreneurial figure, Bennett Greenspan, whose support and vision set the ball in motion and made Mitotree possible.

Left to right, the Million Mito science team is:

  • Goran Runfeldt, Head of R&D at FamilyTreeDNA
  • Dr. Paul Maier, Senior Population Geneticist at FamilyTreeDNA
  • Roberta Estes, DNAexplain, scientist, blogger, author, genetic genealogist, and Genographic Affiliate Researcher
  • Dr. Miguel Vilar, Genetic Anthropologist, Lead Scientist with the Genographic Project, and Professor at the University of Maryland
  • Bennett Greenspan, President Emeritus of FamilyTreeDNA, and avid genealogist
  • John Detsikas, Front End Developer who is responsible for the user interface for both Y-DNA Discover and now mtDNA Discover

The Million Mito Project Inception

The Million Mito Project was launched at RootsTech 2020 and encouraged people to test their mitochondrial DNA, both for their genealogy and to help build the database. More than a million samples were candidates, but only high-quality, full sequence results were used. In the process of building the tree, additional samples were incorporated from other public sources for tree construction.

Drum Roll – The Mitotree

A beta version of the Mitotree is being released today, and boy, is this a big deal.

Before we discuss the rest of what’s coming, I need to mention that the Mitotree is now evergreen, meaning that the tree will be updated periodically, as will mtDNA Discover. This lifetime value is included with the cost of your test, so there’s nothing more to purchase.

Haplogroups will change from time to time, as the tree does, so don’t fall in love with yours, and definitely, no tattoos😊

I’m going to be speaking in terms of “we,” meaning the Million Mito team who built the Mitotree and mtDNA Discover, plus an amazing team of FamilyTreeDNA folks who were absolutely essential in getting this out the door and to you.

The Mitotree is new from the ground up, and yes, haplogroup naming consistency with PhyloTree has been maintained where possible.

One of the unanticipated challenges we encountered was that the 2016 PhyloTree had to be recreated, essentially reverse engineered, to determine the rules they used regarding mutations for haplogroup creation. In other words, which mutations were valid and reliable, which weren’t, determining their relative importance, and so forth.

After the existing 2016 tree was recreated, the next hurdle to overcome was that none of the existing phylogenetic software used in academia would scale from 24,000 samples and 5500 subclades to more than a quarter million samples and 40,000 haplogroups, so that software had to be designed and written by R&D team members.

More information about this process will be forthcoming shortly, and a paper will be published with our methodology, but for right now, let’s look at the user experience and what’s being released now.

Here’s what’s coming today and over the next few days.

The beta Mitotree includes:

  • Over 40,000 branches
  • Over 250,000 mtFull Sequences from FTDNA
  • Over 10,000 third-party full sequences from GenBank, 1000 Genomes, etc.
  • Over 1000 Ancient Connections
  • Over 100 Notable Connections

More is on the way.

The new Mitotree is the tree provided in several formats within mtDNA Discover. You can view the public version of the tree, here, or sign on to your FamilyTreeDNA account and click through from your dashboard to see more.

Today’s Releases

The Mitotree doesn’t exist in a vacuum, so several updates and new features will be rolling out today.

  • mtDNA Discover, which includes the new Mitotree
  • New customer haplogroups for those who have taken mtFull sequence tests
  • New mtDNA matches page

New Haplogroups

New haplogroups have been calculated for FamilyTreeDNA customers who have taken the full sequence test. Those who have taken only the HVR1 or HVR1/HVR2 tests are encouraged to upgrade to the full sequence test.

Not everyone will receive a new Mitotree haplogroup that is different from their classic haplogroup, but most people will. Your original haplogroup is displayed with the classic tag, and the new Mitotree haplogroup with the beta tag.

If your classic and Mitotree haplogroups are the same, it means that either you have no more private variants (mutations) available to form a new haplogroup, or no one else from your lineage has tested yet.

New mtDNA Matches Page

If you click on your mtDNA matches, you’ll notice that the page has been redesigned to look and function like the other FamilyTreeDNA match pages.

If you click to view your matches, you’ll be able to view both the “old” classic haplogroup, and your matches’ new Mitotree haplogroup, plus a new haplotype if they have one. We will talk about haplotypes in a minute.

The people you match are the same as before, but matches may be recalculated in the future.

If you click through to the new mtDNA Discover from your dashboard, you’ll be able to view the public portion of mtDNA Discover, plus the additional customized information provided to FamilyTreeDNA mtFull sequence customers.

mtDNA Discover

If you have taken a full sequence test, sign on to your account to view your new haplogroup, then click on the new mtDNA Discover icon on your dashboard.

If you haven’t taken the mtFull sequence test, but the partial HVR1 or HVR2 versions, you can still view mtDNA Discover on your dashboard, but without the mtFull customization.

Customization that occurs exclusively for FamilyTreeDNA mtFull sequence customers includes:

  • Most detailed placement of your branch on Mitotree
  • Haplotype clusters
  • Additional Ancient Connections
  • Additional Notable Connections
  • The Match Time Tree
  • Globetrekker (coming soon)
  • The Group Time Tree (coming soon)

mtDNA Discover is similar to Y-DNA Discover.

You’ll be able to view a dozen new reports about your haplogroup in addition to the tools provided on your dashboard.

The new Mitotree can be viewed in several formats, each with its unique benefit.

  1. Time Tree – a genetic tree that shows when each haplogroup was formed, plus a country flag for where present-day testers report as the location of their earliest known ancestor (EKA)
  2. Classic Tree – a more traditional view of a phylogenetic tree, including the number of testers on each branch, the variants, or mutations that define the haplogroup, the era and approximate date of formation, and other details about the tree topology
  3. Scientific Details Variants Tab – shows the variants that differ in each haplogroup as you reach back in time
  4. Ancestral Path for the selected haplogroup – outlines your path back to early humans, including Denisovans.
  5. Match Time Tree for you and your matches (must be signed in to your account and click on mtDNA Discover icon)
  6. Group Time Tree (coming soon) for those who have joined projects

Match Time Tree

The Match Time Tree is extremely useful because it overlays your matches, plus their earliest known ancestors (EKA), on a genetic Time Tree, by haplogroup and haplotype, so you can see how you may be related, and when.

You can also see your matches that have now fallen into neighboring haplogroups, which suggests that they probably aren’t as genealogically close as people in your haplogroup. However, that’s not always the case, because mutations can occur at any time.

Haplotype Clusters

A haplotype cluster is a new concept introduced specifically for genealogists with the new Mitotree. Haplotypes are identified by numbered “F” groups. Three are shown, below.

There may be groups of people within a haplogroup that have exactly the same mutations, or genetic signature, and no additional mutations. Still, they may not form a new haplogroup. There could be several reasons for not forming a new haplogroup, including known SNP locations where mutations occur that are known to be unstable, such as location  315, which tends to accumulate random insertions and is ignored because of its known instability.

When multiple people share an exactly identical signature, meaning all of the same mutations, they are shown within a haplotype “F” cluster to provide additional specificity to the tree.

The haplotype has been designed to provide additional granularity to the tree and genealogically relevant information. The haplotype “Fxxxxxx” numbers are randomly generated and have no special meaning.

A word of caution here. While the haplotype sequences are identical, it is still possible that another tester from outside the cluster could be a closer relative. For example, they could have accumulated a fast mutating SNP in the last few generations, which would give them a different signature.

Someone who is actually genealogically close to you may be in a different haplotype, or no haplotype at all because no one matches them exactly. For example, if your aunt or sister has a heteroplasmy, they are a close relative and will be in your haplogroup, but won’t be in your haplotype cluster because of the heteroplasmy. So don’t ignore matches who aren’t in your haplotype.

In the above example, under haplogroup V71b, there is one group of three people of unknown origin, meaning they didn’t enter any location for their earliest known ancestor, plus haplotype F9712482 – all of whom are identical matches to each other, but don’t form a new haplogroup.

Beneath V71b is haplogroup V71b1 with nine people, plus two haplotype clusters. F1965416 consists of two people, and F8189900 consists of 16 people.

You can also see haplotype clusters bracketed on any of the Time Trees in mtDNA Discover as well.

More to Come

There’s more information to come in the next few days and weeks, and at RootsTech. I’ll be writing articles when I get back.

For now, take a look to see if you have a new haplogroup. The new haplogroup rollout is being staggered, and you should receive an email when yours has been posted. But there’s no need to wait. Go ahead, sign in and check now, check out mtDNA Discover, and have fun.

Guaranteed, you’ll learn something new, and you may discover the key to a new ancestor!

Resources

Here are additional resources about the new Mitotree, mtDNA Discover, and the associated updates:

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

23andMe Trouble – Step-by-Step Instructions to Preserve Your Data and Matches

I don’t know what the future holds for 23andMe, but the financial floodwaters are rising. I’ve been torn about whether I should risk alarming people, perhaps unnecessarily, by writing about this, and if so, exactly what to say.

I’ve decided that the responsible action is to share my concerns with you and suggest that you act proactively – just in case.

Contrary to linking within this article which is what I normally do, I’m placing a list of relevant articles about what’s happening at 23andMe at the end for your reference. There are quite a few. I’ve located reputable articles without paywalls. There are even more publications today.

What’s Going On?

If you’re following the saga of 23andMe, you’ll know that they have been in financial trouble for some time, worsened by their data breach in October 2023. Not only was customer information accessed and downloaded, but 23andMe reacted extremely slowly, which made the situation worse. Lawsuits followed. I’ve written about the deteriorating situation several times.

Their financial situation has continued its decline ever since.

Recent developments, including the inability of Anne Wojcicki to raise funding to take the company private again, the $30 million data breach settlement this week, a further drop in their stock price, and just yesterday, the resignation of the board of directors in its entirety (except for Wojcicki), makes their future increasingly uncertain if not outright bleak.

Concerns

I am very concerned about the future of 23andMe. Never having experienced anything like this in our industry, I have no prediction about exactly what will happen, or when. That’s unknowable. I do know that I’m quite worried as are other professionals in this field.

I am strongly considering deleting my 23andme accounts. My personal hesitation is that I author this blog and I can’t write about 23andMe if I don’t have an account there.

Were it not for that, I would strongly consider deleting my account after recording my matches and downloading my data. 23andMe has ceased to be useful for me and has increasingly become a liability.

Please do NOT panic and run over there and delete your account without thoughtful consideration and taking these preservation measures first. Truly, I will tell you if I think you need to act on something immediately, as I have in the past.

I am NOT specifically recommending deleting your account. Everyone’s circumstances and goals are different.

For example, if you’re an adoptee fishing in all the ponds, you may want to wait. If your focus is health, you’re probably not reading this article, but that might be justification for people to wait. Or, if you’re a genealogist who wants as many matches as possible, you may want to wait and see how things shake out.

Regardless, the following recommendations ARE for everyone. Being prepared is better than being surprised.

Recommendations

Whether you choose to delete your account at 23andMe in the near future, wait, or maybe never, I have the following recommendations, just in case.

  1. Download your raw DNA data file.
  2. Preserve your matches in some fashion.
  3. Save your ethnicity segments file.

Here are step-by-step instructions for each item, plus several tips and hints.

Download Your Raw DNA File

Download your raw DNA file so that you can upload it elsewhere if you wish.

To download your raw DNA file, click on Resources, then “Browse Data.”

Select “Download” at the top of the next page where you will be prompted for your birth date.

You will then see a full page of “Important Warnings to Consider.”

Scroll to the bottom

Check the “I understand” box and then click on “Submit Request.”

You will receive an email when your file is ready to be downloaded.

If your email is not current, you will need to call or contact 23andMe support for assistance.

You can upload your 23andMe DNA file to MyHeritage, here, to GEDmatch, and to FamilyTreeDNA again soon. I’ve written instructions for uploading and downloading data to/from each vendor in the article DNA File Upload-Download and Transfer Instructions to and from DNA Testing Companies, here.

Preserve Your 23andMe Matches

Next, review and preserve your matches shown under DNA Relatives. You may want to use screenshots or create a spreadsheet, which is my recommendation. You’ll be able to retain and preserve a LOT more information using a spreadsheet, including how your matches are related to each other.

The good news, or bad news, depending on your perspective, is that unless you have paid for a subscription, you’ll only have 1500 matches to deal with. With a subscription, you’ll have up to about 5,000.

Match Information Spreadsheet

I suggest working with your closest matches first.

You’ll find your matches under “Ancestry,” then “DNA Relatives.” Matches are listed in the closest match order.

For each match you can view information, including:

  • Birth year and location
  • Your predicted relationship
  • If they are in the genetic tree that 23andMe has created for you
  • Their ancestors’ birthplaces, if they have provided that information.
  • Their family surnames
  • An important link to their family tree if they have provided that link
  • Their ethnicity which may be important if you share a common ethnicity that suggests or precludes lineages
  • High level Y-DNA and mitochondrial DNA haplogroups
  • Relatives in Common which are shared matches – and how much DNA your two matches share with each other
  • Any notes you’ve made

Other features previously available at 23andMe were discontinued after the breach.

If you downloaded your matches file before the October 2023 breach, you’re in luck because you can simply update that file with your new matches except for segment information. That’s what I’m doing. Your download file will be a CSV file styled “roberta_estes_relatives_download” where your name replaces mine.

If you didn’t download your matches before the breach, you can’t today, as that’s one of the features they removed after the breach.

Recording your matches’ information is the first step, but there’s an important second step too that will help you piece all of this information together.

Relatives in Common Relationship Grid

I strongly suggest creating a relationship grid detailing who matches whom for your shared matches. Yes, I know that’s a LOT of work, but it may well be worth it to wring every ounce out of your DNA matches. Plus, you can then keep it current as new matches arrive. Right now, I’ve set a goal for myself to complete 100 per day. That’s do able.

The “Relatives in Common” feature is extremely useful and facilitates constructing your tree and fitting your matches into their relative places in your tree. Relatives in Common tells you not only how much DNA you share with your matches but also their estimated relationship to each other and how much DNA they share.

To begin the process, you really only need to be able to identify “someone” and then chain people together based on shared matches and estimated relationships. I’ll show you.

To find Relatives in Common information and how much DNA they share with each other, click on a specific match, preferably one that you know, under DNA Relatives, then scroll down to “Find Relatives in Common.”

Here’s the list of matches shared between DH and me.

Here’s the beginning of the relationship spreadsheet I created.

This example shows the amount of DNA I share with my matches in the left column, then how much they share with each other. I’ve color-coded the results. Blue is my father’s paternal line. His mother’s line is not represented in these matches. Purple is my mother’s maternal line, and apricot is her paternal line.

DH is estimated by 23andMe to be my second cousin and shares 7.13% of my paternal DNA across 17 segments. DH also shares DNA with James, George, Daniel, RA, and Joyce.

You can see how much DNA any match shares with me, as well as with any other match, which I’ve entered into the chart.

Unfortunately, only one person, Patricia, has included a link to a tree, but our common ancestor was shown there. In two other cases, surnames provided information, as did previous communications. I can fit almost every one of these people into my tree, at least tentatively, using this information. Sometimes I match them at other vendors too, providing additional information.

If you used Genetic Affairs to cluster your 23andMe matches before the breach, you may already have at least part of your match and shared match information. I save everything to my computer, and I hope you did too.

I happen to know how two of these people are related to me, so I can begin my “shared tree” there, adding other people as I figure out their shared relationships. For example, if a match is my second cousin and also a second cousin to another match, chances are really good that we all share great-grandparents. Remember that 23andMe has taken a stab at genetic tree construction on their genetically created (now nearly unreadable) Family Tree, found under “Family and Friends.”

This tree may or may not help you.

Please note – if you wish to message any of your matches, you need to do that through the 23andMe internal platform, so don’t wait, do it now by clicking on your match, then “Message.”

Download Your Ethnicity Results and Segments

Download your ethnicity results and segment information so that you can use your segment location information to compare to matches from other companies that provide matching segment information.

Your ethnicity information is available under Ancestry, then Ancestry Composition, then Select Scientific Details.

Scroll all the way to the bottom – which is a LONG way.

Select the confidence level and then click on Download Raw Data.” I use 50%, but you can download each one if you want.

The resulting file holds the locations on your chromosomes of your various estimated ethnicities. You can upload that file to DNAPainter to correlate with your matches from any testing company, and with ancestors whose DNA you’ve identified.

I wrote about that, here, and have discussed how to “walk ethnicity segments back in time” using DNAPainter in several presentations. This technique is how I identified my Native American ancestor on my mother’s side, which was then confirmed by mitochondrial DNA testing on an appropriately descended individual.

Prognosis

If 23andMe remains viable, you’ll be ahead of the game. You’ll have preserved your information and may have identified some new matches and their ancestors.

However, if 23andMe doesn’t survive or is sold, you’ll have protected your investment and won’t be caught by surprise.

If you’re thinking about deleting your account, take the steps set forth above, first. The reason I’m providing this information now is so that, in case something happens, you have time to complete these tasks to protect your important information and matches.

If you choose to delete your 23andMe account, you’ll have preserved as much of your investment as possible. Remember, think before deleting because once you’ve deleted your account, you can’t undo it without testing again. This is especially important if you’re managing the DNA of someone who is now deceased. In that case, delete is irrecoverable.

Let’s just hope this all blows over, and you’ll have benefitted by finding new genealogy information.

Recent News Articles

https://www.cnbc.com/2024/07/31/23andme-ceo-anne-wojcicki-files-proposal-to-take-company-private-.html

https://investors.23andme.com/news-releases/news-release-details/23andme-special-committee-responds-ceos-take-private-proposal

https://www.reuters.com/technology/cybersecurity/23andme-settles-data-breach-lawsuit-30-million-2024-09-13/

https://www.cnbc.com/2024/09/17/23andme-independent-directors-resign-from-board-read-the-ceo-memo.html

https://www.washingtonpost.com/business/2024/09/18/23andme-board-turmoil-dna-test/

https://www.axios.com/2024/09/18/23andme-resignations-anne-wojcicki

https://investors.23andme.com/news-releases/news-release-details/independent-directors-23andme-resign-board

https://investors.23andme.com/node/9531/pdf

My Articles

https://dna-explained.com/2023/08/17/23andme-and-glaksosmithkline-partnership-ends-sparking-additional-layoffs/

https://dna-explained.com/2023/10/07/23andme-user-accounts-exposed-change-your-password-now/

https://dna-explained.com/2023/10/24/the-23andme-data-exposure-new-info-considerations-and-a-pause-strategy/

https://dna-explained.com/2023/10/29/23andme-dna-relatives-connections-event-history-report-and-other-security-tools/

https://dna-explained.com/2023/12/07/23andme-concludes-their-investigation-6-9-million-customers-data-exposed/

DNA Academy Webinar Series Released

Great news! Legacy Family Tree Webinars has just released DNA Academy.

DNA Academy is a three-part series designed to introduce the basics of DNA for genetic genealogy and how Y-DNA, X-DNA, mitochondrial and autosomal DNA can be utilized. Each of these different types of DNA serves a different function for genealogists – and reveals different matches and hints for genealogy.

  1. DNA Academy Part 1 introduces genetic genealogy basics, then, Ancestry’s DNA tools – including their new pricing structure for DNA features. Click here to view.
  2. DNA Academy Part 2 covers FamilyTreeDNA’s products. Click here to view the webinar, which includes:
    1. Y-DNA for males which tracks the direct paternal line
    2. Mitochondrial DNA for everyone which tracks your direct maternal line – your mother’s mother’s mother’s lineage
    3. Autosomal DNA which includes matches from all of your ancestral lines and along with X-DNA matching, which has a very distinctive inheritance path.
  3. DNA Academy Part 3 includes MyHeritage, 23andMe, and third-party tools such as DNAPainter and Genetic Affairs. Click here to view.

Legacy Family Tree Webinars has graciously made Part 2, the FamilyTreeDNA class, free through August 22nd for everyone – so be sure to watch now.

After August 22nd, Part 2 will join Part 1 and Part 3 in the webinar library for subscribers with more than 2240 webinars for $49.95 per year.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

Ancestry’s ThruLines Are a Hot Mess Right Now – But Here Are Some Great Alternatives

Right now, ThruLines at Ancestry is one hot mess.

Aside from the inherent frustration, especially over a holiday weekend when many people had planned to work on their genealogy, I’d like to say, “don’t panic.”

I don’t have any inside information about what’s going on at Ancestry, and I’ve attempted to make contact through their support page with no luck. They make talking to a person exceedingly difficult; plus, it’s a holiday weekend, and they are probably inundated.

Regardless, I have an idea of what is happening. Ancestry has been in the midst of recalculating “things,” perhaps in relation to their other changes, which I’ll write about separately in a few days.

In any event, Ancestry SURELY MUST KNOW there’s a significant problem because I imagine thousands of their customers are screaming right about now. Adding another voice won’t be helpful.

Symptoms

  • You may not have ThruLines at all.
  • If you do have ThruLines, don’t trust the information, or more to the point, don’t trust that it’s in any way complete.

I have two tests at Ancestry, both connected to different trees so that my matches and Thrulines are calculated separately for each test.

Test One

My first Ancestry test is connected to my primary tree. I’ve been amassing Thrulines cousins ever since the feature was released. I have hundreds of cousin matches descended from some of my more prolific ancestors.

Additionally, my sister’s grandchildren have tested, as have other close relatives who have connected their tests to their trees.

Today, those people are still showing on my match list, but are NOT showing as matches in ThruLines. None of them. Most of my ThruLines ancestors are showing zero matches, and the rest are only showing very few. Ancestors who had hundreds before now have 2, for example.

Here’s an example with my cousin, Erik.

My grandfather, William George Estes, shown in Erik’s tree, above, is his great-grandfather. Erik is my half first cousin, once removed, and we share 417 cM over 16 segments.

Yet, looking at my ThruLine for William George Estes, neither he nor my other cousins are shown as matches. Same for William George’s parents, and so forth.

ThruLines is VERY ill right now.

Test Two

My second DNA test at Ancestry is even worse. There are no ThruLines calculated, even though my DNA is tree-attached, and I had ThruLines previously.

I see this message now, and I can’t even begin to tell you how irritating this is – in part because it suggests the problem is my fault. It’s clearly not. My tree hasn’t changed one bit. I’m not alone, either. I’ve seen other people posting this same message.

And yes, if you’re thinking that there is absolutely no excuse for this – you’re right.

However, outrage isn’t good for us and won’t help – so let’s all do something else fun and productive instead.

Productive Genealogy Plans

Here are some productive suggestions.

At MyHeritage:

At FamilyTreeDNA:

  • Build your haplogroup pedigree chart by locating people through different companies descended from each ancestor in your tree through the appropriate line of descent, and see if they have or will take a Y-DNA or mtDNA test.
  • Tests are on sale right now, and there’s no subscription required at FamilyTreeDNA for anything.
  • Check Y-DNA and mtDNA tests to see if there are new matches and if you share a common ancestor.

At 23andMe:

  • Check for new matches and triangulation.
  • Check to see if 23andMe has added any of your new matches to your genetic tree.

Remember, the parental sides are typically accurate, but the exact placement may not be, and 23andMe deals poorly with half-relationships. It’s certainly still worth checking though, because 23andMe does a lot of heavy lifting for you.

DNAPainter

For me, the most productive thing to do this weekend would be to copy the segment information from new matches with whom I can identify common ancestors at FamilyTreeDNA, MyHeritage and 23andMe – the vendors who provide segment data – and paint those segments to DNAPainter.

Not only does DNAPainter allow me to consolidate my match data in one place, DNAPainter provides the ability for me to confirm ancestors through triangulation, and to assign unknown matches to ancestors as well.

As you can see, I’ve successfully assigned about 90% of my segments to an ancestor, meaning I’ve confirmed descent from that ancestor based on my autosomal matches’ descent from that same ancestor – preferably through another child. Will new matches propel me to 91%? I hope so.

What percentage can you or have you been able to assign?

If you need help getting started, or ideas, I’ve written about DNAPainter several times and provided a compiled resource library of those articles, here.

Have fun!!!

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search Of…Your Grandparents

Are you searching for an unknown relative or trying to unravel and understand unexpected results? Maybe you discovered that one or both of your parents is not your biological parent. Maybe one of your siblings might be a half-sibling instead. Or maybe you suddenly have an unexpected match that looks to be an unknown close relative, possibly a half-sibling. Perhaps there’s a close match you can’t place.

Or, are you searching for the identity of your grandparent or grandparents? If you’re searching for your parent or parents, often identifying your grandparents is a necessary step to narrow the parent-candidates.

I’ve written an entire series of “In Search of Unknown Family” articles, permanently listed together, here. They will step you through the search process and help you understand how to unravel your results. If you’re new, reading these, in order, before proceeding, would be a good idea.

Identifying a Grandparent

I saved this “grandparents” article for later in the series because you will need the tools and techniques I’ve introduced in the earlier articles. Identifying grandparents is often the most challenging of any of the relationships we’ve covered so far. In part because each of those four individuals occupies a different place in your tree, meaning their X, Y-DNA and mitochondrial DNA is carried by different, and not all, descendants. This means we sometimes have to utilize different tools and techniques.

If you’re trying to identify any of your four grandparents, females are sometimes more challenging than males.

Why?

Women don’t have a Y chromosome to test. This can be a double handicap. Female testers can’t test a Y chromosome, and maternal ancestors don’t have a Y chromosome to match.

Of course, every circumstance differs. You may not have a male to test for paternal lines either.

The maternal grandfather can be uniquely challenging, because two types of DNA, Y-DNA and mitochondrial DNA matching are immediately eliminated for all testers.

While I’ve focused on the maternal grandfather in this example, these techniques can be utilized for all four grandparents as well as for parents. At the end, I’ll review other grandparent relationships and additional tools you might be able to utilize for each one.

In addition to autosomal DNA, we can also utilize mitochondrial DNA, Y-DNA and sometimes X DNA in certain situations.

Testing, Tests and Vendors

As you recall, only men have a Y chromosome (blue arrow), so only genetic males can take a Y-DNA test. Men pass their Y chromosome from father to son in each generation. Daughters don’t receive a Y chromosome.

Everyone has their mother’s mitochondrial DNA (pink arrow.) Women pass their mitochondrial DNA to both sexes of their children, but only females pass it on. In the current generation, represented by the son and daughter, above, the mother’s yellow heart-shaped mitochondrial DNA is inherited by both sexes of her children. In the current generation, males and females can both test for their mother’s mitochondrial DNA.

Of course, everyone has autosomal DNA, inherited from all of their ancestral lines through at least the 5th or 6th generation, and often further back in time. Autosomal DNA is divided in half in each generation, as children inherit half of each parents’ autosomal DNA (with the exception of the X chromosome, which males only inherit from their mother.)

The four major vendors, Ancestry, 23andMe, FamilyTreeDNA and MyHeritage sell autosomal DNA tests, but only FamilyTreeDNA sells Y-DNA and mitochondrial DNA tests.

Only 23andMe and FamilyTreeDNA report X matching.

All vendors except Ancestry provide segment location information along with a chromosome browser.

You can read about the vendor’s strengths and weaknesses in the third article, here.

Ordering Y and Mitochondrial DNA Tests

If you’re seeking the identities of grandparents, the children and parents, above, can test for the following types of DNA in addition to autosomal:

Person in Pedigree Y-DNA Mitochondrial
Son His father’s blue star His mother’s pink heart
Daughter None Her mother’s pink heart
Father His father’s blue star His mother’s gold heart
Mother None Her mother’s pink heart

Note that none of the people shown above in the direct pedigree line carry the Y-DNA of the green maternal grandfather. However, if the mother has a full sibling, the green “Male Child,” he will carry the Y-DNA of the maternal grandfather. Just be sure the mother and her brother are full siblings, because otherwise, the brother’s Y-DNA may not have been inherited from your mother’s father. I wrote about full vs half sibling determination, here.

Let’s view this from a slightly different perspective. For each grandparent in the tree, which of the two testers, son or daughter, if either, carry that ancestor’s DNA of the types listed in the columns.

Ancestor in Tree Y-DNA Mitochondrial DNA Autosomal DNA X DNA
Paternal Grandfather Son Neither Son, daughter Neither
Paternal Grandmother Has no Y chromosome None (father has it, doesn’t pass it on to son or daughter) Son, daughter Daughter (son does not receive father’s X chromosome)
Maternal Grandfather Neither Neither Son, daughter Son, daughter (potentially)
Maternal Grandmother Has no Y chromosome Son, daughter Son, daughter Son, daughter (potentially)

Obtaining the Y-DNA and mitochondrial DNA of those grandparents from their descendants will provide hints and may be instrumental in identifying the grandparent.

FamilyTreeDNA

You’ll need to order Y-DNA (males only) and mitochondrial DNA tests separately from autosomal DNA tests. They are three completely different tests.

At FamilyTreeDNA, the autosomal DNA test is called Family Finder to differentiate it from their Y-DNA and mitochondrial DNA tests.

Their autosomal test is called Family Finder whether you order a test from FamilyTreeDNA, or upload your results to their site from another vendor (instructions here.)

I recommend ordering the Big Y-700 Y-DNA test if possible, and if not, the highest resolution Y-DNA test you can afford. The Big Y-700 is the most refined Y-DNA test available, includes multiple tools and places Big Y-700 testers on the Time Tree through the Discover tool, providing relatively precise estimates of when those men shared a common ancestor. If you’ve already purchased a lower-precision Y-DNA test at FamilyTreeDNA, you can easily upgrade.

I wrote about using the Discover tool here. The recently added Group Time Tree draws a genetic Y-DNA tree of Big-Y testers in common projects, showing earliest known ancestors and the date of the most recent common ancestor.

You need to make sure your Family Finder, mitochondrial DNA and Y-DNA (if you’re a male) tests are ordered from the same account at FamilyTreeDNA.

You want all 3 of your tests on the same account (called a kit number) so that you can use the advanced search features that display people who match you on combinations of multiple kinds of tests. For example, if you’re a male, do your Y-DNA matches also match you on the autosomal Family Finder test, and if so, how closely? Advanced matching also provides X matching tools.

X DNA is included in autosomal tests. X DNA has a distinct matching pattern for males and females which makes it uniquely useful for genealogy. I wrote about X DNA matching here.

If you upload your autosomal results to FamilyTreeDNA from another company, you’re only uploading a raw DNA file, not the DNA itself, so FamilyTreeDNA will need to send you a swab kit to test your Y-DNA and mitochondrial DNA. If you upload your autosomal DNA, simply sign in to your kit, purchase the Y-DNA and/or mitochondrial DNA tests and they will send you a swab kit.

If you test directly at FamilyTreeDNA, you can add any test easily by simply signing in and placing an order. They will use your archived DNA from your swab sample, as long as there’s enough left and it’s of sufficient quality.

Fish In All Ponds

The first important thing to do in your grandparent search is to be sure you’re fishing in all ponds. In other words, be sure you’ve tested at all 4 vendors, or uploaded files to FamilyTreeDNA and MyHeritage.

When you upload files to those vendors, be sure to purchase the unlock for their advanced tools, because you’re going to utilize everything possible.

If you have relatively close matches at other vendors, ask if they will upload their files too. The upload is free. Not only will they receive additional matches, and another set of ethnicity results, their results will help you by associating your matches with specific sides of your family.

Why Order Multiple Tests Now Instead of Waiting?

I encourage testers to order their tests at the beginning of their journey, not one at a time. Each new test from a vendor takes about 6-8 weeks from the time you initially order – they send the test, you swab or spit, return it, and they process your DNA. Of course, uploading takes far less time.

If you’re adding elapsed time, two autosomal tests (Ancestry and 23andMe), two uploads (FamilyTreeDNA and MyHeritage,) a Y-DNA and a mitochondrial DNA test, if all purchased serially, one after the other, means you’ll be waiting about 6-8 months.

Do you want to wait 6-8 months? Can you afford to?

Part of that answer has to do with what, exactly, you’re seeking.

A Name or Information?

Are you seeking the name of a person, or are you seeking information about that person? With grandparents, you may be hoping to meet them, and time may be of the essence. Time delayed may not be able to be recovered or regained.

Most people don’t just want to put a name to the person they are seeking – they want to learn about them. You will have different matches at each company. Even after you identify the person you seek, the people you match at each company may have information about them, their photos, know about their life, family, and their ancestors. They may be able and willing to facilitate an introduction if that’s what you seek.

One cousin that I assisted discovered that his father had died just 6 weeks before he made the connection. He was heartsick.

Having data from all vendors simultaneously will allow you to compile that data and work with it together as well as separately. Using your “best” matches at each company, augmented by both Y-DNA and mitochondrial DNA can make MUCH shorter work of this search.

Your Y-DNA, if you’re a male will give you insights into your surname line, and the Big-Y test now comes with estimates of how far in the past you share a common ancestor with other men that have taken the Big-Y test. This can be a HUGE boon to a male trying to figure out his surname line.

Y-DNA and mitochondrial DNA, respectively, will eliminate many people from being your mother or father, or your direct paternal or direct maternal line ancestor. Both provide insights into which population and where that population originated as well. In other words, it provides you lineage-specific information not available elsewhere.

Your Y-DNA and mitochondrial DNA can also provide critically important information about whether that direct line ancestor belonged to an endogamous population, and where they came from.

Strategies

You may be tempted to think that you only need to test at one vendor, or at the vendor with the largest database, but that’s not necessarily true.

Here’s a table of my closest matches at the 4 vendors.

Vendor Closest Maternal Closest Paternal Comments
Ancestry 1C, 1C1R Half 1C, 2C I recognized both of the maternal and neither of the paternal.
23andMe 2C, 2C 1C1R, half-gr-niece Recognized both maternal, one paternal
MyHeritage Mother uploaded, 1C Half-niece, half 1C Recognized both maternal, one paternal
FamilyTreeDNA Mother tested, 1C1R Parent/child, half-gr-niece Recognized all 4

To be clear, I tested my mother at FamilyTreeDNA before she passed away, but if I was an adoptee searching for my mother, that’s the first database she would be in. As her family, we were able to order the Family Finder test from her archived DNA after she had passed away. I then uploaded her DNA file to MyHeritage, but she’ll never be at either 23andMe or Ancestry because they don’t accept uploads and she clearly can’t test.

Additionally, being able to identify maternal matches by viewing shared matches with my mother separates out close matches from my paternal side.

Let’s put this another way, I stand a MUCH BETTER chance of unraveling this mystery with the combined closest matches of all 4 databases instead of the top ones from just one database.

I’m providing analysis methodologies for working with results from all of the vendors together, in case your answer is not immediately obvious. Taking multiple tests facilitates using all of these tools immediately, not months later. Solving the puzzle sooner means you may not miss valuable connection opportunities.

You may also discover that the door slams shut with some people, but another match may be unbelievably helpful. Don’t unnecessarily limit your possibilities.

Here’s the testing and upload strategy I recommend.

What When Ancestry 23andMe MyHeritage FamilyTreeDNA GEDmatch
Order autosomal test Initially Yes Yes Upload Upload Upload
Order Big-Y DNA test if male Initially Yes
Order mitochondrial DNA test Initially Yes
Upload free autosomal file From Ancestry or 23andMe Yes Yes Yes
Unlock Advanced Tools When upload file $29 $19 $9.95 month
Includes X Matching No Yes No Yes Yes
Chromosome Browser, segment location information No Yes Yes Yes Yes

When you upload a DNA file to a vendor site, only upload one file per site, per tester. Otherwise, multiple tests simply glom up everyone’s match list with multiple matches to the same person and can be very confusing.

  • One person took an autosomal test at a company that accepts uploads, forgot about it, uploaded a file from another vendor later, and immediately thought she had found her parent. She had not. She “found” herself.
  • Another person though she had found two sisters, but one person had uploaded their own file from two different vendors.

Multiple vendor sites reveal multiple close matches to different people which increase your opportunity to discover INFORMATION about your family, not just the identity of the person.

Match Ranges

Given that we are searching for an unknown maternal grandfather, your mother may not have had any (known) full siblings. The “best” match would be to a full or half siblings to your parents, or their descendants, depending on how old your grandparents would be.

Let’s take the “worst case” scenario, meaning there are no full siblings AND there are many possible generations between you and the people you may match.

Now, let’s look at DNAPainter’s Shared cM tool.

You’re going to be looking for someone who is either your mother’s half sibling on her father’s side, or who is a full sibling.

If your mother is adopted, it’s possible that she has or had full siblings. If your mother was born circa 1920, it’s likely that you will be matching the next generation, or two, or three.

However, if your mother was born later, you could be matching her siblings directly.

I’m going to assume half siblings for this example, because they are more difficult than full siblings.

Full sibling relationships for your mother’s siblings are listed at right. Your full aunt or uncle at top, then their descendant generations below.

At left, in red, are the half-sibling relationships and the matching amounts.

You can see that if you’re dealing with half 1C3R (half first cousin three times removed,) you may not match.

Therefore, in order to isolate matches, it’s imperative to test every relevant relative possible.

Who’s Relevant for DNA Testing?

Who is relevant to test If you’re attempting to identify your maternal grandfather?

The goal is to be able to assign matches to the most refined ancestor possible. In other words, if you can assign someone to either your grandmother’s line, or your grandfather’s line, that’s better than assigning the person to your grandparents jointly.

Always utilize the tests of the people furthest up the tree, meaning the oldest generations. Their DNA is less-diluted, meaning it has been divided fewer times. Think about who is living and might be willing to test.

You need to be able to divide your matches between your parents, and then between your grandparents on your mother’s side.

  • Test your parents, of course, and any of their known siblings, half or full.
  • If those siblings have passed away, test as many of their children as you can.
  • If any of your grandparents are living, test them
  • If BOTH of your grandparents on the same side aren’t available to test, test any, preferably all, living aunts or uncles.
  • If your maternal grandmother had siblings, test them or their descendants if they are deceased.
  • If your parents are deceased, test your aunts, uncles, full siblings and half-siblings on your mother’s side. (Personally, I’d test all half-siblings, not just maternal.)
  • Half-siblings are particularly valuable because there is no question which “side” your shared DNA came from. They will match people you don’t because they received part of your parent’s DNA that you did not.

Furthermore, shared matches to half-siblings unquestionably identify which parent those matches are through.

Essentially, you’re trying to account for all matches that can be assigned to your grandparents whose identities you know – leaving only people who descend from your unknown maternal grandfather.

Testing your own descendants will not aid your quest. There is no need to test them for this purpose, given that they received half of your DNA.

I wrote about why testing close relatives is important in the article Superpower: Your Aunts’ and Uncles’ DNA is Your DNA Too – Maximize Those Matches!

Create or Upload a Tree

Three of the four major vendors, plus GEDMatch, support and utilize family trees.

You’ll want to either upload or create a tree at each of the vendor sites.

You can either upload a GEDCOM file from your home computer genealogy software, or you can create a tree at one of the vendors, download it, and upload to the others. I described that process at Ancestry, here.

Goal

Your goal is to work with your highest matches first to determine how they are related to you, thereby eliminating matches to known lineages.

Assuming you’re only searching for the identity of one grandparent, it’s beneficial to have done enough of your genealogy on your three known grandparents to be able to assign matches from those lines to those sides.

Step 1 is to check each vendor for close matches that might fall into that category.

The Top 15 at Each Vendor

Your closest several autosomal matches are the most important and insightful. I begin with the top 15 autosomal results at each vendor, initially, which provides me with the best chance of meaningful close relationship discoveries.

Create a Spreadsheet or Chart

I hate to use that S word (spreadsheet), because I don’t want non-technical people to be discouraged. So, I’m going to show you how I set up a spreadsheet and you can simply create a chart or even draw this out on paper if you wish.

I’ve color-coded columns for each of my 4 grandparents. The green column is the target Maternal Grandfather whose identity I’m seeking.

I match our first example; Erik, at 417 cM. Based on various pieces of information, taken together, I’ve determined that I’m Erik’s half 1C1R. His 8 great-grandparent surnames, or the ones he has provided, indicate that I’m related to Eric on my paternal grandfather’s line.

You’ll want to record your closest matches in this fashion.

Let’s look at how to find this information and work with the tools at the individual vendors.

23andMe

Let’s start at 23andMe, because they create a potential genetic tree for you, which may or may not be accurate.

I have two separate tests at 23andMe. One is a V3 and one is a V4 test. I keep one in its pristine state, and I work with the second one. You’ll see two of “me” in the tree, and that’s why.

23andMe makes it easy to see estimated relationships, although they are not always correct. Generally, they are close, and they can be quite valuable.

Click on any image to enlarge

The maternal and paternal “sides” may not be positioned where genealogists are used to seeing them. Remember, 23andMe has no genealogy trees, so they are attempting to construct a genetic tree based on how people are related to you and to each other, with no prior knowledge. They do sometimes have issues with half-relationships, so I’d encourage you to use this tree to isolate people to the three grandparents you know.

In my case, I was able to determine the maternal and paternal sides easily based on known cousins. This is the perfect example of why it’s important to test known relatives from both sides of your family.

My paternal side, at right, in blue, was easy because I recognized my half-sister’s family, and because of known cousins who I recognized from having tested elsewhere. I’ve worked with them for years. The blue stars show people I could identify, mostly second cousins.

My maternal side is at left, in red. Normally, for genealogists, the maternal side is at right, and the paternal at left, so don’t make assumptions, and don’t let this positioning throw you.

I’m pretending I don’t know who my maternal grandfather is. I was able to identify my maternal grandmother’s side based on a known second cousin.

That leaves my target – my maternal grandfather’s line.

All of the matches to the left of the red circle would, by process of elimination, be on my maternal grandfather’s side.

The next step would be to figure out how the 5 people descending from my maternal grandfather’s line are related to each other – through which of their ancestors.

On the DNA Relatives match list, here’s what needs to be checked:

  • Do your matches share surnames with you or your ancestors?
  • Do they show surnames in common with each other?
  • Is there a common location?
  • Birth year which helps you understand their potential generation.
  • Did they list their grandparents’ birthplaces?
  • Did they provide a family tree link?
  • Do they also match each other using the Relatives in Common feature?
  • Do they triangulate, indicated by “DNA Overlap” in Relatives in Common?
  • Who else is on the Relatives in Common list, and what do they have in common with each other?
  • Looking at your Ancestry Composition compared with theirs, what are your shared populations, and are they relevant? If you are both 100% European, then shared populations aren’t useful, but if both people share the same minority ancestry, especially on the same segments, it may indeed be relevant – especially if it can’t be accounted for on the known sides of the family.

Reach out to these people and see what they know about their genealogy, if they have tested elsewhere, and if they have a genealogy tree someplace that you can view.

If they can tell you their grandparents’ names, birth and death dates and locations, you can check public sources like WikiTree, FamilySearch and Geni, or build trees for them. You can also use Newspaper resources, like Newspapers.com, NewspaperArchive and the newspapers at MyHeritage.

I added the top 15 23andMe matches into the spreadsheet I created.

You’ll notice that not many people at 23andMe enter surnames. However, if you can identify individuals from your 3 known lines, you can piggyback the rest by using Relatives in Common in conjunction with the genetic tree placement.

Be sure to check all the people that are connected to the target line in your genetic tree.

You’ll want to harvest your DNA segments to paint at DNAPainter if you don’t solve this mystery with initial reviews at each vendor.

Ancestry

Let’s move to Ancestry next.

At Ancestry, you’ll want to start with your closest matches on your match list.

Ancestry classifies “Close Matches” as anyone 200 cM or greater, which probably won’t reach as far down as the matches we’ll want to include.

Some of the categories in the Shared cM Chart from DNAPainter, above, don’t work based on ages, so I’ve eliminated those. I also know, for example, that someone who could fall in the grandparent/grandchild category (blue star,) in my case, does not, so must be a different relationship.

Second cousins, who share great-grandparents, can be expected to share about 229 cM of DNA on average, or between 41 and 592 cM. First cousins share 866 cM, and half first cousins share 449 cM on average.

I have 13 close matches (over 200 cM), but I’m including my top 15 at each vendor, so I added two more. You can always go back and add more matches if necessary. Just keep in mind that the smaller the match, the greater the probability that it came from increasingly distant generations before your grandparents. Your sweet spot to identify grandparents is between 1C and 2C.

I need to divide my close matches into 4 groups, each one equating to a grandparent. Record this on your spreadsheet.

You can group your matches at Ancestry using colored dots, which means you can sort by those groups.

You can also select a “side” for a match by clicking on “Yes” under the question, “Do you recognize them?”

Initially, you want to determine if this person is related to you on your mother’s or father side, and hopefully, through which grandparent.

Recently, Ancestry added a feature called SideView which allows testers to indicate, based on ethnicity, which side is “parent 1” and which side is “parent 2.” I wrote about that, here.

Make your selection, assuming you can tell which “side” of you descends from which parent based on ethnicity and/or shared matches. How you label “parent 1,” meaning either maternal or paternal, determines how Ancestry assigns your matches, when possible.

Using these tools, which may not be completely accurate, plus shared matches with people you can identify, divide your matches among your three known grandparents, meaning that the people you cannot assign will be placed in the fourth “unknown” column.

On my spreadsheet, I assign all of my closest matches to one of my grandparents. Michael is my first cousin (1C) and we share both maternal grandparents, so he’s not helpful in the division because he can’t be assigned to only one grandparent.

The green maternal grandfather is who I’m attempting to identify.

There are 4 people, highlighted in yellow, who don’t fall into the other three grandparent lines, so they get added to the green column and will be my focus.

I would be inclined to continue adding matches using a process known as the Leeds Method, until I had several people in each category. Looking back at the DNAPainter cM chart, at this point, we don’t have anyone below 200 cM and the matches we need might be below that threshold. The more matches you have to work with, the better.

At Ancestry, you cannot download your matches into a spreadsheet, nor can you work with other clustering tools such as Genetic Affairs, so you’ll have to build out your spreadsheet manually.

Check for the same types of information that I reviewed at 23andMe:

  • Review trees, if your matches have them, minimally recording the surnames of their 8 great-grandparents.
  • Review shared matches, looking for common names in the trees in recent generations.
  • View shared matches with people with whom you have a “Common Ancestor” indication, which means a ThruLine. You won’t have Thrulines with your target grandparent, of course, but Thrulines will allow you to place the match in one of the other columns. I wrote about ThruLines here, here and here.
  • ThruLines sometimes suggests ancestors based on other people’s trees, so be EXCEEDINGLY careful with potential ancestor suggestions. That’s not to say you should discount those suggestions. Just treat them as tree hints that may have been copy/pasted hundreds of times, because that’s what they are.

I make notes on each match so I can easily see the connection by scanning without opening the match.

Now, I have a total of 30 entries on my spreadsheet, 15 from 23and Me and 15 from Ancestry.

Why Not Use Autosclusters?

Even with vendors who allow or provide cluster tools, I don’t use an automated autocluster tool at this point. Autocluster tools often omit your closest matches because your closest matches would be in nearly half of all your clusters, which isn’t exactly informative. However, for this purpose, those are the very matches we need to evaluate.

After identifying groups of people that represent the missing grandparent, using our spreadsheet methodology, autoclusters could be useful to identify common surnames and even to compare the trees of our matches using AutoTree, AutoPedigree and AutoKinship. AutoClusters cannot be utilized at Ancestry, but is available through MyHeritage and at GEDmatch, or through Genetic Affairs for 23andMe and FamilyTreeDNA.

Next, let’s move to FamilyTreeDNA.

FamilyTreeDNA

FamilyTreeDNA is the only vendor that provides Family Matching, also known as “bucketing.” FamilyTreeDNA assigns your matches to either a paternal or maternal bucket, or both, based on triangulated matches with someone you’ve linked to a profile in your tree.

The key to Family Matching is to link known Family Finder matches to their profile cards in your tree.

Clicking on the Family Tree link at the top of your personal page allows you to link your matches to the profile cards of your matches.

FamilyTreeDNA utilizes these linked matches to assign those people, and matches who match you and those people, both, on at least one common segment, to the maternal or paternal tabs on your match list.

Always link as many known people as possible (red stars) which will result in more matches being bucketed and assigned to parents’ sides for you, even if neither parent is available to test.

I wrote about Triangulation in Action at FamilyTreeDNA, here.

You can see at the top of my match list that I have a total of 8000 matches of which 3422 are paternal, 1517 are maternal and 3 match on both sides. Full siblings, their (and my) children and their descendants will always match on both sides. People with endogamy across both parents may have several matches on both sides.

If your relevant parent has tested, always work from their test.

Because we are searching for the maternal grandfather, in this case, we can ignore all tests that are bucketed as paternal matches.

Given that we are searching for my maternal grandfather, I probably have not been able to link as many maternal matches, other than possibly ones from my maternal grandmother. This means that the maternal grandfather’s matches are not bucketed because there are no identified matches to link on that side of my tree.

If you sort by maternal and paternal tabs, you’ll miss people who aren’t bucketed, meaning they have no maternal or paternal icon, so I recommend simply scanning down the list and processing maternal matches and non-bucketed matches.

By being able to confidently ignore paternally bucketed matches and only processing maternal and non-assigned matches, this is equivalent to processing the first 48 total matches. If I were to only look at the first 15 matches, 12 were paternal and only 3 are maternal.

Using bucketing at FamilyTreeDNA is very efficient and saves a lot of work.

Omitting paternal matches also means we are including smaller matches which could potentially be from common ancestors further back in the tree. Or, they could be younger testers. Or simply smaller by the randomness of recombination.

FamilyTreeDNA is a goldmine, with 16 of 20 maternal matches being from the unknown maternal grandfather.

Next, let’s see what’s waiting at MyHeritage.

MyHeritage

MyHeritage is particularly useful if your lineage happens to be from Europe. Of course, if you’re searching for an unknown person, you probably have no idea where they or their ancestors are from. Two of my best matches first appeared at MyHeritage.

Of course, your matches with people who descend from your unknown maternal grandfather won’t have any Theories of Family Relativity, as that tool is based on BOTH a DNA match plus a tree or document match. However, Theories is wonderful to group your matches to your other three grandparents.

MyHeritage provides a great deal of information for each match, including common surnames with your tree. If you recognize the surnames (and shared matches) as paternal or maternal, then you can assign the match. However, the matches you’re most interested in are the highest matches without any surnames in common with you – which likely point to the missing maternal grandfather.

However, those people may, and probably do, have surnames in common with each other.

Of the matches who aren’t attributed to the other three grandparents, the name Ferverda arises again and again. So does Miller, which suggests the grandparent or great-grandparent couple may well be Ferverda/Miller.

Let’s continue working through the process with our spreadsheet and see what we can discover about those surnames.

Our 60 Results

Of the 60 total results, 15 from each vendor, a total of 24 cannot be assigned to other columns through bucketing or shared matches, so are associated with the maternal grandfather. Of course, Michael who descends from both of my maternal grandparents won’t be helpful initially.

Cheryl, Donald and Michael are duplicates at different vendors, but the rest are not.

Of the relevant matches, the majority, 12 are from FamilyTreeDNA, four each are from Ancestry and MyHeritage, and three are from 23andMe.

Of the names provided in the surname fields of matches, in matches’ trees in the first few generations, and the testers’ surnames, Ferverda is repeated 12 times, for 50% of the time. Miller is repeated 9 times, so it’s likely that either of those are the missing grandfather’s surname. Of course, if we had Y-DNA, we’d know the answer to that immediately.

Comparing trees of my matches, we find John Ferverda as the common ancestor between two different matches. John is the son of Hiram Ferverda and Eva Miller who are found in several trees.

That’s a great hint. But is this the breakthrough I need?

What’s Next?

The next step is to look for connections between the maternal grandmother, Edith Lore, who is known in our example, and a Ferverda male. He is probably one of the sons of Hiram Ferverda and Eva Miller. Do they lived in the same area? In close proximity? Do they attend the same church or school? Are they neighbors or live close to the family or some of their relatives? Does she have connections with Ferverda family members? We are narrowing in.

Some of Hiram and Eva’s sons might be able to be eliminated based on age or other factors, or at least be less likely candidates. Any of their children who had moved out of state when the child was conceived would be less likely candidates. Age would be a factor, as would opportunity.

Target testing of the Ferverda sons’ children, or the descendants of their children would (probably) be able to pinpoint which of their sons is more closely related to me (or my mother) than the rest.

In our case, indeed, John Ferverda is the son we are searching for and his descendant, Michael is the highest match on the list. Cheryl and Donald descend from John’s brother, which eliminates him as a candidate. Another tester descends from a third Ferverda son, which eliminates that son as well.

Michael, my actual first cousin with a 755 cM match at one vendor, and 822 cM at a second vendor, is shown by the MyHeritage cM Explainer with an 88% probability that he is my first cousin.

However, when I’m trying to identify the maternal grandfather, which is half of that couple, I need to focus one generation further back in time to eliminate other candidates.

The second and third closest matches are both Donald at 395 cM and Cheryl at 467 cM who also share the same Ferverda/Miller lineage and are the children of my maternal grandfather’s brother.

On the spreadsheet, I need to look at the trees of people who have both Ferverda and Miller, which brought me to both Cheryl and Donald, then Michael, which allowed me to identify John Ferverda, unquestionably, as my grandfather based on the cM match amounts.

Cheryl and Donald, who are confirmed full siblings, and my mother either have to be first cousins, or half siblings. Their match with mother is NOT in the half-sibling range for one sibling, and on the lower edge with the other. Mother also matches Michael as a nephew, not more distantly as she would if he were a first cousin once removed (1C1R) instead of a nephew.

Evaluating these matches combined confirms that my maternal grandfather is indeed John Ferverda.

What About X DNA?

The X chromosome has a unique inheritance path which is sometimes helpful in this circumstance, especially to males.

Women inherit an X chromosome from both parents, but males inherit an X chromosome from ONLY their mother. A male inherits a Y chromosome from his father which is what makes him male. Women inherit two X chromosomes, one from each parent, and no Y, which is what makes them female.

Therefore, if you are a male and are struggling with which side of your tree matches are associated with, the X chromosome may be of help.

Your mother passed her X chromosome to you, which could be:

  • Her entire maternal X, meaning your maternal grandmother’s X chromosome
  • Her entire paternal X, meaning your maternal grandfather’s X chromosome (which descends from his mother)
  • Some combination of your maternal grandmother and maternal grandfather’s chromosomes

One thing we know positively is that a male’s X matches are ALWAYS from their maternal side only, so that should help when dividing a male’s matches maternally or paternally. Note – be aware of potential pedigree collapse, endogamy and identical-by-chance matches if it looks like a male has a X match on his father’s side.

Unfortunately, the X chromosome cannot assist females in the same way, because females inherit an X from both parents. Therefore, they can match people in the same was as a male, but also in additional ways.

  • Females will match their paternal grandmother on her entire X chromosome, and will match one or both of their maternal grandparents on the X chromosome.
  • Females will NEVER match their paternal grandfather’s X chromosome because their father did not inherit an X chromosome from his father.
  • Males will match one or both of their maternal grandparents on their X chromosome.
  • Males will NEVER match their paternal grandparents, because males do not receive an X chromosome from their father.

The usefulness of X DNA matching depends on the inheritance path of both the tester AND their match.

When Can Y-DNA or Mitochondrial DNA Help with Grandparent Identification?

If you recall, I selected the maternal grandfather as the person to seek because no tester carries either the Y-DNA or mitochondrial DNA of their maternal grandfather. In other words, this was the most difficult identification, meaning that any of the other three grandparents would be, or at least could be, easier with the benefit of Y-DNA and/or mitochondrial DNA testing.

In addition to matching, both Y-DNA and mitochondrial DNA will provide testers with location origins, both continental and often much more specific locations based on where other testers and matches are from.

Y-DNA often provides a surname.

Let’s see how these tests, matches and results can assist us.

  • Paternal grandfather – If I was a male descended from John Ferverda paternally, I could have tested both my autosomal DNA PLUS my Y-DNA, which would have immediately revealed the Ferverda surname via Y-DNA. Two Ferverda men are shown in the Ferverda surname DNA project, above.

That revelation would have confirmed the Ferverda surname when combined with the high frequency of Ferverda found among autosomal matches on the spreadsheet.

  • Maternal grandmother – If we were searching for a maternal grandmother, both the male and female sibling testers (as shown in the pedigree chart) would have her mitochondrial DNA which could provide matches to relevant descendants. Mitochondrial DNA at both FamilyTreeDNA and 23andMe could also eliminate anyone who does not match on a common haplogroup, when comparing 23andMe results to 23andMe results, and FamilyTreeDNA to FamilyTreeDNA results at the same level.

At 23andMe, only base level haplogroups are provided, but they are enough to rule out a direct matrilineal line ancestor.

At FamilyTreeDNA, the earlier HVR1 and HVR2 tests provide base level haplogroups, while full sequence testing provides granular, specific haplogroups. Full sequence is the recommended testing level.

  • Paternal grandmother – If we were searching for a paternal grandmother, testers would, of course, need either their father to test his mitochondrial DNA, or for one of his siblings to test which could be used in the same way as described for maternal grandmother matching.

Summary

Successfully identifying a grandparent is dependent on many factors. Before you make that identification, it’s very difficult to know which are more or less important.

For example, if the grandparent is from a part of the world with few testers, you will have far fewer matches, potentially, than other lines from more highly tested regions. In my case, two of my four grandparents’ families, including Ferverda, immigrated in the 1850s, so they had fewer matches than families that have been producing large families in the US for generations.

Endogamy may be a factor.

Family size in past and current generations may be a factor.

Simple luck may be a factor.

Therefore, it’s always wise to test your DNA, and that of your parents and close relatives if possible, and upload to all of the autosomal databases. Then construct an analysis plan based on:

  • How you descend from the grandparent in question, meaning do you carry their X DNA, Y-DNA or mitochondrial DNA.
  • Who else is available to test their autosomal DNA to assist with shared matches and the process of elimination.
  • Who else is available to test for Y-DNA and/or mitochondrial DNA of the ancestor in question.

If you don’t find the answer initially, schedule a revisit of your matches periodically and update your spreadsheet. Sometimes DNA and genealogy is a waiting same.

Just remember, luck always favors the prepared!

Resources

You may find the following resource articles beneficial in addition to the links provided throughout this article.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

X Chromosome Master Class

The X chromosome can be especially useful to genetic genealogists because it has a unique inheritance path. Thanks to that characteristic, some of the work of identifying your common ancestor is done just by simply HAVING an X match.

Unfortunately, X-DNA and X matching is both underutilized and somewhat misunderstood – in part because not all vendors utilize the X chromosome for matching.

The X chromosome has the capability of reaching further back in time and breaking down brick walls that might fall no other way.

Hopefully, you will read this article, follow along with your own DNA results and make important discoveries.

Let’s get started!

Who Uses the X Chromosome?

The X chromosome is autosomal in nature, meaning it recombines under some circumstances, but you only inherit your X chromosome from certain ancestors.

It’s important to understand why, and how to utilize the X chromosome for matching. In this article, I’ve presented this information in a variety of ways, including case studies, because people learn differently.

Of the four major testing vendors, only two provide X-DNA match results.

  • FamilyTreeDNA – provides X chromosome results and advanced matching capabilities including filtered X matching
  • 23andMe – provides X chromosome results, but not filtered X matching without downloading your results in spreadsheet format
  • Ancestry and MyHeritage do not provide X-DNA results but do include the X in your raw DNA file so you can upload to vendors who do provide X matching
  • GEDmatch – not a DNA testing vendor but a third-party matching database that provides X matching in addition to other tools

It’s worth noting at this point that X-DNA and mitochondrial DNA is not the same thing. I wrote about that, here. The source of this confusion is that the X chromosome and mitochondrial DNA are both associated in some way with descent from females – but they are very different and so is their inheritance path.

So, what is X-DNA and how does it work?

What is X-DNA?

Everyone inherits two copies of each of chromosomes 1-22, one copy of each chromosome from each of your parents.

That’s why DNA matching works and each match can be identified as “maternal” or “paternal,” depending on how your match is related to you. Each valid match (excluding identical by chance matches) will be related either maternally, or paternally, or sometimes, both.

Your 23rd chromosome is your sex determination chromosome and is inherited differently. Chromosome 23 is comprised of X and Y DNA.

Everyone inherits one copy of chromosome 23 from each parent.

  • Males inherit a Y chromosome from their father, which is what makes males male. They do not inherit an X chromosome from their father.
  • Males always inherit an X chromosome from their mother.
  • Females inherit an X chromosome from both parents, which is what makes them female. Females have two X chromosomes, and no Y chromosome.
Chromosome 23 Father Contributes Mother Contributes
Male Child Y chromosome X chromosome
Female Child X chromosome X chromosome

X-DNA and mitochondrial DNA are often confused, but they are not the same thing. In fact, they are completely different.

Mitochondrial DNA, in BOTH males and females is always inherited from only the mother and only descends from the direct matrilineal line, so only the mother’s mother’s mother’s direct line. X DNA can be inherited from a number of ancestors based on a specific inheritance path.

Everyone has both X-DNA AND mitochondrial DNA.

Because males don’t inherit an X chromosome from their father, X chromosome matching has a unique and specific pattern of descent which allows testers who match to immediately eliminate some potential common ancestors.

  • Males only inherit an X chromosome from their mother, which means they can only have legitimate X matches on their mother’s side of their tree.
  • Females, on the other hand, inherit an X chromosome from both their mother and father. Their father only has one X chromosome to contribute, so his daughter receives her paternal grandmother’s X chromosome intact.
  • Both males and females inherit their mother’s X chromosome just like any of the other 22 autosomes. I wrote about chromosomes, here.

However, the unique X chromosome inheritance path provides us with a fourth very useful type of DNA for genealogy, in addition to Y-DNA, mitochondrial and autosomal DNA.

For the vendors who provide X-matching, it’s included with your autosomal test and does not need to be purchased separately.

The Unique X Chromosome

The X chromosome, even though it is autosomal in nature, meaning it does recombine and divide in certain circumstances, is really its own distinct tool that is not equivalent to autosomal matching in the way we’re accustomed. We just need to learn about the message it’s delivering and how to interpret X matches.

FamilyTreeDNA is one of two vendors who utilizes X chromosome matching, along with 23andMe, which is another good reason to encourage your matches at other vendors to upload their DNA file to FamilyTreeDNA for free matching.

The four major vendors do include X-DNA results in their raw DNA download file, even if they don’t provide X-matching themselves. This means you can upload the results to either FamilyTreeDNA or GEDmatch where you can obtain X matches. I provided step-by-step download/upload instructions for each vendor here.

Let’s look how X matching is both different, and beneficial.

My X Chromosome Family Tree

We are going to build a simple case study. A case study truly is worth 1000 descriptions.

This fan chart of my family tree colorizes the X chromosome inheritance path. In this chart, males are colored blue and females pink, but the salient point is that I can inherit some portion of (or all of) a copy of my X chromosome from the colorized ancestors, and only those ancestors.

Because males don’t inherit an X chromosome from their father, they CANNOT inherit any portion of an X chromosome from their father’s ancestors.

Looking at my father’s half of the chart, at left, you see that I inherited an X chromosome from both of my parents, but my father only inherited an X chromosome from his mother, Ollie Bolton. His father’s portion of the tree is uncolored, so no X chromosome could have descended from his paternal ancestors to him. Therefore he could not pass any X chromosome segments to me from his paternal side – because he doesn’t have X DNA from his father.

Hence, I didn’t inherit an X chromosome from any of the people whose positions in the chart are uncolored, meaning I can only inherit an X chromosome from the pink or blue people.

Essentially any generational male to male, meaning father/son relationship is an X-DNA blocker.

I know positively that I inherited my paternal grandmother, Ollie Bolton’s entire X chromosome, because hers is the only X chromosome my father, in the fan chart above, had to give me. His entire paternal side of the fan chart is uncolored.

Men only ever inherit their X chromosome from their mother. The only exception to this is if a male has the rare genetic condition of Klinefelter Syndrome, also known as XXY. If you are an adult male, it’s likely that you’ll already know if you have Klinefelters, so that’s probably the last possibility you should consider if you appear to have paternal X matches, not the first.

Sometimes, men appear to have X matches on their father’s side, but (barring Klinefelter’s) this is impossible. Those matches must either be identical by chance, or somehow related in an unknown way on their mother’s side.

Everyone inherits an X chromosome from their mother that is some combination of the X from her father and mother. It’s possible to inherit all of your maternal grandmother or maternal grandfather’s X chromosome, meaning they did not recombine during meiosis.

Using DNA Painter as an X Tool

I use DNAPainter to track my matches and correlate segments with ancestors.

I paint my DNA segments for all my chromosomes at DNAPainter which provides me with a central tracking mechanism that is visual in nature and allows me to combine matches from multiple vendors who provide segment information. I provide step-by-step instructions for using DNAPainter, here.

This is my maternal X chromosome with my matches painted. I’ve omitted my matches’ names for privacy.

On the left side of the shaded grey column, those matches are from my maternal grandmother’s ancestors. On the right side, those matches are from my maternal grandfather’s ancestors.

The person in the grey column descends from unknown ancestors. In other words, I can tell that they descend from my maternal line, but I can’t (yet) determine through which of my two maternal grandparents.

There’s also an area to the right of the grey column where there are no matches painted, so I don’t know yet whether I inherited this portion of my X chromosome from my maternal grandmother or maternal grandfather.

The small darker pink columnar band is simply marking the centromere of the chromosome and does not concern us for this discussion.

Click on any image to enlarge

In this summary view of my paternal X chromosome, above, it appears that I may well have inherited my entire X chromosome from my paternal great-grandmother. We know, based on our inheritance rules that I clearly received my paternal grandmother’s X chromosome, because that’s all my father had to give me.

However, by painting my matches based on their ancestors, and selecting the summary view, you can see that most of my paternal X chromosome can be accounted for, with the exception of rather small regions with the red arrows.

It’s not terribly unusual for either a male or female to inherit their entire maternal X chromosome from one grandparent, or in this case, great-grandparent.

Of course, a male doesn’t inherit an X chromosome from their father, but a female can inherit her paternal X chromosome from either or both paternal grandparents.

Does Size Matter?

Generally speaking, an X match needs to be larger than a match on the other chromosomes to be considered genealogically equivalent in the same timeframe as other autosomal matches. This is due to:

  • The unique inheritance pattern, meaning fewer recombination events occurred.
  • The fact that X-DNA is NOT inherited from several lines.
  • The X chromosome has lower SNP density, meaning it contains fewer SNPs, so there are fewer possible locations to match when compared to the other chromosomes.

I know this equivalency requirement sounds negative, but it’s actually not. It means 7 cM (centimorgans) of DNA on the X chromosome will reach back further in time, so you may carry the DNA of an ancestor on the X chromosome that you no longer carry on other chromosomes. It may also mean that older segments remain larger. It’s actually a golden opportunity.

It sounds much more positive to say that a 16 cM X match for a female, or a 13 cM X match for a male is about the same as a 7 cM match for any other autosomal match in the same generation.

Of course, if the 7 cM match gets divided in the following generation, it has slipped below the matching threshold. If a 16 or 13 cM X match gets divided, it’s still a match. Plus, in some generations, if passed from father to daughter, it’s not divided or recombined. So a 7 cM X match may well be descended from ancestors further back in time.

X Chromosome Differences are Important!

Working with our great-great grandparent’s generation, we have 16 direct ancestors as illustrated in the earlier fan chart.

Given that females inherit from 8 X-chromosome ancestors in total, they are going to inherit an average of 45.25 cM of X-DNA from each of those ancestors. Females have two X chromosomes for a total length of 362 cM of X-DNA from both parents.

A male only has one X chromosome, 181 cM in length, so he will receive an average of 36.2 cM from each of 5 ancestors, and it’s all from his mother’s side.

In this chart, I’ve shown the total number of cMs for all of the autosomes, meaning chromosomes 1-22 and, separately, the X for males and females.

  • The average total cM for chromosomes 1-22 individually is 304 cM. (Yes, each chromosome is a different length, but that doesn’t matter for averages.)
  • That 304 cM can be inherited from any of 16 ancestors (in your great-grandparent’s generation)
  • The total number of cM on the X chromosomes for both parents for females totals 362
  • The total cM of X-DNA for males is 181 cM
  • The calculated average cM inherited for the X chromosome in the same generation is significantly different, shown in the bottom row.

The actual average for males and females for any ancestor on any random non-X chromosome (in the gg-grandparent generation) is still 19 cM. Due to the inheritance pattern of the X chromosome, the female X-chromosome average inheritance is 45.25 cM and the male average is 36.2 cM, significantly higher than the average of 19 cM that genetic genealogists have come to expect at this relationship distance on the other chromosomes, combined.

How Do I Interpret an X Match?

It’s important to remember when looking at X matching that you’re only looking at the amount of DNA from one chromosome. When you’re looking at any other matching amount, you’re looking at a total match across all chromosomes, as reported by that vendor. Vendors report total matching DNA differently.

  • The total amount of matching autosomal DNA does not include the X chromosome cMs at FamilyTreeDNA. X-DNA matching cMs are reported separately.
  • The total amount of matching autosomal DNA does include the X chromosome cMs in the total cM match at 23andMe
  • X-DNA is not used for matching or included in the match amount at either MyHeritage or Ancestry, but is included in the raw DNA data download files for all four vendors.
  • The total match amount shows the total for 22 (or 23) chromosomes, NOT just the X chromosome(s). That’s not apples to apples.

Therefore, an X match of 45 cM for a female or 36 for a male is NOT (necessarily) equivalent to a 19 cM non-X match. That 19 cM is the total for 22 chromosomes, while the X match amount is just for one chromosome.

You might consider a 20 cM match on the regular autosomes significant, but a 20 cM X-only match *could* be only roughly equivalent to a 10ish cM match on chromosomes 1-22 in the same generation. That’s the dog-leg inheritance pattern at work.

This is why FamilyTreeDNA does not report an X-only match if there is no other autosomal match. A 19 cM X match is not equivalent to a 19cM match on chromosomes 1-22. Not to mention, calculating relationships based on cM ranges becomes more difficult when the X is included.

However, the flip side is that because of the inheritance pattern of the X chromosome, that 19 cM match, if valid and not IBC, may well reach significantly further back in time than a regular autosomal matches. This can be particularly important for people seeking either Native or enslaved African ancestors for whom traditional records are elusive if they exist at all.

Critical Take-Away Messages

Here are the critical take-away messages:

  1. Because there are fewer ancestral lineages contributing to the tester’s X chromosome, the amount of X chromosomal DNA that a tester inherits from the ancestors who contribute to their X chromosome is increased substantially.
  2. The DNA of the contributing ancestors is more likely to be inherited, because there are fewer other possible contributing ancestors, meaning fewer recombination events or DNA divisions/recombinations.
  3. X-DNA is also more likely to be inherited because when passed from mother to son, it’s passed intact and not admixed with the DNA of the father.
  4. X matches cannot be compared equally to either percentages or cM amounts on any of the other chromosomes, or autosomal DNA in total, because X matching only reports the amount on one single chromosome, while your total cM match amount reports the amount of DNA that matches from all chromosomes (which includes the X at 23andMe).
  5. If you have X matches at 23andMe and/or FamilyTreeDNA, you can expect your total matching to be higher at 23andMe because they include the X matching cM in the total amount of shared DNA. FamilyTreeDNA provides the amount of X matching DNA separately, but not included in the total. MyHeritage and Ancestry do not include X matching DNA.

For clarity, at FamilyTreeDNA, you can see my shared DNA match with my mother. Of course, I match her on the total length of all my chromosomes, which is 3563 cM, the total Shared DNA for chromosomes 1-22. This includes all chromosomes except for the X chromosome which is reported separately at 181 cM. The longest contiguous block of shared DNA is 284 cM, the entire length of chromosome 1, the longest chromosome.

Because I’m a female, I match both parents on the full length of all 23 chromosomes, including 181 cM on both X chromosomes, respectively. Males will only match their mother on their X chromosome, meaning their total autosomal DNA match to their father, because the X is excluded, is 181 cM less than to their mother.

This difference in the amount of shared DNA with each parent, plus the differences in how DNA totals are reported by various vendors is also challenging for tools like DNAPainter’s Shared cM Tool which is based on the crowd sourced Shared cM Project that averages shared DNA numbers for known relationships at various vendors and translates those numbers into possible relationships for unknown matches.

Not all vendors report their total amount of shared DNA the same way. This is true for both X-DNA and half identical (HIR) versus fully identical (FIR) segments at 23andMe. This isn’t to say either approach is right or wrong, just to alert you to the differences.

Said Another Way

Let’s look at this another way.

If the average on any individual chromosome is 19 cMs for a relationship that’s 5 generations back in time. The average X-DNA for the same distance relationship is substantially more, which means that:

  • The X-DNA probably reaches further back in time than an equivalent relationship on any other autosome.
  • The X-DNA will have (probably) divided fewer times, and more DNA will descend from individual ancestors.
  • The inheritance path, meaning potential ancestors who contributed the X chromosomal DNA, is reduced significantly.

It’s challenging to draw equivalences when comparing X-DNA matching to the other chromosomes due to several variables that make interpretation difficult.

Based on the X-match size in comparison to the expected 19 cM single chromosome match at this genealogical distance, what is the comparable X-DNA segment size to the minimum 7 cM size generally accepted as valid on other chromosomes? What would be equal to a 7 cM segment on any other single random autosomal match, even though we know the inheritance probabilities are different and this isn’t apples to apples? Let’s pretend that it is.

This calculation presumes at the great-great-grandparent level that the 19 cM is in one single segment on a single chromosome. Now let’s divide 19 cM by 7 cM, which is 2.7, then divide the X amounts by the same number for the 7 cM equivalent of 16.75 cM for a female and 13.4 cM for a male.

When people say that you need a “larger X match to be equivalent to a regular autosomal match,” this is the phenomenon being referenced. Clearly a 7 cM X match is less relevant, meaning not equivalent, in the same generation as a 7 cM regular autosomal match.

Still, X matching compared to match amounts shown on the other chromosomes is never exact;u apples to apples because:

  • You’re comparing one X chromosome to the combined DNA amounts of many chromosomes.
  • The limited recombination path.
  • DNA from the other autosomes is less likely to be inherited from a specific ancestor.
  • The X chromosome has a lower SNP density than the other chromosomes, meaning fewer SNPs per cM.
  • The X-DNA may well reach further back in time because it has been divided less frequently.

Bottom Line

The X chromosome is different and holds clues that the other autosomes can’t provide.

Don’t dismiss X matches even if you can’t identify a common ancestor. Given the inheritance path, and the reduced number of divisions, your X-DNA may descend from an ancestor further back in time. I certainly would NOT dismiss X matches with smaller cMs than the 13 and 16 shown above, even though they are considered “equivalent” in the same generation.

X chromosome matching can’t really be equated to matching on the other chromosomes. They are two distinct tools, so they can’t be interpreted identically.

Different vendors treat the X chromosome differently, making comparison challenging.

  • 23andMe includes not only the X chromosome in their cM total, but doubles the Fully Identical Regions (FIR) when people, such as full siblings, share the same DNA from both parents. I wrote about that here.
  • Ancestry does not include the X in their cM match calculations.
  • Neither does MyHeritage.
  • FamilyTreeDNA shows an X match only when it’s accompanied by a match on another chromosome.

The Shared cM Project provides an average of all of the data input by crowdsourcing from all vendors, by relationship, which means that the cM values for some relationships are elevated when compared to the same relationship or even same match were it to be reported from a different vendor.

The Best Part!

The X chromosome inheritance pattern means that you’re much more likely to carry some amount of a contributing ancestor’s X-DNA than on any other chromosome.

  • X-DNA may well be “older” because it’s not nearly as likely to be divided, given that there are fewer opportunities for recombination.
  • When you’re tracking your X-DNA back in your tree, whenever you hit a male, you get an automatic “bump” back a generation to his mother. It’s like the free bingo X-DNA square!
  • You can immediately eliminate many ancestors as your most recent common ancestor (MRCA) with an X-DNA match.
  • Because X-DNA reaches further back in time, sometimes you match people who descend from common ancestors further back in time as well.

If you match someone on multiple segments, if one of those matching segments is X-DNA, that segment is more likely to descend from a different ancestor than the segments on chromosomes 1-22. I’ve found many instances where an X match descends from a different ancestor than matching DNA segments on the autosomes. Always evaluate X matches carefully.

Sometimes X-DNA is exactly what you need to solve a mystery.

Ok, now let’s step through how to use X-DNA in a real-life example.

Using X DNA to Solve a Mystery

Let’s say that I have a 30 cM X match with a male.

  • I know immediately that our most recent common ancestor (MRCA) is on HIS mother’s side.
  • I know, based on my fan chart, which ancestral lines are eliminated in my tree. I’ve immediately narrowed the ancestors from 16 to 5 on his side and 16 to 8 on my side.
  • Two matching males is even easier, because you know immediately that the common ancestor must be on both of their mother’s sides, with only 5 candidate lines each at the great-great-grandparent generation.

Female to female matches are slightly more complex, but there are still several immediately eliminated lines each. That means you’ve already eliminated roughly half of the possible relationships by matching another female on their X chromosome.

In this match with a female second cousin, I was able to identify who she was via our common ancestor based on the X chromosome path. In this chart, I’m showing the relevant halves of her chart at left (paternal), and mine (maternal), side by side.

I added blockers on her chart and mine too.

As it turns out, we both inherited most of our X chromosome from our great-grandparents, marked above with the black stars.

Several lines are blocked, and my grandfather’s X chromosome is not a possibility because the common ancestor is my maternal grandmother’s parents. My grandfather is not one of her ancestors.

Having identified this match as my closest relative (other than my mother) to descend on my mother’s maternal side, I was able to map that portion of my X chromosome to my great-grandparents Nora Kirsch and Curtis Benjamin Lore.

My X Chromosome at DNA Painter

Here’s my maternal X chromosome at DNAPainter and how I utilized chromosome painting to push the identification of the ancestors whose X chromosome I inherited back an additional two generations.

Using that initial X chromosome match with my second cousin, shown by the arrow at bottom of the graphic, I mapped a large segment of my maternal X chromosome to my maternal great-grandparents.

By viewing the trees of subsequent X maternal matches, I was then able to push those common segments, shown painted directly above that match with the same color, back another two generations, to Joseph Hill, born in 1790, and Nabby Hall. I was able to do that based on the fact that other matches descend from Joseph and Nabby through different children, meaning we all triangulate on that common segment. I wrote about triangulation at DNAPainter, here.

I received no known X-DNA from my great-grandmother, Nora Kirsch, although a small portion of my X chromosome is still unassigned in yellow as “Uncertain.”

I received a small portion of my maternal X chromosome, in magenta, at left, from my maternal great-great-grandparents, John David Miller and Margaret Lentz.

The X chromosome is a powerful tool and can reach far back in time.

In some cases, the X, and other chromosomes can be inherited intact from one grandparent. I could have inherited my mother’s entire copy of her mother’s, or her father’s X chromosome based on random recombination, or not. As it turns out, I didn’t, and I know that because I’ve mapped my chromosomes to identify my ancestors based on common ancestors with my matches.

X-DNA Advanced Matches at FamilyTreeDNA

At FamilyTreeDNA, the Advanced Matches tab includes the ability to search for X matches, either within the entire database, or within specific projects. I find the project selection to be particularly useful.

For example, within the Claxton project, my father’s maternal grandmother’s line, I recognize my match, Joy, which provides me an important clue as to the possible common ancestor(s) of our shared segments.

Joy’s tree shows that her 4-times great-grandparents are my 3-times great-grandparents, meaning we are 4th cousins once removed and share 17 cM of DNA on our X chromosome across two segments.

Don’t be deceived by the physical appearance of “size” on your chromosomes. The first segment that spans the centromere, or “waist” of the chromosome, above, is 10.29 cM, and the smaller segment at right is 7.02 cM. SNPs are not necessarily evenly distributed along chromosomes.

Remember, an X or other autosomal match doesn’t necessarily mean the entire match is contained in one segment so long as it’s large enough to be divided in two parts and survive the match threshold.

It’s worth noting that Joy and I actually share at least two different, unrelated ancestral lines, so I need to look at Joy’s blocked lines to see if one of those common ancestral lines is not a possibility for our X match. It’s important to evaluate all possible ancestors, plus the inheritance path to eliminate any lineage that involves a father to son inheritance on the X chromosome.

Last but not least, you may match on your X chromosome through a different ancestor than on other chromosomes. Every matching segment has its own individual history. It’s not safe to assume.

Now, take a look at your X chromosome matches at FamilyTreeDNA, 23andMe, and GedMatch. What will you discover?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA Black Friday is Here

Yes, I know it’s not Friday yet, but the DNA Black Friday sales have started, and sale dates are limited, so here we go.

These are the best prices I’ve ever seen at both FamilyTreeDNA and MyHeritage. If you’ve been waiting to purchase a DNA test for that special someone, there’s never been a better time.

Remember, to jump-start your genetic genealogy, test close or targeted relatives in addition to yourself:

  • Parents, or if both parents are not available, full and half-siblings
  • If neither parents nor siblings are available, your siblings’ descendants
  • Grandparents or descendants of your grandparents – aunts, uncles, or their descendants
  • Cousins descended from great-grandparents or other known ancestors
  • Y and mitochondrial DNA descendants of specific, targeted ancestors

For yourself, you’ll want to fish in all the ponds by taking an autosomal test or uploading a DNA file to each of the four vendors. Upload/download instructions are available here.

Everyone can test their own mitochondrial DNA to learn about your mother’s direct matrilineal line, and males can test their Y-DNA to unveil information about their patrilineal or surname line. Women, you can test your father’s, brother’s, or paternal uncle’s Y-DNA.

I’ve written a DNA explainer article, 4 Kinds of DNA for Genetic Genealogy, which you might find helpful. Please feel free to pass it on.

Vendor Offerings

FamilyTreeDNA

Free shipping within the US for orders of $79 or more

FamilyTreeDNA is the only major testing company that offers multiple types of tests, meaning Y-DNA, mitochondrial and autosomal. You can also get your toes wet with introductory level tests for Y DNA (37 and 111 marker tests), or you can go for the big gun right away with the Big Y-700.

This means that if you’ve purchased tests in the past, you can upgrade now. Upgrade pricing is shown below. Click here to sign on to your account to purchase an upgrade or additional product.

At FamilyTreeDNA, by taking advantage of autosomal plus Y-DNA and mitochondrial DNA, you will get to know your ancestors in ways not possible elsewhere. You can even identify or track them using your myOrigins painted ethnicity segments.

FamilyTreeDNA divides your Family Finder matches maternal and paternally for you if you create or upload a tree and link known testers. How cool is this?!!!

MyHeritage

The MyHeritage DNA test is on sale for $36, the best autosomal test price I’ve ever seen anyplace.

MyHeritage has a significant European presence and I find European matches at MyHeritage that aren’t anyplace else. MyHeritage utilizes user trees and DNA matches to construct Theories of Family Relativity that shows how you and your matches may be related.

Remember, you can upload the raw data file from the MyHeritage DNA test to both FamilyTreeDNA and GEDmatch for free.

Free shipping on 2 kits or more.

This sale ends at the end-of-day on Black Friday.

You can combine your DNA test with a MyHeritage records subscription with a free trial, here.

Ancestry

The AncestryDNA test is $59, here. With Ancestry’s super-size DNA database, you’re sure to get lots of matches and hints via ThruLines.

You can get free shipping if you’re an Amazon Prime member.

If you order an AncestryDNA test, you can upload the raw DNA file to FamilyTreeDNA, MyHeritage and GEDmatch for free. Unfortunately, Ancestry does not accept uploads from other vendors.

23andMe

The 23andMe Ancestry + Traits DNA test is $79, here. 23andMe is well known for its Ancestry Composition (ethnicity) results and one-of-a-kind genetic tree.

The 23andMe Ancestry + Traits + Health test is now $99, here.

You can get free shipping if you’re an Amazon Prime member.

If you order either of the 23andMe tests, you can upload the raw data file to FamilyTreeDNA, MyHeritage, and GEDmatch for free. Unfortunately, 23andMe does not accept uploads from other vendors.

Can’t Wait!!

This is always my favorite time of the year because I know that beginning soon, we will all be receiving lots of new matches from people who purchased or received DNA tests during the holiday season.

  • What can you do to enhance your genealogy?
  • Have you ordered Y and mitochondrial DNA tests for yourself and people who carry the Y and mitochondrial DNA of your ancestors?
  • Are you in all of the autosomal databases?
  • Who are you ordering tests for?

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Connect Your DNA Test, and Others, to Your Tree

To optimize your DNA tests, each tester needs to take advantage of the features offered by each vendor.

In order to do that, we need to perform the following tasks.

  1. Upload or create a tree (except at 23andMe who does not support trees)
  2. Connect our own test to our own profile card on our tree
  3. Connect other tests we manage to their (or our) tree, depending on the vendor
  4. Connect matches who are known relatives to their profiles on our tree

Each vendor handles these situations differently, so we’ll look at each one of the vendors with step-by-step instructions for handling those situations. We all want to get the most out of the tests we’ve taken!

Plant a Tree

If you have not created or uploaded a tree at each one of the vendors (except 23andMe who does not support genealogy trees), please do so. However, 23andMe does provide for links to your tree elsewhere, so we will review that function.

I manage my “master tree” on my own computer, but I also maintain trees at both Ancestry and MyHeritage where I attach documents and research found at that vendor. I also update my ancestors at WikiTree to be sure other researchers benefit from new discoveries.

I have not uploaded my full tree from my computer anyplace because I have many private notes that are not appropriate for disclosure, not to mention speculative and unproven relationships. I created a pared-down tree at one time to upload to both Ancestry and MyHeritage, and build those trees out from there.

I’m often asked about replacing your tree at the various vendors with an updated tree. If you do that, be aware that you will lose your DNA connections and document links. I do NOT recommend that. I simply maintain multiple trees. I wrote about this in the article, “Genealogy Tree Replacement – Should I or Shouldn’t I?” If you are considering that option, PLEASE read that article first.

RootsMagic, Family Tree Maker, and Legacy Family Tree Software all provide a syncing option with various vendors and FamilySearch, although not every vendor allows access to each of those software companies. I probably should experiment with the syncing option, but given a family member’s terrible experience some years back, I’ve been unwilling to do that. My biggest fear is that I will corrupt the file and not notice it until it’s far too late to revert to a backup.

When you upload or create a tree, make sure deceased and living people are marked as such, and you’ve opted to share your tree. If you don’t, you accidentally have a private tree. Worse yet, you might not realize it. I wrote about that in Quick Tip: Trees, Death Dates and Unintentionally Private Ancestors.

Now, let’s take a look at each vendor.

23andMe

23andMe does not support traditional genealogy trees, but they do provide a location for you to link your tree at another vendor or source.

Under your name at the right side, you’ll see “View Your Profile” under the dropdown.

I’ve not been able to find a generic Ancestry tree link that will allow non-Ancestry subscribers to view my tree, but it’s easy to do at MyHeritage. Simply open your tree at  MyHeritage and just copy the link at the top. Don’t worry, people won’t see anyone living.

If you want to use “one world” types of trees, you can also link to other trees such as FamilySearch or WikiTree, but just remember that you don’t control that content.

You don’t need to connect yourself to your tree at 23andMe, because there is no genealogy tree. However, 23andMe constructs a “genetic tree” for you using your closest matches, based on how you match other people, and how they match each other.

You can view your tree under “Family and Friends,” then “Family Tree.”

I added my ancestors’ names so it’s easy to keep straight. You can do that by simply clicking on the colored circle representing the ancestor, starting with your parents.

If you know that one of your matching relatives is not in exactly the correct tree location, you can click on their circle, and then click on Edit to make modifications.

You may want to add a relative that you can identify but who isn’t connected on the tree that 23andMe constructed.

Looking on the far-right side of the tree, in the lower corner, you’ll see “Add a Relative.” Click there and follow the instructions.

Ancestry

At Ancestry, you need to link your test to “you” in a tree. Your test can only be linked to one person in one tree at a time. You can change this, but you will lose any ThruLines you currently have. They will be regenerated based on the new tree you connect your test to, but based on the tree and other factors, they may not be the same. My recommendation is if you’re going to disconnect yourself and reconnect yourself elsewhere, record everything first.

Alternatively, you can take a second DNA test and simply link that second test to another tree. IMHO, that’s a better alternative. You can leave one in place as your research tree and use the second test to experiment with.

To link your test to your tree, select the “DNA” tab. At far right, you’ll see “Settings.”

You need to tell Ancestry who you are in your tree. Click on “Settings,” then scroll to “Tree Link.”

You can also link other tests you directly manage to their placards in your tree as well.

These links allow Ancestry to form ThruLines using both DNA matches and common ancestors in trees for 7 generations.

On your DNA Match page, Ancestry will ask you if you recognize a match.

If you click on “Yes,” you’ll be asked which side the match is on.

Then you’ll be given a long list of possible relationships in most-likely to least-likely order. Literally, Erik is the last option offered.

Select and confirm.

I’m not positive exactly HOW this helps Ancestry help you, but I suspect it confirms and helps Ancestry perfect ThruLines, relationship predictions, and perhaps even “sides” of ethnicity.

I wrote about Optimizing Your Tree at Ancestry for More Hints and DNA ThruLines.

FamilyTreeDNA

At FamilyTreeDNA, every DNA test kit has its own kit number and associated tree, so you don’t need to tell FamilyTreeDNA who you are if you create a tree from scratch on their site.

FamilyTreeDNA offers a unique family matching feature that sorts your matches into maternal and paternal sides.

In order to take advantage of this, you will need a tree. You can upload a GEDCOM file, although the upload at FamilyTreeDNA does not seem to do well with very large files.

If you don’t have a GEDCOM file on your computer, you can download a tree from either Ancestry or MyHeritage and upload to FamilyTreeDNA.

I wrote about this in the article Download Your Ancestry Tree and Upload it Elsewhere for Added Benefit.

If you upload a tree, you’ll be asked to select the person in the tree that is “you,” meaning the person who tested their DNA.

You’ll want to link known matches to your tree to enable Family Matching, aka bucketing, so that FamilyTreeDNA can divide and assign your matches maternally and paternally.

If you are building your tree at FamilyTreeDNA from scratch, simply click to begin and complete the information on the placards to add your information, then your parents, building out from there. You’ll want to add the ancestral lines to connect with your closest matches on your match list.

Family matching, or bucketing, is enabled by linking known matches to their proper place on your tree. FamilyTreeDNA then evaluates each match, determining if they match a common segment with you and someone you’ve linked. If that match does share a segment with both of you, meaning they triangulate, then that person is assigned either maternally, paternally, or both. I wrote about Triangulation in Action at FamilyTreeDNA, here.

The best people to link are your parents and grandparents, of course, but that’s not always an option. You’ll want to link as many matches as you can.

To link people, either click on the Family Tree tab at the top of the page, or on the “Link on Family Tree” under Relationship Range for individual matches.

Simply click on “Link Matches,” then drag and drop your match to their placard.

Here’s an example of linking parents.

Once someone is linked, the green dot will appear signifying that they are linked, and which type of test. Green is a Family Finder autosomal test, blue means they’ve taken a Y DNA test, and pink is a mitochondrial DNA test.

If your parents aren’t available to test, link every upstream relative that you can identify. By this, I mean that your children and full siblings will match you on both sides, so aren’t helpful for parental-side assignment.

People who have DNA tests from both parents can expect around 80% of their matches to be assigned maternally, paternally, or both.

If you have relatives who have tested at other vendors, you can ask them to upload to FamilyTreeDNA for free matching.

MyHeritage

At MyHeritage, you will connect yourself and any relatives whose tests you manage to your tree.

Under “DNA,” select “Manage DNA kits.”

At the right, you’ll click on the three dots, also known as a hamburger menu (who knew.)

Select Assign (if this is a new test or a transfer) or Re-assign a kit.

Be sure to do this for every kit you manage. I made that mistake and wrote about how I discovered and fixed the problem, here. Kit assignment enables Theories of Family Relativity and other super-helpful features.

I wrote about several things you can do to optimize your chances of receiving Theories of Family Relativity, here.

You can upload DNA kits to MyHeritage from tests taken at other vendors, here.

Fish in All the Ponds

I have provided step-by-step download/upload instructors for all vendors, here. It’s important to fish in all available ponds by making sure you have DNA tests at all four vendors. Then, upload or create trees and complete this bit of housekeeping to increase your chances of catching fish!

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research