Site icon DNAeXplained – Genetic Genealogy

Ancient Ireland’s Y and Mitochondrial DNA – Do You Match???

Ancient Ireland – the land of Tara and Knowth and the passage tombs of New Grange. Land of legend, romance, and perchance of King Arthur, or at least some ancient king who became Arthur in legend.

The island of Ireland, today Ireland and Northern Ireland, was a destination location, it seems, the westernmost island in the British Isles, and therefore the western shore of Europe. Anyone who sailed further west had better have weeks of food, water, and a great deal of good luck.

But who settled Ireland, when, and where did they come from? How many times was Ireland settled, and did the new settlers simply mingle with those already in residence, or did they displace the original settlers? Oral history recorded in the most ancient texts speaks of waves of settlement and conquest.

According to two papers, discussed below, which analyze ancient DNA, there were two horizon events that changed life dramatically in Europe, the arrival of agriculture about 3750 BC, or about 5770 years ago, and the arrival of metallurgy about 2300 BC, or 4320 years ago.

The people who lived in Ireland originally are classified as the Mesolithic people, generally referred to as hunter-gatherers. The second wave was known as Neolithic or the people who arrived as farmers. The third wave heralded the arrival of the Bronze Age when humans began to work with metals.

Our answers about Irish settlers come from the skeletons of the people who lived in Ireland at one time and whose bones remain in various types of burials and tombs.

The first remains to be processed with high coverage whole genome sequencing were those of 3 males whose remains were found in a cist burial on volcanic Rathlin Island, located in the channel between Ireland and Scotland.

In 795, Rathlin had the dubious honor of being the first target of Viking raiding and pillaging.

Rathlin Island is but a spit of land, with a total population of about 150 people, 4 miles east to west and 2.5 miles north to south. Conflict on the island didn’t stop there, with the Campbell and McDonald clan, among others, having bloody clashes on this tiny piece of land, with losers being tossed from the cliffs.

The island is believed to have been settled during the Mesolithic period, according to O’Sullivan in Maritime Ireland, An Archaeology of Coastal Communities (2007). The original language of Rathlin was Gaelic. Having been a half-way point between Ireland and Scotland, it’s believed that Rathlin served as an important cog in the Dalriada diaspora with Dalriada people taking their language, through Rathlin, into Scotland from about 300 AD, or 1700 years ago.

The first Irish remains whose DNA was sequenced at the whole genome level are from those three men and a much earlier Neolithic woman.

Megalithic tomb at the centre of the Giant’s Ring in Ballynahatty, Ireland, photo by robertpaulyoung – [1], CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=3221494

The female is clearly older than the three Rathlin males. According to Cassidy, et al, 2016, she clusters with 5 other Middle Neolithic individuals from Germany, Spain, and Scandinavia, while the males cluster with early Bronze Age genomes from central and northern Europe, reflecting a division between hunter-gatherer and early farmer individuals.

The males reflect genetic components of the Yamnaya, early Bronze Age herders from the Pontic Steppe, along with an equal level of Caucasus admixture.

The threshold between the Neolithic and Bronze Age fell at about 3750 BC in western Europe and Ireland, right between these two burials.

Even Earlier Burials

In 2020, Cassidy et al sequenced another 44 individuals from Irish passage grave burials ranging in age from 4793 to 2910 BC, or about 3000 to 7000 years ago. All of the men are members of haplogroup I, except two who are Y haplogroup H.

The Rathlin males, all haplogroup R1b, combined with evidence provided by later genetic analysis of passage grave remains point decisively towards a population replacement – with haplogroup R males replacing the previous inhabitants of both Europe and the British Isles.

In far western Ireland, haplogroup R and subgroups reach nearly 100% today.

I would encourage you to read the two papers, linked below, along with supplemental information. They are absolutely fascinating and include surprises involving both the history between Ireland and continental Europe, along with the relationships between the people buried at Newgrange.

Not only that, but the oral history regarding an elite sibling relationship involving the sun was passed down through millenia and seems to be corroborated by the genetics revealed today.

The most recent 2020 paper includes extensive archaeological context revolving around passage graves and megalithic tombs. When I visited New Grange in 2017, above, I was told that genetic analysis was underway on remains from several ancient burials.

I’m incredibly grateful that Dr. Dan Bradley’s ancient DNA lab at the Smurfit Institute of Genetics in Dublin, which I was also privileged to visit, was not only working on these historical treasures but that they were successful in obtaining high-quality results for Y DNA, autosomal and mitochondrial.

Dr. Dan Bradley in his ancient DNA lab in Dublin.

Take a look at these fascinating papers and then, see if you match any of the ancient samples.

Papers

Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome by Cassidy et al 2016

This paper included the Ballynahatty female and the three Rathlin Island males.

Significance

Modern Europe has been shaped by two episodes in prehistory, the advent of agriculture and later metallurgy. These innovations brought not only massive cultural change but also, in certain parts of the continent, a change in genetic structure. The manner in which these transitions affected the islands of Ireland and Britain on the northwestern edge of the continent remains the subject of debate. The first ancient whole genomes from Ireland, including two at high coverage, demonstrate that large-scale genetic shifts accompanied both transitions. We also observe a strong signal of continuity between modern-day Irish populations and the Bronze Age individuals, one of whom is a carrier for the C282Y hemochromatosis mutation, which has its highest frequencies in Ireland today.

Abstract

The Neolithic and Bronze Age transitions were profound cultural shifts catalyzed in parts of Europe by migrations, first of early farmers from the Near East and then Bronze Age herders from the Pontic Steppe. However, a decades-long, unresolved controversy is whether population change or cultural adoption occurred at the Atlantic edge, within the British Isles. We address this issue by using the first whole genome data from prehistoric Irish individuals. A Neolithic woman (3343–3020 cal BC) from a megalithic burial (10.3× coverage) possessed a genome of predominantly Near Eastern origin. She had some hunter–gatherer ancestry but belonged to a population of large effective size, suggesting a substantial influx of early farmers to the island. Three Bronze Age individuals from Rathlin Island (2026–1534 cal BC), including one high coverage (10.5×) genome, showed substantial Steppe genetic heritage indicating that the European population upheavals of the third millennium manifested all of the way from southern Siberia to the western ocean. This turnover invites the possibility of accompanying introduction of Indo-European, perhaps early Celtic, language. Irish Bronze Age haplotypic similarity is strongest within modern Irish, Scottish, and Welsh populations, and several important genetic variants that today show maximal or very high frequencies in Ireland appear at this horizon. These include those coding for lactase persistence, blue eye color, Y chromosome R1b haplotypes, and the hemochromatosis C282Y allele; to our knowledge, the first detection of a known Mendelian disease variant in prehistory. These findings together suggest the establishment of central attributes of the Irish genome 4,000 y ago.

A Dynastic elite in monumental Neolithic society by Cassidy et al, 2020

Poulnabrone Dolmen, County Clare, where disarticulated remains of 35 individuals have been excavated and two, approximately 5500-6000 years old, have resulting haplogroups.

This second article includes a great deal of archaeological and burial information which includes caves, reefs, cist burials, boulder chambers, peat bogs, dry-stone walls, portal tombs (think Stonehenge style structures), megalithic tombs such as the Giant’s Ring, court tombs, and passage tombs, including Newgrange.

Abstract

The nature and distribution of political power in Europe during the Neolithic era remains poorly understood1. During this period, many societies began to invest heavily in building monuments, which suggests an increase in social organization. The scale and sophistication of megalithic architecture along the Atlantic seaboard, culminating in the great passage tomb complexes, is particularly impressive2. Although co-operative ideology has often been emphasized as a driver of megalith construction1, the human expenditure required to erect the largest monuments has led some researchers to emphasize hierarchy3—of which the most extreme case is a small elite marshalling the labour of the masses. Here we present evidence that a social stratum of this type was established during the Neolithic period in Ireland. We sampled 44 whole genomes, among which we identify the adult son of a first-degree incestuous union from remains that were discovered within the most elaborate recess of the Newgrange passage tomb. Socially sanctioned matings of this nature are very rare, and are documented almost exclusively among politico-religious elites4—specifically within polygynous and patrilineal royal families that are headed by god-kings5,6. We identify relatives of this individual within two other major complexes of passage tombs 150 km to the west of Newgrange, as well as dietary differences and fine-scale haplotypic structure (which is unprecedented in resolution for a prehistoric population) between passage tomb samples and the larger dataset, which together imply hierarchy. This elite emerged against a backdrop of rapid maritime colonization that displaced a unique Mesolithic isolate population, although we also detected rare Irish hunter-gatherer introgression within the Neolithic population.

Y DNA Analysis at FamilyTreeDNA

Fortunately, the minimum coverage threshold for the Bradley lab was 30X, meaning 30 scanned reads. Of the 37 males sequenced, the lab was able to assign a Y DNA haplogroup to 36.

Family Tree DNA downloaded the BAM files and Michael Sager analyzed the Y DNA. The results split about 8 Y DNA lines, resulting in a total of 16 different haplogroup assignments. There are a couple more that may split with additional tests.

Cassidy et al report that the Y DNA results in several geographic locations, using the ISOGG tree (2018) for haplogroup assignment, although in some cases, I did find some inconsistencies in their haplogroup and SNP names. I would recommend reading the paper in full for the context, including the supplementary information, and not simply extracting the SNP information, because the context is robust as is their analysis.

If your family hails from the Emerald Isle, chances are very good that these people represent your ancestral lines, one way or another – even if you don’t match them exactly. The events they witnessed were experienced by your ancestors too. There appears to have been a vibrant, diverse community, or communities, based on the burials and history revealed.

Of course, we all want to know if our Y DNA or mitochondrial DNA haplogroups, or that of our family members matches any of these ancient samples.

Thank you to Michael Sager, phylogeneticist, and Goran Runfeldt, head of R&D at Family Tree DNA for making this information available. Without their generosity, we would never know that an ancient sample actually split branches of the tree, nor could we see if we match.

Do You Match?

I explained, in this article, here, step-by-step, how to determine if your Y DNA or mitochondrial DNA matches these ancient samples.

If you only have a predicted or base haplogroup, you can certainly see if your haplogroup is upstream of any of these ancient men. However, you’ll receive the best results if you have taken the detailed Big Y-700 test, or for the mitochondrial DNA lines, the full sequence test. You can upgrade or order those tests, here. (Sale started today.)

Sample: Rathlin1 / RM127 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 2026-1885 cal BC
Y-DNA: R-DF21
mtDNA: U5a1b1e

Sample: Rathlin2 / RSK1 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 2024-1741 cal BC
Y-DNA: R-DF21
mtDNA: U5b2a2

Sample: Rathlin3 / RSK2 (Cassidy et al. 2016)
Sex: Male
Location: Glebe, Rathlin Island, Northern Ireland
Age: Early Bronze Age 1736-1534 cal BC
Y-DNA: R-L21
mtDNA: J2b1a

Sample: Ballynahatty / BA64 (Cassidy et al. 2016)
Sex: Female
Location: Ballynahatty, Down, Northern Ireland
Age: Middle to Late Neolithic 3343-3020 cal BC
mtDNA: HV0-T195C!

The above 4 samples were from the original 2016 paper, with the additional samples from 2020 added below

Sample: Ashleypark3 / ASH3 (Cassidy et al. 2020)
Sex: Male
Location: Ashleypark, Tipperary, Ireland
Age: Early-Middle Neolithic 3712-3539 cal BC
Y-DNA: I-FT344600
FTDNA Comment: Ashleypark3, Parknabinnia186, Parknabinnia2031, Parknabinnia672, Parknabinnia675, Parknabinnia768 and Poulnabrone06 split the I2-L1286 (S21204+/L1286-) branch. These samples, along with SBj (Gunther 2018), I1763 (Mathieson 2018), Ajv54 (Malmström 2019) and Ajv52, Ajv58 and Ajv70 (Skoglund 2012) form the branch I-FT344596. All Cassidy samples form an additional branch downstream, I-FT344600. There is further evidence that SBj, Ajv58 and Ajv52 might form an additional branch, sibling to I-FT344600
mtDNA: T2c1d1

Sample: Killuragh6 / KGH6 (Cassidy et al. 2020)
Sex: Male
Location: Killuragh, Limerick, Ireland
Age: Mesolithic 4793-4608 cal BC
Y-DNA: I-V4921
FTDNA Comment: Joins ancient samples Loschbour, Motala12, Motala3 (Lazaridis 2015) and Steigen (Gunther 2018) at I2-V4921
mtDNA: U5b2a

Loschbour Man is from present-day Luxembourg, Motala is from Sweden and Steigen is from Norway.

Sample: Parknabinnia186 / PB186 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3518-3355 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: X2b-T226C

Sample: Parknabinnia2031 / PB2031 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3632-3374 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: K1a2b

Sample: Parknabinnia672 / PB672 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3626-3196 cal BC; 3639-3384 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: T2c1d-T152C!

Sample: Parknabinnia675 / PB675 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3263-2910 cal BC; 3632-3372 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H1

Sample: Parknabinnia768 / PB768 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3642-3375 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H4a1a1

Sample: Poulnabrone06 / PN06 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3635-3376 cal BC
Y-DNA: I-FT344600
FTDNA Comment: See Ashleypark3
mtDNA: H

Sample: Sramore62 / SRA62 (Cassidy et al. 2020)
Sex: Male
Location: Sramore, Leitrim, Ireland
Age: Mesolithic 4226-3963 cal BC
Y-DNA: I-S2519
FTDNA Comment: Split the I2-S2519 branch. Pushes Cheddar man and SUC009 down to I-S2497. Other relevant pre-L38s include I2977 (I-Y63727) and R11, I5401, I4971, I4915 I4607 (I-S2599)
mtDNA: U5a2d

This branch is ancestral to Cheddar Man who dates from about 9000 years ago and was found in Cheddar Gorge, Somerset, England. S2497 has 141 subbranches.

Sample: Annagh1 / ANN1 (Cassidy et al. 2020)
Sex: Male
Location: Annagh, Limerick, Ireland
Age: Middle Neolithic 3638-3137 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: K1a-T195C!

Men from Germany and Ireland are also found on this branch which hosts 47 subbranches.

Sample: Annagh2 / ANN2 (Cassidy et al. 2020)
Sex: Male
Location: Annagh, Limerick, Ireland
Age: Middle Neolithic 3705-3379 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: H4a1a1

Along with men from Germany and Ireland, and 47 subbranches.

Sample: Ardcroney2 / ARD2 (Cassidy et al. 2020)
Sex: Male
Location: Ardcrony, Tipperary, Ireland
Age: Middle Neolithic 3624-3367 cal BC
Y-DNA: I-FT354500
FTDNA Comment: Ardcroney2 and Parknabinnia443 split the I2-Y13518 branch and form a branch together (I-FT354500). Additional ancient samples residing on I-Y13518 include I2637, I2979, I6759, and Kelco cave
mtDNA: J2b1a

Kelco Cave is in Yorkshire, England.

Sample: Ashleypark1 / ASH1 (Cassidy et al. 2020)
Sex: Male
Location: Ashleypark, Tipperary, Ireland
Age: Middle Neolithic 3641-3381 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: K2a9

Sample: Baunogenasraid72 / BG72 (Cassidy et al. 2020)
Sex: Male
Location: Baunogenasraid, Carlow, Ireland
Age: Middle Neolithic 3635-3377 cal BC
Y-DNA: H-FT362000
FTDNA Comment: Baunogenasraid72 and Jerpoint14 split the H-SK1180 branch and form branch together (H-FT362000). Several other additional ancient samples belong to this branch as well including FLR001, FLR002, FLR004, GRG022, GRG041 (Rivollat 2020), and BUCH2 (Brunel 2020)
mtDNA: K1a4a1

Y haplogroup H is hen’s-teeth rare.

Sample: Carrowkeel531 / CAK531 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2881-2625 cal BC
Y-DNA: I-FT380380
FTDNA Comment: Joins ancient sample prs013 (Sánchez-Quinto 2019)
mtDNA: H1

Sample: Carrowkeel532 / CAK532 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 3014-2891 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: J1c3

One current sample from Portugal.

Sample: Carrowkeel534 / CAK534 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Neolithic None
Y-DNA: I-M284
mtDNA: X2b4

This branch has several subclades as well as people from Ireland, Scotland, England, British Isles, Germany, France, Denmark, Northern Ireland and Norway.

Sample: Carrowkeel68 / CAK68 (Cassidy et al. 2020)
Sex: Male
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2833-2469 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H

Sample: Cohaw448 / CH448 (Cassidy et al. 2020)
Sex: Male
Location: Cohaw, Cavan, Ireland
Age: Middle Neolithic 3652-3384 cal BC
Y-DNA: I-L1498
mtDNA: H1

This branch has 129 subbranches and men from England, Ireland, UK, France, Germany, Czech Republic, Norway, Northern Ireland and Scotland.

Sample: Glennamong1007 / GNM1007 (Cassidy et al. 2020)
Sex: Male
Location: Glennamong, Mayo, Ireland
Age: Middle Neolithic 3507-3106 cal BC
Y-DNA: I-Y3713
FTDNA Comment: Joins VK280
mtDNA: K1a-T195C!

Branch has 42 subbranches and men from Ireland, England, Scotland, France, and Germany. I wrote about VK280, a Viking skeleton from Denmark, here.

Sample: Glennamong1076 / GNM1076 (Cassidy et al. 2020)
Sex: Male
Location: Glennamong, Mayo, Ireland
Age: Middle Neolithic 3364-2940 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H1c

Sample: MillinBay6 / MB6 (Cassidy et al. 2020)
Sex: Male
Location: Millin Bay (Keentagh Td.), Down, Ireland
Age: Middle Neolithic 3495-3040 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: J1c3

Branch has 51 subbranches and men from Ireland and England.

Sample: Jerpoint14 / JP14 (Cassidy et al. 2020)
Sex: Male
Location: Jerpoint West, Kilkenny, Ireland
Age: Middle Neolithic 3694-3369 cal BC
Y-DNA: H-FT362000
FTDNA Comment: Baunogenasraid72 and Jerpoint14 split the H-SK1180 branch and form branch together (H-FT362000). Several other additional ancient samples belong to this branch as well including FLR001, FLR002, FLR004, GRG022, GRG041 (Rivollat 2020), and BUCH2 (Brunel 2020)
mtDNA: T2c1d1

Sample: Newgrange10 / NG10 (Cassidy et al. 2020)
Sex: Male
Location: Newgrange, Main Chamber, Meath, Ireland
Age: Middle Neolithic 3338-3028 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U5b1-T16189C!-T16192C!

Sample: Parknabinnia1327 / PB1327 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3631-3353 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: T2b3

Sample: Parknabinnia443 / PB443 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3636-3378 cal BC
Y-DNA: I-FT354500
FTDNA Comment: Ardcroney2 and Parknabinnia443 split the I2-Y13518 branch and form a branch together (I-FT354500). Additional ancient samples residing on I-Y13518 include I2637, I2979, I6759, and Kelco_cave
mtDNA: K1b1a1

Sample: Parknabinnia581 / PB581 (Cassidy et al. 2020)
Sex: Male
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3631-3362 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: T2b

Sample: Poulnabrone02 / PN02 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3704-3522 cal BC
Y-DNA: I-Y3712
FTDNA Comment: One of 15 ancient samples currently on this branch
mtDNA: U5b1c1

Sample: Poulnabrone03 / PN03 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3635-3376 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: K1a1

Sample: Poulnabrone04 / PN04 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3944-3665 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H1-T16189C!

Sample: Poulnabrone05 / PN05 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3941-3661 cal BC
Y-DNA: I-L1193
FTDNA Comment: One of 6 ancient samples currently on this branch
mtDNA: K1a-T195C!

Sample: Poulnabrone07 / PN07 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3629-3371 cal BC
Y-DNA: I-FT370113
FTDNA Comment: Forms a branch with Raschoille_1 (Brace 2019) and I3041 (Olalde 2018). Other relevant ancient samples are Carsington_Pasture_1, I3134, I7638 at I-BY166411, and Coldrum_1 and I2660 at I-BY168618. These 8 ancients all group with two modern men, 1 from Ireland and 1 of unknown origins.
mtDNA: U5b1c

Sample: Poulnabrone107 / PN107 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3926-3666 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U4a2f

Sample: Poulnabrone112 / PN112 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3696-3535 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: U5b2b

Sample: Poulnabrone12 / PN12 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3621-3198 cal BC
Y-DNA: I-Y3709
FTDNA Comment: One of 12 ancient samples currently on this branch
mtDNA: H

Sample: Poulnabrone13 / PN13 (Cassidy et al. 2020)
Sex: Male
Location: Poulnabrone, Clare, Ireland
Age: Early-Middle Neolithic 3704-3536 cal BC
Y-DNA: I-S2639
mtDNA: V

Branch has 172 subclades.

Sample: Carrowkeel530 / CAK530 (Cassidy et al. 2020)
Sex: Female
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 2883-2634 cal BC
mtDNA: W5b

Sample: Carrowkeel533 / CAK533 (Cassidy et al. 2020)
Sex: Female
Location: Carrowkeel, Sligo, Ireland
Age: Late Neolithic 3085-2904 cal BC
mtDNA: H

Sample: NewgrangeZ1 / NGZ1 (Cassidy et al. 2020)
Sex: Female
Location: Site Z, Newgrange, Meath, Ireland
Age: Middle Neolithic 3320-2922 cal BC
mtDNA: X2b-T226C

Sample: Parknabinnia1794 / PB1794 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3647-3377 cal BC
mtDNA: J1c6

Sample: Parknabinnia357 / PB357 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Early-Middle Neolithic 3640-3381 cal BC; 3774-3642 cal BC
mtDNA: U8b1b

Sample: Parknabinnia754 / PB754 (Cassidy et al. 2020)
Sex: Female
Location: Parknabinnia, Clare, Ireland
Age: Middle Neolithic 3617-3138 cal BC
mtDNA: U5b2a3

Sample: Poulnabrone10_113 / PN113 (Cassidy et al. 2020)
Sex: Female
Location: Poulnabrone, Clare, Ireland
Age: Early Neolithic 3940-3703 cal BC
mtDNA: H4a1a1a

Sample: Poulnabrone16 / PN16 (Cassidy et al. 2020)
Sex: Female
Location: Poulnabrone, Clare, Ireland
Age: Middle Neolithic 3633-3374 cal BC
mtDNA: K1b1a1

So, how about it? Do you match?

_____________________________________________________________

Disclosure

I receive a small contribution when you click on some of the links to vendors in my articles. This does NOT increase the price you pay but helps me to keep the lights on and this informational blog free for everyone. Please click on the links in the articles or to the vendors below if you are purchasing products or DNA testing.

Thank you so much.

DNA Purchases and Free Transfers

Genealogy Products and Services

Genealogy Research

Books

Exit mobile version