The Mystery of the Blue Fugates and Smiths: A Study in Blue Genes and Pedigree Collapse

The story of the Blue Fugates, an Appalachian family, is quite interesting, from a genetic perspective, a genealogical perspective, and a genetic genealogy perspective.

Who Are the Blue Fugates?

Martin Fugate, supposedly an orphan from France, and his bride, Elizabeth Smith, who had married by 1840, have long been attributed as the progenitors of the Blue Fugate Family of Troublesome Creek, in and around Perry County, Kentucky.

Their descendants were known as “The Blue Fugates” and also “The Blue People of Kentucky” because some of their children and descendants carried a recessive autosomal genetic trait, Methemoglobinemia.

Methemoglobinemia causes the skin to appear blue due to an oxygen deficiency in the red blood cells. Some people only exhibit this characteristic, or even just blue tinges in their fingernails and lips, when they are cold or agitated, such as when infants cry. Yet others are very, very blue.

Inheritance

In order for someone to exhibit the autosomal recessive trait of blueness due to Methemoglobinemia, they must inherit a copy of the gene from BOTH PARENTS. That’s why this trait is so rare.

  • If the parents have only one copy each, they are carriers and will not have the condition themselves.
  • If one parent carries either one or two copies, and the other parent does NOT carry a copy, their offspring CANNOT carry two copies of the mutation and will not be blue.
  • If both parents carry a copy, and both parents pass their copy on to their offspring, the offspring will probably exhibit some level of blueness – from just a tinge when they are cold, ill or or upset, to very, very blue.

I’m not a physician, so I’m not delving into the medical specifics of Methemoglobinemia, but suffice it to say that levels of 10-20% of methemoglobin in the blood produce blue skin, higher levels can produce more severe medical conditions, and levels beneath that may not be visually detectible.

What’s important for the genealogy aspect of this story is that both parents must carry a copy AND pass their copy on for the condition to express in their offspring.

We’ve learned a lot since the 1800s when this was first observed in various members of the Fugate family in Perry County, KY, and since the 1960s when this phenomenon was first studied in the Fugate family and their descendants. To be clear, there are also references to the blue Combs and blue Ritchies in and around Perry County – but the common factor is that they have ancestors that descend from the Fugate family AND the Smith family ancestors, both.

During my research, I’ve proven some of what was initially accepted as fact was incorrect – and I’d like to correct the record. Bonus points too, because it’s just such a great genealogy story!

My Interest

I’ve been inordinately interested in the Fugate family for a long time – but not because of their famous blueness.

The Fugate family has been found for more than 225 years alongside my Cook, Claxton, Campbell, and Dobkins families. First, in Russell County, VA, where Josiah Fugate was granted land along Sword’s Creek in 1801 that adjoined Harry Smith, Richard Smith, and others, including my brick-wall ancestor, Joel Cook. Keep in mind that we have never discovered the birth surname of Joel’s wife or Joel’s parents.

Joel’s daughter, Sarah, married James Claxton about 1799 or 1800 in Russell County, and in February of 1802, James Claxton and Zachariah Fugate, among others, were ordered to view and lay out a new road. They were clearly neighbors, living on the same road, and knew each other well. We don’t know who James’ parents were either.

The Fugates first lived adjacent to the Cook, Riley, Stephens, and Claxton families on Mockason Creek in Russell County, then later migrated with the same group of families to Claiborne County where they lived along the Powell River near the Lee County, VA line, and are very closely associated with the Dobkins and Campbell lines.

Sometime between 1802 and 1805, several Russell County families moved 110 miles down the mountain range and settled together on the Powell River in Claiborne County, TN.  About the same time, others from the same cluster moved to what would eventually become Perry County, KY.

In 1805, the Fugates were ordered as road hands on the north side of Wallen’s Ridge in Claiborne County, the part that would become Hancock County in the 1840s, along with James Claxton and several Smiths.

In 1808, James Claxton witnessed a deed to Henley Fugate and John Riley.

The unsubstantiated family rumor, repeated as fact but with no source, has always been that William Fugate married the sister of my John Campbell. If that were true, tracking the Fugates would help me track my Campbells – yet another brick wall. Hence, my early interest in the Fugate family. Until now, I’ve never solved any part of that puzzle.

In 1827, in Claiborne County, Henry Cook, road overseer, is assigned John Riley, Henly Fugate, William Fugate, Fairwick Claxton (son of James who had died in 1815), and others. These families continued to be allied, living close to each other.

In 1842, William Fugate (1799-1855), born to William Fugate and Sarah Jane Stephens in Russell County, is involved in the estate of John Campbell, born about 1772, who had died in 1838. John Campbell was the husband of Jane “Jenny” Dobkins, daughter of Jacob Dobkins (1751-1835).

William Fugate of Claiborne County signed a deposition in 1851 saying he came to Claiborne County, TN, in 1826. Claiborne County is rugged terrain, located on the south side of the Cumberland Gap, where Virginia, Tennessee, and Kentucky intersect.

In 1853, both William Fugate and Jehiel Fugate are neck-deep in lawsuits surrounding the estate of Jacob Dobkins, who died in 1835, lived on Powell River, and whose daughters married John Campbell and his brother George Campbell

I recently discovered that this William Fugate was born about 1799 in Russell County, VA, and according to his son’s death certificate, William’s wife was Nancy Riley, which makes a lot of sense, given the proximity of these families. I must admit, I’m glad to solve this, but I’m also disappointed that he wasn’t married to John Campbell’s sister.

So, why does any of this matter in the Blue Fugate story?

In part, because I knew decades ago that Martin Fugate, of the Kentucky Blue Fugates, was not an orphan from France who had somehow made his way to the eastern shores of Maryland, then to Perry County, KY by 1820 when he supposedly received a land grant. That land grant date doesn’t square with Martin’s birth year of 1820 either, nor his marriage about 1840, both of which are substantiated by the census.

You can see from the information gleaned from Russell County that the Fugate family was there well before 1800. In fact, a Martin Fugate is shown on the 1789 tax list and other Fugates were there earlier, as early as 1771, according to extracted Russell County records in the book “The Fugate Family of Russell County, Virginia” by David Faris. The Fugate descendants continued to press on westward from there. Fugate, unlike Smith, Cook, and even Campbell, is not a common surname.

“Orphan” stories are often early ways that people said “I don’t know”, without saying, “I don’t know where he came from”, so they speculated and said “maybe he was an orphan.” Then that speculation was eventually passed on as fact.

That might have been happening in Perry County in the 1960s, but in Claiborne County in the 1980s, family members were telling me, “Martin waren’t no orphan,” and would roll their eyes and sigh with great exasperation. You could tell this was far from the first time they had had to combat that story. To be clear, the Fugate family lived down along Little Sycamore Creek with my Estes, Campbell and other ancestral families. In the 1980s, I was finding the oldest people possible and talking to them.

Some records in Russell County, where the Fugates of Perry County, KY, and the Fugates of Claiborne County, TN, originated, did and do exist, so could have been researched in the 1960s, but you would have had to know where to look. No one back then knew that the Perry County Fugates originated in Russell County, so they wouldn’t have known to look there. Research wasn’t easy. If they had known to look in Russell County, they would have had to travel there in person to review records. Early records exist in Perry County, too, but in the 1960s, not even the census was available, and people simply didn’t remember back to the early to mid-1800s.

Truthfully, no one would ever have doubted those early stories that had been handed down. They were revered, in all families, and treated as gospel. Those stories were the only connection they had to their ancestors – and the generations inbetween who passed them on. Nope, no one was going to question what Grandpa or Uncle Joe said.

So, in the 1960s, when the Blue Fugates in Perry and adjacent Breathitt County, KY were first studied by Dr. Cawein and his nurse, Ruth Pendergrass, they gathered oral family history and constructed a family pedigree from that information. They documented who was blue from first-hand eye-witness accounts – which would only have stretched back into the late 1800s, best case.

It probably never occurred to anyone to validate or verify earlier information that was provided. Plus, it would have been considered rude. After all, they weren’t genealogists, and they were trying to solve a medical mystery. The information they collected did not conflict with what was known about the disease and how it was transmitted, so they had no reason to doubt its historical accuracy.

The Mystery of the Blue Fugates?

The Blue Fugates were a family renowned for their blue skin – at least some of them had blue skin. That’s part of what makes this story so interesting.

Originally, it was believed that only one progenitor couple was involved, Martin Fugate and his wife, Elizabeth Smith, but now we know there were two. Maybe I should say “at least two.”

Martin Fugate and his bride, Elizabeth Smith, whose first known child was born in 1841, according to the 1850 census, are progenitors of the Blue Fugate Family of Troublesome Creek, but they aren’t the only progenitors.

Martin was not shown in the Perry County, KY 1840 census, but two Zachariah Fugates are present, 8 Fugate families are found in neighboring Breathitt County, more than a dozen in Russell County and surrounding counties in Virginia, and four, including two William Fugates, in Claiborne County, TN. The younger of the two lived next door to John Dobkins, son of deceased Jacob Dobkins.

Martin Fugate (c1820-1899) of Perry County and his second cousin, Zachariah Fugate (1816-1864), who each married a Smith sister, are both progenitors of the Blue Fugates through their common ancestor, their great-grandfather, Martin Fugate, who was born in 1725 and died in 1803 in Russell County, VA.

Obviously, if Martin (c1820-1899) had a Fugate second cousin who also lived in Perry County, Martin wasn’t an orphan. That knowledge is due to more recently available information, like census and other data – and that’s part of what I want to correct.

In 1948, Luke Combs, from Perry County, KY, took his sick wife to the hospital, but Luke’s blueness caused the medical staff to focus on him instead, thinking he was experiencing a medical emergency. He wasn’t. His skin was just blue. In 1974, Dr Charles H. Behlen II said, ‘Luke was just as blue as Lake Louise on a cool summer day.’ The Blue Fugates were “discovered” by the rest of the world, thanks to Luke, but they were nothing new to local people, many of whom did not welcome the notoriety.

In the 1960s, hematologist Madison Cawein III, with the assistance of Ruth Pendergrass, studied 189 members of the extended Fugate family, treated their symptoms, and published his findings. He included a pedigree chart, but not everyone was keen on cooperating with Dr. Cawein’s research project.

The Fugate family history collected for the study was based on two things:

  • Personal knowledge of who respondents knew was blue
  • Remembered oral history beyond the reach of personal knowledge.

That remembered oral history reported that Martin Fugate and Elizabeth Smith’s youngest son, Zachariah Fugate (born in 1871), married his mother’s (older) sister, Mary Smith, (born about 1820), and had a family. I’ve added the dates and information in parentheses, or they would have immediately known that marriage was impossible. Or, more directly, even if they married when Zachariah was 14, Mary would have been 70 years old, and they were certainly not going to produce offspring. This is the second piece of information I want to correct. That marriage never happened, although people were accurate that:

  • Martin Fugate and his wife, Elizabeth Smith, did have a son named Zachariah Fugate
  • One Zachariah Fugate did marry Mary Smith, sister of Elizabeth Smith

It’s just that they were two different Zachariah Fugates, born 75 years apart. Same name confusion strikes again.

I constructed this census table of Martin Fugate with Elizabeth Smith, and Zachariah Fugate with Mary Smith. They lived next door to each other in Perry County – and it seemed that every family reused the same “honoring” names for their children – and had been doing such for generations.

In the 1960s, when the information was being compiled for Dr. Cawein, the census and other documents that genealogists rely on today were not readily available.

Furthermore, genetically, for the mystery Dr. Cawein was attempting to solve, it didn’t really matter, because it was still a Smith female marrying a Fugate male. I know that it made no difference today, but he wouldn’t have known that then. To track down the source of the blueness, he needed to identify who was blue and as much about their ancestors as possible.

The Zachariah Fugate (1816-1864) who married Elizabeth Smith’s sister, Mary Smith, was Martin Fugate’s second cousin by the same name, Zachariah. Both Martin (c1820-1899) and his second cousin, Zachariah (c1816-1864), married to Smith sisters, had blue children, which helps cement the fact that the responsible genes were passed down through BOTH the Fugate and Smith lines, and weren’t just random mutations or caused by environmental or other factors.

Proof

In case you’re wondering exactly how I confirmed that Martin and Zachariah did indeed marry Elizabeth and Mary Smith – their children’s birth and death records confirmed it. These records correlate with the census.

Unlike most states, Kentucky has some pre-1900 birth and death records.

Wilson Fugate’s birth in February, 1855 was recorded, naming both of his parents, Martin Fugate and Elizabeth Smith.

Martin Fugate and Elizabeth Smith’s son, Henley or Hendley, died in 1920, and his death certificate gave the names of both parents. Betty is a nickname for Elizabeth.

On the same page with Wilson Fugate’s birth, we find a birth for Zachariah Fugate and Mary Smith, too.

Hannah Fugate was born in December 1855.

Zachariah Fugate and Mary Smith’s son, Zachariah died in 1921, and his death certificate gives his parents as Zach Fugate and Polly Smith, a nickname for Mary.

There are more death records for children of both sets of parents.

Both couples, Martin Fugate and Elizabeth Smith, and Zachariah Fugate and Mary Smith, are progenitors of the Blue Fugate family.

Of Martin’s 10 known children, 4 were noticeably “blue” and lived long, healthy lives. At least two of Zachariah’s children were blue as well.

Some people reported that Martin, himself, had deep blue skin. If so, then both of his parents would have carried that genetic mutation and passed it to him.

Unfortunately, color photography didn’t exist when Martin (c1820-1899), lived, so we don’t know for sure. For Martin’s children to exhibit blue skin, they would have had to inherit a copy of the gene from both parents, so we know that Martin’s wife, Elizabeth, also inherited the mutation from one of her parents. Ditto for Zachariah Fugate and Mary Smith. The chances of two families who both carry such a rare mutation meeting AND having two of their family members marry are infinitesimally small.

Dr. Cawein’s Paper

In 1964, Dr. Cawein published his findings, but only with a pedigree chart with no names. What was included was an explanation about how remote and deep the hills and hollows were, and that out-migration was almost impossible, explaining the propensity to marry cousins.

Legend:

  • Measured – Found to have elevated methemoglobin
  • Measured – Found to have decreased methemoglobin
  • Not measured – Reported to be “blue”
  • Measured – Found to be normal

Cawein further stated that data was collected by interviewing family members who personally knew the individual in question and could say if they were actually blue.

Cawein erroneously reported that “Martin Fugate was an orphan born about 1800, landed in Maryland, obtained a land grant in Perry County, KY in 1820, and married a local gal. From 1820 to about 1930, the population consisted of small, isolated groups living in creek valleys and intermarriage was quite common.” Bless his heart.

Later, geneticist Ricky Lewis wrote about the Blue Fugates, sharing, among other things, the provenance of that “blue” family photo that circulates on the internet, revealing that it is a composite that was assembled and colorized back in 1982. She also erroneously stated that, “after extensive inbreeding in the isolated community—their son married his aunt, for example—a large pedigree of “blue people” of both sexes arose.” Bless her heart too.

Dr. Lewis is incorrect that their son married his aunt – but she’s right that intermarriage between the families is responsible for the blue descendants. In colonial America, and elsewhere, cousin marriages were fairly common – everyplace. You married who you saw and knew. You saw your family and neighbors, who were generally your extended family. No left-handed apology needed.

Pedigree collapse, sharing the same ancestors in multiple places in your tree, is quite common in genealogy, as is endogamy among isolated populations.

Today, things have changed somewhat. People move into and out of an area. The younger generation moves away a lot more and has for the past 100+ years. Most people know their first cousins, but you could easily meet a second or third cousin and never know you were related.

While early stories reported that Martin Fugate (c1820-1899) was an orphan from France, mysteriously appearing in Kentucky around 1820, later genealogical evidence as well as genetic research proves that Martin Fugate was actually born about 1820, in Russell County, VA and his ancestors, over several generations, had followed the typical migration path across Virginia into Kentucky.

We’ve also proven that Martin’s son, Zachariah (born 1871) was not the Zachariah who married Elizabeth Smith’s sister, Mary, who was 50 years old when Zachariah was born.

What else do we know about these families?

The Back Story

Compared to the Smith story, the Fugate story was “easy.”

Don’t laugh, but I spent several days compiling information and charting this in a way I could see and understand in one view.

I hesitate to share this, but I’m going to because it’s how I think. I also put together a very basic Fugate tree at Ancestry, here. Many children and siblings are missing. I was just trying to get this straight in my mind.

Click to enlarge any image

This spreadsheet is color-coded:

  • The text of each lineage has a specific color. For example, Fugates are blue.
  • Some people (or couples) are found in multiple descendants’ lines and are duplicated in the tree. Duplicated people also have a cell background color. For example, Mahala Richey (Ritchey, Ritchie) is highlighted yellow. James and Alexander Richey have green text and apricot background because they are duplicated.
  • The generation of parents who had blue children is marked with black boxes and the label “Blue Kids.”
  • Only the blue kids for this discussion are listed below those couples.
  • The bluest person was Luna Fugate (1886-1964).
  • While Luna’s husband, John Stacey, also descended from the Smith/Combs line, only one of their children expressed the blue trait. That child’s lips turned blue when they cried. John and Luna were actually related in three ways. Yes, my head hurts.
  • The last known “blue” person was Luna Fugate’s great-grandchild, whose name I’ve obfuscated.

Ok, let’s start with the blue Fugates on our spreadsheet. You’ll probably want to follow along on the chart.

Martin Fugate (1725-1803) and wife Sarah, had several children, but only two, the ones whose grandchildren married Smith sisters are known to have had blue children.

On our chart, you can see that Martin (1725-1803) is blue, and so is Son 1, William Fugate and Sarah Stephens, along with Son 2, Benjamin Fugate and Hannah Devers. Both William and Benjamin are mentioned in Martin’s estate in 1803 in Russell County, VA.

Two generations later, Martin Fugate (c1820-1899) and Elizabeth Smith had four blue children, and Zachariah Fugate (c1816-1864) and Mary Smith had at least two blue children. Furthermore, Zachariah Fugate’s sister, Hannah (1811-1877), married James Monroe Richie.

The Richey’s are green, and you can see them on both the left and right of the chart. Hannah’s husband descended from the same Richey line that Elizabeth Smith did. It was no surprise when their child, Mahala Ritchie (1854-1922), married Levi Fugate, to whom she was related three ways, they became the parents of a blue child. Their daughter, Luna Fugate, was known as “the Bluest of the Blue Fugates.”

Mahala Ritchie (1854-1922) could have inherited her blue gene (or genes) from either her mother Hannah Fugate, or her father, James Monroe Ritchie, or both. We don’t know if Hannah was blue or not.

We do know that Mahala married Levi Fugate, her third cousin through the Fugate line, and her third and fourth cousin also through the Richie and Grigsby lines, respectively. This is the perfect example of pedigree collapse.

You can see the purple Grigsby lines in the center and to the right of the pedigree chart too, with Benjamin Grigsby, highlighted in blue, being common to both lineages.

Zachariah Fugate (1816-1864) and Mary Smith had at least two blue sons, but I am not tracking them further. Suffice it to say that Blue John married Letha Smith, his first cousin, the granddaughter of Richard Smith and Nancy Elitia Combs. Lorenzo, “Blue Anze”, married a Fugate cousin, so it’s no surprise that Zachariah and Mary were also progenitor couples of the Blue Fugates.

Martin’s son, Levi Fugate, married Mahala Ritchie, mentioned above, and had Luna Fugate who would have been personally known to Dr. Cawein. Luna, pictured above, at left, was known as the bluest of the Blue Fugates.

Luna married John Stacey who some thought wasn’t related to Luna, so it was confusing why they had one child that was slightly blue. However, John turns out to be Luna’s second cousin, third cousin once removed and first cousin once removed through three different lines. His great-grandparents were Richard Smith and Nancy Combes. Since one of their children had a slight blue tinge, John, while not visibly blue himself, clearly carried the blue gene.

Where Did the Blue Gene Come From?

The parents of Elizabeth Smith and Mary Smith were Richard Smith and Nancy (Eletia) Combs. His Smith ancestors include both the Richeys and Caldwells.

James Richey (1724-1888) married Margaret Caldwell (1729-1802) and his father, Alexander Richey (1690-1749) married Jeanne Caldwell (1689-1785). While the Caldwell females weren’t closely related, Jeanne was the daughter of Joseph Alexander Caldwell (1657-1730) and Jane McGhie, and Margaret Caldwell (1729-1802) was the great-granddaughter of that couple. The Caldwells are shown in magenta, with both Richey/Caldwell couples shown as duplicates. The Richey are highlighted in apricot, and the Caldwell’s with a light grey background. It was difficult to show how these lines connect, so that’s at the very top of the pedigree chart.

When just viewing the Smith-Combs line, it’s easier to view in the Ancestry pedigree.

The Smith, Richey, Combs, Grigsby, and Caldwell lines are all repeated in different locations in the trees, such as with Hannah Fugate’s husband. These repeated ancestors make it almost impossible for us to determine where in the Smith ancestral tree that blue gene originated.

We don’t know which of these ancestral lines actually contributed the blue gene.

Can We Figure Out Where the Blue Gene Came From?

How could we potentially unravel this mystery?

We know for sure that the blue gene in the Fugate side actually descends from Martin Fugate who was born in 1725, or his wife, Sarah, whose surname is unknown, because their two great-grandchildren, Martin (c1820-1899) and Zachariah (1816-1864) who both married Smith sisters had blue children. For those two intervening generations between Martin Fugate (1725-1803) and those two great-grandsons, that blue gene was quietly being passed along, just waiting for a blue Fugate gene carrier to meet another blue gene carrier. They found them in the Smith sisters.

None of Martin (1725-1803) and Sarah’s other children were known to have had any blue children or descendants. So either they didn’t carry the blue gene, or they didn’t marry someone else who did – that we know of.

We can’t tell on the Smith side if the blue gene descends from the Smith, Richey, Grigsby or Caldwell ancestors, or maybe even an unknown ancestor.

How can we narrow this down?

If a Fugate in another geographic location married someone from one of these lineages, say Grigsby, for example, and they had blue offspring, and neither of them shared any of the other lineages, then we could narrow the blue gene in the Smith line to the Grigsby ancestor.

Unfortunately, in Perry and surrounding counties in Kentucky, that would be almost impossible due to intermarriage and pedigree collapse. Even if you “think you know” that there’s no connection through a third line, given the deep history and close proximity of the families, the possibility of unknown ancestry or an unexpected parent is always a possibility.

Discover

While the blue gene is not connected to either Y-DNA or mitochondrial DNA, we do have the Fugate’s Y-DNA haplogroup and the Smith sisters’ mitochondrial DNA.

Y-DNA

The Big Y-700 haplogroup for the Martin Fugate (c1820-1899) line is R-FTA50432, which you can see, here..

You can see the Blue Fugate Family by clicking on Notable Connections.

If you’re a male Fugate descendant who descends from anyone other than Martin Fugate (c1820-c1899), and you take a Big Y test, you may well discover a new haplogroup upstream of Martin (c1820-1899) that represents your common Fugate ancestor.

If you descend from Martin, you may find youself in either of the two haplogroups shown for Martin’s descendants, or you could split the line to form a new haplogroup.

We don’t have the mitochondrial DNA of Martin Fugate (c1820-1899), which would be the mitochondrial DNA of his mother, Nancy Noble. We also don’t have the the mtDNA of Mary (Polly) Wells, the mother of Zachariah Fugate (c1816-1864). If you descend from either of these women in a direct matrilineal line, through all women, please take a mitochondrial DNA test and reach out. FamilyTreeDNA will add it as a Notable Connection.

We do, however, have the mitochondrial DNA of Elizabeth and Mary Smith

Mitochondrial DNA of Elizabeth and Mary Smith

The mitochondrial DNA of both Elizabeth and Mary Smith follows their mother’s line – Nancy Combs through Nancy (Eletia?) Grigsby. Nancy’s mother is unknown, other than the possible first name of Margaret.

Nancy Grigsby’s descendant is haplogroup K1a61a1, which you can see here.

The Blue Fugates show under Notable Connections.

The Smith sisters’ haplogroup, K1a61a1, tells us immediately that their ancestor is European, eliminating other possibilities.

The time tree on Discover is quite interesting

Haplogroup K1a61a1 was formed about the year 1400. Descendants of this haplogroup are found in the UK, Scotland, England, several unknown locations, and one person who selected Native American, which is clearly in error. Haplogroup K is not Native American.

By focusing on the haplotype clusters, identified by the F numbers in the elongated ovals, our tester may be able to identify the mother of Nancy Grigsby, or upstream lineages that they can work back downstream to find someone who married Thomas Grigsby.

This story is far from over. In fact, a new chapter may just be beginning.

If you’re a Fugate, or a Fugate descendant, there’s still lots to learn, even if autosomal DNA is “challenging,” to say the least, thanks to pedigree collapse. Testing known females lineages can help us sort which lines are which, and reveal their hidden stories.

Other resources if you want to read more about the Fugates: The Blue People of Troublesome Creek, Fugates of Kentucky: Skin Bluer than Lake Louise, Those Old Kentucky Blues: An Interrupted Case Study, and Finding the Famous Paintings of the Blue People of Kentucky.

_____________________________________________________________

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an e-mail whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Books

Genealogy Books

Genealogy Research

FamilyTreeDNA 2023 Update – Past, Present and Future

At the FamilyTreeDNA International Conference on Genetic Genealogy, held November 3-5 in Houston for group project administrators, product and feature updates were scattered across both days in various presentations.

I’ve combined the updates from FamilyTreeDNA into one article.

I’ve already written two articles that pertain to the conference.

FamilyTreeDNA has already begun rolling the new Y DNA haplogroups from Family Finder autosomal tests, which I wrote about here:

I still have at least two more articles to publish from this conference that was chocked full of wonderful information from a wide range of talented speakers.

Past, Present, and Future with Katy Rowe-Schurwanz

Katy Rowe-Schurwanz, FamilyTreeDNA’s Product Manager, provided an update on what has been accomplished in the four and a half years since the last conference, what’s underway now, and her wish list for 2024.

Please note the word “wish list.” Wish list items are NOT commitments.

Recent Milestones

A lot has been happening at FamilyTreeDNA since the last conference.

Acquisition and Wellness Bundles

As everyone is aware, at the end of 2020, myDNA acquired Gene by Gene, the parent company of FamilyTreeDNA, which included the lab. As a result, the FamilyTreeDNA product menu has expanded, and wellness bundles are now available for FamilyTreeDNA customers.

If you’re interested, you can order the Wellness product in a bundle with a Family Finder test, here.

You can add the Wellness product for $39 if you’ve already tested.

New TIP (Time Prediction) STR Report

Did you notice that the old TIP report for Y DNA STR markers was replaced with an updated version several months ago?

To view the new report, sign on and select your Y DNA matches. At the far right of each match you’ll see these three icons representing a pedigree chart, notes, and the TIP (Time Predictor) report.

The updated TIP report includes wonderful new graphs and age estimates for each match category, which you can read about, here. Each category, such as 67-marker matches, has time estimates in which a common ancestor might have lived at each possible genetic distance.

Math is our friend, and thankfully, someone else has done it for us!

Please note that the Big Y SNP dates are MUCH more accurate for a variety of reasons, not limited to the instability and rapid mutation rate of STR mutations.

MyOrigins3

MyOrigins3, FamilyTreeDNA’s ethnicity offering, added over 60 new reference populations for a total of 90, plus chromosome painting. You can read about MyOrigins features here, and the white paper, here.

This is one of my favorite improvements because it allows me to identify the segment location of my population ancestries, which in turn allows me to identify people who share my minority segments such as Native American and African.

Due to a lack of records, these relationships are often exceedingly difficult to identify, and MyOrigins3 helps immensely.

Additional Releases

Additional products and features released since the last conference include:

Discover

Released in July 2022, Discover is the amazing new free product that details your ancestor’s Y DNA “story” and his walk through time and across the globe.

In the past 18 months, all of the Discover features are new, so I’m only making a brief list here. The great thing is that everyone can use Discover if you know or can discover (pardon the pun) the haplogroup of your ancestral lines. Surname projects are often beneficial for finding your lineages.

  • Haplogroup Story includes haplogroup location, ages derived from the earliest known ancestor (EKA) of your matches, and ancient DNA samples. Please be sure you’ve entered or updated your EKA, and that the information is current. You can find instructions for how to update or add your EKA here.
  • A recent addition to the haplogroup story includes Haplogroup Badges.
  • Country Frequency showing where this haplogroup is found with either a table view or an interactive map
  • Famous and infamous Notable Connections, including Mayflower passengers, Patriots from the American Revolution, US presidents, royal houses, artists, musicians, authors, pirates, sports figures, scientists, and more.

If you know of a proven connection to a notable figure, contact customer support and let them know! Notable connections are added every week.

One famous Discover connection is Ludwig von Beethoven which resulted from a joint academic study between FamilyTreeDNA and academic researchers. It’s quite a story and includes both a mystery and misattributed parentage. You can see if you match on Discover and read about the study, here.

  • Updated Migration Map, including locations of select ancient DNA sites
  • The Time Tree, probably the most popular Discover report, shows the most current version of the Y DNA phylotree, updated weekly, plus scientifically calculated ages for each branch. Tree node locations are determined by your matches and their EKA countries of origin. I wrote about the Time Tree, here.
  • Anticipated in early 2024, the EKA and block tree matches will also be shown on the Time Tree in Discover for individual Big Y testers, meaning they will need to sign in through their kits.
  • The Group Time Tree, visible through group projects, takes the Time Tree a step further by including the names of the EKA of each person on the Time Tree within a specific project. Information is only displayed for project members who have given permission to include their data. You can select specific project groupings to view, or the entire project. I wrote about the Group Time Tree here and here.
  • Globetrekker is an exclusive Big Y mapping feature discussed here, here, here, and here.
  • Ancient Connections includes more than 6,100 ancient Y DNA results from across the globe, which have been individually analyzed and added for matching in Discover. Ancient Connections serve to anchor haplogroups and provide important clues about matches, migration paths and culture. New connections are added weekly or as academic papers with adequate Y DNA coverage are released.
  • Your Ancestral Path, which lists the haplogroups through every step from the tester back to Y Adam and beyond. Additional information for each haplogroup in your path includes “Time Passed” between haplogroups, and “Immediate Descendants,” meaning haplogroups that descend from each subclade. New columns recently added include “Tested Modern Descendants” and “Ancient Connections.”
  • Suggested Projects include surname, haplogroup, and geographic projects. Katy said that people joining projects are more likely to collaborate and upgrade their tests. You can also see which projects other men with this haplogroup have joined, which may well be projects you want to join too.
  • Scientific Details provides additional information, such as each branch’s confidence intervals and equivalent variables (SNPs). You can read more here.
  • Compare Haplogroups is the most recent new feature, added just last month, which allows you to enter any two haplogroups and compare them to determine their most recent common ancestral haplogroup. You can read about Compare Haplogroups, here.

Please note that the Studies feature is coming soon, providing information about studies whose data has been included in Discover.

You can read about Discover here, here, here, and here.

If you’re interested, FamilyTreeDNA has released a one-minute introduction to Y DNA and Discover that would interest new testers, here.

Earliest Known Ancestor (EKA) Improvement

Another improvement is that the earliest known ancestor is MUCH easier to enter now, and the process has been simplified. The EKAs are critical for Discover, so PLEASE be sure you’ve entered and updated your EKA.

Under the dropdown beside your name in the upper right-hand corner of your personal page, select Account Settings, then Genealogy and Earliest Known Ancestors. Complete the information, then click on “Update Location” to find or enter the location on a map to record the coordinates.

It’s easy. Just type or drop a pin and “Save.”

Saving will take you back to the original EKA page. Save that page, too.

Recommended Projects on Haplogroups & SNPs Page

You’re probably aware that Discover suggests projects for Y DNA testers to join, but recommended haplogroup projects are available on each tester’s pages, under the Y DNA Haplotree & SNPs page, in the Y DNA STR results section.

If there isn’t a project for your immediate haplogroup, just scroll up to find the closest upstream project. You can also view this page by Variants, Surnames and Countries.

This is a super easy tool to use to view which surnames are clustered with and upstream of your haplogroup. With Family Finder haplogroups being assigned now, I check my upstream haplogroups almost daily to see what has been added.

For example, my Big Y Estes results are ten branches below R-DF49, but several men, including Estes testers, have been assigned at this level, thanks to Y DNA haplogroups from Family Finder testing. I can now look for these haplogroups in the STR and Family Finder matches lists and see if those men are receptive to Big Y testing.

Abandoned Projects

Sometimes group project administrators can no longer function in that capacity, resulting in the project becoming abandoned. FamilyTreeDNA has implemented a feature to help remedy that situation.

If you discover an abandoned project, you can adopt the project, spruce things up, and select the new project settings. Furthermore, administrators can choose to display this message to recruit co-administrators. I need to do this for several projects where I have no co-admin.

If you are looking for help with your project, you can choose to display the button
through the Project Profile page in GAP. For non-project administrators, if you’d like to help, please email the current project administrators.

New Kit Manager Feature

FamilyTreeDNA has added a “Kit Manager” feature so that an individual can designate another person as the manager of their kit.

This new setting provides an avenue for you to designate someone else as the manager of your DNA test. This alerts FamilyTreeDNA that they can share information with both of you – essentially treating your designated kit manager the same as you.

If you’re the kit manager for someone else, you NEED to be sure this is completed. If that person is unavailable for some reason, and support needs to verify that you have legitimate access to this kit, this form and the Beneficiary form are the ONLY ways they can do that.

If your family member has simply given you their kit number and password, and for some reason, a password reset is required, and their email address is the primary contact – you may be shut out of this kit if you don’t complete this form.

Beneficiary Page

Additionally, everyone needs to be sure to complete the Beneficiary page so that in the event of your demise, FamilyTreeDNA knows who you’ve designated to access and manage your DNA account in perpetuity. If you’ve inherited a kit, you need to add a beneficiary to take over in the event of your death as well.

What is FamilyTreeDNA working on now?

Currently in the Works

Katy moved on to what’s currently underway.

Privacy and Security

Clearly, the unauthorized customer data exposure breach at 23andMe has reverberated through the entire online community, not just genetic genealogy. You can read about the incident here, here, here, and here.

FamilyTreeDNA has already taken several steps, and others are in development and will be released shortly.

Clearly, in this fast-moving situation, everything is subject to change.

Here’s what has happened and is currently planned as of today:

  • Group Project Administrators will be required to reset their password soon.

Why is this necessary?

Unauthorized access was gained to 23andMe accounts by people using the same password for multiple accounts, combined with their email as their user ID. Many people use the same password for every account so that they can remember it. That means that all a hacker needs to do is breach one account, and they can use that same information to “legitimately” sign in to other accounts. There is no way for the vendor to recognize this as unauthorized since they have both your user ID and password.

That’s exactly what happened at 23andMe. In other breaches, this information was exposed, and hackers simply tried the same username and password combination at 23andMe, exposing the entire account of the person whose account they signed in “as.” This includes all of their matches, genetic tree, shared matches, matches of matches, ethnicity, and segments. They could also have downloaded both the match list and the raw DNA file of the compromised account.

At FamilyTreeDNA, project administrators can select their own username, which could be their email, so they will be required to reset their password.

Additional precautions have been put in place on an interim basis:

  • A pause in the ability to download match and segment information.
  • A pause in accepting 23andMe uploads.

Administrators will also be required to use two-factor authentication (2FA.) To date, two of the four major vendors are requiring 2FA. I would not be surprised to see it more broadly. Facebook recently required me to implement 2FA there, too, due to the “reach” of my postings, but 2FA is not required of everyone on Facebook.

Please note that if you received an email or message that is supposedly from any vendor requiring 2FA, GO DIRECTLY TO THAT VENDOR SITE AND SIGN IN.  Never click on a link in an email you weren’t expecting. Bad actors exploit everything.

Customers who are not signing in as administrators are not required to implement 2FA, nor will they be required to reset their password.

Personally, I will implement 2FA as soon as it’s available.

While 2FA is an extra step, it’s easy to get used to, and it has already literally saved one of my friends from an authorized hack on their primary and backup email accounts this week. Another friend just lost their entire account on Facebook because someone signed in as them. Their account was gone within 15 minutes.

2FA is one of those things you don’t appreciate (at all) until it saves you, and then, suddenly, you’re incredibly grateful.

At this point in time, FamilyTreeDNA users will NOT be required to do a password reset or implement 2FA. This is because customers use a kit number for sign-in and not a username or email address. I would strongly recommend changing your password to something “not easy.” Never reuse passwords between accounts.

I really, really want you to visit this link at TechRepublic and scroll down to Figure A, which shows how long it takes a hacker to crack your password. I guarantee you, it’s MUCH quicker than you’d ever expect.

Kim Komando wrote about this topic two years ago, so compare the two charts to see how much easier this has become in just two years.

Again, if you receive an email about resetting your password, don’t click on a link. Sign in independently to the vendor’s system, but DO reset your password.

FamilyTreeDNA also engages in additional security efforts, such as ongoing penetration testing.

New Permissions

Additionally, at FamilyTreeDNA, changes were already in the works to separate out at least two permissions that testers can opt-in to without granting project administrators Advanced rights.

  • Download data
  • Purchase tests

The ability to purchase tests can be very important because it allows administrators to order and pay for tests or upgrades on behalf of this tester anytime in the future.

Family Finder Haplogroups

FamilyTreeDNA has already begun releasing mid-level Y DNA haplogroups for autosomal testers in a staggered rollout of several thousand a day.

I wrote about this in the article, FamilyTreeDNA Provides Y DNA Haplogroups from Family Finder Autosomal Tests, so I’m not repeating all of that information here – just highlights.

  • The Family Finder haplogroup rollout is being staggered and began with customers on the most recent version of the testing chip, which was implemented in March of 2019.
  • Last will be transfers/uploads from third parties.
  • Haplogroups resulting from tests performed in the FTDNA labs will be visible to matches and within projects. They will also be used in both Discover and the haplotree statistics. This includes Family Finder plus MyHeritage and Vitagene uploads.
  • Both MyHeritage and Vitagene are uploaded or “transferred” via an intracompany secure link, meaning FamilyTreeDNA knows that their information is credible and has not been manipulated.
  • Haplogroups derived from tests performed elsewhere will only be visible to the user or a group administrator viewing a kit within a project. They will not be visible to matches or used in trees or for statistics.
  • Any man who has taken a Y DNA STR test will receive a SNP-confirmed, updated haplogroup from their Family Finder test that replaces their predicted haplogroup from the STR test.

Please read this article for more information.

New Discover Tools and Updates

Discover content continues to be updated, and new features are added regularly, creating an increasingly robust user experience.

Soon, group administrators will be able to view all Discover features (like Globetrekker) when viewing kits of project members who have granted an appropriate level of access.

Ancient and Notable connects are added weekly, and a new feature, Study Connections, will be added shortly.

Study Connections is a feature requested by customers that will show you which study your academic matches came from. Today, those results are used in the Y DNA tree, but the source is not detailed.

Anticipated in early 2024, the EKA and block tree matches will also be shown on the Time Tree in Discover for individual Big Y testers (not publicly).

Big Y FaceBook Group

FamilyTreeDNA has ramped up its social media presence. They launched the Big Y Facebook group in July 2023, here, which currently has just under 9000 members. Several project administrators have volunteered their time to help manage the group.

FamilyTreeDNA Blog

In addition, FamilyTreeDNA is publishing at least one blog article each week, and sometimes more. You can view or subscribe here. Some articles are written by FamilyTreeDNA staff, but project administrators and customers author other content.

Multi-Language Support

Translation of the main FamilyTreeDNA website and results pages to Spanish has begun, with more languages planned soon.

Paypal, Payments, and Gift Cards

Paypal has been added as a payment selection, along with a PayPal option that provides the ability to make payments.

Additionally, a gift card can be purchased from the main page.

Million Mito Project & Mitotree

Work on the Million Mito Project is ongoing.

The Million Mito Project was launched in 2020 as a collaborative effort between FamilyTreeDNA’s Research & Development Team and the scientific portion of the Genographic Project. I’m a team member and wrote about the Million Mito Project, here.

We’re picking up from where the Phylotree left off in 2016, analyzing 20 times more mtDNA full sequences and reimagining the mtDNA Haplotree. By examining more mtDNA data and applying the processes that allowed FamilyTreeDNA to build the world’s largest Y DNA Haplotree, we can also create the world’s largest Mitotree.

In 2022, the first update was released, authored by the Million Mito team, with the discovery of haplogroup L7. You can read about this amazing discovery rooted deep in the tree here, here, and here. (Full disclosure: I’m a co-author.)

Not only that, but “Nature Scientific Reports” selected this article as one of five named Editor’s Choice in the Mitogenomics category, here. In the science world, that’s a HUGE deal – like the genetic Emmy.

Here’s one example of the type of improvements that can be expected. Currently, the formation of haplogroup U5a2b2a reaches back to about 5000 years ago, but after reanalysis, current branches originated between 500 and 2,500 years ago, and testers are clustered more closely together.

This is SOOO exciting!!!

Just as Discover for Y DNA results was built one feature at a time, the same will be true for MitoDiscover. That’s my name, not theirs.

As the new Mitotree is rolled out, the user interface will also be updated, and matching will function somewhat differently. Specifically, it’s expected that many more haplogroups will be named, so today’s matching that requires an exact haplogroup match to be a full sequence match will no longer work. That and other matching adjustments will need to be made.

I can hardly wait. I have so many results I need to be able to view in a tree format and to place in a timeframe.

You can be included in this exciting project, learn more about your matrilineal (mother’s) line, and hopefully break down some of those brick walls by taking the full sequence mitochondrial DNA test, here.

After the new Mitotree is rolled out and the Y DNA Family Finder haplogroups are completed, Family Finder customers, where possible, will also receive at least a basic-level mitochondrial haplogroup. Not all upload files from other vendors include mtDNA SNPs in their autosomal files. The mitochondrial Family Finder haplogroup feature isn’t expected until sometime in 2025, after the new tree and MitoDiscover are complete.

The Future

What’s coming later in 2024, or is ongoing?

Privacy Laws

Most people aren’t aware of the new privacy laws in various states, each of which has to be evaluated and complied with.

The effects of these changes will be felt in various areas as they are implemented.

New Kits Opted Out of IGG

Since late August, all new FTDNA kits are automatically opted OUT of Investigative Genetic Genealogy (IGG) by default.

Regular matching consent and IGG matching consent have been separated during onboarding.

Biobanking Separate Consent

Another consent change is to have your sample biobanked. FamilyTreeDNA has always maintained your sample for “roughly 25 years.” You could always ask to have your sample destroyed, but going forward, you will be asked initially if you want your sample to be retained (biobanked.) It’s still free.

Remember, if someone declines the biobanking option, their DNA will be disposed of after testing. They can’t order upgrades without submitting a new sample. Neither can their family after they’re gone. I ordered my mother’s Family Finder test many years after she had gone on to meet our ancestors – and I’m incredibly grateful every single day.

MyHeritage Tree Integration

An exciting change coming next year is tree integration with MyHeritage.

And no, before any rumors get started, FAMILYTREEDNA IS NOT MERGING WITH MYHERITAGE. It’s a beneficial marriage of convenience for both parties.

In essence, one of the primary focuses of MyHeritage is trees, and they do that very well. FamilyTreeDNA is focused on DNA testing and their existing trees have had issues for years. MyHeritage trees are excellent, support pedigree collapse, provide search capabilities that are NOT case sensitive, SmartMatching, and much more.

If you don’t have a MyHeritage account, creating one is free, and you will be able to either port your existing FamilyTreeDNA tree, or begin one there. If you’re already a MyHeritage member, FamilyTreeDNA and MyHeritage are planning together for a smooth integration for you. More detailed information will be forthcoming as the integration progressed and is released to customers.

You’ll be able to connect multiple kits to your tree at MyHeritage, just like you can at FamilyTreeDNA today, which enables family matching, aka bucketing.

You can also have an unlimited number of different trees at MyHeritage on the same account. You’re not limited to one.

After you link your initial FamilyTreeDNA kit to the proper person in your MyHeritage tree, you’ll be able to relink any currently linked kits.

MyHeritage will NOT receive any DNA information or match information from FamilyTreeDNA, and yes, you’ll be able to use the same tree independently at MyHeritage for their DNA matching.

You’ll still be able to view your matches’ trees, except it will actually be the MyHeritage tree that will be opened at FamilyTreeDNA in a new tab.

To the best of my knowledge, this is a win-win-win, and customers of both companies aren’t losing anything.

One concern is that some FamilyTreeDNA testers have passed away and cannot transition their tree, so a view-only copy of their tree will remain at FamilyTreeDNA so that their matches can still see their tree.

Big Y Infrastructure

Katy mentioned that internal discussions are taking place to see what changes could be made to improve things like matching and test processing times.

No changes are planned for SNP or STR coverage, but discussions are taking place about a potential update to the Telomere to Telomere (T2T) reference. No promises about if or when this might occur. The last part of the human genome to be fully sequenced, the T2T reference model includes the notoriously messy and unreliable region of the Y chromosome with many repeats, duplications, gaps, and deletions. Some data from this region is probably salvageable but has previously been omitted due to the inherent problems.

I’m not sure this shouldn’t be in the next section, the Wishlist.

Wishlist

There are lots of good things on the Wishlist – all of which I’d love.

I’d have difficulty prioritizing, but I’d really appreciate some Family Finder features in addition to the items already discussed. I’d also like to see some GAP (administrator) tool updates.

Which items do you want to see most?

Katy said that FamilyTreeDNA is NOT planning to offer a Whole Genome Sequencing (WGS) test anytime soon. So, if you’re holding your breath, please don’t. Based on what Katy did say, WGS is very clearly not a consideration in 2024 and I don’t expect to see it in 2025 either unless something changes drastically in terms of technology AND pricing.

While WGS prices have come down, those consumer tests are NOT scanned at the depth and quality required for advanced tests like the Big Y or even Family Finder. Normally consumer-grade WGS tests are scanned between 2 and 10 times, where the FamilyTreeDNA lab scans up to 30 times in order to obtain a quality read. 30X scans are in the same category as medical or clinical grade whole genome scans. Significantly higher quality scans mean significantly higher prices, too, so WGS isn’t ready for genealogy prime time yet.

Additionally, commercially available WGS tests are returned to the customer “as is,” and you’re left to extract the relevant SNPs and arrange them into files, or find someone else to do that. Not to mention, in order to preserve the integrity of their database, FamilyTreeDNA does not accept Y or mitochondrial DNA uploads.

Recently, I saw two WGS files with a 20-25% no-call rate for the autosomal SNPs required for the Family Finder test. Needless to say, that’s completely unacceptable. Some tools attempt to “fix” that mess by filling in the blanks in the format of either a 23andMe or Ancestry file so you can upload to vendors, but that means you’re receiving VERY unreliable matches.

The reason none of the major four vendors offer WGS testing for genealogists is because it’s not financially feasible nor technologically beneficial. The raw data file alone won’t fit on most home computers. WGS is just not soup yet, and it won’t be for the general consuming public, including relevant tools, for at least a few years.

I’ve had my whole genome sequenced, and trust me, I wish it were feasible now, but it just isn’t.

Suggestions Welcomed

Katy said that if you have suggestions for items NOT on the wishlist today to contact her through support.

I would add that if you wish to emphasize any specific feature or need above others, please send that feedback, politely, to support as well.

Katy ended by thanking the various teams and individuals whose joint efforts together produce the products we use and enjoy today.

Lab Update

Normally, DNA testing companies don’t provide lab updates, but this conference is focused on group project administrators, who are often the most dedicated to DNA testing.

A lab update has become a tradition over the years.

Linda Jones, Lab Manager, provided a lab update.

You may or may not know that the FamilyTreeDNA lab shifted gears and stepped up to handle Covid testing.

Supply-chain shortages interfered, but the lab ran 24×7 between 2020 and 2022.

Today, the lab continues to make improvements to processes with the goal of delivering the highest quality results in a timely manner.

On Monday, after the conference, attendees could sign up for a lab tour. You might say we are a rather geeky bunch and really enjoy the science behind the scenes.

Q&A and Thank You

At the end of the conference, the FamilyTreeDNA management team answered questions from attendees.

Left to right, Daniel Au, CTO; Linda Jones, Lab Manager; Katy Rowe-Schurwanz, Product Manager; Clayton Conder, VP Marketing; Goran Runfeldt, Head of R&D; and Andrew Gefre, Development Manager. Not pictured, Jeremy Balkin, Support Manager; Kelly Jenkins, VP of Operations; and Janine Cloud, Group Projects Manager. Janine is also responsible for conferences and events, without whom there would have been no 2023 FamilyTreeDNA conference. Janine, I can’t thank you enough!

A huge thanks to all of these people and many others, including the presenters, CSRs,  IT, and other FamilyTreeDNA team members for their support during the conference, enabling us to enjoy the conference and replenish the well of knowledge.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase your price but helps me keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Gateway Ancestors Leading to Royal and Noble Lines

Many people descend from either royalty or nobility. Of course, figuring out if you’re one of those people, and how you connect, is the challenge. Ancestors who have been proven to connect to royalty or nobility, often across the pond, are known as gateway ancestors.

Back in 2013, geneticists Peter Ralph and Graham Coop, in a paper in Nature, showed that almost all Europeans are descended from the same ancestors. In essence, everyone who lived in the ninth century and left any descendants is the ancestor of almost every living person with European heritage today. That includes Charlemagne and many noble or royal families who collectively have millions of descendants.

Before we talk more about how to find and identify gateway ancestors, let me tell you about the Vernoe/de Vernon family who lived in Vernon, France in the 1000s and 1100s. If you recall, in 1066, William the Conqueror of Normandy became the English King following the Battle of Hastings. Many of the French nobles, especially from Normandy, subsequently became the new noble class of England. England and France are inextricably connected.

William de Vernon, or, “of Vernon,” (born circa 1021 – died before 1089,) lived in Vernon and had his children baptized in the local Catholic Church, the Collégiale Notre-Dame de Vernon, dedicated in 1072 to “the Holy Mother of God.” William’s sons fought with William the Conqueror, and I descend from two of his children, Adela and Richard.

I recently returned from a trip to France where I was fortunate enough to visit the churches where some of my noble families were baptized, worshipped, or were buried.

I was very excited to visit Vernon, a beautiful, quaint village in Normandy on the Seine River which was the main “road” of western France. Come along with me!

Historic Vernon

We’re visiting the medieval church in Vernon, but many of the churches in the villages scattered throughout Europe hail from this period and have many of the same characteristics.

This glorious Gothic church stands sentry just up the street a block or so from the banks of the Seine.

Being able to literally walk in my ancestor’s footsteps was incredibly moving, as was sitting in the church where they sat, or stood, depending on their status.

The incredibly beautiful Gothic church beckons parishioners and visitors alike.

If you’re fortunate and time your arrival correctly, you may hear the church bells summoning worshipers, just like they did all those generations ago. I was extremely lucky.

Close your eyes, and you can hear the local peasants and nobility alike, hurrying along the cobblestone streets to services.

The church may be open, or a service may be getting ready to commence, and you can join in, just as your ancestors did.

These historic structures have withstood the ravages of time, and the passageways remind us of those who walked these steps hundreds of years ago. Their descendants still climb them today.

Much of the stained glass is original, at least for the churches that escaped both fire and the bombings of WWII.

While most of the churches remain Catholic, everyone is welcome to light a candle for goodwill and say a prayer, if you’re so inclined. I like to participate in the customs that my ancestors did. It connects me to them in a spiritual way. Often the side chapels have candles burning on altars, with the flames flickering beautifully, harkening back to distant times.

The small donation for the candle contributes to the maintenance of the church.

Fonts, holding holy water, and piscinas are in evidence throughout the church, especially in the little side chapels and near the doors.

Piscinas are usually shallow basins or decorative divots in the wall used for washing communion vessels or disposing of holy water or consecrated sacramental wine. There is a hole in the bottom allowing the liquid to drain into the earth inside the sheltering walls of the church, so that the sacred liquids remain in consecrated ground.

The church was always located in the center of the town, as it was the center of the life of the residents. Baptisms, marriages, communion, confessions, and funerals all took place there, as did regular sermons, given in Latin by the priest, encouraging their flock to remain true to the tenets of the Catholic faith.

Small streets, sometimes only a few feet wide, separated the neighboring houses from the church.

Many of the beautiful Medieval half-timbered buildings still stand, especially in the small villages like Vernon. The street in front of the church leads uphill to the remains of the castle, including the keep.

If your ancestor lived here, they walked these uneven cobblestone streets and were very likely in these very buildings, although some structures, like the castle, are in ruins today.

This is known as Philippe Auguste’s Keep. He was the King of France from 1180-1223. The French Kings prior to Philippe were known as the kings of the Franks.

We could see the castle and walls from a distance, but we had difficulty finding it among the maze of ancient streets, some of which are closed to through traffic today because they aren’t wide enough for vehicles or because modern buildings have been built across some ancient pathways.

The land along the old city wall has been reclaimed for vineyards, along with their ever-present roses that alert vinedressers to the presence of pests. Much like the canary in the coal mine.

I’m sure that at the time my ancestors lived there, all homes were within the protective city walls, and the hillsides were lush with vineyards. Wine was much safer to drink than water which could easily be contaminated by either animals or humans, delivering dysentery and cholera.

Many times, you’ll find portions of the old city wall built into or closely adjacent current structures. In some locations, the old walls are incorporated into the interior of contemporary buildings. This practice isn’t unusual, but normal in Roman-age Medieval towns and cities.

The walls were defensive, of course. Notice how thick the walls were, some as much as 10 feet thick.

Portions of old city walls or remains of historically significant buildings may simply be free-standing, part of the everyday life of the current residents, many of whom are probably related to the people who lived here hundreds of years ago.

History is in evidence everywhere!

By Philippe Alès – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35337173

Today, pillars of the old medieval bridge crossing the Seine remain. Historically, bridges were difficult to build across large expanses of water, so Vernon was strategically important, in part because it had a bridge.

The old mill remains perched upon the first piling that connects the bridge to the land across the river from Vernon, very close to Monet’s famous gardens. A newer castle is mostly hidden behind the trees, with the white limestone cliffs soaring above the Seine.

Vernon today, viewed from the Seine waterway at the approximate location of the old medieval bridge near the old mill. The church can be seen at left, and the castle keep, at right, with the flags flying on top.

Controlling passage across the river and defending the village from invaders arriving on the river were priorities.

Whoever controlled the rivers controlled access to everything, ruled the people, and controlled the economy.

Finding a Gateway Ancestor

How do you find a noble or royal link, and how do you know that your connection is accurate?

Great questions.

In my case, my Muncy (Munsy, Munsey) line out of Lee County, Virginia, and Claiborne County, Tennessee, works its way back in time to Sarah Ludlow.

Sarah Ludlow’s father is a gateway ancestor – meaning the first ancestor to immigrate whose lineage is documented to descend from royal or noble lines.

As you can see, Sarah’s line quickly connects with Edith de Windsor, of the House of Windsor. Yes, this is the lineage of Queen Elizabeth II as well as the current King Charles III. The good news is that once you’ve connected, there are many well-documented resources for noble lines.

In this case, I’m using WikiTree to view the direct relationship between Edith (de) Windsor and William (de) Vernon.

Due to their age, some ancestors’ profiles are managed by the Magna Carta Project or the Medieval Project with specific training and documentation requirements.

Strategy

You, of course, are responsible for doing the research to connect back to the gateway ancestor(s) whom others have connected back further in line.

In order to connect with a peerage line of some sort, you generally need to work your proven genealogy back several generations. In the US, this normally means into the 1600s or early 1700s.

I caution skepticism about personal online trees. You might want to use those as hints, but copy/paste is far too easy, so don’t. You never really know what the other person did, unless you know them and they are an expert. The good news is that genealogists have several good resources available.

I would suggest beginning by comparing your end-of-line ancestors to the gateway ancestors listed on these sites, then check out the books from both Genealogical.com and American Ancestors.

Noble Lineage Resources

There are several resources available to identify or connect with gateway ancestors and noble lineages.

It’s always wonderful when you find a noble or notable connection because it often means the work has been done for you – although – as always, verify.

Research and Reference Books

If you think you might be or wonder if you are descended from Charlemagne, Genealogical.com wrote a wonderful blog article that includes several of their books:

Check out Genealogical.com’s books here.

American Ancestors has a nice selection too, including these collections:

View their books, here.

Y-DNA

Of course, I had to check to see if the Y-DNA of the Vernon family line is represented, and lucky for me, it is.

The Varner DNA Project includes the surname Vernon, and the volunteer administrators have created a James Vernon (born circa 1616 in England) subgroup.

Using that information, plus the other earliest known ancestors, we can determine that this lineage represents the de Vernon family of Vernon, France with haplogroup J-FT118973. Thanks to Y-DNA matching, men today can figure out how they fit into this family.

These very refined haplogroups and high-resolution matching are only available through the Big Y-700 DNA test at FamilyTreeDNA.

Using the FamilyTreeDNA Discover tool, we learn that this haplogroup was formed about the year 1569, so well after the lineage was established in England.

The Ancient Connections tell us that other men whose haplogroups are related to the Vernon haplogroup are found in:

  • Albania and Serbia, and share a common ancestor about 1350 BCE (or about 3350 years ago) in the Bronze Age
  • Montenegro, Yorkshire (England,) and Hungary about 1500 BCE
  • Rome, Montenegro, Croatia, and Lower Saxony (Germany,) twice, about 1950 BCE.

Looking at these locations on a map, it appears that the Vernon haplogroup, which of course wouldn’t adopt the Vernon surname for another two thousand years, appear to have migrated along the Mediterranean coastline, then perhaps either worked their way into Germany and England, or followed the coastline all the way around Spain. The new Globetrekker tool which will be released from FamilyTreeDNA soon (you didn’t hear that from me), will provide a LOT more specific information.

Of course, we’ll never be able to follow the paper trail or even historical genealogy much beyond William de Vernon who would have been called by the place name where he lived, which morphed into his surname. However, using his descendants’ Y-DNA haplogroup, available as a result of the Big Y-700 test, we can reach MUCH further back in time, unveiling the distant past of the Vernon male ancestors.

Your Turn

Who are your gateway, noble, and royal ancestors? What can you discover?

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Beethoven’s DNA Reveals Surprises – Does Your DNA Match?

Beethoven’s DNA has been sequenced from a lock of his hair. That, alone, is amazing news – but that’s just the beginning!

The scientific paper was released this week, and the news media is awash with the unexpected surprises that Beethoven’s DNA has revealed for us. Better yet, his DNA is in the FamilyTreeDNA database and you just might match. Are you related to Beethoven?

His Y-DNA, mitochondrial DNA and autosomal DNA have been recovered and are available for matching.

You can check your autosomal results if you’ve taken a Family Finder test, or you can upload your DNA file from either AncestryDNA, 23andMe or MyHeritage to find out if you match Beethoven. Here are the download/upload instructions for each company.

But first, let’s talk about this amazing sequence of events (pardon the pun) and scientific discoveries!

Beethoven’s Genome is Sequenced

Everyone knows the famous, genius composer, Ludwig van Beethoven. He was born in 1770 in Bonn on the banks of the Rhine River and died in 1827 in Vienna. You can listen to a snippet of his music, here.

We are all about to know him even better.

Yesterday, amid much media fanfare and a press release, the genome and related findings about Beethoven were released by a team of renowned scientists in a collaborative effort. Research partners include the University of Cambridge, the Ira F. Brilliant Center for Beethoven Studies, the American Beethoven Society, KU Leuven, the University Hospital Bonn, the University of Bonn, the Beethoven-Haus Bonn, the Max Planck Institute for Evolutionary Anthropology and  FamilyTreeDNA. I want to congratulate all of these amazing scientists for brilliant work.

Beethoven’s Hair Revelations

In the past, we were unable to retrieve viable DNA from hair, but advances have changed that in certain settings. If you’re eyeing grandma’s hair wreath – the answer is “not yet” for consumer testing. Just continue to protect and preserve your family heirlooms as described in this article.

Thankfully, Beethoven participated in the Victorian custom of giving locks of hair as mementos. Eight different locks of hair attributed to Beethoven were analyzed, with five being deemed authentic and one inconclusive. Those locks provided enough DNA to obtain a great deal of different types of information.

Beethoven’s whole genome was sequenced to a 24X coverage level, meaning the researchers were able to obtain 24 good reads of his DNA, providing a high level of confidence in the accuracy of the sequencing results.

What Was Discovered?

Perhaps the most interesting discovery, at least to genealogists, is that someplace in Beethoven’s direct paternal lineage, meaning his Y-DNA, a non-paternal event (NPE) occurred. The paper’s primary authors referred to this as an “extra-pair-paternity event” but I’ve never heard that term before.

Based on testing of other family members, that event occurred sometime between roughly 1572 and Ludwig’s conception in 1770. The reported lack of a baptismal record had already raised red flags with researchers relative to Beethoven’s paternity, but there is nothing to suggest where in the five generations prior to Ludwig von Beethoven that genetic break occurred. Perhaps testing additional people in the future will provide more specificity.

We also discovered that Beethoven was genetically predisposed to liver disease. He was plagued with jaundice and other liver-related issues for much of his later life.

Beethoven, prior to his death, left a handwritten directive asking his physicians to describe and publicize his health issues which included progressive hearing loss to the point of deafness, persistent gastrointestinal problems and severe liver issues that eventually resulted in his death. Cirrhosis of the liver was widely believed to be his cause of death.

In addition, DNA in the hair revealed that Beethoven had contracted Hepatitis B, which also affects the liver.

The combination of genetic predisposition to liver disease, Hepatitis B and heavy alcohol use probably sealed his fate.

Additional health issues that Beethoven experienced are described in the paper, published in Current Biology.

It’s quite interesting that during this analysis the team devised a method to use triangulated segments that they mapped to various geographic locations, as illustrated above in a graphic from the paper. Fascinating work!!!

As a partner in this research, Cambridge University created a beautiful website, including a video which you can watch, here.

Beethoven’s Later Years

This portrait of Beethoven was painted in 1820 just 7 years before his death, at 56 years of age. By this time, he had been completely deaf for several years, had stopped performing and appearing in public. Ironically, he still continued to compose, but was horribly frustrated and discouraged, even contemplating suicide. I can’t even fathom the depths of despair for a person with his musical genius to become deaf, slowly, like slow torture.

His personal life didn’t fare much better. In 1812, he wrote this impassioned love letter to his “Immortal Beloved” whose identity has never been revealed, if it was ever known by anyone other than Beethoven himself. The letter was never sent, which is why we have it today.

FamilyTreeDNA

FamilyTreeDNA, one of the research partners published a blog article, here.

The FamilyTreeDNA research team not only probed Beethoven’s genealogy, they tested people whose DNA should have matched, but as it turns out, did not.

Beethoven’s mitochondrial DNA haplogroup is H1b1+16,362C, plus a private mutation at C16,176T. Perhaps in the future, Beethoven’s additional private mutation will become a new haplogroup if other members of this haplogroup have it as well. If you have tested your mitochondrial DNA, check and see if Beethoven is on your match list. If you haven’t tested, now’s a great time.

According to the academic paper, Beethoven’s Y-DNA haplogroup is I-Z139, but when viewing Figure 5 in the paper, here, I noticed that Beethoven’s detailed haplogroup is given as I-FT396000, which you can see in the Discover project, here.

Viewing the Time Tree and the Suggested Projects, I noticed that there are four men with that haplogroup, some of whom are from Germany.

The ancestor’s surnames of the I-FT396000 men, as provided in public projects include:

  • Pitzschke (from Germany)
  • Hartmann (from Germany)
  • Stayler
  • Schauer (from Germany)

If your Y-DNA matches Beethoven at any level, you might want to upgrade if you haven’t taken the Big Y-700 test. It would be very interesting to see when and where your most recent common ancestor with Beethoven lived. You just never known – if you match Beethoven, your known ancestry might help unravel the mystery of Beethoven’s unknown paternal lineage.

Beethoven’s DNA is in the FamilyTreeDNA database for matching, including Y-DNA mitochondrial and autosomal results, so you just might match. Take a look! A surprise just might be waiting for you.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Sixth Season – Who Do You Think You Are?

WDYTYA 2015

Who Do You Think You Are returns this Sunday, March 8th at 10 eastern, 9 central on TLC for its sixth season.

Each week, a celebrity goes on a journey to trace their heritage, making discoveries and generally creating envy for the rest of us.  Of course, we have those same kinds of discoveries to make in our own family history too.

I love this series, in part because it makes genealogy so personal and real and encourages people to become interested in their past that may seem inaccessible, but really isn’t.

To quote TLC, “To know who you are…you have to know where your story began.”

“Lives will change forever.”

That may seem an exaggeration, but often, it’s not.  Understanding your ancestors and how their decisions shaped you today can be very powerful.

To quote one of the celebrities:

“This gives me new light into the rest of my life.”

Plus, the stories are just so, well, juicy!  And moving.  I mean, someone cries in every single episode.  And its not because they discovered the courthouse burned.

This season’s lineup of well-known personalities discovering their ancestry include:

  • Julie Chen
  • Angie Harmon
  • Sean Hayes
  • Bill Paxton
  • Melissa Etheridge
  • America Ferrara
  • Tony Goldwyn
  • Josh Groban

I just want to know one thing.  Is Josh Groban going to sing when he finds his music teacher ancestor????  That would be worth watching all by itself!

Looking forward to “date night” and tweeting with other viewers #WDYTYA.  Come along and join the fun.

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

Cavendish Lab at Cambridge University

The old Cavendish Lab at Cambridge University, where Watson and Crick discovered DNA, is kind of like Mecca for people who love genetics.  So is the Eagle Pub where they ate lunch daily and announced their discovery.  I’m not convinced which is the more important.

Our family tour in September, 2013 was scheduled to visit Cambridge, England, after leaving London.  I’ve been truly blessed this trip with the most wonderful coincidences.  In London, our hotel was located just across Hyde Park from the Science Museum where Watson and Crick’s original DNA model is housed.  In Cambridge, we are staying right around the corner from the Cavendish Lab where Watson and Crick discovered DNA.  Talk about literally walking in the footsteps of the masters.

I was pleased when I discovered Cambridge on the itinerary, and I googled to find the Eagle Pub. I was excited to find that it was indeed within walking distance of the Cambridge City Hotel where we were staying.  Although I don’t drink, I would visit the pub and raise a non-alcoholic brew for Watson and Crick’s momentous discovery.  Problem is, I discovered, that they didn’t have any non-alcoholic brew.  In fact, most of England views non-alcoholic brew as “why bother.”  While I agree in concept, sometimes it’s not by choice.

Wondering why the Cavendish Lab is important?

Cavendish 1

The Cavendish Lab at Cambridge University was the birthplace of the discovery of DNA.  James Watson and Francis Crick discovered DNA in this lab in 1953.  This year of course is the 60th anniversary of that discovery and James Watson was interviewed in celebration.  Crick passed away in 2004.

Before visiting Cambridge, I tried to find the Cavendish Lab on a map and it looked to be entirely across the campus, which is not small.  That made no sense to me, since the Eagle Pub was close to the hotel, but I accepted that I might not be able to see the lab.  I’d have to be satisfied with the Eagle Pub.

Why is the Eagle Pub important?  It’s where Watson and Crick lunched and probably did a lot of brainstorming.  Pubs are like that in England.

Cavendish 2

On our day of arrival, a walking tour of the city with a guide, a retired professor, was scheduled for that afternoon.  After we began the tour, around the first corner, on a street that was only wide enough for one car, and then no cars, I remembered to ask the guide about the original Cavendish Lab.  Given that he was a retired professor, I figured if anyone knew, he would.

He smiled broadly, and said “I’m so glad you asked…it’s right up ahead.”  To say I was thrilled is an understatement.  In fact, this is one of the few locations I’m actually IN the photos, um, actually, in most all the photos.  My cousins were so excited because I was excited that they took pictures of me.  This was definitely “my day” on the trip.  This photo of me, taken in front of the Eagle Pub pretty much sets the mood.cavendish me laughing

The Cavendish Lab, it turns out, was on the right hand side, just about where the road narrowed too much for any vehicle.  There was a sign mounted on the wall of the building that this was indeed the old Cavendish Lab.  There is a new Cavendish Lab across campus, the one I had seen on the map.  So far, my luck on the DNA trail had been remarkably good.

I, of course, was thrilled to be where Watson and Crick began what would be a blooming industry 60 years later with a world of promise.  In another 50 years, DNA will be responsible for the cure of many diseases we feel are hopeless or nearly so today.  Like at the Science Museum in London, I was very disappointed to see it relegated to not even the footnotes.  I tried to find a DNA souvenir, t-shirt, hat, something to purchase and there was not one DNA thing in any store.  For shame!  Come on – Double Helix Ale anyone???

???????????????????????????????

Cambridge is an ancient medieval city and it’s evident everyplace.  The Cavendish Lab is arguably on the oldest “street,” or cartpath, in Cambridge.  I say this because the oldest church is right across that cartpath and dates from about the year 1000.  At that time, churches were always at the center of the village.  Today, that cart-path is not wide enough for a car, and there is no room to expand.

Today, the ancient church is of course physically tied into several other buildings and abuts others, as all buildings here generally are, especially old buildings.  This photo shows the oldest church constructed of chocolate brown stones, another very old church as well, and the spires of King’s College Chapel begun by Henry the 6th and finished by Henry the 8th in the distance to the far right.  Note that this is a one lane street at this point that shortly narrows to exclude vehicles.  To put this in perspective, the Eagle Pub is just about where the trees are on the far right, beside the King’s College Chapel spire.

Cavendish 4

In most of England, and assuredly in Cambridge, what we consider is the US to be old buildings, a hundred or two years old are considered to be rather new.  Their old buildings were constructed before Columbus “discovered” the Americas.

I can only imagine the nurturing quality of studying and working among such history.  I suppose one would get used to it, but I hope it would never be taken for granted.

There are two entrances to the lab.  One is through this door.

???????????????????????????????

Watson and Crick exited through this door, walked down this cartway every day for lunch and ate at the Eagle Pub, just a short walk away and around the corner in front of the church.  It’s here that they fined tuned their DNA research as do both students and professors yet today.

The second entrance to the lab is through this archway which actually forms a tunnel under the building.  Half way through the tunnel is an entrance to the buildings on both sides.

Cavendish 6

Walking a short distance down the cobblestone street, just past the chocolate colored church, you intersect a road and slightly to the left is the Eagle Pub, where Watson and Crick ate lunch most days and discussed their projects.  Rest assured that DNA was indeed a hot topic of conversation here. In fact, it’s reported that they were so excited about their discovery that they told everyone in the pub that they had discovered the secret of life, only to have everyone ignore them and just go back to their pint of ale.  It had to be an extremely anti-climactic day for them – but if any patron remembers the crazy men in the pub that day that announced the discovery of the recipe of life itself – they indeed were a witness to a momentous discovery.

Cavendish 7

Inside the pub, in a stairway to the loo (bathroom) we found this sign.

???????????????????????????????

The Pub actually holds more information about the discovery of DNA than the university location does.  I find this really unfortunate, as well as ironic, but maybe not as many people as I imagine might be interested in the history of DNA.

I would think they would at least mark the DNA “Double Helix Trail.”  It could end, or begin, in London at the Science Museum where the helix model resides today.

The pub itself is in a very historic area, literally in the middle of the “old town”.  Here’s a photo of the street itself, the pub, on the right.

???????????????????????????????

Cambridge is a place of thinkers, and obviously, of doers as well.  It turns out that DNA was not the only discovery in the Cavendish labs.

???????????????????????????????

I wonder what other discoveries were made in these hallowed halls.  Did you know that Mitochondrial DNA was first mapped at Cambridge in 1981, hence, the CRS or Cambridge Reference Sequence?  What is it with DNA here?  Rosalind Franklin, pioneer molecular biologist and a key contributor to the discovery of DNA studied at Newnham College at Cambridge, but when she made her x-ray diffraction images of DNA, utilized by Watson and Crick, she was at King’s College in London.

Cambridge is steeped in history never more than a few feet away.  In the photo of the pub, above, if you turn right when the street ends, you’ll be greeted with this scene, the King’s College Chapel with its rich history of starting and stopping construction through the reigns of 3 kings and the English Civil War.  This is the steeple you saw in the distance in the photo of the street where the Cavendish lab is located.

OLYMPUS DIGITAL CAMERA

The architecture of this building is utterly stunning.

Cavendish 12

The first part was built by Henry the 6th for the 70 professors at Cambridge at the time.  The second part to the rear was finished many years later by Henry the 8th, after the War of the Roses and was very opulent with carvings on all the walls, heraldry, etc.  The first part was very simple by comparison.  The picture below is of the second part.

Cavendish 13

One of the most impressive aspects of this chapel, aside from the stunning windows, is the ceiling made of carved stone flying buttresses itself.  Because of the ceiling construction and the amount of glass in the windows, it’s actually very light inside and I could take these photos without flash photography which was prohibited.

Cavendish 14

The church forms part of a 4 building complex that is connected in a square and inside is a courtyard.

Cavendish 15

I can’t even imagine going to school is this wonderfully nurturing environment.  No wonder DNA was discovered here. No one wanted to leave.  My university was constructed of concrete blocks, for the most part, and everyone left as soon as possible.

Bachelor degrees at Cambridge are 3 year degrees, not 4, and if you live in Europe, it’s about 9,000 pounds which would be about 14,000 US dollars without lodging and food which is about another 8,000 pounds.  If you’re from elsewhere, it’s 18,000 pounds plus lodging.  Nurturing and inspiring, yes, but not inexpensive.

Cambridge is a beautiful and inspirational medieval city sprouting seeds for the future. There is a beautiful, ethereal umbilical connection between its past, my present and mankind’s future. It is truly awe-inspiring.  As I pondered and reflected upon all of this, I was struck with the weight of responsibility that all of us who work with DNA carry.

DNA is a gift, indeed, a map, of the past, of the present and a cartographic key to the future.  We have the responsibility and obligation to work with this Divine gift, ethically, morally and with only the best and most honorable of intentions.  We now have the key to the genome, the Holy Grail of humanity.  What will we do with it?  What does the future in another 60 years, 2073, hold?  Everyday in this new field, as we work individually to create a better whole, we are weaving our genetic legacy.

???????????????????????????????

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research

British Royal DNA

In an article recently published, Bradley Larkin has done an excellent job of sorting through the various DNA results from different companies and locations and assembling them together for a paper on British Royal DNA titled Y-DNA of the British Monarchy, A Review on the occasion of the birth of the Prince of Cambridge.

Paper Abstract

A review was made of existing genetic genealogy findings that infer characteristics of the Y-DNA of members of the British Monarchy. Nine sustained Y-DNA lineages since the year 927 CE were noted as dynastic groups. Haplogroup and haplotype characteristics of three of the dynasties were presented with two more dynasties noted as testable but unpublished. Cultural and geographical origins of these dynasties were considered as context for their DNA haplogroups. Specimen candidates for further testing were identified noting that some will require Ancient DNA (aDNA) recovery and analysis.

dynasties

Brad covers 8 major dynasties dating from 1603-2013, the Mountbatten, Hanover, Windsor and Stuart.

dynasties 2

After discussing each dynasty, Brad ends his article with a summary table of the dynasties, monarchs from that dynasty, the Patriarch, origin and known DNA.  It’s a great paper and an interesting read.  Take a look.  Who knows, this just might be relevant to you!  Good job Brad!!!

______________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Services

Genealogy Research