Y-DNA Haplogroup O – When and How Did It Get to the Americas?

Y-DNA Haplogroup O has been found in male testers descended from a Native American ancestor, or in Native American tribes in the Americas – but sometimes things are more complex than they seem. The story of when and how haplogroup O arrived in the Americas is fascinating – and not at all what you might think.

Introduction

The concept of Native American heritage and indigenous people can be confusing. For example, European Y-DNA haplogroup R is found among some Native American men. Those men may be tribal members based on their mother’s line, or their haplogroup R European Y-DNA may have been introduced either through adoption practices or traders after the arrival of Europeans.

There is unquestionable genetic evidence that the origin of Haplogroup R in the Americas was through colonization, with no evidence of pre-contact indigenous origins.

Y-DNA testing and matching, specifically the Big Y-700 test, with its ability to date the formation of haplogroups very granularly, has successfully identified the genesis of Y-DNA haplogroups and their movement through time.

We’ve spent years trying to unravel several instances of Native American Y-DNA Haplogroup O and their origins. Native American, in this context, means that men with haplogroup O are confirmed to be Native American at some point in documented records. This could include early records, such as court or probate records, or present-day members of tribes. There is no question that these men are recognized as Native American in post-contact records or are tribal members, or their descendants.

What has not been clear is how and when haplogroup O entered the Native American population of these various lineages, groups, or tribes. In other words, are they indigenous? Were they here from the earliest times, before the arrival of colonists, similar to Y-DNA haplogroups C and Q?

This topic has been of great interest for several years, and we have been waiting for additional information to elucidate the matter, which could manifest in several ways:

  1. Ancient pre-contact DNA samples of haplogroup O in the Americas, but none have been found.
  2. Current haplogroup O testers in Native American peoples across the North and South American continents, forming a connecting trail genetically, geographically, and linearly through time. This has not occurred.
  3. Big-Y DNA matches within the Americas between Haplogroup O Native American lines unrelated in a genealogical timeframe whose haplogroup formation pre-dates European contact. This has not occurred.
  4. Big-Y DNA matches between Haplogroup O men whose haplogroups were formed in the Americas after the Beringian migration and expansion that scientists agree occurred at least 12-16K years ago, and possibly began earlier. Earlier human lineages, if they existed, may not have survived. A later Inuit and Na-Dené speaker circumpolar migration occurred 4-7K years ago. This has not occurred.
  5. Big-Y DNA matches with men whose most recent common ancestor haplogroup formation dates connect them with continental populations in other locations, outside of North and South America. This would preclude their presence in the Americas after the migrations that populated the Americas. This has occurred.

The Beringian migration took place across a now-submerged land bridge connecting the Chutkin Peninsula in Russia across the Bering Strait with the Seward Peninsula in Alaska.

By Erika Tamm et al – Tamm E, Kivisild T, Reidla M, Metspalu M, Smith DG, et al. (2007) Beringian Standstill and Spread of Native American Founders. PLoS ONE 2(9): e829. doi:10.1371/journal.pone.0000829. Also available from PubMed Central., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=16975303

Haplogroup O is clearly Native American in some instances, meaning that it occurs in men who are members of or descend from specific Native American tribes or peoples. One man, James Revels, is confirmed in court records as early as 1656. However, ancestors of James Revels fall into category #5, as their upstream parental haplogroup is found in the Pacific islands outside the Americas after the migration period.

Based on available evidence, the introduction of haplogroup O appears to be post-contact. Therefore, haplogroup O is not indigenous to the Americans in the same sense as haplogroups Q and C that are found widespread throughout the Americas in current testers who are tribal members, descendants of tribal members, and pre-contact ancient DNA as mapped in the book, DNA for Native American Genealogy.

Ancient DNA

Haplogroup C is found in both North and South America today, as are these ancient DNA locations.

Haplogroup Q is more prevalent than Haplogroup C, and ancient DNA remains are found throughout North and South America before colonization.

No ancient DNA for Haplogroup O has been discovered in the Americas. We do find contemporary haplogroup O testers in regional clusters, which we will analyze individually.

Let’s take a look at what we have learned recently.

Wesley Revels’ Lineage

Wesley Revels was the initial Y-DNA tester whose results identified Haplogroup O as Native American, proven by a court record. That documentation was critical, and we are very grateful to Wesley for sharing both his information and results.

Wesley’s ancestor, James Revels, was Native American, born about 1656 and bound to European planter, Edward Revell. James was proven in court to be an Accomack “Indian boy” from “Matomkin,” age 11 in 1667. James was bound, not enslaved, until age 24, at which time he was to be freed and receive corn and clothes.

James had died by 1681 when he was named several times in the Accomack County records as both “James, an Indian” and “James Revell, Indian,” in reference to his estate. James lived near Edward Revell, his greatest creditor and, therefore, administrator of his estate, and interacted with other Indian people near Great Matompkin Neck. Marie Rundquist did an excellent job of documenting that here. Additional information about the Revels family and Matomkin region can be found here.

The location where Edward Revell lived, Manokin Hundred, was on the water directly adjacent the Great Matomkin (now Folly Creek) and Little Matomkin Creeks, inside the Metomkin Inlet. The very early date tells us that James Revels’s paternal ancestor was in the colonies by 1656 and probably born about 1636, or perhaps earlier.

Lewis and Revels men are later associated with the Lumbee Tribe, now found in Robeson and neighboring counties in North Carolina. The Lewis line descends from the Revels lineage, as documented by Marie and Wesley. Other men from this line have tested and match on lower-level STR markers, but have not taken the much more granular and informative Big-Y test.

Until recently, the men who matched Wesley Revels closely on the Big-Y test were connected with the Revels line and/or the Lumbee.

Wesley has a 37-marker STR match to a man with a different surname who had not tested beyond that level, in addition to several 12-marker STR matches to men from various locations. Men who provided known ancestral or current locations include one from Bahrain, two from the Philippines, and three from China. Those men have not taken the Big-Y, and their haplogroups are all predicted from STR results to O-M175 which was formed in Asia about 31,000 years ago.

12-marker matches can reach thousands of years back in time. Unless the matches share ancestors and match at higher levels, 12-marker matches are only useful for geographic history, if that. The Big Y-700 test refines haplogroup results and ages from 10s of thousands of years to (generally) within a genealogically relevant timeframe, often within a couple hundred years.

One of Wesley’s STR matches, Mr. Luo, has taken a Big Y-700 test. Mr. Luo descends directly from Indonesia in the current generation and is haplogroup O-CTS716, originating about 244 BCE, or 2244-ish years ago. Mr. Luo does not match Wesley on the Big-Y test, meaning that Wesley and Mr. Luo have 30 or more SNP differences in their Big-Y results, which equates to about 1,500 years. The common ancestor of Wesley Revels and Mr. Luo existed more than 1,500 years ago in Indonesia. It’s evident that Mr. Luo is not Native American, but his location is relevant in a broader analysis.

There is no question that Wesley’s ancestor, James Revels, was Native American based on the court evidence. There is also no question that the Revels’ paternal lineage was not in the Americas with the Native American migration group 12-16K years ago.

The remaining question is how and when James Revels’ haplogroup O ancestor came to be found on the Atlantic seaboard in the early/mid 1600s, only a few years after the founding of Jamestown.

The results of other Haplogroup O men may help answer this question.

Mr. Lynn

Another haplogroup O man, Mr. Lynn, matches Wesley on STR markers, but not on the Big-Y test.

Mr. Lynn identified his Y-DNA line as Native American, although he did not post detailed genealogy. More specifically, we don’t know if Mr. Lynn identified that he was Native on his paternal line because he matches Wesley, or if the Native history information was passed down within his family, or from genealogical research. Mr. Lynn could also have meant generally that he was Native, or that he was Native “on Dad’s side,” not specifically his direct patrilineal Y-line.

Based on Mr. Lynn’s stated Earliest Known Ancestor (EKA) and additional genealogical research performed, his ancestor was John Wesley Lynn (born approximately 1861, died 1945), whose father was Victor Lynn. John’s death certificate, census, and his family photos on Ancestry indicate that he was African American. According to his death certificate, his father, Victor Lynn, was born in Chatham Co., NC, just west of Durham.

Family members are found in Baldwin Township, shown above.

I did not locate the family in either the 1860 or 1870 census. In 1860, the only Lynn/Linn family in Chatham County was 50-year-old Mary Linn and 17-year-old Jane, living with her, presumably a daughter. Both are listed as “mulatto” (historical term) with the occupation of “domestic.” They may or may not be related to John Wesley Lynn.

In 1870, the only Linn/Lynn in Chatham County is John, black, age 12 or 13 (so born in 1857 or 1858), farm labor, living with a white family. This is probably not John Wesley Lynn given that he is found with his mother in 1880 and the ages don’t match.

In 1880. I find Mary Lynn in Chatham County, age 48, single, black, with daughter Eliza Anne, 20, mulatto, sons John Wesley, 14 so born about 1866, and Charles 12, both black. Additionally, she is living with her nieces and nephews, Cephus, black, 12, Lizzie, 7, mulatto, Malcom, 4, mulatto, William H, 3, mulatto (I think, written over,) and John age 4, mulatto. The children aged 12 and above are farm labor.

In 1880, I also find Jack Lynn, age 28, black, married with 3 children, living beside William Lynn, 25, also married, but with no children.

Trying to find the family in 1870 by using first name searches only, I find no black Mary in 1870 or a mulatto Mary with a child named Jack or any person named Cephus by any surname. I don’t find Jack or any Lynn/Linn family in Chatham County.

The 1890 census does not exist.

In the 1900 census, I find Wesley Lynn in Chatham County, born in January of 1863, age 37, single, a boarder working on the farm of John Harris who lives beside Jack Lynn, age 43, born in April of 1857. Both Lynn men are black. I would assume some connection, given their ages, possibly or probably brothers.

In 1940, John Wesley Lynn, age 74, negro (historical term), is living beside Victor Lynn, age 37, most likely his son.

I could not find Victor Lynn, John Wesley Lynn’s father in any census, so he was likely deceased before 1880 but after 1867, given that Mary’s son Charles Lynn was born in 1868, assuming Mary’s children had the same father. The fact that Mary was listed as single, not married nor widowed suggests enslavement, given that enslaved people were prohibited from legally marrying.

About the only other assumption we can make about Victor Sr. is that he was probably born about 1832 or earlier, probably in Chatham County, NC based on John Wesley’s death certificate, and he was likely enslaved.

Subclades of Haplogroup O

Both the Revels and Lynn men are subclades of haplogroup O and both claim Native heritage – Wesley based on the Revels genealogy and court documents, and Mr. Lynn based on the Native category he selected to represent his earliest known paternal ancestor at FamilyTreeDNA.

Both men have joined various projects, including the American Indian Project, which provides Marie and me, along with our other project co-administrators, the ability to work with and view both of their results at the level they have selected.

How Closely Related Are These Haplogroup O Men?

How closely related are these two men?

By Viajes_de_colon.svg: Phirosiberiaderivative work: Phirosiberia (talk) – Viajes_de_colon.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8849049

  • Do the haplogroups of the Revels men and Mr. Lynn converge in a common ancestor in a timeframe BEFORE colonialization, meaning before Columbus “discovered” the Caribbean islands when colonization and the slave trade both began?
  • Do the haplogroups converge on North or South American soil or elsewhere?
  • Is there anything in the haplogroup and Time Tree information that precludes haplogroup O from being Native prior to the era of colonization?
  • Is there anything that confirms that a haplogroup O male or males were among the groups of indigenous people that settled the Americas sometime between 12 and 26 thousand years ago? Or even a later panArctic or circumpolar migration wave?

Haplogroup O is well known in East Asia, Indonesia, and the South Pacific.

Another potential source of haplogroup O is via Madagascar and the slave trade.

The Malagasy Roots Project has several haplogroup O individuals, including the Lynn and Revels men, who may have joined to see if they have matches. We don’t know why the various haplogroup O men in the project joined. Other haplogroup O men in the project may or may not have proven Malagasay heritage.

Information provided by the project administrators is as follows:

The people of Madagascar have a fascinating history embedded in their DNA. 17 known slave ships came from Madagascar to North America during the Transatlantic Slave Trade. As a result, we find Malagasy DNA in the African American descendants of enslaved people, often of Southeast Asian origin. One of the goals of this project is to discover the Malagasy roots of African Americans and connect them with their cousins from Madagascar. Please join us in this fascinating endeavor. mtDNA Haplogroups of interest include: B4a1a1b – the “Malagasy Motif”, M23, M7c3c, F3b1, R9 and others Y-DNA Haplogroups include: O1a2 – M50, O2a1 – M95/M88, O3a2c – P164 and others

Resources:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987306/  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199379/  http://mbe.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=19535740  http://www.biomedcentral.com/1471-2156/15/77  http://www.biomedcentral.com/1471-2164/10/605

The Malagasy group only has one other man who is haplogroup O and took the Big-Y test, producing haplogroup O-FTC77008. Of course, we don’t know if he has confirmed Madagascar ancestry, and his haplogroup is quite distant from both Revels and Lynn in terms of when his haplogroup was formed.

Viewing the Malagasy Project’s Group Time Tree, above, the common ancestor between those three men lived about 28K BCE, or 30,000 years ago.

Haplogroup O Project Group Time Tree

The Haplogroup O Project Time Tree provides a better representation of haplogroup O in general given that it has a much wider range of samples.

On this tree, I’ve labeled the haplogroup formation dates, along with the Revels/Lewis line which descends from O-FT45548. This haplogroup includes one additional group member whose surname is locked, as he hasn’t given publication permission. The haplogroup formation date of 1766 occurs approximately 85 years after James Revel’s birth, so is attributable to some, but not all of his descendants. At least one descendant falls into the older Haplogroup O-BY60500.

The common ancestor of all three, meaning Revels, Lewis, and the man whose name is locked and does not know his genealogy, is haplogroup O-BY60500, born about 1741.

Their ancestral haplogroup before that, O-FT11768, is much older.

Two Filipino results are shown on and descending from the parent branch of O-FT11768, formed about 3183 BCE, or about 5183 years ago. This tells us that the ancestors of all these men were in the same place, most likely the Philippines, at that time.

3183 BCE (5180 years ago) is well after the Native American migration into the Americas.

Discover Time Tree

Obviously, not every tester joins a project, so now I’m switching to the Discover Time Tree which includes all Y-DNA haplogroup branches. Their common haplogroup, O-FT11768, has many branches, not all of which are shown below. I’m summarized unseen branch locations at bottom left.

Expanding the Time Tree further to view all of the descendant haplogroups of O-FT11768, we see that this was a major branch with many South Pacific results, including the branch of O-FT22410, bracketed in red, which has three members.

One is Mr. Lynn whose feather indicates Native American as his EKA country selection, one is a man whose ancestor is from Singapore, and one is an unknown individual who did not enter his ancestor’s country of origin.

Geography

Wesley’s STR match list, which can reflect matches further back in time than the Big-Y test, includes islands near Singapore. This geography aligns with what is known about haplogroup O.

The distance between this Asian region and continental America, 9000+ miles distant by air, is remarkable and clearly only navigable at that time by ship, meaning ships with experienced crew, able to navigate long distances with supplies and water.

We know that in 760 CE, about 1240 years ago, Mr. Lynn’s haplogroup O-F24410 was formed someplace in the South Pacific – probably in Malaysia or a nearby island. This region, including the Philippines, is home to many haplogroup O men. The majority of haplogroup O is found in Asia, the South Pacific, and Diaspora regions.

We know that Hawaii was populated by Polynesian people about 1600 years ago, prior to the age of colonization. Hawaii is almost 7000 miles from Singapore.

Here’s the challenge. How did these haplogroup O men get from the South Pacific to Virginia? Mr. Lynn and the Singapore tester share a common ancestor about 1240 years ago, or 760 CE.

There is no known or theorized Native American settlement wave across Beringia as late as 760 CE. We know that the parent haplogroup was someplace near Singapore in approximately 760 CE.

Two Filipino men and the Revels’ ancestors were in the same location in the Pacific Islands 5180 years ago. How did they arrive on the Eastern Shore in Virginia, found in the Native population, either in or before 1656 when James Revels was born?

What happened in the 3500 years between those dates that might explain how James Revel’s ancestor made that journey?

Academic Papers

In recent years, there has been discussion of possible shoreline migration routes along the Russian coast, Island hopping along Alaska, Canada, and what is now the US, known as the Kelp Highway or Coastal Migration Route – but that has yet to be proven.

Even if that is the case, and it’s certainly a possibility, how did this particular group of men get from the Pacific across the continent to the Atlantic shore in such a short time, leaving no telltale signs along the way? The Coastal Migration Theory hypothesis states that this migration occurred from 12-16 thousand years ago, and then expanded inland over the next 3-5K years. They could not have expanded eastward until the glaciers receded. Regardless, the parent haplogroup and associated ancestors are still found in the Philippines and South Pacific 5000 years ago – after that migration and expansion had already occurred.

The conclusion of the paper is that there is no strong evidence for a Pacific shoreline migration. Regardless, that’s still thousands of years before the time range we’re observing.

We know that the Lynn ancestor was with men from Indonesia in 760 CE, and the Revels ancestor was with men from the Pacific Islands, probably the Philippines, 5180 years ago. They couldn’t have been in two places at the same time, so the ancestors of Revels and Lynn were not in the Americas then.

A 2020 paper shows that remains from Easter Island (Rapa Nui) show Native American DNA, and suggests that initial contact occurred between the two cultures about 1200 CE, or about 800 years ago, but there is not yet any pre-contact or post-contact ancient Y-DNA found in the Americas that shows Polynesian DNA. Furthermore, the hypothesis is that the DNA found on Easter Island came from the Americas, not vice versa. The jury is still out, but this does show that trans-Pacific contact between the two cultures was taking place 800 years ago, at least two hundred years pre-European contact.

Australasian migration to South America is also suggested by one set of remains found in Brazil dating from more than 9000 years ago, but there have been no other remains found indicating this heritage, either in Brazil, or elsewhere in the Americas.

Based on the Time Tree dates of the Haplogroup O testers in our samples, we know they were in the Islands of Southeast Asia after this time period. Additionally, there are no Australia/New Zealand matches.

The Spanish

The Spanish established an early trade route between Manila and Acapulco beginning in 1565. Consequently, east Asian men left their genetic signature in Mexico, as described in this paper.

Historians estimate that 40-129K immigrants arrived from Manilla to colonial Mexico between 1565 and 1815, with most being enslaved upon arrival. Approximately one-third of the population in Manilla was already enslaved. Unfortunately, this paper focused only on autosomal genome-wide results and did not include either Y-DNA, nor mitochondrial. However, the paper quantifies the high degree of trade, and indicates that the Philippines and other Asian population haplotypes are still prevalent in the Mexican population.

In 2016, Dr. Miguel Vilar, the lead scientist with the National Geographic Genographic project lectured in Guam about the surprising Native American DNA found in the Guam population and nearby islands. He kindly provided this link to an article about the event.

Guam was colonized by Spain. In the image from the Boxer Codex, above, the local Chamorro people greet the Manila Galleon in the Ladrones Islands, as the Marianas were called by the Spanish, about 1590.

Native Hawaiians descend from Polynesian ancestors who arrived in the islands about 400 CE, or about 1600 years ago. Captain Cook, began the age of European contact in Hawaii in 1778.

Five Possibilities

There are five possible origins of haplogroup O in the Americas.

  • Traditional migration across Beringia with the known migrations, estimated to have occurred about 12-16K years ago.
  • A Kelp Highway Coastal Migration which may have occurred about 12-16K years ago and dispersed over the next 3-5K years.
  • Circumpolar migration – specifically Inuit and Na-Dene speakers, about 4-6K years ago.
  • Post-contact incorporation from the Pacific Islands resulting from shipping trade on colonial era ships sometime after 1565.
  • Post-contact incorporation from Madagascar resulting from the importation of humans who may or may not have been enslaved upon arrival.

Do we have any additional evidence?

Other Haplogroup O DNA

From my book, DNA for Native American Genealogy:

Testers in haplogroup O-BY60500 and subclade O-FT45548 have proven Native American heritage.

We have multiple confirmed men from a common ancestor who is proven to be an enslaved Accomack “Indian boy,” James Revell, born in 1656, “belonging to the Motomkin” village, according to the Accomack County, Virginia court records. These men tested as members of haplogroup O-F3288 initially, after taking the Big Y-500 test. However, upgrading to the Big Y-700 produced more granular results and branches reflecting mutations that occurred since their progenitor was born in 1656.

Unfortunately, other than known descendants, these men have few close Y-DNA or Big Y-700 matches.

Without additional men testing from different unrelated lines, or ancient haplogroup O being discovered, we cannot confirm that this haplogroup O male’s ancestor was not introduced into the Matomkin Tribe in some way post-contact. Today, one descendant from this line is a member of the Lumbee Tribe.

However, that isn’t the end of the haplogroup O story.

The Genographic Project data shows one Haplogroup O Tlingit tribal member from Taku, Alaska, along with several testers from Mexico that indicate their paternal line is indigenous. Some people from Texas identify their paternal line as Hispanic.

Another individual indicates they were born on the Fountain Indian Reserve, in British Columbia and speaks the St’at’imcets language, an interior branch of Coastal Salish.

Haplogroup O has been identified as Native American in other locations as well.

Much of the information about Haplogroup O testers was courtesy of the Genographic Project, meaning we can’t contact those people to request upgraded tests, and we can’t obtain additional information in addition to what they provided when they tested. As an affiliate researcher, I’m very grateful to the National Geographic Society’s Genographic project for providing collaborative data.

When the book was published, the Discover Time Tree had not yet been released. We have additional information available today, including the dates of haplogroup formation.

FamilyTreeDNA Haplotree and Discover

The FamilyTreeDNA Haplotree (not to be confused with the Discover Time Tree) shows 10 people at the O-M175 level in Mexico, 10 people in the US report Native American heritage, 2 in Jamaica, and one each in Peru, Panama, and Cuba. There’s also one tester from Madagascar.

Altogether, this gives us about 35 haplogroup O males in the Americas, several with Native heritage.

Please note that I’ve omitted Hawaii in this analysis and included only North and South America. The one individual selecting Native Hawaiian (Kanaka Maoli) is in haplogroup O-M133.

Let’s look at our three distinct clusters.

Cluster 1 – Pacific Northwest – Alaska and Canada

We have a cluster of three individuals along the Pacific Coast in Alaska and Canada who have self-identified as Native, provided a tribal affiliation, and, in some cases, the spoken language.

How might haplogroup O have arrived in or near Vancouver, Washington? We know that James Cook “discovered” Hawaii in 1778, naming it the Sandwich Islands. By 1787, a female Hawaiian died en route to the Pacific Northwest, and the following year, a male arrived. Hawaii had become a provisioning stop, and the Spanish took Hawaiians onto ships as replacement workers.

Hawaiian seamen, whalers, and laborers began intermarrying with the Native people along the West Coast as early as 1811. Their presence expanded from Oregon to Alaska. Migration and intermarriage along the Pacific coast began slowly, but turned into a steady stream 30 years later when we have confirmed recruitment and migration of Hawaiian people

In 1839, John Sutter recruited a small group of 10 Hawaiians to travel with him to the then-Mexican colony of Alta, California.

By the mid-1800s, hundreds of Hawaiians lived in Canada and California. In 1847, it was reported that 10% of San Francisco’s residents were Hawaiian. Some of those people integrated with the Native American people, particularly the Miwok and Maidu. The village of Verona, California was tri-lingual: Hawaiian, a Native language, and English, and is today the Sacramento-Verona Tribe.

This article provides a history of the British Company who administered Fort Vancouver, near Vancouver, Washington, that included French-Canadians, Native Americans and Hawaiians. In 1845, 119 Hawaiians were employed at the fort. One of the 119, Opunuia, had signed on as an “engagé,” meaning some type of hired hand or employee, with the Hudson Bay Company for three years, after which he would be free to return home to Honolulu or establish himself in the Oregon Country. He married a woman from the Cascade Tribe.

The descendants of the Hawaiian men and Native women were considered tribal members. In most tribes, children took the tribal status and affiliation of the mother.

The Taku and Sitka, Alaska men on the map are Tlingit, and the man from British Columbia is from the Fountain Indian Reserve.

Hawaiian recruitment is the most likely scenario by which haplogroup O arrived in the tribes of the Pacific Northwest. In that sense, haplogroup O is indeed Native American but not indigenous to that region. The origins of haplogorup O in the Pacific Northwest are likely found in Hawaii, where it is indigenous, and before that, Polynesia – not due to a Beringian crossing.

Cluster 2 – Mexico

We find a particularly interesting small cluster of 4 haplogroup O individuals in interior Mexico.

In the 1500s, Spain established a trade route between Mexico and Manilla in the Philippines.

In 1564, four ships left Mexico to cross the Pacific to claim Guam and the Philippines for King Philip II of Spain. The spice trade, back and forth between Mexico and the Philippines began the following year and continued for the next 250.

Landings occurred along the California coast and the western Mexican coastline. The majority of the galleon crews were Malaysian and Filipino who were paid less than the Spanish sailors. Slaves, including people from the Marianas were part of the lucrative cargo.

One individual in Texas reports haplogroup O and indicates their paternal ancestors were Hispanic/Native from Mexico. A haplogroup O cluster claiming Native heritage is found near Zacatecas, Fresnillo and San Luis Potosi in central Mexico. Additionally, mitochondrial haplogroup F, also Asian, is found there as well. Acapulco is the lime green pin.

An additional haplogroup O tester with Native heritage is found in Lima, Peru.

Haplogroup O men are found in Panama, Jamaica and Cuba, but do not indicate the heritage of their paternal ancestral line. None of these men have taken Big-Y tests, and some may well have arrived on the slave ships from Madagascar, especially in the Caribbean. This source attributes some enslaved people in Jamaica to Hawaiian voyages.

I strongly suspect that the Mexican/Peru grouping in close proximity to the Pacific coastline is the result of the Manilla-Mexico 250-year trade route. The Spanish also plied those waters regularly. Big Y testing of those men would help flesh-out their stories – when and how haplogroup O arrived in the local population.

Cluster 3 – East Coast

At first glance, the East Coast grouping of men with a genetic affinity to the people of the Philippines and Indonesia seems more difficult to explain, but perhaps not.

On the East Coast, we have confirmed reports of whalers near Nantucket as early as 1765 utilizing crewmen from Hawaii, known then as the Sandwich Islands, Tahiti, and the Cape Verde Islands off of Africa. A thorough review of early literature might well reveal additional information about early connections with the Sandwich Islands, and in particular, sailors, crew, or enslaved people.

The Spanish and French were the first to colonize the Philippines by the late 1500s. They had discovered the Solomon Islands, Melanesia, and other Polynesian Islands, and by the early 1600s, the Dutch were involved as well.

The Encyclopedia Britanica further reports that Vasco Balboa first sailed into the Pacific in 1513 and seven years later, Ferdinand Magellan rounded the tip of South America. The Spanish followed, establishing a galley trade between Manila, in the Philippines and Acapulco in western Mexico.

While I found nothing specific stating that the earliest voyages brought men from the Philippines and Oceania back to their European home ports with them, we know that early European captains on exploratory voyages took Native people from the east coast of the Americas on their return journey, so there’s nothing to preclude them from doing the same from the Pacific. The early explorers stayed for months among the Oceanic Native peoples. If they were short on sailors for their return voyage, Polynesian men filled the void.

We know that the Spanish took slaves as part of their trade. We know that the ships in the Pacific took sailors from the islands. If the men themselves didn’t stay in the locations they visited, it’s certainly within the realm of possibility that they fathered children with local, Native women. Furthermore, given that the slave trade was lucrative, it’s also possible that some Pacific Island slaves were taken not as crew but with the intention of being sold into bondage. Other men may have escaped the ships and hidden among the Native Tribes along the eastern seaboard.

Fishing in Newfoundland and exploration in what would become the US was occurring by 1500, so it’s certainly possible that some of the indigenous people from Indonesia and the Philippines were either stranded, sold to enslavers, escaped, or chose to join the Native people along the coastline in North America. Ships had to stop to resupply rations and take on fresh water.

We know that by the mid-1600s, James Revels, whose father carried haplogroup O, had been born on the Atlantic coast of Virginia or Maryland, probably on the Delmarva Peninsula, short for Delaware, Maryland, Virginia, where the Accomac people lived.

There are other instances of haplogroup O found along the east coast.

On the eastern portion of the haplogroup O map from the book, DNA for Native American Genealogy, we find the following locations:

  • Hillburn, NY – man identified as “Native American Black.”
  • Chichester County, PA – Genographic tester identified the location of his earliest known ancestor – included here because O is not typically found in the states.
  • Accomack County, VA – Delmarva peninsula – James Revels lineage
  • Robeson County, NC – Lewis and Revels surname associated with the Lumbee
  • Chatham County, NC – Lynn ancestor’s earliest known location
  • Greene County, NC – enslaved Blount ancestor’s EKA in 1849

The genesis of Mr. Blount’s enslaved ancestor is unclear. Fortunately, he took a Big Y-700 test.

Mr. Blount’s only Big-Y match is to a man from the United Arab Emirates (UAE), but the haplogroup history includes Thailand, which is the likely source of both his and his UAE matches’ ancestors at some point in time. Their common ancestor was in Thailand in 336 CE, almost 1700 years ago.

All surrounding branches of haplogroup O on the Time Tree have Asian testers, except for the one UAE gentleman.

The Blount Haplogroup O-FTC77008 does not connect with the common ancestral haplogroup of Lynn and Revels, so these lineages are only related someplace in Oceana prior to O-F265, or more about  30,000 years ago. Their only commonality other than their Asian origins is that they arrived on the East Coast of the Americas.

We know that the Spanish were exploring the Atlantic coastline in the 1500s and were attempting to establish colonies. In 1566, a Spanish expedition reached the Delmarva Peninsula. This spit of land was contested and changed hands several times, belonging variously to the Spanish, Dutch, and British by 1664.

Furthermore, we also know that the ships were utilizing slave labor. One of the Spanish ships wrecked in the waters off North Carolina near Hatteras or Roanoke Island before the Lost Colony was abandoned on Roanoke Island in 1587. The Croatan Indians reported that in memorable history, several men, some of whom were reported to be slaves, had survived the wreck and “disappeared” into the hinterlands – clearly running for their lives.

These men, if they survived, would have been incorporated into the Native population as there were no other settlements at the time. Variations of this scenario may have played out many times.

James Revels’ ancestor could have arrived on any ship, beginning with exploration and colonization in the early 1500s through the mid-1650s.

By the time the chief bound the Indian boy who was given the English name James to Edward Revell, James’s Oceanic paternal ancestor could have been 4, 5 or 6 generations in the past – or could have been his father.

The Accomack was a small tribe, loosely affiliated with the Powhatan Confederacy along the Eastern Shore. By 1700, their population had declined by approximately 90% due to disease. A subgroup, the Gingaskins, intermarried with African Americans living nearby. After Nat Turner’s slave rebellion of 1831, they were expelled from their homelands.

The swamps near Lumberton in Robeson County, NC, became a safe haven for many mixed-race Native, African, and European people. The swamps protected them, and they existed, more or less undisturbed, for decades. Revels and Lewis descendants are both found there.

Many Native Americans were permanently enslaved alongside African people – and within a generation or so, their descendants knew they were Native and African, but lost track of which ancestors descended from which groups. Life was extremely difficult back then. Generations were short, and enslaved people were moved from place to place and sold indiscriminately, severing their family ties entirely, including heritage stories.

Returning to the Discover Time Tree Maps

Wesley Revels has STR matches with several men from Indonesia, China, and the Philippines. It would be very helpful if those men would upgrade to the Big Y-700 so that we can more fully complete the haplogroup O branches of the Time Tree.

The common Revels/Lewis ancestor, accompanied by two descendant men on different genetic branches from the Philippines, was born about 5180 years ago. There is no evidence to suggest Haplogroup O-FT11768 was born anyplace other than in the Philippines.

How did the descendant haplogroups of O-FT45548 (Revels, Lewis, and an unnamed man) and O-F22410 (Lynn) arrive in Virginia or anyplace along the Atlantic seaboard?

Hawaii wasn’t settled until about 1600 years ago. We know Hawaiians integrated with the Pacific Coast Native tribes in the 1800s, but James Revels was in Virginia in 1656..

We know that the Spanish established a mid-1500s trade route between Manila and Acapulco, leaving their genetic signature in western Mexico.

None of these events fit the narrative for the Revels or the Lynn paternal ancestor.

Furthermore, the Revels and Lynn lines do not connect on North American soil, as both descend from the same parent haplogroup, O-FT11768, 5180 years ago in the Philippines. This location and history suggest a connection with the Spanish galleon trade era. The haplogroup formation clearly predates that trade, which means those men were still in the Philippines, not already living on the American continents. Therefore, the descendants of the haplogroup O-FT11768 arrived in Virginia and North Carolina sometime after that haplogroup formation 5100 years ago.

The Lynn ancestor connects with a man from Singapore in 760 CE, or just 1240 years ago. A descendant of haplogroup O-F22410 arrived in North Carolina sometime later.

It does not appear, at least not on the surface, that there is a connection through Madagascar, although we can’t rule that out without additional testers. If the connection is through Madagascar, then their ancestors were likely transported from Indonesia to Madagascar, then as enslaved people from Madagascar to the Atlantic colonies to be sold. However, James Revels was not enslaved. He was clearly Native and bound to a European plantation owner, who did, in fact, free him as agreed and subsequently loaned him money.

Based on the dates involved, and when we know they were in Oceania, an arrival along the west coast, followed by a quick migration across the country to a peninsula of land in the Atlantic, is probably the least likely scenario. There is also no historical or ancient haplogroup O DNA found anyplace between the west and east coasts, nor in the Inuit or Na-Dene speakers. The Navajo, who speak the Na-Dené language, migrated to the Southwest US around 1400 CE, but haplogroup O has not been found among Na-Dené speakers.

It’s a long way from Singapore and the Philippines to Madagascar, so while the coastal migration scenario is not impossible, it’s also not probable, especially given what we know about the Spanish Pacific trade that existed profitably for 250 years.

However, one haplogroup O subgroup arrived in the UAE by some methodology after 336 CE.

It’s entirely possible, indeed probable, that haplogroup O arrived in the Americas for various reasons, on different paths, in different timeframes.

Haplogroup O was found in people in the Americas after colonization had begun. There has been no ancient Haplogroup O DNA discovered, and there’s evidence indicating that these instances of haplogroup O could not have arrived in any of the known Beringia migrations nor the theorized Coastal or Kelp migration. We know the East Coast Cluster is not a result of the West Coast 19th-century migration because James Revels was in court one hundred and fifty years before the Hawaiians were living among the Native people along the Pacific coastline.

There’s nothing to indicate that the Mexican group that likely arrived beginning in the mid-1500s for the next 250 years as a result of the Indonesian trade route migrated to the east coast, or vice versa. That’s also highly unlikely.

The most likely scenario is that Mr. Lynn’s, Mr. Blount’s, and James Revels’ ancestors were brought on trade ships, either as sailors or enslaved men. They may not have stayed, simply visited. They may each have arrived in a completely different scenario, meaning Mr. Blount’s ancestors could have been enslaved arrivals from Madagascar, Mr. Lynn’s from Indonesia, and Mr. Revel’s as a crew member on a Spanish ship. We simply don’t know.

James Revels’ descendants were Native through his mother’s tribe, as confirmed in the 1667 court records. However, the Revels and Lynn lineages weren’t Native as a result of their paternal haplogroup O ancestors crossing Beringia into the Americas with Native American haplogroups Q and C. Instead, the Lynn and Revels migration story is quite different. Their ancestors arrived by ship. The journey was long, perilous, and far more unique than we could have imagined, taking them halfway around the world by water.

Timeline

There’s a lot of information to digest, so I’ve compiled a timeline incorporating both genetic and historical information for easy reference.

  • 30,000 years ago (28,000 BCE) – haplogroup O-F265, common Asian ancestor  of Mr. Blount, the Revels/Lewis group, Mr. Lynn, and an unknown Big-Y tester in the Malagasy group project
  • 12,000-16,000 years ago – Indigenous Americans arrived across now-submerged Beringia
  • 12,000-16,000 years ago – possible Coastal Migration route may have facilitated a secondary source of indigenous arrival along the Pacific coastline of the Americas
  • 4000-7000 years ago – circumpolar migration arrival of Inuit and Na-Dené speakers found in the Arctic polar region and the Navajo in the Southwest who migrated from Alaska/Canada about 1400 CE
  • 5180 years ago (3180 BCE) – haplogroup O-FT11768, the common ancestor of Mr. Lynn and the Revels/Lewis group with many subgroups in the Philippines, Hawaii, Singapore, Brunei, China, Sumatra, and Thailand
  • 2244 years ago (244 BCE) – haplogroup O-CTS716, the common ancestor of Wesley Revels and Mr. Luo from Indonesia
  • The year 336 CE, 1684 years ago – haplogroup O-FTC77008, the common ancestor of Mr. Blount, UAE tester and a man from Thailand
  • 400 CE, 1600 years ago  –  Hawaii populated by Polynesian people
  • 760 CE, 1240 years ago – haplogroup O-F22410, common ancestor of Mr. Lynn with a Singapore man
  • 1492 CE, 528 years ago – Columbus begins his voyages to the “New World,” arriving in the Caribbean
  • By 1504 CE – European fishing began off of Newfoundland
  • 1565 – Spain claimed Guam and the Philippines
  • 1565 – Spanish trade between Manilla and Acapulco begins and continues for 250 years, until 1815, using crews of men from Guam, the Philippines, and enslaved people from the Marianas.
  • 1565 – St. Augustine (Florida) was founded by the Spanish as a base for trade and conquest along the eastern seaboard
  • 1566 – A Spanish expedition reached the Delmarva peninsula intending to establish a colony, but bad weather thwarted that attempt.
  • 1585-1587 – voyages of discovery by the English and the Lost Colony on Roanoke Island, North Carolina
  • 1603 – English first explored the Delmarva Peninsula, home to the Accomac people, now Accomack County, VA, where James Revels’s court record was found in 1667
  • 1607 – Jamestown, Virginia, founded by the English
  • 1608 – Colonists first arrived on the Delmarva Peninsula and allied with Debedeavon, whom they called the “laughing King” of the Accomac people. At that time, the Accomac had 80 warriors. Debedeavon was a close friend to the colonists and saved them from a massacre in 1622. He died in 1657.
  • 1620 – The Mayflower arrived near present-day Provincetown, Massachusetts
  • 1631-1638 – Dutch West India Company established a colony on the Delmarva Peninsula, but after conflicts, it was destroyed by Native Americans in 1638. The Swede’s colony followed, and the region was under Dutch and Swedish control until it shifted to British control in 1664
  • 1656 – Birth of James Revels, confirmed in a 1667 court record stating that he was an Accomack “Indian boy” from “Matomkin,” judged to be age 11, bound to Edward Revell. This location is on the Delmarva Peninsula.
  • 1741 CE –  Haplogroup O-BY60500 formation date that includes all of the Revels and Lewis testers who descend from James Revels born in 1656
  • 1765 – Whalers near Nantucket using crewmen from Hawaii (Sandwich Islands), Tahiti, and the Cape Verde Islands off of Africa
  • 1766 CE – Formation date for haplogroup O-FT45548, child haplogroup of O-BY60500, for some of the Lewis and Revels men who all descend from James Revels born in 1656
  • 1778 – Captain Cook makes contact with Hawaiian people
  • 1787 – The first male arrived in the Pacific Northwest from Hawaii
  • 1811 – Hawaiian seamen begin intermarrying with Native American females along the Pacific shore, eventually expanding their presence from Oregon to Alaska
  • 1839 – John Suter recruits Hawaiian men to travel with him to California
  • 1845 – Hawaiians employed by Fort Vancouver, with some marrying Native American women

Conclusions

It’s without question that James Revels was Native American very early in the settlement of the Delmarva Peninsula, now Accomack County, Virginia, but his common ancestor with Filipino men 5100 years ago precludes his direct paternal ancestor’s presence in the Americas at that time. In other words, his Revel male ancestor did not arrive in the Beringian indigenous migration 12,000-16,000 years ago. His ancestor likely arrived post-contact, based on a combination of both historical and genetic evidence.

Haplogroup O is not found in the Arctic Inuit nor the Na-Dene speakers, precluding a connection with either group, and has never been found in ancient DNA in the Americas.

Haplogroup O in the Revels lineage is most likely connected with the Spanish galleon trade with the Philippines and the early Spanish attempts to colonize the Americas.

The source of Haplogroup O in the Pacific Northwest group is likely found in the recruitment of Hawaiian men in the early/mid-1800s.

The Mexican Haplogroup O group likely originated with the Manilla/Mexico Spanish galleon trade.

The source of the Blount Haplogroup O remains uncertain, other than to say it originated in Thailand thousands of years ago and is also found in the UAE. The common Blount, UAE, and Thailand ancestor’s haplogroup dates to 336 CE, so they were all likely in or near Thailand at that date, about 1687 years ago.

What’s Next?

Science continuously evolves, revealing new details as we learn more, often clarifying or shifting our knowledge. Before the Discover tool provided haplogroup ages based on tests from men around the world, we didn’t have the necessary haplogroup origin and age data to understand the genesis of haplogroup O in the Americas. Now, we do, but there is invariably more to learn.

New evidence is always welcome and builds our knowledge base. Haplogroup O ancient DNA findings would be especially relevant and could further refine what we know, depending on the location, dates of the remains, who they match, and historical context.

Additional Big Y-700 tests of haplogroup O men, especially those with known genealogy or ancestor location, including Madagascar, would be very beneficial and allow the haplogroup formation dates to be further refined.

If you are a male with haplogroup O, please consider upgrading to the Big Y-700 test, here.

_____________________________________________________________

Follow DNAexplain on Facebook, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

DNA: In Search of…Signs of Endogamy

This is the fourth in our series of articles about searching for unknown close family members, specifically; parents, grandparents, or siblings. However, these same techniques can be applied by genealogists to ancestors further back in time as well.

In this article, we discuss endogamy – how to determine if you have it, from what population, and how to follow the road signs.

After introductions, we will be covering the following topics:

  • Pedigree collapse and endogamy
  • Endogamous groups
  • The challenge(s) of endogamy
  • Endogamy and unknown close relatives (parents, grandparents)
  • Ethnicity and Populations
  • Matches
  • AutoClusters
  • Endogamous Relationships
  • Endogamous DNA Segments
  • “Are Your Parents Related?” Tool
  • Surnames
  • Projects
  • Locations
  • Y DNA, Mitochondrial DNA, and Endogamy
  • Endogamy Tools Summary Tables
    • Summary of Endogamy Tools by Vendor
    • Summary of Endogamous Populations Identified by Each Tool
    • Summary of Tools to Assist People Seeking Unknown Parents and Grandparents

What Is Endogamy and Why Does It Matter?

Endogamy occurs when a group or population of people intermarry among themselves for an extended period of time, without the introduction of many or any people from outside of that population.

The effect of this continual intermarriage is that the founders’ DNA simply gets passed around and around, eventually in small segments.

That happens because there is no “other” DNA to draw from within the population. Knowing or determining that you have endogamy helps make sense of DNA matching patterns, and those patterns can lead you to unknown relatives, both close and distant.

This Article

This article serves two purposes.

  • This article is educational and relevant for all researchers. We discuss endogamy using multiple tools and examples from known endogamous people and populations.
  • In order to be able to discern endogamy when we don’t know who our parents or grandparents are, we need to know what signs and signals to look for, and why, which is based on what endogamy looks like in people who know their heritage.

There’s no crystal ball – no definitive “one-way” arrow, but there are a series of indications that suggest endogamy.

Depending on the endogamous population you’re dealing with, those signs aren’t always the same.

If you’re sighing now, I understand – but that’s exactly WHY I wrote this article.

We’re covering a lot of ground, but these road markers are invaluable diagnostic tools.

I’ve previously written about endogamy in the articles:

Let’s start with definitions.

Pedigree Collapse and Endogamy

Pedigree collapse isn’t the same as endogamy. Pedigree collapse is when you have ancestors that repeat in your tree.

In this example, the parents of our DNA tester are first cousins, which means the tester shares great-grandparents on both sides and, of course, the same ancestors from there on back in their tree.

This also means they share more of those ancestors’ DNA than they would normally share.

John Smith and Mary Johnson are both in the tree twice, in the same position as great-grandparents. Normally, Tester Smith would carry approximately 12.5% of each of his great-grandparents’ DNA, assuming for illustration purposes that exactly 50% of each ancestor’s DNA is passed in each generation. In this case, due to pedigree collapse, 25% of Tester Smith’s DNA descends from John Smith, and another 25% descends from Mary Johnson, double what it would normally be. 25% is the amount of DNA contribution normally inherited from grandparents, not great-grandparents.

While we may find first cousin marriages a bit eyebrow-raising today, they were quite common in the past. Both laws and customs varied with the country, time, social norms, and religion.

Pedigree Collapse and Endogamy is NOT the Same

You might think that pedigree collapse and endogamy is one and the same, but there’s a difference. Pedigree collapse can lead to endogamy, but it takes more than one instance of pedigree collapse to morph into endogamy within a population. Population is the key word for endogamy.

The main difference is that pedigree collapse occurs with known ancestors in more recent generations for one person, while endogamy is longer-term and systemic in a group of people.

Picture a group of people, all descended from Tester Smith’s great-grandparents intermarrying. Now you have the beginnings of endogamy. A couple hundred or a few hundred years later, you have true endogamy.

In other words, endogamy is pedigree collapse on a larger scale – think of a village or a church.

My ancestors’ village of Schnait, in Germany, is shown above in 1685. One church and maybe 30 or 40 homes. According to church and other records, the same families had inhabited this village, and region, for generations. It’s a sure bet that both pedigree collapse and endogamy existed in this small community.

If pedigree collapse happens over and over again because there are no other people within the community to marry, then you have endogamy. In other words, with endogamy, you assuredly DO have historical pedigree collapse, generally back in time, often before you can identify those specific ancestors – because everyone descends from the same set of founders.

Endogamy Doesn’t Necessarily Indicate Recent Pedigree Collapse

With deep, historic endogamy, you don’t necessarily have recent pedigree collapse, and in fact, many people do not. Jewish people are a good example of this phenomenon. They shared ancestors for hundreds or thousands of years, depending on which group we are referring to, but in recent, known, generations, many Jewish people aren’t related. Still, their DNA often matches each other.

The good news is that there are telltale signs and signals of endogamy.

The bad news is that not all of these are obvious, meaning as an aid to people seeking clues about unknown close relatives, and other “signs” aren’t what they are believed to be.

Let’s step through each endogamy identifier, or “hint,” and then we will review how we can best utilize this information.

First, let’s take a look at groups that are considered to be endogamous.

Endogamous Groups

Jewish PeopleSpecifically groups that were isolated from other groups of Jewish (and other) people; Ashkenazi (Germany, Northern France, and diaspora), Sephardic (Spanish, Iberia, and diaspora), Mizrahi (Israel, Middle Eastern, and diaspora,) Ethiopian Jews, and possibly Jews from other locations such as Mountain Jews from Kazakhstan and the Caucasus.

AcadiansDescendants of about 60 French families who settled in “Acadia” beginning about 1604, primarily on the island of Nova Scotia, and intermarried among themselves and with the Mi’kmaq people. Expelled by the English in 1755, they were scattered in groups to various diasporic regions where they continued to intermarry and where their descendants are found today. Some Acadians became the Cajuns of Louisiana.

Anabaptist Protestant FaithsAmish, Mennonite, and Brethren (Dunkards) and their offshoots are Protestant religious sects founded in Europe in the 14th, 15th, and 16th centuries on the principle of baptizing only adults or people who are old enough to choose to follow the faith, or rebaptizing people who had been previously baptized as children. These Anabaptist faiths tend to marry within their own group or church and often expel those who marry outside of the faith. Many emigrated to the American colonies and elsewhere, seeking religious freedom. Occasionally those groups would locate in close proximity and intermarry, but not marry outside of other Anabaptist denominations.

Native American (Indigenous) People – all indigenous peoples found in North and South America before European colonization descended from a small number of original founders who probably arrived at multiple times.

Indigenous Pacific Islanders – Including indigenous peoples of Australia, New Zealand, and Hawaii prior to colonization. They are probably equally as endogamous as Native American people, but I don’t have specific examples to share.

Villages – European or other villages with little inflow or whose residents were restricted from leaving over hundreds of years.

Other groups may have significant multiple lines of pedigree collapse and therefore become endogamous over time. Some people from Newfoundland, French Canadians, and Mormons (Church of Jesus Christ of Latter-Day Saints) come to mind.

Endogamy is a process that occurs over time.

Endogamy and Unknown Relatives

If you know who your relatives are, you may already know you’re from an endogamous population, but if you’re searching for close relatives, it’s helpful to be able to determine if you have endogamous heritage, at least in recent generations.

If you know nothing about either parent, some of these tools won’t help you, at least not initially, but others will. However, as you add to your knowledge base, the other tools will become more useful.

If you know the identity of one parent, this process becomes at least somewhat easier.

In future articles, we will search specifically for parents and each of your four grandparents. In this article, I’ll review each of the diagnostic tools and techniques you can use to determine if you have endogamy, and perhaps pinpoint the source.

The Challenge

People with endogamous heritage are related in multiple, unknown ways, over many generations. They may also be related in known ways in recent generations.

If both of your parents share the SAME endogamous culture or group of relatives:

  • You may have significantly more autosomal DNA matches than people without endogamy, unless that group of people is under-sampled. Jewish people have significantly more matches, but Native people have fewer due to under-sampling.
  • You may experience a higher-than-normal cM (centiMorgan) total for estimated relationships, especially more distant relationships, 3C and beyond.
  • You will have many matches related to you on both your maternal and paternal sides.
  • Parts of your autosomal DNA will be the same on both your mother’s and father’s sides, meaning your DNA will be fully identical in some locations. (I’ll explain more in a minute.)

If either (or both) of your parents are from an endogamous population, you:

  • Will, in some cases, carry identifying Y and mitochondrial DNA that points to a specific endogamous group. This is true for Native people, can be true for Jewish people and Pacific Islanders, but is not true for Anabaptist people.

One Size Does NOT Fit All

Please note that there is no “one size fits all.”

Each or any of these tools may provide relevant hints, depending on:

  • Your heritage
  • How many other people have tested from the relevant population group
  • How many close or distant relatives have tested
  • If your parents share the same heritage
  • Your unique DNA inheritance pattern
  • If your parents, individually, were fully endogamous or only partly endogamous, and how far back generationally that endogamy occurred

For example, in my own genealogy, my maternal grandmother’s father was Acadian on his father’s side. While I’m not fully endogamous, I have significantly more matches through that line proportionally than on my other lines.

I have Brethren endogamy on my mother’s side via her paternal grandmother.

Endogamous ancestors are shown with red stars on my mother’s pedigree chart, above. However, please note that her maternal and paternal endogamous ancestors are not from the same endogamous population.

However, I STILL have fewer matches on my mother’s side in total than on my father’s side because my mother has recent Dutch and recent German immigrants which reduces her total number of matches. Neither of those lines have had as much time to produce descendants in the US, and Europe is under-sampled when compared with the US where more people tend to take DNA tests because they are searching for where they came from.

My father’s ancestors have been in the US since it was a British Colony, and I have many more cousins who have tested on his side than mother’s.

If you looked at my pedigree chart and thought to yourself, “that’s messy,” you’d be right.

The “endogamy means more matches” axiom does not hold true for me, comparatively, between my parents – in part because my mother’s German and Dutch lines are such recent immigrants.

The number of matches alone isn’t going to tell this story.

We are going to need to look at several pieces and parts for more information. Let’s start with ethnicity.

Ethnicity and Populations

Ethnicity can be a double-edged sword. It can tell you exactly nothing you couldn’t discern by looking in the mirror, or, conversely, it can be a wealth of information.

Ethnicity reveals the parts of the world where your ancestors originated. When searching for recent ancestors, you’re most interested in majority ethnicity, meaning the 50% of your DNA that you received from each of your parents.

Ethnicity results at each vendor are easy to find and relatively easy to understand.

This individual at FamilyTreeDNA is 100% Ashkenazi Jewish.

If they were 50% Jewish, we could then estimate, and that’s an important word, that either one of their parents was fully Jewish, and not the other, or that two of their grandparents were Jewish, although not necessarily on the same side.

On the other hand, my mother’s ethnicity, shown below, has nothing remarkable that would point to any majority endogamous population, yet she has two.

The only hint of endogamy from ethnicity would be her ~1% Americas, and that isn’t relevant for finding close relatives. However, minority ancestry is very relevant for identifying Native ancestors, which I wrote about, here.

You can correlate or track your ethnicity segments to specific ancestors, which I discussed in the article, Native American & Minority Ancestors Identified Using DNAPainter Plus Ethnicity Segments, here.

Since I wrote that article, FamilyTreeDNA has added the feature of ethnicity or population Chromosome Painting, based on where each of your populations fall on your chromosomes.

In this example on chromosome 1, I have European ancestry (blue,) except for the pink Native segment, which occurs on the following segment in the same location on my mother’s chromosome 1 as well.

Both 23andMe, and FamilyTreeDNA provide chromosome painting AND the associated segment information so you can identify the relevant ancestors.

Ancestry is in the process of rolling out an ethnicity painting feature, BUT, it has no segment or associated matching information. While it’s interesting eye candy, it’s not terribly useful beyond the ethnicity information that Ancestry already provides. However, Jonny Perl at DNAPainter has devised a way to estimate Ancestry’s start and stop locations, here. Way to go Jonny!

Now all you need to do is convince your Ancestry matches to upload their DNA file to one of the three databases, FamilyTreeDNA, MyHeritage, and GEDMatch, that accept transfers, aka uploads. This allows matching with segment data so that you can identify who matches you on that segment, track your ancestors, and paint your ancestral segments at DNAPainter.

I provided step-by-step instructions, here, for downloading your raw DNA file from each vendor in order to upload the file to another vendor.

Ethnicity Sides

Three of the four DNA testing vendors, 23andMe, FamilyTreeDNA, and recently, Ancestry, attempt to phase your ethnicity DNA, meaning to assign it to one parental “side” or the other – both in total and on each chromosome.

Here’s Ancestry’s SideView, where your DNA is estimated to belong to parent 1 and parent 2. I detailed how to determine which side is which, here, and while that article was written specifically pertaining to Ancestry’s SideView, the technique is relevant for all the vendors who attempt to divide your DNA into parents, a technique known as phasing.

I say “attempt” because phasing may or may not be accurate, meaning the top chromosome may not always be parent 1, and the bottom chromosome may not always be chromosome 2.

Here’s an example at 23andMe.

See the two yellow segments. They are both assigned as Native. I happen to know one is from the mother and one is from the father, yet they are both displayed on the “top” chromosome, which one would interpret to be the same parent.

I am absolutely positive this is not the case because this is a close family member, and I have the DNA of the parent who contributed the Native segment on chromosome 1, on the top chromosome. That parent does not have a Native segment on chromosome 2 to contribute. So that Native segment had to be contributed by the other parent, but it’s also shown on the top chromosome.

The DNA segments circled in purple belong together on the same “side” and were contributed to the tester by the same parent. The Native segment on chromosome 2 abuts a purple African segment, suggesting perhaps that the ancestor who contributed that segment was mixed between those ethnicities. In the US, that suggests enslavement.

The other African segments, circled, are shown on the second chromosome in each pair.

To be clear, parent 1 is not assigned by the vendors to either mother or father and will differ by person. Your parent 1, or the parent on the top chromosome may be your mother and another person’s parent 1 may be their father.

As shown in this example, parents can vary by chromosome, a phenomenon known as “strand swap.” Occasionally, the DNA can even be swapped within a chromosome assignment.

You can, however, get an idea of the division of your DNA at any specific location. As shown above, you can only have a maximum of two populations of DNA on any one chromosome location.

In our example above, this person’s majority ancestry is European (blue.) On each chromosome where we find a minority segment, the opposite chromosome in the same location is European, meaning blue.

Let’s look at another example.

At FamilyTreeDNA, the person whose ethnicity painting is shown below has a Native American (pink) ancestor on their father’s side. FamilyTreeDNA has correctly phased or identified their Native segments as all belonging to the second chromosome in each pair.

Looking at chromosome 18, for example, most of their father’s chromosome is Native American (pink). The other parent’s chromosome is European (dark blue) at those same locations.

If one of the parents was of one ethnicity, and the other parent is a completely different ethnicity, then one bar of each chromosome would be all pink, for example, and one would be entirely blue, representing the other ethnicity.

Phasing ethnicity or populations to maternal and paternal sides is not foolproof, and each chromosome is phased individually.

Ethnicity can, in some cases, give you a really good idea of what you’re dealing with in terms of heritage and endogamy.

If someone had an Ashkenazi Jewish father and European mother, for example, one copy of each chromosome would be yellow (Ashkenazi Jewish), and one would be blue (European.)

However, if each of their parents were half European Jewish and half European (not Jewish), then their different colored segments would be scattered across their entire set of chromosomes.

In this case, both of the tester’s parents are mixed – European Jewish (green) and Western Europe (blue.) We know both parents are admixed from the same two populations because in some locations, both parents contributed blue (Western Europe), and in other locations, both contributed Jewish (green) segments.

Both MyHeritage and Ancestry provide a secondary tool that’s connected to ethnicity, but different and generally in more recent times.

Ancestry’s DNA Communities

While your ethnicity may not point to anything terribly exciting in terms of endogamy, Genetic Communities might. Ancestry says that a DNA Community is a group of people who share DNA because their relatives recently lived in the same place at the same time, and that communities are much smaller than ethnicity regions and reach back only about 50-300 years.

Based on the ancestors’ locations in the trees of me and my matches, Ancestry has determined that I’m connected to two communities. In my case, the blue group is clearly my father’s line. The orange group could be either parent, or even a combination of both.

My endogamous Brethren could be showing up in Maryland, Pennsylvania, and Ohio, but it’s uncertain, in part, because my father’s ancestral lines are found in Virginia, West Virginia, and Maryland too.

These aren’t useful for me, but they may be more useful for fully endogamous people, especially in conjunction with ethnicity.

My Acadian cousin’s European ethnicity isn’t informative.

However, viewing his DNA Communities puts his French heritage into perspective, especially combined with his match surnames.

I wrote about DNA Communities when it was introduced with the name Genetic Communities, here.

MyHeritage’s Genetic Groups

MyHeritage also provides a similar feature that shows where my matches’ ancestors lived in the same locations as mine.

One difference, though, is that testers can adjust their ethnicity results confidence level from high, above, to low, below where one of my Genetic Groups overlaps my ethnicity in the Netherlands.

You can also sort your matches by Genetic Groups.

The results show you not only who is in the group, but how many of your matches are in that group too, which provides perspective.

I wrote about Genetic Groups, here.

Next, let’s look at how endogamy affects your matches.

Matches

The number of matches that a person has who is from an entirely endogamous community and a person with no endogamy may be quite different.

FamilyTreeDNA provides a Family Matching feature that triangulates your matches and assigns them to your paternal or maternal side by using known matches that you have linked to their profile cards in your tree. You must link people for the Family Matching feature known as “bucketing” to be enabled.

The people you link are then processed for shared matches on the same chromosome segment(s). Triangulated individuals are then deposited in your maternal, paternal, and both buckets.

Obviously, your two parents are the best people to link, but if they haven’t tested (or uploaded their DNA file from another vendor) and you have other known relatives, link them using the Family Tree tab at the top of your personal page.

I uploaded my Ancestry V4 kit to use as an example for linking. Let’s pretend that’s my sister. If I had not already linked my Ancestry V4 kit to “my sister’s” profile card, I’d want to do that and link other known individuals the same way. Just drag and drop the match to the correct profile card.

Note that a full or half sibling will be listed as such at FamilyTreeDNA, but an identical twin will show as a potential parent/child match to you. You’re much more likely to find a parent than an identical twin, but just be aware.

I’ve created a table of FamilyTreeDNA bucketed match results, by category, comparing the number of matches in endogamous categories with non-endogamous.

Total Matches Maternal Matches Paternal Matches Both % Both % DNA Unassigned
100% Jewish 34,637 11,329 10,416 4,806 13.9 23.3
100% Jewish 32,973 10,700 9,858 4,606 14 23.7
100% Jewish 32,255 9,060 10,970 3,892 12 25.8
75% Jewish 24,232 11,846 Only mother linked Only mother linked Only mother linked
100% Acadian 8093 3826 2299 1062 13 11
100% Acadian 7828 3763 1825 923 11.8 17
Not Endogamous 6760 3845 1909 13 0.19 14.5
Not Endogamous 7723 1470 3317 6 0.08 38
100% Native American 1,115 Unlinked Unlinked Unlinked
100% Native American 885 290 Unknown Can’t calculate without at least one link on both sides

The 100% Jewish, Acadian, and Not Endogamous testers both have linked their parents, so their matches, if valid (meaning not identical by chance, which I discussed here,) will match them plus one or the other parent.

One person is 75% Jewish and has only linked their Jewish mother.

The Native people have not tested their parents, and the first Native person has not linked anyone in their tree. The second Native person has only linked a few maternal matches, but their mother has not tested. They are seeking their father.

It’s very difficult to find people who are fully Native as testers. Furthermore, Native people are under-sampled. If anyone knows of fully Native (or other endogamous) people who have tested and linked their parents or known relatives in their trees, and will allow me to use their total match numbers anonymously, please let me know.

As you can see, Jewish, Acadian, and Native people are 100% endogamous, but many more Jewish people than Native people have tested, so you CAN’T judge endogamy by the total number of matches alone.

In fact, in order:

  • Fully Jewish testers have about 4-5 times as many matches as the Acadian and Non-endogamous testers
  • Acadian and Non-endogamous testers have about 5-6 times as many matches as the Native American testers
  • Fully Jewish people have about 30 times more matches than the Native American testers

If a person’s endogamy with a particular population is only on their maternal or paternal side, they won’t have a significant number of people related to both sides, meaning few people will fall into the “Both” bucket. People that will always be found in the ”Both” bucket are full siblings and their descendants, along with descendants of the tester, assuming their match is linked to their profiles in the tester’s tree.

In the case of our Jewish testers, you can easily see that the “Both” bucket is very high. The Acadians are also higher than one would reasonably expect without endogamy. A non-endogamous person might have a few matches on both sides, assuming the parents are not related to each other.

A high number of “Both” matches is a very good indicator of endogamy within the same population on both parents’ sides.

The percentage of people who are assigned to the “Both” bucket is between 11% and 14% in the endogamous groups, and less than 1% in the non-endogamous group, so statistically not relevant.

As demonstrated by the Native people compared to the Jewish testers, the total number of matches can be deceiving.

However, being related to both parents, as indicated by the “Both” bucket, unless you have pedigree collapse, is a good indicator of endogamy.

Of course, if you don’t know who your relatives are, you can’t link them in your tree, so this type of “hunt” won’t generally help people seeking their close family members.

However, you may notice that you’re matching people PLUS both of their parents. If that’s the case, start asking questions of those matches about their heritage.

A very high number of total matches, as compared to non-endogamous people, combined with some other hints might well point to Jewish heritage.

I included the % DNA Unassigned category because this category, when both parents are linked, is the percentage of matches by chance, meaning the match doesn’t match either of the tester’s parents. All of the people with people listed in “Both” categories have linked both of their parents, not just maternal and paternal relatives.

Matching Location at MyHeritage

MyHeritage provides a matching function by location. Please note that it’s the location of the tester, but that may still be quite useful.

The locations are shown in the most-matches to least-matches order. Clicking on the location shows the people who match you who are from that location. This would be the most useful in situations where recent immigration has occurred. In my case, my great-grandfather from the Netherlands arrived in the 1860s, and my German ancestors arrived in the 1850s. Neither of those groups are endogamous, though, unless it would be on a village level.

AutoClusters

Let’s shift to Genetic Affairs, a third-party tool available to everyone.

Using their AutoCluster function, Genetic Affairs clusters your matches together who match both each other and you.

This is an example of the first few clusters in my AutoCluster. You can see that I have several colored clusters of various sizes, but none are huge.

Compare that to the following endogamous cluster, sample courtesy of EJ Blom at Genetic Affairs.

If your AutoCluster at Genetic Affairs looks something like this, a huge orange blob in the upper left hand corner, you’re dealing with endogamy.

Please also note that the size of your cluster is also a function of both the number of testers and the match threshold you select. I always begin by using the defaults. I wrote about using Genetic Affairs, here.

If you tested at or transferred to MyHeritage, they too license AutoClusters, but have optimized the algorithm to tease out endogamous matches so that their Jewish customers, in particular, don’t wind up with a huge orange block of interrelated people.

You won’t see the “endogamy signature” huge cluster in the corner, so you’re less likely to be able to discern endogamy from a MyHeritage cluster alone.

The commonality between these Jewish clusters at MyHeritage is that they all tend to be rather uniform in size and small, with lots of grey connecting almost all the blocks.

Grey cells indicate people who match people in two colored groups. In other words, there is often no clear division in clusters between the mother’s side and the father’s side in Jewish clusters.

In non-endogamous situations, even if you can’t identify the parents, the clusters should still fall into two sides, meaning a group of clusters for each parent’s side that are not related to each other.

You can read more about Genetic Affairs clusters and their tools, here. DNAGedcom.com also provides a clustering tool.

Endogamous Relationships

Endogamous estimated relationships are sometimes high. Please note the word, “sometimes.”

Using the Shared cM Project tool relationship chart, here, at DNAPainter, people with heavy endogamy will discover that estimated relationships MAY be on the high side, or the relationships may, perhaps, be estimated too “close” in time. That’s especially true for more distant relationships, but surprisingly, it’s not always true. The randomness of inheritance still comes into play, and so do potential unknown relatives. Hence, the words “may” are bolded and underscored.

Unfortunately, it’s often stated as “conventional wisdom” that Jewish matches are “always” high, and first cousins appear as siblings. Let’s see what the actual data says.

At DNAPainter, you can either enter the amount of shared DNA (cM), or the percent of shared DNA, or just use the chart provided.

I’ve assembled a compilation of close relationships in kits that I have access to or from people who were generous enough to share their results for this article.

I’ve used Jewish results, which is a highly endogamous population, compared with non-endogamous testers.

The “Jewish Actual” column reports the total amount of shared DNA with that person. In other words, someone to their grandparent. The Average Range is the average plus the range from DNAPainter. The Percent Difference is the % difference between the actual number and the DNAPainter average.

You’ll see fully Jewish testers, at left, matching with their family members, and a Non-endogamous person, at right, matching with their same relative.

Relationship Jewish Actual Percent Difference than Average Average -Range Non-endogamous Actual Percent Difference than Average
Grandparent 2141 22 1754 (984-2482) 1742 <1 lower
Grandparent 1902 8.5 1754 (984-2482) 1973 12
Sibling 3039 16 2613 (1613-3488) 2515 3.5 lower
Sibling 2724 4 2613 (1613-3488) 2761 5.5
Half-Sibling 2184 24 1759 (1160-2436) 2127 21
Half-Sibling 2128 21 1759 (1160-2436) 2352 34
Aunt/Uncle 2066 18.5 1741 (1201-2282) 1849 6
Aunt/Uncle 2031 16.5 1741 (1201-2282) 2097 20
1C 1119 29 866 (396-1397) 959 11
1C 909 5 866 (396-1397) 789 9 lower
1C1R 514 19 433 (102-980) 467 8
1C1R 459 6 433 (102-980) 395 9 lower

These totals are from FamilyTreeDNA except one from GEDMatch (one Jewish Half-sibling).

Totals may vary by vendor, even when matching with the same person. 23andMe includes the X segments in the total cMs and also counts fully identical segments twice. MyHeritage imputation seems to err on the generous side.

However, in these dozen examples:

  • You can see that the Jewish actual amount of DNA shared is always more than the average in the estimate.
  • The red means the overage is more than 100 cM larger.
  • The percentage difference is probably more meaningful because 100 cM is a smaller percentage of a 1754 grandparent connection than compared to a 433 cM 1C1R.

However, you can’t tell anything about endogamy by just looking at any one sample, because:

  • Some of the Non-Endogamous matches are high too. That’s just the way of random inheritance.
  • All of the actual Jewish match numbers are within the published ranges, but on the high side.

Furthermore, it can get more complex.

Half Endogamous

I requested assistance from Jewish genealogy researchers, and a lovely lady, Sharon, reached out, compiled her segment information, and shared it with me, granting permission to share with you. A HUGE thank you to Sharon!

Sharon is half-Jewish via one parent, and her half-sibling is fully Jewish. Their half-sibling match to each other at Ancestry is 1756 cM with a longest segment of 164 cM.

How does Jewish matching vary if you’re half-Jewish versus fully Jewish? Let’s look at 21 people who match both Sharon and her fully Jewish half-sibling.

Sharon shared the differences in 21 known Jewish matches with her and her half-sibling. I’ve added the Relationship Estimate Range from DNAPainter and colorized the highest of the two matches in yellow. Bolding in the total cM column shows a value above the average range for that relationship.

Total Matching cMs is on the left, with Longest Segment on the right.

While this is clearly not a scientific study, it is a representative sample.

The fully Jewish sibling carries more Jewish DNA, which is available for other Jewish matches to match as a function of endogamy (identical by chance/population), so I would have expected the fully Jewish sibling to match most if not all Jewish testers at a higher level than the half-Jewish sibling.

However, that’s not universally what we see.

The fully Jewish sibling is not always the sibling with the highest number of matches to the other Jewish testers, although the half-Jewish tester has the larger “Longest Segment” more often than not.

Approximately two-thirds of the time (13/21), the fully Jewish person does have a higher total matching cM, but about one-third of the time (8/21), the half-Jewish sibling has a higher matching cM.

About one-fourth of the time (5/21), the fully Jewish sibling has the longest matching segment, and about two-thirds of the time (13/21), the half-Jewish sibling does. In three cases, or about 14% of the time, the longest segment is equal which may indicate that it’s the same segment.

Because of endogamy, Jewish matches are more likely to have:

  • Larger than average total cM for the specific relationship
  • More and smaller matching segments

However, as we have seen, neither of those are definitive, nor always true. Jewish matches and relationships are not always overestimated.

Ancestry and Timber

Please note that Ancestry downweights some matches by removing some segments using their Timber algorithm. Based on my matches and other accounts that I manage, Ancestry does not downweight in the 2-3rd cousin category, which is 90 cM and above, but they do begin downweighting in the 3-4th cousin category, below 90 cM, where my “Extended Family” category begins.

If you’ve tested at Ancestry, you can check for yourself.

By clicking on the amount of DNA you share with your match on your match list at Ancestry, shown above, you will be taken to another page where you will be able to view the unweighted shared DNA with that match, meaning the amount of DNA shared before the downweighting and removal of some segments, shown below.

Given the downweighting, and the information in the spreadsheet provided by Sharon, it doesn’t appear that any of those matches would have been in a category to be downweighted.

Therefore, for these and other close matches, Timber wouldn’t be a factor, but would potentially be in more distant matches.

Endogamous Segments

Endogamous matches tend to have smaller and more segments. Small amounts of matching DNA tend to skew the total DNA cM upwards.

How and why does this happen?

Ancestral DNA from further back in time tends to be broken into smaller segments.

Sometimes, especially in endogamous situations, two smaller segments, at one time separated from each other, manage to join back together again and form a match, but the match is only due to ancestral segments – not because of a recent ancestor.

Please note that different vendors have different minimum matching cM thresholds, so smaller matches may not be available at all vendors. Remember that factors like Timber and imputation can affect matching as well.

Let’s take a look at an example. I’ve created a chart where two ancestors have their blue and pink DNA broken into 4 cM segments.

They have children, a blue child and a pink child, and the two children, shown above, each inherited the same blue 4 cM segment and the same pink 4 cM segment from their respective parents. The other unlabeled pink and blue segments are not inherited by these two children, so those unlabeled segments are irrelevant in this example.

The parents may have had other children who inherited those same 4 cM labeled pink and blue segments as well, and if not, the parents’ siblings were probably passing at least some of the same DNA down to their descendants too.

The blue and pink children had children, and their children had children – for several generations.

Time passed, and their descendants became an endogamous community. Those pink and blue 4 cM segments may at some time be lost during recombination in the descendants of each of their children, shown by “Lost pink” and “Lost blue.”

However, because there is only a very limited amount of DNA within the endogamous community, their descendants may regain those same segments again from their “other parent” during recombination, downstream.

In each generation, the DNA of the descendant carrying the original blue or pink DNA segment is recombined with their partner. Given that the partners are both members of the same endogamous community, the two people may have the same pink and/or blue DNA segments. If one parent doesn’t carry the pink 4 cM segment, for example, their offspring may receive that ancestral pink segment from the other parent.

They could potentially, and sometimes do, receive that ancestral segment from both parents.

In our example, the descendants of the blue child, at left, lost the pink 4 cM segment in generation 3, but a few generations later, in generation 11, that descendant child inherited that same pink 4 cM segment from their other parent. Therefore, both the 4 cM blue and 4 cM pink segments are now available to be inherited by the descendants in that line. I’ve shown the opposite scenario in the generational inheritance at right where the blue segment is lost and regained.

Once rejoined, that pink and blue segment can be passed along together for generations.

The important part, though, is that once those two segments butt up against each other again during recombination, they aren’t just two separate 4 cM segments, but one segment that is 8 cM long – that is now equal to or above the vendors’ matching threshold.

This is why people descended from endogamous populations often have the following matching characteristics:

  • More matches
  • Many smaller segment matches
  • Their total cM is often broken into more, smaller segments

What does more, smaller segments, look like, exactly?

More, Smaller Segments

All of our vendors except Ancestry have a chromosome browser for their customers to compare their DNA to that of their matches visually.

Let’s take a look at some examples of what endogamous and non-endogamous matches look like.

For example, here’s a screen shot of a random Jewish second cousin match – 298 cM total, divided into 12 segments, with a longest segment of 58 cM,

A second Jewish 2C with 323 cM total, across 19 segments, with a 69 cM longest block.

A fully Acadian 2C match with 600 cM total, across 27 segments, with a longest segment of 69 cM.

A second Acadian 2C with 332 cM total, across 20 segments, with a longest segment of 42 cM.

Next, a non-endogamous 2C match with 217 cM, across 7 segments, with a longest segment of 72 cM.

Here’s another non-endogamous 2C example, with 169 shared cM, across 6 segments, with a longest segment of 70 cM.

Here’s the second cousin data in a summary table. The take-away from this is the proportion of total segments

Tester Population Total cM Longest Block Total Segments
Jewish 2C 298 58 12
Jewish 2C 323 69 19
Acadian 2C 600 69 27
Acadian 2C 332 42 20
Non-endogamous 2C 217 72 7
Non-endogamous 2C 169 70 6

You can see more examples and comparisons between Native American, Jewish and non-endogamous DNA individuals in the article, Concepts – Endogamy and DNA Segments.

I suspect that a savvy mathematician could predict endogamy based on longest block and total segment information.

Lara Diamond, a mathematician, who writes at Lara’s Jewnealogy might be up for this challenge. She just published compiled matching and segment information in her Ashkenazic Shared DNA Survey Results for those who are interested. You can also contribute to Laura’s data, here.

Endogamy, Segments, and Distant Relationships

While not relevant to searching for close relatives, heavily endogamous matches 3C and more distant, to quote one of my Jewish friends, “dissolve into a quagmire of endogamy and are exceedingly difficult to unravel.”

In my own Acadian endogamous line, I often simply have to label them “Acadian” because the DNA tracks back to so many ancestors in different lines. In other words, I can’t tell which ancestor the match is actually pointing to because the same DNA segments or segments is/are carried by several ancestors and their descendants due to founder effect.

The difference with the Acadians is that we can actually identify many or most of them, at least at some point in time. As my cousin, Paul LeBlanc, once said, if you’re related to one Acadian, you’re related to all Acadians. Then he proceeded to tell me that he and I are related 137 different ways. My head hurts!

It’s no wonder that endogamy is incredibly difficult beyond the first few generations when it turns into something like multi-colored jello soup.

“Are Your Parents Related?” Tool

There’s another tool that you can utilize to determine if your parents are related to each other.

To determine if your parents are related to each other, you need to know about ROH, or Runs of Homozygosity (ROH).

ROH means that the DNA on both strands or copies of the same chromosome is identical.

For a few locations in a row, ROH can easily happen just by chance, but the longer the segment, the less likely that commonality occurs simply by chance.

The good news is that you don’t need to know the identity of either of your parents. You don’t need either of your parent’s DNA tests – just your own. You’ll need to upload your DNA file to GEDmatch, which is free.

Click on “Are your parents related?”

GEDMatch analyzes your DNA to see if any of your DNA, above a reasonable matching threshold, is identical on both strands, indicating that you inherited the exact same DNA from both of your parents.

A legitimate match, meaning one that’s not by chance, will include many contiguous matching locations, generally a minimum of 500 SNPs or locations in a row. GEDmatch’s minimum threshold for identifying identical ancestral DNA (ROH) is 200 cM.

Here’s my result, including the graphic for the first two chromosomes. Notice the tiny green bars that show identical by chance tiny sliver segments.

I have no significant identical DNA, meaning my parents are not related to each other.

Next, let’s look at an endogamous example where there are small, completely identical segments across a person’s chromosome

This person’s Acadian parents are related to each other, but distantly.

Next, let’s look at a Jewish person’s results.

You’ll notice larger green matching ROH, but not over 200 contiguous SNPs and 7 cM.

GEDMatch reports that this Jewish person’s parents are probably not related within recent generations, but it’s clear that they do share DNA in common.

People whose parents are distantly related have relatively small, scattered matching segments. However, if you’re seeing larger ROH segments that would be large enough to match in a genealogical setting, meaning multiple greater than 7 cM and 500 SNPs,, you may be dealing with a different type of situation where cousins have married in recent generations. The larger the matching segments, generally, the closer in time.

Blogger Kitty Cooper wrote an article, here, about discovering that your parents are related at the first cousin level, and what their GEDMatch “Are Your Parents Related” results look like.

Let’s look for more clues.

Surnames

There MAY be an endogamy clue in the surnames of the people you match.

Viewing surnames is easier if you download your match list, which you can do at every vendor except Ancestry. I’m not referring to the segment data, but the information about your matches themselves.

I provided instructions in the recent article, How to Download Your DNA Match Lists and Segment Files, here.

If you suspect endogamy for any reason, look at your closest matches and see if there is a discernable trend in the surnames, or locations, or any commonality between your matches to each other.

For example, Jewish, Acadian, and Native surnames may be recognizable, as may locations.

You can evaluate in either or both of two ways:

  • The surnames of your closest matches. Closest matches listed first will be your default match order.
  • Your most frequently occurring surnames, minus extremely common names like Smith, Jones, etc., unless they are also in your closest matches. To utilize this type of matching, sort the spreadsheet in surname order and then scan or count the number of people with each surname.

Here are some examples from our testers.

Jewish – Closest surname matches.

  • Roth
  • Weiss
  • Goldman
  • Schonwald
  • Levi
  • Cohen
  • Slavin
  • Goodman
  • Sender
  • Trebatch

Acadian – Closest surname matches.

  • Bergeron
  • Hebert
  • Bergeron
  • Marcum
  • Muise
  • Legere
  • Gaudet
  • Perry
  • Verlander
  • Trombley

Native American – Closest surname matches.

  • Ortega
  • Begay
  • Valentine
  • Hayes
  • Montoya
  • Sun Bear
  • Martin
  • Tsosie
  • Chiquito
  • Yazzie

You may recognize these categories of surnames immediately.

If not, Google is your friend. Eliminate common surnames, then Google for a few together at a time and see what emerges.

The most unusual surnames are likely your best bets.

Projects

Another way to get some idea of what groups people with these surnames might belong to is to enter the surname in the FamilyTreeDNA surname search.

Go to the main FamilyTreeDNA page, but DO NOT sign on.

Scroll down until you see this image.

Type the surname into the search box. You’ll see how many people have tested with that surname, along with projects where project administrators have included that surname indicating that the project may be of interest to at least some people with that surname.

Here’s a portion of the project list for Cohen, a traditional Jewish surname.

These results are for Muise, an Acadian surname.

Clicking through to relevant surname projects, and potentially contacting the volunteer project administrator can go a very long way in helping you gather and sift information. Clearly, they have an interest in this topic.

For example, here’s the Muise surname in the Acadian AmerIndian project. Two great hints here – Acadian heritage and Halifax, Nova Scotia.

Repeat for the balance of surnames on your list to look for commonalities, including locations on the public project pages.

Locations

Some of the vendor match files include location information. Each person on your match list will have the opportunity at the vendor where they tested to include location information in a variety of ways, either for their ancestors or themselves.

Where possible, it’s easiest to sort or scan the download file for this type of information.

Ancestry does not provide or facilitate a match list, but you can still create your own for your closest 20 or 30 matches in a spreadsheet.

MyHeritage provides common surname and ancestral location information for every match. How cool is that!

Y DNA, Mitochondrial DNA, and Endogamy

Haplogroups for both Y and mitochondrial DNA can indicate and sometimes confirm endogamy. In other cases, the haplogroup won’t help, but the matches and their location information just might.

FamilyTreeDNA is the only vendor that provides Y DNA and mitochondrial DNA tests that include highly granular haplogroups along with matches and additional tools.

23andMe provides high-level haplogroups which may or may not be adequate to pinpoint a haplogroup that indicates endogamy.

Of course, only males carry Y DNA that tracks to the direct paternal (surname) line, but everyone carries their mother’s mitochondrial DNA that represents their mother’s mother’s mother’s, or direct matrilineal line.

Some haplogroups are known to be closely associated with particular ethnicities or populations, like Native Americans, Pacific Islanders, and some Jewish people.

Haplogroups reach back in time before genealogy and can give us a sense of community that’s not available by either looking in the mirror or through traditional records.

This Native American man is a member of high-level haplogroup Q-M242. However, some men who carry this haplogroup are not Native, but are of European or Middle Eastern origin.

I entered the haplogroup in the FamilyTreeDNA Discover tool, which I wrote about, here.

Checking the information about this haplogroup reveals that their common ancestor descended from an Asian man about 30,000 years ago.

The migration path in the Americans explains why this person would have an endogamous heritage.

Our tester would receive a much more refined haplogroup if he upgraded to the Big Y test at FamilyTreeDNA, which would remove all doubt.

However, even without additional testing, information about his matches at FamilyTreeDNA may be very illuminating.

The Q-M242 Native man’s Y DNA matches men with more granular haplogroups, shown above, at left. On the Haplogroup Origins report, you can see that these people have all selected the “US (Native American)” country option.

Another useful tool would be to check the public Y haplotree, here, and the public mitochondrial tree here, for self-reported ancestor location information for a specific haplogroup.

Here’s an example of mitochondrial haplogroup A2 and a few subclades on the public mitochondrial tree. You can see that the haplogroup is found in Mexico, the US (Native,) Canada, and many additional Caribbean, South, and Central American countries.

Of course, Y DNA and mitochondrial DNA (mtDNA) tell a laser-focused story of one specific line, each. The great news, if you’re seeking information about your mother or father, the Y is your father’s direct paternal (surname) line, and mitochondrial is your mother’s direct matrilineal line.

Y and mitochondrial DNA results combined with ethnicity, autosomal matching, and the wide range of other tools that open doors, you will be able to reveal a great deal of information about whether you have endogamous heritage or not – and if so, from where.

I’ve provided a resource for stepping through and interpreting your Y DNA results, here, and mitochondrial DNA, here.

Discover for Y DNA Only

If you’re a female, you may feel left out of Y DNA testing and what it can tell you about your heritage. However, there’s a back door.

You can utilize the Y DNA haplogroups of your closest autosomal matches at both FamilyTreeDNA and 23andMe to reveal information

Haplogroup information is available in the download files for both vendors, in addition to the Family Finder table view, below, at FamilyTreeDNA, or on your individual matches profile cards at both 23andMe and FamilyTreeDNA.

You can enter any Y DNA haplogroup in the FamilyTreeDNA Discover tool, here.

You’ll be treated to:

  • Your Haplogroup Story – how many testers have this haplogroup (so far), where the haplogroup is from, and the haplogroup’s age. In this case, the haplogroup was born in the Netherlands about 250 years ago, give or take 200 years. I know that it was 1806 or earlier based on the common ancestor of the men who tested.
  • Country Frequency – heat map of where the haplogroup is found in the world.
  • Notable Connections – famous and infamous (this haplogroup’s closest notable person is Leo Tolstoy).
  • Migration Map – migration path out of Africa and through the rest of the world.
  • Ancient Connections – ancient burials. His closest ancient match is from about 1000 years ago in Ukraine. Their shared ancestor lived about 2000 years ago.
  • Suggested Projects – based on the surname, projects that other matches have joined, and haplogroups.
  • Scientific Details – age estimates, confidence intervals, graphs, and the mutations that define this haplogroup.

I wrote about the Discover tool in the article, FamilyTreeDNA DISCOVER Launches – Including Y DNA Haplogroup Ages.

Endogamy Tools Summary Tables

Endogamy is a tough nut sometimes, especially if you’re starting from scratch. In order to make this topic a bit easier and to create a reference tool for you, I’ve created three summary tables.

  • Various endogamy-related tools available at each vendor which will or may assist with evaluating endogamy
  • Tools and their ability to detect endogamy in different groups
  • Tools best suited to assist people seeking information about unknown parents or grandparents

Summary of Endogamy Tools by Vendor

Please note that GEDMatch is not a DNA testing vendor, but they accept uploads and do have some tools that the testing vendors do not.

 Tool 23andMe Ancestry FamilyTreeDNA MyHeritage GEDMatch
Ethnicity Yes Yes Yes Yes Use the vendors
Ethnicity Painting Yes + segments Yes, limited Yes + segments Yes
Ethnicity Phasing Yes Partial Yes No
DNA Communities No Yes No No
Genetic Groups No No No Yes
Family Matching aka Bucketing No No Yes No
Chromosome Browser Yes No Yes Yes Yes
AutoClusters Through Genetic Affairs No Through Genetic Affairs Yes, included Yes, with subscription
Match List Download Yes, restricted # of matches No Yes Yes Yes
Projects No No Yes No
Y DNA High-level haplogroup only No Yes, full haplogroup with Big Y, matching, tools, Discover No
Mitochondrial DNA High-level haplogroup only No Yes, full haplogroup with mtFull, matching, tools No
Public Y Tree No No Yes No
Public Mito Tree No No Yes No
Discover Y DNA – public No No Yes No
ROH No No No No Yes

Summary of Endogamous Populations Identified by Each Tool

The following chart provides a guideline for which tools are useful for the following types of endogamous groups. Bolded tools require that both parents be descended from the same endogamous group, but several other tools give more definitive results with higher amounts of endogamy.

Y and mitochondrial DNA testing are not affected by admixture, autosomal DNA or anything from the “other” parent.

Tool Jewish Acadian Anabaptist Native Other/General
Ethnicity Yes No No Yes Pacific Islander
Ethnicity Painting Yes No No Yes Pacific Islander
Ethnicity Phasing Yes, if different No No Yes, if different Pacific Islander, if different
DNA Communities Yes Possibly Possibly Yes Pacific Islander
Genetic Groups Yes Possibly Possibly Yes Pacific Islander
Family Matching aka Bucketing Yes Yes Possibly Yes Pacific Islander
Chromosome Browser Possibly Possibly Yes, once segments or ancestors identified Possibly Pacific Islander, possibly
Total Matches Yes, compared to non-endogamous No No No No, unknown
AutoClusters Yes Yes Uncertain, probably Yes Pacific Islander
Estimated Relationships High Not always Sometimes No Sometimes Uncertain, probably
Relationship Range High Possibly, sometimes Possibly Possibly Possibly Pacific Islander, possibly
More, Smaller Segments Yes Yes Probably Yes Pacific Islander, probably
Parents Related Some but minimal Possibly Uncertain Probably similar to Jewish Uncertain, Possibly
Surnames Probably Probably Probably Not Possibly Possibly
Locations Possibly Probably Probably Not Probably Probably Pacific Islander
Projects Probably Probably Possibly Possibly Probably Pacific Islander
Y DNA Yes, often Yes, often No Yes Pacific Islander
Mitochondrial DNA Yes, often Sometimes No Yes Pacific Islander
Y public tree Probably not alone No No Yes Pacific Islander
MtDNA public tree Probably not No No Yes Pacific Islander
Y DNA Discover Yes Possibly Probably not, maybe projects Yes Pacific Islander

Summary of Endogamy Tools to Assist People Seeking Unknown Parents and Grandparents

This table provides a summary of when each of the various tools can be useful to:

  • People seeking unknown close relatives
  • People who already know who their close relatives are, but are seeking additional information or clues about their genealogy

I considered rating these on a 1 to 10 scale, but the relative usefulness of these tools is dependent on many factors, so different tools will be more or less useful to different people.

For example, ethnicity is very useful if someone is admixed from different populations, or even 100% of a specific endogamous population. It’s less useful if the tester is 100% European, regardless of whether they are seeking close relatives or not. Conversely, even “vanilla” ethnicity can be used to rule out majority or recent admixture with many populations.

Tools Unknown Close Relative Seekers Known Close Relatives – Enhance Genealogy
Ethnicity Yes, to identify or rule out populations Yes
Ethnicity Painting Yes, possibly, depending on population Yes, possibly, depending on population
Ethnicity Phasing Yes, possibly, depending on population Yes, possibly, depending on population
DNA Communities Yes, possibly, depending on population Yes, possibly, depending on population
Genetic Groups Possibly, depending on population Possibly, depending on population
Family Matching aka Bucketing Not if parents are entirely unknown, but yes if one parent is known Yes
Chromosome Browser Unlikely Yes
AutoClusters Yes Yes, especially at MyHeritage if Jewish
Estimated Relationships High Not No
Relationship Range High Not reliably No
More, Smaller Segments Unlikely Unlikely other than confirmation
Match List Download Yes Yes
Surnames Yes Yes
Locations Yes Yes
Projects Yes Yes
Y DNA Yes, males only, direct paternal line, identifies surname lineage Yes, males only, direct paternal line, identifies and correctly places surname lineage
Mitochondrial DNA Yes, both sexes, direct matrilineal line only Yes, both sexes, direct matrilineal line only
Public Y Tree Yes for locations Yes for locations
Public Mito Tree Yes for locations Yes for locations
Discover Y DNA Yes, for heritage information Yes, for heritage information
Parents Related – ROH Possibly Less useful

Acknowledgments

A HUGE thank you to several people who contributed images and information in order to provide accurate and expanded information on the topic of endogamy. Many did not want to be mentioned by name, but you know who you are!!!

If you have information to add, please post in the comments.

_____________________________________________________________

Follow DNAexplain on Facebook, here or follow me on Twitter, here.

Share the Love!

You’re always welcome to forward articles or links to friends and share on social media.

If you haven’t already subscribed (it’s free,) you can receive an email whenever I publish by clicking the “follow” button on the main blog page, here.

You Can Help Keep This Blog Free

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Uploads

Genealogy Products and Services

My Book

Genealogy Books

Genealogy Research

Down Under: Australia- 52 Ancestors #272

What, you might be thinking – this doesn’t LOOK like a 52 Ancestors article. That’s because this one is somewhat different. I’m writing it for you, and for my descendants. Plus, Mom does make a cameo appearance is a rather unorthodox way.

Tasmania kangaroo.jpg

Recently, I visited both Australia and New Zealand.

Both locations are important to the genealogy of people in the Americas. How’s that possible, you ask? I’ll be telling you shortly in another article, but for purposes of this article, let’s just say that Australia and New Zealand were both settled by Europeans, in part, by convicts shipped overseas to sparsely populated Australia by the British Government beginning in the early 1800s.

These outbacks were a great place to get rid of people, given that Europe was overpopulated at the time.

My recent adventure served multiple purposes, but for now, I just want to share the lovely experience with you. I’ll be writing 3 articles, one about Australia, one for Tasmania and another for New Zealand.

Australia has recently been ravaged by fires. I arrived in the midst of the worst of the wildfires. Roads were closed surrounding Sydney. We took 4 boxes of masks with us, as just a couple days before our departure, we saw photos of intense smoke in Sydney Harbor.

I reached out to my genealogy colleagues in Australia for an update, debating whether we should cancel or not. We didn’t. One way or another, we knew it would be an adventure of a lifetime.

I wasn’t wrong!

We were embarking on a cruise, so if the going got rough, so to speak, passengers could just get on the ship and sail out to sea. The residents and the animals, so horrifically devastated, could not escape in the same manner. Especially not the animals. Those who did survive face the challenge of finding food in a destroyed habitat. My heart breaks for them.

In spite of those issues, the trip was wonderful and educational.

Grab a cup of coffee or tea, sit back and come along. Yes, there’s DNA interwoven because there’s DNA interwoven everyplace, literally, and in every aspect of my life.

Food

I realize that food is not a normal place to start, but this is absolutely critical information for anyone planning to travel “down under” who is either hypoglycemic or diabetic and may need to eat something specific in-between meals. By “need,” I’m referring to a medical need. Knowing how to regulate your blood sugar with food, but then suddenly being without the food you need is terrifying.

Australia and New Zealand have very strict biosecurity laws that regulate the importation of food and biological items. This means ANY KIND OF FOOD. From anyplace outside of Australia or New Zealand, depending on which place you are visiting – including planes and cruise ships.

They are concerned about the introduction of invasive species, including seeds and insects, a phenomenon they have already experienced with rats and other non-native species that have devastated the ground-nesting bird population, nearly to extinction.

You cannot take that apple or snack off of the plane. You cannot bring anything from home. I had pre-packaged tea bags and protein bars in my suitcase, which I did declare, and they decided were fine but “plant products” are included on the banned list. If you have something to declare, you need to go through a separate entry line.

We did see entire suitcases confiscated. They are not kidding about this.

Once on the ship, we could NOT take any food off the ship for tours with the exception of processed foods. Thankfully, my protein bars that I had brought for the purpose of maintaining my blood sugar were allowed, as was prepackaged chocolate, but not nuts.

Typically, I make a cheese sandwich on crackers or a croissant and put it in my purse for a snack later, but neither bread products nor cheese were allowed to be removed the ship, so my typical “go-to” was gone.

They are dead serious about this. There are agents at the exits to inspect bags, including backpacks – and they do. There are lovely beagles trained to sniff out food items.
And there is an immediate $400 fine – plus you don’t get to keep the food.

When you are on a tour, you don’t necessarily have the opportunity to purchase anything before you need it. Be aware so you can be prepared.

Speaking of Food

I’m somewhat of a foodie, but I promise not to inundate you with photos of food. However, I found this food art just lovely. Look closely.

Australia food art.png

These are all hand-made. Art is everyplace, including framed art pieces on the ship.

Australia food art 2.png

Tapas anyone?

Australia food art 3.png

Seafood? This looks like so much fun!

Australia melon.png

Not to be outdone, the chefs carved watermelon art.

Australia melon 2.png

A honeydew mandala.

Australia melon 3.png

If you think this is something, just wait until you see the New Year’s Eve stunning chocolate buffet.

Australia

Australia map.png

Before undertaking this trip, I really gave no thought to how large Australia actually is. In essence, it’s roughly the size of the US, with most of the population living along the coasts, with the interior being fairly inhospitable desert.

Australia aerial.png

The recent fires burned the ring of the coastline where mountains sport forests that sustain both life and fuel for fire. Global warming has contributed to increasingly devastating fire seasons, with 2019/2020 being the worst on record. Australia had gone months with no rain. That combined with temperatures as high as 122 degrees and violent winds fanning the flames wrought havoc.

Australia fires.png

To put things in perspective for you, this map shows where the fires were burning about the time we left, with Sydney being right in the midst of the worst part on the southeast coast.

Sydney

It seemed odd to arrive at the holidays in a location that was sunny and warm. Does not compute!

Australia landing.png

Welcome to Australia.

The sunrises and sunsets were utterly stunning, caused by particulate matter in the air, of course. Our plane, after a 20+ hour journey, landed at dawn. Yes, I slept in my clothes. I was surely glad to get to the ship and take a shower and change clothes – but that wasn’t going to happen for another several hours.

Australia Christmas tree.png

We were greeted at the airport by an Aussie Christmas tree. This all seemed surreal to me – both because I actually WAS in the southern hemisphere, on the land mass just north of Antartica – and because I was so sleep deprived that my mind was pretty foggy.

Australia sand carving Santa.png

And a sand-carved Santa.

We found our bus and headed into Sydney. What a beautiful city.

Australia Sydney St. Mary's.png

Reminders of Australia’s English roots are everyplace. All cities have a St. Mary’s Cathedral, right?

Australia Sydney Highlander.png

Our cruise ship would not be ready until later in the day, so we made our way down to the harbor where we enjoyed the warm weather, historic buildings mixed with art deco and Christmas decorations.

Australia Sydney mural.png

Plus art – art is everyplace.

Croissants, pastries, coffee and tea were waiting for us at the lovely Sir Stamford Hotel at Circular Quay. Bless Viking!

Australia Sydney Stamford.png

We strolled along enjoying the warmth after leaving the frigid winter and darkness of the winter solstice behind.

Australia Sydney Opera House and bridge.png

At the bottom of a historic street, a vista opened up to our weary eyes that included a panoramic view of the harbor including the legendary Sydney Opera House and bridge.

IMG_1832 (2).jpg

Meet Kami the Koala and Joey the Kangaroo who accompanied us on our adventures. Yes, I rescued them from a convenience store where they were being held for ransom😊

At this godforsaken hour of the morning, a convenience store was the ONLY thing that was open – trust me.

Australia Sydney Gadigal Land.png

I was pleased to note in both Australia and New Zealand that the Aboriginal people, the  Gadigal people here, were honored as the original inhabitants of the land.

Australia Sydney bridge.png

Standing outside the Opera House, we could see tiny people on the TOP of that bridge. Yes, you can pay to participate in the “Bridge Climb,” or you can stay on the ground for free. Guess which one I did!

Australia Sydney harbour.png

Rounding the end of the Opera House peninsula, the bay is beautiful. I’d bet that property on the point cost a pretty penny.

Australia Sydney islands.png

Continuing around the Opera House, in the distance, you can see the islands that once held penal colonies. Today, having a penal colony ancestor gives Aussies bragging rights and is a source of pride. Those convicts were tough-as-nails survivors.

Australia Sydney opera house.png

The Opera House was amazing of course, but we were actually too close to see it very well. This area is packed with walkers and tourists later in the day, but it was still VERY early when we were here.

Australia Sydney Botanic Gardens.png

The Royal Botanic Gardens cover several acres behind the Opera House.

Australia Sydney garden walk.png

Let’s take a walk!

Australia Sydney Ibis.png

You know I’m a sucker for flowers and plants, and I was anxious to see the native flora and fauna. Plus, the temperature was rising. Shade was becoming alluring.

Australia Sydney devil.png

Is now a good time to mention that indeed, it was hotter than Hades in Australia, with the temperature reaching 110 one of the days we visited? 100 on this day was just the warmup act. Yes, that’s the Devil, which I found extremely ironic.

Australia Sydney tree.png

Some of these trees were hundreds of years old, stately, massive and stunning. I see why Lord of the Rings was filmed down under.

Australia Sydney tree bench.png

Inviting benches were scattered liberally. Yes, we walked pulling our hand luggage. The hotel offered to hold it for us, but we saw the line of suitcases in the hallway being “held” for folks, and we realized how easy it would be for something that looked like a laptop bag to walk away. Whoever invented wheels for suitcases was a genius.

Australia Sydney purple flower.png

Color for the weary soul was everyplace. These Agapanthus are considered weeds because they grow everyplace in Australia and New Zealand, unbidden. They were music for me.

Australia Sydney ducks.png

Even the ducks wanted a cold drink of water. It was HOT and getting hotter by the minute!

Australia Sydney yellow flower.png

Splashes of color are to be found everyplace.

Australia Sydney garden.png

Some garden areas are quite formal, and others not so much. You can see the haze from the smoke in many of the pictures.

Our eyes and sometimes our throats burned much of the time were in Australia, but it wasn’t terrible unless the wind shifted. People who live there just went about their business because there was little else they could do. Life goes on.

Australia Sydney Kookaburra (2).png

The Kookaburra bird wanted a drink in this fountain. This guy was such a ham and put on a show for us, taking a bath to cool off. If you’ve never heard a Kookaburra bird, here’s a YouTube video.

Australia Sydney rose.png

Of course, there was a rose garden. I had a terrible time selecting just one picture to share with you.

Australia Sydney red rose.png

Ok, two, maybe two. 😊

Australia Sydney tree bridge.png

I can see the bridge in the distance. We walked for maybe 5 or 6 hours, tired and hot, pulling luggage and backpacks, but thoroughly enjoying ourselves. After leaving the cold northern hemisphere, this was heaven.

I loved our impromptu tour of the Opera House area and gardens, but I was glad when it was time to board the bus again for our ship.

Australia Sydney panoramic.png

Boarding our ship at the terminal and finding our room, we were afforded a lovely panoramic view of the city.

Sydney Harbour Dinner Cruise

Australia Sydney opera house in front of bridge.png

We didn’t remain on board for long though, because we had scheduled a harbor dinner cruise.

Australia Sydney harbour tour.png

At this point, we weren’t at all sure we’d be able to see much if any of Australia due to the encroaching fires, so we wanted to take full advantage of every opportunity possible – despite being incredibly jet lagged.

It looked dusky almost all of the time. Sunset was still a few hours away.

Australia Sydney dusk.png

When sunset did arrive, it was indeed spectacular.

Australia Sydney harbour sunset.png

The Sydney skyline is truly beautiful at night.

Australia Sydney harbour night.png

Unfortunately, my pictures just don’t do this justice. The smoke, the light, the water was rough and I don’t have a wonderful camera or the requisite skill. If you want to see some stunning scenes, just google “Sydney skyline at night.” There’s even a quilt panel.

Australia Sydney night opera house.png

The Opera House.

Australia Sydney night bridge.png

The bridge actually goes uphill a bit.

Australia Sydney night opera house and bridge.png

You can’t see the boardwalk amusement park from this perspective, but there is one near the base of the bridge.

Australia Sydney amusement park.png

We docked near the amusement park beneath the bridge and walked along the boardwalk.

Australia Sydney ferris wheel.png

No, I didn’t ride the ferris wheel. By this time, I just wanted to go to bed.

Australia Sydney opera house under bridge.png

The Opera House beneath the bridge.

Australia Sydney night panorama.png

The next morning, we would wake up to discover whether or not the roads out of Sydney were open towards the Blue Mountains, if it was safe, and if there was anything left to see.

We hoped so, not for us, but for the residents, firefighters and animals.

The Blue Mountains

While Sydney was founded on the harbor, the Blue Mountains ring Sydney and are stunningly beautiful. It’s surprising to me the unique character of mountain ranges.

The day was smokey most of the time. Our driver and guide used their discretion in modifying the planned agenda somewhat to keep us safe and out of as much smoke as possible.

Australia Blue Mountain Merry Christmas.png

I love driving through the countryside – any countryside.

Australia Blue Mountain abandoned building.png

I always wonder what abandoned buildings would say if they could talk. What stories would they tell?

The city quickly gave way to roads rising uphill towards the mountains.

Australia Blue Mountain cliff.png

And then to the mountains themselves.

Australia Blue Mountain rainforest.png

We couldn’t see the valley floor through the smoke. However, this is the first we saw of the lovely rainforest forest.

Australia Blue Mountain fern.png

The ferns grown to gargantuan size here, and absolutely every plant is somehow drought and heat resistant, or it doesn’t survive.

Australia Blue Mountain overlook.png

The bench at this overlook is an acknowledgement of the Aboriginal culture.

Australia Blue Mountain Three Sisters.png

The beautiful Blue Mountains themselves. That’s not mist or fog, it’s smoke from the fires. I must admin, the smoke add an etherial, unworldly feeling and is incredibly beautiful.

A few hours later, you couldn’t see these rock formations at all. We were very fortunate to visit when we did.

Australia Blue Mountain Three Sisters sign.png

Yes, there was really a valley out there, someplace.

Australia Blue Mountain overlook 2.png

Turning around.

Australia Blue Mountain overlook 3.png

This must be what “forever” looks like.

Australia Blue Mountain overlook pano.png

I did my best to get a panorama. This scene was literally about 270 degrees. We were standing on a point of land.

Australia Blue Mountain letter.png

In case you wanted to sent a postcard saying “Wish you were here.”

Have I mentioned that I’m afraid of heights, and cable cars. Well, guess what, I just got over myself and DID this at Scenic World, near the overlook.

Australia Blue Mountain cable car.png

This cable car had a glass floor. I told myself I didn’t have to look, and I didn’t have to climb aboard if I changed mymind. I recall my mother hyperventilating as she was about to board a similar cable car that crossed the Niagara River Gorge above the angry swirling muddy whirlpools. She couldn’t do it, and neither did I.

Would this time be different?

Australia Blue Mountain cable car 2.png

Hey, when you’re this far up, you’ll die immediately if you fall, so no sweat! I climbed aboard and forced myself to keep my eyes open. Eyes open or closed didn’t matter at all to my safety, but mattered a great deal to the experience.

Australia Blue Mountain cable car view.png

The view was superb, making me forget about any perceived danger.

I still can’t believe I did what’s coming next.

Australia Blue Mountain glass floor.png

This is the glass bottom of the cable car. Not only did I stand on that glass – that’s my white shoes – I looked straight down at the rainforest canopy, hundreds of feet below. You can see the creek winding through the bottom of the valley.

And if that wasn’t enough daredevil for one day, next I rode on the incline train that went STRAIGHT DOWN, and, I was in the front seat. Go big or stay home.

Australia Blue Mountain rails.png

And yes, I did keep my eyes open. I also filmed this for posterity. I’ll spare you. But in case you were wondering, I was NOT screaming.

Australia Blue Mountain railway.png

This railway was original constructed for miners as transportation to the mines.

Australia Blue Mountain coal.png

The old coal mines aren’t safe now and weren’t safe then. Now coal mining is done by strip mining so no one is underground.

Australia Blue Mountain mine.png

We hiked through the verdant green forest. This is the land of huge trees and massive vines.

Australia Blue Mountain vine.png

Some vines grow so large as to be the size of trees.

Australia Blue Mountain vine in tree.png

As odd as this sounds, this is a rainforest, even though they haven’t had rain in weeks.

Australia Blue Mountain forest.png

I can only imagine clearing this land. The Aboriginal people lived in harmony with the environment. They understood fire and how to deal with it.

Australia Blue Mountain smoke.png

The smoke was moving in, so we needed to move on.

Leura and Lunch

Next, we spent time in the lovely village of Leura.

Australia Blue Mountain Leura.png

The Australians have incorporated art into just about everything, everyplace.

Australia Blue Mountain Leura mural.png

Greeting us was the Wisteria Place Café, covered in, you guessed it, Wisteria.

Australia Blue Mountain Wisteria Place.png

Is this inviting, or what? Tea and scones are staples here.

Australia Blue Mountain Wisteria Place Cafe.png

As luck would have it, just a block from where the bus dropped us off, I spied a quilt shop!!! I can literally smell these!

Australia Blue Mountain Picklemouse.png

Trust me, I’ll be making an Aussie quilt with this lovely Australian fabric plus some that I’ve been saving for something special.

Australia Blue Mountain quilt.png

The shop owner told me that the fires and resulting smoke had negatively affected her business and she was literally in tears over the sale.

Australia Blue Mountain fabric.png

Kami and Joey approve! Theyjust might get little quilts too.

Australia Blue Mountain main street.png

In many ways, the Australian towns remind me of time-worn out-of-the-way western towns in the US.

Australia Blue Mountain antique.png

Quaint shops, including an antique shop and bookstore line the main street in town.

Australia Blue Mountain book.png

Our guide has rearranged our schedule because the fires, wind and smoke were predicted to be worse by afternoon, so lunch was quite late, but well worth waiting for.

Lunch and tea were served at the lovely restored Carrington Hotel in neighboring Katoomba. In Australia, a 100-year old building is old and colonial. Here, a 250 year old building is colonial. In Europe, 350 is just approaching old.

Australia Blue Mountain Carrington Hotel.png

The interior was lovely.

Australia Blue Mountain inside.png

I’m not sure exactly what this was originally. Today, they’ve used it for Christmas decorations and as part of a seating arrangement, but the original wooden object reminds me of something you’d find in a church.

Australia Blue Mountain inside back.png

Here’s a view of the back. It also looks German to me. Whatever it is, it’s large and stunning.

After lunch, we returned through the smokey haze to our ship in the Sydney Harbour.

Australia Sydney harbour haze.png

A few hours later, we set sail for the day long journey to Melbourne.

Australia harbour goodbye.png

How does one form an affection for a place in two days? I can’t answer that question, but I did and I wasn’t ready to leave.

As we sailed along the coastline, we passed by several islands.

Australia islands.png

The beauty of the islands was remarkable, enhanced of course by the stunning painterly sunsets.

Australia islands distance.png

Melbourne

Australia Melbourne harbour.png

Good morning Melbourne. The land where everything even remotely old is a designated historical site, like these buoys in the harbor. No, I don’t know why.

This day dawned sunny and beautiful.

Australia Melbourne waterfront.png

Beaches line the waterfront, with the Spirit of Tasmania ferry docked, ready for the crossing to the island of Tasmania, an Australia State.

Australia Melbourne bakery.png

Never let it be said that Australians don’t have a sense of humor. All of Santa’s reindeer want to stay here and go to the bakery. Can we please stop????

Australia Melbourne tea house.png

This iconic old building was “Tea Central” when teas were rare and imported.

I’m sure you realize that I’ve taken many of these photos through a bus window. I managed to avoid people most of the time, but blurred the guides face in this photo.

Photos from a moving vehicle window are very hit or miss – so no judgement please:)

Australia Melbourne art.png

The old and very new, mixed into one eclectic city that sports both history and high tech. Many shiny high rise buildings grace the city with technology names you’d recognize. However, the historic or unusual structures were much more interesting to me.

Australia Melbourne clocktower.png

The clocktower on Melbourne’s old city hall building.

The hills surrounding Melbourne were engulfed in flames in several directions. Fortunately, Melbourne itself was not threatened.

Australia Melbourne leaving town.png

The smoke in the distance looked like mist or fog, but it was much more deadly.

Healesville Wildlife Sanctuary

Australia Melbourne Healesville road.png

Unfortunately, in Melbourne, we were unable to do what had originally been planned which involved mountains and a winery, so instead we chose to go to the Healesville Wildlife Sanctuary to support the wildfire relief efforts.

Australia Melbourne vineyard.png

Melbourne is surrounded by vineyards. Australian wines are quite dry.

The Healesville Wildlife Sanctuary provides care for injured and orphaned wildlife, which as you might imagine, was arriving in droves. If you would like to contribute to the emergency fund, you can do so directly, here. They are still in need and will be for months to come.

Rest assured that I’m not going to be showing you any injured animals in these photos, so you don’t need to be concerned about that. I am going to share with you the wonders of nature and critters from down under – nothing like we have here.

Australia Melbourne Healesville log.png

The Sanctuary strives to provide a supportive recovery environment similar to the animal’s natural habitat, and an area where they can be released but still receive nourishment and assistance if they can’t quite make it on their own.

Australia Melbourne Healesville purple flower.png

To that end, the visitor’s entry fees support the animals. The center of this flower is just lovely and looks to be waving a tiny star.

Australia Melbourne Healesville Ibis.png

Some opportunists decide to hang around forever – like this guy. In fact, he’s famous, or infamous.

Australia Melbourne Healesville Cheeky Ibis.png

Judging from the sign, this Ibis’s reputation and tricks are well known!

I couldn’t wait – we headed straight for the Koala area.

Australia Melbourne Healesville Koala habitat.png

This Koala enclosure recreates their natural habitat, plus a sun shelter and a water mister. Ok, so there’s no water mister in the forest.

Australia Melbourne Healesville Koala.png

This sleepy Koala may never leave!

Australia Melbourne Healesville raptor.png

Pathways within the Sanctuary were marked by beautiful carvings.

Australia Melbourne Healesville kangaroo.png

The animals sought shelter from the oppressive heat. Some were difficult to see.

Australia Melbourne Healesville red flower.png

I’m not sure what this is, but it’s native and beautiful.

Australia Melbourne Healesville fire tree.png

A sad testimony to the brushfires which have always occurred in Australia, just never to the degree and with the intensity that they do today. Development in areas without firebreaks, in addition to global warming, contribute to the devastation being experienced today.

Australia Melbourne Healesville art sprinkler.png

These sprinklers offer an artistic touch.

Australia Melbourne Healesville Wallaby.png

This Wallaby is looking for something good to eat.

Australia Melbourne Healesville swan carving.png

Entrance to the Platypus exhibit.

Australia Melbourne Healesville Platypus.png

Unfortunately, my platypus pictures failed miserably. Fast-moving water creature in low light.

Australia Platypus

By Klaus – Flickr: Wild Platypus 4, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=32551315

This photo from wiki is much better. Someone once said that the Platypus is proof positive that God has a sense of humor.

Australia Melbourne Healesville Emu.png

This Emu was as curious about us as we were about it.

Australia Melbourne Healesville Pelicans.png

The pelicans were some of my favorites.

Australia Melbourne Healesville Pelican.png

Not only are they amazing, they’re incredibly photogenic. I think this guy was hoping for flying fish.

Australia Melbourne Healesville Wombat.png

This sleeping wombat was hot and burrowed into the coolest place possible, the dirt in the shade.

The Wombat wasn’t the only creature that was hot and miserable.  This tarp sheltered a playground. I love how they worked the raptor into the canopy.

Australia Melbourne Healesville raptor tarp

There were lots of educational exhibits scattered throughout, along with some colorful play areas for kids. I wonder what kind of a toad or frog this is!

Australia Melbourne Healesville toads.png

Education, kindness and conservation is the central theme everyplace.

Australia Melbourne Healesville skull.png

Hey, do you think we could get DNA out of this tooth?

Australia Melbourne Healesville reptile carving.png

That huge reptile carving illustrates extinct animals! I don’t want to run into him in the dark, that’s for sure.

Australia Melbourne Healesvile purple berry.png

I don’t know what these are and no one we asked knew either – but they grow wild everyplace in Australia. They are so uniquitous that I don’t think people even notice them anymore.

Australia Melbourne Healesville parrot carving.png

The Sanctuary sports a large aviary.

Australia Melbourne Healesville bird carving.png

Tropical birds abound, but they were mostly quiet and hidden in the mid-day heat.

Australia Melbourne Healesville flight carving.png

The carvings were just so incredible.

Unfortunately, I didn’t see a Dingo carving, but there is definately a Dingo area.

Settlers and farmers have been attempting to exterminate the Dingo since the 1800s. The Dingo Fence, began in 1880 and completed 5 years later, was an attempt to prevent Dingoes from entering an area where they had largely been eradicated.

The fence stretched nearly from sea to sea.

Australia Melbourne Healesville Dingo fence.png

Dingos, both revered and maligned were known as the “Sly Yella Dog.”

Australia Melbourne Healesville Dingo controversy.png

In 1980, a two month-old child, Azaria Chamberlain, disappeared at Uluru, then known as Ayers Rock. Her parents reported that the child had been stolen from their tent by a Dingo, which began a firestorm of accusations, litigation and 5 separate coroners’ inquests into the child’s disappearance and presumed death.

Her mother was initially convicted, until a chance discovery six years later of a piece of the child’s clothing in an area inhabited by Dingoes triggered the release of her mother.
Was the Dingo a victim, a villain, or simply acting like a canine? Or maybe all of the above.

Australia Melbourne Healesville Dingo genes.png

Dingoes are distinct from dogs, unless they have interbred.

Australia Melbourne Healesville Dingo mother.png

Dingoes were adopted as pets by the Aboriginal people, although others believed they conferred bad luck.

Australia Melbourne Healesville Dingoes.png

Dingoes just look like dogs, don’t they. But there are differences.

Dogs bark and dingoes howl. You can hear two dingoes howling here, or an entire eerie dingo chorus here, where each Dingo has an identifiable voice.

You can learn more about the Dingo, here.

Time for lunch and something cool to drink!

Australia Melbourne Healesville flight carving large.png

Lunch was purchased in the cafeteria that helps to fund the center. You can’t miss it, just find this huge carved bird!

After lunch, we visited the gift shop hoping to find a t-shirt or other merchandise to leave some additional money in Healesville.

Australia Melbourne Healesville Didgeridoo.png

This gentlemen in the gift shop was playing a sacred Aboriginal instrument known as a didgeridoo, made from termite hollowed tree trunks, dating back some 40,000 years. You can hear one here.

Australia Melbourne Healesville pink flower.png

I hope to find some fabric incorporating Australian flowers.

The Spiritual Heartland

Another area at Healesville, The Spiritual Heartland, spoke to me, heart to heart.

Being descended from Native American ancestors, raised attending Native cultural events and hearing our ancestral stories, I connect through the heartline with other aboriginal cultures, especially those displaced and attempting to retain their heritage.

Traditionally, the Australian Aboriginal people moved from place to place across the land, driven by the seasons.

Australia Melbourne Healesville Gunyah.png

The Gunyah is a traditional Aboriginal shelter. As the Europeans settled on the Aboriginal land, beginning in the 1830s, these structures were eventually replaced by more traditional colonial structures, as was the traditional clothing of possum-skin cloaks.

The Aboriginal nomadic lifestyle changed with the arrival of Europeans who perceived that their failure to put down roots in one place meant that the land was unclaimed and available for the taking.

By 1859, less than 2,000 of the original 60,000 Aboriginal people remained. The toll had been heavy with 58,000 people succumbing in only three decades.

Wonga, their leader, petitioned the government for land they could call home, permanently. Finally, after being ignored for years, in 1863, Coranderrk Station was established as a refuge for Aboriginal people who believed that the land had been given to them in perpetuity.

Coranderrk Station was a successful, independent aboriginal village, but created in the image of the colonial settler, not the Aboriginal people. Their traditional lifestyle was replaced by farming.

Many times the Aboriginal women would gather in the “new-fangled” clapboard houses, pull the curtains and pretend to say prayers, all the while quietly speaking their own language.

In 1923, all “half-cast” men were ordered off the land, freeing the land for colonists who viewed this land as too valuable to remain in the hands of Aboriginal people. This eviction fractured Aboriginal families, exactly as it was intended to do.

Today, the Healesville Wildlife Sanctuary is the steward of a small portion of that original Aboriginal land.

Australia Melbourne Healesville Coranderrk Station.png

These circles mark the last remnant of Coranderrk Station, 80 hectares of land purchased in 1998 and returned to the Wurundjeri people, along with an additional 142 hectares from another source, remnants of Yarra Bushland.

Today, Coranderrk is the spiritual heart and homeland of many.

Australia Melbourne Healesville footprints.png

I stand here in unity with all Native people around the world. We walk together.

Not only does Healesville heal animals, they heal hearts too.

You can donate to support the work of the Healesville Sanctuary, here.

Headed Home

It was time to head back to Melbourne, to our temporary floating home.

For several days, I had noticed signs for “Pokies” everyplace. And I mean literally everyplace. This one is outside a gas station. I saw signs outside restaurants, groceries, and more.

Care to guess?

Australia Pokies.png

Pokies are slot machines.

Australia Maccas.png

And you know what this is, I’m sure. I had no idea they traded under any other name than the immediately recognizable McDonald’s.

Australia Melbourne hotel drive-in.png

I’m not sure what to think of this balcony drive-in hotel though!

Australia small town.png

Passing through an Australian small town. I can hear John Mellencamp’s “Small Town” in my mind.

Entering the outskirts of Melbourne again, I noticed a lot of graffiti art.

Australia Melbourne grafitti.png

I know this might sound strange, but I find this quite interesting. I realize that some people find graffiti art a bit of an oxymoron.

Australia Melbourne grafitti 2.png

Is graffiti vandalism, or is it art? And when?

Australia Melbourne grafitti 3.png

You have to admit, some of these grafitti artists are quite talented. Some cities invite graffiti artists to have contests.

Australia Melbourne grafitti 4.png

Much of art versus vandalism is in the eye of the beholder. Or the eye of the property owner. And frankly, in the quality of the grafitti art itself.

Some of these buildings seem to be an ongoing art competition canvas.

A few of the original colonial buildings remain in Melbourne, closer to the waterfront.

Australia Melbourne grafitti 5.png

Colonial buildings can be recognized by their original iron railings, mostly gone today.

Australia Melbourne colonial building.png

The guide explained that many iron railings were melted down years ago, but a few have escaped.

Australia Melbourne colonial building 2.png

These fortunate few remain.

Australia Melbourne colonial building 3.png

I love the old colonial sections of towns. This brickwork is remarkable. Notice that the neighbor’s house has decorative brickwork of some type too. I’d bet this was the signature style of a particular brickmason.

Australia Melbourne colonial building 4.png

To me, this looks very Spanish and Caribbean.

It feels odd moving from the colonial era to the Olympics within a block or two, but that’s exactly the cultural shift one makes. I suspect that many early buildings were removed to make room for the stadium.

Australia Melbourne Olympic Rings.png

These Olympic rings are found in front of Melbourne Stadium known as the MCG, or Melbourne Cricket Ground. The cricket games played during the 2000 Summer Olympics were held in Melbourne at the ANZ Stadium, and are Aussies ever PROUD of that. Cricket is an Aussie obsession – one which they don’t even attempt to explain to outsiders. If you want to know more about cricket, here you go, and good luck.

It was time to board the ship again.

Australia Melbourne harbour goodbye.png

The harbor was beautiful sailing away. But things can change rapidly. And did.

Australia smoke

An hour or so later, the smoke drifted over the water, causing a very red sun that was not setting.

A few hours later, the sun actually did begin to set, looking like a painter’s palette.

Australia sunsset sea.png

The sunset over the Bass Strait sailing into the Tasman Sea.

Australia Aboriginal ship art.png

Viking Cruise Lines always attempts to reflect the art of the locations where their voyages journey. As I pondered these footsteps, I can’t help but think of the footprints of man, of mankind, trekking out of Africa, forging paths across the globe – to you and me today. Songlines of a different type, perhaps.

We are indeed, all related.

I think I feel a quilt coming on.

Mom’s Birthday – January 30th

The next day was bittersweet.

It saddens me every year when Mom’s birthday rolls around, in part because what used to be a joyful celebratory occasion marks the anniversary of the birth of someone I can never see again.

Never hear her voice.

Never tell her stories about my adventures.

How she loved to hear those.

Well, at least the ones I selectively shared with her😊

On this particular birthday, what would have been her 98th, we sailed through some EXTREMELY rough waters in the Tasman Sea, between Australia and Tasmania. The captain would have turned on the fasten seat belt signs if he could have. Everyone was staggering around like drunken sailors, except they were stone cold sober.

Thank goodness for great wifi. Starting on Mom’s birthday and for the duration of our two day sea crossing to reach our next port, I pretty much stayed in my cabin and worked on Mom’s genealogy while popping out onto the balcony from time to time to soak up some sunshine and take a picture.

Australia Tasman Sea.png

Or two.

Australia Tasman outcrop.png

I probably wouldn’t have told Mom about how rough these seas were, although they did calm down towards evening.

But given that she’s on the other side, I’m guessing she already knows. I can hear her now, “Can’t you just behave?”

In a word, Mom, “no.” I can’t and never could.

Wanting to do something to honor her birthday, I found Mom’s graduation picture in one of my blog articles, decorated it with a Christmas wreath, and posted it as my profile picture on Facebook.

And then, I cried when I saw the result on my phone.

Australia Mom birthday.png

After it posted, I realized that her beautiful photo is juxtaposed against me, in a lab jacket, at the GenebyGene lab this past June when filming the Lost Colony episode.

Oh, the irony.

Mom’s parents wouldn’t allow her to further her education, because they had already spent money on dance lessons because of her heart condition, and they had already put her brother through college.

Not exactly comparable expenditures, but what was Mom to do?

How different Mom’s life would have been had she been allowed to attend college. There weren’t student loans then, and 17-year-old females in 1940 could do little without their parent’s consent, and in this case, assistance.

While they were willing to scrimp and sacrifice to send her brother to college –  sacrifices she endured too – they were not willing to make that same investment in Mom. Instead, the brother got a master’s degree and she got married. That’s what “good girls” did back then.

As I looked at those two photos together, taken 79 years apart, I realized just how much things have changed. I went to college and received advanced degrees three decades after Mom’s pleas were cast aside. Yes, I earned my way, but I COULD earn my way – an opportunity she was never afforded.

The lab I was visiting is directed by a female PhD, Dr. Connie Bormans.

I, along with other women have been so blessed with hope and opportunities never possible or even imagined by my mother’s generation.

I know, retrospectively, that mother would be popping-buttons proud of me, even through she was not cracked up about some of the decisions I made along the way to arrive at this place in my life. Like moving away, for example. She wished, fervently sometimes, that I would just “stay home and behave myself,” for what she perceived as my own good.

Well Mom, that just wasn’t in the cards, or my DNA.

Of course, she knows that, because she contributed half of my genetic material and selected my father for his devilishly handsome bad-boy rebel tendencies. He contributed the other half of my DNA. She, of ALL people, shouldn’t be surprised about where life’s path has taken me, with a few pushes, shoves and mid-course corrections along the way.

So, here I am on her birthday😊!!!

Staggering around on an artificial floating island half-way around the world in the very rough Tasman Sea, seeking to solve life’s mysteries using DNA. Something only discovered 2 years before my birth and that Mom had probably never heard of at that time. Yet she herself would take DNA tests that I still utilize today. Genetics would profoundly mold and transform the life of her daughter half a century later.

Happy Birthday Mom, from your gleefully misbehaving daughter sailing the Tasman Sea.

I’ll see you overhome.

Australia Mom birthday sunset

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Fun DNA Stuff

  • Celebrate DNA – customized DNA themed t-shirts, bags and other items