Finding Native American Ethnic Results in Germanic People

I’m often asked about the significance of small percentages of autosomal DNA in results.  Specifically, the small percentages are often of Native American or results that would suggest Native admixture.  One of the first questions I always ask is whether or not the individual has Germanic or eastern European admixture.

Why?

Take a look at this map of the Invasion of the Roman Empire.  See the Huns and their path?

Hun map

It’s no wonder we’re so admixed.

Here’s a map of the Hunnic empire at its peak under Attila between the years 420-469.

Hun emplire

But that wasn’t the end of the Asian invasions.  The Magyars, who settled in Hungary arrived from Asia as well, in the 800s and 900s, as shown on this map from LaSalle University.

magyar map

Since both the Hungarians and some Germanic people descend from Asian populations, as do Native Americans, albeit thousands of years apart, it’s not unrealistic to expect that, as populations, they share a genetic connection.

Therefore, when people who carry heritage from this region of the world show small amounts of Native or Asian origin, I’m not surprised.  However, for Americans, trying to sort out their Native ethnic heritage, this is most unhelpful.

Let’s take a look at the perfect example candidate.  This man is exactly half Hungarian and half German.  Let’s see what his DNA results say, relative to any Asian or Native heritage, utilizing the testing companies and the free admixture tools at www.gedmatch.com.

He has not tested at Ancestry, but at Family Tree DNA, his myOrigins report 96% European, 4% Middle Eastern.  At 23andMe in speculative view, he shows 99.7 European and .2 sub-saharan African.

Moving to the admixture tools at GedMatch, MDLP is not recommended for Asian or Native ancestry, so I have excluded that tool.

Eurogenes K13 is the most recently updated admixture tool, so let’s take a look at that one first.

Eurogenes K13

 JK Eurogenes K13 v2

Eurogenes K13 showed 7% West Asian, which makes perfect sense considering his heritage, but it might be counted as “Native” in other circumstances, although I would certainly be very skeptical about counting it as such.

However, East Asian, Siberian and Amerindian would all be amalgamated into the Native American category, for a combined percentage of 1.31.

jk eurogenes k13 chart

However, selecting the “admixture proportions by chromosome” view shows something a bit different.  The cumulative percentages, by chromosome equate to 10.10%.  Some researchers mistakenly add this amount and use that as their percentage of Native ancestry.  This is not the case, because those are the portions of 100% of each individual chromosome, and the total would need to be divided by 22 to obtain the average value across all chromosomes.  The total is irrelevant, and the average may not reflect how the developer determines the amount of admixture because chromosomes are not the same size nor carry the same number of SNPs.  Questions relative to the functional underpinnings of each tool should be addressed to the developers.

Dodecad

I understand that there is a newer version of Dodecad, but that it has not been submitted to GedMatch for inclusion, per a discussion with GedMatch.  I can’t tell which of the Dodecad versions on GedMatch is the most current, so I ran the results utilizing both v3 and 12b.

jk dodecad v3

jk dodecad v3 chart

I hope v3 is not the most current, because it does not include any Native American category or pseudocategory – although there is a smattering of Northeast Asian at .27% and Southwest Asian at 1%.

Dodecad 12b below

jk dodecad 12b

The 12b version does show .52% Siberian and 2.6% Southwest Asian, although I’m not at all sure the Southwest Asian should be included.

HarappaWorld

jk harappaworld

jk harappaworld chart

Harappaworld shows .09 Siberian, .27% American (Native American), .23% Beringian and 1.8% Southwest Asian, although I would not include Southwest Asian in the Native calculation.

In Summary

Neither Family Tree DNA nor 23andMe find Native ancestry in our German/Hungarian tester, but all 3 of the admixture tools at Gedmatch find either small amounts of Native or Asian ancestry that could certainly be interpreted as Native, such as Siberian or Beringian.

Does this mean this German/Hungarian man has Native American ancestry?  Of course not, but it does probably mean that the Native population and his ancestral populations did share some genes from the same gene pool thousands of years ago.

While you might think this is improbable, or impossible, consider for a minute that every person outside of Africa today carries some percentage of Neanderthal DNA, and all Europeans also carry Denisovan DNA.  Our DNA does indeed have staying power over the millennia, especially once an entire population or group of people is involved.  We’ve recently seen this same type of scenarios in the full genome sequencing of a 24,000 year old Siberian male skeleton.

Our German/Hungarian man carries 2.4% Neanderthal DNA according to 23andMe and 2.7% according to the Genographic Project, which also reports that he carries 3.9% Denisovan.  The European average is about 2% for Neanderthal.

The net-net of this is that minority admixture is not always what it seems to be, especially when utilizing autosomal DNA to detect small amounts of Native American admixture.  The big picture needs to be taken into consideration.  Caution is advised.

When searching for Native admixture, when possible, both Y DNA and mitochondrial DNA give specific answers for specific pedigree lines relative to ancestry.  Of course, to utilize Y or mtDNA, the tester must descend from the Native ancestor either directly paternally to test the male Y chromosome, or directly matrilineally to test the mitochondrial line.  You can read about this type of testing, and how it works, in my article, Proving Native American Ancestry Using DNA.  You can also read about other ways to prove Native ancestry using autosomal DNA, including how to unravel which pedigree line the Native ancestry descends from, utilizing admixture tools, in the article, “The Autosomal Me.”

Ethnicity Percentages – Second Generation Report Card

Recently, Family Tree DNA introduced their new ethnicity tool, myOrigins as part of their autosomal Family Finder product.  This means that all of the major players in this arena using chip based technology (except for the Genographic project) have now updated their tools.  Both 23andMe and Ancestry introduced updated versions of their tools in the fall of 2013.  In essence, this is the second generation of these biogeographical or ethnicity products.  So lets take a look and see how the vendors are doing.

In a recent article, I discussed the process for determining ethnicity percentages using biogeographical ancestry, or BGA, tools.  The process is pretty much the same, regardless of which vendor’s results you are looking at.  The variant is, of course, the underlying population data base, it’s quality and quantity, and the way the vendors choose to construct and name their regions.

I’ve been comparing my own known and proven genealogy pedigree breakdown to the vendors results for some time now.  Let’s see how the new versions stack up to a known pedigree.

The paper, “Revealing American Indian and Minority Heritage using Y-line, Mitochondrial, Autosomal and X Chromosomal Testing Data Combined with Pedigree Analysis” was published in the Fall 2010 issue of JoGG, Vol. 6 issue 1.

The pedigree analysis portion of this document begins about page 8.  My ancestral breakdown is as follows:

Geography Pedigree Percent
Germany 23.8041
British Isles 22.6104
Holland 14.5511
European by DNA 6.8362
France 6.6113
Switzerland 0.7813
Native American 0.2933
Turkish 0.0031

This leaves about 25% unknown.

Let’s look at each vendor’s results one by one.

23andMe

23andme v2

My results using the speculative comparison mode at 23andMe are shown in a chart, below.

23andMe Category 23andMe Percentage
British and Irish 39.2
French/German 15.6
Scandinavian 7.9
Nonspecific North European 27.9
Italian 0.5
Nonspecific South European 1.6
Eastern European 1.8
Nonspecific European 4.9
Native American 0.3
Nonspecific East Asian/Native American 0.1
Middle East/North Africa 0.1

At 23andMe, if you have questions about what exact population makes up each category, just click on the arrow beside the category when you hover over it.

For example, I wasn’t sure exactly what comprises Eastern European, so I clicked.

23andme eastern europe

The first thing I see is sample size and where the samples come from, public data bases or the 23andMe data base.  Their samples, across all categories, are most prevalently from their own data base.  A rough add shows about 14,000 samples in total.

Clicking on “show details” provides me with the following information about the specific locations of included populations.

23andme pop

Using this information, and reorganizing my results a bit, the chart below shows the comparison between my pedigree chart and the 23andMe results.  In cases where the vendor’s categories spanned several of mine, I have added mine together to match the vendor category.  A perfect example is shown in row 1, below, where I added France, Holland, Germany and Switzerland together to equal the 23andMe French and German category.  Checking their reference populations shows that all 4 of these countries are included in their French and German group.

Geography Pedigree Percent 23andMe %
Germany, Holland, Switzerland & France 45.7451 15.6
France 6.6113 (above) Combined
Germany 23.8014 (above) Combined
Holland 14.5511 (above) Combined
Switzerland 0.7813 (above) Combined
British Isles 22.6104 39.2
Native American 0.2933 0.4 (Native/East Asian)
Turkish 0.0031 0.1 (Middle East/North Africa)
Scandinavian 7.9
Italian 0.5
South European 1.6
East European 1.8
European by DNA 6.8362 4.9 (nonspecific European)
Unknown 25 27.9 (North European)

I can also change to the Chromosome view to see the results mapped onto my chromosomes.

23andme chromosome view

The 23andMe Reference Population

According to the 23andMe customer care pages, “Ancestry Composition uses 31 reference populations, based on public reference datasets as well as a significant number of 23andMe members with known ancestry. The public reference datasets we’ve drawn from include the Human Genome Diversity ProjectHapMap, and the 1000 Genomes project. For these datasets as well as the data from 23andMe, we perform filtering to ensure accuracy.

Populations are selected for Ancestry Composition by studying the cluster plots of the reference individuals, choosing candidate populations that appear to cluster together, and then evaluating whether we can distinguish the groups in practice. The population labels refer to genetically similar groups, rather than nationalities.”

Additional detailed information about Ancestry Composition is available here.

Ancestry.com

ancestry v2

Ancestry is a bit more difficult to categorize, because their map regions are vastly overlapping.  For example, the west Europe category is shown above, and the Scandinavian is shown below.

ancestry scandinavia

Both categories cover the Netherlands, Germany and part of the UK.

My Ancestry percentages are:

Ancestry Category Ancestry Percentage
North Africa 1
America <1
East Asia <1
West Europe 79
Scandinavia 10
Great Britain 4
Ireland 2
Italy/Greece 2

Below, my pedigree percentages as compared to Ancestry’s categories, with category adjustments.

Geography Pedigree Percent Ancestry %
West European 52.584 (combined from below) 79
Germany 23.8041 Combined
Holland 14.5511 Combined
European by DNA 6.8362 Combined
France 6.6113 Combined
Switzerland 0.7813 Combined
British Isles 22.6104 6
Native American 0.2933 ~1 incl East Asian
Turkish 0.0031 1 (North Africa)
Unknown 25
Italy/Greece 2
Scandinavian 10

Ancestry’s European populations and regions are so broadly overlapping that almost any interpretation is possible.  For example, the Netherlands could be included in several categories – and based up on the history of the country, that’s probably legitimate.

At Ancestry, clicking on a region, then scrolling down will provide additional information about that region of the world, both their population and history.

The Ancestry Reference Population

Just below your ethnicity map is a section titled “Get the Most Out of Your Ethnicity Estimate.”  It’s worth clicking, reading and watching the video.  Ancestry states that they utilized about 3000 reference samples, pared from 4245 samples taken from people whose ethnicity seems to be entirely from that specific location in the world.

ancestry populations

You can read more in their white paper about ethnicity prediction.

Family Tree DNA’s myOrigins

I wrote about the release of my Origins recently, so I won’t repeat the information about reference populations and such found in that article.

myorigins v2

Family Tree DNA shows matches by region.  Clicking on the major regions, European and Middle Eastern, shown above, display the clusters within regions.  In addition, your Family Finder matches that match your ethnicity are shown in highest match order in the bottom left corner of your match page.

Clicking on a particular cluster, such as Trans-Ural Peneplain, highlights that cluster on the map and then shows a description in the lower left hand corner of the page.

myorigins trans-ural

Family Tree DNA shows my ethnicity results as follows.

Family Tree DNA Category Family Tree DNA Percentage
European Coastal Plain 68
European Northlands 12
Trans-Ural Peneplain 11
European Coastal Islands 7
Anatolia and Caucus 3

Below, my pedigree results reorganized a bit and compared to Family Tree DNA’s categories.

Geography Pedigree Percent Family Tree DNA %
European Coastal Plain 45.7478 68
Germany 23.8041 Combined above
Holland 14.5511 Combined above
France 6.6113 Combined above
Switzerland 0.7813 Combined above
British Isles 22.6104 7 (Coastal Islands)
Turkish 0.0031 3 (Anatolia and Caucus)
European by DNA 6.8362
Native American 0.2933
Unknown 25
Trans-Ural Peneplain 11
European Northlands 12

Third Party Admixture Tools

www.GedMatch.com is kind enough to include 4 different admixture utilities, contributed by different developers, in their toolbox.  Remember, GedMatch is a free, meaning a contribution site – so if you utilize and enjoy their tools – please contribute.

On their main page, after signing in and transferring your raw data files from either 23andMe, Family Tree DNA or Ancestry, you will see your list of options.  Among them is “admixture.”  Click there.

gedmatch admixture

Of the 4 tools shown, MDLP is not recommended for populations outside of Europe, such as Asian, African or Native American, so I’ve skipped that one entirely.

gedmatch admix utilities

I selected Admixture Proportions for the part of this exercise that includes the pie chart.

The next option is Eurogenes K13 Admixture Proportions.  My results are shown below.

Eurogenes K13

Eurogenes K13

Of course, there is no guide in terms of label definition, so we’re guessing a bit.

Geography Pedigree Percent Eurogenes K13%
North Atlantic 75.19 44.16
Germany 23.8041 Combined above
British Isles 22.6104 Combined above
Holland 14.5511 Combined above
European by DNA 6.8362 Combined above
France 6.6113 Combined above
Switzerland 0.7813 Combined above
Native American 0.2933 2.74 combined East Asian, Siberian, Amerindian and South Asian
Turkish 0.0031 1.78 Red Sea
Unknown 25
Baltic 24.36
West Med 14.78
West Asian 6.85
Oceanian 0.86

Dodecad K12b

Next is Dodecad K12b

According to John at GedMatch, there is a more current version of Dodecad, but the developer has opted not to contribute the current or future versions.

Dodecad K12b

By the way, in case you’re wondering, Gedrosia is an area along the Indian Ocean – I had to look it up!

Geography Pedigree Percent Dodecad K12b
North European 75.19 43.50
Germany 23.8041 Combined above
British Isles 22.6104 Combined above
Holland 14.5511 Combined above
European by DNA 6.8362 Combined above
France 6.6113 Combined above
Switzerland 0.7813 Combined above
Native American 0.2933 3.02 Siberian, South Asia, SW Asia, East Asia
Turkish 0.0031 10.93 Caucus
Gedrosia 7.75
Northwest African 1.22
Atlantic Med 33.56
Unknown 25

Third is Harappaworld.

Harappaworld

harappaworld

Baloch is an area in the Iranian plateau.

Geography Pedigree Percent Harappaworld %
Northeast Euro 75.19 46.58
Germany 23.8041 Combined above
British Isles 22.6104 Combined above
Holland 14.5511 Combined above
European by DNA 6.8362 Combined above
France 6.6113 Combined above
Switzerland 0.7813 Combined above
Native American 0.2933 2.81 SE Asia, Siberia, NE Asian, American, Beringian
Turkish 0.0031 10.27
Unknown 25
S Indian 0.21
Baloch 9.05
Papuan 0.38
Mediterranean 28.71

The wide variety found in these results makes me curious about how my European results would be categorized using the MDLP tool, understanding that it will not pick up Native, Asian or African.

MDLP K12

mdlp k12

The Celto-Germanic category is very close to my mainland European total – but of course, many Germanic people settled in the British Isles.

Second Generation Report Card

Many of these tools picked up my Native American heritage, along with the African.  Yes, these are very small amounts, but I do have several proven lines.  By proven, I mean both by paper trail (Acadian church and other records) and genetics, meaning Yline and mtDNA.  There is no arguing with that combination.  I also have other Native lines that are less well proven.  So I’m very glad to see the improvements in that area.

Recent developments in historical research and my mitochondrial DNA matches show that my most distant maternal ancestral line in Germany have some type of a Scandinavian connection.  How did this happen, and when?  I just don’t know yet – but looking at the map below, which are my mtDNA full sequence matches, the pattern is clear.

mitomatches

Could the gene flow have potentially gone the other direction – from Germany to Scandinavia?  Yes, it’s possible.  But my relatively consistent Scandinavian ethnicity at around 10% seems unlikely if that were the case.

Actually, there is a second possibility for additional Scandinavian heritage and that’s my heavy Frisian heritage.  In fact, most of my Dutch ancestors in Frisia were either on or very near the coast on the northernmost part of Holland and many were merchants.

I also have additional autosomal matches with people from Scandinavia – not huge matches – but matches just the same – all unexplained.  The most notable of which, and the first I might add, is with my friend, Marja.

It’s extremely difficult to determine how distant the ancestry is that these tests are picking up.  It could be anyplace from a generation ago to hundreds of generations ago.  It all depends on how the DNA was passed, how isolated the population was, who tested today and which data bases are being utilized for comparison purposes along with their size and accuracy.  In most cases, even though the vendors are being quite transparent, we still don’t know exactly who the population is that we match, or how representative it is of the entire population of that region.  In some cases, when contributed data is being used, like testers at 23andMe, we don’t know if they understood or answered the questions about their ancestry correctly – and 23andMe is basing ethnicity results on their cumulative answers.  In other words, we can’t see beneath the blanket – and even if we could – I don’t know that we’d understand how to interpret the components.

So Where Am I With This?

I knew already, through confirmed paper sources that most of my ancestry is in the European heartland – Germany, Holland, France as well as in the British Isles.  Most of the companies and tools confirm this one way or another.  That’s not a surprise.  My 35 years of genealogical research has given me an extremely strong pedigree baseline that is invaluable for comparing vendor ethnicity results.

The Scandinavian results were somewhat of a surprise – especially at the level in which they are found.  If this is accurate, and I tend to believe it is present at some level, then it must be a combined effect of many ancestors, because I have no missing or unknown ancestors in the first 5 generations and only 11 of 64 missing or without a surname in generation 6.  Those missing ancestors in generation 6 only contribute about 1.5% of my DNA each, assuming they contribute an average of 50% of their DNA to offspring in each subsequent generation.

Clearly, to reach 10%, nearly all of my missing ancestors, in the US and Germany, England and the Netherlands would have to be 100% Scandinavian – or, alternately, I have quite a bit scattered around in many ancestors, which is a more likely scenario.  Still, I’m having a difficult time with that 10% number in any scenario, but I will accept that there is some Scandinavian heritage one way or another.  Finding it, however, genealogically is quite another matter.

However, I’m at a total loss as to the genesis of the South European and Mediterranean.  This must be quite ancient.  There are only two known possible ancestors from these regions and they are many generations back in time – and both are only inferred with clearly enough room to be disproven.  One is a possible Jewish family who went to France from Spain in 1492 and the other is possibly a Roman soldier whose descendants are found within a few miles of a Roman fort site today in Lancashire.  Neither of these ancestors could have contributed enough DNA to influence the outcome to the levels shown, so the South European/Mediterranean is either incorrect, or very deep ancestry.

The Eastern European makes more sense, given my amount of German heritage.  The Germans are well known to be admixed with the Magyars and Huns, so while I can’t track it or prove it, it also doesn’t surprise me one bit given the history of the people and regions where my ancestors are found.

What’s the Net-Net of This?

This is interesting, very interesting.  There are tips and clues buried here, especially when all of the various tools, including autosomal matching, Y and mtDNA, are utilized together for a larger picture.  Alone, none of these tools are as powerful as they are combined.

I look forward to the day when the reference populations are in the tens of thousands, not hundreds.  All of the tools will be far more accurate as the data base is built, refined and utilized.

Until then, I’ll continue to follow each release and watch for more tips and clues – and will compare the various tools.  For example, I’m very pleased to see Family Tree DNA’s new ethnicity matching tool incorporated into myOrigins.

I’ve taken the basic approach that my proven pedigree chart is the most accurate, by far, followed by the general consensus of the combined results of all of the vendors.  It’s particularly relevant when vendors who don’t use the same reference populations arrive at the same or similar results.  For example, 23andMe uses primarily their own clients and Nat Geo of course, although I did not include them above because they haven’t released a new tool recently, uses their own population sample results.

National Geographic’s Geno2

Nat Geo took a bit of a different approach and it’s more difficult to compare to the others.  They showed my ethnicity as 43% North European, 36% Mediterranean and 18% Southwest Asian.

nat geo results

While this initially looks very skewed, they then compared me to my two closest populations, genetically, which were the British and the Germans, which is absolutely correct, according to my pedigree chart.  Both of these populations are within a few percent of my exact same ethnicity profile, shown below.

Nat geo british 2

The description makes a lot of sense too.  “The dominant 49% European component likely reflects the earliest settlers in Europe, hunter-gatherers who arrived there more than 35,000 years ago.  The 44% Mediterranean and the 17% Southwest Asian percentages arrived later, with the spread of agriculture from the Fertile Crescent in the middle East, over the past 10,000 years.  As these early farmers moved into Europe, they spread their genetic patterns as well.”

nat geo german

So while individually, and compared to my pedigree chart, these results appear questionable, especially the Mediterranean and Southwest Asian portions, in the context of the populations I know I descend from and most resemble, the results make perfect sense when compared to my closest matching populations.  Those populations themselves include a significant amount of both Mediterranean and Southwest Asian.  Looking at this, I feel a lot better about the accuracy of my results.  Sometimes, perspective makes a world of difference.

It’s A Wrap

Just because we can’t exactly map the ethnicity results to our pedigree charts today doesn’t mean the results are entirely incorrect.  It doesn’t mean they are entirely correct, either.  The results may, in some cases, be showing where population groups descend from, not where our specific ancestors are found more recently.  The more ancestors we have from a particular region, the more that region’s profile will show up in our own personal results.  This explains why Mediterranean shows up, for example, from long ago but our one Native ancestor from 7 or 8 generations ago doesn’t.  In my case, it would be because I have many British/German/Dutch lines that combine to show the ancient Mediterranean ancestry of these groups – where I have many fewer Native ancestors.

Vendors may be picking up deep ancestry that we can’t possible know about today – population migration.  It’s not like our ancestors left a guidebook of their travels for us – at least – not outside of our DNA – and we, as a community, are still learning exactly how to read that!  We are, after all, participants on the pioneering, leading edge of science.

Having said that, I’ll personally feel a lot better about these kinds of results when the underlying technology, data bases and different vendors’ tools mature to the point where there the differences between their results are minor.

For today, these are extremely interesting tools, just don’t try to overanalyze the results, especially if you’re looking for minority admixture.  And if you don’t like your results, try a different vendor or tool, you’ll get an entirely new set to ponder!

2013 Family Tree DNA Conference Day 2

ISOGG Meeting

The International Society of Genetic Genealogy always meets at 8 AM on Sunday morning.  I personally think that 8AM meeting should be illegal, but then I generally work till 2 or 3 AM (it’s 1:51 AM now), so 8 is the middle of my night.

Katherine Borges, the Director speaks about current and future activities, and Alice Fairhurst spoke about the many updates to the Y tree that have happened and those coming as well.  It has been a huge challenge to her group to keep things even remotely current and they deserve a huge round of virtual applause from all of us for the Y tree and their efforts.

Bennett opened the second day after the ISOGG meeting.

“The fact that you are here is a testament to citizen science” and that we are pushing or sometimes pulling academia along to where we are.

Bennett told the story of the beginning of Family Tree DNA.  “Fourteen years ago when the hair that I have wasn’t grey,” he began, “I was unemployed and tried to reorganize my wife’s kitchen and she sent me away to do genealogy.”  Smart woman, and thankfully for us, he went.  But he had a roadblock.  He felt there was a possibility that he could use the Y chromosome to solve the roadblock.  Bennett called the author of one of the two papers published at that time, Michael Hammer.  He called Michael Hammer on Sunday morning at his home, but Michael was running out the door to the airport.  He declined Bennett’s request, told him that’s not what universities do, and that he didn’t know of anyplace a Y test could be commercially be done.  Bennett, having run out of persuasive arguments, started mumbling about “us little people providing money for universities.”  Michael said to him, “Someone should start a company to do that because I get phone calls from crazy genealogists like you all the time.”  Let’s just say Bennett was no longer unemployed and the rest, as they say, is history.  With that, Bennett introduced one of our favorite speakers, Dr. Michael Hammer from the Hammer Lab at the University of Arizona.

Bennett day 2 intro

Session 1 – Michael Hammer – Origins of R-M269 Diversity in Europe

Michael has been at all of the conferences.  He says he doesn’t think we’re crazy.  I personally think we’ve confirmed it for him, several times over, so he KNOWS we’re crazy.  But it obviously has rubbed off on him, because today, he had a real shocker for us.

I want to preface this by saying that I was frantically taking notes and photos, and I may have missed something.  He will have his slides posted and they will be available through a link on the GAP page at FTDNA by the end of the week, according to Elliott.

Michael started by saying that he is really exciting opportunity to begin breaking family groups up with SNPs which are coming faster than we can type them.

Michael rolled out the Y tree for R and the new tree looks like a vellum scroll.

Hammer scroll

Today, he is going to focus on the basic branches of the Y tree because the history of R is held there.

The first anatomically modern humans migrated from Africa about 45,000 years ago.

After last glacial maximum 17,000 years ago, there was a significant expansion into Europe.

Neolithic farmers arrived from the near east beginning 10,000 years ago.

Farmers had an advantage over hunter gatherers in terms of population density.  People moved into Northwestern Europe about 5,000 years ago.

What did the various expansions contribute to the population today?

Previous studies indicate that haplogroup R has a Paleolithic origin, but 2 recent studies agree that this haplogroup has a more recent origin in Europe – the Neolithic but disagree about the timing of the expansion.

The first study, Joblin’s study in 2010, argued that geographic diversity is explained by single Near East source via Anaotolia.

It conclude that the Y of Mesololithic hunger-gatherers were nearly replaced by those of incoming farmers.

In the most recent study by Busby in 2012 is the largest study and concludes that there is no diversity in the mapping of R SNP markers so they could not date lineage and expansion.  They did find that most basic structure of R tree did come from the near east.  They looked at P311 as marker for expansion into Europe, wherever it was.  Here is a summary page of Neolithic Europe that includes these studies.

Hammer says that in his opinion, he thought that if P311 is so frequent and widespread in Europe it must have been there a long time.  However, it appears that he and most everyone else, was wrong.

The hypothesis to be tested is if P311 originated prior to the Neolithic wave, it would predict higher diversity it the near east, closer to the origins of agriculture.  If P311 originated after the expansion, would be able to see it migrate across Europe and it would have had to replace an existing population.

Because we now have sequences the DNA of about 40 ancient DNA specimens, Michael turned to the ancient DNA literature.  There were 4 primary locations with skeletal remains.  There were caves in France, Spain, Germany and then there’s Otzi, found in the Alps.

hammer ancient y

All of these remains are between 6000-7000 years old, so prior to the agricultural expansion into Europe.

In France, the study of 22 remains produced, 20 that were G2a and 2 that were I2a.

In Spain, 5 G2a and 1 E1b.

In Germany, 1I G2a and 2 F*.

Otzi is haplogroup G2a2b.

There was absolutely 0, no, haplogroup R of any flavor.

In modern samples, of 172 samples, 94 are R1b.

To evaluate this, he is dropping back to the backbone of haplogroup R.

hammer backbone

This evidence supports a recent spread of haplogroup R lineages in western Europe about 5K years ago.  This also supports evidence that P311 moved into Europe after the Neolithic agricultural transition and nearly displaced the previously existing western European Neolithic Y, which appears to be G2a.

This same pattern does not extrapolate to mitochondrial DNA where there is continuity.

What conferred advantage to these post Neolithic men?  What was that advantage?

Dr. Hammer then grouped the major subgroups of haplogroup R-P3111 and found the following clusters.

  • U106 is clustered in Germany
  • L21 clustered in the British Isles
  • U152 has an Alps epicenter

hammer post neolithic epicenters

This suggests multiple centers of re-expansion for subgroups of haplogroup R, a stepwise process leading to different pockets of subhaplogroup density.

Archaeological studies produce patterns similar to the hap epicenters.

What kind of model is going on for this expansion?

Ancestral origin of haplogroup R is in the near east, with U106, P312 and L21 which are then found in 3 European locations.

This research also suggests thatG2a is the Neolithic version of R1b – it was the most commonly found haplogroup before the R invasion.

To make things even more interesting, the base tree that includes R has also been shifted, dramatically.

Haplogroup K has been significantly revised and is the parent of haplogroups P, R and Q.

It has been broken into 4 major branches from several individual lineages – widely shifted clades.

hammer hap k

Haps R and Q are the only groups that are not restricted to Oceana and Southeast Asia.

Rapid splitting of lineages in Southeast Asia to P, R and Q, the last two of which then appear in western Europe.

hammer r and q in europe

R then, populated Europe in the last 4000 years.

How did these Asians get to Europe and why?

Asian R1b overtook Neolithic G2a about 4000 years ago in Europe which means that R1b, after migrating from Africa, went to Asia as haplogroup K and then divided into P, Q and R before R and Q returned westward and entered Europe.  If you are shaking your head right about now and saying “huh?”…so were we.

Hammer hap r dist

Here is Dr. Hammer’s revised map of haplogroup dispersion.

hammer haplogroup dispersion map

Moving away from the base tree and looking at more recent SNPs, Dr. Hammer started talking about some of the findings from the advanced SNP testing done through the Nat Geo project and some of what it looks like and what it is telling us.

For example, the R1bs of the British Isles.

There are many clades under L 21.  For example, there is something going on in Scotland with one particular SNP (CTS11722?) as it comprises one third of the population in Scotland, but very rare in Ireland, England and Wales.

New Geno 2.0 SNP data is being utilized to learn more about these downstream SNPs and what they had to say about the populations in certain geographies.

For example, there are 32 new SNPs under M222 which will help at a genealogical level.

These SNPs must have arisen in the past couple thousand years.

Michael wants to work with people who have significant numbers of individuals who can’t be broken out with STRs any further and would like to test the group to break down further with SNPs.  The Big Y is one option but so is Nat Geo and traditional SNP testing, depending on the circumstance.

G2a is currently 4-5% of the population in Europe today and R is more than 40%.

Therefore, P312 split in western Eurasia and very rapidly came to dominate Europe

Session 2 – Dr. Marja Pirttivaara – Bridging Social Media and DNA

Dr. Pirttivaara has her PhD in Physics and is passionate about genetic genealogy, history and maps.  She is an administrator for DNA projects related to Finland and haplogroup N1c1, found in Finland, of course.

marja

Finland has the population of Minnesota and is the size of New Mexico.

There are 3750 Finland project members and of them 614 are haplogroup N1c1.

Combining the N1c1 and the Uralic map, we find a correlation between the distribution of the two.

Turku, the old capital, was full or foreigners, in Medieval times which is today reflected in the far reaching DNA matches to Finnish people.

Some of the interest in Finland’s DNA comes from migration which occurred to the United States.

Facebook and other social media has changed the rules of communication and allows the people from wide geographies to collaborate.  The administrator’s role has also changed on social media as opposed to just a FTDNA project admin.  Now, the administrator becomes a negotiator and a moderator as well as the DNA “expert.”

Marja has done an excellent job of motivating her project members.  They are very active within the project but also on Facebook, comparing notes, posting historical information and more.

Session 3 – Jason Wang – Engineering Roadmap and IT Update

Jason is the Chief Technology Officer at Family Tree DNA and recently joined with the Arpeggi merger and has a MS in Computer Engineering.

Regarding the Gene by Gene/FTDNA partnership, “The sum of the parts is greater than the whole.”  He notes that they have added people since last year in addition to the Arpeggi acquisition.

Jason introduced Elliott Greenspan, who, to most of us, needed no introduction at all.

Elliott began manually scoring mitochondrial DNA tests at age 15.  He joined FTDNA in 2006 officially.

Year in review and What’s Coming

4 times the data processed in the past year.

Uploads run 10 times faster.  With 23andMe and Ancestry autosomal uploads, processing will start in about 5 minutes, and matches will start then.

FTDNA reinvented Family Finder with the goal of making the user experience easier and more modern.   They added photos, profiles and the new comparison bars along with an advanced section and added push to chromosome browser.

Focus on users uploading the family tree.  Tools don’t matter if the data isn’t there.  In order to utilize the genealogy aspect, the genealogy info needs to be there.   Will be enhancing the GEDCOM viewer.  New GEDCOMs replace old GEDCOMs so as you update yours, upload it again.

They are now adding a SNP request form so that you can request a SNP not currently available.  This is not to be confused with ordering an existing SNP.

They currently utilize build 14 for mitochondrial DNA.  They are skipping build 15 entirely and moving forward with 16.

They added steps to the full sequence matches so that you can see your step-wise mutations and decide whether and if you are related in a genealogical timeframe.

New Y tree will be released shortly as a result of the Geno 2.0 testing.  Some of the SNPs have mutated as much as 7 times, and what does that mean in terms of the tree and in terms of genealogical usefulness.  This tree has taken much longer to produce than they expected due to these types of issues which had to be revised individually.

New 2014 tree has 6200 SNPS and 1000 branches.

  • Commitment to take genetic genealogy to the next level
  • Y draft tree
  • Constant updates to official tree
  • Commitment to accurate science

If a single sample comes back as positive for a SNP, they will put it on the tree and will constantly update this.

If 3 or 4 people have the same SNP that are not related it will go directly to the tree.  This is the reason for the new SNP request form.

Part of the reason that the tree has taken so long is that not every SNP is public and it has been a huge problem.

When they find a new SNP, where does it go on the tree?  When one SNP is found or a SNP fails, they have run over 6000 individual SNPs on Nat Geo samples to vet to verify the accuracy of the placement.  For example, if a new SNP is found in a particular location, or one is found not to be equivalent that was believe to be so previously, they will then test other samples to see where the SNP actually belongs.

X Matching

Matching differential is huge in early testing.  One child may inherit as little as 20% of the X and another 90%.  Some first cousins carry none.

X matching will be an advanced feature and will have their own chromosome browser.

End of the year – January 1.  Happy New Year!!!

Population Finder

It’s definitely in need of an upgrade and have assigned one person full time to this product.

There are a few contention points that can be explained through standard history.

It’s going to get a new look as well and will be easily upgradeable in the future.

They cannot utilize the National Geographic data because it’s private to Nat Geo.

Bennett – “Committed to an engineering team of any size it takes to get it done.  New things will be rolling out in first and second quarter of next year.”  Then Bennett kind of sighed and said “I can’t believe I just said that.”

Session 4 – Dr. Connie Bormans – Laboratory Update

The Gene by Gene lab, which of course processes all of the FTDNA samples is now a regulated lab which allows them to offer certain regulated medical tests.

  • CLIA
  • CAP
  • AABB
  • NYSDOH

Between these various accreditations, they are inspected and accredited once yearly.

Working to decrease turn-around time.

SNP request pipeline is an online form and is in place to request a new SNP be added to their testing menu.

Raised the bar for all of their tests even though genetic genealogy isn’t medical testing because it’s good for customers and increases quality and throughput.

New customer support software and new procedures to triage customer requests.

Implement new scoring software that can score twice as many tests in half the time.  This decreases turn-around time to the customer as well.

New projects include improved method of mtDNA analysis, new lab techniques and equipment and there are also new products in development.

Ancient DNA (meaning DNA from deceased people) is being considered as an offering if there is enough demand.

Session 5 – Maurice Gleeson – Back to Our Past, Ireland

Maurice Gleeson coordinated a world class genealogy event in Dublin, Ireland Oct. 18-20, 2013.  Family Tree DNA and ISOGG volunteers attended to educate attendees about genetic genealogy and DNA. It was a great success and the DNA kits from the conference were checked in last week and are in process now.  Hopefully this will help people with Irish ancestry.

12% of the Americans have Irish ancestry, but a show of hands here was nearly 100% – so maybe Irish descendants carry the crazy genealogist gene!

They developed a website titled Genetic Genealogy Ireland 2013.  Their target audience was twofold, genetic genealogy in general and also the Irish people.  They posted things periodically to keep people interested.  They also created a Facebook page.  They announced free (sponsored) DNA tests and the traffic increased a great deal.  Today ISOGG has a free DNA wiki page too.  They also had a prize draw sponsored by the Ireland DNA and mtdna projects. Maurice said that the sessions and the booth proximity were quite symbiotic because when y ou came out of the DNA session, the booth was right there.

2000-5000 people passed by the booth

500 people in the booth

Sold 99 kits – 119 tests

45 took Y 37 marker tests

56 FF, 20 male, 36 female

18 mito tests

They passed out a lot of educational material the first two days.  It appeared that the attendees were thinking about things and they came back the last day which is when half of the kits were sold, literally up until they threatened to turn the lights out on them.

They have uploaded all of the lectures to a YouTube channel and they have had over 2000 views.  Of all of the presentation, which looked to be a list of maybe 10-15, the autosomal DNA lecture has received 25% of the total hits for all of the videos.

This is a wonderful resource, so be sure to watch these videos and publicize them in your projects.

Session 6 – Brad Larkin – Introducing Surname DNA Journal

Brad Larkin is the FTDNA video link to the “how to appropriately” scrape for a DNA test.  That’s his minute or two of fame!  I knew he looked familiar.

Brad began a peer reviewed genetic genealogy journal in order to help people get their project stories published.  It’s free, open access, web based and the author retains the copyright..  www.surnamedna.com

Conceived in 2012, the first article was published in January 2013.  Three papers published to date.

Encourage administrators to write and publish their research.  This helps the publication withstand the test of time.

Most other journals are not free, except for JOGG which is now inactive.  Author fees typically are $1320 (PLOS) to $5000 (Nature) and some also have subscription or reader fees.

Peer review is important.  It is a critical review, a keen eye and an encouraging tone.  This insures that the information is evidence based, correct and replicable.

Session 7 – mtdna Roundtable – Roberta Estes and Marie Rundquist

This roundtable was a much smaller group than yesterday’s Y DNA and SNP session, but much more productive for the attendees since we could give individual attention to each person.  We discussed how to effectively use mtdna results and what they really mean.  And you just never know what you’re going to discover.  Marie was using one of her ancestors whose mtDNA was not the haplogroup expected and when she mentioned the name, I realized that Marie and I share yet another ancestral line.  WooHoo!!

Q&A

FTDNA kits can now be tested for the Nat Geo test without having to submit a new sample.

After the new Y tree is defined, FTDNA will offer another version of the Deep Clade test.

Illumina chip, most of the time, does not cover STRs because it measures DNA in very small fragments.  As they work with the Big Y chip, if the STRs are there, then they will be reported.

80% of FTDNA orders are from the US.

Microalleles from the Houston lab are being added to results as produced, but they do not have the data from the older tests at the University of Arizona.

Holiday sale starts now, runs through December 31 and includes a restaurant.com $100 gift card for anyone who purchases any test or combination of tests that includes Family Finder.

That’s it folks.  We took a few more photos with our friends and left looking forward to next year’s conference.  Below, left to right in rear, Marja Pirttivaara, Marie Rundquist and David Pike.  Front row, left to right, me and Bennett Greenspan.

Goodbyes

See y’all next year!!!

Determining Ethnicity Percentages

Recently, as a comment to one of my blog postings, someone asked how the testing companies can reach so far back in time and tell you about your ancestors.  Great question.

The tests that reliably reach the furthest back, of course, are the direct line Y-Line and mitochondrial DNA tests, but the commenter was really asking about the ethnicity predictions.  Those tests are known as BGA, or biogeographical ancestry tests, but most people just think of them or refer to them as the ethnicity tests.

Currently, Family Tree DNA, 23andMe and Ancestry.com all provide this function as a part of their autosomal product along with the Genographic 2.0 test.  In addition, third party tools available at www.gedmatch.com don’t provide testing, but allow you to expand what you can learn with their admixture tools if you upload your raw data files to their site.  I wrote about how to use these ethnicity tools in “The Autosomal Me” series.  I’ve also written about how accurate ethnicity predictions from testing companies are, or aren’t, here, here and here.

But today, I’d like to just briefly review the 3 steps in ethnicity prediction, and how those steps are accomplished.  It’s simple, really, in concept, but like everything else, the devil is in the details.devil

There are three fundamental steps.

  • Creation of the underlying population data base.
  • Individual DNA extraction.
  • Comparison to the underlying population data base.

Step 1:  Creation of the underlying population data base.

Don’t we wish this was as simple as it sounds.  It isn’t.  In fact, this step is the underpinnings of the accuracy of the ethnicity predictions.  The old GIGO (garbage in, garbage out) concept applies here.

How do researchers today obtain samples of what ancestral populations looked like, genetically?  Of course, the evident answer is through burials, but burials are not only few and far between, the DNA often does not amplify, or isn’t obtainable at all, and when it is, we really don’t have any way to know if we have a representative sample of the indigenous population (at that point in time) or a group of travelers passing through.  So, by and large, with few exceptions, ancient DNA isn’t a readily available option.

The second way to obtain this type of information is to sample current populations, preferably ones in isolated regions, not prone to in-movement, like small villages in mountain valleys, for example, that have been stable “forever.”  This is the approach the National Geographic Society takes and a good part of what the Genograpic Geno 2.0 project funding does.  Indigenous populations are in most cases our most reliable link to the past.  These resources, combined with what we know about population movement and history are very telling.  In fact, National Geographic included over 75,000 AIMs (Ancestrally Informative Markers) on the Geno 2.0 chip when it was released.

The third way to obtain this type of information is by inference.  Both Ancestry.com and 23andMe do some of this.  Ancestry released its V2 ethnicity updates this week, and as a part of that update, they included a white paper available to DNA participants.  In that paper, Ancestry discusses their process for utilizing contributed pedigree charts and states that, aside from immigrant locations, such as the United States and Canada, a common location for 4 grandparents is sufficient information to include that individuals DNA as “native” to that location.  Ancestry used 3000 samples in their new ethnicity predictions to cover 26 geographic locations.  That’s only 115 samples, on average, per location to represent all of that population.  That’s pretty slim pickins.  Their most highly represented area is Eastern Europe with 432 samples and the least represented is Mali with 16.  The regions they cover are shown below.

ancestry v2 8

Survey Monkey, a widely utilized web survey company, in their FAQ about Survey Size For Accuracy provides guidelines for obtaining a representative sample.  Take a look.  No matter which calculations you use relative to acceptable Margin of Error and Confidence Level, Ancestry’s sample size is extremely light.

23andMe states in their FAQ that their ethnicity prediction, called Ancestry Composition covers 22 reference populations and that they utilize public reference datasets in addition to their clients’ with known ancestry.

23andMe asks geographic ancestry questions of their customers in the “where are you from” survey, then incorporates the results of individuals with all 4 grandparents from a particular country.  One of the ways they utilize this data is to show you where on your chromosomes you match people whose 4 grandparents are from the same country.  In their tutorial, they do caution that just because a grandparent was born in a particular location doesn’t necessarily mean that they were originally from that location.  This is particularly true in the past few generations, since the industrial revolution.  However, it may still be a useful tool, when taken with the requisite grain of salt.

23andme 4 grandparents

The third way of creating the underlying population data base is to utilize academically published information or information otherwise available.  For example, the Human Genome Diversity Project (HGDP) information which represents 1050 individuals from 52 world populations is available for scrutiny.  Ancestry, in their paper, states that they utilized the HGDP data in addition to their own customer database as well as the Sorenson data, which they recently purchased.

Academically published articles are available as well.  Family Tree DNA utilizes 52 different populations in their reference data base.  They utilize published academic papers and the specific list is provided in their FAQ.

As you can see, there are different approaches and tools.  Depending on which of these tools are utilized, the underlying data base may look dramatically different, and the information held in the underlying data base will assuredly affect the results.

Step 2:  Your Individual DNA Extraction

This is actually the easy part – where you send your swab or spit off to the lab and have it processed.  All three of the main players utilize chip technology today.  For example, 23andMe focuses on and therefore utilizes medical SNPs, where Family Tree DNA actively avoids anything that reports medical information, and does not utilize those SNPs.

In Ancestry’s white paper, they provide an excellent graphic of how, at the molecular level, your DNA begins to provide information about the geographic location of your ancestors.  At each DNA location, or address, you have two alleles, one from each parent.  These alleles can have one of 4 values, or nucleotides, at each location, represented by the abbreviations T, A, C and G, short for Thymine, Adenine, Cytosine and Guanine.  Based on their values, and how frequently those values are found in comparison populations, we begin to fine correlations in geography, which takes us to the next step.

ancestry allele snps

Step 3:  Comparison to Underlying Population Data Base

Now that we have the two individual components in our recipe for ethnicity, a population reference set and your DNA results, we need to combine them.

After DNA extraction, your individual results are compared to the underlying data base.  Of course, the accuracy will depend on the quality, diversity, coverage and quantity of the underlying data base, and it will also depend on how many markers are being utilized or compared.

For example, Family Tree DNA utilizes about 295,000 out of 710,000 autosomal SNPs tested for ethnicity prediction.  Ancestry’s V1 product utilized about 30,000, but that has increased now to about 300,000 in the 2.0 version.

When comparing your alleles to the underlying data set one by one, patterns emerge, and it’s the patterns that are important.  To begin with, T, A, C and G are not absent entirely in any population, so looking at the results, it then becomes a statistics game.  This means that, as Ancestry’s graphic, above, shows, it becomes a matter of relativity (pardon the pun), and a matter of percentages.

For example, if the A allele above is shown is high frequencies in Eastern Europe, but in lower frequencies elsewhere, that’s good data, but may not by itself be relevant.  However if an entire segment of locations, like a street of DNA addresses, are found in high percentages in Eastern Europe, then that begins to be a pattern.  If you have several streets in the city of You that are from Eastern Europe, then that suggests strongly that some of your ancestors were from that region.

To show this in more detailed format, I’m shifting to the third party tool, GedMatch and one of their admixture tools.  I utilized this when writing the series, “The Autosomal Me” and in Part 2, “The Ancestor’s Speak,” I showed this example segment of DNA.

On the graph below, which is my chromosome painting of one a small part of one of my chromosomes on the top, and my mother’s showing the exact same segment on the bottom, the various types of ethnicity are colored, or painted.

The grid shows location, or address, 120 on the chromosome and each tick mark is another number, so 121, 122, etc.   It’s numbered so we can keep track of where we are on the chromosome.

You can readily see that both of us have a primary ethnicity of North European, shown by the teal.  This means that for this entire segment, the results are that our alleles are found in the highest frequencies in that region.

Gedmatch me mom

However, notice the South Asian, East Asian, Caucus, and North Amerindian. The important part to notice here, other than I didn’t inherit much of that segment at 123-127 from her, except for a small part of East Asian, is that these minority ethnicities tend to nest together.  Of course, this makes sense if you think about it.  Native Americans would carry Asian DNA, because that is where their ancestors lived.  By the same token, so would Germans and Polish people, given the history of invasion by the Mongols. Well, now, that’s kind of a monkey-wrench isn’t it???

This illustrates why the results may sometimes be confusing as well as how difficult it is to “identify” an ethnicity.  Furthermore, small segments such as this are often “not reported” by the testing companies because they fall under the “noise” threshold of between about 5 and 7cM, depending on the company, unless there are a lot of them and together they add up to be substantial.

In Summary

In an ideal world, we would have one resource that combines all of these tools.  Of course, these companies are “for profit,” except for National Geographic, and they are not going to be sharing their resources anytime soon.

I think it’s clear that the underlying data bases need to be expanded substantially.  The reliability of utilizing contributed pedigrees as representative of a population indigenous to an area is also questionable, especially pedigrees that only reach back two generations.

All of these tools are still in their infancy.  Both Ancestry and Family Tree DNA’s ethnicity tools are labeled as Beta.  There is useful information to be gleaned, but don’t take the results too seriously.  Look at them more as establishing a pattern.  If you want to take a deeper dive by utilizing your raw data and downloading it to GedMatch, you can certainly do so. The Autosomal Me series shows you how.

Just keep in mind that with ethnicity predictions, with all of the vendors, as is particularly evident when comparing results from multiple vendors, “your mileage may vary.”  Now you know why!

Ancestry’s Updated V2 Ethnicity Summary

Today when I signed onto Ancestry.com, I was greated with a message that my new Ethnicity Estimate Preview was ready for viewing.  Yippee!

Ancestry v2 1

Ancestry announced some time back that they were updating this function.  Release 1 was so poor that it should never have been released.  However, V2 is somewhat improved.  In any case, it’s different. Let’s take a look.

The graphic below shows my initial, V1 results, which bore very little resemblance to my ancestry.  My V1 results are shown below, and they are still shown on my page at Ancestry.  I was pleased so see that so I have a reference for comparison.

ancestry v2 2

Some years back, I did a pedigree analysis of my genealogy in an attempt to make sense of autosomal results from other companies.

The paper, “Revealing American Indian and Minority Heritage using Y-line, Mitochondrial, Autosomal and X Chromosomal Testing Data Combined with Pedigree Analysis” was published in the Fall 2010 issue of JoGG, Vol. 6 issue 1.

The pedigree analysis portion of this document begins about page 8.  My ancestral breakdown is as follows:

Geography Percent
Germany 23.8041
British Isles 22.6104
Holland 14.5511
European by DNA 6.8362
France 6.6113
Switzerland .7813
Native American .2933
Turkish .0031

This leaves about 25% unknown.  However, this looks nothing like the 80% British Isles and the 12% Scandinavian in Ancestry’s V1 product.

In an article titled, “Ethnicity Results, True or Not” I compared my pedigree information with the results from all the testing vendors, including Ancestry’s V1 information.  Needless to say, they didn’t fare very well.

The next screen you see talks about what’s new, but being very anxious to see the results, I bypassed that for the moment to see my new results shown below.

ancestry v2 3

My initial reaction was that I was very excited to see both my Native and African admixture shown.  I thought maybe Ancestry had actually hit a home run.  Then I looked down and saw the rest.  Uh, no home run I’m afraid.  Shucks.  Clicking on the little plus signs provide this view.

ancestry v2 4

I noticed the little box at the bottom that says “show all regions,” so I clicked there.  The only difference between that display and the one above is that the regions with zero displayed as well.

My updated V2 results show primarily Western European and Scandinavian.  I certainly won’t argue with the western European, although the percentage seems quite high, but there is absolutely NO indication that I have any Scandinavian heritage, let alone 10%, and my British Isles is dramatically reduced.

Here are the two results side by side, in percentages, with my commentary.

Location Ancestry V1 Ancestry V2 My Pedigree Comments
British Isles 80 Great Britain 4, Ireland 2 22 Great Britain includes Scotland
Scandinavia 12 10 0
Italy/Greece 0 2 Turkish <1
North Africa 0 <1 0
Native American 0 <1 <1
East Asian 0 <1 0 Probably Native American
Western Europe 0 79 51
Uncertain 8 0 25

I am not going to take issue with any of the small percentages.  I fully understand how difficult trace ethnicity is to decipher.  My concern here is with the “big chunks,” because if the big chunks aren’t correct, there is also no confidence in the small ones.

I’m left wondering about the following:

  • I went from 80% British Isles in V1, which we knew was incorrect, to 6% in V2, which is also incorrect.  I have at least 22% British Isles.
  • I went from being 0% Western European in V1 to 79% in V2, which is also incorrect.  Now granted, I do have 25% uncertain in my own pedigree, and given that I’m a cultural mixture, some of that certainly could be western European.  But all of it?  Given where my ancestor were found in colonial America, and when, it’s much more likely that the majority of the 25% that is uncertain in my pedigree chart would be British Isles.
  • Would you look at the V1 results and the V2 results, side by side, and believe for one minute they were describing the same person?  This is not a minor revision and there is very little consistency between the two – only 16%.  That means that 84% changed between the two versions.  And in that 16% is that pesky, unexplained Scandinavian, not found, by the way, by any other testing company.  Yes, I know about the Vikings, but still, 10 or 12%?  That’s equivalent to a great-grandparent, not trace amounts from centuries ago.

So V2 seems to be somewhat better, I think, but still no place close to what is known to be correct.  Based on the V2 results, which seem to have very little resemblance to the V1 results, I can’t help but wonder why Ancestry would have published such highly incorrect results for V1, and then adamantly defended those results, publishing videos, etc.  Doesn’t a corporation have some responsibility to their customers to provide correct information, and if they can’t, to be smart enough to know that and to not publish anything?  And if it’s the same technical team behind the scenes, how do we know that V2 isn’t equally as flawed, given that the results still don’t seem to jive with my known (and for the most part, DNA proven) pedigree chart?

One thing Ancestry has done that is an improvement is to provide additional information about their process for determining admixture and what has changed in the V2 version.  I went back and looked at the “What’s New” information that I skipped in my excitement to see my new results.  In that information, they provide the following bullets:

  • They increased the number of markers used for comparison from 30,000 to 300,000.
  • They increased the analysis passes from 1 to 40.  This is further explained in their white paper.
  • They broke Europe into 4 regions.
  • They broke West Africa into 6 regions.

ancestry v2 6

  • They updated the regions covered.  The V2 reference panel contains 3,000 samples that represent 26 distinct overlapping global regions (Table 3.1, below, from their white paper).  V1 covered 22 regions.

Region

# Samples

Great Britain 111
Ireland 138
Europe East 432
Iberian Peninsula 81
European Jewish 189
Europe North 232
Europe South 171
Europe West 166
Finnish/Northern Russian 59
Africa Southeastern Bantu 18
Africa North 26
Africa Southcentral Hunter Gatherers 35
Benin/Togo 60
Cameroon/Congo 115
Ivory/Ghana 99
Mali 16
Nigeria 67
Senegal 28
Native American 131
Asia Central 26
Asia East 394
Asia South 161
Melanesia 28
Polynesia 18
Caucasus 58
Near East 141
Total
  • Ancestry provided a white paper on their methods which explains how these ethnicity estimates are created.  This is very important and I applaud them for their transparency.  Unfortunately, you can’t see the white paper unless you are a subscriber and have taken their autosomal DNA test.  If you have, to see the white paper, click on the little question mark in the upper right hand corner of the ethnicity results page, then on the “whitepaper” icon.

ancestry v2 7

How Are Ethnicity Percentages Created?

Wanting to understand the process they are using, I moved to their educational maternal and Ethnicity Estimate white paper, which, unfortunately I can’t link to.  You must be a subscriber to see this document.

The first thing I discovered is that they utilized 3000 DNA samples as a reference data base, including the Humane Genome Diversity Project data utilized by all researchers in this field.

ancestry v2 8

From their white paper:

“In developing the AncestryDNA ethnicity estimation V2 reference panel, we begin with a candidate set of 4,245 individuals. First, we examine over 800 samples from 52 worldwide populations from a public project called the Human Genome Diversity Project (HGDP) (Cann et al. 2002; Cavalli-Sforza 2005). Second, we examine samples from a proprietary AncestryDNA reference collection as well as AncestryDNA samples from customers consenting to participate in research. To obtain candidate reference panel candidates from these two sets, family trees are first consulted, and a sample is included in the candidate set if all lineages trace back to the same geographic region. Although this was not possible for HGDP samples, this dataset was explicitly designed to sample a large set of populations representing a global picture of human genetic variation.

In total, our reference panel candidates include over 800 HGDP samples, over 1,500 samples from the proprietary AncestryDNA reference collection, and over 1,800 AncestryDNA customers who have explicitly consented to be included in the reference panel.”

I’m assuming that the proprietary reference collection they mention is the Sorenson data they purchased in July 2012.  The Sorenson data base was compiled from individual donors who contributed the DNA samples and pedigree charts but without any supporting documentation.

So in addition to the publicly available data, Ancestry has utilized both the Sorenson and their own data bases.  That makes sense.  It may also be the root of the problem.

There’s another quote from their paper:

“Fortunately, knowing where your grandparents are born is often a sufficient proxy for much deeper ancestry. In the recent past, it was much more difficult and thus less common for people to migrate large distances. Because of this, it is frequently the case that the birthplace of your grandparents represents a much more ancient ancestral origin for your DNA.”

They do say that this does not apply to people in America, for example.

However, how many of you have confidence in the Ancestry trees, or any trees submitted, for that matter, in public data bases.  Ancestry only allows you to attach “facts” found in their data base.  This means, for example, if you want to upload your Gedcom file that has pages and pages of documentation including wills, tax lists, and other primary sorts of documentation, you can’t.  Well, you can, but only if you copy it off into a word document and attach it separately to that person one page at a time.  In other words, Ancestry isn’t interested in any documentation or research that you’ve done elsewhere.  This also means that they have few tools themselves to determine whether your tree is accurate, especially once you get beyond the census years with family enumeration – meaning 1850 in the US.  What this means is that the only reliable references they have are their own data bases, excluding Rootsweb trees.  Ancestry owns Rootsweb too and Rootsweb has always allowed uploads of limited notes attached to people.  Some are exceedingly useful.

If Ancestry is utilizing large numbers of user submitted pedigree charts by which to calibrate or measure ethnicity, that could be a problem.

Let’s run a little experiment.  I am very familiar with the original records pertaining to Abraham Estes, born in 1647 in Nonington, Kent, England and who died in 1720 in King and Queen County, Virginia.  I have been a primary records researcher on this man for 25 years.  Not only are his records documented, but so are those of several preceding generations through church records in England.  In other words, we know what we know and what we don’t know.  We do NOT know his second wife’s surname, although there is a pervasive myth as to what it was, which is entirely unsubstantiated.

I entered his name/birth year into Ancestry’s search tool and I looked at the first 20 records show in their “Family Trees.”  I wanted to see how many displayed correct or incorrect information.  Ancestry displays these trees in order, based, apparently, on the number of source or attached records, implying records with more sources would be better to utilize.  That would generally be quite true.  Unfortunately, sources are often the IGI or Family Data Collection, which are also “unsourced,” creating a vicious cycle of undocumented rumors cited as sources.  Let’s take a look at what we have.

Record # Incorrect Info Listed Correct Info Listed Grandparents Info Present/Correct
1 First wife’s name entirely incorrect, but linked to correct original record.  Second wife’s surname entirely undocumented.  Multiple family crests listed but family was not armorial.  Children listed multiple times.  Son, Abraham’s records attached to father. Birth year and location. Death date and location. No
2 First wife entirely missing. Second wife’s surname entirely undocumented. Marriage date entirely undocumented.  Third, unknown spouse listed with the same children given to spouse 2 and 3. Birth year and location.    Death date and location. No
3 Abraham was given fictitious middle name.  Second wife’s surname entirely undocumented.  Most children missing and the two that are on the list are given fictitious middle names.  Marriage date for second wife is entirely undocumented. Birth year and location, first marriage, death date and   location. No
4 First wife’s surname missing.  Second wife’s surname entirely   undocumented.  Have land transaction attached to him 13 years after he died.  Incorrect childen. Birth date and location, first wife’s first name and date   of marriage, death date and location. No
5 Shows marriage for first and second wife on same   day/place.  First wife’s name entirely wrong.  Shows a second marriage date to second wife.  Second wife’s surname  entirely undocumented.  No burial   location known, but burial location given.  Incorrect children. Birth year and location. No

After these first 5 records, I became discouraged and did not type the balance of the 15 records.  Not one displayed only correct information, nor did any have the man’s parents and grandparents names and birth locations documented correctly.  So much for using family trees as sources.

If Ancestry is assuming that where your grandfather was born is representative of where your family was originally from, if you are from a non-immigrant location (i.e. not the US, not Canada, not Australia, etc.), that too might be a problem.  There has been a lot of movement in the British Isles, for example, since the industrial revolution, particularly in the 1800s.  Where Abraham’s grandfather was born in 1555 is probably relevant, but the grandfather of someone living today is much less predictive.

So, where does this leave us? 

Apparently Ancestry’s V1 was worse than we thought, given that my 80% majority ancestry turned into 6 and my 0% western Europe turned into 79%.  Neither of these are correct.

Ancestry’s V2 seems to be somewhat better, but raises the same types of questions about the results.

Ancestry’s white paper may indeed answer some of those questions, based on their use of contributed pedigree charts.  However, having said that, you would think that they could utilize families with a deep history of ancestry in a specific area, proven by various non-contributed (such as parish or will) records, in a non-urban environment.

Ironically, Ancestry did pick up on both my Native and African minority admixture, but they are still missing the boat on the majority factors, which calls the entire concoction into question.

So the net-net of all of this….it’s still not soup yet.  I’m disappointed and beginning to wonder if it ever will be.

Ethnicity Results – True or Not?

I can’t even begin to tell you how many questions I receive that go something like this:

“I received my ethnicity results from XYZ.  I’m confused.  The results don’t seem to align with my research and I don’t know what to make of them?”

In the above question, the vendors who are currently offering these types of results among their autosomal tests are Family Tree DNA, 23andMe and Ancestry along with National Geographic who is a nonprofit.  Of those four, by far, Ancestry is the worst at results matching reality and who I receive the most complaints and comments about.  I wrote an article about Ancestry’s results and Judy Russell recently wrote an article about their new updated results as did Debbie Kennett.  My Ancestry results have not been updated yet, so I can’t comment personally.

Let’s take a look at the results from the four players and my own analysis.

Some years back, I did a pedigree analysis of my genealogy in an attempt to make sense of autosomal results from other companies.

The paper, “Revealing American Indian and Minority Heritage using Y-line, Mitochondrial, Autosomal and X Chromosomal Testing Data Combined with Pedigree Analysis” was published in the Fall 2010 issue of JoGG, Vol. 6 issue 1.

The pedigree analysis portion of this document begins about page 8.  My ancestral breakdown is as follows:

Geography Percent
Germany 23.8041
British Isles 22.6104
Holland 14.5511
European by DNA 6.8362
France 6.6113
Switzerland .7813
Native American .2933
Turkish .0031

This leaves about 25% unknown.  However, this looks nothing like the 80% British Isles and the 12% Scandinavian at Ancestry.

Here are my current ethnicity results from the three major testing companies plus Genographic.

Ancestry

80% British Isles

12% Scandinavian

8% Uncertain

Family Tree DNA

75% Western Europe

25% Europe – Romanian, Russian, Tuscan, Finnish

23andMe (Standard Estimate)

99.2% European

0.5% East Asian and Native American

0.3% Unassigned

Genographic 2.0

Northern European – 43%

Mediterranean – 36%

Southwest Asian – 18%

Why Don’t The Results Match?

Why don’t the results match either my work or each other?

1. The first answer I always think of when asked this question is that perhaps some of the genealogy is incorrect.  That is certainly a possibility via either poor genealogy research or undocumented adoptions.  However, as time has marched forward, I’ve proven that I’m descended from most of these lines through either Y-line, mitochondrial DNA or autosomal matches.  This confirms my genealogy research.  For example, Acadians were originally French and I definitely descend from Acadian lines.

2. The second answer is time.  The vendors may well be using different measures of time, meaning more recent versus deep ancestry.  Geno 2.0 looks back the furthest.  Their information says that “your percentages reflect both recent influences and ancient genetic patterns in your DNA due to migrations as groups from different regions mixed over thousands of years.  Your ancestors also mixed with ancient, now extinct hominid cousins like Neanderthals in Europe and the Middle East of the Denisovans in Asia.”

It’s difficult to determine which of the matching populations are more recent and which are less recent.  By way of example, many Germans and others in eastern Europe are descendants of Genghis Khan’s Mongols who invaded portions of Europe in the 13th century.  So, do we recognize and count their DNA when found as “German,” “Polish,” “Russian,” or “Asian?”  The map below shows the invasions of Genghis Khan.  Based on this, Germans who descend from Genghis’s Mongols could match Koreans on those segments of DNA. Both of those people would probably find that confusing.

genghis khan map

3. The third answer is the reference populations.  Here is what National Geographic has to say: “Modern day indigenous populations around the world carry particular blends of these regions. We compared your DNA results to the reference populations we currently have in our database and estimated which of these were most similar to you in terms of the genetic markers you carry. This doesn’t necessarily mean that you belong to these groups or are directly from these regions, but that these groups were a similar genetic match and can be used as a guide to help determine why you have a certain result. Remember, this is a mixture of both recent (past six generations) and ancient patterns established over thousands of years, so you may see surprising regional percentages.”

Each of the vendors has compiled their own list of reference populations from published material, and in the case of National Geographic, as yet unpublished material as well.

If you read the fine print, some of these results that at first glance appear to not match actually do, or could.  For example, Southwest Asia (Geno 2.0) could be Russia (Family Tree DNA) or at least pointing to the same genetic base.

This video map of Europe through the ages from 1000AD to present will show the ever changing country boundaries and will quickly explain why coming up with labels for ethnicity is so difficult.  I mean, what exactly does “France” or “Germany” mean, and when?

4. The fourth answer is focus.  Each of these organizations comes to us as a consumer with a particular focus.  Of them, one and only one must make their way on their own merits alone.  That one is Family Tree DNA.  Unlike the Genographic Project, Family Tree DNA doesn’t have a large nonprofit behind them.  Unlike 23andMe, they are not subsidized by the medical community and venture capital.  And unlike Ancestry.com, Family Tree DNA is not interested in selling you a subscription.  In fact, the DNA market could dry up and go away for any of those three, meaning 23andMe, National Geographic and Ancestry, and their business would simply continue with their other products.  To them, DNA testing is only a blip on a spreadsheet.  Not true for Family Tree DNA.  Their business IS genetic genealogy and DNA testing.  So of all these vendors, they can least afford to have upset clients and are therefore the most likely to be the most vigilant about the accuracy of their testing, the quality of the tools and results provided to customers.

My Opinion

So what is my personal opinion on all of this?

I think these ethnicity results are very interesting.  I think in some way all of them are probably correct, excluding Ancestry.  I have absolutely no confidence in Ancestry’s results based on their track record and historylack of tools, lack of transparency and frustratingly poor quality.

I think that as more academic papers are published and we learn more about these reference populations and where their genes are found in various populations, all of these organizations will have an opportunity to “tighten up” their results.  If you’ll notice, both Ancestry and Family Tree DNA still include the words “beta.”  The vendors know that these results are not the end all and be all in the ethnicity world.

Am I upset with these vendors?  Aside from Ancestry who has to know they have a significant problem and has yet to admit to or fix it, no, I’m not.  Frustrated, as a consumer, yes, because like all genealogists, I want it NOW please and thank you!!!

Without these kinds of baby steps, we will never as a community crawl, walk, or run.  I dream of the day when we will be able to be tested, obtain our results, and along with that, maybe a list of ancestors we descend from and where their ancestors originated as well.  So, in essence, current genealogy (today Y-line and mtdna), older genealogy (autosomal lines) and population genetics (ethnicity of each line).

So what should we as consumers do today?  Personally, I think we should file this information away in the “that’s interesting” folder and use it when and where it benefits us.  I think we should look at it as a display of possibilities.  We should not over-interpret these results.

There is perhaps one area of exception, and that is when dealing with majority ethnic groups.  By this, I mean African, Asian, Native American and European.  For those groups, this type of ethnicity breakdown, the presence or absence of a particular group is more correct than incorrect, generally.  Very small amounts of any admixture are difficult to discern for any vendor.  For an example of that, look at my Native percentages and some of those are proven lines.  For the individual who wants more information, and more detail into the possibilities, I wrote about how to use the raw autosomal data outside of the vendors tools, at GedMatch, to sort out minority admixture in The Autosomal Me series.

Perhaps the Genographic Project page sums it up best with their statement that, “If you have a very mixed background, the pattern can get complicated quickly!”  Not only is that true, it can be complicated by any and probably all of the factors above.  When you think about it, it’s rather amazing that we can tell as much as we can.

Autosomal DNA, Ancient Ancestors, Ethnicity and the Dandelion

 dandelion 1

Understanding our own ancient DNA is a little different than contemporary DNA that we use for genealogy, but it’s a continuum between the two with a very long umbilical cord between them, then, and now.  And just when you think you’re about to understand autosomal DNA transmission and how it works, the subject of ancient DNA comes up.  This is particularly perplexing when all you wanted in the first place was a simple answer to the question, “who am I and who were my ancestors?”  Well, as you’re probably figured out by now, there is no simple answer.

Inheritance

In a nutshell – we know that every generation gets divided by 50% when we’re talking about autosomal DNA transmission.

So you inherit 50% of the DNA of each of your parents.  They inherited 50% of the DNA of each of their parents, so you inherit ABOUT 25% of the DNA of each of your grandparents.

Did you see that word, about?  It’s important, because while you do inherit exactly 50% of the DNA of each parent, you don’t inherit exactly 25% of the DNA of each grandparent.  You can inherit a little less or a little more from either grandparent as your parents 50% that you’re going to receive is in the mixer.

This is also true for the 12.5% of each of your great-grandparents, and the 6.25% of each of your great-great-grandparents, and so forth, on up the line.

The chart below shows the percentages that you share from each generation.

Relationship to You Approximate % Of Their DNA You Share
Parents Exactly 50%
Grandparents 25
Great-grandparents 12.5
Great-great-grandparents 6.25
Great-great-great-grandparents 3.125
Great-great-great-great-grandparents 1.5625

Ethnicity

So, here’s the question posed by people trying to understand their ethnicity.

If I have 3% Melanesian (or Middle Eastern, Indo-Tibetan or fill-in-the-blank ethnicity), doesn’t that mean that one of my great-great-great-grandparents was Melanesian?

There are really two answers to this question.  (I can hear you groaning!!!)

If the amount is 25% (for example) and not very small amounts, then the answer would be yes, that is very likely what this is telling you.  Or maybe it’s telling you that you have two different great-grandparents who have 12.5 each – but those relatives are fairly close in time due to the amount of DNA that came from that region.  See, that was easy.

However, the answer changes when we’re down in the very small percentages, below 5%, often in the 1 and 2% range.  This answer isn’t nearly as straightforward.

The Dandelion – Your Ancestor

The answer is the dandelion.

dandelion 2

The dandelion is one of your ancestors who lived in the Middle East, let’s say, 20,000 years ago, maybe 30,000 years ago.  In case you’re counting generations, that is 800 to 1200 generations ago.  The percentage of DNA you would carry from a single ancestor who lived 20,000 years ago, assuming you only descended from that ancestor 1 time, is infinitesimally small.  There are more zeroes following that decimal point than I have patience to type.  Let’s call that ancestor Xenia and let’s say she is a female.

However, you did inherit DNA from many of your ancestors who lived 20,000 years ago, thousands of them, because all of them, through their descendants, make up the DNA you carry today.  So infinitesimally small or not, you do carry some of the DNA of some of those ancestors.  It’s just broken into extremely small pieces today and their individual contributions to you may be extremely small.  You don’t carry any DNA from some of them, actually, probably most of them, due to the recombination event, dividing their DNA in half, happening 800 times, give or take.

Now, given that your ancestors’ DNA is divided in every generation by approximately half, and we know there are about 3 billion base pairs on all of your chromosomes combined, this means that by generation 32 or 33, on average, you carry 1 segment from this ancestor.  By generation 45, you carry, on average, .00017 segments of this ancestor’s DNA.  And for those math aficionados among us, this is the mathematical notation for how much of our ancestor’s DNA we carry after 800 generations: 4.4991E-232.

But, we also know that this dividing in half, on the average, doesn’t always work exactly that way in reality, because some of those ancestors from 20,000 years ago did in fact pass their DNA to you, despite the infinitesimal odds against that happening.  Some of their DNA was passed intact generation after generation, to you, and you carry it today.  The DNA contributed by any one ancestor from 800 generations ago is probably limited to one or two locations, or bases, but still, it’s there, and it’s the combined DNA of those ancient ancestors that make us who we are today.

The autosomal DNA of any specific ancestor from long ago is probably too small and fragmented to recognize as “theirs” and attribute to them.  Of course, the beauty of Y DNA and mitochondrial is that it is passed in tact for all of those generations.  But for autosomal DNA and genealogy, we need hundreds of thousands of DNA pieces in a row from a particular ancestor to be recognizable as “theirs.”  When we measure DNA for genealogy, what we are measuring is both centiMorgans, a measure of distance between chromosome positions (length) and the number of contiguous SNP (Single Nucleotide Polymorphism) base locations that match (quantity).  The values from these calculations tells us how closely we are related to people, because remember, DNA is divided in each generation so there is a mathematically predictable amount we will share with specific relatives.

Here is an example from a Family Finder comparison table showing both centiMorgans and matching SNPs with a second cousin.

family finder table

The matching threshold for genealogical significance is either 5 or 7 cM depending on which of the major companies you are using.  At Family Tree DNA, if you match above the threshold, then you can view down to 1cM, which is the case above.  Another match criteria is the number of SNPs, or locations, matching contiguously.  Anything below about 500-800 is considered to be a population match, not a genealogical match, unless you also have a significant number of genealogical matches at higher cMs and segments with this person.

OK, where is all of this going?

Dispersion

Think of your ancestor 20,000 years ago as the dandelion.  Now, blow.

dandelion 3

Xenia lived in the Middle East.  Where might her descendants land, over time, with every new generation?  In Europe?  In Asia?  In India?  In America via the Native Americans through Asia?  In North Africa?  Where?

So let’s say that groups of descendants settle across the globe.  Let’s say that her mitochondrial haplogroup is X.  Yes, haplogroup X is found both in Europe and in Asia and in the Native Americans, so this is actually a good example.  So Xenia carried mitochondrial haplogroup X and we know for sure via mitochondrial DNA testing that indeed, Xenia’s seeds were scattered to all of the winds.  The only place we haven’t found Xenia’s children is in Subsaharan Africa and the Australian archipelago, at least not yet.

Ok, so now that we know where her children and their children went, let’s go back to ancient DNA.

Predictive DNA

The way ethnicity is determined is by studying the frequency with which a specific allele or group of alleles is found in any particular population.  Two “pure” examples come to mind.

The first example is the Duffy Null allele that is only found in the Subsaharan African populations.  Currently this marker is found in about 68% of American blacks and in 88-100% of African blacks.  If you have the Duffy Null allele, you have African heritage.  Of course, you don’t know which line or which ancestor it came from, or how far back in time, but it assures you that you do in fact have African heritage.  It could have been from an ancestor long ago.  It could have been very recent.  This is one of the factors considered when determining percentage of ethnicity.

A second example is the STR marker known as D9S919 which is present in about 30% of the Native American people.  The value of 9 at this marker is not known to be present in any other ethnic group, so this mutation occurred after the Native people migrated across Beringia into the Americas, but long enough ago to be present in many descendants.  There is also no other known marker that is only found only among Native Americans, although I expect as we move into full genome sequencing we will discover more.  You can test this marker individually at Family Tree DNA, which is the only lab that offers this test.  If you have the value of 9 at this marker, it confirms Native heritage, but if you don’t carry 9, it does NOT disprove Native heritage.  After all, many Native people don’t carry it.  Again, you don’t know how long ago this marker was introduced into your ancestry.

These two examples are very unique because the markers are found only in certain groups.  Generally, with the rest of the DNA values, they are found in different amounts, or frequencies, in different parts of the world and ethnic groups.

So, if you’re trying to determine the ethnicity of an individual, you’re going to compile a huge data base of percentages of DNA values found of Ancestrally Informative Markers (AIMs) in different parts of the world.

So, you would compare the participant’s values against your data base and you will come up with those regions or ethnicities that are present most often in your comparison.  This is exactly what the products and services that provide you with your ethnicity percentages do – and how accurate the results are depend highly on the data base itself, the amount of data, and the quality of data.  Dare I mention Ancestry’s issue that they’ve had since they first began offering their autosomal product over a year ago where everyone seems to have Scandinavian ancestry?  Ancestry doesn’t share with us their sources, so as a community we have no idea how they have come up with these numbers.

You can easily compare your autosomal results in nauseating detail at both 23andMe and Family Tree DNA by testing with both companies, or by testing with either 23andMe or Ancestry and transferring your autosomal results to Family Tree DNA.  All 3 of these companies will give you a somewhat different result, but they should be in the same ballpark.  You can also then download your raw data file from any of those vendors and upload it to www.gedmatch.com where you can then do ethnicity comparisons using a variety of tools.  These tools, an example shown below, will have much more variance and detail than the vendor’s tools or results.  And because of that, they tend to be more confusing as well.

gedmatch example

Many people with small amounts of minority admixture are disappointed with the results through the vendors, especially if their Native American admixture doesn’t show.  I wrote extensively about this in my series, The Autosomal Me, so I won’t rehash it here, but using the GedMatch tools is very enlightening, as you can see above with my results.  And do I really have Indo-Tibetan and Indo-Iranian ancestors?

Where’s Xenia?

Back to Xenia and her descendants.  Let’s say that Xenia’s descendants settled in four primary locations.  One is in the Middle East – they never left home.  One is in Asia and from there, to the Americans to become the Native Americans and lastly, to Europe.  Now let’s say there is a pocket of them in the Altai region of Asia and a pocket in France.  The Altai is the ancestral home of the Native Americans and could explain the Indo-Tibet result, above.  We’ll call that Central Asia.  And France is where my Acadian ancestors were from.  Hmmm….this is getting confusing.  To make matters even more confusing, I might well descend from both groups, who originally descended from Xenia.

Let’s say that I do in fact carry small segments of Xenia’s DNA.  Now let’s say that this same DNA is found in a group of people in Central Asia, maybe in Tibet, it’s published in an obscure journal someplace, and it finds its way into a data base.  Voila – there you go – I now have a match in Central Asia in a place called Indo-Tibet.  But do I really?

Does this mean that my ancestor was from Central Asia?  Not necessarily.  And if so, maybe not recently, but the people from that location for some reason share some of the DNA that I carry.  The question of course is why, how and when?

What this really means to you is a matter of degrees.  If you have a few matches from obscure regions, along with very small percentages, it is likely a result of the dandelion’s dispersion.  If you have a lot of matches, meaning a high percentage hit rate, from a particular region, pay attention, it probably has some genealogical significance.

It’s no wonder people are confused by this!  Now, just think how many dandelions you have.  In 15 generations, you have 32,768 ancestors.  In fact, this is how we know for sure that we all descend from the same ancestor multiple times.  Our number of ancestors quickly exceeds the world population.  In 30 (25 years) generations, in about the year 1263, we reach about 1 billion ancestors.  In 1750, there were 791 million people on Earth, in 1600, 580 million, in 1500, 458 million and in 1000, 310 million.

Ancestors - Years

We know that we very likely descend several times from a much smaller group of ancestors from isolated local populations.  However, just looking at the 32,000+ ancestors in 15 generations, it’s still an entire dandelion field!!!

???????????????????????????????????????????????????????????????????????